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Abstract
The emergence of mobile colistin resistance (mcr) threatens to undermine the clinical efficacy of the last antibiotic that can be
used to treat serious infections caused by Gram-negative pathogens. Here we measure the fitness cost of a newly discovered
MCR-3 using in vitro growth and competition assays. mcr-3 expression confers a lower fitness cost than mcr-1, as determined
by competitive ability and cell viability. Consistent with these findings, plasmids carrying mcr-3 have higher stability than
mcr-1 plasmids across a range of Escherichia coli strains. Crucially, mcr-3 plasmids can stably persist, even in the absence of
colistin. Recent compensatory evolution has helped to offset the cost of mcr-3 expression, as demonstrated by the high fitness
of mcr-3.5 as opposed to mcr-3.1. Reconstructing all of the possible evolutionary trajectories from mcr-3.1 to mcr-3.5 reveals a
complex fitness landscape shaped by negative epistasis between compensatory and neutral mutations. Our findings highlight
the importance of fitness costs and compensatory evolution in driving the dynamics and stability of mobile colistin resistance in
bacterial populations, and they highlight the need to understand how processes (other than colistin use) impact mcr dynamics.

The first discovery of plasmid-borne mcr-1 gene encoding
colistin resistance in 2015 [1], has raised major international

concerns for human health as their dissemination within
and between species can rapidly confer wide-spread resis-
tance to colistin, a last-resort antibiotic deployed against
carbapenem-resistant pathogens. Antibiotic resistance is
usually associated with a fitness cost [2, 3], and this cost
helps to limit the spread and maintenance of resistance, for
example by reducing the ability of bacteria to transmit
between hosts [2, 4, 5]. In this case, the expression of mcr-1
in Escherichia coli confers a fitness cost, virulence loss and
changes in innate immune response [6]. These changes
suggest that restricting colistin use, for example by banning
the use of colistin as a growth promoter, could lead to the
decline of mcr-1.

A new transferable mcr-3.1 gene with only 45.0%
nucleotide homology to mcr-1, was firstly identified on an
IncHI2-type plasmid in an E. coli isolate from pig faeces
from China in June 2017 [7]. Two variants of mcr-3
(mcr 3.1 and mcr 3.5) are now highly prevalent in South
East Asia (unpublished data), but despite their clinical
importance, the impact of mcr-3 expression on bacterial
fitness is still unknown. To test the impact of mcr-3
expression on bacterial fitness, we cloned mcr-3 into an
inducible expression vector using a strategy as previously
described to measure the cost of mcr-1 [8] (details of strains
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and plasmids are listed in Supplementary Table 1). Con-
sistent with our previous work, induction of mcr expression
slowed the growth of E. coli Top10 relative to uninduced
controls, demonstrating a fitness cost by mcr expression
(Fig. 1a). Both mcr-3 variants imposed a smaller fitness cost
than mcr-1, but the expression of mcr-3.5 was less costly
than that of mcr-3.1. We then assessed the effect of MCR-3
on cell viability via LIVE/DEAD® staining with confocal
laser scanning microscopy imaging (details see in Supple-
mentary File 1). A minimal reduction in bacterial viability
was observed in E. coli TOP10 (mcr-3.5/pBAD), compared

with that of E. coli TOP10 (mcr-3.1/pBAD) (~3 vs 9%,
p= 0.0002, see Supplementary Fig.1 and Supplementary
Table 4). Furthermore, we investigated whether expression
of MCR-3.1 and MCR-3.5 affects bacterial morphology by
using transmission electron microscopy. The control strain,
E. coli TOP10 (pBAD alone), showed normal cellular
characteristics with a multi-layered cell outer membrane
and cytoplasmic granular density (Supplementary Fig. 2).
However, a demonstrable loss of electron density and sig-
nificant impaired cell wall integrity were observed in both
MCR-3.1- and MCR-3.5-producing E. coli TOP10 cells
(Supplementary Fig. 2), which is consistent with our pre-
vious findings with mcr-1 expression [8].

It is well-established that compensatory mutations can
mitigate the fitness cost associated with the expression of
antibiotic resistance genes, and therefore allowing resis-
tance genes to be stably maintained in bacterial populations
[2]. mcr-3.1 and 3.5 differ from each other by only three
amino-acid substitutions (M23V, A457G, T488I), suggest-
ing that recent compensatory evolution has mitigated the
cost of mcr3 expression. To further understand the com-
pensatory evolution in MCR-3, we reconstructed all of the
possible variations between MCR-3.1 and MCR-3.5 (pri-
mers and methods shown in Supplementary Tables 2 and 3).
Substitutions A457V and T488I had strong compensatory
effects when they were inserted into MCR-3.1, increasing
fitness by up to 45% (Fig. 1b). However, the double sub-
stitution of A457V and T488I did not demonstrate a higher
fitness than either of the single mutants, demonstrating
negative epistasis between these substitutions (Supplemen-
tary Table 7). The remaining substitution (M23V) is either
neutral or mildly deleterious. These epistatic interactions

Fig. 1 The competitiveness and fitness landscape of mcr-3 variants.
a Effects of the expression of three mcr-variants, mcr-1, mcr-3.1 and
mcr-3.5 on bacterial growth rate in vitro. The expression of mcr- genes
was induced by 0.2% (w/v) L-arabinose and bacterial density was
measured by microplate reader at every 1 h. The data represent the
mean and SD (n= 3). b The adaptive landscape of colistin resistance
mcr-3.5 conferred by three mutations in mcr-3.1 gene. Each node
displays the amino acid substitution (M23V, A457V and T488I) and
its average fitness. This figure shows the fitness landscape connecting
MCR3.1 to MCR3.5. Possible evolutionary trajectories are shown with
arrows and the fitness of each genotype is given followed by the
standard error of fitness. We tested the fitness effect of each mutation
using a t-test followed by a Bonferroni correction for multiple (n= 12
tests). Blue and red arrows show mutations that significantly increase
or decrease fitness, respectively, and grey arrows show neutral muta-
tions that do not alter fitness (details in Supplementary Table 6).
c Epistatic interactions among MCR-3 mutants: this figure shows the
observed (blue) and expected (grey) fitness of MCR mutants con-
taining at least two substitutions (+/− S.E). Expected fitness values
were calculated using a multiplicative model of fitness and we used the
method of propagation of errors to determine the error in expected
fitness estimates (Supplementary Table 7).
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generate a complex fitness landscape with two isolated
peaks with fitness rates of ~1.3 and 1.45, respectively
(Fig. 1b,c). Crucially, only 1 of the 6 possible evolutionary

trajectories linking MCR-3.1 to MCR-3.5, gives mono-
tonically increasing fitness (i.e. no deleterious mutation) and
this trajectory involves a combination of neutral mutations

Fig. 2 The abundance of mcr-1 and mcr-3 plasmids in two com-
petition models. a The dynamic changes of mcr-1 and mcr-3 plas-
mids’ copy numbers in wild-type strains. To model the change in mcr-
1 or mcr-3 copy number across time, we used polynomial regression.
The difference in threshold cycle (ΔCt) between either mcr-1 or mcr-3
and chromosomally encoded gene rpoB were used to calculate their
relative copy numbers over time (see Methods in Supplementary
File 1). In addition, the difference in threshold cycle (ΔCt) between
mcr-3 or mcr-1, which is equivalent to log2 of relative copy number,
were used as a response variable. In this figure, four fixed variables
and their interactions were used as predictors: Strain (PN42, PN4 or
PN24), genes (mcr-1 and mcr-3), generations and Colistin (colistin
presence/absence). Each strain included three independent replicates
which were measured repeatedly over the course of the experiment.

For a full model incorporating the effect of host strain, particular gene
and presence of colistin, see Supplementary Tables 9–13. The analysis
was performed using R (version 3.5.1) and packages lme4 (version
1.1–17) and lmerTest (version 3.0-1). b The dynamic changes of
mcr-1 and mcr-3 genes/plasmids in E. coli J53 strain. We used
threshold cycle values (CT) measured by qPCR in order to estimate
relative copy number (see Methods). Two fixed variables and their
interactions were used as predictors in this figure: cultures (mono-
culture vs mixed cultures), genes (mcr-1 and mcr-3), generations and
Colistin (colistin presence/absence). For a full model incorporating
the effect of culture, particular gene and presence of colistin, see
Supplementary Tables 13–15. The analysis was performed using R
(version 3.5.1) and packages lme4 (version 1.1-17) and lmerTest
(version 3.0-1).
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(M23V, T488I) and only a single compensatory mutation
(A457V) (Fig. 1b and Supplementary Tables 5–7). These
data clearly show that compensatory mutations can mitigate
the cost of MCR-3 expression, but they also highlight
the role that epistasis plays in the evolution of MCR
enzymes. A key challenge for future work will be to
understand how these substitutions alter the substrate
binding and/or catalytic activity of MCR-3.

Given that MCR-3 imposes a lower fitness cost than
MCR-1, then it follows that MCR-3 should have a higher
stability than MCR-1. To test this hypothesis, we passaged
cultures of three wild-type E. coli strains that harbour both
MCR-3 and MCR-1 plasmids over 14 days in the presence
and absence of colistin (see details in Supplementary
File 1). The dynamics of individual plasmid/host strain
combinations were complex, but the ratio of mcr-3/mcr-1
plasmids consistently increased over time in all three
strains, consistent with the low cost of MCR-3 carriage
(Fig. 2a and Supplementary Tables 8–12). The dynamics
of plasmid populations are complex, but the key difference
appears to be that mcr-1 plasmids were slowly lost,
whereas mcr-3 plasmid populations recovered after an
initial period of decline. Interestingly, mcr-3 plasmids
were able to increase in frequency in the absence of
colistin exposure.

To further test the effect of MCR production on plasmid
stability, we generated tranconjugants of E. coli J53 carry-
ing either an mcr-1 plasmid or an mcr-3 plasmid. The
abundance of both the mcr-1 and mcr-3 plasmids declined
in transconjugant monocultures, demonstrating that these
plasmids impose a fitness cost (Fig. 2b and Supplementary
Tables 13–15). Plasmid frequency also decreased over time
when the transconjugants were co-cultured. However, the
mcr-3 plasmid had a higher stability than the mcr-1 plasmid
under direct competition, which is consistent with a reduced
fitness cost of MCR-3. Our results suggest that the long-
term persistence of resistance is influenced by both the fit-
ness effects (e.g. mcr-3-positive plasmids carry a smaller
cost than that of mcr-1- plasmids, see in Fig. 1), and plas-
mid dynamics (e.g. recovery of mcr-3-positive plasmids in
spite of costs of gene, see in Fig. 2). Interestingly, the short-
term dynamics of the resistance genes can be largely
understood in terms of fitness effects, but plasmid dynamics
become more important over the longer term.

There is little doubt that the use of colistin is a key driver
for the emergence of colistin resistance. Large quantities of
colistin have been used in food-producing animals for meta-
phylaxis or as growth promoters [1, 9, 10], and colistin is still
considered a vital antibiotic for treating serious Gram-negative
infections [6]. Interestingly, we found that the addition of
low concentrations (2 mg/l) of colistin had little or no impact
on the outcome of mcr-1 and mcr-3 plasmid dynamics

(Supplementary Tables 8–15), suggesting that colistin is not
the only factor influencing the spread and maintenance of
mcr-carrying plasmids. Both competition models showed that
both the host genotype and gene/plasmid characteristics can
influence the long-term co-existence of mcr genes.

Understanding the drivers of stability of resistance genes
in complex microbial communities is of great importance
for predicting the fate of resistance genes and success of
bacterial clones in response to ecological challenges (e.g.
antibiotics). It is generally understood that the acquisition of
antibiotic resistance genes in bacterial communities are
deleterious, due to their fitness burden that limiting the
spread of resistance genes in the bacterial populations
[2, 3, 11]. However, bacteria can and adapt and evolve
rapidly to persist in these changing environments through
compensatory mutations [11, 12]. In this study, we provided
evidence that the compensatory mutations found in mcr-3
can mitigate the fitness cost imposed by plasmid acquisition
and significantly improve the retention of mcr-3-positive
plasmids. Moreover, although the fitness burden cost
occurred in the first 50 generations, both mcr-1 and mcr-3
genes can persist in mixed populations, and the relative
abundance of mcr-3-carrying plasmids increased over time,
suggesting that the burden cost are alleviated through
compensatory adaptations. In particular, associations exist
between resistance genes and bacterial communities via
vertical and horizontal transfers, and as mcr-1 and mcr-3
plasmids are highly transferable (conjugation rates are as
high as 10−4, unpublished data), there is the potential risk
of mcr-1 and mcr-3 genes being rapidly disseminated
throughout bacterial communities. In conclusion, our study
reveals that (i) both MCR-1 and MCR-3 genes produce
fitness costs during bacterial competition; (ii) the costs can
be alleviated through compensatory mutations; (iii) both
fitness costs and plasmid dynamics play an important role
in the persistence of resistance genes within bacterial
communities; (iv) our data also highlight the importance of
the genetic context of resistance genes/plasmids for under-
standing the long-term dynamics of resistance.
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