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Abstract

We consider non-negative solutions to reaction-diffusion equations on time-

dependent domains with zero Dirichlet boundary conditions. The reaction term

is either linear or else monostable of the KPP type. For a range of different

forms of the boundary motion, we use changes of variables, exact solutions,

supersolutions and subsolutions to study the long-time behaviour.

For a linear equation on (A(t), A(t) + L(t)), we prove that the solution can

be found exactly by a separation of variables method when L̈L3 and ÄL3 are

constants. In these cases L(t) has the form L(t) =
√
at2 + 2bt+ l2.

We also analyse the linear problem near the boundary, deriving conditions on

L(t) such that the gradient at the boundary remains bounded above and below

away from zero. Interesting links are observed between this ‘critical’ boundary

motion and Bramson’s logarithmic term for the nonlinear KPP equation.

The exact solutions and investigation of behaviour near the boundary are

also extended to a ball with time-dependent radius, and a time-dependent box.

We then consider time-periodic bounded domains Ω(t). The long-time be-

haviour is determined by a principal periodic eigenvalue µ, for which we derive

several bounds and also consider the large and small frequency limits. For the

nonlinear problem, we prove that the solution converges to either zero or a

unique positive periodic solution u∗.

The nonlinear problem is also studied on a bounded domain in RN moving

at constant velocity c, and we derive several properties of the positive stationary

limit Uc.

Results describing long-time behaviour for the nonlinear equation are then

extended to certain other types of time-dependent domain that have non-constant

velocity and non-constant length, and to time-dependent cylinders.
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Notation

O big O: F1 = O(F2) means ∃ a constant B such that |F1

F2
| ≤ B.

o little o: F1 = o(F2) in a specified limit means that F1

F2
→ 0.

� same as o: F1 � F2 means F1 = o(F2) in the specified limit.

O F1 = O(F2) means that both F1 = O(F2) and F2 = O(F1).

∼ asymptotic to: F1 ∼ F2 in a specified limit means that F1

F2
→ 1.

∂
∂ν

ν · ∇ where ν is the outward unit normal

˙( ) d
dt

( )

[ ]+ positive part: [F (t)]+ = max(F (t), 0) ≥ 0

[ ]− negative part: [F (t)]− = −min(F (t), 0) ≥ 0

λ(Ω0) principal Dirichlet eigenvalue of −∇2 on bounded domain Ω0

x [xj] space variable in the time-dependent domain [jth co-ordinate]

ξ [ξj] space variable in fixed reference domain [jth co-ordinate]

ψ(x, t) solution on the time-dependent domain

u(ξ, t) u(ξ, t) = ψ(x, t), with transformed variable ξ in a fixed domain

Uc, Uc,Ω0 , Uc,L0 unique positive solution to (6.6), (6.7), on Ω0 or (0, L0)

c∗ ‘critical speed’ c∗ = 2
√
Df ′(0), or in the linear case, c∗ = 2

√
Df0

D the diffusion coefficient (positive and constant)

f0 coefficient of the linear reaction term

f the reaction term: either linear or satisfying (2.20)

K the positive zero of f , in the nonlinear case

L(t) [Lj(t)] length of time-dependent interval [or in dimension j]

A(t) [Aj(t)] left hand end of time-dependent interval [or in dimension j]

γ0 [γ
(j)
0 ] either L̈L3 ≡ γ0 [or in dimension j], otherwise any constant

γ1 [γ
(j)
1 ] either ÄL3 ≡ γ1 [or in dimension j], otherwise any constant

σ1 [σ1,j] principal Sturm-Liouville eigenvalue of (3.19), (3.20)

g1 [g1,j] principal Sturm-Liouville eigenfunction of (3.19), (3.20)

Q(t), Qj(t) defined in (3.82) and (3.137)

Q(t), Q
j
(t) defined in (3.83) and (3.138)

H(ξ, t), Hj(ξj, t) defined in (3.6) and (3.131)
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Ai the Airy function

κ1 the largest real zero of Ai

Lcrit ‘critical length’ Lcrit = π
√

D
f ′(0)

Lcrit(c) for c ∈ (−c∗, c∗), Lcrit(c) = π
√

D

f ′(0)− c2

4D

L0 any positive length

t0, t1 any positive time

T in Chapter 5 only: the period of a periodic domain Ω(t)

ω in Chapter 5 only: the frequency ω = 2π
T

µ, µ(ω) in Chapter 5 only: principal periodic eigenvalue of problem

(5.3), (5.4), (5.5), (5.6) associated with periodic domain Ω(t)

PT in Chapter 5 only: Poincaré map: u(·, nT ) 7→ u(·, (n+ 1)T ).

For functions on a bounded domain Ω, and for k ∈ N, 0 < γ < 1, and 1 < p <∞:

[u]γ = supx 6=y∈Ω

(
|u(x)−u(y)|
|x−y|γ

)
.

||u||Cγ(Ω) = supΩ |u|+ [u]γ.

||u||C0,1(Ω) = supΩ |u|+ supx 6=y∈Ω

(
|u(x)−u(y)|
|x−y|

)
.

||u||Ck+γ(Ω) = supΩ |u|+
∑
|β|≤k supΩ |∂βxu|+

∑
|β|=k[∂

β
xu]γ.

||u||W 2
p (Ω) =

(∫
Ω

(|u|p + |Dxu|p + |D2
xu|p) dx

) 1
p .

For functions on a bounded space-time domain ΩT = Ω×(0, T ), and for k, l ∈ N,

0 < α < 1, and 1 < p <∞:

[u]α,α
2

= sup(x,t) 6=(y,s)∈ΩT

(
|u(x,t)−u(y,s)|
|x−y|α+|t−s|

α
2

)
.

||u||
Cα,

α
2 (ΩT )

= supΩT
|u|+ [u]α,α

2
.

||u||Ck,l(ΩT ) = supΩT
|u|+

∑
|β|≤k supΩT

|∂βxu|+
∑

n≤l supΩT
|∂nt u|.

||u||
Ck+α,l+

α
2 (ΩT )

= ||u||Ck,l(ΩT ) +
∑
|β|=k[∂

β
xu]α,α

2
+ [∂ltu]α,α

2
.

||u||
C1+α, 1+α2 (ΩT )

= supΩT
|u|+

∑
|β|=1 supΩT

|∂βxu|+
∑
|β|=1[∂βxu]α,α

2

+ sup(x,t)6=(x,s)∈ΩT

(
|u(x,t)−u(x,s)|

|t−s|
1+α
2

)
.

||u||W 2,1
p (ΩT ) =

(∫ T
0

∫
Ω

(|u|p + |Dxu|p + |D2
xu|p + |Dtu|p) dxdt

) 1
p
.
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Chapter 1

Introduction

In this thesis we consider the reaction-diffusion problem

∂ψ

∂t
= D∇2ψ + f(ψ) for x ∈ Ω(t) (1.1)

ψ(x, t) = 0 for x ∈ ∂Ω(t) (1.2)

on time-dependent domains Ω(t) ⊂ RN . A typical example is an interval with

moving endpoints: A(t) < x < A(t) +L(t). Here D > 0, ψ ≥ 0 and we consider

both the linear problem where

f(ψ) = f0ψ with f0 > 0, (1.3)

and a nonlinear problem where f satisfies certain conditions (2.20) such that

f(0) = f(K) = 0, f > 0 on (0, K), and f(k) ≤ f ′(0)k. (1.4)

Such nonlinearities are said to be of ‘KPP’ type, named after the authors Kol-

mogorov, Petrowsky and Piskunov of [41]. We consider both the linear and

nonlinear reaction terms on a range of time-dependent domains. We seek to

understand the behaviour of ψ(x, t) — how it depends on x, t, and the form

of the boundary motion — and to describe the asymptotic long-time behaviour

both overall and in a neighbourhood of the boundary. For a range of different

forms of the boundary motion, we prove results about exact solutions, upper

and lower bounds on the long-time behaviour, and convergence to stable limits.

1



Reaction-diffusion problems with ψ ≥ 0 are used to model population dy-

namics, chemical diffusion, and several other biological, ecological and physical

processes. The work in this thesis is relevant when these occur in a domain

whose boundaries move due to an external influence. In the context of popu-

lation dynamics, this could represent a habitat that changes over time due to

factors such as flooding, climate change, habitat destruction, forest fire, melt-

ing ice, loss of snow cover, or ‘re-wilding’ areas of land. The domain’s size,

as well as location, can change with time. For further applications involving

time-dependent domains see [40]; see also the introduction to [18].

In the mathematical literature on population dynamics, typical boundary

conditions include Dirichlet, Neumann or Robin. Examples of ecological sce-

narios where each of these is appropriate are discussed in [29]. Here, we always

assume zero Dirichlet conditions on the boundary of the domain.

The domains that we consider will vary ‘sufficiently smoothly’ with time;

there is always a parametrisation that is continuously differentiable (or in some

cases twice differentiable) with respect to t. It is possible to study parabolic

equations on time-dependent domains that have lower regularity with respect to

time; see for example [18] which uses a time-slicing strategy to prove existence

of weak solutions. However such cases are not the focus of this thesis; instead

we assume sufficient smoothness to guarantee a classical solution, and our aim

is to understand how this solution behaves. Our approach generally involves

transforming the problem onto a fixed domain, making changes of variables,

deriving solutions, supersolutions and subsolutions, and then interpreting the

results in terms of the original co-ordinates in the time-dependent domain.

Some of the results will include parameters that are quite standard on fixed

domains, such as the ‘critical speed’

c∗ = 2
√
Df ′(0) (1.5)

which is important for the spreading of the solution on the whole space, and the

‘critical length’ Lcrit = π
√

D
f ′(0)

which is important for the problem on a fixed

2



interval of constant length.

This speed c∗ = 2
√
Df ′(0) is the asymptotic spreading speed for a solution

to
∂u

∂t
= D∇2u+ f(u) on RN (1.6)

with compactly supported initial conditions, in the following sense. For the

linear equation, where f(u) = f0u, the solution on the whole space RN is

u(x, t) =
ef0t

(4πDt)
N
2

∫
RN
u(y, 0)e−

|x−y|2
4Dt dy, (1.7)

so as t → ∞, u(x, t) → ∞ in {|x| ≤ ct} for each 0 ≤ c < c∗, and u(x, t) → 0

uniformly in the region {|x| ≥ c∗t}. Moreover u(x, t) takes order one values at

the positions |x| = c∗t− ND
c∗

log t
t0

+O(1) as t→∞. For the nonlinear problem,

with f sufficiently smooth and satisfying (1.4), Aronson and Weinberger [5, 4]

show that max|x|≥c∗t u(x, t) → 0, and that for each 0 ≤ c < c∗ it holds that

max|x|≤ct |u(x, t)−K| → 0 as t→∞.

The same speed c∗ is also the minimal travelling wave speed for the one-

dimensional nonlinear problem. For f satisfying (1.4), it is shown in [41] and

[5] that for each c ≥ c∗ there exist travelling wave solutions u(x, t) = Ũc(x− ct)

to the equation

∂u

∂t
= D

∂2u

∂x2
+ f(u) for −∞ < x <∞ (1.8)

that are monotonically decreasing in x from K to zero. Such solutions do not

exist for c < c∗. The monotone travelling wave Ũc∗ of minimal speed c∗ satisfies

0 = DŨ ′′c∗(z) + c∗Ũ
′
c∗(z) + f(Ũc∗(z)) for −∞ < z <∞ (1.9)

with Ũc∗(−∞) = K, Ũc∗(+∞) = 0 and Ũc∗(z) ∼ Bze−
c∗z
2D as z →∞. Moreover,

Kolmogorov, Petrowsky and Piskunov prove in [41] that for a solution to the

‘KPP equation’ (1.8) with Heaviside initial conditions (u(x, 0) = K for x < 0,

and u(x, 0) = 0 for x > 0), there is a function ϕ(t) with dϕ
dt
→ c∗ as t→∞ such

that

sup
x∈R

∣∣∣u(x, t)− Ũc∗(x− ϕ(t))
∣∣∣→ 0 as t→∞. (1.10)

3



This function ϕ(t) is the asymptotic front position, at which the solution u(x, t)

takes on some value strictly between K and zero. Uchiyama proves in [62] that

ϕ(t) = c∗t− 3D
c∗

log t
t0

+ O
(

log log t
t0

)
for large t, and Bramson [16, 15] derives

the asymptotic behaviour of ϕ(t) up to order one:

ϕ(t) = c∗t−
3D

c∗
log

t

t0
+ constant + o(1) as t→∞. (1.11)

This has become known as Bramson’s logarithmic correction and is proved in

[16, 15] using probabilistic arguments. An alternative proof of the fact that

ϕ(t) = c∗t− 3D
c∗

log t
t0

+O(1) as t→∞, using PDE methods, is given by Hamel,

Nolen, Roquejoffre and Ryzhik in [36]. A similar result, with locally uniform

convergence, also holds for compactly supported initial conditions. In [33] and

[27] the result is extended to the multi-dimensional case. Namely, for (1.6) on

RN with compactly supported initial conditions, there is a function ϕ̂ such that

sup
|x|≥r0

∣∣∣u(x, t)− Ũc∗ (|x| − ϕ̂(t;x/|x|))
∣∣∣→ 0 as t→∞ (1.12)

(for any r0 > 0), and the wave front is uniformly at the radial position

|x| = c∗t−
(2 +N)D

c∗
log

t

t0
+O(1) as t→∞. (1.13)

[Note the difference to the linear case, where the solution is of order one at

|x| = c∗t− ND
c∗

log t
t0

+O(1) as t→∞.]

The speed c∗ and these same logarithmic correction terms also appear in

this thesis, but now in the context of a critical boundary motion for the linear

equation on a finite, time-dependent domain. For the linear equation on the

interval −L(t)
2

< x < L(t)
2

, we show that if the endpoints move apart ‘too fast’

then the solution tends to zero in a neighbourhood of the boundary, whereas

if they move apart ‘too slowly’ then the solution tends to infinity at order one

distances from the boundary. Using precise bounds on this behaviour, we derive

conditions under which the solution remains exactly of order one (bounded above

and bounded below away from zero) at an order one distance from the boundary.

This ‘critical’ boundary motion satisfies L(t)
2

= c∗t− 3D
c∗

log t
t0

+O(1) as t→∞

4



(see Section 4.2). Similarly, for a time-dependent ball in RN , we show that the

‘critical’ radius R(t) in dimension N ≤ 3 has a logarithmic term that matches

(1.13) (see Section 4.3).

The 3D
c∗

log t
t0

term also arises in the paper [12], where J. Berestycki, Brunet

and Derrida analyse a linear reaction-diffusion equation on a semi-infinite, time-

dependent interval µ(t) < x <∞. They prescribe constant values of the solution

h and its gradient ∂h
∂x

at the boundary x = µ(t), and seek an asymptotic expan-

sion as t→∞ for the boundary position µ(t). They use a clever method based

on an integral transform g(r, t) =
∫∞

0
h(µ(t)+z, t)erzdz for r in a suitable range,

and a singularity analysis in a small parameter ε, where r = rcrit − ε for some

critical value rcrit. Initial conditions h(·, 0) with different rates of exponential

decay as x→∞ are considered, and for each of these they deduce an asymptotic

form of the boundary position µ(t) as t → ∞, by matching singularities in ε.

For initial conditions with sufficiently fast decay, including those with compact

support, µ(t) = c∗t − 3D
c∗

log t
t0

+ constant + o(1) as t → ∞. This is the same

as the front position (1.11) for the nonlinear KPP equation on R. Several sub-

sequent terms in the expansion are calculated in [12]. The same authors also

apply their method to the nonlinear KPP problem in [11].

In the current thesis, the method from [12] will be applied when we investi-

gate the gradient of the solution at the boundary of a time-dependent domain:

see Section 4.5 for the linear problem, and Proposition 7.21 and Theorem 7.23

for the nonlinear problem. Such results relate to time-dependent boundaries

moving with asymptotic speed c∗ and with domain length becoming infinitely

large as t→∞.

We are also interested in time-dependent intervals with L(t) varying close to

the ‘critical length’ Lcrit = π
√

D
f ′(0)

. We know that for the linear equation (1.1),

(1.2) on a fixed interval 0 < x < l, the solution can be expressed as a Fourier

series using the separation of variables. Namely, in this case we have

ψ(x, t) =
∞∑
n=1

an sin
(nπx

l

)
exp

((
f0 −

Dn2π2

l2

)
t

)
(1.14)

5



where an = 2
l

∫ l
0
ψ(x, 0) sin

(
nπx
l

)
dx. For positive solutions, a1 > 0 and it is then

clear that for l > Lcrit (i.e. f0 >
Dπ2

l2
) the solution tends to infinity as t → ∞,

for l < Lcrit (i.e. f0 <
Dπ2

l2
) the solution tends to zero, and for l = Lcrit (i.e.

f0 = Dπ2

l2
) there is a positive stationary solution.

For the problem on a time-dependent interval,

∂ψ

∂t
= D

∂2ψ

∂x2
+ f ′(0)ψ for A(t) < x < A(t) + L(t) (1.15)

ψ = 0 at x = A(t) and x = A(t) + L(t), (1.16)

we cannot in general write the solution in a separated form and make such

conclusions. Here, however, we use changes of variables to prove that when L̈L3

and ÄL3 are constants then we can obtain exact solutions by a separation of

variables method. In these cases, L(t) has the form L(t) =
√
at2 + 2bt+ l2, and

we present formulae for the separable solutions in terms of a, b, and al2−b2. We

also extend this result to a time-dependent ball and a time-dependent box. For

cases that are not separable, we prove comparison results which bound the long-

time behaviour. These allow us to analyse the role of Lcrit when L(t) depends

on time, including some cases where L(t) converges to Lcrit as t→∞.

We also give bounds on the solution when L(t) varies periodically with time,

and consider more general bounded time-periodic domains Ω(t) ⊂ RN . For such

domains we convert the problem into a periodic-parabolic equation on a fixed

domain; the results of [20] then show that the long-time behaviour is determined

by a principal periodic eigenvalue, µ. Although periodic-parabolic problems

have been studied by several authors, and we make use of results from Castro and

Lazer [20], Hess [37] and Liu, Lou, Peng and Zhou [46], none of these have worked

specifically on time-periodic domains or the periodic-parabolic equations that

arise from them. Here, we derive bounds on the principal periodic eigenvalue µ

associated to a time-periodic domain Ω(t).

As shown by the work [20] of Castro and Lazer, there are certain aspects

in the theory of periodic-parabolic problems that correspond to those in the

theory of elliptic problems. The principal periodic eigenvalue, which is key to
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determining the long-time behaviour, is in some ways analogous to the principal

eigenvalue in the elliptic case. There are also certain similarities for the nonlinear

problem. Here, for the nonlinear equation on a time-periodic domain, we prove

convergence to either zero or a unique positive periodic solution u∗. Similarly,

when Ω(t) is a bounded domain Ω0 translating at constant velocity c, we prove

convergence to either zero or a unique positive solution Uc to an elliptic equation.

In both cases, the proof uses a monotonic sub- and supersolution argument.

We also give results about long-time solution behaviour for the nonlinear

equation in certain other cases, where the domain and its velocity are neither

periodic nor constant. This includes some results on an interval whose length

tends to infinity and whose endpoints travel at asymptotically constant speeds

less than c∗. Such results can be related to the moving boundary problem that

is introduced by Du and Lin in [24] and considered with co-authors in [23, 17,

26]. There, they fix a constant µ > 0 and consider the free boundary problem

∂u

∂t
= D

∂2u

∂x2
+ f(u) for g(t) < x < h(t) (1.17)

u(g(t), t) = u(h(t), t) = 0 (1.18)

ġ(t) = −µ∂u
∂x

(g(t), t), ḣ(t) = −µ∂u
∂x

(h(t), t) (1.19)

with some given initial values h(0) = h0 = −g(0), u(x, 0) = u0(x), and where

f(0) = f(K) = 0, f > 0 on (0, K), f ∈ C1([0, K]), and f ′(K) < 0 < f ′(0).

They prove a ‘spreading/vanishing dichotomy’: as t → ∞ either g(t) → −∞,

h(t) → +∞ and u spreads at an asymptotically constant speed ĉ = ĉ(µ) in

both directions, or else g(t)→ g∞, h(t)→ h∞ with h∞− g∞ ≤ π
√
D/f ′(0) and

there is ‘vanishing’, i.e. u→ 0. In the case of spreading, the speed ĉ is strictly

between 0 and c∗. Theorem 1.2 of [26] is that: ġ(t) → −ĉ and ḣ(t) → ĉ; there

are constants Ĝ, Ĥ such that g(t) + ĉt→ Ĝ and h(t)− ĉt→ Ĥ; and

0 = lim
t→∞

sup
x∈[g(t),0]

|u(x, t)− qĉ(x− g(t))| = lim
t→∞

sup
x∈[0,h(t)]

|u(x, t)− qĉ(h(t)− x)|,

(1.20)
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where for c ∈ [0, c∗), qc denotes the unique semi-wave satisfying

Dq′′ − cq′ + f(q) = 0 for 0 < x <∞ (1.21)

q(0) = 0, lim
x→∞

q(x) = K, q > 0 on (0,∞). (1.22)

The spreading speed ĉ is uniquely determined by µ, via the relation µq′ĉ(0) = ĉ.

(See [24, 23, 17, 26] for full statements and proofs of these facts.) This free

boundary problem has since been extended to a wider range of reaction terms

and scenarios; see in particular the paper [25]. It clearly has some similarities

with our own problem, however a key difference is that our boundary motion

is prescribed: the boundaries move due to some external influence, rather than

being determined as part of the solution. The scopes of the two problems

therefore differ, however it can be instructive to consider what may be learned

about one problem based on the solution to the other (see Section 7.5.2).

Time-dependent domains also arise in modelling living tissue and developing

organisms. Such domains are actually physically growing, or expanding, and

applications include pattern formation on growing organisms [21, 35, 42]. In

[60], a reaction-diffusion problem on an isotropically growing domain is used to

model insect dispersal on a growing leaf, with reaction term f(u) = u(a−buq). A

linear growth-diffusion equation on an expanding domain is analysed by Simpson

in [56], with an extension to coupled systems in [57]. The domain is itself

expanding at each position x, to model the uniform growth of living tissue. In

both [60] and [56] the method is to transform the problem onto a fixed domain,

with the domain growth leading to advection and dilution terms. On the fixed

domain, the equation takes the form

∂u

∂t
=

D

L(t)2

∂2u

∂ξ2
− σ(t)u(ξ, t) + f(u(ξ, t)) for 0 < ξ < 1 (1.23)

where σ(t) depends on the growth of the domain, which is assumed uniform

and isotropic. In [56], Simpson derives exact separable solutions to the linear

problem, while in [60], Tang and Lin make further assumptions on the domain

growth that allow them to derive the asymptotic long-time behaviour of the
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solution to the nonlinear problem. This ‘growing domain’ model differs to the

case that we consider in this thesis, since in our problem the physical points

inside the domain are not themselves being expanded or stretched, but rather

the boundary of the domain is moving. (In this respect, our case is more similar

to the moving boundary problem in [24, 23, 17, 26].) In our model, therefore, the

problem that results from transforming onto a fixed domain differs from (1.23).

The corresponding equation, if we transform (A(t), A(t) +L(t)) to (0, 1), is now

∂u

∂t
=

D

L(t)2

∂2u

∂ξ2
+

(
Ȧ(t)

L(t)
+
L̇(t)

L(t)
ξ

)
∂u

∂ξ
+ f(u(ξ, t)) for 0 < ξ < 1. (1.24)

Compared to the analysis in [56], some further changes of variables are required

in order to put the linear equation into a separable form and derive exact solu-

tions, but the principle is the same.

We also note that the linear Schrödinger equation has been studied on a

time-varying interval (0, L(t)) in [22] and [39]. In [22] it is assumed that dL
dt

is

constant, while [39] derives necessary conditions on L(t) in order to solve the

problem by the separation of variables.

It seems that our exact separable solutions for a linear reaction-diffusion

equation on a time-dependent interval were previously unknown. The only other

explicit representations of a solution to a linear problem of this type are those

of Xia, Fokas and Pelloni in [66, 31] which are of a very different style. Their

solutions to the heat equation on a time-dependent interval l1(t) < x < l2(t) are

given in terms of contour integrals in the complex plane involving transforms

of the known data (initial and boundary values), the domain (l1, l2 and their

derivatives), and the solution to a pair of coupled Volterra integral equations.

These formulae are derived by applying the transform method for evolution

equations that was introduced by Fokas in [30], to the heat equation on a time-

dependent interval. This has also been applied to a semi-infinite time-dependent

interval l(t) < x <∞ in [45]. Unlike the exact solutions presented in this thesis,

which rely on the zero Dirichlet boundary values and certain special forms of

the domain length L(t), the analysis of Xia, Fokas and Pelloni allows for more
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general boundary conditions and more generality in l1, l2. However, in order

to apply their formulae it is necessary to solve a system of integral equations,

as well as perform a number of integral transforms, inverse transforms, and

contour integrals in the complex plane. Overall the complex representation of

the solution means that the formulae in [66, 31] are not in such a convenient

form for readily understanding the solution’s dependence on x and t, or its

behaviour as t → ∞, as our separable solutions. So the two, very different,

ways of representing exact solutions will have their own uses and applications.

Since the approach in this thesis is based on space-and-time-dependent

changes of variables in a diffusion equation, let us mention the works [58, 59]

by Suazo, Suslov and Vega-Guzmán, which are also based on such methods.

They use carefully chosen transformations of variables to convert between (i)

a diffusion-type equation with variable coefficients and (ii) the heat equation.

They pose their problem on the real line, and derive the fundamental solution

for their non-autonomous class of diffusion-type equation. This fundamental so-

lution is given in terms of the solution µ(t) to a second order ODE, and a set of

six coefficients defined by integrals involving µ(t), µ̇(t), and the time-dependent

coefficients of the parabolic equation. They give several applications, to a range

of PDEs, but always on R and not on a domain with a boundary.

Our own problem, with moving boundaries, has potential application to a

species population subjected to habitat movement. Due to the importance of

climate change — and its consequences for the migration, survival or extinction

of species — this theme has been considered by several authors; but typically

these incorporate the shifting habitat into the reaction term and not the do-

main boundaries themselves. Let us note in particular the paper by Potapov

and Lewis [54] on a two-species competition, and the paper of H. Berestycki,

Diekmann, Nagelkerke and Zegeling [6] for a single species. They consider the

nonlinear problem on the whole real line, with a reaction term that leads to

growth in a favourable region and decay elsewhere. The favourable region has

a fixed length L and moves at a constant speed c. In general, therefore, in
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their model it is not the domain itself whose boundaries move, but a subdo-

main. Nevertheless, the case of a finite interval moving at constant speed c with

Dirichlet boundary conditions is included as a limiting case of their problem.

Several results are proved in [54, 6] regarding the dynamics on a moving interval

as opposed to a stationary one. Both papers prove the existence of a minimal

domain length L needed for survival, and express this as a function of c. If c is

greater than the critical value c∗ (see equation (1.5)) then the solution decays

exponentially to zero regardless of the domain length. The implication is that

if the climate changes too rapidly then the species is unable to keep up, and

goes extinct. The critical speed c∗ features in our solutions in a similar man-

ner. In the case of the two-species competition, Potapov and Lewis [54] give

some interesting results regarding invasibility in a domain moving at constant

speed c. In particular, the outcome of the competition may change depending

on c. The paper [7] by H. Berestycki, Desvillettes and Diekmann also considers

a two-species competition in an environment that shifts at constant speed c.

They prove that as t → ∞ a ‘gap’ may form between the two species if the

climate shift forces one to retreat faster than the other species can invade the

territory. Another piece of work on a shifting climate is [55] on a single species

in a two-dimensional domain. Their reaction term is favourable for growth only

in a finite ‘climate envelope’ of constant length L which moves ‘north’ at a con-

stant speed. They study the effects of different boundary geometries (domain

shapes) on the population, as well as considering reaction terms with an Allee

effect. Many other studies have been carried out into population dynamics with

a shifting climate, including higher dimensional problems on the whole space or

a cylinder [9, 10, 13], other types of reaction terms [14], and nonlocal equations

[1, 65]. All of these include the climate shift as part of the reaction term, and

all make the mathematically convenient assumption that climate change trans-

lates the favourable habitat at a constant speed c. Here, we instead consider

a domain whose boundaries are moving, and we consider not only the case of

a fixed length L and constant speed c, but also some other much more general
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moving boundaries.

The outline of the thesis is as follows. In Chapter 2 we introduce the problem

and assumptions in more detail. We define the types of time-dependent domain

that will be considered, which come under the headings ‘smooth and bounded’,

‘box-like’, and ‘cylinder-like’. We also give some preliminary results on a time-

dependent domain including existence and uniqueness of a classical solution, and

interior estimates relating to higher order derivatives. Chapter 2 also includes

certain conditions that guarantee convergence to zero in an L2 norm.

Chapter 3 is about the solution to the linear equation. We begin by con-

sidering the one-dimensional problem on the interval A(t) < x < A(t) + L(t)

and by transforming onto a fixed spatial domain. We let ξ =
(
x−A(t)
L(t)

)
L0, and

u(ξ, t) = ψ(x, t), and obtain the equation

∂u

∂t
= D

L2
0

L(t)2

∂2u

∂ξ2
+

(
Ȧ(t)L0 + ξL̇(t)

L(t)

)
∂u

∂ξ
+ f0u for 0 < ξ < L0. (1.25)

We introduce a further change of variables, w(ξ, t) = u(ξ, t)H(ξ, t)e−f0t with

H(ξ, t) given in (3.6), to transform the problem into an equation for w(ξ, t)

which has a particularly convenient form. Thus we deduce conditions, namely

that L̈L3 and ÄL3 are constants, under which the transformed equation can be

solved exactly by separation of variables. This separability condition means that

L(t) has the form L(t) =
√
at2 + 2bt+ l2. The form of A(t) and of the exact

solutions then depend on whether a and b are zero or non-zero, and the sign of

al2− b2. We give the explicit expressions for u(ξ, t) in each exactly-solvable case

(Section 3.2), and discuss several implications. The main result is contained in

Theorem 3.2 which gives the formula for the exact solutions for u(ξ, t):

un(ξ, t) = exp

σn t∫
0

L2
0

L(ζ)2
dζ

 gn(ξ)

(
L(0)

L(t)

)1/2

× exp

f0t−
t∫

0

Ȧ(ζ)2

4D
dζ − ξ2L̇(t)L(t)

4DL2
0

− ξȦ(t)L(t)

2DL0

 (1.26)

where gn(ξ) satisfies the Sturm-Liouville problem (3.19), (3.20) with γ0 = al2−b2
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and eigenvalue σn. We also apply the separation of variables method to a time-

dependent box, cylinder-like domain, and ball in RN .

In Section 3.5 we prove upper and lower bounds on the solution for forms

of L(t) and A(t) which do not satisfy the separability condition. These bounds

can, in many cases, give the exact order of the time dependence of the solution

as t → ∞. Using these comparison results, we study the role of the ‘critical

length’ Lcrit = π
√

D
f0

which is more complicated on 0 < x < L(t) than on a

fixed domain. We present cases for which L(t) is strictly less than Lcrit for all

t ≥ 0, and yet the solution does not tend to zero as t→∞. We see in Example

3.20 that if L(t) = Lcrit(1 − ε(t + t0)−k) then the outcome depends on k. If

0 < k ≤ 1 then ψ(x, t) → 0, whereas if k > 1 then ψ(x, t) has a non-trivial

lower bound.

In Chapter 4 we continue to study the linear equation, but now focusing

on the behaviour near the boundaries. There are zero Dirichlet conditions on

the boundary itself, but we are interested in understanding how the solution

behaves in a neighbourhood of the boundary and how this depends on the

boundary motion. Broadly speaking, if the endpoints move apart too fast then

the solution tends to zero in a neighbourhood of the boundary, whereas if they

move apart too slowly then the solution tends to infinity at order one distances

from the boundary. We give precise bounds on this, which involve the critical

speed c∗. In particular, if the endpoints of the interval are ±L(t)
2

= ±(c∗t− δ(t))

with δ(t) � t as t → ∞ and satisfying the conditions (4.29) and (4.31), then

ψ
(
−L(t)

2
+ y, t

)
is exactly of order yt−

3
2 exp

(
c∗
2D
δ(t)−

∫ t
0
δ̇(ζ)2

4D
dζ
)

as t → ∞,

when 0 < y = O(1). If L(t)
2

= c∗t − α log( t
t0

+ 1) − θ(t) where α > 0 and

θ(t) = O(1) satisfies (4.38) then ψ
(
−L(t)

2
+ y, t

)
is of order yt−

3
2

+αc∗
2D as t→∞,

and so it remains exactly of order one precisely when α = 3D
c∗

. This ‘critical’

choice L(t)
2

= c∗t− 3D
c∗

log( t
t0

+1)+O(1) for the linear equation on −L(t)
2

< x < L(t)
2

matches the logarithmic term in both the front position for the nonlinear KPP

problem on R, and the boundary position µ(t) in [12], starting from compactly

supported initial conditions.
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In Section 4.3, the behaviour near the boundary is studied on a ball in RN

with time-dependent radius R(t). For N ≤ 3 we show that the ‘critical’ choice of

R(t), so that the solution remains exactly of order one at an order one distance

from the boundary, satisfies R(t) = c∗t− (2+N)D
c∗

log( t
t0

+ 1) +O(1). Again, this

matches the coefficient of the logarithmic term in the front position (1.13) for

the nonlinear KPP problem on RN . Note that the restriction N ≤ 3 on the

dimension in the case of the ball is only needed for our proof of the subsolution,

and it is possible that the ‘critical’ R(t) may have the same form also for N > 3.

These results on the interval and the ball suggest that there is a correspon-

dence between (i) the ‘critical’ choice of boundary motion, such that the solution

to the linear equation on a symmetric time-dependent domain with zero Dirich-

let conditions remains of order one at an order one distance from the boundary,

and (ii) the front positions for the solution to the nonlinear KPP problem on

the unbounded domain with compactly supported initial conditions.

In Section 4.4 we pose the linear problem on a box in RN+1 with cross-section

Aj(t) < xj < Aj(t) + Lj(t) (1 ≤ j ≤ N), and with −LN+1(t)

2
< xN+1 <

LN+1(t)

2
.

We consider the following problem. Given Aj(t), Lj(t) for 1 ≤ j ≤ N , we

would like to choose LN+1(t) so that, at some given positions xj(t) in the ‘cross-

section’, ψ remains exactly of order one when xN+1 is an order one distance from

the boundary xN+1 = −LN+1(t)

2
. Our approach combines the separable sub- and

supersolutions on the box from Chapter 3 with our results about the behaviour

near the endpoints of an interval. In several cases we can indeed find a ‘critical’

choice of LN+1(t) satisfying the required property. It is not yet known whether

there is any correspondence between this special choice of LN+1(t) and the

nonlinear KPP problem on the associated unbounded time-dependent domain,

with Aj(t) < xj < Aj(t) + Lj(t) for 1 ≤ j ≤ N and −∞ < xN+1 <∞.

In Chapter 5 we consider domains Ω(t) ⊂ RN that are bounded and T -

periodic. After transforming the problem onto a fixed domain, we obtain a

parabolic equation whose coefficients are T -periodic in t. The results of [20] for

periodic-parabolic problems mean that the long-time behaviour is determined
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by a principal periodic eigenvalue, µ. We derive bounds on this eigenvalue

for our equation, under a range of different assumptions on Ω(t), and apply

these bounds to some illustrative examples. In Section 5.3 we then consider µ

as a function of the frequency ω = 2π
T

and prove results concerning the small

and large frequency limits, as well as a monotonicity property. Where indicated,

some of our proofs are based on adapting results of Liu, Lou, Peng and Zhou from

[46], where they also study the dependence of a principal periodic eigenvalue on

the frequency for a different problem. We identify limω→0 µ(ω) for a 2π
ω

-periodic

domain in any dimension, and we show that very different types of asymptotic

behaviour of µ(ω) are possible as ω → ∞. Indeed, let L(t) = L0l
(
ωt
2π

)
and

A(t) = A0a
(
ωt
2π

)
where L0 > 0, A0 ≥ 0, ω > 0, and where l(·) and a(·) are

1-periodic functions with l ≥ 1. Let µ(ω) be the principal periodic eigenvalue

associated with Ω(t) = (A(t), A(t)+L(t)). We show that if a(·) is constant then

µ(ω) = O(1) as ω →∞, but if a(·) is non-constant then there exist C1, C2 such

that: if A0

L0
< C1 then µ(ω) = O(1) as ω →∞, and if A0

L0
> C2 then µ(ω)→∞

as order ω2 as ω → ∞ (see Theorem 5.12). This raises several questions, for

example: is there a threshold value of A0

L0
at which µ(ω) stops being O(1)? If

so, what is it? Are there values of A0

L0
such that µ(ω) → ∞ at a different rate

as ω →∞? Different methods may be required to answer such questions.

We conclude Chapter 5 with the nonlinear problem on a periodic domain.

Using a result of Hess [37] and methods involving the Poincaré map, we prove

convergence to either zero or a unique positive periodic solution u∗.

In Chapter 6 we consider the nonlinear reaction-diffusion problem on a

bounded domain Ω0 ⊂ RN translating at constant velocity c ∈ RN . Depending

on the sign of f ′(0)−Dλ(Ω0)− |c|
2

4D
, where λ(Ω0) is the principal eigenvalue of

−∇2 on Ω0 with zero Dirichlet boundary conditions, we prove that the solution

converges to either zero or a positive stationary limit Uc which (when it exists)

is unique. In Section 6.2 we prove several properties of Uc, in particular with

respect to different velocity vectors c, different domains Ω0, and the asymptotic

behaviour of Uc as the domain length tends to either a critical length or infinity.
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In Chapter 7 we extend results about the long-time behaviour for the non-

linear equation to other cases, where the domain’s size and velocity are not

necessarily constant. This includes, for example, cases in which the domain

and its velocity converge as t → ∞, and also cases such that the side lengths

Lj(t) tend to ∞ as t → ∞, with L̇j(t) → αj ≥ 0 and Ȧj(t) → cj. Many of

these proofs rely heavily on the properties that were proven in Chapter 6 for

the constant velocity case. Solutions to the nonlinear problem on a cylinder-like

time-dependent domain are also discussed in Chapter 7. Finally, the solution to

the nonlinear problem on the interval is analysed in more detail, and we again

consider the behaviour near the boundary. Consider a symmetric interval with

L(t)
2

= c∗t − α log( t
t0

+ 1) + l0
2

and α > 0. We know from Chapter 4 that for

the linear problem, ∂ψ
∂x

(
−L(t)

2
, t
)

behaves like a multiple of t−
3
2

+αc∗
2D as t → ∞.

For the nonlinear equation, in contrast, we show that ∂ψ
∂x

(
−L(t)

2
, t
)

decays faster

than every power of t, in the sense that it cannot be bounded below by any

power (see Theorem 7.23).

Chapter 8 briefly summarises the main conclusions of the thesis and recom-

mends a number of related mathematical questions for further work.

The publication [2] is based on certain parts of this PhD work: the exact

solutions on an interval and a ball (Sections 3.1, 3.2 and 3.8) and results about

critical boundary motion for the interval and ball (Sections 4.2 and 4.3). Also,

[3] contains the comparison result of Theorem 3.13 and work from Section 3.5.2.
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Chapter 2

Time-dependent domains,

assumptions, and preliminary

results

2.1 Equation and change of variables

We consider the problem (1.1), (1.2) for ψ(x, t); that is:

∂ψ

∂t
= D∇2ψ + f(ψ) for x ∈ Ω(t)

ψ(x, t) = 0 for x ∈ ∂Ω(t),

where t ≥ 0, Ω(t) ⊂ RN is a time-dependent domain, and f is a given function.

We shall assume that Ω(t) has one of three general types, each of which will

allow us to change variables from x ∈ Ω(t) to ξ ∈ Ω0 for some fixed domain

Ω0 ⊂ RN , such that the function u(ξ, t) = ψ(x, t) satisfies a parabolic problem

of the form
∂u

∂t
= L(ξ, t)u+ f(u) for ξ ∈ Ω0 (2.1)

u(ξ, t) = 0 for ξ ∈ ∂Ω0. (2.2)

We shall say that Ω(t) is of Type 1 if it is bounded, connected, and there is a

one-to-one mapping h(·, t) : Ω(t) → Ω0 that transforms Ω(t) into a bounded,
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connected reference domain Ω0 with sufficiently smooth boundary (at least C2+ε

with ε > 0), and satisfies the following conditions. The mapping h(x, t) should

be at least twice differentiable in x ∈ Ω(t) and once differentiable in t, and

these derivatives should be Hölder continuous in both variables. For T > 0, the

matrix ãij(x, t) =
∑

k
∂hi
∂xk

(x, t)
∂hj
∂xk

(x, t) should be uniformly positive definite on

{0 ≤ t ≤ T, x ∈ Ω(t)}.

If Ω(t) is of Type 1 then we can change variables onto the fixed domain Ω0

by letting ξ = h(x, t) and u(ξ, t) = ψ(x, t). Then u satisfies (2.1), (2.2) where

L(ξ, t)u =
∑
i,j,k

D

(
∂hi
∂xk

∂hj
∂xk

)
∂2u

∂ξi∂ξj
+
∑
j

(
D∇2hj −

∂hj
∂t

)
∂u

∂ξj
for ξ ∈ Ω0.

(2.3)

These coefficients are locally Hölder continuous in both variables, and the con-

dition that the matrix ãij is uniformly positive definite ensures that equation

(2.1) is parabolic on Ω0 × (0, T ].

Next, we shall say that Ω(t) is of Type 2 if it can be separated as the

Cartesian product Ω(t) =
∏n

j=1 Ω(j)(t) where each Ω(j)(t) is a Type 1 domain, i.e.

smooth and bounded. By changing variables from x(j) ∈ Ω(j)(t) to ξ(j) ∈ Ω
(j)
0 ,

the equation becomes one of the form

∂u

∂t
=

n∑
j=1

Lj(ξ(j), t)u+ f(u) for ξ ∈ Ω0 =
n∏
j=1

Ω
(j)
0 (2.4)

where Lj(ξ(j), t) are the transformed operators corresponding to each of the

Type 1 domains. Thus, Lj contains the spatial derivatives with respect to ξ(j),

and has coefficients depending on ξ(j) and t.

Finally, we shall say that Ω(t) is of Type 3 if it can be separated as the

Cartesian product Ω(t) = Ω̃(t)×R where Ω̃(t) is a domain of Type 1 or 2. This

is a time-dependent strip, or cylinder. By changing variables from x ∈ Ω̃(t) to

ξ ∈ Ω̃0 and leaving y ∈ R unchanged, the equation for u(ξ, y, t) becomes

∂u

∂t
= LΩ̃(ξ, t)u+D

∂u

∂y2
+ f(u) for (ξ, y) ∈ Ω0 = Ω̃0 × R (2.5)

where the LΩ̃ is the transformed operator for the Type 1 or Type 2 domain.
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We shall always assume, even when not stated explicitly, that the domain is

of one of these three types, which we refer to as ‘smooth and bounded’, ‘box-

like’, and ‘cylinder-like’. For the domains Ω(t) which we shall focus on, there is

a natural choice of the map h(x, t). Let us give some examples.

Example 2.1.

Ω(t) = Ω0 + A(t) =
{
x ∈ RN : x− A(t) ∈ Ω0

}
(2.6)

for a smooth bounded domain Ω0 ⊂ RN and twice differentiable vector A(t) in

RN . Letting ξ = x− A(t), the equation for u(ξ, t) becomes

∂u

∂t
= D∇2u+ Ȧ(t) · ∇u+ f(u) for ξ ∈ Ω0. (2.7)

Example 2.2. A time-dependent interval, Ω(t) = (A(t), A(t) + L(t)) for some

A(t) and L(t) > 0, both twice differentiable. We change variables from x to

ξ =
(
x−A(t)
L(t)

)
L0 (for some L0 > 0), and let ψ(x, t) = u(ξ, t), so that the problem

∂ψ

∂t
= D

∂2ψ

∂x2
+ f(ψ) on A(t) < x < A(t) + L(t) (2.8)

ψ(x, t) = 0 at x = A(t) and x = A(t) + L(t) (2.9)

becomes

∂u

∂t
= D

L2
0

L(t)2

∂2u

∂ξ2
+

(
ξL̇(t) + L0Ȧ(t)

L(t)

)
∂u

∂ξ
+ f(u) for 0 < ξ < L0 (2.10)

u(ξ, t) = 0 at ξ = 0 and ξ = L0. (2.11)

Example 2.3. Let Ω(t) be any smooth, connected, bounded domain in R2,

smoothly varying in t. Identify R2 with the complex plane C, via

z = x1 + ix2, w = ξ1 + iξ2, (2.12)

and find a conformal mapping w = p(t)(z) that maps z ∈ Ω(t) to w ∈ Ω0 for some

fixed reference domain Ω0 ⊂ C. (For example if Ω(t) is simply-connected then
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we can take Ω0 to be the unit disk |w| < 1.) This conformal map corresponds to

a map ξ = h(x, t) on Ω(t) ⊂ R2, and by the Cauchy-Riemann equations,∑
k

∂hi
∂xk

∂hj
∂xk

= |(p(t))′(z)|2δij, ∇2hj ≡ 0. (2.13)

So the second order term in the transformed equation (2.1) is D|(p(t))′(z)|2∇2u

(see equation (2.3)). Since p(t) is a conformal mapping, (p(t))′(z) 6= 0 and the

equation is parabolic in ξ ∈ Ω0.

Example 2.3 allows us to analyse a range of unusually shaped domains in R2,

whose time dependence may be completely non-isotropic. We are also interested

in the following box-like domains, which can have different time dependence in

each direction 1 ≤ j ≤ N .

Example 2.4. A time-dependent box:

Ω(t) =
{
x ∈ RN : Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N

}
(2.14)

for some Aj(t) ∈ R, and Lj(t) > 0, each twice differentiable. We change

variables to ξj =
(
xj−Aj(t)
Lj(t)

)
L0 and let ψ(x, t) = u(ξ, t). The equation becomes

∂u

∂t
= D

N∑
j=1

L2
0

Lj(t)2

∂2u

∂ξ2
j

+
N∑
j=1

(
ξjL̇j(t) + L0Ȧj(t)

Lj(t)

)
∂u

∂ξj
+f(u) for 0 < ξj < L0

(2.15)

u(ξ, t) = 0 at ξj = 0 and ξj = L0. (2.16)

Example 2.5.

Ω(t) =
{

(x0, x) ∈ Rm+N : x0 − A0(t) ∈ ω0 ⊂ Rm,

Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N
}

(2.17)

for some smooth bounded domain ω0 ⊂ Rm, and twice differentiable A0(t) ∈ Rm,

Aj(t) ∈ R, and Lj(t) > 0. Letting ξ0 = x0 − A0(t) and ξj =
(
xj−Aj(t)
Lj(t)

)
L0, the

equation for u(ξ0, ξ, t) on Ω0 := ω0 × (0, L0)N becomes:
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∂u

∂t
=D∇2

ξ0
u+

N∑
j=1

D
L2

0

Lj(t)2

∂2u

∂ξ2
j

+ A0(t) · ∇ξ0u

+
N∑
j=1

(
ξjL̇j(t) + L0Ȧj(t)

Lj(t)

)
∂u

∂ξj
+ f(u) for (ξ0, ξ) ∈ Ω0 (2.18)

u(ξ0, ξ, t) = 0 for (ξ0, ξ) ∈ ∂Ω0. (2.19)

The function f in our problem is assumed to be either linear: f(ψ) = f0ψ

with f0 > 0, or nonlinear and such that for some K > 0,

f(0) = f(K) = 0, f is Lipschitz continuous, f ′(0) exists and > 0,

f(u)

u
is non-increasing on u > 0. (2.20)

Example 2.6. Examples of f satisfying these conditions include:

1. f(u) = au(1− ( u
K

)β) for any a > 0, β > 0;

2. f(u) = a sin(πu
K

) for any a > 0;

3. f(u) = f ′(0)
2

(K − |2u−K|).

Figure 2.1: Sketch of a typical nonlinearity f satisfying (2.20).

The problem on a time-dependent domain has been transformed into a non-

autonomous parabolic problem (2.1), (2.2) on a fixed domain Ω0. The standard

parabolic maximum principles, comparison principles, and uniqueness theorems

can be applied to u(ξ, t) (see [32, chapter 2] and [64, Section 3.2]). In particular,

we observe the following:
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1. u ≡ 0 is a solution to (2.1), (2.2). If u(·, 0) ≥ 0 then by the comparison

principle u(·, t) ≥ 0 for all t ≥ 0. For the nonlinear problem, u ≡ K is a

supersolution. If u(·, 0) ≤ K then u(·, t) ≤ K for all t ≥ 0.

2. If u(·, 0) ≥ 0 and is not identically zero, then for every t0 > 0 the solution

u(·, t0) is strictly positive on the interior of Ω0, satisfies the zero Dirichlet

boundary conditions, and has finite and non-zero normal derivative on

∂Ω0 (or ∂Ω0 minus the corners for domains of Type 2 or 3). This follows

from the strong maximum principle and Hopf’s Lemma in the parabolic

case; see [51, chapter 2, Theorem 1.4].

3. Assumptions (2.20) on f imply that f(u)
u
≤ f ′(0) for u > 0. In particular,

the solution ulin to the linear problem — with f(u) replaced by f ′(0)u —

is a supersolution to the nonlinear equation, and so u ≤ ulin.

We shall assume initial conditions u(·, 0) = u0 that satisfy u0 ≥ 0, u0 is not

identically zero, and (for the nonlinear case) u0 ≤ K. Due to the observations

made above, we may also assume without loss of generality (by relabelling t = 0)

that u0 > 0 in Ω0, that it satisfies the zero Dirichlet boundary conditions, and

that it has a finite and non-zero normal derivative on ∂Ω0 (or ∂Ω0 minus the

corners for domains of Type 2 or 3). We shall always make these assumptions

unless stated otherwise.

2.2 Existence, uniqueness, and comparison

Here we show that a solution to the problem (2.1), (2.2) exists and that, given

some initial conditions, the solution is unique.

Lemma 2.7. If Ω(t) is of Type 1, 2 or 3, then the linear operator ∂
∂t
− L in

equations (2.1), (2.2) has a Dirichlet Green’s function G(ξ, z, t, σ) > 0.

This means that the linear initial-boundary value problem

∂u

∂t
− Lu = F (ξ, t) in Ω0, u(ξ, t) = 0 on ∂Ω0, u(ξ, 0) = u0(ξ), (2.21)

22



for a locally Hölder continuous function F (ξ, t) and continuous u0 satisfying the

boundary conditions, has a unique classical solution which can be expressed as

u(ξ, t) =

∫
Ω0

G(ξ, z, t, 0)u0(z)dz +

∫ t

0

∫
Ω0

G(ξ, z, t, σ)F (z, σ)dzdσ. (2.22)

Proof. Suppose first that Ω(t) is of Type 1, so Ω0 is smooth and bounded. The

existence of a unique, classical, solution to the linear initial-boundary value

problem is guaranteed by [32, chapter 3, Theorem 9 and Corollary 2]. Moreover

[51, chapter 2, Theorem 1.1] and [32, chapter 3, section 7] show that this solution

can be expressed in the form (2.22), and G(ξ, z, t, σ) > 0.

Suppose next that Ω(t) is of Type 2 (box-like), and that Gj(ξ
(j), z(j), t, σ)

are the Dirichlet Green’s functions for ∂
∂t
−Lj on each Ω

(j)
0 . Then the Dirichlet

Green’s function for ∂
∂t
− L on Ω0 is G(ξ, z, t, σ) =

∏n
j=1Gj(ξ

(j), z(j), t, σ).

Finally, suppose that Ω(t) = Ω̃(t)× R is of Type 3 (cylinder-like), and that

GΩ̃(ξ, z, t, σ) is the Dirichlet Green’s function for ∂
∂t
− LΩ̃ on Ω̃0. It can be

seen that G((ξ, y), (z, y′), t, σ) = GΩ̃(ξ, z, t, σ) 1√
4πD(t−σ)

e−
(y−y′)2
4D(t−σ) is the Dirichlet

Green’s function for ∂
∂t
− L on Ω0 = Ω̃0 × R.

We conclude that for the linear reaction term f0u, the problem (2.1), (2.2)

with u(·, 0) = u0 has a unique solution: u(ξ, t) = ef0t
∫

Ω0
G(ξ, z, t, 0)u0(z)dz.

In Proposition 2.8 we treat the nonlinear case. Existence of a solution for

the nonlinear problem (2.1), (2.2) can be proved using the monotone iteration

method of Pao [51, chapter 2, Theorem 4.1]. However, here we shall give an

alternative proof which again uses the Green’s function G(ξ, z, t, σ), and which

is adapted from the proof of [63, Theorem 5.1].

We shall use the fact that
∫

Ω0
G(ξ, z, t, σ)dz ≤ 1 for all ξ ∈ Ω0 and 0 ≤ σ < t.

To see why this is true, define Uσ(ξ, t) =
∫

Ω0
G(ξ, z, t, σ)dz for 0 ≤ σ < t. Then

Uσ is the solution to

∂Uσ
∂t

= LUσ for ξ ∈ Ω0, t > σ (2.23)

with Uσ(ξ, t) = 0 for ξ ∈ ∂Ω0 and Uσ(ξ, σ) ≡ 1 on Ω0. It therefore corresponds,
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via Uσ(ξ, t) = Ψσ(x, t), to the solution to

∂Ψσ

∂t
= D∇2Ψσ for x ∈ Ω(t), t > σ (2.24)

with Ψσ(x, t) = 0 on ∂Ω(t) and Ψσ(x, σ) ≡ 1 on Ω(σ). By the comparison

principle, this is less than the solution Ψ to the same problem on RN with

Ψ(x, σ) ≡ 1 on Ω(σ) and zero elsewhere. In particular, Uσ(ξ, t) = Ψσ(x, t) ≤

Ψ(x, t) ≤ 1 for all t ≥ σ.

Proposition 2.8. For Ω(t) of Type 1, 2, or 3, there exists a unique solution to

the nonlinear problem in equations (2.1), (2.2) with initial conditions u0.

Proof. Let G(ξ, z, t, σ) be the Dirichlet Green’s function for the linear parabolic

operator in (2.1), (2.2). Let

u(0)(ξ, t) =

∫
Ω0

G(ξ, z, t, 0)u0(z)dz (2.25)

and iteratively define

u(n+1)(ξ, t) = u(0)(ξ, t) +

∫ t

0

∫
Ω0

G(ξ, z, t, σ)f(u(n)(z, σ))dzdσ. (2.26)

Note that 0 ≤ u(0)(ξ, t) ≤
∫

Ω0
G(ξ, z, t, 0)Kdz ≤ K, and that if f∞ is some

constant such that 0 ≤ f ≤ f∞ on [0, K] then

|u(1)(ξ, t)− u(0)(ξ, t)| =
∫ t

0

∫
Ω0

G(ξ, z, t, σ)f(u(0)(z, σ))dzdσ

≤
∫ t

0

∫
Ω0

G(ξ, z, t, σ)f∞dzdσ

≤
∫ t

0

f∞dσ = f∞t. (2.27)

Also define

Mn+1(t) = sup
ξ∈Ω0,0≤τ≤t

|u(n+1)(ξ, τ)− u(n)(ξ, τ)|. (2.28)

If C is the Lipschitz constant of f , then for n ≥ 1

|u(n+1)(ξ, t)− u(n)(ξ, t)|

≤
∫ t

0

∫
Ω0

G(ξ, z, t, σ)
∣∣f(u(n)(z, σ))− f(u(n−1)(z, σ))

∣∣ dzdσ
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≤
∫ t

0

∫
Ω0

G(ξ, z, t, σ)C
∣∣u(n)(z, σ)− u(n−1)(z, σ)

∣∣ dzdσ
≤
∫ t

0

∫
Ω0

G(ξ, z, t, σ)CMn(σ)dzdσ

≤
∫ t

0

CMn(σ)dσ. (2.29)

Therefore, we have shown that

M1(t) ≤ f∞t and Mn+1(t) ≤
∫ t

0

CMn(σ)dσ (2.30)

which gives, by induction on n,

Mn+1(t) ≤ f∞C
ntn+1

(n+ 1)!
. (2.31)

Therefore, for each fixed t > 0 and for m ≥ n,
∑m

k=nMk(t) → 0 as m,n → ∞

and so u(n) is Cauchy on Ω0×[0, t]. It therefore converges uniformly on Ω0×[0, t]

to a limit function u which must satisfy the integral equation

u(ξ, t) =

∫
Ω0

G(ξ, z, t, 0)u0(z)dz +

∫ t

0

∫
Ω0

G(ξ, z, t, σ)f(u(z, σ))dzdσ. (2.32)

By applying [32, chapter 1, Theorem 9], we deduce that u is in fact a classical

solution to the nonlinear problem.

Uniqueness is proved as follows: suppose u1, u2 are both solutions and let

w = u1 − u2. Then w(ξ, t) satisfies ∂w
∂t

= Lw + c(ξ, t)w for ξ ∈ Ω0, where c(ξ, t)

is the (bounded since f is Lipschitz continuous) function

c(ξ, t) =
f(u1(ξ, t))− f(u2(ξ, t))

u1(ξ, t)− u2(ξ, t)
. (2.33)

Also w(ξ, t) = 0 on ∂Ω0 and w(ξ, 0) ≡ 0 at t = 0. The parabolic maximum

principle then implies that w(ξ, t) ≡ 0.

Remark 2.9. For initial conditions u0 that do not satisfy the boundary condi-

tions or are only piecewise continuous, the existence and uniqueness of a classi-

cal solution still applies, subject to understanding the sense in which the initial

conditions are satisfied. As t → 0, u(ξ, t) → u0(ξ) for each point of continuity

of u0. For the limits as t → 0 at the points of discontinuity, see the statement

at the bottom of page 40 of [32, chapter 2, section 3]. See also the paper [49].
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From the uniqueness, we deduce a reflection property on Ω0 + A(t).

Lemma 2.10. Let Ω(t) = Ω0+A(t) be as in (2.6) and let Ω̃(t) = Ω̃0+Ã(t) where

Ω̃0 = {ξ ∈ RN : (−ξ1, ξ2, . . . , ξN) ∈ Ω0} and Ã(t) = (−A1(t), A2(t), . . . , AN(t)).

Let ψ, ψ̃ be the solutions on Ω(t), Ω̃(t) respectively. If ψ(x1, x2, . . . , xN , 0) ≡

ψ̃(−x1, x2, . . . , xN , 0) then ψ(x1, x2, . . . , xN , t) ≡ ψ̃(−x1, x2, . . . , xN , t) for t ≥ 0.

Proof. Both ψ(x, t) and Ψ(x, t) := ψ̃(−x1, x2, . . . , xN , t) satisfy the same equa-

tion, initial conditions, and zero Dirichlet boundary conditions. The uniqueness

result from Proposition 2.8 implies that they must be equal.

We shall also need the following comparison principle for enclosed domains.

Lemma 2.11. Suppose that Ω(t) ⊂ Ω̂(t) for all t ≥ 0. Let ψ and ψ̂ be the

solutions to (1.1), (1.2) on Ω(t) and Ω̂(t) respectively. If ψ(x, 0) ≤ ψ̂(x, 0) on

Ω(0), then ψ(x, t) ≤ ψ̂(x, t) for all x ∈ Ω(t), t ≥ 0, and there is strict inequality

unless ψ(x, 0) ≡ ψ̂(x, 0) and Ω̂(τ) ≡ Ω(τ) for all 0 ≤ τ ≤ t.

Proof. Change variables using the transformation that maps Ω(t) to a reference

domain Ω0, and for ξ ∈ Ω0 denote the solutions by u(ξ, t) = ψ(x, t) and û(ξ, t) =

ψ̂(x, t). Then both u(ξ, t) and û(ξ, t) satisfy the same equation (2.1) in Ω0, and

u(ξ, 0) ≤ û(ξ, 0) on Ω0. Also, u(ξ, t) = 0 ≤ û(ξ, t) on ∂Ω0, with strict inequality

on at least part of the boundary unless Ω̂(t) ≡ Ω(t). The result then follows by

applying the parabolic comparison principle to u and û on Ω0.

Remark 2.12. The solution to the linear equation on the whole space RN (with

initial conditions equal to ψ(x, 0) on Ω(0) and zero elsewhere) is always a super-

solution for ψ. Using the expression (1.7), we therefore find that ψ(x(t), t)→ 0

as t→∞ for any x(t) ∈ Ω(t) satisfying |x(t)| −
(
c∗t− ND

c∗
log t

t0

)
→∞.

2.3 Interior estimates

The next proposition follows from parabolic regularity estimates (Theorem A.3).
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Proposition 2.13. Suppose there is a vector x0(t) and bounded domain Ω1 such

that x0(t)+Ω1 ⊂ Ω(t). For y ∈ Ω1, let U(y, t) = ψ(x0(t)+y, t) where ψ satisfies

(1.1), (1.2). Assume that U is bounded on Ω1 and that ẋ0(t) is bounded in a

Hölder norm. Let t0 > 0, and let Ω′ ⊂ Ω1 be such that either (i) Ω′ ⊂⊂ Ω1

or else (ii) there exists ∆ ⊂ ∂Ω1 on which U(y, t) = 0, and Ω′ is such that

(∂Ω′ ∩ ∂Ω1) ⊂ ∆ and (if ∆ 6= ∂Ω1) dist(∂Ω′, ∂Ω1\∆) > 0.

Then U(y, t), ∂U
∂yi

, ∂2U
∂yi∂yj

and ∂U
∂t

are all bounded in a Hölder norm on Ω′,

independently of t ≥ t0. Moreover, if there is a continuous function U∞ such

that U(y, t) → U∞(y) either pointwise in y or in L2(Ω1) as t → ∞, then there

is convergence to U∞ in C2(Ω′) and ∂U
∂t

(·, t) converges uniformly to zero on Ω′.

Proof. Let 0 < tn →∞ and define Un(y, t) = U(y, t+ tn). Then

∂Un
∂t

= D∇2Un + ẋ0(t+ tn) · ∇Un + f(Un) in Ω1. (2.34)

Given 0 < t0 < T , and ẋ0(t) bounded in a Hölder norm, Theorem A.3 ensures

Hölder bounds on Un and the relevant derivatives in Ω′ × [t0, T ]. Moreover,

there must be a subsequence nk such that Unk and the relevant derivatives are

uniformly convergent on Ω′ × [t0, T ]. If U(y, t) → U∞(y) as t → ∞ (pointwise

or in L2), then the limit of this subsequence Unk must be U∞. Then Lemma

A.5 guarantees the convergence for the whole sequence Un and its derivatives,

not just a subsequence. Finally, since the Hölder bounds and the convergence

are independent of the choice of tn, the conclusions follow.

There are several instances in Chapter 6 and Chapter 7 in which we prove

pointwise convergence to some limit as t → ∞, and Proposition 2.13 then

guarantees uniform convergence and convergence of the derivatives. Note that

if x0(t) + Ω1 = Ω(t), then due to the zero Dirichlet conditions on ∂Ω(t) we can

apply Proposition 2.13 with Ω′ = Ω1 and ∆ = ∂Ω1.
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2.4 Convergence to zero in L2 norm

Let Ω(t) be a time-dependent domain such that for every 0 ≤ t < ∞, Ω(t) is

bounded and |Ω(t)| > 0. We shall give some sufficient conditions for convergence

to zero in an L2 sense. For this purpose it is enough to show that the solution

to the linear problem converges to zero, so for the remainder of this section we

assume that ψ(x, t) satisfies (1.1), (1.2) with f(ψ) = f ′(0)ψ. For each fixed

time t, we define λ(Ω(t)) to be the principal Dirichlet eigenvalue of −∇2 on

the bounded domain Ω(t). In Proposition 2.14 we give a sufficient condition for

convergence to zero, in terms of λ(Ω(t)). This will be used in Chapter 5, when

we consider domains that vary periodically with time, to prove Proposition 5.2.

Proposition 2.14. At each fixed time t, let λ(Ω(t)) be the principal eigenvalue

of −∇2 on the domain Ω(t) with zero Dirichlet boundary conditions on ∂Ω(t).

If f ′(0)t−
∫ t

0
Dλ(Ω(ζ))dζ → −∞ as t→∞ then

E(t) :=
1

2

∫
Ω(t)

ψ(x, t)2dx→ 0. (2.35)

Proof.

dE

dt
=

∫
Ω(t)

ψ(D∇2ψ + f ′(0)ψ)dx =

∫
Ω(t)

(−D|∇ψ|2 + f ′(0)ψ2)dx (2.36)

≤ (−Dλ(Ω(t)) + f ′(0))

∫
Ω(t)

ψ2dx (2.37)

= 2 (f ′(0)−Dλ(Ω(t)))E(t), (2.38)

where the inequality follows from Poincaré’s inequality. So, as t→∞, we have

0 ≤ E(t) ≤ E(0) exp
(

2
∫ t

0
(f ′(0)−Dλ(Ω(ζ))) dζ

)
→ 0.

Example 2.15. Let Ω(t) = (A(t), A(t) + L(t)). Proposition 2.14 shows that if

f ′(0)t−
∫ t

0
Dπ2

L(ζ)2
dζ → −∞ as t→∞, then E(t) = 1

2

∫ A(t)+L(t)

A(t)
ψ(x, t)2dx→ 0.

Example 2.15 gives a sufficient condition for convergence to zero, on an

interval of time-dependent length L(t). However the condition does not use any

information about A(t). Next we prove a result about convergence to zero on

interval of fixed length L0, and the condition (2.39) does involve A(t).
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Proposition 2.16. Let Ω(t) = (A(t), A(t) + L0), and let c be a constant. If

2

(
f ′(0)− Dπ2

L2
0

− c2

4D

)
t− c

D

∫ t

0

(Ȧ(ζ)− c)dζ → −∞ as t→∞ (2.39)

then u(ξ, t) := ψ(A(t) + ξ, t) converges to 0 in L2([0, L0]).

Proof. First, note that the principal eigenvalue of the problem

D(y′(ξ)ecξ/D)′ = −µy(ξ)ecξ/D, y(0) = y(L0) = 0 (2.40)

is µ = Dπ2

L2
0

+ c2

4D
. Therefore, using the Rayleigh-Ritz formula (minimisation of

the Rayleigh quotient; see Theorem A.6), we have∫ L0

0

Dv′(ξ)2ecξ/Ddξ ≥
(
Dπ2

L2
0

+
c2

4D

)∫ L0

0

v(ξ)2ecξ/Ddξ (2.41)

for all v ∈ C2([0, L0]) satisfying v(0) = v(L0) = 0.

Define Ec(t) = 1
2

∫ L0

0
u(ξ, t)2ecξ/Ddξ. Then

dEc
dt

=

∫ L0

0

u

(
D
∂2u

∂ξ2
+ Ȧ(t)

∂u

∂ξ
+ f ′(0)u

)
ecξ/Ddξ (2.42)

=

∫ L0

0

(
−D

(
∂u

∂ξ

)2

+ (Ȧ(t)− c)u∂u
∂ξ

+ f ′(0)u2

)
ecξ/Ddξ (2.43)

=

∫ L0

0

(
−D

(
∂u

∂ξ

)2

ecξ/D − (Ȧ(t)− c)u
2

2

c

D
ecξ/D + f ′(0)u2ecξ/D

)
dξ

(2.44)

≤
(
−
(
Dπ2

L2
0

+
c2

4D

)
− c

2D
(Ȧ(t)− c) + f ′(0)

)∫ L0

0

u2ecξ/Ddξ (2.45)

= 2

(
f ′(0)−

(
Dπ2

L2
0

+
c2

4D

)
− c

2D
(Ȧ(t)− c)

)
Ec(t), (2.46)

since in each integration by parts the boundary terms vanish, and the inequality

follows from (2.41). So, as t→∞,

0 ≤ Ec(t) ≤ Ec(0) exp

(
2

(
f ′(0)− Dπ2

L2
0

− c2

4D

)
t− c

D

∫ t

0

(Ȧ(ζ)− c)dζ
)
→ 0.

(2.47)

Therefore also ‖u(·, t)‖L2([0,L0]) → 0.

We give a corollary, for cases where Ȧ(t) converges to a constant as t→∞.

This will be used again in Section 7.5.1.
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Corollary 2.17. Let Ω(t) = (A(t), A(t) + L0), and suppose that Ȧ(t) → ĉ as

t→∞, where f ′(0) < Dπ2

L2
0

+ ĉ2

4D
. Then ‖u(·, t)‖L2([0,L0]) → 0.

Proof. If ĉ = 0 then the assumption becomes f ′(0) < Dπ2

L2
0

and the result follows

from Proposition 2.14 and Example 2.15. If ĉ 6= 0 then we can find c sufficiently

close to ĉ, and with |c| < |ĉ|, such that f ′(0) < Dπ2

L2
0

+ c2

4D
. Then there exists T

such that for all t ≥ T either Ȧ(t) ≥ c ≥ 0 or Ȧ(t) ≤ c ≤ 0. Therefore condition

(2.39) holds, and applying Proposition 2.16 gives the result.

2.5 Definition and notation

Let us introduce the following definition and the notation we use for it.

Definition 2.18. We say that a function F1 is ‘exactly of order’ F2, and write

F1(t) = O(F2(t)) as t→∞, to mean that F1 = O(F2) and F2 = O(F1).

For example, in the statement ‘w1(ξ, t) = O(w2(ξ, t)) as t → ∞’, we mean

that there exist 0 < β0 ≤ β1 such that β0|w2(ξ, t)| ≤ |w1(ξ, t)| ≤ β1|w2(ξ, t)|

as t → ∞, uniformly in ξ. This notation is non-standard, but it is helpful in

Chapter 3 and Chapter 4. It is also used, with ω instead of t, in Chapter 5.

A list of notation and symbols has been included at the start of the thesis.
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Chapter 3

Linear equation: exact solutions,

bounds and global behaviour

In this chapter we derive exact solutions for the linear equation on an interval

A(t) < x < A(t) + L(t) under certain conditions on L(t) and A(t). In Section

3.5 we then prove upper and lower bounds on the solution for much more gen-

eral L(t) and A(t), and discuss the implications. These include some results

concerning the role of Lcrit when the length L(t) depends on time. Finally, we

extend the analysis of the linear equation to multi-dimensional time-dependent

domains, specifically to a box in Section 3.6, a cylinder-like domain in Section

3.7 and a ball in Section 3.8.

3.1 Introduction, change of variables, and sep-

arability condition

We begin by considering the linear problem

∂ψ

∂t
= D

∂2ψ

∂x2
+ f0ψ for A(t) < x < A(t) + L(t) (3.1)

ψ(x, t) = 0 at x = A(t) and x = A(t) + L(t) (3.2)
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on a time-dependent interval (A(t), A(t)+L(t)). The start of the interval, A(t),

and the length of the interval, L(t) > 0, both vary with time and are assumed

to be twice differentiable. To work on a fixed domain, we change variables from

x to ξ =
(
x−A(t)
L(t)

)
L0 for some L0 > 0, and let u(ξ, t) = ψ(x, t). Then

∂

∂x

∣∣∣∣
t

=
L0

L(t)

∂

∂ξ

∣∣∣∣
t

and
∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
ξ

−

(
Ȧ(t)L0 + ξL̇(t)

L(t)

)
∂

∂ξ

∣∣∣∣
t

(3.3)

so the problem (3.1), (3.2) becomes:

∂u

∂t
= D

L2
0

L(t)2

∂2u

∂ξ2
+

(
Ȧ(t)L0 + ξL̇(t)

L(t)

)
∂u

∂ξ
+ f0u for 0 < ξ < L0 (3.4)

u(ξ, t) = 0 at ξ = 0 and ξ = L0. (3.5)

Let w(ξ, t) = u(ξ, t)H(ξ, t)e−f0t where

H(ξ, t) =

(
L(t)

L(0)

)1/2

exp

 t∫
0

Ȧ(ζ)2

4D
dζ +

ξ2L̇(t)L(t)

4DL2
0

+
ξȦ(t)L(t)

2DL0

. (3.6)

As we shall see, the purpose of this change of variables is to remove the first order

∂
∂ξ

term, and to transform the problem into an equation for w(ξ, t) which has

a particularly convenient form for deriving separability conditions and applying

the comparison principle. We calculate:

∂w

∂t
=
∂u

∂t
H(ξ, t)e−f0t − f0w(ξ, t) +

L̇(t)

2L(t)
w(ξ, t)

+

(
Ȧ(t)2

4D
+
ξ2L̈(t)L(t)

4DL2
0

+
ξ2L̇(t)2

4DL2
0

+
ξÄ(t)L(t)

2DL0

+
ξȦ(t)L̇(t)

2DL0

)
w(ξ, t),

(3.7)

∂w

∂ξ
=
∂u

∂ξ
H(ξ, t)e−f0t +

(
ξL̇(t)L(t)

2DL2
0

+
Ȧ(t)L(t)

2DL0

)
u(ξ, t)H(ξ, t)e−f0t, (3.8)

∂2w

∂ξ2
=
∂2u

∂ξ2
H(ξ, t)e−f0t + 2

(
ξL̇(t)L(t)

2DL2
0

+
Ȧ(t)L(t)

2DL0

)
∂u

∂ξ
H(ξ, t)e−f0t

+
L̇(t)L(t)

2DL2
0

w(ξ, t) +

(
ξL̇(t)L(t)

2DL2
0

+
Ȧ(t)L(t)

2DL0

)2

w(ξ, t). (3.9)

Therefore, using the expressions (3.7) and (3.9), we find that
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∂w

∂t
−D L2

0

L(t)2

∂2w

∂ξ2

=

(
∂u

∂t
−D L2

0

L(t)2

∂2u

∂ξ2
−

(
ξL̇(t) + Ȧ(t)L0

L(t)

)
∂u

∂ξ
− f0u

)
H(ξ, t)e−f0t

+

(
L̇(t)

2L(t)
+
Ȧ(t)2

4D
+
ξ2L̈(t)L(t)

4DL2
0

+
ξ2L̇(t)2

4DL2
0

+
ξÄ(t)L(t)

2DL0

+
ξȦ(t)L̇(t)

2DL0

)
w

− L̇(t)

2L(t)
w −D

(
ξL̇(t)

2DL0

+
Ȧ(t)

2D

)2

w. (3.10)

The first bracket vanishes since u satisfies equation (3.4), and (noting the can-

cellation among the remaining terms) we find that

∂w

∂t
= D

L2
0

L(t)2

∂2w

∂ξ2
+

(
ξ2L̈(t)L(t)

4DL2
0

+
ξÄ(t)L(t)

2DL0

)
w for 0 < ξ < L0 (3.11)

w(ξ, t) = 0 at ξ = 0 and ξ = L0. (3.12)

Now we change the time variable from t to s where

s(t) =

t∫
0

L2
0

L(ζ)2
dζ, (3.13)

and write v(ξ, s) = w(ξ, t). Then:

∂v

∂s
= D

∂2v

∂ξ2
+

(
ξ2L̈(t(s))L(t(s))3

4DL4
0

+
ξÄ(t(s))L(t(s))3

2DL3
0

)
v for 0 < ξ < L0

(3.14)

v(ξ, s) = 0 at ξ = 0 and ξ = L0. (3.15)

This equation for v(ξ, s) is separable if and only if

L̈L3 ≡ γ0 = constant and ÄL3 ≡ γ1 = constant. (3.16)

The condition L̈L3 ≡ γ0 corresponds to L(t)2 = at2 + 2bt + l2 for some a, b,

l = L(0), and γ0 = al2 − b2. Then, given L(t) =
√
at2 + 2bt+ l2, the equation

Ä(t) = γ1
L(t)3

can be integrated twice to give A(t).

It is worth noting that, depending on a, b and l, it is possible either that

L(t) > 0 for all t ≥ 0, or that there is some finite time t∗ such that L(t) > 0
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for 0 ≤ t < t∗ but L(t∗) = 0. In the first case we consider the problem on

0 ≤ t <∞; in the second case we consider it for 0 ≤ t < t∗.

The separable equation is

∂v

∂s
= D

∂2v

∂ξ2
+

(
γ0ξ

2

4DL4
0

+
γ1ξ

2DL3
0

)
v for 0 < ξ < L0 (3.17)

v(ξ, s) = 0 at ξ = 0 and ξ = L0, (3.18)

and the separable solutions have the form v(ξ, s) = eσsg(ξ) where g(ξ) satisfies

the Sturm-Liouville problem

Dg′′(ξ) +

(
γ0ξ

2

4DL4
0

+
γ1ξ

2DL3
0

)
g(ξ) = σg(ξ) for 0 < ξ < L0 (3.19)

g(ξ) = 0 at ξ = 0 and ξ = L0 (3.20)

with eigenvalue σ. The Sturm-Liouville theory (see, for example, [61] or [53,

chapter 6]) gives that there is a countably infinite set of eigenfunctions gn with

eigenvalues σn satisfying σn+1 < σn, and limn→∞ σn = −∞. The largest eigen-

value, σ1, corresponds to an eigenfunction that is positive in the open interval

(0, L0) and zero only at the endpoints. Each eigenfunction gn+1 has one more

zero than gn. Any initial condition v(·, 0) in L2([0, L0]) can be written as a lin-

ear expansion in the Sturm-Liouville eigenfunctions gn, and if v(·, 0) is positive

then the coefficient of the principal eigenfunction g1 is positive.

Remark 3.1. If we were to consider the same problem but with zero Neumann

conditions instead of the Dirichlet conditions, then the same analysis would still

hold subject to replacing (3.20) by Neumann conditions for g(ξ).

Summarising the above analysis, we have proved the following theorem.

Theorem 3.2. Suppose that

L(t)2 = at2 + 2bt+ l2 for some a, b, and l = L(0) > 0, (3.21)

Ä(t) =
γ1

(at2 + 2bt+ l2)3/2
for some γ1. (3.22)
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Then, given initial conditions u(ξ, 0) in L2([0, L0]), the solution u(ξ, t) of (3.4),

(3.5) can be obtained exactly, as a sum of un(ξ, t) with coefficients depending

only on the initial conditions. The functions un are given by

un(ξ, t) = exp

σn t∫
0

L2
0

L(ζ)2
dζ

 gn(ξ)

(
L(0)

L(t)

)1/2

× exp

f0t−
t∫

0

Ȧ(ζ)2

4D
dζ − ξ2L̇(t)L(t)

4DL2
0

− ξȦ(t)L(t)

2DL0

 (3.23)

where gn(ξ) satisfies the Sturm-Liouville problem in equations (3.19), (3.20) with

γ0 = al2 − b2, with eigenvalue σn.

The explicit expressions for these exact solutions depend on whether a and

b are zero or non-zero, and on the sign of al2− b2 (see Section 3.2). These exact

formulae determine precisely how the solution will evolve over time. This is

instructive as it helps us to understand the ways in which the time dependence

of the domain influences the development of the solution in both the long and

the short term.

The well-known Fourier series solution on a fixed interval expresses the so-

lution of (3.1), (3.2) on 0 < x < L0 as a sum of

ũn(x, t) = exp

(
−Dn2π2

L2
0

t

)
sin

(
nπx

L0

)
exp(f0t). (3.24)

Theorem 3.2 can be considered as the generalisation of this to the time-dependent

interval whenever the condition (3.16) holds.

Remark 3.3. Since we have not yet used the assumption that f0 > 0, Theorem

3.2 and the formulae in Section 3.2 are valid for any f0. In particular, by taking

f0 = 0 we obtain exact solutions for the heat equation on these time-dependent

intervals.

3.2 Separated solutions

In Theorem 3.2 we proved that there are exact solutions whenever L(t) has

the form L(t) =
√
at2 + 2bt+ l2 and A(t) satisfies (3.22). Now we consider the
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different forms of L(t) that this covers, and apply equation (3.23) to produce

the explicit formula for each of the separable solutions.

3.2.1 L(t) ≡ l

If L(t) ≡ l then L̈(t)L(t)3 ≡ γ0 = 0, and the condition Ä(t)L(t)3 ≡ γ1 corre-

sponds to

A(t) =
γ1

2l3
t2 + ct+ d (3.25)

for any constants c, d. The separable solutions have the form

un(ξ, t) = exp(σnt)gn(ξ) exp

(
f0t−

1

4D

(
γ2

1

3l6
t3 +

cγ1

l3
t2 + c2t

))
× exp

(
− ξ

2DL0

(γ1

l2
t+ cl

))
(3.26)

for 0 ≤ ξ ≤ L0. This follows by calculating that L̇(t)L(t) ≡ 0, s(t) = t,

Ȧ(t)L(t) =
γ1

l2
t+ cl,

t∫
0

Ȧ(ζ)2dζ =
γ2

1t
3

3l6
+
cγ1t

2

l3
+ c2t, (3.27)

and by substituting these into equation (3.23).

3.2.2 L(t) = l + αt with α 6= 0

If L(t) = l + αt with α 6= 0, then again L̈(t)L(t)3 ≡ γ0 = 0, and the condition

Ä(t)L(t)3 ≡ γ1 now corresponds to

A(t) =
γ1

2α2(l + αt)
+ ct+ d (3.28)

for any constants c, d. The separable solutions have the form

un(ξ, t) = exp

(
σnL

2
0t

l(l + αt)

)
gn(ξ)

(
l

l + αt

)1/2

exp(f0t)

× exp

(
− γ2

1

48Dα3

(
1

l3
− 1

(l + αt)3

)
+

cγ1t

4Dαl(l + αt)
− c2

4D
t

)
× exp

(
−ξ

2α(l + αt)

4DL2
0

+
ξγ1

4DαL0(l + αt)
− ξ

2DL0

c(l + αt)

)
(3.29)
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for 0 ≤ ξ ≤ L0. This follows by calculating that

L̇(t)L(t) = α(l + αt), (3.30)

s(t)

L2
0

=

t∫
0

1

(l + αζ)2
dζ =

t

l(l + αt)
, (3.31)

Ȧ(t)L(t) =
−γ1

2α(l + αt)
+ c(l + αt), (3.32)

t∫
0

Ȧ(ζ)2dζ =
γ2

1

12α3

(
1

l3
− 1

(l + αt)3

)
− cγ1

α

t

l(l + αt)
+ c2t, (3.33)

and by substituting these into equation (3.23).

3.2.3 L(t) =
√
l2 + 2ρt with ρ 6= 0

If L(t) =
√
l2 + 2ρt with l = L(0) > 0 and ρ 6= 0 then

L̈(t)L(t)3 ≡ γ0 = −ρ2 < 0, (3.34)

and the condition Ä(t)L(t)3 ≡ γ1 corresponds to

A(t) =
−γ1

√
l2 + 2ρt

ρ2
+ ct+ d (3.35)

for any constants c, d. The separable solutions have the form

un(ξ, t) =

(
l2 + 2ρt

l2

)σnL
2
0

2ρ
− 1

4
− γ21

8ρ3D

exp

(
f0t+

cγ1

2ρ2D

(√
l2 + 2ρt− l

))
× gn(ξ) exp

(
− c2

4D
t− ξ2ρ

4DL2
0

+
ξγ1

2DL0ρ
− ξc

√
l2 + 2ρt

2DL0

)
(3.36)

for 0 ≤ ξ ≤ L0. This follows by calculating that

L̇(t)L(t) = ρ, (3.37)

s(t)

L2
0

=

t∫
0

1

l2 + 2ρζ
dζ =

1

2ρ
log

(
l2 + 2ρt

l2

)
, (3.38)

Ȧ(t)L(t) =
−γ1

ρ
+ c
√
l2 + 2ρt, (3.39)

t∫
0

Ȧ(ζ)2dζ =
γ2

1

2ρ3
log

(
l2 + 2ρt

l2

)
− 2cγ1

ρ2

(√
l2 + 2ρt− l

)
+ c2t, (3.40)

and by substituting these into equation (3.23).
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3.2.4 L(t) =
√
at2 + 2bt+ l2 with a 6= 0 and al2 − b2 < 0

If L(t) =
√
at2 + 2bt+ l2 with a 6= 0, al2 − b2 < 0, and l = L(0) > 0, then

L̈(t)L(t)3 ≡ γ0 = al2 − b2 < 0, (3.41)

and the condition Ä(t)L(t)3 ≡ γ1 corresponds to

A(t) =
−γ1

b2 − al2
√
at2 + 2bt+ l2 + c(t+ b/a) + d (3.42)

for any constants c, d. The separable solutions have the form

un(ξ, t) =Φn(t)gn(ξ)

(
l2

at2 + 2bt+ l2

)1/4

exp

(
f0t−

(
γ2

1a

(b2 − al2)2
+ c2

)
t

)
× exp

(
cγ1

2D(b2 − al2)

(√
at2 + 2bt+ l2 − l

))
× exp

(
−ξ

2(at+ b)

4DL2
0

+
ξγ1(at+ b)

2DL0(b2 − al2)
− ξc

2DL0

√
at2 + 2bt+ l2

)
(3.43)

for 0 ≤ ξ ≤ L0, where

Φn(t) =

((
at+ b−

√
b2 − al2

) (
b+
√
b2 − al2

)(
b−
√
b2 − al2

) (
at+ b+

√
b2 − al2

))
σnL

2
0

2
√
b2−al2

− γ21

8D(b2−al2)3/2

. (3.44)

This follows by calculating that

L̇(t)L(t) = at+ b, (3.45)

s(t)

L2
0

=

t∫
0

1

aζ2 + 2bζ + l2
dζ

=
1

2
√
b2 − al2

log

((
at+ b−

√
b2 − al2

) (
b+
√
b2 − al2

)(
b−
√
b2 − al2

) (
at+ b+

√
b2 − al2

)), (3.46)

Ȧ(t)L(t) =
−γ1

b2 − al2
(at+ b) + c

√
at2 + 2bt+ l2, (3.47)

t∫
0

Ȧ(ζ)2dζ =

(
γ2

1a

(b2 − al2)2
+ c2

)
t− 2cγ1

b2 − al2
(√

at2 + 2bt+ l2 − l
)

+
γ2

1

2(b2 − al2)3/2
log

((
at+ b−

√
b2 − al2

) (
b+
√
b2 − al2

)(
b−
√
b2 − al2

) (
at+ b+

√
b2 − al2

)),
(3.48)

and by substituting these into equation (3.23).
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3.2.5 L(t) =
√
at2 + 2bt+ l2 with a 6= 0 and al2 − b2 > 0

If L(t) =
√
at2 + 2bt+ l2 with al2 − b2 > 0 and l = L(0) > 0, then

L̈(t)L(t)3 ≡ γ0 = al2 − b2 > 0, (3.49)

and the condition Ä(t)L(t)3 ≡ γ1 again corresponds to A(t) as in equation

(3.42). For 0 ≤ ξ ≤ L0 the separable solutions have the form given in equation

(3.43), but with

Φn(t) =e

(
σnL

2
0√

al2−b2
+

γ21

4D(al2−b2)3/2

)(
arctan

(
at+b√
al2−b2

)
−arctan

(
b√

al2−b2

))
. (3.50)

This follows by calculating that L̇(t)L(t) is again given by (3.45), Ȧ(t)L(t) is

again given by (3.47), and that

s(t)

L2
0

=

t∫
0

1

aζ2 + 2bζ + l2
dζ

=
1√

al2 − b2

(
arctan

(
at+ b√
al2 − b2

)
− arctan

(
b√

al2 − b2

))
, (3.51)

t∫
0

Ȧ(ζ)2dζ =

(
γ2

1a

(al2 − b2)2
+ c2

)
t+

2cγ1

al2 − b2

(√
at2 + 2bt+ l2 − l

)
− γ2

1

(al2 − b2)3/2

(
arctan

(
at+ b√
al2 − b2

)
− arctan

(
b√

al2 − b2

))
,

(3.52)

and by substituting these into equation (3.23).

3.3 Bounds on the principal eigenvalue, σ1

Under the conditions of Theorem 3.2, u(ξ, t) can be expressed as an expansion in

un(ξ, t) (defined in (3.23)). Since we are considering positive solutions, we know

that there is a positive coefficient of the principal eigenfunction g1(ξ) and hence

u1(ξ, t). In certain cases, the principal eigenvalue σ1 of (3.19), (3.20) therefore

becomes important for assessing the long-time behaviour of the solution.
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When γ0 = γ1 = 0, we know that σ1 = −Dπ2

L2
0

, and the separable solutions

of (3.17), (3.18) are v(ξ, s) = eσns sin
(
nπξ
L0

)
where σn = −Dn2π2

L2
0

(n ∈ N). In

Proposition 3.4 we shall prove an upper bound on σ1 when γ0 < 0. This bound

will be used in Section 3.4, in order to prove Corollary 3.5 about the asymp-

totic behaviour of the exact solutions u(ξ, t). Proposition 3.4 also includes the

asymptotic form of σ1 when γ1 = −1
2
γ0 → ∞, which will be used in the proof

of Theorem 4.35 in Chapter 4.

Proposition 3.4. Let γ0 = −ρ2 < 0, and let σ1 be the principal eigenvalue of

(3.19), (3.20). Then

σ1 +
|ρ|
2L2

0

− γ2
1

4Dρ2L2
0

< 0. (3.53)

Moreover, if γ1 = −1
2
γ0 = 1

2
ρ2 then

σ1 +
|ρ|
2L2

0

− γ2
1

4Dρ2L2
0

→ 0 as ρ2 →∞. (3.54)

Proof. Let g1(ξ) > 0 be the principal Sturm-Liouville eigenfunction, which sat-

isfies equation (3.19) with γ0 = −ρ2 < 0 and has eigenvalue σ1. Rescale ξ to

η =
√
|ρ|
2D

ξ
L0

, let g̃1(η) = g1(ξ) and define η0 = γ1
|ρ|3/2

√
2D

; then the equation

becomes

g̃′′1(η) + (−η2 + 2η0η)g̃1(η) =
2L2

0

|ρ|
σ1g̃1(η) for 0 < η <

√
|ρ|
2D

. (3.55)

Now let g̃1(η) = e−
1
2

(η−η0)2y1(η), so that y1 satisfies

y′′1(η)− 2(η − η0)y′1(η)− λy1(η) = 0 (3.56)

where

λ = 1 +
2L2

0

|ρ|
σ1 −

γ2
1

2D|ρ|3
. (3.57)

This can be written in self-adjoint form:

d

dη

(
y′1(η)e−(η−η0)2

)
= λy1(η)e−(η−η0)2 for 0 < η <

√
|ρ|
2D

(3.58)

y1(η) = 0 at η = 0 and η =

√
|ρ|
2D

. (3.59)
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By integrating equation (3.58) over the interval 0 < η <
√
|ρ|
2D

, and using that

y1 is positive and has non-zero gradient at the endpoints, it follows that λ < 0.

From the definition of λ in (3.57), λ < 0 is equivalent to the bound (3.53).

For the second part of the Proposition, suppose that γ1 = −1
2
γ0 = 1

2
ρ2. Then√

|ρ|
2D

= 2η0 (3.60)

so we can transform the problem (3.58) onto the symmetric interval (−η0, η0)

by letting z = η − η0 and ŷ1(z) = y1(η). The problem then becomes:

d

dz

(
ŷ′1(z)e−z

2
)

= λŷ1(z)e−z
2

for − η0 < z < η0 (3.61)

ŷ1(±η0) = 0. (3.62)

We are interested in the limit |ρ| → ∞ which is the same as η0 → ∞. Since λ

is the principal eigenvalue, we can express it in terms of the Rayleigh quotient:

−λ = min
ŷ

(∫ η0
−η0 ŷ

′(z)2e−z
2
dz∫ η0

−η0 ŷ(z)2e−z2dz

)
(3.63)

where the minimum is taken over C2 functions ŷ 6= 0 satisfying the boundary

conditions (see Theorem A.6). Let us choose the test function ŷ(z) = 1 − z2

η20
.

Then, if I(η0) =
∫ η0
−η0 e

−z2dz, we calculate that

∫ η0
−η0 ŷ

′(z)2e−z
2
dz∫ η0

−η0 ŷ(z)2e−z2dz
=

4
η40

(
1
2
I(η0)− η0e

−η20
)

I(η0)
(

1 +O
(

1
η20

))
+O

(
1
η0
e−η

2
0

) ∼ 2

η4
0

as η0 →∞.

(3.64)

Therefore we have the bound

0 < −λ ≤
∫ η0
−η0 ŷ

′(z)2e−z
2
dz∫ η0

−η0 ŷ(z)2e−z2dz
∼ 2

η4
0

as η0 →∞, (3.65)

and so λ = O
(

1
η40

)
as η0 → ∞. Since λ is given by equation (3.57) and η0 is

given by equation (3.60), this becomes

1 +
2L2

0

|ρ|
σ1 −

γ2
1

2D|ρ|3
= O

(
1

ρ2

)
as |ρ| → ∞. (3.66)
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It follows that

|ρ|
2L2

0

+ σ1 −
γ2

1

4Dρ2L2
0

= O

(
1

|ρ|

)
→ 0 as |ρ| → ∞. (3.67)

We shall make particular use of (3.53) in the following forms:

If γ0 = −ρ2 with ρ < 0 :
σ1L

2
0

2ρ
− 1

4
− γ2

1

8ρ3D
> 0. (3.68)

If γ0 = −ρ2 with ρ > 0 :
σ1L

2
0

2ρ
+

1

4
− γ2

1

8ρ3D
< 0. (3.69)

Other bounds on σ1 can also be derived using the Rayleigh-Ritz formula

(Theorem A.6) and results from Sturm-Liouville theory such as [47, Theorem

18.1, page 54]. However we omit the other bounds here, as we will not need to

use them.

3.4 Properties of the exact solutions

Although the formulae in Sections 3.2.1–3.2.5 differ, we note that they share

some common properties in the asymptotic large time (or finite time) limit.

Corollary 3.5. Let L(t), A(t) be a separable case for which L(t) → 0 as t →

t∗ <∞. Then the solution u(ξ, t) converges to zero uniformly in ξ as t→ t∗.

Proof. First take the case L(t) = l + αt with α < 0. Then L(t) → 0 as

t→ t∗ = l
−α . If γ1 6= 0 then we see from (3.29) that the behaviour as l+αt→ 0,

is governed by exp
(

γ21
48Dα3(l+αt)3

)
, and so u→ 0 since α < 0. If γ1 = 0 then it is

governed by exp
(
σnL2

0t

l(l+αt)

)
where σnL

2
0 = −Dn2π2 < 0 and so again, u→ 0.

Next suppose L(t) =
√
l2 + 2ρt with ρ < 0. Now L(t)→ 0 as t→ t∗ = l2

−2ρ

and equation (3.36) shows that in this limit the behaviour is governed by

(l2 + 2ρt)
σnL

2
0

2ρ
− 1

4
− γ21

8ρ3D . (3.70)

Using Proposition 3.4 and the bound (3.68), it follows that u→ 0 as l2+2ρt→ 0.

42



Finally, consider the case L(t) =
√
at2 + 2bt+ l2 with a 6= 0 and al2−b2 < 0.

It is possible that there is a finite time t∗ such that L(t) > 0 for 0 ≤ t < t∗ but

L(t)→ 0 as t→ t∗. If so, then

t∗ = −1

a

√
b2 − al2 − b

a
. (3.71)

As t→ t∗, equations (3.43) and (3.44) show that the behaviour is governed by

(
1

at+ b+
√
b2 − al2

) σnL
2
0

2
√
b2−al2

− γ21

8D(b2−al2)3/2
+ 1

4

. (3.72)

By Proposition 3.4 and the bound (3.69) with ρ =
√
b2 − al2, we have

σnL
2
0

2
√
b2 − al2

− γ2
1

8D(b2 − al2)3/2
+

1

4
< 0, (3.73)

and therefore u→ 0.

In Corollary 3.5, the convergence to zero in each case follows from an upper

bound on the principal eigenvalue σ1. This eigenvalue may also play a key role in

determining the long-time behaviour on a domain of fixed length L(t) ≡ l, which

is the case covered in Section 3.2.1. From equation (3.26), we see that if γ1 6= 0

then as t → ∞, the dominant term is exp
(
− γ21

12Dl6
t3
)

, and so u → 0. However

if γ1 = 0 then the behaviour as t → ∞ is governed by exp
(
σnt+ f0t− c2

4D
t
)

where σn = −Dn2π2

L2
0

. There is exponential growth or decay depending on whether

f0 − Dπ2

L2
0
− c2

4D
> 0 or < 0 respectively. If γ1 = 0 and f0 − Dπ2

L2
0
− c2

4D
= 0, then

there is a stationary solution proportional to the principal eigenmode.

In contrast, in the separable cases with L(t) → ∞ as t → ∞ (Section 3.2.2

with α > 0, Section 3.2.3 with ρ > 0, some cases of Section 3.2.4, and Section

3.2.5), the long-time behaviour does not in general depend on σ1. In these cases

s(t) = o(t) as t → ∞ and the term exp(σns(t)) is not of leading order. In

Corollary 3.6 we shall give a property about the exponential growth or decay of

these solutions, which will involve the critical speed c∗ = 2
√
Df0. For this, we

note that in each of the separable cases with L(t) → ∞ as t → ∞, there are

constants α̂ ≥ 0 and ĉ such that L̇(t)→ α̂ and Ȧ(t)→ ĉ as t→∞.
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Corollary 3.6. Let L(t), A(t) be a separable case with L(t) > 0 for all t ≥ 0 and

L(t)→∞, L̇(t)→ α̂, and Ȧ(t)→ ĉ as t→∞. Then u(ξ, t) grows exponentially

at any ξ ∈ (0, L0) such that
(
ĉ+ α̂ ξ

L0

)2

< c2
∗ and u(ξ, t) decays exponentially at

any ξ ∈ (0, L0) such that
(
ĉ+ α̂ ξ

L0

)2

> c2
∗.

Proof. First consider the case of Section 3.2.2, where L(t) = l + αt with α > 0.

As t → ∞ the dominant term in (3.29) is exp
(
f0t− c2

4D
t− ξ2α2

4DL2
0
t− ξcα

2DL0
t
)

,

which can be written as exp

(
f0t− 1

4D

(
c+ ξα

L0

)2

t

)
. This proves the claim in

this case, since α̂ = α and ĉ = c.

Next consider the cases of Section 3.2.4 and Section 3.2.5 such that L(t) =
√
at2 + 2bt+ l2 remains positive for all t ≥ 0 and L(t) → ∞. Noting that this

implies a > 0, we see from (3.43) that the behaviour as t→∞ is governed by

exp

(
f0t−

1

4D

(
c− γ1

√
a

b2 − al2
+
ξ
√
a

L0

)2

t

)
, (3.74)

which proves the claim in this case since α̂ =
√
a and ĉ = c− γ1

√
a

b2−al2 .

Finally, consider the case of Section 3.2.3, where L(t) =
√
l2 + 2ρt with

ρ > 0. If f0 − c2

4D
6= 0, then equation (3.36) shows that the behaviour is

governed by exp
(
f0t− c2

4D
t
)

as t→∞. Either u→∞ for every ξ ∈ (0, L0), or

u→ 0 for every ξ ∈ (0, L0), depending whether f0− c2

4D
> 0 or < 0 respectively.

Since α̂ = 0 and ĉ = c, this proves the claim.

Remark 3.7. In Chapter 7 we study the nonlinear problem, and for each case

of L(t) and A(t) from Sections 3.2.1–3.2.5 we consider the long-time solution

behaviour for the nonlinear equation. This is summarised in Example 7.7.

Remark 3.8. Given ξ ∈ (0, L0), write x(ξ, t) = A(t) + ξ
L0
L(t) as the original

space variable. Then Corollary 3.6 says that u(ξ, t) grows exponentially at any

ξ ∈ (0, L0) such that −c∗ < limt→∞
x(ξ,t)
t

< c∗, and u(ξ, t) decays exponentially

at any ξ ∈ (0, L0) such that
∣∣∣limt→∞

x(ξ,t)
t

∣∣∣ > c∗. This is similar to the solution

on the whole real line with compactly supported initial conditions, which also

spreads at the speed c∗.
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If α̂ > 0 then Corollary 3.6 implies that there is exponential growth on the

subinterval (ξ−∗ , ξ
+
∗ ) ∩ (0, L0) where

ξ±∗ =
L0

α̂
(±c∗ − ĉ). (3.75)

We note that if ξ±∗ ∈ (0, L0), then (3.29) and (3.43) show that u(ξ±∗ , t) =

O(t−1/2)→ 0 as t→∞.

If α̂ = 0 (which is when L(t) =
√
l2 + 2ρt with ρ > 0) and ĉ = c ∈ (−c∗, c∗),

then there is exponential growth for every ξ ∈ (0, L0). To understand what

happens if c = ±c∗, we consider equation (3.36) with ρ > 0 and f0− c2

4D
= 0. In

this case, the behaviour at ξ ∈ (0, L0) is determined by the sign of c
2D

(
γ1
ρ2
− ξ

L0

)
:

un(ξ, t) = O

(
(l2 + 2ρt)

σnL
2
0

2ρ
− 1

4
− γ21

8ρ3D exp

(
c

2D

(
γ1

ρ2
− ξ

L0

)√
l2 + 2ρt

))
.

(3.76)

Moreover, if there is some ξ∗ ∈ (0, L0) such that γ1
ρ2

= ξ∗
L0

then we note from

Proposition 3.4 and the bound (3.69) that

un(ξ∗, t) = O

(
(l2 + 2ρt)

σnL
2
0

2ρ
− 1

4
− γ21

8ρ3D

)
= o(t−1/2)→ 0 as t→∞. (3.77)

To conclude this section, we note that it is possible to have contrasting short-

time and long-time behaviour. Even a solution proportional to the principal

eigenmode does not necessarily evolve as a monotonic function of time. In the

next example, the solution grows exponentially as t → ∞, but is decreasing

with time over an initial time period 0 ≤ t < t̂.

Example 3.9. Let L(t) =
√

1 + 6t, A(t) ≡ 0, f0 = 10 and D = L0 = 1. In

order to apply Theorem 3.2, the relevant Sturm-Liouville equation is

g′′(ξ)− 9ξ2

4
g(ξ) = σg(ξ) for 0 < ξ < 1, g(0) = g(1) = 0. (3.78)

The principal eigenfunction and eigenvalue are given by

g1(ξ) = e−
3
4
ξ2(ξ − ξ3), σ1 = −21

2
, (3.79)

and by Theorem 3.2 and equation (3.36), we have the exact solution

u(ξ, t) = g1(ξ)e10t(1 + 6t)−
21
12
− 1

4 . (3.80)
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For each ξ ∈ (0, 1), u(ξ, t)→∞ as t→∞ because of the e10t term. However,

∂u

∂t
(ξ, t) =

(
10 +

(
−21

12
− 1

4

)(
t+ 1

6

) )
u(ξ, t) (3.81)

and, for each 0 < ξ < 1, this is strictly negative for 0 ≤ t < t̂ := 1
30

.

3.5 Non-separable cases

3.5.1 Comparison theorems

In Sections 3.1 and 3.2 we gave exact solutions for u(ξ, t) in the special cases

where L̈L3 ≡ γ0 and ÄL3 ≡ γ1. We would also like to understand how the so-

lution behaves for more general forms of L(t) and A(t). Here we shall give two

main comparison results which can be applied in such cases. They are each based

on somehow bounding the coefficient of w in equation (3.11), and applying the

parabolic comparison principle. Proposition 3.10 gives (upper and/or lower)

bounds on the solution w(ξ, t) in cases such that L̈L3 and ÄL3 are bounded

(above and/or below). Theorem 3.11 gives both upper and lower bounds on

w(ξ, t) under the more general condition that A(t) and L(t) are twice differen-

tiable.

We shall apply Theorem 3.11 in Section 3.5.2, where it allows us to study

the possible long-time behaviour of ψ(x, t) if L(t) → Lcrit = π
√

D
f0

as t → ∞.

In Chapter 5, we shall also apply both Proposition 3.10 and Theorem 3.11 to

a periodically varying interval (A(t), A(t) + L(t)), to prove Proposition 5.5 and

many subsequent results in Chapter 5.

Proposition 3.10. Assume that L̈(t)L(t)3 ≤ γ0, Ä(t)L(t)3 ≤ γ1, and L(t) > 0

for 0 ≤ t ≤ T . Let g1 and σ1 be the principal eigenfunction and eigenvalue

of (3.19), (3.20), let w(ξ, t) satisfy (3.11), (3.12) and define s(t) =
t∫

0

L2
0

L(ζ)2
dζ.

If 0 ≤ w(ξ, 0) ≤ ag1(ξ) for some a > 0, then w(ξ, t) ≤ ag1(ξ)eσ1s(t) for all

0 ≤ t ≤ T .
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If instead γ0 ≤ L̈(t)L(t)3, γ1 ≤ Ä(t)L(t)3, and L(t) > 0 for 0 ≤ t ≤ T , and

if bg1(ξ) ≤ w(ξ, 0) for some b > 0, then bg1(ξ)eσ1s(t) ≤ w(ξ, t) for all 0 ≤ t ≤ T .

Proof. As in Section 3.1, let v(ξ, s) = w(ξ, t), so v satisfies (3.14), (3.15). For

the first part, ag1(ξ)eσ1s is a supersolution for v(ξ, s), and for the second part

bg1(ξ)eσ1s is a subsolution. So the required estimates follow by applying the

comparison principle and using w(ξ, t) = v(ξ, s(t)).

Next we shall derive another comparison result by treating the coefficient of

w in equation (3.11) in a different way. It can be applied to any A(t) and L(t)

that are twice differentiable. It is, however, especially useful in cases where the

condition (3.85) holds (i.e. Q(t) and Q(t) are integrable). Then, the upper and

lower bounds are of the same order as each other and we deduce the exact order

of the solution as t→∞ (see equation (3.86)).

Theorem 3.11. Given constants γ0 and γ1, let g1 and σ1 be the principal eigen-

function and eigenvalue of (3.19), (3.20). Let w satisfy (3.11), (3.12) and as-

sume that C1g1(ξ) ≤ w(ξ, 0) ≤ C2g1(ξ) for some constants 0 < C1 ≤ C2. Define

Q(t) = max
0≤η≤1

(
η2

2

(
L̈(t)L(t)− γ0

L(t)2

)
+ η

(
Ä(t)L(t)− γ1

L(t)2

))
, (3.82)

Q(t) = − min
0≤η≤1

(
η2

2

(
L̈(t)L(t)− γ0

L(t)2

)
+ η

(
Ä(t)L(t)− γ1

L(t)2

))
. (3.83)

If t ≥ 0 is such that L(τ) > 0 on 0 ≤ τ ≤ t, then

C1g1(ξ)e

t∫
0

(
σ1L

2
0

L(ζ)2
−Q(ζ)

2D

)
dζ
≤ w(ξ, t) ≤ C2g1(ξ)e

t∫
0

(
σ1L

2
0

L(ζ)2
+
Q(ζ)
2D

)
dζ
. (3.84)

In particular, if L(t) > 0 for all 0 ≤ t <∞, and if∫ ∞
0

Q(t)

2D
dt <∞ and

∫ ∞
0

Q(t)

2D
dt <∞ (3.85)

then

w(ξ, t) = O

(
g1(ξ)e

t∫
0

σ1L
2
0

L(ζ)2
dζ

)
. (3.86)
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Proof. Consider the coefficient of w in equation (3.11). We can write

ξ2L̈(t)L(t)

4DL2
0

+
ξÄ(t)L(t)

2DL0

=
L2

0

L(t)2

(
ξ2γ0

4DL4
0

+
ξγ1

2DL3
0

)
+ r(ξ, t) (3.87)

where

r(ξ, t) =
ξ2
(
L̈(t)L(t)− γ0

L(t)2

)
4DL2

0

+
ξ
(
Ä(t)L(t)− γ0

L(t)2

)
2DL0

. (3.88)

For 0 ≤ ξ ≤ L0, this satisfies

−
Q(t)

2D
≤ r(ξ, t) ≤ Q(t)

2D
(3.89)

where Q(t) and Q(t) are as in equations (3.82), (3.83). Therefore, equation

(3.11) implies that

−
Q(t)

2D
w ≤ ∂w

∂t
− L2

0

L(t)2

(
D
∂2w

∂ξ2
+

(
ξ2γ0

4DL4
0

+
ξγ1

2DL3
0

)
w

)
≤ Q(t)

2D
w. (3.90)

If W (ξ, t) is the solution to

∂W

∂t
=

L2
0

L(t)2

(
D
∂2W

∂ξ2
+

(
ξ2γ0

4DL4
0

+
ξγ1

2DL3
0

)
W

)
for 0 < ξ < L0 (3.91)

W (ξ, t) = 0 at ξ = 0 and ξ = L0, (3.92)

W (ξ, 0) = g1(ξ), (3.93)

then C1W (ξ, t)e−
∫ t
0

Q(ζ)

2D
dζ is a subsolution for w(ξ, t) and C2W (ξ, t)e

∫ t
0
Q(ζ)
2D

dζ is a

supersolution. But since W (ξ, t) = g1(ξ)eσ1s(t) with s(t) as in (3.13), this gives

the estimates in equation (3.84).

For the final part, note that the lower and upper bounds in (3.84) differ by

a factor of order exp
(∫ t

0

Q(ζ)−Q(ζ)

2D
dζ
)

. If (3.85) holds then this converges to the

finite positive value exp
(∫∞

0

Q(ζ)−Q(ζ)

2D
dζ
)

as t→∞.

Even when we do not have an exact solution, there are many cases where

Theorem 3.11 allows us to determine the long-time behaviour of the solution w

(and hence u) up to multiplication by an order one factor. We can know, for

instance, not only that u→ 0 or u→∞ as t→∞, but the precise t dependence

of the decay or growth, as in the following example.
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Example 3.12. Suppose that L(t) = L0e
−αt with α > 0, and A(t) ≡ 0. Take

γ0 = γ1 = 0 in Theorem 3.11, so that σ1 = −Dπ2

L2
0

and g1(ξ) = sin
(
πξ
L0

)
. Then

we calculate that Q(t) =
L2
0α

2

2
e−2αt and Q(t) ≡ 0. So,∫ t

0

Q(ζ)

2D
dζ =

L2
0α

8D
(1− e−2αt) = O(1),

∫ t

0

Q(ζ)

2D
dζ = 0. (3.94)

Also, L̇(t)L(t) = −αL2
0e
−2αt and

t∫
0

1

L(ζ)2
dζ =

∫ t

0

1

L2
0e
−2αζ

dζ =
e2αt − 1

2αL2
0

. (3.95)

Therefore when we apply Theorem 3.11, and then change variables back to u(ξ, t)

using the definition of w(ξ, t) from Section 3.1, we deduce that for 0 ≤ ξ ≤ L0

u(ξ, t) = O

(
sin

(
πξ

L0

)
exp

(
− Dπ2

2αL2
0

e2αt +
(
f0 +

α

2

)
t

))
→ 0 as t→∞.

(3.96)

Theorem 3.11 is valid with any choice of γ0, γ1, but in certain cases a partic-

ular choice of γ0, γ1 will lead to the best bounds on the solution. For example,

if the separability condition (3.16) does hold, and we apply Theorem 3.11 with

γ0 ≡ L̈(t)L(t)3 and γ1 ≡ Ä(t)L(t)3, then Q(t) ≡ Q(t) ≡ 0 and the theorem

bounds w(ξ, t) between constant multiples of g1(ξ)e

t∫
0

σ1L
2
0

L(ζ)2
dζ

.

Consider next a case such that the separability condition (3.16) does not

hold, but that for some a > 0

L(t) ∼ at
1
2 , L̈(t) ∼ −1

4
at−

3
2 as t→∞. (3.97)

In such cases,

L̈(t)L(t) ∼ −a
2

4t
∼ − a4

4L(t)2
as t→∞. (3.98)

Therefore if we take γ0 = −a4

4
then L̈(t)L(t) = γ0

L(t)2
+ o

(
1
t

)
as t→∞, and so

L̈(t)L(t)− γ0

L(t)2
= o

(
L̈(t)L(t)

)
as t→∞. (3.99)

If, also, A(t) satisfies Ä(t) ∼ bt−
3
2 as t→∞, then the choice γ1 = ba3 leads to

Ä(t)L(t)− γ1

L(t)2
= o

(
Ä(t)L(t)

)
as t→∞. (3.100)
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These observations mean that we can obtain better bounds on the solution w

(and so u) by taking into account these particular values γ0, γ1, and the separable

solutions associated to them, than we could by simply using γ0 = γ1 = 0. In

particular, if L̈(t)L(t)− γ0
L(t)2

and Ä(t)L(t)− γ1
L(t)2

are integrable, then Theorem

3.11 will give the exact order of w(ξ, t) as t→∞.

If there are no special choices of γ0 or γ1 such that (3.99) or (3.100) holds,

then (as in Example 3.12) we take γ0 = γ1 = 0. This often provides useful

bounds on the solution, as we shall see in Example 3.15 and Section 3.5.2. Let

us therefore state Theorem 3.11 in the case γ0 = γ1 = 0 as a separate theorem.

Theorem 3.13. Let w satisfy (3.11), (3.12), with 0 < C1 ≤ C2 such that

C1 sin
(
πξ
L0

)
≤ w(ξ, 0) ≤ C2 sin

(
πξ
L0

)
. Define

Q(t) = max
0≤η≤1

(
η2L̈(t)L(t)

2
+ ηÄ(t)L(t)

)
,

Q(t) = − min
0≤η≤1

(
η2L̈(t)L(t)

2
+ ηÄ(t)L(t)

)
. (3.101)

If t ≥ 0 is such that L(τ) > 0 on 0 ≤ τ ≤ t, then

C1 sin

(
πξ

L0

)
e
∫ t
0

(
− Dπ2

L(ζ)2
−Q(ζ)

2D

)
dζ ≤ w(ξ, t) ≤ C2 sin

(
πξ

L0

)
e
∫ t
0

(
− Dπ2

L(ζ)2
+
Q(ζ)
2D

)
dζ
.

(3.102)

In particular, if L(t) > 0 for all 0 ≤ t <∞, and if∫ ∞
0

Q(t)

2D
dt <∞ and

∫ ∞
0

Q(t)

2D
dt <∞ (3.103)

then

w(ξ, t) = O

(
sin

(
πξ

L0

)
exp

(∫ t

0

−Dπ2

L(ζ)2
dζ

))
. (3.104)

Remark 3.14. Given a function F (t), denote its positive and negative parts by

[F (t)]+ ≥ 0 and [F (t)]− ≥ 0, so that F (t) ≡ [F (t)]+ − [F (t)]−. The functions

Q(t) and Q(t) defined by (3.101) always satisfy

0 ≤ Q(t) ≤ L(t)[L̈(t)]+

2
+L(t)[Ä(t)]+, 0 ≤ Q(t) ≤ L(t)[L̈(t)]−

2
+L(t)[Ä(t)]−.

(3.105)
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Example 3.15. Let Q(t) and Q(t) be given by (3.101). Examples of L(t), A(t)

for which the condition (3.103) is satisfied include:

1. L(t) = a(t+ t0)k for any k < 1
2
, and Ä(t) = O(tm−2) with m+ k < 1.

2. L(t) → L∞ > 0 and L̈(t) = O(t−1−ε), Ä(t) = O(t−1−δ) for any ε > 0,

δ > 0, as t→∞.

3. L(t) ∼ αt, α > 0, and L̈(t) = O(t−2−ε), Ä(t) = O(t−2−δ) for any ε > 0,

δ > 0, as t→∞.

3.5.2 L(t) and Lcrit

Here we consider the problem (3.1), (3.2) on the interval 0 < x < L(t). If L is

a constant, then we know that the ‘critical length’

Lcrit = π

√
D

f0

(3.106)

is the length for which the principal eigenmode sin
(
πx
L

)
is a stationary solution

to the linear parabolic problem. If L < Lcrit then the solution tends to zero as

t → ∞, and if L > Lcrit then the solution tends to infinity. When L(t) is not

constant but varies with t, the role of Lcrit is not so straightforward. Considering

L(t) and its relation to Lcrit, we shall derive sufficient conditions such that the

solution does not, or does, tend to zero as t → ∞. These will be proved as

two corollaries of Theorem 3.13. Then, in Examples 3.19 and 3.20, we shall

demonstrate cases for which L(t) is strictly less than Lcrit for all t ≥ 0, and yet

the solution does not tend to zero as t → ∞. We shall see that if L(t) tends

to Lcrit from below as an inverse power of t, then the outcome depends on this

power.

First, in Corollary 3.16, we give conditions under which the solution does

not converge to zero but has a non-trivial lower bound.
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Corollary 3.16. Let ψ(x, t) satisfy (3.1), (3.2) on 0 < x < L(t). Assume that

L(t) > 0 for all 0 ≤ t <∞, and that the following conditions hold:

L(t) and L̇(t)L(t) are bounded above, (3.107)∫ t

0

(
1

L(ζ)2
− 1

L2
crit

)
dζ is bounded above, (3.108)∫ ∞

0

L(t)[L̈(t)]−dt <∞. (3.109)

Then for ψ(x, 0) ≥ 0, and not identically zero, ψ(x, t) does not converge to zero

as t→∞. In particular, lim inft→∞

(
2

L(t)

∫ L(t)

0
ψ(x, t) sin

(
πx
L(t)

)
dx
)
> 0.

Proof. Let u(ξ, t) and w(ξ, t) be as in Section 3.1. We may assume that

u(ξ, 0) ≥ b sin

(
πξ

L0

)
exp

(
−ξ2L̇(0)L(0)

4DL2
0

)
(3.110)

for some b > 0. It follows from Theorem 3.13, and the definition w(ξ, t) =

u(ξ, t)H(ξ, t)e−f0t with H(ξ, t) as in (3.6), that

u(ξ, t) ≥ b sin

(
πξ

L0

)(
L(0)

L(t)

)1/2

e
f0t−

∫ t
0

(
Dπ2

L(ζ)2
+
Q(ζ)

2D

)
dζ− ξ

2L̇(t)L(t)

4DL2
0 (3.111)

where Q(t) = L(t)[L̈(t)]−

2
. Substituting f0 = Dπ2

L2
crit

and using the assumptions in

equation (3.107) gives that for some b′ > 0

u(ξ, t) ≥ b′ sin

(
πξ

L0

)
exp

(∫ t

0

(
Dπ2

L2
crit

− Dπ2

L(ζ)2
− L(ζ)[L̈(ζ)]−

4D

)
dζ

)
. (3.112)

Now, assumptions (3.108) and (3.109) imply that there exists B > 0 such that

u(ξ, t) ≥ B sin
(
πξ
L0

)
for all t ≥ 0. So u(ξ, t) does not converge to zero, and

2

L(t)

∫ L(t)

0

ψ(x, t) sin

(
πx

L(t)

)
dx =

2

L0

∫ L0

0

u(ξ, t) sin

(
πξ

L0

)
dξ ≥ B. (3.113)

Remark 3.17. Let ψ(x, t) satisfy (3.1), (3.2) on A(t) < x < A(t) +L(t) where

L(t) satisfies the conditions (3.107), (3.108), (3.109) and where A(t) = β(t+t1)m
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for some 0 < m < 1
2
. In this case also, ψ does not converge to zero but has a non-

trivial lower bound. As in Corollary 3.16, this can be proved by an application

of Theorem 3.13 and equation (3.6), and by also using that Ȧ(t)L(t) is bounded

above and that Ȧ(t)2 and L(t)[Ä(t)]− are integrable.

Next we give conditions under which the solution does converge to zero.

Corollary 3.18. Let ψ(x, t) satisfy (3.1), (3.2) on 0 < x < L(t). Assume that

L(t) > 0 for all 0 ≤ t <∞, and that the following conditions hold:

L̇(t)L(t) is bounded below, (3.114)∫ T

0

(
Dπ2

L(t)2
− Dπ2

L2
crit

− L(t)[L̈(t)]+

4D
+

L̇(t)

2L(t)

)
dt→∞ as T →∞. (3.115)

Then ψ(x, t) converges uniformly to zero as t→∞.

Proof. Let u(ξ, t) and w(ξ, t) be as in Section 3.1. We may assume that

u(ξ, 0) ≤ a sin

(
πξ

L0

)
exp

(
−ξ2L̇(0)L(0)

4DL2
0

)
(3.116)

for some a > 0. It follows from Theorem 3.13, and the definition w(ξ, t) =

u(ξ, t)H(ξ, t)e−f0t with H(ξ, t) as in (3.6), that

u(ξ, t) ≤ a sin

(
πξ

L0

)(
L(0)

L(t)

)1/2

e
f0t+

∫ t
0

(
− Dπ2

L(ζ)2
+
Q(ζ)
2D

)
dζ− ξ

2L̇(t)L(t)

4DL2
0 (3.117)

where Q(t) = L(t)[L̈(t)]+

2
. Substituting f0 = Dπ2

L2
crit

and using the assumption in

equation (3.114) gives that for some a′ > 0

u(ξ, t) ≤ a′ sin

(
πξ

L0

)
exp

(∫ t

0

(
Dπ2

L2
crit

− Dπ2

L(ζ)2
+
L(ζ)[L̈(ζ)]+

4D
− L̇(ζ)

2L(ζ)

)
dζ

)
.

(3.118)

So, under the assumption in equation (3.115), there is uniform convergence to

zero.

Example 3.19. Consider an interval (0, L(t)) where L(t) < Lcrit tends expo-

nentially towards Lcrit:

L(t) = Lcrit(1− εe−αt) (3.119)
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where 0 < ε < 1 and α > 0. The conditions of Corollary 3.16 are satisfied and

so we deduce that ψ(x, t) ≥ B sin
(

πx
L(t)

)
for some B > 0.

Example 3.20. Consider the interval (0, L(t)) where L(t) < Lcrit is given by

L(t) = Lcrit(1− ε(t+ t0)−k) (3.120)

where 0 < ε < 1 and k > 0. If k > 1, then the conditions of Corollary 3.16 are

satisfied and so ψ(x, t) ≥ B sin
(

πx
L(t)

)
for some B > 0. On the other hand, if

0 < k ≤ 1 then the conditions of Corollary 3.18 are satisfied and so ψ(x, t)→ 0

uniformly in x as t→∞. This example gives an indication of how fast or slowly

L(t) may be expected to converge to Lcrit, to give each of the two outcomes.

Analogous results to Corollaries 3.16 and 3.18 also hold in the case of an

interval (A0 + ct, A0 + ct+ L(t)) where c ∈ (−c∗, c∗). In this case we define

Lcrit(c) = π

√
D

f0 − c2

4D

(3.121)

and, exactly as above but with this new definition of Lcrit, we obtain the fol-

lowing corollaries of Theorem 3.13.

Corollary 3.21. Let ψ(x, t) satisfy (3.1), (3.2) on (A0 + ct, A0 + ct + L(t)).

Assume that L(t) > 0 for all 0 ≤ t <∞, and that the following conditions hold:

L(t), L̇(t)L(t) and cL(t) are bounded above, (3.122)∫ t

0

(
1

L(ζ)2
− 1

Lcrit(c)2

)
dζ is bounded above, (3.123)∫ ∞

0

L(t)[L̈(t)]−dt <∞. (3.124)

Then for ψ(x, 0) ≥ 0, and not identically zero, ψ(x, t) does not converge to zero

as t→∞.

Corollary 3.22. Let ψ(x, t) satisfy (3.1), (3.2) on (A0 + ct, A0 + ct + L(t)).

Assume that L(t) > 0 for all 0 ≤ t <∞, and that the following conditions hold:

L̇(t)L(t) and cL(t) are bounded below, (3.125)
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∫ T

0

(
Dπ2

L(t)2
− Dπ2

Lcrit(c)2
− L(t)[L̈(t)]+

4D
+

L̇(t)

2L(t)

)
dt→∞ as T →∞.

(3.126)

Then ψ(x, t) converges uniformly to zero as t→∞.

In Chapter 7 we shall consider the equation with a nonlinear reaction term

f . Section 7.5.1 concerns the roles of Lcrit and Lcrit(c) in the nonlinear case, and

we show that if L(t) → Lcrit as t → ∞ then the long-time behaviour depends

on whether or not f is linear on a neighbourhood of 0. If it is, then a result

similar to Corollary 3.16 holds.

3.6 Linear problem on a time-dependent box

Here, we show that the analysis of the linear equation on the interval extends in

a straightforward way to the box defined in Example 2.4 and equation (2.14);

that is:

Ω(t) =
{
x ∈ RN : Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N

}
for some Aj(t) ∈ R, and Lj(t) > 0, each twice differentiable. The same methods

which were used to prove Theorem 3.2 and Theorem 3.11 on the interval also

lead to the corresponding results — Theorem 3.23 and Theorem 3.24 — on the

box. We shall use these results again in Chapter 4.

With Ω(t) given by equation (2.14), consider the problem

∂ψ

∂t
= D∇2ψ + f0ψ in Ω(t) ⊂ RN (3.127)

ψ(x, t) = 0 on ∂Ω(t). (3.128)

As in Section 3.1, change variables from xj to ξj and ψ(x, t) = u(ξ, t) where

ξj =
(
xj−Aj(t)
Lj(t)

)
L0 lies in a fixed interval. Then problem (3.127), (3.128) becomes

∂u

∂t
= D

N∑
j=1

L2
0

Lj(t)2

∂2u

∂ξ2
j

+
N∑
j=1

(
Ȧj(t)L0 + ξjL̇j(t)

Lj(t)

)
∂u

∂ξj
+f0u for 0 < ξj < L0

(3.129)
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u(ξ, t) = 0 at ξj = 0 and ξj = L0. (3.130)

Again proceeding as in Section 3.1, let w(ξ, t) = e−f0tu(ξ, t)
∏N

j=1 Hj(ξj, t) where

Hj(ξj, t) =

(
Lj(t)

Lj(0)

)1/2

exp

 t∫
0

Ȧj(ζ)2

4D
dζ +

ξ2
j L̇j(t)Lj(t)

4DL2
0

+
ξjȦj(t)Lj(t)

2DL0

.
(3.131)

Then for 0 < ξj < L0 we have

∂w

∂t
= D

N∑
j=1

L2
0

Lj(t)2

∂2w

∂ξ2
j

+
N∑
j=1

(
ξ2
j L̈j(t)Lj(t)

4DL2
0

+
ξjÄj(t)Lj(t)

2DL0

)
w (3.132)

w(ξ, t) = 0 at ξj = 0 and ξj = L0, (3.133)

and we arrive at the following extension of Theorem 3.2.

Theorem 3.23. Suppose that

L̈j(t)Lj(t)
3 ≡ γ

(j)
0 and Äj(t)Lj(t)

3 ≡ γ
(j)
1 for all 1 ≤ j ≤ N.

(3.134)

Then there exist separable solutions of (3.129), (3.130) of the form

u(ξ, t) = exp

(
f0t+

∫ t

0

N∑
j=1

σj,njL
2
0

Lj(ζ)2
dζ

)
N∏
j=1

(
gj,nj(ξj)

Hj(ξj, t)

)
, (3.135)

where Hj(ξj, t) is given by equation (3.131) and where gj,n and σj,n are the

eigenfunctions and eigenvalues of the Sturm-Liouville problem (3.19), (3.20)

with γ0 = γ
(j)
0 and γ1 = γ

(j)
1 .

In general, the separability condition may hold for some, all, or none of the

dimensions 1 ≤ j ≤ N . We can also extend Theorem 3.11 to the box, as follows.

Theorem 3.24. Given constants γ
(j)
0 and γ

(j)
1 for 1 ≤ j ≤ N , let gj,1 and σj,1

be the principal eigenfunction and eigenvalue of (3.19), (3.20) with γ0 = γ
(j)
0

and γ1 = γ
(j)
1 . Let w satisfy (3.132), (3.133) and assume that

C1

N∏
j=1

gj,1(ξj) ≤ w(ξ, 0) ≤ C2

N∏
j=1

gj,1(ξj), (3.136)
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for some constants 0 < C1 ≤ C2. Define

Qj(t) = max
0≤η≤1

(
η2

2

(
L̈j(t)Lj(t)−

γ
(j)
0

Lj(t)2

)
+ η

(
Äj(t)Lj(t)−

γ
(j)
1

Lj(t)2

))
,

(3.137)

Q
j
(t) = − min

0≤η≤1

(
η2

2

(
L̈j(t)Lj(t)−

γ
(j)
0

Lj(t)2

)
+ η

(
Äj(t)Lj(t)−

γ
(j)
1

Lj(t)2

))
.

(3.138)

If t ≥ 0 is such that Lj(τ) > 0 on 0 ≤ τ ≤ t for all 1 ≤ j ≤ N , then

C1 exp

(∫ t

0

N∑
j=1

(
σj,1L

2
0

Lj(ζ)2
−
Qj(ζ)

2D

)
dζ

) N∏
j=1

gj,1(ξj)

≤ w(ξ, t) ≤ C2 exp

(∫ t

0

N∑
j=1

(
σj,1L

2
0

Lj(ζ)2
+
Qj(ζ)

2D

)
dζ

)
N∏
j=1

gj,1(ξj).

(3.139)

In particular, if Lj(t) > 0 for all 0 ≤ t <∞, and if∫ ∞
0

Qj(t)

2D
dt <∞ and

∫ ∞
0

Q
j
(t)

2D
dt <∞ for all 1 ≤ j ≤ N,

(3.140)

then

w(ξ, t) = O

(
exp

(∫ t

0

N∑
j=1

σj,1L
2
0

Lj(ζ)2
dζ

)
N∏
j=1

gj,1(ξj)

)
. (3.141)

The condition (3.140) will be satisfied if, for example, Lj(t) and Aj(t) are of

the types given in Example 3.15 for each 1 ≤ j ≤ N .

3.7 Linear problem on a time-dependent cylin-

der

The analysis of the linear equation also extends in a straightforward way to

cylinder-like domains in RN+1 that are infinite in the xN+1 direction (denoted

by y) and have time-dependent cross-section. Here we are concerned with the
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cylinder-like domain Ω∗(t) = Ω(t) × (−∞,∞) where Ω(t) is a time-dependent

box as in equation (2.14), and we consider the problem

∂ψ

∂t
= D∇2ψ + f0ψ for (x, y) ∈ Ω(t)× (−∞,∞) ⊂ RN+1 (3.142)

ψ(x, y, t) = 0 for (x, y) ∈ ∂Ω(t)× (−∞,∞) (3.143)

with ψ(x, y, 0) non-negative and compactly supported. We use the same change

of variables from xj to ξj as in Section 3.6 (for 1 ≤ j ≤ N), and denote the

solution by ψ(x, y, t) = u(ξ, y, t). Then for 0 < ξj < L0, −∞ < y < ∞ the

problem (3.142), (3.143) becomes

∂u

∂t
= D

N∑
j=1

L2
0

Lj(t)2

∂2u

∂ξ2
j

+D
∂2u

∂y2
+

N∑
j=1

(
Ȧj(t)L0 + ξjL̇j(t)

Lj(t)

)
∂u

∂ξj
+ f0u (3.144)

u(ξ, y, t) = 0 at ξj = 0 and ξj = L0. (3.145)

Let w(ξ, y, t) = e−f0tu(ξ, y, t)
∏N

j=1Hj(ξj, t) where Hj(ξj, t) is given in equation

(3.131). Then exactly as above,

∂w

∂t
= D

N∑
j=1

L2
0

Lj(t)2

∂2w

∂ξ2
j

+D
∂2w

∂y2
+

N∑
j=1

(
ξ2
j L̈j(t)Lj(t)

4DL2
0

+
ξjÄj(t)Lj(t)

2DL0

)
w

(3.146)

w(ξ, y, t) = 0 at ξj = 0 and ξj = L0. (3.147)

The separation of variables method now leads to the following extension of

Theorem 3.2 (and Theorem 3.23).

Theorem 3.25. Suppose that

L̈j(t)Lj(t)
3 ≡ γ

(j)
0 and Äj(t)Lj(t)

3 ≡ γ
(j)
1 for all 1 ≤ j ≤ N.

(3.148)

Then there exist separable solutions of (3.144), (3.145) of the form

u(ξ, y, t) =

∫ ∞
−∞

u(y′)e−
(y−y′)2

4Dt

√
4πDt

dy′ exp

(
f0t+

∫ t

0

N∑
j=1

σj,njL
2
0

Lj(ζ)2
dζ

)
N∏
j=1

(
gj,nj(ξj)

Hj(ξj, t)

)
(3.149)

58



where u(y) is any continuous, compactly supported function, where Hj(ξj, t) is

given by equation (3.131), and where gj,n and σj,n are the eigenfunctions and

eigenvalues of the Sturm-Liouville problem (3.19), (3.20) with γ0 = γ
(j)
0 and

γ1 = γ
(j)
1 .

Similarly, Theorem 3.11 (and Theorem 3.24) extends to the cylinder as fol-

lows.

Theorem 3.26. Given constants γ
(j)
0 and γ

(j)
1 for 1 ≤ j ≤ N , let gj,1 and σj,1

be the principal eigenfunction and eigenvalue of (3.19), (3.20) with γ0 = γ
(j)
0

and γ1 = γ
(j)
1 . Let w satisfy (3.146), (3.147) and assume that

C1u(y)
N∏
j=1

gj,1(ξj) ≤ w(ξ, y, 0) ≤ C2u(y)
N∏
j=1

gj,1(ξj), (3.150)

for some continuous, non-negative, compactly supported function u(y) and some

constants 0 < C1 ≤ C2. Define Qj(t) and Q
j
(t) as in (3.137), (3.138). If t ≥ 0

is such that Lj(τ) > 0 on 0 ≤ τ ≤ t for all 1 ≤ j ≤ N , then

C1√
4πDt

∫ ∞
−∞

u(y′)e−
(y−y′)2

4Dt dy′ exp

(∫ t

0

N∑
j=1

(
σj,1L

2
0

Lj(ζ)2
−
Qj(ζ)

2D

)
dζ

) N∏
j=1

gj,1(ξj)

≤ w(ξ, y, t) ≤

C2√
4πDt

∫ ∞
−∞

u(y′)e−
(y−y′)2

4Dt dy′ exp

(∫ t

0

N∑
j=1

(
σj,1L

2
0

Lj(ζ)2
+
Qj(ζ)

2D

)
dζ

)
N∏
j=1

gj,1(ξj).

(3.151)

In particular, if Lj(t) > 0 for 0 ≤ t <∞ and if (3.140) holds, then as t→∞,

w(ξ, y, t) = O

(∫ ∞
−∞

u(y′)√
4πDt

e−
(y−y′)2

4Dt dy′ exp

(∫ t

0

N∑
j=1

σj,1L
2
0

Lj(ζ)2
dζ

)
N∏
j=1

gj,1(ξj)

)
.

(3.152)

In cases such that Lj(t) > 0 for all 0 ≤ t < ∞ and such that (3.140)

holds, Theorem 3.26 gives the exact order of the solution as t → ∞. The next

result gives more detail about the long-time behaviour of the solution at a given
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position ξ(t) in the cross-section. Under the condition that

f0t+
N∑
j=1

(∫ t

0

(
σj,1L

2
0

Lj(ζ)2
− Ȧj(ζ)2

4D

)
dζ − ξj(t)

2L̇j(t)Lj(t)

4DL2
0

− ξj(t)Ȧj(t)Lj(t)

2DL0

)

+
N∑
j=1

(
log (gj,1(ξj(t)))−

1

2
log

(
Lj(t)

Lj(0)

))
=
C2

4D
t− p(t) (3.153)

for some C > 0 and p(t) = o(t) as t→∞, we are interested in the asymptotic y

positions at which u(ξ(t), y, t) takes order one values. (Note that this condition

(3.153) simply says that if we take f0t and add and subtract the terms due to

the time-dependent domain, then we are left with a positive multiple of t plus

smaller order terms.)

Corollary 3.27. Assume that Lj(t) > 0 for all 0 ≤ t < ∞ and that (3.140)

holds. Let ξj(t) ∈ (0, L0) be given for 1 ≤ j ≤ N , and suppose that Aj(t), Lj(t)

and ξj(t) are such that (3.153) holds for some C > 0 and p(t) = o(t) as t→∞.

Then:

1. u(ξ(t), ct, t) → ∞ as t → ∞ for every |c| < C, and u(ξ(t), ct, t) → 0 as

t→∞ for every |c| > C.

2. Let y = y∗(t) denote the y positions at which u(ξ(t), y, t) is equal to some

positive, order one value. Then for large t,

y∗(t) = ±(Ct− δ∗(t)),
C

2D
δ∗(t)−

δ∗(t)
2

4Dt
= p(t) +

1

2
log

t

t0
+O(1).

(3.154)

3. If, in addition to the above assumptions,

L̇j(t)Lj(t) = O(1) and Ȧj(t)Lj(t) = O(1) (3.155)

for every 1 ≤ j ≤ N , then y∗(t) is given by (3.154) uniformly for ξ(t) in

any compact subset of (0, L0)N , and C and p(t) can be found from

f0t+
N∑
j=1

(∫ t

0

(
σj,1L

2
0

Lj(ζ)2
− Ȧj(ζ)2

4D

)
dζ − 1

2
log

(
Lj(t)

Lj(0)

))
=
C2

4D
t− p(t) +O(1). (3.156)
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Proof. Under the stated assumptions, Theorem 3.26 gives the bound in equation

(3.152). In terms of the original function u(ξ, y, t), this becomes

u(ξ, y, t) = O

(∫ ∞
−∞

u(y′)e−
(y−y′)2

4Dt

√
4πDt

dy′e
f0t+

∫ t
0

∑N
j=1

σj,1L
2
0

Lj(ζ)
2 dζ

N∏
j=1

(
gj,1(ξj)

Hj(ξj, t)

))
(3.157)

as t→∞, with Hj(ξj, t) given by equation (3.131). Evaluating this at ξ = ξ(t),

and using equation (3.153), we get precisely

u(ξ(t), y, t) = O

(
e
C2

4D
t−p(t)
√
t

∫ ∞
−∞

u(y′)e−
(y−y′)2

4Dt dy′

)
(3.158)

as t → ∞. It is clear from (3.158) that as t → ∞, u(ξ(t), ct, t) → ∞ for every

|c| < C, and u(ξ(t), ct, t) → 0 for every |c| > C. Also, writing y = Ct − δ∗(t)

and equating (3.158) to some constant, we find that δ∗(t) must satisfy

C

2D
δ∗(t)−

δ∗(t)
2

4Dt
− p(t)− 1

2
log

t

t0
= O(1) as t→∞. (3.159)

In general C and p(t) will depend on ξj(t) ∈ (0, L0). However, if the condition

(3.155) holds, then we have

−ξj(t)
2L̇j(t)Lj(t)

4DL2
0

− ξj(t)Ȧj(t)Lj(t)

2DL0

+ log (gj,1(ξj(t))) = O(1) as t→∞,

(3.160)

uniformly for ξj(t) in any compact subset of (0, L0). This observation, together

with all the above, proves the final statement.

Example 3.28. Examples of possible long-time behaviour of Lj(t), Aj(t) for

which the conditions (3.140), (3.155) and (3.156) are simultaneously satisfied

include:

1. Lj(t) = a(t+ t0)k, Aj(t) = b(t+ t1)m for any 0 < k < 1
2

and m+ k < 1.

2. Lj(t), Aj(t) such that as t→∞,

Lj(t) = lj + o(1), L̇j(t) = O(t−ε), L̈j(t) = O(t−1−ε), (3.161)

Ȧj(t) = cj +O(t−δ), Äj(t) = O(t−1−δ), (3.162)

where lj > 0, ε > 0, δ > 0 and f0 >
∑N

j=1

(
Dπ2

l2j
+

c2j
4D

)
.
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3.8 Linear problem on a time-dependent ball

The method of separation of variables can also be used to derive exact solutions

to the linear problem on a ball in any dimension N . For some time-dependent

vector A(t) ∈ RN and time-dependent radius R(t) > 0, let

Ω(t) =
{
x ∈ RN : |x− A(t)| < R(t)

}
, (3.163)

and consider the problem

∂ψ

∂t
= D∇2ψ + f0ψ in Ω(t) ⊂ RN (3.164)

ψ(x, t) = 0 on ∂Ω(t). (3.165)

Following the approach of Section 3.1, change variables from x to ξ =
(
x−A(t)
R(t)

)
R0

for some R0 > 0 and let u(ξ, t) = ψ(x, t). The problem (3.164), (3.165) becomes:

∂u

∂t
= D

R2
0

R(t)2
∇2u+

(
R0Ȧ(t) + Ṙ(t)ξ

R(t)

)
· ∇u+ f0u for ξ ∈ Ω0 (3.166)

u(ξ, t) = 0 for ξ ∈ ∂Ω0, (3.167)

where Ω0 =
{
ξ ∈ RN : |ξ| < R0

}
. Now let w(ξ, t) = u(ξ, t)H(ξ, t)e−f0t where

H(ξ, t) =

(
R(t)

R(0)

)N
2

exp

 t∫
0

|Ȧ(ζ)|2

4D
dζ +

Ṙ(t)R(t)

4DR2
0

|ξ|2 +
R(t)

2DR0

(ξ · Ȧ(t))

,
(3.168)

to get the equation

∂w

∂t
= D

R2
0

R(t)2
∇2w +

(
|ξ|2R̈(t)R(t)

4DR2
0

+
(ξ · Ä(t))R(t)

2DR0

)
w for ξ ∈ Ω0

(3.169)

w(ξ, t) = 0 for ξ ∈ ∂Ω0. (3.170)

Remark 3.29. Notice the similarity to the one-dimensional case (see Section

3.1). The factor
(
R(t)
R(0)

)N
2

in equation (3.168) is the only explicit dependence on

the dimension N , and this term is included in the change of variables in order

to remove a term in the equation involving ∇ · ξ (= N in RN).

62



As in the one-dimensional case, change variables from t to s(t) =
t∫

0

R2
0

R(ζ)2
dζ,

and write v(ξ, s) = w(ξ, t). This gives:

∂v

∂s
= D∇2v +

(
|ξ|2R̈(t)R(t)3

4DR4
0

+
(ξ · Ä(t))R(t)3

2DR3
0

)
v for |ξ| < R0 (3.171)

v(ξ, s) = 0 at |ξ| = R0. (3.172)

This is separable in s, r = |ξ|, and θ (the angular co-ordinates) if R̈(t)R(t)3 ≡ γ0

is a constant and Ä(t)R(t)3 ≡ 0. This corresponds to R(t)2 = at2 + 2bt+ r2
0 for

some constants a, b, r0 = R(0) > 0, and γ0 = ar2
0 − b2; and to A(t) = A0 + ct

for some constant vectors A0 and c. We arrive at the following extension of

Theorem 3.2 to the N -dimensional ball.

Theorem 3.30. Suppose that

R(t)2 = at2 + 2bt+ r2
0 for some a, b, and r0 = R(0) > 0, (3.173)

A(t) = A0 + ct for some A0, c ∈ RN . (3.174)

Then the solution to (3.166), (3.167) on Ω0 =
{
ξ ∈ RN : |ξ| < R0

}
can be ob-

tained exactly, as a sum of ul(ξ, t) with coefficients depending only on the initial

conditions u(ξ, 0) ∈ L2(Ω0). The functions ul are given by

ul(ξ, t) = exp

σ̂l t∫
0

R2
0

R(ζ)2
dζ

 ĝl(ξ)

(
R(0)

R(t)

)N/2

× exp

f0t−
t∫

0

|Ȧ(ζ)|2

4D
dζ − Ṙ(t)R(t)

4DR2
0

|ξ|2 − R(t)

2DR0

(ξ · Ȧ(t))


(3.175)

where σ̂l and ĝl(ξ) are the eigenvalues and eigenfunctions of

σ̂lĝl(ξ) = D∇2ĝl +
|ξ|2γ0

4DR4
0

ĝl in {|ξ| < R0} ⊂ RN (3.176)

ĝl(ξ) = 0 at |ξ| = R0. (3.177)

As in the one-dimensional case, it is possible to write out explicit formulae

for ul in terms of a, b, r0 and the relevant eigenfunctions ĝl and eigenvalues σ̂l.
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Chapter 4

Linear equation: behaviour near

the boundary

4.1 Introduction: behaviour near the bound-

ary for −L(t)
2 < x < L(t)

2

Here we consider the linear equation on a symmetric interval (−L(t)
2
, L(t)

2
):

∂ψ

∂t
= D

∂2ψ

∂x2
+ f0ψ for

−L(t)

2
< x <

L(t)

2
(4.1)

ψ(x, t) = 0 at x = ±L(t)

2
, (4.2)

and we are interested in the solution near the boundaries x = ±L(t)
2

. We shall

focus on understanding the behaviour near the left hand end x = −L(t)
2

; the cor-

responding results at the other end follow by symmetry. We begin by observing

the following corollary to Theorem 3.2 where, as in equation (1.5), c∗ = 2
√
Df0.

Corollary 4.1. Let ψ(x, t) ≥ 0, 6≡ 0 satisfy (4.1), (4.2) where L̇(t)
2
≡ c > 0 is

constant, and let 0 < y = O(1). Then ψ
(
−L(t)

2
+ y, t

)
is exponentially growing

as t→∞ if 0 < c < c∗, and it is exponentially decaying as t→∞ if c > c∗. If

c = c∗ and y = O(1) then ψ
(
−L(t)

2
+ y, t

)
= O(yt−3/2)→ 0 as t→∞.
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Proof. Assume L(t) = 2
(
ct+ L0

2

)
with c > 0, and let ξ =

(
x
L(t)

+ 1
2

)
L0 and

u(ξ, t) = ψ(x, t). Since L̇(t) ≡ 2c and Ȧ(t) ≡ −c are constants, this is one of

the separable cases from Chapter 3. By Theorem 3.2, there are exact solutions

un,c(ξ, t) = exp

(
−Dn2π2t

L0(L0 + 2ct)

)
sin

(
nπξ

L0

)(
L0

L0 + 2ct

)1/2

× exp

((
f0 −

c2

4D

)
t+

c(L0 + 2ct)

2D

ξ

L0

(
1− ξ

L0

))
. (4.3)

Any positive solution u(ξ, t) can be bounded above and below by multiples of

u1,c(ξ, t). Note that the position x = −L(t)
2

+y is equivalent to ξ
L0

= y
L(t)
∈ (0, 1).

We see from (4.3) that as t→∞, and for y = o(t),

ψ1,c

(
−L(t)

2
+ y, t

)
= u1,c

(
yL0

L0 + 2ct
, t

)
= O

(
y

t
× 1

t1/2
× exp

((
f0 −

c2

4D

)
t+

cy

2D

))
. (4.4)

Equation (4.4) shows that ψ1,c

(
−L(t)

2
+ y, t

)
is exponentially growing if f0 >

c2

4D
,

and ψ1,c

(
−L(t)

2
+ y, t

)
is exponentially decaying if f0 < c2

4D
. If f0 = c2

4D
(i.e.

c = c∗) and y = O(1) then ψ1,c

(
−L(t)

2
+ y, t

)
= O(yt−3/2)→ 0 as t→∞.

This leads us to consider the following problem. We would like, if possible,

to choose L(t) in such a way that the solution neither grows nor decays but

remains exactly of order one for x at an order one distance from the boundary.

That is, we would like to choose L(t) in such a way that

ψ

(
−L(t)

2
+ y, t

)
= O(y) for 0 < y = O(1), as t→∞. (4.5)

This means that for y0 > 0, there exist 0 < β0 ≤ β1 such that for all 0 ≤ y ≤ y0

and all t sufficiently large, β0y ≤ ψ
(
−L(t)

2
+ y, t

)
≤ β1y. This will then also

imply that β0 ≤ ∂ψ
∂x

(
−L(t)

2
, t
)
≤ β1, i.e. ∂ψ

∂x

(
−L(t)

2
, t
)

= O(1) as t→∞.

Further motivation for studying this problem may be inspired by [24, 23, 17,

26, 25] and [12], all of which analyse relationships between the time-dependent

motion of a boundary and the gradient of a solution there. The papers [24,

23, 17, 26, 25] concern the nonlinear equation (1.17) on g(t) < x < h(t) and
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they impose the boundary conditions (1.18), (1.19) which relate the speed of

the boundary to the gradient of the solution. We shall return to their results

when we consider the nonlinear problem in Chapter 7 (see Section 7.5.2).

In [12], J. Berestycki, Brunet and Derrida consider the linear problem on

µ(t) < x < ∞. As discussed in Chapter 1, they derive very precise asymptotic

behaviour of the boundary position µ(t) such that the solution and its gradient

have constant values at x = µ(t). For initial conditions with sufficiently fast

decay they show that µ(t) = c∗t− 3D
c∗

log t
t0

+ constant + o(1) as t→∞, which

is, significantly, the same as the front position (1.11) for the nonlinear KPP

equation. They also calculate several subsequent terms (‘vanishing corrections’)

in their expansions. This shows that interesting and significant properties may

be discovered by analysing the relationship between time-dependent boundary

motion and the gradient of the solution at the boundary.

In the following sections we derive super- and subsolutions for the linear

problem on (−L(t)
2
, L(t)

2
) under certain assumptions on L̈(t)L(t)3, and thus give

a form of L(t) such that (4.5) holds. We also investigate similar problems on

a ball and a box, and discuss links with the nonlinear KPP equation on an

unbounded domain. In Section 4.5 we apply a method from [12], to derive

vanishing correction terms for the critical choices of boundary motion on a

symmetric interval or box.

4.2 Critical super- and subsolutions

4.2.1 Equation and change of variables

We change variables in (4.1) to ξ =
(

x
L(t)

+ 1
2

)
L0 for some L0 > 0, and let

u(ξ, t) = ψ(x, t). The equation becomes:

∂u

∂t
= D

L2
0

L(t)2

∂2u

∂ξ2
+

(
ξ − L0

2

)
L̇(t)

L(t)

∂u

∂ξ
+ f0u for 0 < ξ < L0 (4.6)

u(ξ, t) = 0 at ξ = 0 and ξ = L0. (4.7)
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Next let

w(ξ, t) = u(ξ, t)

(
L(t)

L(0)

)1/2

exp

−f0t+

t∫
0

L̇(ζ)2

16D
dζ +

L̇(t)L(t)

4D

ξ

L0

(
ξ

L0

− 1

).
(4.8)

This is the same change of variables as we used in Chapter 3, but now taking

into account the symmetry A(t) = −L(t)
2

. Therefore, w now satisfies

∂w

∂t
= D

L2
0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0

− 1

)
w

L2
0

)
for 0 < ξ < L0 (4.9)

w(ξ, t) = 0 at ξ = 0 and ξ = L0, (4.10)

where

P (t) =
L̈(t)L(t)3

4D2
. (4.11)

We shall derive a super- and subsolution for (4.9), (4.10). The supersolution

is valid for any function P (t) which is non-negative; the subsolution is valid if

P (t) is large and positive with 0 < P (t)→∞ as t→∞ and Ṗ (t) ≥ 0.

4.2.2 Supersolution

Proposition 4.2. Let w(ξ, t) satisfy equations (4.9), (4.10) for some function

P (t). If P (t) ≥ 0 then (up to multiplication by a constant) w(ξ, t) ≤ w(ξ, t)

where

w(ξ, t) = sin

(
πξ

L0

)
exp

(
−
∫ t

0

Dπ2

L(ζ)2
dζ

)
. (4.12)

Therefore w(ξ, t) = O(ξ) independently of time as t → ∞, in the sense that

there exists β1 such that

w(ξ, t) ≤ β1ξ as t→∞, for all 0 ≤ ξ ≤ L0. (4.13)

Proof. This w(ξ, t) is a supersolution for w(ξ, t): it satisfies the boundary con-

ditions and, since P (t) ≥ 0, it satisfies the inequality

∂w

∂t
= D

L2
0

L(t)2

∂2w

∂ξ2
≥ D

L2
0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0

− 1

)
w

L2
0

)
. (4.14)

Hence, up to multiplication by a constant, w(ξ, t) ≤ w(ξ, t) and w(ξ, t) = O(ξ)

independently of time as t→∞.
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4.2.3 Subsolution

Next we construct a subsolution. Let κ1 < 0 be the largest real zero of the

Airy function Ai. We know that Ai′′(x) = xAi(x) (Airy’s equation), and we

note here for reference that κ1 < 0, Ai′(κ1) > 0, Ai(0) > 0, Ai′(0) < 0, and

Ai′′(0) = 0. If P (t) > 0 is sufficiently large, define w(ξ, t) and a(t) by:

w(ξ, t) =



1
P (t)1/3

Ai
(
P (t)1/3 ξ

L0
+ κ1

)
for 0 ≤ ξ

L0
≤ −κ1P (t)−1/3: Region I

1
P (t)1/3

(
Ai(0) + Ai′(0)

(
P (t)1/3 ξ

L0
+ κ1

))
for − κ1P (t)−1/3 ≤ ξ

L0
≤ −

(
Ai(0)
Ai′(0)

+ κ1

)
P (t)−1/3: Region II

0 for −
(

Ai(0)
Ai′(0)

+ κ1

)
P (t)−1/3 ≤ ξ

L0
≤ 1: Region III,

(4.15)

and

a(t) = exp

((
Ai(0)

Ai′(0)
+ κ1

)∫ t

0

DP (ζ)2/3

L(ζ)2
dζ

)
. (4.16)

Figure 4.1: Left: the Airy function Ai(x), with the portion κ1 ≤ x ≤ 0 high-

lighted; Right: a sketch of w(ξ, t) as a function of ξ, at a fixed t.

Proposition 4.3. Let w(ξ, t) satisfy equations (4.9), (4.10) for some function

P (t) > 0. If P (t) → ∞ as t → ∞ and Ṗ (t) ≥ 0, then (up to multiplication by

a constant) w(ξ, t) ≥ w̃(ξ, t) = w(ξ, t)a(t) where w(ξ, t) and a(t) are given by
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equations (4.15) and (4.16). Moreover, if∫ ∞
0

P (ζ)2/3

L(ζ)2
dζ <∞ (4.17)

then for ξ in Region I, w(ξ, t) can be bounded below by a positive multiple of ξ

(independently of t) as t→∞. In other words, there exists β0 > 0 such that

β0ξ ≤ w(ξ, t) as t→∞, for all 0 ≤ ξ ≤ −κ1P (t)−1/3L0. (4.18)

Proof. Note that w is continuous and non-negative on [0, L0], and satisfies the

boundary conditions. Furthermore, both ∂w
∂ξ

and ∂2w
∂ξ2

are continuous across

Regions I–II, including at the point where Regions I and II meet, where the left

and right limits both give ∂w
∂ξ

= Ai′(0)
L0

and ∂2w
∂ξ2

= 0. In each Region I and Region

II, ∂w
∂t

satisfies

∂w

∂t
=

Ṗ (t)

3P (t)

(
−w + ξ

∂w

∂ξ

)
(4.19)

and it follows from the continuity of each term that ∂w
∂t

is also continuous across

Regions I–II. Therefore across Regions I–II, w(ξ, t) is C2 in ξ and C1 in t.

In Region I:

∂w

∂t
−D L2

0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0

− 1

)
w

L2
0

)
=− Ṗ (t)

3P (t)
w +

Ṗ (t)

3P (t)

ξ

L0

Ai′
(
P (t)1/3 ξ

L0

+ κ1

)
− DP (t)1/3

L(t)2
Ai′′

(
P (t)1/3 ξ

L0

+ κ1

)
− DP (t)

L(t)2

ξ2

L2
0

w +
DP (t)

L(t)2

ξ

L0

w (4.20)

=
Ṗ (t)

3P (t)

(
−w + ξ

∂w

∂ξ

)
− D

L(t)2
P (t)2/3

(
P (t)1/3 ξ

L0

+ κ1

)
w

− DP (t)

L(t)2

ξ2

L2
0

w +
DP (t)

L(t)2

ξ

L0

w (4.21)

=
Ṗ (t)

3P (t)

(
−w + ξ

∂w

∂ξ

)
− DP (t)2/3

L(t)2
κ1w −

DP (t)

L(t)2

ξ2

L2
0

w. (4.22)

Note that ∂2w
∂ξ2
≤ 0 in Region I, since Ai′′(x) = xAi(x) ≤ 0 on [κ1, 0]. Therefore,

since w(0, t) = 0, we have that

ξ
∂w

∂ξ
(ξ, t) ≤ w(ξ, t) in Region I. (4.23)
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Thus equation (4.22) together with the assumption that P (t) ≥ 0 and Ṗ (t) ≥ 0

implies that, in Region I,

∂w

∂t
−D L2

0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0

− 1

)
w

L2
0

)
≤ −κ1

DP (t)2/3

L(t)2
w. (4.24)

In Region II, since P (t) ≥ 0, Ṗ (t) ≥ 0, and Ai′(0) < 0,

∂w

∂t
−D L2

0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0

− 1

)
w

L2
0

)
=− Ṗ (t)

3P (t)
w +

Ṗ (t)

3P (t)

ξ

L0

Ai′(0)− DP (t)

L(t)2

ξ2

L2
0

w +
DP (t)

L(t)2

ξ

L0

w

≤DP (t)

L(t)2

ξ

L0

w

≤
(
−Ai(0)

Ai′(0)
− κ1

)
DP (t)2/3

L(t)2
w. (4.25)

Let w̃(ξ, t) = w(ξ, t)a(t) where a(t) is given in equation (4.16). Then w̃(ξ, t) is

a classical subsolution in Regions I–II, as it is C2 in ξ, C1 in t and satisfies

∂w̃

∂t
−D L2

0

L(t)2

(
∂2w̃

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0

− 1

)
w̃

L2
0

)
≤ 0. (4.26)

In Region III, since w̃ ≡ 0, it is clear that

∂w̃

∂t
−D L2

0

L(t)2

(
∂2w̃

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0

− 1

)
w̃

L2
0

)
= 0. (4.27)

So, at the point where Region II and Region III meet, w̃ is continuous, it is

a classical subsolution on either side, and ∂w̃
∂ξ

has a jump discontinuity from a

negative value on the left (Region II) to zero on the right (Region III). It follows

from Lemma A.7 that w̃(ξ, t) is a weak subsolution for w(ξ, t). Therefore, up to

multiplication by a constant, w(ξ, t) ≥ w̃(ξ, t) = w(ξ, t)a(t).

Now note that Ai(y + κ1) ∼ Ai′(κ1)y as y → 0 and Ai(y + κ1) ≥ Ai(0)
−κ1 y for

all 0 ≤ y ≤ −κ1. Consequently we have

w(ξ, t) ≥ Ai(0)

−κ1

ξ

L0

for all ξ in Region I. (4.28)

If (4.17) holds then a(t) converges to a strictly positive value as t→∞. Then

for ξ in Region I, w̃(ξ, t) (and hence also w(ξ, t)) can be bounded below by a

positive multiple of ξ, independently of time as t→∞.
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In the case where P (t) is given by equation (4.11), the condition (4.17) in

Proposition 4.3 becomes simply
∫∞

0
L̈(ζ)2/3dζ <∞.

4.2.4 Behaviour near an endpoint at −L(t)2 = −c∗t+ o(t)

Theorem 4.4. Let L(t) = 2(c∗t− δ(t)) where c2∗
4D

= f0 and

δ(t) = o(t), δ̇(t) = o(1), δ̈(t) = o(1),

0 < −δ̈(t)(c∗t− δ(t))3 is increasing and tends to ∞, as t→∞. (4.29)

Let ψ satisfy (4.1), (4.2). Then for each y0 > 0 there exist constants β0 > 0,

β1 > 0 (depending on the initial conditions) such that

β0yt
− 3

2 exp

 c∗
2D

δ(t) +

∫ t

0

− δ̇(ζ)2

4D
+

(
Ai(0)

Ai′(0)
+ κ1

)(
δ̈(ζ)2

4D

) 1
3

 dζ


≤ ψ

(
−L(t)

2
+ y, t

)
≤ β1yt

− 3
2 exp

(
c∗
2D

δ(t)−
∫ t

0

δ̇(ζ)2

4D
dζ

)
(4.30)

for 0 ≤ y ≤ y0, as t→∞. In particular, if also∫ ∞
0

(−δ̈(t))2/3dt <∞ (4.31)

then

ψ

(
−L(t)

2
+ y, t

)
= O

(
yt−

3
2 exp

(
c∗
2D

δ(t)−
∫ t

0

δ̇(ζ)2

4D
dζ

))
as t→∞.

(4.32)

Proof. Assumptions (4.29) on δ(t) ensure that the function P (t) =
−δ̈(t)L(t)3

2D2

obeys Ṗ (t) ≥ 0 and 0 < P (t)→∞ as t→∞. So applying Proposition 4.2 and

Proposition 4.3 gives that there are positive constants C1, C2 such that

C1ξ exp

((
Ai(0)

Ai′(0)
+ κ1

)∫ t

0

(
δ̈(ζ)2

4D

)
1
3dζ

)
≤ w(ξ, t) ≤ C2ξ

for 0 ≤ ξ ≤ −κ1P (t)−1/3L0. (4.33)
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Consider x = −L(t)
2

+ y with 0 ≤ y ≤ y0, which corresponds to ξ = yL0

L(t)
. Noting

that P (t) = o(t3) as t→∞, we have ξ = yL0

L(t)
= O

(
1
t

)
= o(P (t)−1/3). Therefore,

by (4.33) we conclude that there are constants Ĉ1, Ĉ2 such that

Ĉ1
y

t
exp

(Ai(0)

Ai′(0)
+ κ1

)∫ t

0

(
δ̈(ζ)2

4D

) 1
3

dζ

 ≤ w

(
yL0

L(t)
, t

)
≤ Ĉ2

y

t
(4.34)

for 0 ≤ y ≤ y0, as t → ∞. Recall that the original function ψ(x, t) = u(ξ, t) is

related to w(ξ, t) by equation (4.8). Since L(t) = 2(c∗t− δ(t)), we can calculate

f0t−
t∫

0

L̇(ζ)2

16D
dζ =

c∗
2D

δ(t)−
t∫

0

δ̇(ζ)2

4D
dζ +O(1) (4.35)

so that for 0 ≤ y ≤ y0 and t large,(
L(0)

L(t)

)1/2

exp

f0t−
t∫

0

L̇(ζ)2

16D
dζ − y

L(t)

(
y

L(t)
− 1

)
L̇(t)L(t)

4D


= O

(
1

t1/2
exp

(
c∗
2D

δ(t)−
∫ t

0

δ̇(ζ)2

4D
dζ

))
. (4.36)

The result (4.30) follows by putting this into equation (4.8) and combining with

(4.34). Equation (4.31) then implies (4.32).

Remark 4.5. If (4.32) holds then this also implies that

∂ψ

∂x

(
−L(t)

2
, t

)
= O

(
t−

3
2 exp

(
c∗
2D

δ(t)−
∫ t

0

δ̇(ζ)2

4D
dζ

))
as t→∞.

(4.37)

The following corollary to Theorem 4.4 gives sufficient conditions on L(t)

such that the required property (4.5) holds.

Corollary 4.6. Let L(t) = 2
(
c∗t− α log( t

t0
+ 1)− θ(t)

)
where α > 0 and

θ(t) = O(1), θ̇(t) = o(1/t), θ̈(t) = o(1/t2),
...
θ (t) = o(1/t3) as t→∞.

(4.38)

Then as t→∞ and for y = O(1),

ψ

(
−L(t)

2
+ y, t

)
= O

(
yt−

3
2

+αc∗
2D

)
,

∂ψ

∂x

(
−L(t)

2
, t

)
= O

(
t−

3
2

+αc∗
2D

)
.

(4.39)

In particular if α = 3D
c∗

then ψ
(
−L(t)

2
+ y, t

)
= O(y) and ∂ψ

∂x

(
−L(t)

2
, t
)

= O(1).
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Proof. This L(t) satisfies the assumptions (4.29) and (4.31) with

δ(t) = α log

(
t

t0
+ 1

)
+ θ(t) (4.40)

and δ̈(t) ∼ − α
t2

as t → ∞. So we conclude (4.32) and (4.37), and the claimed

results follow since

exp

(
c∗
2D

δ(t)−
∫ t

0

δ̇(ζ)2

4D
dζ

)
= O

(
t
αc∗
2D

)
as t→∞. (4.41)

As well as giving a form of L(t) such that (4.5) holds, Corollary 4.6 shows

that ∂ψ
∂x

(
−L(t)

2
, t
)

tends to zero if 0 < α < 3D
c∗

and to infinity if α > 3D
c∗

.

It is not clear whether the conditions (4.29), (4.31) on δ(t) or (4.38) on

θ(t) are necessary in order for the conclusions to hold, or whether they can be

improved. Here, these conditions arise because of our method of proof (so that

the subsolution and supersolution are valid) however they may not be optimal.

The conditions (4.38) on the O(1) term θ(t) are satisfied by, for example: a

constant, any inverse power of t, or an exponentially decaying term.

Remark 4.7. Let L(t) be as in Corollary 4.6, with 0 < α ≤ 3D
c∗

. Given y0 > 0,

Corollary 4.6 shows that ψ is bounded on
(
−L(t)

2
, −L(t)

2
+ y0

)
. Proposition 2.13

then implies that ∂ψ
∂t

, ∂ψ
∂x

, ∂2ψ
∂x2

, are all also bounded (independently of time) on

this order one neighbourhood of the boundary.

Remark 4.8. The ‘critical’ choice L(t)
2

= c∗t− 3D
c∗

log( t
t0

+ 1) +O(1), such that

ψ
(
−L(t)

2
+ y, t

)
= O(y) and ∂ψ

∂x

(
−L(t)

2
, t
)

= O(1), has a logarithmic term which

matches that from two instances mentioned in Chapter 1:

1. the front position ϕ(t) for the nonlinear KPP problem on R, such that

u(ϕ(t) + x, t)→ Ũc∗(x) as t→∞ [16, 15, 36], and

2. the boundary position µ(t) for the linear equation on µ(t) < x <∞, such

that the solution and its gradient at x = µ(t) are constants [12],
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each starting from compactly supported initial conditions. This illustrates an

interesting correspondence between two (related but distinct) problems involving

the linear equation on domains with moving boundaries, and the nonlinear KPP

problem on R with compactly supported initial conditions. We shall observe a

similar relationship in RN , in Remark 4.16.

We also give another example to which we can apply Theorem 4.4.

Example 4.9. Let L(t) = 2(c∗t − a(t + t0)k + b) where 0 < k < 1
2
, a > 0 and

b > 0. Then for y = O(1),

ψ

(
−L(t)

2
+ y, t

)
= O

(
yt−

3
2 exp

(c∗a
2D

tk
))

as t→∞. (4.42)

Proof. This L(t) has the form required for Theorem 4.4, with δ(t) = a(t+t0)k−b.

This satisfies all the conditions in (4.29) due to δ̈(t) ∼ −ak(1−k)tk−2 as t→∞,

and (4.31) since 2
3
(k−2) < −1. So we conclude the exact bound (4.32). Finally,∫ t

0
δ̇(ζ)2

4D
dζ = O(1) since 2(k − 1) < −1, and so (4.42) follows.

4.3 Critical super- and subsolutions on a ball

|x| < R(t) in RN

4.3.1 Equation and change of variables

Here we consider (3.164), (3.165) where Ω(t) = {x ∈ RN : |x| < R(t)} is the

N -dimensional ball with centre 0 and radius R(t) > 0. We change variables

to z = x
R(t)

R0 for some R0 > 0, and let u(z, t) = ψ(x, t). Then the equation

becomes:

∂u

∂t
= D

R2
0

R(t)2
∇2u+

Ṙ(t)

R(t)
z · ∇u+ f0u for |z| < R0 (4.43)

u(z, t) = 0 at |z| = R0. (4.44)
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Let

W (z, t) = u(z, t)

(
R(t)

R0

)N
2

exp

−f0t+

t∫
0

|Ṙ(ζ)|2

4D
dζ +

Ṙ(t)R(t)

4D

(
|z|2

R2
0

− 1

)
(4.45)

to get the equation

∂W

∂t
= D

R2
0

R(t)2

(
∇2W + P̃ (t)

(
|z|2

R2
0

− 1

)
W

R2
0

)
for |z| < R0 (4.46)

W (z, t) = 0 at |z| = R0 (4.47)

where

P̃ (t) =
R̈(t)R(t)3

4D2
. (4.48)

We shall derive a super- and subsolution for W (z, t). The supersolution is valid

if P̃ (t) is non-negative; the subsolution is valid if P̃ (t) is large and positive with

P̃ (t)→∞ as t→∞ and ˙̃P (t) ≥ 0.

4.3.2 Supersolution

Let φ(x) = φ0(|x|) be the radially symmetric principal eigenfunction of

λφ(x) = −∇2φ for |x| < 1, φ(x) = 0 at |x| = 1 (4.49)

in the N -dimensional ball, and let its eigenvalue be λ0. For 0 ≤ r ≤ R0 define

W (r, t) = φ0

(
r

R0

)
exp

(∫ t

0

− Dλ0

R(ζ)2
dζ

)
. (4.50)

Proposition 4.10. Let W (z, t) satisfy equations (4.46), (4.47). If P̃ (t) ≥ 0

then (up to multiplication by a constant) W (z, t) ≤ W (|z|, t).

Proof. The radial function W (|z|, t) satisfies

∂W

∂t
= D

R2
0

R(t)2
∇2W for |z| < R0, W (|z|, t) = 0 at |z| = R0 (4.51)

and is therefore a supersolution for W (z, t), since P̃ (t) ≥ 0. So, up to multipli-

cation by a constant, W (z, t) ≤ W (|z|, t).
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4.3.3 Subsolution

Lemma 4.11. Let ŵ(r, t) be a non-negative, radially symmetric function in N

dimensions where N ≤ 3. Then

r−(N−1
2 ) ∂

2

∂r2

(
r
N−1

2 ŵ
)
≤ ∇2ŵ. (4.52)

Proof. A straightforward calculation gives

∂2

∂r2

(
r
N−1

2 ŵ
)
≡ r

N−1
2

(
∂2ŵ

∂r2
+

(N − 1)

r

∂ŵ

∂r
+

(
N − 1

2

)(
N − 3

2

)
ŵ

r2

)
(4.53)

≡ r
N−1

2

(
∇2ŵ +

(
N − 1

2

)(
N − 3

2

)
ŵ

r2

)
(4.54)

where we have used the form of the Laplacian in N -dimensional polar co-

ordinates. So for N ≤ 3 and ŵ ≥ 0, it holds that ∂2

∂r2

(
r
N−1

2 ŵ
)
≤ r

N−1
2 ∇2ŵ.

Let us restrict to N ≤ 3 and construct a non-trivial radial subsolution for

W (z, t). Set L(t) = 2R(t), L0 = 2R0 and ξ = R0 − r ∈ (0, R0) = (0, L0/2), and

recall from Proposition 4.3 the definition of w̃(ξ, t) = w(ξ, t)a(t) where w(ξ, t)

is given by equation (4.15) and a(t) by equation (4.16).

Proposition 4.12. Assume N ≤ 3 and let W (z, t) be a non-negative, non-zero

solution to (4.46), (4.47) for some function P̃ (t) > 0. If P̃ (t) → ∞ as t → ∞

and ˙̃P (t) ≥ 0, then (up to multiplication by a constant) W (z, t) ≥ ŵ(|z|, t) where

ŵ(r, t) = r−(N−1
2 )w̃(R0 − r, t). (4.55)

Proof. Let w1(r, t) = w̃(R0−r, t). Then w1(r, t) ≥ 0 on 0 ≤ r ≤ R0 and satisfies

w1(R0, t) = 0. Furthermore, by the construction of w̃ and since P̃ (t) → ∞, it

holds that for all t sufficiently large, w1(r, t) = 0 on a neighbourhood of r = 0.

Next, note that
L2
0

L(t)2
=

R2
0

R(t)2
, and(

r2

R2
0

− 1

)
P̃ (t)

R2
0

=

(
ξ −R0

R0

+ 1

)(
ξ −R0

R0

− 1

)
1

4R2
0D

2
R̈(t)R(t)3

=
2ξ

L0

(
2ξ

L0

− 2

)
1

L2
0D

2

L̈(t)L(t)3

16

76



=
ξ

L0

(
ξ

L0

− 1

)
1

L2
0

L̈(t)L(t)3

4D2
. (4.56)

Therefore since w̃ is a subsolution to equation (4.9), the function w1(r, t) satisfies

∂w1

∂t
≤ D

R2
0

R(t)2

(
∂2w1

∂r2
+ P̃ (t)

(
r2

R2
0

− 1

)
w1

R2
0

)
for r < R0. (4.57)

Finally, an application of Lemma 4.11 shows that ŵ(r, t) := r−(N−1
2 )w1(r, t) is a

subsolution for W (z, t). Indeed, by (4.57) and (4.52), we have for r < R0:

∂ŵ

∂t
= r−(N−1

2 )∂w1

∂t
≤ r−(N−1

2 )D
R2

0

R(t)2

(
∂2w1

∂r2
+ P̃ (t)

(
r2

R2
0

− 1

)
w1

R2
0

)
(4.58)

= D
R2

0

R(t)2

(
r−(N−1

2 ) ∂
2

∂r2

(
r
N−1

2 ŵ
)

+ P̃ (t)

(
r2

R2
0

− 1

)
ŵ

R2
0

)
(4.59)

≤ D
R2

0

R(t)2

(
∇2ŵ + P̃ (t)

(
r2

R2
0

− 1

)
ŵ

R2
0

)
. (4.60)

4.3.4 Behaviour near the boundary R(t) = c∗t− o(t)

Let R(t) = c∗t − o(t) as t → ∞. We are interested in |x| = R(t) − y with

y = O(1), which corresponds to |z| = R0 − yR0

R(t)
. If P̃ (t) = R̈(t)R(t)3

4D2 satisfies the

conditions of Propositions 4.10 and 4.12, and if
∫∞

0
R̈(ζ)2/3dζ < ∞, then for

y = O(1) the supersolution (Proposition 4.10) and the subsolution (Proposition

4.12) provide the bounds w(z, t) = O(R0 − |z|) = O
(
yR0

R(t)

)
, independently of

t as t → ∞. Therefore we obtain the following results by using the same

calculations as in the one-dimensional case, but now using equation (4.45) in

place of equation (4.8).

Theorem 4.13. Assume N ≤ 3 and R(t) = c∗t − δ(t) where c2∗
4D

= f0 and

δ(t) satisfies (4.29) and (4.31). Let ψ(x, t) satisfy (3.164), (3.165) on the ball

Ω(t) = {x ∈ RN : |x| < R(t)}. Then for |x| = R(t)− y with y = O(1),

ψ(x, t) = O

(
yt−1−N

2 exp

(
c∗
2D

δ(t)−
∫ t

0

δ̇(ζ)2

4D
dζ

))
as t→∞. (4.61)
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Corollary 4.14. Assume N ≤ 3 and let R(t) = c∗t−α log( t
t0

+ 1)− θ(t) where

α > 0 and θ(t) satisfies (4.38). Then for |x| = R(t)− y with y = O(1),

ψ(x, t) = O
(
yt−1−N

2
+αc∗

2D

)
as t→∞. (4.62)

In particular, the ‘critical value’ of α, for which the solution behaves exactly as

order y, is αcrit = (2+N)D
c∗

.

Remark 4.15. Lemma 4.11, which is used in the derivation of the subsolution,

only holds for N ≤ 3, so these are the values for which Corollary 4.14 has been

proved. However it is possible that the ‘critical radius’ R(t) may have the same

form as in Corollary 4.14 for all N . The supersolution is valid for all N , and

shows that for y = O(1) and |x| = R(t) − y with R(t) as in Corollary 4.14,

ψ(x, t) = O(yt−1−N
2

+αc∗
2D ) as t→∞.

Remark 4.16. Observe that, as in the one-dimensional case, the logarithmic

correction in the ‘critical’ R(t) in dimension N ≤ 3 matches the front position

|x| = c∗t − (2+N)D
c∗

log t
t0

+ O(1) for the nonlinear KPP problem on RN with

compactly supported initial conditions; see equation (1.13).

4.4 Critical super- and subsolutions on a box

4.4.1 Equation and change of variables

Here we consider the linear problem on a time-dependent box in RN+1,

∂ψ

∂t
= D∇2ψ + f0ψ in Ω(t) ⊂ RN+1 (4.63)

ψ(x, t) = 0 on ∂Ω(t), (4.64)

where

Ω(t) =

{
x ∈ RN+1 : Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N,

−LN+1(t)

2
< xN+1 <

LN+1(t)

2

}
. (4.65)
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The time-dependent positions Aj(t) and lengths Lj(t) for 1 ≤ j ≤ N are pre-

scribed, with Lj(t) > 0 for all 0 ≤ t < ∞. In dimension N + 1, the domain

is symmetric: −LN+1(t)

2
< xN+1 <

LN+1(t)

2
, and we consider the following prob-

lem. Given Aj(t), Lj(t), and a (possibly time-dependent) position xj(t) for

1 ≤ j ≤ N , we would like to choose LN+1(t) in such a way that for 0 < y = O(1),

ψ

(
x1(t), . . . , xN(t),

−LN+1(t)

2
+ y, t

)
= O(y) as t→∞. (4.66)

In other words we would like to choose LN+1(t) so that, at these given positions

xj(t) in the ‘cross-section’, ψ remains exactly of order one for xN+1 at an order

one distance from the boundary xN+1 = −LN+1(t)

2
. Our approach will be as fol-

lows. We begin by applying the results about separable sub- and supersolutions

on the box, in order to reduce the problem to a one-dimensional problem in

xN+1. Then, we use the results from Section 4.2 about the behaviour near the

boundary in the case of an interval.

First we change variables from xj to ξj =
(
xj−Aj(t)
Lj(t)

)
L0 for 1 ≤ j ≤ N , and

from xN+1 to ξN+1 =
(

xN+1

LN+1(t)
+ 1

2

)
L0, and write ψ(x, t) = u(ξ, ξN+1, t) where

ξ = (ξ1, . . . , ξN). Then let w(ξ, ξN+1, t) = e−f0tu(ξ, ξN+1, t)
∏N+1

j=1 Hj(ξj, t) where

Hj(ξj, t) is given in equation (3.131) and, similarly,

HN+1(ξN+1, t) =

(
LN+1(t)

LN+1(0)

)1/2

exp

 t∫
0

L̇N+1(ζ)2

16D
dζ


× exp

(
L̇N+1(t)LN+1(t)

4D

ξN+1

L0

(
ξN+1

L0

− 1

))
. (4.67)

We know that, for ξ ∈ (0, L0)N and ξN+1 ∈ (0, L0), w(ξ, ξN+1, t) satisfies:

∂w

∂t
= D

N+1∑
j=1

L2
0

Lj(t)2

∂2w

∂ξ2
j

+
N∑
j=1

(
ξ2
j L̈j(t)Lj(t)

4DL2
0

+
ξjÄj(t)Lj(t)

2DL0

)
w

+
L̈N+1(t)LN+1(t)

4D

ξN+1

L0

(
ξN+1

L0

− 1

)
w (4.68)

w(ξ, ξN+1, t) = 0 at ξj = 0 and ξj = L0 (1 ≤ j ≤ N + 1). (4.69)
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4.4.2 Supersolutions and subsolutions

Given constants γ
(j)
0 and γ

(j)
1 for 1 ≤ j ≤ N , define Qj(t) and Q

j
(t) as in (3.137),

(3.138), and let gj,1 and σj,1 be the principal eigenfunction and eigenvalue of

(3.19), (3.20) with γ0 = γ
(j)
0 and γ1 = γ

(j)
1 . The following result follows from

the comparison principle, in the same way as Theorem 3.24.

Proposition 4.17. Let w satisfy (4.68), (4.69) and assume that

b1w0(ξN+1)
N∏
j=1

gj,1(ξj) ≤ w(ξ, ξN+1, 0) ≤ b2w0(ξN+1)
N∏
j=1

gj,1(ξj), (4.70)

for some 0 < b1 ≤ b2 and non-negative function w0. Let w∗(ξN+1, t) satisfy

∂w∗
∂t

= D
L2

0

LN+1(t)2

(
∂2w∗
∂ξ2

N+1

+ P (t)
ξN+1

L0

(
ξN+1

L0

− 1

)
w∗
L2

0

)
for 0 < ξN+1 < L0

(4.71)

w∗(ξN+1, t) = 0 at ξN+1 = 0 and ξN+1 = L0, (4.72)

where

P (t) =
L̈N+1(t)LN+1(t)3

4D2
, (4.73)

and with initial conditions w∗(ξN+1, 0) = w0(ξN+1). Then, for all t ≥ 0,

b1w∗(ξN+1, t) exp

(∫ t

0

N∑
j=1

(
σj,1L

2
0

Lj(ζ)2
−
Qj(ζ)

2D

)
dζ

) N∏
j=1

gj,1(ξj)

≤ w(ξ, ξN+1, t) ≤ b2w∗(ξN+1, t) exp

(∫ t

0

N∑
j=1

(
σj,1L

2
0

Lj(ζ)2
+
Qj(ζ)

2D

)
dζ

)
N∏
j=1

gj,1(ξj).

(4.74)

In particular, if Qj, Qj satisfy (3.140), then

w(ξ, ξN+1, t) = O

(
w∗(ξN+1, t) exp

(∫ t

0

N∑
j=1

σj,1L
2
0

Lj(ζ)2
dζ

)
N∏
j=1

gj,1(ξj)

)
. (4.75)

Equation (4.75) gives the exact order of the solution w(ξ, ξN+1, t) in terms

of the function w∗(ξN+1, t). The other factors are all known, depending only on

Aj(t) and Lj(t) in dimensions 1 ≤ j ≤ N . We will combine this with bounds

on w∗, which we have from Propositions 4.2 and 4.3 in Section 4.2, and which

are summarised in the next proposition.
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Proposition 4.18. Let w∗(ξN+1, t) be as in Proposition 4.17 and P (t) as defined

in equation (4.73). If 0 < P (t) → ∞ as t → ∞ and Ṗ (t) ≥ 0, then there are

positive constants Ĉ1, Ĉ2 such that

Ĉ1w(ξN+1, t) exp

(Ai(0)

Ai′(0)
+ κ1

)∫ t

0

(
L̈N+1(ζ)2

16D

)1/3

dζ


≤ w∗(ξN+1, t) ≤ Ĉ2 sin

(
πξN+1

L0

)
exp

(
−
∫ t

0

Dπ2

LN+1(ζ)2
dζ

)
(4.76)

where w is given by equation (4.15). Therefore there exist positive constants b1,

b2 such that for 0 ≤ ξN+1 ≤ −κ1P (t)−1/3L0,

b1ξN+1 exp

(Ai(0)

Ai′(0)
+ κ1

)∫ t

0

(
L̈N+1(ζ)2

16D

)1/3

dζ


≤ w∗(ξN+1, t) ≤ b2ξN+1 exp

(
−
∫ t

0

Dπ2

LN+1(ζ)2
dζ

)
. (4.77)

Moreover, if ∫ ∞
0

L̈N+1(ζ)2/3dζ <∞ (4.78)

then w∗(ξN+1, t) = O(ξN+1) as t→∞ for 0 ≤ ξ ≤ −κ1P (t)−1/3L0.

If (3.140) and (4.78) are satisfied simultaneously then we know the exact

order of w(ξ, ξN+1, t) (and hence u(ξ, ξN+1, t)) for 0 ≤ ξN+1 ≤ −κ1P (t)−1/3L0.

We are then ready to look for LN+1(t) such that (4.66) holds.

4.4.3 Behaviour near the boundary −LN+1(t)
2 = −Ct+ o(t)

Note that the given positions xj(t) in the cross-section correspond to some

ξj(t) ∈ (0, L0), and we shall assume that for 1 ≤ j ≤ N , Lj(t) and Aj(t) and

ξj(t) are such that (3.153) holds. Recall the definition of Hj(ξj, t) in equation

(3.131), and note that (3.153) means precisely that

ef0t exp
(∫ t

0

∑N
j=1

σj,1L
2
0

Lj(ζ)2
dζ
)∏N

j=1 gj,1(ξj(t))∏N
j=1 Hj(ξj(t), t)

= exp

(
C2

4D
t− p(t)

)
. (4.79)

We now give a multi-dimensional version of Theorem 4.4.
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Theorem 4.19. Assume that for 1 ≤ j ≤ N , Lj(t) and Aj(t) and ξj(t) are

such that (3.153) holds for some C > 0 and p(t) = o(t) as t → ∞. Let

LN+1(t) = 2(Ct− δ(t)) where

δ(t) = o(t), δ̇(t) = o(1), δ̈(t) = o(1),

0 < −δ̈(t)(Ct− δ(t))3 is increasing and tends to ∞, as t→∞. (4.80)

Let ψ satisfy (4.63), (4.64). Then for each y0 > 0 there exist β0 > 0, β1 > 0

(depending on the initial conditions) such that for 0 ≤ y ≤ y0 and t→∞,

β0yt
− 3

2 exp

(
C

2D
δ(t)− p(t)−

∫ t

0

(
δ̇(ζ)2

4D
+

N∑
j=1

Qj(ζ)

2D

)
dζ

)

× exp

∫ t

0

(
Ai(0)

Ai′(0)
+ κ1

)(
δ̈(ζ)2

4D

) 1
3

dζ


≤ ψ

(
x1(t), . . . , xN(t),

−LN+1(t)

2
+ y, t

)
≤ β1yt

− 3
2 exp

(
C

2D
δ(t)− p(t) +

∫ t

0

(
− δ̇(ζ)2

4D
+

N∑
j=1

Qj(ζ)

2D

)
dζ

)
.

(4.81)

In particular, if Lj(t) and Aj(t) are such that (3.140) also holds, and if δ(t) is

such that (4.31) is also satisfied, then as t→∞, for y = O(1),

ψ

(
x1(t), . . . , xN(t),

−LN+1(t)

2
+ y, t

)
= O

(
yt−

3
2 e

C
2D
δ(t)−p(t)−

∫ t
0
δ̇(ζ)2

4D
dζ

)
.

(4.82)

Proof. Without loss of generality, we may assume that w(ξ, ξN+1, 0) satisfies

(4.70). Then let w∗(ξN+1, t) be as in Proposition 4.17 and let P (t) be as defined

in equation (4.73). By Proposition 4.17, w(ξ, ξN+1, t) is related to w∗(ξN+1, t)

by the inequalities in (4.74).

Now the assumptions on δ(t) imply that 0 < P (t) → ∞ as t → ∞ and

Ṗ (t) ≥ 0 so we may apply Proposition 4.18 to w∗. Consider xN+1 = −LN+1(t)

2
+y,

which corresponds to ξN+1 = yL0

LN+1(t)
. Noting that P (t) = o(t3) as t → ∞, we

have for 0 ≤ y ≤ y0 that ξN+1 = yL0

LN+1(t)
= O

(
y
t

)
= o(P (t)−1/3) as t → ∞. We
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conclude from Proposition 4.18 that there are some positive constants Ĉ1, Ĉ2

such that

Ĉ1
y

t
exp

(Ai(0)

Ai′(0)
+ κ1

)∫ t

0

(
δ̈(ζ)2

4D

) 1
3

dζ

 ≤ w∗

(
yL0

L(t)
, t

)
≤ Ĉ2

y

t
(4.83)

for 0 ≤ y ≤ y0, as t → ∞. Also, we can use the definition of HN+1(ξN+1, t) in

equation (4.67) to find that for 0 ≤ y ≤ y0 and t→∞,

HN+1

(
yL0

LN+1(t)
, t

)

=

(
LN+1(t)

LN+1(0)

)1/2

exp

 t∫
0

L̇N+1(ζ)2

16D
dζ +

L̇N+1(t)y

4D

(
y

LN+1(t)
− 1

)
(4.84)

= O

t1/2 exp

 t∫
0

L̇N+1(ζ)2

16D
dζ

 (4.85)

= O

(
t1/2 exp

(
C2

4D
t− C

2D
δ(t) +

∫ t

0

δ̇(ζ)2

4D
dζ

))
. (4.86)

Now it just remains to combine all of these bounds. First, substitute (4.83)

into (4.74) to get upper and lower bounds on w
(
ξ1, . . . , ξN ,

yL0

LN+1(t)
, t
)

. Then

combine this with equations (4.79), (4.86), and the fact that

u

(
ξ1(t), . . . , ξN(t),

yL0

LN+1(t)
, t

)
=

ef0tw
(
ξ1(t), . . . , ξN(t), yL0

LN+1(t)
, t
)

HN+1

(
yL0

LN+1(t)
, t
)∏N

j=1Hj(ξj(t), t)
. (4.87)

Remark 4.20. If (4.82) holds then this also implies that as t→∞

∂ψ

∂xN+1

(
x1(t), . . . , xN(t),

−LN+1(t)

2
, t

)
= O

(
t−

3
2 e

C
2D
δ(t)−p(t)−

∫ t
0
δ̇(ζ)2

4D
dζ

)
.

(4.88)

Remark 4.21. Suppose that δ(t) satisfies (4.80), but that either or both of the

conditions (4.31) (on δ̈) or (3.140) (on Qj, Qj) does not hold. Then Theorem
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4.19 still provides upper and lower bounds on the solution near the boundary,

however the upper bound is bigger than the lower bound by a factor of order

exp

∫ t

0

 N∑
j=1

Qj(ζ) +Q
j
(ζ)

2D
−
(

Ai(0)

Ai′(0)
+ κ1

)(
δ̈(ζ)2

4D

) 1
3

 dζ

 (4.89)

and this is not O(1) as t→∞.

The following corollary to Theorem 4.19 gives conditions on LN+1(t) such

that (4.66) holds. We shall refer to this as the ‘critical choice’ of LN+1(t).

Corollary 4.22. Assume that for 1 ≤ j ≤ N , Lj(t), Aj(t) and ξj(t) are such

that (3.140) and (3.153) hold. Suppose there exists a function δ(t) satisfying

(4.80) and (4.31), and such that also

C

2D
δ(t)−

∫ t

0

δ̇(ζ)2

4D
dζ = p(t) +

3

2
log

t

t0
+O(1) as t→∞. (4.90)

Let LN+1(t) = 2(Ct− δ(t)). Then for y = O(1) the solution ψ to (4.63), (4.64)

satisfies

ψ

(
x1(t), . . . , xN(t),

−LN+1(t)

2
+ y, t

)
= O(y) and

∂ψ

∂xN+1

(
x1(t), . . . , xN(t),

−LN+1(t)

2
, t

)
= O(1) as t→∞. (4.91)

Remark 4.23. In general C and p(t) in equation (3.153) will depend on the

points ξj(t) ∈ (0, L0). However, suppose (3.155) holds for every 1 ≤ j ≤ N , and

let C > 0 and p(t) satisfy (3.156) with p(t) = o(t) as t → ∞. If there exists

a function δ(t) satisfying (4.80) and (4.31), and such that also (4.90) holds,

then the choice LN+1(t) = 2(Ct − δ(t)) will have the required property (4.91)

uniformly for ξ(t) in any compact subset of (0, L0)N .

In Section 4.4.4 we shall give examples of time-dependent boxes where we

can apply Theorem 4.19 and Corollary 4.22.

Before moving on to examples, we recall that in the preceding sections (Sec-

tion 4.2 and Remark 4.8 for the one-dimensional case, and in Section 4.3 and
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Remark 4.16 for the N -dimensional case), we observed a relationship between

our ‘critical’ choices of boundary motion and known results from [16, 15, 36, 33,

27] relating to the front position for the KPP equation. We noted that there

appears to be a correspondence between (i) the ‘critical’ choice of boundary

motion, such that the solution to the linear equation on a symmetric time-

dependent domain with zero Dirichlet conditions remains of order one at an

order one distance from the boundary, and (ii) the front positions for the solu-

tion to the nonlinear KPP problem on the unbounded domain with compactly

supported initial conditions.

As we consider our results on the time-dependent box, it is natural to wonder

whether the same correspondence will again be true. Let Aj(t) and Lj(t) > 0

(the time-dependent ‘cross-section’) be prescribed for 1 ≤ j ≤ N , 0 ≤ t < ∞.

In several cases, using Corollary 4.22 we can give an expression for a ‘critical’

choice LN+1(t) = L∗(t) = 2(Ct − δ(t)) such that the property (4.91) holds

uniformly in compact subsets of ξj. In such cases, one may conjecture that the

solution to the nonlinear equation on the unbounded domain

{
x ∈ RN+1 : Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N, −∞ < xN+1 <∞

}
(4.92)

with zero Dirichlet conditions on the boundaries of the cylinder, and with com-

pactly supported initial conditions, may converge to a travelling wave in an

appropriate sense, and may have asymptotic front positions at

xN+1 = ±L
∗(t)

2
+O(1) as t→∞. (4.93)

4.4.4 Examples

Let us now provide examples for which we can use Theorem 4.19 to derive

bounds on the solution, and Corollary 4.22 to give a ‘critical’ choice of LN+1(t).

To keep the notation simple, we give the following corollaries in the two-dimensional

case. The higher dimensional versions use the same calculations.
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Corollary 4.24. Let Ω(t) be a two-dimensional box of the type (4.65) with

L1(t) = a(t + t0)k and A1(t) = b(t + t1)m, where a > 0, b ∈ R, 1
4
< k < 1

2
and

m < 1− k.

1. If 1
4
< k < 1

2
and m < 1

2
, let L2(t) = 2(c∗t− δ(t)) with

δ(t) =
2D2π2

c∗a2(1− 2k)
(t+ t0)1−2k +

(k + 3)D

c∗
log

(
t

t0
+ 1

)
+ δ0. (4.94)

2. If 1
4
< k < 1

2
and m = 1

2
, let L2(t) = 2(c∗t− δ(t)) with

δ(t) =
2D2π2

c∗a2(1− 2k)
(t+ t0)1−2k +

(
k + 3 +

b2

8D

)
D

c∗
log

(
t

t0
+ 1

)
+ δ0.

(4.95)

3. If 1
4
< k < 1

2
and 1

2
< m < 1− k, let L2(t) = 2(c∗t− δ(t)) with

δ(t) =
2D2π2

c∗a2(1− 2k)
(t+ t0)1−2k +

b2m2

2c∗(2m− 1)
(t+ t0)2m−1

+
(k + 3)D

c∗
log

(
t

t0
+ 1

)
+ δ0. (4.96)

Then the solution ψ to (4.63), (4.64) will have the required property (4.91) as

t→∞, uniformly for ξ1 in any compact subset of (0, L0).

Proof. The conditions k < 1
2

and m < 1 − k ensure that L̈1(t)L1(t) and

Ä1(t)L1(t) are integrable. Hence, taking γ
(1)
0 = 0 and γ

(1)
1 = 0, Q

1
(t) and Q1(t)

are integrable (i.e. (3.140) holds). These conditions also ensure that (3.155)

holds, and so we seek a choice of L2(t) that will give the required property

uniformly for ξ1 in compact subsets. Consider the terms in (3.156). As t→∞,∫ t

0

1

L1(ζ)2
dζ =

1

a2(1− 2k)
t1−2k +O(1) (4.97)

∫ t

0

Ȧ1(ζ)2

4D
dζ =


O(1) if m < 1

2

b2

16D
log t

t0
+O(1) if m = 1

2

m2b2

4D(2m−1)
t2m−1 +O(1) if 1

2
< m

(4.98)
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and 1
2

log L1(t)
L1(0)

= k
2

log t
t0

+O(1). Therefore (3.156) holds with C = c∗ and

p(t) =
Dπ2

a2(1− 2k)
t1−2k +

∫ t

0

Ȧ1(ζ)2

4D
dζ+

k

2
log

(
t

t0

)
+O(1) as t→∞, (4.99)

with the second term given by equation (4.98). Note that the assumptions

2m− 1 < 1− 2k and k > 1
4

imply that
∫ t

0
δ̇(ζ)2

4D
dζ = O(1), for each of the cases

in equations (4.94), (4.95), (4.96). Then it is straightforward to see that δ(t)

satisfies (4.90) in each case. Finally, δ(t) also satisfies the conditions (4.80) and

(4.31). So by Corollary 4.22, L2(t) = 2(c∗t−δ(t)) has the required property.

Example 4.25. For some a > 0, let L1(t) = a(t+ t0)
1
3 and A1(t) ≡ −L1(t)

2
. By

Corollary 4.24, the choice

L2(t) = 2

(
c∗t−

6D2π2

c∗a2
(t+ t0)

1
3 − 10D

3c∗
log

(
t

t0
+ 1

)
− δ0

)
(4.100)

will give the property (4.91) as t→∞, uniformly for ξ1 in any compact subset

of (0, L0). Moreover, this is the same ‘critical’ choice of L2(t) as if A1(t) were

a constant, or as if A1(t) = b(t+ t1)m for any b ∈ R and m < 1
2
.

Corollary 4.24 assumes that L1(t) is of order tk and A1(t) is of order tm as

t→∞, with 1
4
< k < 1

2
and m < 1−k. Next we treat the case with k = m = 1

2
.

Corollary 4.26. Let Ω(t) be a two-dimensional box of the type (4.65) with

L1(t) =
√
l2 + 2ρt for some ρ > 0, and A1(t) ≡ −γ1

ρ2
L1(t). Let σ1 be the

principal eigenvalue of the Sturm-Liouville problem

Dg′′(ξ) +

(
− ρ2ξ2

4DL4
0

+
γ1ξ

2DL3
0

)
g(ξ) = σg(ξ), g(0) = g(L0) = 0 (4.101)

and let θ(t) = O(1) satisfy (4.38). Then the choice L2(t) = 2(c∗t− δ(t)) with

δ(t) =
2D

c∗

(
−σ1L

2
0

2ρ
+

γ2
1

8ρ3D
+

1

4
+

3

2

)
log

(
t

t0
+ 1

)
+ θ(t) (4.102)

will have the required property (4.91) uniformly for ξ1 in any compact subset of

(0, L0). The coefficient of the logarithmic term in δ(t) is greater than 4D
c∗

.
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Proof. This is a separable case: Q
1
(t) ≡ Q1(t) ≡ 0 for γ

(1)
0 = −ρ2, γ

(1)
1 = γ1.

Clearly also L̇1(t)L1(t) ≡ ρ and Ȧ1(t)L1(t) ≡ −γ1
ρ

are O(1). Consider the terms

in (3.156). As t→∞,∫ t

0

L2
0

L1(ζ)2
dζ =

L2
0

2ρ
log

(
t

t0

)
+O(1), (4.103)

∫ t

0

Ȧ1(ζ)2

4D
dζ =

γ2
1

8ρ3D
log

(
t

t0

)
+O(1), (4.104)

and 1
2

log L1(t)
L1(0)

= 1
4

log t
t0

+ O(1) for large t. So equation (3.156) holds with

C = c∗ and

p(t) =

(
−σ1L

2
0

2ρ
+

γ2
1

8ρ3D
+

1

4

)
log

(
t

t0

)
+O(1) as t→∞, (4.105)

where σ1 is the principal eigenvalue of (4.101). By Corollary 4.22, we see that

the choice L2(t) = 2(c∗t − δ(t)) with δ(t) as in (4.102) will have the required

property (4.91), uniformly in compact subsets of ξ1. The fact that the coefficient

of the logarithmic term is greater than 4D
c∗

is due to Proposition 3.4 which implies

that −σ1L2
0

2ρ
+

γ21
8ρ3D

+ 1
4
> 1

2
.

The case k = m = 1 is also a separable case and we have the following result.

Corollary 4.27. Let Ω(t) be a box of the type (4.65) with Lj(t) = lj + αjt

and Aj(t) = cjt, for some lj > 0, αj > 0, cj ∈ R, for each 1 ≤ j ≤ N .

Consider the solution to (4.63), (4.64) at fixed positions
ξj
L0

= ηj ∈ (0, 1) such

that f0 −
∑N

j=1
(cj+αjηj)

2

4D
> 0. Let C be the positive solution to

f0 −
N∑
j=1

(cj + αjηj)
2

4D
=
C2

4D
. (4.106)

Let θ(t) = O(1) satisfy conditions (4.38), and let

LN+1(t)

2
= Ct− (N + 3)D

C
log

(
t

t0
+ 1

)
− θ(t). (4.107)

Then the required property (4.91) will hold at
ξj
L0

= ηj.
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Proof. This is a separable case: Q
j
(t) ≡ Qj(t) ≡ 0 for γ

(j)
0 = γ

(j)
1 = 0. At

ξj
L0

= ηj, equation (3.153) holds with the speed C as in (4.106) and with

p(t) =
N∑
j=1

1

2
log

Lj(t)

Lj(0)
+O(1) =

N

2
log

t

t0
+O(1) as t→∞. (4.108)

Applying Corollary 4.22 with δ(t) = (N+3)D
C

log
(
t
t0

+ 1
)

+ θ(t) shows that the

required property (4.91) holds when LN+1(t) is as in equation (4.107).

Remark 4.28. In Corollary 4.27,
ξj
L0

= ηj ∈ (0, 1) corresponds to an xj position

xj(t) = (cj +αjηj)t+ ηjlj. A constant xj corresponds to cj +αjηj = 0. So if we

can apply Corollary 4.27 at constant (x1, . . . , xN) then C = c∗. In this case the

‘critical’ choice of LN+1(t) from equation (4.107) is the same as the ‘critical’

choice of R(t) for the ball in RN+1 from Corollary 4.14 (when N + 1 = 2 or 3).

Next we consider some cases where Lj(t) and Ȧj(t) converge as t→∞.

Corollary 4.29. Let Ω(t) be a two-dimensional box of the type (4.65). Assume

L1(t) = L∞(1 + ε(t)) with L∞ > 0 and ε(t) = o(t−
1
2 ) → 0 as t →∞, and such

that ε̇(t) = O(1) and |ε̈| is integrable. Suppose that either (i) A1(t) = A0 + ct

with f0 >
c2

4D
+ Dπ2

L2
∞

; or (ii) A1(t) is a constant multiple of L1(t), ε̇2 is integrable,

and f0 >
Dπ2

L2
∞

. Let C be the positive solution to C2

4D
= f0 − c2

4D
− Dπ2

L2
∞

in case (i);

or C2

4D
= f0 − Dπ2

L2
∞

in case (ii).

1. If ε(t) = O( 1
tβ

) as t→∞ for some β > 1, let L2(t) = 2(Ct− δ(t)) with

δ(t) =
3D

C
log

(
t

t0
+ 1

)
+ δ0. (4.109)

2. If ε(t) = −α
t

+ O( 1
tβ

) as t → ∞ for some β > 1 and 3
2

+ 2Dπ2α
L2
∞

> 0, let

L2(t) = 2(Ct− δ(t)) with

δ(t) =

(
3 +

4Dπ2α

L2
∞

)
D

C
log

(
t

t0
+ 1

)
+ δ0. (4.110)

3. If ε(t) = − α
tk

+ O( 1
tβ

) as t → ∞ for some β > 1 with 1
2
< k < 1 and

α > 0, let L2(t) = 2(Ct− δ(t)) with

δ(t) =
4D2π2α

C(1− k)L2
∞

(t+ t0)1−k +
3D

C
log

(
t

t0
+ 1

)
+ δ0. (4.111)
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Then the solution to (4.63), (4.64) will have the required property (4.91) as

t→∞, uniformly for ξ1 in any compact subset of (0, L0).

Proof. The conditions (3.140) and (3.155) hold, and so we seek a choice of L2(t)

that will give the required property uniformly for ξ1 in any compact subset of

(0, L0). Equation (3.156) holds with speed C and we calculate that as t→∞,

∫ t

0

1

L1(ζ)2
dζ =

1

L2
∞

∫ t

0

(1+ε(ζ))−2dζ =


1
L2
∞
t+O(1) in case 1

1
L2
∞
t+ 2α

L2
∞

log t
t0

+O(1) in case 2

1
L2
∞
t+ 2α

1−k t
1−k +O(1) in case 3.

(4.112)

In each of the cases 1, 2, 3, it is then straightforward to see that the stated form

of δ(t) satisfies equation (4.90) and also satisfies the conditions (4.80) and (4.31).

Therefore by Corollary 4.22, L2(t) = 2(Ct−δ(t)) has the required property.

Remark 4.30. Case 1 of Corollary 4.29 shows that if ε(t) = O( 1
tβ

) as t → ∞

with β > 1, then we can choose the same form of L2(t) to give the required

property (4.91) as we would if L1(t) ≡ L∞.

Remark 4.31. Similar calculations to those in Corollary 4.29 can also be used

to find C and p(t) in cases where, for each 1 ≤ j ≤ N , both Lj(t) and Ȧj(t)

depend on time but converge as t→∞. The o(1) corrections to Lj(t) and Ȧj(t)

do not affect the speed C, but they do affect the sublinear term p(t). This follows

from similar calculations to those in Corollary 4.29, together with the fact that

if Ȧ1(t) = c∞ + cε̂(t) for some c∞, c ∈ R and ε̂(t) = o(1) as t→∞, then∫ t

0

Ȧ1(ζ)2

4D
dζ − c2

∞
4D

t =
c∞c

2D

∫ t

0

ε̂(ζ)dζ +
c2

4D

∫ t

0

ε̂(ζ)2dζ = o(t). (4.113)

Example 4.32. Let Ω(t) ⊂ R2 be a box of the type (4.65) with L1(t) ≡ L0,

A1(t) = b
√
t+ t0. Let C > 0 be the positive solution to C2

4D
= f0 − Dπ2

L2
0

. Using

(4.113) and Corollary 4.22 we deduce that the solution will have the required

property (4.91) as t→∞, uniformly for ξ1 in any compact subset of (0, L0), if

L2(t)

2
= Ct−

(
b2

8C
+

3D

C

)
log

(
t

t0
+ 1

)
− δ0. (4.114)
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Next we discuss some cases for which our upper and lower bounds on the

solution near the boundary differ by a factor that is not O(1). This means

we cannot use the above methods to derive a form of LN+1(t) that gives the

required property (4.91).

In Corollary 4.24 we have shown how to choose L2(t) to satisfy the property

(4.91) in cases where L1(t) is of order tk and A1(t) is of order tm as t→∞ with

1
4
< k < 1

2
and m < 1 − k. If instead 0 < k ≤ 1

4
, then we can still calculate

C and p(t) by similar calculations to those in Corollary 4.24. However, if we

choose δ(t) to satisfy equation (4.90), then condition (4.31) does not hold. This

means that Theorem 4.19 gives upper and lower bounds for the solution near

the boundary that differ by a factor that is not O(1). To illustrate this, we give

the following example where k = 1
4
. This leads to p(t) exactly of order t

1
2 as

t→∞, and both
∫ t

0
δ̇(ζ)2dζ and

∫ t
0
(−δ̈(ζ))2/3dζ are of order log t

t0
for large t.

Example 4.33. Let Ω(t) be a two-dimensional box of the type (4.65). Assume

that L1(t) = a(t+ t0)
1
4 and A1(t) = b(t+ t1)m with a > 0, b ∈ R, m < 1

2
. Then

exactly as in Corollary 4.24, equation (3.156) holds with C = c∗ and

p(t) =
2Dπ2

a2
t
1
2 +

1

8
log

t

t0
+O(1) as t→∞. (4.115)

Let us define

B =
4D2π2

c∗a2
(4.116)

and take L2(t) = 2(c∗t− δ(t)) with

δ(t) = B(t+ t0)
1
2 + α log

(
t

t0
+ 1

)
+ δ0 (4.117)

for a value of α to be chosen. Then δ(t) satisfies the conditions (4.80). We

apply Theorem 4.19 to deduce that for ξ1(t) in a given compact subset of (0, L0),

and for 0 ≤ y ≤ y0, there are constants β0 > 0, β1 > 0 such that as t→∞,
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β0yt
−3/2 exp

c∗δ(t)
2D

− p(t) +

∫ t

0

− δ̇(ζ)2

4D
+

(
Ai(0)

Ai′(0)
+ κ1

)(
δ̈(ζ)2

4D

) 1
3

 dζ


≤ ψ

(
x1(t),

−L2(t)

2
+ y, t

)
≤ β1yt

−3/2 exp

(
c∗δ(t)

2D
− p(t)−

∫ t

0

δ̇(ζ)2

4D
dζ

)
.

(4.118)

For large t,
c∗δ(t)

2D
− p(t) =

(
c∗α

2D
− 1

8

)
log

t

t0
+O(1), (4.119)∫ t

0

δ̇(ζ)2

4D
dζ =

B2

16D
log

t

t0
+O(1),

∫ t

0

(−δ̈(ζ))2/3dζ =
B2/3

42/3
log

t

t0
+O(1).

(4.120)

Therefore from (4.118) we deduce that if

α < α1 :=

(
3

2
+

1

8
+

B2

16D

)
2D

c∗
(4.121)

then ψ
(
x1(t), −L2(t)

2
+ y, t

)
→ 0 as t→∞, and that if

α > α0 :=

(
3

2
+

1

8
+

B2

16D
−
(

Ai(0)

Ai′(0)
+ κ1

)
B2/3

42/3

)
2D

c∗
(4.122)

then ψ
(
x1(t), −L2(t)

2
+ y, t

)
→ ∞ as t → ∞. This suggests that if there is a

choice of L2(t) = 2(c∗t − δ(t)) such that (4.91) holds, then as t → ∞ it will

have δ(t)−Bt 12 = O(log t
t0

) with B given in equation (4.116), and that δ(t)−Bt
1
2

log t
t0

will asymptotically lie in the range [α1, α0]. However the above methods are not

sufficient to determine the exact asymptotic behaviour.

Remark 4.34. If instead L1(t) = a(t + t0)k with 0 < k < 1
4

(and, again,

A1(t) = b(t+ t1)m with m < 1
2
) then the gap between the upper and lower bounds

is even larger, since for δ(t) satisfying equation (4.90),
∫ t

0
(−δ̈(ζ))2/3dζ is of

order t
1
3

(1−4k) as t→∞. Suppose 0 < k < 1
4

and let δ1(t) satisfy

c∗δ1(t)

2D
−
∫ t

0

δ̇1(ζ)2

4D
dζ − Dπ2

a2(1− 2k)
(t+ t0)1−2k = o(t

1
3

(1−4k)) as t→∞.

(4.123)
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Then let L2(t) = 2(c∗t− δ(t)) with δ(t) = δ1(t)+α(t+ t0)
1
3

(1−4k) for a value of α

to be chosen. We can apply Theorem 4.19 to deduce upper and lower bounds as

in equation (4.118). From this, and the fact that
∫ t

0
(−δ̈(ζ))2/3dζ = O(t

1
3

(1−4k))

as t → ∞, we see that if α is too small then ψ
(
x1(t), −L2(t)

2
+ y, t

)
→ 0, and

if α is too large then ψ
(
x1(t), −L2(t)

2
+ y, t

)
→ ∞ as t → ∞ (for ξ1(t) in a

compact subset of (0, L0)).

Next we briefly explain why the methods cannot give the exact behaviour

when 1
2
< k < 1. As above, let Lj(t) = a(t + t0)k and Aj(t) = b(t + t1)m with

a > 0, b ∈ R. If k ≥ 1
2

and/or m + k ≥ 1, then as t → ∞, |L̈j(t)Lj(t)| and

|Äj(t)Lj(t)| are of order t2k−2 and tm+k−2 respectively, which are not integrable.

So (except for the special case m = k = 1
2

which has been covered in Corollary

4.26), we find that Qj(t) and Qj(t) are not integrable for any choice of γ
(j)
0 and

γ
(j)
1 and so (3.140) fails to hold. Theorem 4.19 gives upper and lower bounds

on the solution that differ by a factor of order

exp

(∫ t

0

N∑
j=1

Qj(ζ) +Q
j
(ζ)

2D
dζ

)
. (4.124)

This tends to ∞ as t→∞; in fact∫ t

0

N∑
j=1

Qj(ζ) +Q
j
(ζ)

2D
dζ =

O(tmax(2k−1,m+k−1)) if k > 1
2

and/or m+ k > 1

O
(

log t
t0

)
if m = 1− k > 1

2
.

(4.125)

Since we do not know the exact order of the solution near the boundary, we

cannot determine a ‘critical’ choice of LN+1(t) such that (4.91) holds.

However, by combining the preceding results, examples and remarks, and by

using the comparison principle to prove some additional bounds, we obtain the

results of the following theorem.

Theorem 4.35. Consider the box {−Lj(t)
2

< xj <
Lj(t)

2
: j = 1, 2} in R2, where

L1(t) = a(t+t0)k for some a > 0 and k ≥ 0. Let 0 < y = O(1) and c∗ = 2
√
Df0.

1. If k ≥ 1, let
L2(t)

2
= c∗t−

4D

c∗
log

(
t

t0
+ 1

)
− δ0. (4.126)
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Then ψ
(

0, −L2(t)
2

+ y, t
)

= O(y) as t→∞.

2. If 1
2
< k < 1, let

L2(t)

2
= c∗t− α log

(
t

t0
+ 1

)
− δ0. (4.127)

If α < 4D
c∗

then ψ
(

0, −L2(t)
2

+ y, t
)
→ 0 as t → ∞. If α > 4D

c∗
then

ψ
(

0, −L2(t)
2

+ y, t
)
→∞ as t→∞.

3. If k = 1
2
, let ρ = a2

2
, γ1 = ρ2

2
, and let σ1 be the principal eigenvalue of the

Sturm-Liouville problem (4.101). Let

L2(t)

2
= c∗t−

2D

c∗

(
−σ1L

2
0

2ρ
+

γ2
1

8ρ3D
+

1

4
+

3

2

)
log

(
t

t0
+ 1

)
− δ0. (4.128)

Then ψ
(

0, −L2(t)
2

+ y, t
)

= O(y) as t→∞.

4. If 1
4
< k < 1

2
, let

L2(t)

2
= c∗t−

2D2π2

c∗a2(1− 2k)
(t+ t0)1−2k − (k + 3)D

c∗
log

(
t

t0
+ 1

)
− δ0.

(4.129)

Then ψ
(

0, −L2(t)
2

+ y, t
)

= O(y) as t→∞.

5. If k = 1
4
, let

L2(t)

2
= c∗t−

4D2π2

c∗a2
(t+ t0)

1
2 − α log

(
t

t0
+ 1

)
− δ0. (4.130)

If α is too small then ψ
(

0, −L2(t)
2

+ y, t
)
→ 0, and if α is too large then

ψ
(

0, −L2(t)
2

+ y, t
)
→∞, as t→∞.

6. If 0 < k < 1
4
, let δ1(t) satisfy

c∗δ1(t)

2D
−
∫ t

0

δ̇1(ζ)2

4D
dζ =

Dπ2

a2(1− 2k)
(t+ t0)1−2k+o(t

1
3

(1−4k)) as t→∞,

(4.131)

and let
L2(t)

2
= c∗t− δ1(t)− α(t+ t0)

1
3

(1−4k). (4.132)

If α is too small then ψ
(

0, −L2(t)
2

+ y, t
)
→ 0, and if α is too large then

ψ
(

0, −L2(t)
2

+ y, t
)
→∞, as t→∞.
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7. If k = 0 and f0 >
Dπ2

a2
let C be the positive solution to C2

4D
= f0− Dπ2

a2
. Let

L2(t)

2
= Ct− 3D

C
log

(
t

t0
+ 1

)
− δ0. (4.133)

Then ψ
(

0, −L2(t)
2

+ y, t
)

= O(y) as t→∞.

Proof. The case 1
4
< k < 1

2
follows from Corollary 4.24 (with m = k); the

case k = 1
2

follows from Corollary 4.26; the case k = 1 follows from Corollary

4.27; and the case k = 0 follows from Corollary 4.29. The case k = 1
4

follows

from Example 4.33; and the claimed properties for 0 < k < 1
4

follow from the

arguments in Remark 4.34. So it just remains to prove the claimed properties

for k > 1 and for 1
2
< k < 1.

Consider the case k > 1. The solution on the box with k = 1 (i.e. with

−a(t+t0)
2

< x1 <
a(t+t0)

2
) is then a subsolution, and the solution on the infinite

strip (with −∞ < x1 < ∞) is a supersolution. In both of these cases the

solution has a contribution from dimension 1 which, at x1 = 0, is of order t−
1
2

as t→∞. (For k = 1 this was shown in Corollary 4.27, and in the case of the

infinite strip the contribution is of the form

1√
4Dt

∫ ∞
−∞

ψ̂(y, 0)e−
(x1−y)

2

4Dt dy (4.134)

with ψ̂(y, 0) of compact support.) Let L2(t) = 2(c∗t − 4D
c∗

log
(
t
t0

+ 1
)
− δ0).

By the same arguments as in Corollary 4.22, we find that our subsolution and

supersolution both have the property that ψ
(

0, −L2(t)
2

+ y, t
)

= O(y), and the

result follows by the comparison principle.

Finally, suppose 1
2
< k < 1, and let L2(t) be as in equation (4.127). The

solution on the box with k = 1 is a supersolution. Since this supersolution

has ψ
(

0, −L2(t)
2

+ y, t
)
→ 0 as t → ∞ if α < 4D

c∗
, we deduce the same for the

case 1
2
< k < 1. The solution on a box with

−
√
l2+2ρt

2
< x1 <

√
l2+2ρt

2
is a

subsolution (for t large enough), for any ρ > 0. We know that this subsolution

has ψ
(

0, −L2(t)
2

+ y, t
)
→ ∞ as t → ∞ if c∗α

2D
>
(
−σ1L2

0

2ρ
+

γ21
8ρ3D

+ 1
4

+ 3
2

)
. But
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since γ1 = ρ2

2
, we also know that

−σ1L
2
0

2ρ
+

γ2
1

8ρ3D
+

1

4
→ 1

2
as ρ→∞ (4.135)

due to (3.54) in Proposition 3.4. So, if α > 4D
c∗

then there exists ρ > 0 large

enough that c∗α
2D

>
(
−σ1L2

0

2ρ
+

γ21
8ρ3D

+ 1
4

+ 3
2

)
, and so ψ

(
0, −L2(t)

2
+ y, t

)
→ ∞.

Let us highlight some key points from Theorem 4.35. The theorem considers

ψ at the symmetric position x1 = 0, in a symmetric box in R2 with L1(t) of order

tk as t→∞. When k ≥ 1, the choice L2(t)
2

= c∗t− 4D
c∗

log
(
t
t0

+ 1
)
− δ0 gives the

‘critical’ property ψ
(

0, −L2(t)
2

+ y, t
)

= O(y) as t → ∞. This holds for every

k ≥ 1, and is also the same as the ‘critical’ radius for a ball in R2. The conclusion

of the theorem for 1
2
< k < 1 suggests that if there is a ‘critical’ choice of L2(t)

when 1
2
< k < 1 then it will have the form L2(t)

2
= c∗t − 4D

c∗
log t

t0
+ o(log t

t0
) as

t→∞. That is, it will have the same leading order logarithmic correction term

as for k ≥ 1 but the order of the next correction might no longer be O(1). In the

case k = 1
2
, which is an important threshold, the leading correction term is still

logarithmic in t but its coefficient is no longer 4D
c∗

. Instead, its coefficient depends

on the constant that multiplies t
1
2 in the asymptotic behaviour of L1(t). We note

that, by Proposition 3.4, the coefficient of the logarithmic delay in (4.128) is

> 4D
c∗

and it tends to 4D
c∗

as a→∞. For 0 < k < 1
2
, the ‘critical’ choice of L2(t)

2

still has the same speed c∗ but the leading correction term is not logarithmic in

t any more. Instead, the leading o(t) correction is a power of t that depends on

k. For the final case of the theorem, k = 0, the speed itself changes. Whereas in

each of the other cases (with k > 0) L1(t) → ∞, in the case k = 0 the domain

has a constant length L1 in the x1 direction. Consequently, the speed required

in a ‘critical’ choice of L2(t)
2

is strictly less than c∗ and is instead determined by

C2

4D
= f0− Dπ2

L2
1

. The leading correction term in this case is logarithmic in t with

coefficient 3D
C

. This is, in some sense, as if we had ‘moved down a dimension’,

as well as replacing the critical speed c∗ by C.
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4.5 Vanishing correction terms

4.5.1 Introduction

Recall that in Corollary 4.6 we proved the following. If ψ̃(y, t) satisfies

∂ψ̃

∂t
= D

∂2ψ̃

∂y2
+
C2

4D
ψ̃ for

−L(t)

2
< y <

L(t)

2
, ψ̃

(
±L(t)

2
, t

)
= 0

(4.136)

where C > 0, and L(t) = 2
(
Ct− 3D

C
log( t

t0
+ 1)− θ(t)

)
with θ(t) = O(1)

satisfying (4.38), then ∂ψ̃
∂y

(
−L(t)

2
, t
)

= O(1) as t→∞. Now, using a method of

J. Berestycki, Brunet and Derrida from [12] (which they apply to the problem

on a semi-infinite interval µ(t) < x < ∞), we shall seek a particular choice of

θ(t) such that not only is ∂ψ̃
∂y

(
−L(t)

2
, t
)

exactly of order one but it is equal to

a constant for all t sufficiently large. In fact we shall consider a slightly more

general problem, which also allows us to derive a similar result for special cases

of the time-dependent box (4.65). We shall assume for convenience that ψ̃(y, t)

is symmetric in y.

4.5.2 Integral transform method

Let ψ̃(y, t) satisfy (4.136) where L(t) = 2(Ct − δ(t)) and where δ(t) satisfies

(4.80). Recall from Proposition 4.2 and the change of variables (4.8) that

ψ̃

(
−L(t)

2
+

ξ

L0

L(t), t

)
= O

(
sin

(
πξ

L0

)(
L(0)

L(t)

) 1
2

e
Cδ(t)
2D
−
t∫
0

δ̇(ζ)2

4D
dζ−ξ(ξ−L0)

L̇(t)L(t)

4DL2
0

)
(4.137)

and that

∂ψ̃

∂y

(
−L(t)

2
, t

)
= O

(
t−

3
2 e

C
2D
δ(t)−

t∫
0

δ̇(ζ)2

4D
dζ

)
as t→∞. (4.138)

Lemma 4.36. Let ψ̃(y, t) satisfy (4.136), where L(t) = 2(Ct− δ(t)) and where

δ(t) satisfies (4.80). Define

g(r, t) =

∫ L(t)

0

ψ̃

(
−L(t)

2
+ z, t

)
erzdz. (4.139)
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Then for each r < − C
2D

, it holds that g(r, t)e−D(r+ C
2D )

2
t+rδ(t) → 0 as t→∞ .

Proof. Put z = ξ
L0
L(t) into (4.137) and note that

−ξ(ξ − L0)
L̇(t)L(t)

4DL2
0

= − z2

4Dt
(1 + o(1)) +

Cz

2D
(1 + o(1)) as t→∞. (4.140)

So, given r < − C
2D

, we can multiply ψ̃
(
−L(t)

2
+ z, t

)
by erz and integrate over z

to get the following bound on g(r, t):

g(r, t) = O

(
t−

1
2 e

C
2D
δ(t)−

t∫
0

δ̇(ζ)2

4D
dζ

)
. (4.141)

Therefore g(r, t)e−D(r+ C
2D )

2
t+rδ(t) → 0 as t→∞.

Proposition 4.37. Let ψ̃(y, t) satisfy (4.136), where L(t) = 2(Ct − δ(t)) and

where δ(t) satisfies (4.80), and assume that ψ̃(−y, 0) ≡ ψ̃(y, 0). Then for ε > 0,

the integral ∫ ∞
0

e−
C2

4D
ε2t− C

2D
(1+ε)δ(t)D

∂ψ̃

∂y

(
−L(t)

2
, t

)
dt (4.142)

has one-sided derivatives of all orders with respect to ε at ε = 0.

Proof. Define g(r, t) as in (4.139), and differentiate this with respect to t. Using

(4.136), this gives:

∂g

∂t
(r, t) =

∫ L(t)

0

(
D
∂2ψ̃

∂y2

(
−L(t)

2
+ z, t

)
− L̇(t)

2

∂ψ̃

∂y

(
−L(t)

2
+ z, t

))
erzdz

+

∫ L(t)

0

C2

4D
ψ̃

(
−L(t)

2
+ z, t

)
erzdz. (4.143)

Integrate by parts in z, and use the boundary conditions and the symmetry

(ψ̃(−y, t) ≡ ψ̃(y, t) for all t), to get

∂g

∂t
(r, t) =

(
Dr2 + r

L̇(t)

2
+
C2

4D

)
g(r, t)−D∂ψ̃

∂y

(
−L(t)

2
, t

)
(1+erL(t)). (4.144)

Use an integrating factor of eφ(r,t) where

φ(r, t) = −
(
Dr2t+ r

L(t)

2
+
C2

4D
t

)
= −D

(
r +

C

2D

)2

t+ rδ(t). (4.145)
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This leads to the following equation for every t > 0:

g(r, t)e−D(r+ C
2D )

2
t+rδ(t) − g(r, 0)erδ(0)

= −
∫ t

0

e−D(r+ C
2D )

2
s+rδ(s)D

∂ψ̃

∂y

(
−L(s)

2
, s

)
(1 + erL(s))ds. (4.146)

Consider r < − C
2D

, and let t→∞ in equation (4.146). Using Lemma 4.36, this

gives that for each r < − C
2D

,

g(r, 0)erδ(0) =

∫ ∞
0

e−D(r+ C
2D )

2
s+rδ(s)D

∂ψ̃

∂y

(
−L(s)

2
, s

)(
1 + e2r(Cs−δ(s))) ds.

(4.147)

Set r = − C
2D

(1 + ε) with ε > 0 and get

g

(
− C

2D
(1 + ε), 0

)
e−

C
2D

(1+ε)δ(0) =

∫ ∞
0

e−
C2

4D
ε2s− C

2D
(1+ε)δ(s)D

∂ψ̃

∂y

(
−L(s)

2
, s

)
×
(

1 + e−
C
D

(1+ε)(Cs−δ(s))
)
ds. (4.148)

The left hand side (depending only on the initial conditions) is infinitely differ-

entiable in ε. Since the equation holds for all ε > 0, the right hand side must

have one-sided derivatives of all orders with respect to ε at ε = 0.

The terms on the right hand side with a factor e−
C
D

(1+ε)(Cs−δ(s)) all have

exponential decay as s → ∞ (since (4.138) bounds the other factor) and can

be repeatedly differentiated through the integral with respect to ε. So (by

subtracting these terms) the conclusion is that the remaining term, which is

precisely the expression in (4.142), must also have one-sided derivatives of all

orders with respect to ε at ε = 0.

4.5.3 Finding the vanishing corrections

Now suppose that p(t) = p0 log
(
t
t0

+ 1
)

+ constant for some p0 > 0 and that

δ(t) =
3D

C
log

(
t

t0
+ 1

)
+

2D

C
p(t) + θ(t) (4.149)

where θ(t) satisfies (4.38). Corollary 4.6 implies that ∂ψ̃
∂y

(
−L(t)

2
, t
)
e−p(t) = O(1)

as t → ∞. Using Proposition 4.37 and the method of [12], we shall now seek

99



a particular choice of θ(t) such that ∂ψ̃
∂y

(
−L(t)

2
, t
)
e−p(t) is equal to a constant

for all t sufficiently large. The method will be the same as that in [12], but

applied to the integral (4.142). First we calculate the leading singularity as

ε → 0 that results from the known terms of the δ(t) expansion. (By this, we

mean the leading order term that fails to have one-sided ε-derivatives of some

order at ε = 0.) Then we must identify the next correction in the δ(t) expansion

that is required in order to cancel this singularity. Having thus reduced the ε

singularity to one of lower order, we repeat the process. At each step we derive

one more term in the δ(t) expansion (for large t), by removing the highest

remaining singularity as ε→ 0. The paper [12] contains several useful formulae

for the singular terms of integrals (see [12, equations (47), (51), (52), (53), (54),

and (55)]; given as equations (A.41), (A.49), (A.50), (A.51), (A.52), and (A.53)

here). In order to apply these formulae it is convenient to non-dimensionalise

the time variable. So, let τ = C2

4D
t, and for τ ≥ 1 define δ̃(τ) and q(τ) by

C

2D
δ(t) = δ̃(τ),

C

2D
δ(t)− p(t) =

3

2
log τ + q(τ), (4.150)

i.e. q(τ) is the O(1) part. Then, since we are assuming ∂ψ̃
∂y

(
−L(t)

2
, t
)
e−p(t) is a

constant for all t sufficiently large, Proposition 4.37 becomes that∫ ∞
1

e−ε
2τ−εδ̃(τ)−q(τ)

τ
3
2

dτ (4.151)

has one-sided derivatives of all orders with respect to ε at ε = 0. With δ(t) as

in (4.149), note that δ̃(τ) has leading order behaviour

δ̃(τ) = α log τ +O(1) as τ →∞ (4.152)

where α =
(

3
2

+ p0

)
. We consider δ̃(τ) of the form (4.152) with α > 0, and we

seek an asymptotic expansion

q(τ) ∼ q0(τ) + q1(τ) + q2(τ) + . . . as τ →∞ (4.153)

such that the integral (4.151) has one-sided derivatives of all orders with respect

to ε at ε = 0.
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Proposition 4.38. Let ψ̃(y, t) satisfy (4.136) where L(t) = 2(Ct − δ(t)). Let

δ̃(τ) and q(τ) be as in (4.150), and assume (4.152) holds. If ∂ψ̃
∂y

(
−L(t)

2
, t
)
e−p(t)

is equal to a constant for t sufficiently large, then (4.153) holds with q0(τ) =

constant and

q1(τ) =
−2α
√
π

τ
1
2

, q2(τ) = −3

2

(
α + α2(1− 2 log 2)

) log τ

τ
. (4.154)

Proof. First, note that there cannot be any singularity as ε↘ 0 in the integral∫ ∞
1

e−ε
2τ−q0(τ)

τ
3
2

dτ (4.155)

which would contradict Proposition 4.37. Using equation (A.41) and Remark

A.14, the only singularity in ε2 coming from the integral
∫∞

1
e−ε

2τ

τ
3
2
dτ is a multiple

of (ε2)
1
2 = |ε|. This is not singular in ε > 0 as ε ↘ 0, and so we find that q0

can be any constant.

Next, note that without the q1(τ) term — and for δ̃(τ) given by (4.152) —

the leading order singularity of the integral (4.151) would come from∫ ∞
1

−αε log(τ)e−ε
2τ−q0

τ
3
2

dτ. (4.156)

Equation (A.50) shows that as ε↘ 0, the singularity is precisely

−2
√
παe−q0ε2 log(ε2). (4.157)

This must be cancelled by adding the singularity from∫ ∞
1

−q1(τ)e−ε
2τ−q0

τ
3
2

dτ, (4.158)

which (using equation (A.41)) gives that q1(τ)τ−
3
2 = −2

√
πατ−2, and so

q1(τ) =
−2α
√
π

τ
1
2

, (4.159)

as stated in equation (4.154). Now, without the q2(τ) term, the leading order

singularity of the integral (4.151) would come from∫ ∞
1

(
−εq1(τ) + 1

2
(εα log τ + q1(τ))2

)
e−ε

2τ−q0

τ
3
2

dτ (4.160)
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where q1(τ) is given in (4.159). Using equations (A.41), (A.52) and (A.53), we

find that the leading singularity as ε↘ 0 is:

ε3 log(ε2)2
√
π
(
α + α2(1− 2 log 2)

)
e−q0 . (4.161)

This must be cancelled by adding the singularity from∫ ∞
1

−q2(τ)e−ε
2τ−q0

τ
3
2

dτ, (4.162)

which (using equation (A.51)) gives that

q2(τ)

τ
3
2

= q̃2
log τ

τ
5
2

, where − 4

3

√
πq̃2 = 2

√
π
(
α + α2(1− 2 log 2)

)
. (4.163)

That is, q2(τ) is as stated in equation (4.154).

4.5.4 Examples

Example 4.39. Let ψ(x, t) satisfy (4.1), (4.2) on the interval −L(t)
2

< x < L(t)
2

.

From Section 4.2 we know that if L(t)
2

= c∗t − 3D
c∗

log( t
t0

+ 1) − θ(t) where θ(t)

satisfies (4.38), then ∂ψ
∂x

(
−L(t)

2
, t
)

= O(1) as t→∞. Applying Proposition 4.38

with C = c∗ and α = 3
2

shows that if ∂ψ
∂x

(
−L(t)

2
, t
)

is equal to a constant for t

sufficiently large, then as t→∞

L(t)

2
∼ c∗t−

2D

c∗

3

2
log

(
c2
∗t

4D

)
+ δ0 −

3
√
π√
c2∗t
4D

− 9

8
(5− 6 log 2)

log c2∗t
4D

c2∗t
4D

+ . . .

 .

(4.164)

Remark 4.40. This is similar to the expansion for µ(t) obtained in [12] for

the problem on µ(t) < x <∞ when the initial conditions have sufficient decay.

However the 1√
t

correction has the opposite sign. This is due to the fact that in

our problem the domain lies to the right of the boundary moving at −c∗t+ o(t)

whereas in [12] the domain lies to the right of a boundary moving at +c∗t−o(t).

The range of r values that can be used in the integral transform (in Proposition

4.37) is therefore different in the two cases, and the εδ(t) term in the exponent

ends up with the opposite sign. The same observation is discussed in [12, section
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6] where they explain how their results would differ if µ(t) moved to the left at

−c∗t+ o(t) instead of to the right at +c∗t− o(t).

Using our separation of variables method we can also derive results of this

type for certain special cases of the time-dependent box (4.65).

Example 4.41. Consider a box of the form (4.65), with a cross-section that is

independent of t: Lj(t) ≡ lj and Aj(t) ≡ − lj
2

for each 1 ≤ j ≤ N . Assume that

f0 −
∑N

j=1
Dπ2

l2j
> 0 and define C as the positive solution to

f0 −
N∑
j=1

Dπ2

l2j
=
C2

4D
. (4.165)

Then there are positive solutions to (4.63), (4.64) that are separable in dimen-

sions 1 ≤ j ≤ N , of the form

ψ(x1, . . . , xN , xN+1, t) = ψ̃(xN+1, t)
N∏
j=1

sin

(
πξj
L0

)
(4.166)

where
ξj
L0

=
xj
lj

+ 1
2

for 1 ≤ j ≤ N , and where ψ̃(y, t) satisfies (4.136) on

−LN+1(t)

2
< y < LN+1(t)

2
. If LN+1(t)

2
= Ct − 3D

C
log( t

t0
+ 1) − θ(t) where θ(t) sat-

isfies (4.38), then we know that ∂ψ
∂xN+1

(
0, . . . , 0, −LN+1(t)

2
, t
)

= O(1) as t → ∞.

Applying Proposition 4.38 with α = 3
2

shows that if ∂ψ
∂xN+1

(
0, . . . , 0, −LN+1(t)

2
, t
)

is equal to a constant for t sufficiently large, then

LN+1(t)

2
∼ Ct−2D

C

3

2
log

(
C2t

4D

)
+ δ0 −

3
√
π√
C2t
4D

− 9

8
(5− 6 log 2)

log C2t
4D

C2t
4D

+ . . .


(4.167)

as t→∞, with C given by equation (4.165).

Example 4.42. Consider a box of the form (4.65) where for each 1 ≤ j ≤ N

Lj(t) =
√
l2j + 2ρjt with ρj > 0, Aj(t) ≡ −

γ
(j)
1

ρ2
j

Lj(t) with
γ

(j)
1

ρ2
j

∈ (0, 1).

(4.168)

Since L̇j(t)Lj(t) ≡ ρj and Ȧj(t)Lj(t) ≡ −γ
(j)
1

ρj
, the functions Hj(ξj, t) in equation

(3.131) are now independent of t and given by

Hj(ξj, t) = H̃j(ξj) = exp

(
ρjξ

2
j

4DL2
0

− γ
(j)
1 ξj

2DL0ρj

)
for 0 ≤ ξj ≤ L0. (4.169)
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For each 1 ≤ j ≤ N , let gj,1 and σj,1 be the principal eigenfunction and eigen-

value of (3.19), (3.20) with γ0 = γ
(j)
0 and γ1 = γ

(j)
1 . Then let

p(t) =
N∑
j=1

(∫ t

0

(
− σj,1L

2
0

Lj(ζ)2
+
Ȧj(ζ)2

4D

)
dζ +

1

2
log

(
Lj(t)

Lj(0)

))
(4.170)

=
N∑
j=1

(
−σj,1L

2
0

2ρj
+

(γ
(j)
1 )2

8ρ3
jD

+
1

4

)
log

(
l2j + 2ρjt

l2j

)
+ constant. (4.171)

Then there are positive solutions to (4.63), (4.64) on the box that are separable

in dimensions 1 ≤ j ≤ N , of the form

ψ(x1, . . . , xN , xN+1, t) = ψ̃(xN+1, t)e
−p(t)

N∏
j=1

gj,1(ξj)

H̃j(ξj)
(4.172)

where
ξj
L0

=
xj−Aj(t)
Lj(t)

for 1 ≤ j ≤ N , and where ψ̃(y, t) satisfies (4.136) on

−LN+1(t)

2
< y < LN+1(t)

2
with C = c∗. The results of Section 4.4 show that if

LN+1(t)

2
= c∗t − 3D

c∗
log
(
t
t0

+ 1
)
− 2D

c∗
p(t) − θ(t), with p(t) given by (4.171) and

where θ(t) = O(1) satisfies (4.38), then ∂ψ
∂xN+1

(
0, . . . , 0, −LN+1(t)

2
, t
)

= O(1) as

t → ∞. Here, we note that ∂ψ
∂xN+1

(
0, . . . , 0, −LN+1(t)

2
, t
)

is exactly of order one

if and only if ∂ψ̃
∂y

(
−LN+1(t)

2
, t
)
e−p(t) is exactly of order one, and it is equal to

a constant if and only if ∂ψ̃
∂y

(
−LN+1(t)

2
, t
)
e−p(t) is equal to a constant. Applying

Proposition 4.38 with C = c∗ and

α =
3

2
+

N∑
j=1

(
−σj,1L

2
0

2ρj
+

(γ
(j)
1 )2

8ρ3
jD

+
1

4

)
(4.173)

shows that if ∂ψ
∂xN+1

(
0, . . . , 0, −LN+1(t)

2
, t
)

is equal to a constant for t sufficiently

large, then

LN+1(t)

2
∼c∗t−

2D

c∗

α log

(
c2
∗t

4D

)
+ δ0 −

2α
√
π√

c2∗t
4D


− 2D

c∗

(
−3

2
(α + α2(1− 2 log 2))

log c2∗t
4D

c2∗t
4D

+ . . .

)
as t→∞,

(4.174)

with α given by equation (4.173).
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Chapter 5

Periodically varying domains

5.1 Introduction and principal periodic eigen-

value µ

In this chapter we consider the problem (1.1), (1.2); that is:

∂ψ

∂t
= D∇2ψ + f(ψ) for x ∈ Ω(t)

ψ(x, t) = 0 for x ∈ ∂Ω(t),

for first the linear and then the nonlinear case, on a domain Ω(t) ⊂ RN that

is bounded, connected, and periodic in t with period T . As in Chapter 2,

we assume there is a one-to-one mapping h(·, t) : Ω(t) → Ω0 that transforms

Ω(t) into a bounded, connected reference domain Ω0 with sufficiently smooth

boundary, and such that the change of variables ξ = h(x, t) and u(ξ, t) = ψ(x, t)

transforms (1.1), (1.2) into a parabolic equation of the form (2.1), (2.2) where

L(ξ, t)u =
∑
i,j

aij(ξ, t)
∂2u

∂ξi∂ξj
+
∑
j

(bj(ξ, t) + cj(ξ, t))
∂u

∂ξj
for ξ ∈ Ω0, (5.1)

aij(ξ, t) =
∑
k

D

(
∂hi
∂xk

∂hj
∂xk

)
, bj(ξ, t) = −∂hj

∂t
, cj(ξ, t) = D∇2hj.

(5.2)
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Since Ω(t) is periodic with period T , the map h and the coefficients of L are also

T -periodic in t. We assume the coefficients aij, bj, cj belong to Cα,α/2(Ω0×[0, T ])

for some α > 0 and that aij is uniformly elliptic.

By Theorem 1 of Castro and Lazer [20], there exists a value µ and a function

φ(ξ, t) such that
∂φ

∂t
− Lφ = µφ for ξ ∈ Ω0, t ∈ R (5.3)

φ(ξ, t) = 0 for ξ ∈ ∂Ω0 (5.4)

φ(ξ, t) > 0 for ξ ∈ Ω0 (5.5)

φ(ξ, t) ≡ φ(ξ, t+ T ). (5.6)

This function φ is unique up to scaling [20, Theorem 1], and is called the prin-

cipal periodic eigenfunction, while µ is called the principal periodic eigenvalue.

Here, we shall say that µ is ‘the principal periodic eigenvalue of Ω(t)’ to mean

that it is the principal periodic eigenvalue of (5.3), (5.4), (5.5), (5.6), when L is

defined by (5.1), (5.2). Throughout this chapter, unless stated otherwise, Ω(t)

is a T -periodic domain and µ denotes the principal periodic eigenvalue of Ω(t).

Consider the linear reaction-diffusion equation (2.1), (2.2) with this periodic

parabolic operator L and with f(u) = f0u. The function φ(x, t)e(f0−µ)t is a

solution, so if the initial conditions satisfy bφ(ξ, 0) ≤ u(ξ, 0) ≤ aφ(ξ, 0) for some

0 < b ≤ a then by the comparison principle

bφ(ξ, t)e(f0−µ)t ≤ u(ξ, t) ≤ aφ(ξ, t)e(f0−µ)t for all t ≥ 0. (5.7)

The principal periodic eigenvalue is therefore a threshold such that if f0 > µ

then u(ξ, t) → ∞ as t → ∞, whereas if f0 < µ then u(ξ, t) → 0. See also [19,

page 192]. This means that the principal periodic eigenvalue µ of Ω(t) is, in

some sense, the key to understanding the long-time behaviour of u(ξ, t).

In Section 5.2 we derive upper and lower bounds on µ under a range of

assumptions on Ω(t) and give some illustrative examples. Then in Section 5.3 we

consider µ as a function of the frequency ω = 2π
T

and prove results concerning the

limits ω → 0 and ω →∞, as well as a monotonicity result. Proposition 5.8 and
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Theorem 5.15 are based on related theorems from [46], in which the dependence

of a principal periodic eigenvalue on the frequency is studied in a different

context. In Section 5.4 we consider the nonlinear problem on a periodically

varying domain, and we use results of Hess [37] in order to understand the

long-time behaviour of the solution.

5.2 Bounds on µ and examples

To prove bounds on µ, we often use the following lemma and the property (5.8).

Lemma 5.1. Let k1(t) and k2(t) be continuous and T -periodic, let m1 and m2

be constants, and let u(ξ, t) satisfy (2.1), (2.2) with f(u) = f0u. If the condition

f0t − m1t −
∫ t

0
k1(ζ)dζ → −∞ as t → ∞ implies that u(ξ, t) → 0 as t → ∞,

then µ ≥ m1 + 1
T

∫ T
0
k1(t)dt. If the condition f0t − m2t −

∫ t
0
k2(ζ)dζ → +∞

implies that u(ξ, t)→∞ as t→∞, then µ ≤ m2 + 1
T

∫ T
0
k2(t)dt.

Proof. For any continuous T -periodic function k(t),∫ t

0

k(ζ)dζ =
t

T

∫ T

0

k(ζ)dζ +O(1) as t→∞. (5.8)

So the assumptions become that the inequality f0 < m1 + 1
T

∫ T
0
k1(t)dt implies

u(ξ, t)→ 0, and that the inequality f0 > m2 + 1
T

∫ T
0
k2(t)dt implies u(ξ, t)→∞.

By (5.7) we deduce that µ ≥ m1 + 1
T

∫ T
0
k1(t)dt and µ ≤ m2 + 1

T

∫ T
0
k2(t)dt.

Proposition 5.2. 1. At each fixed time 0 ≤ t ≤ T , let λ(Ω(t)) be the prin-

cipal Dirichlet eigenvalue of −∇2 on the domain Ω(t). Then

µ ≥ 1

T

∫ T

0

Dλ(Ω(t))dt. (5.9)

2. Let Ω1 be a bounded domain such that Ω1 ⊂ Ω(t) for all t, and let λ(Ω1)

be the principal Dirichlet eigenvalue of −∇2 on Ω1. Then

µ ≤ Dλ(Ω1). (5.10)
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Proof. Consider a solution ψ to the problem (1.1), (1.2) with f(ψ) = f0ψ. Since

λ(Ω(t)) is T -periodic, the first part follows from Proposition 2.14 and Lemma

5.1.

For the second part, let ψ1 be the solution to (1.1), (1.2) but on the fixed

domain Ω1, and with 0 ≤ ψ1(x, 0) ≤ ψ(x, 0). By the comparison principle,

0 ≤ ψ1(x, t) ≤ ψ(x, t) for all x ∈ Ω1 and t ≥ 0. If f0 < µ then ψ → 0 as t→∞,

which implies that ψ1 → 0 and so that f0 < Dλ(Ω1). Therefore we conclude

that µ ≤ Dλ(Ω1).

Example 5.3. Let Ω(t) = (A(t), A(t) +L(t)) where L(t) > 0 and A(t) are both

T -periodic. Proposition 5.2 implies that

µ ≥ 1

T

∫ T

0

Dπ2

L(t)2
dt. (5.11)

In particular whenever L(t) ≡ l > 0 and A(t) is periodic then we have the lower

bound µ ≥ Dπ2

l2
. This means that if the solution on the fixed interval (0, l) tends

to zero (i.e. f0 <
Dπ2

l2
), then the solution on a periodic interval (A(t), A(t) + l)

also tends to zero (i.e. f0 < µ) for every choice of the periodic function A(t).

Example 5.4. Let L(t) > 0 and A(t) be T -periodic functions satisfying

max
[0,T ]

A < min
[0,T ]

(A+ L). (5.12)

The fixed interval Ω1 := (max(A),min(A + L)) is always contained within

Ω(t) := (A(t), A(t) + L(t)). Proposition 5.2 implies the upper bound

µ ≤ Dπ2

(min(A+ L)−maxA)2
. (5.13)

In particular, if A(t) is constant and L(t) > 0 is periodic, then µ ≤ Dπ2

(minL)2
.

Following these examples, let us continue to consider the linear problem on

the interval A(t) < x < A(t)+L(t) where L(t) > 0 and A(t) are both T -periodic

and belong to C2+α([0, T ]) for some α > 0. We change variables to the reference

domain 0 < ξ < L0, and let u(ξ, t) and w(ξ, t) be as in Section 3.1. Then u(ξ, t)

satisfies (3.4), (3.5) and w(ξ, t) satisfies (3.11), (3.12). Both of these are now
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linear, T -periodic, parabolic problems. Let µu = µ denote the principal periodic

eigenvalue of the operator that acts on u in equation (3.4), and let µw denote the

principal periodic eigenvalue of the operator that acts on w in equation (3.11).

Then as in equation (5.7) we know that

u(ξ, t) = O(φu(ξ, t)e
(f0−µu)t), w(ξ, t) = O(φw(ξ, t)e−µwt) (5.14)

where φu and φw are the principal periodic eigenfunctions associated with µu

and µw. Next we give the relation between µu and µw, and we bound µw.

Proposition 5.5. 1.

µu = µw +
1

T

∫ T

0

Ȧ(t)2

4D
dt. (5.15)

2. Let

γ+
0 := max

[0,T ]
(L̈L3), γ+

1 := max
[0,T ]

(ÄL3), (5.16)

γ−0 := min
[0,T ]

(L̈L3), γ−1 := min
[0,T ]

(ÄL3). (5.17)

If σ+
1 is the principal eigenvalue of the Sturm-Liouville problem (3.19),

(3.20) with γ0 = γ+
0 and γ1 = γ+

1 , and if σ−1 is the principal eigenvalue of

(3.19), (3.20) with γ0 = γ−0 and γ1 = γ−1 , then

−σ+
1

T

∫ T

0

L2
0

L(t)2
dt ≤ µw ≤

−σ−1
T

∫ T

0

L2
0

L(t)2
dt. (5.18)

3. Let Q(t), Q(t) be given by equation (3.101). Then

1

T

∫ T

0

(
Dπ2

L(t)2
− Q(t)

2D

)
dt ≤ µw ≤

1

T

∫ T

0

(
Dπ2

L(t)2
+
Q(t)

2D

)
dt. (5.19)

Proof. Consider the function H(ξ, t) given by (3.6), which occurs in the change

of variables from u to w. Since L(t) > 0 and A(t) are both periodic, note that(
L(t)

L(0)

)1/2

exp

(
ξ2L̇(t)L(t)

4DL2
0

+
ξȦ(t)L(t)

2DL0

)
= O(1) (5.20)
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in the sense that the left hand side has a finite upper bound a positive lower

bound, uniformly in t ≥ 0, 0 ≤ ξ ≤ L0. Therefore from the change of variables

w(ξ, t) = u(ξ, t)H(ξ, t)e−f0t and the periodicity of Ȧ(t), we have

u(ξ, t) = O

(
w(ξ, t)e

f0t−
t∫
0

Ȧ(ζ)2

4D
dζ

)
= O

w(ξ, t)e
f0t− t

T

T∫
0

Ȧ(ζ)2

4D
dζ

 . (5.21)

Part 1 of the proposition follows by combining (5.21) with (5.14). Part 2 follows

from combining Lemma 5.1 with Proposition 3.10, and part 3 from combining

Lemma 5.1 with Theorem 3.13.

Example 5.6. We shall apply Propositions 5.2 and 5.5 to Ω(t) = (0, L(t))

where L(t) = L0(1 + ε sin(ωt)) with ω > 0 and 0 < ε < 1. We must consider

s(t) :=

t∫
0

L2
0

L(ζ)2
dζ =

t∫
0

1

(1 + ε sin(ωζ))2
dζ. (5.22)

The integral (5.22) can be calculated exactly. For −π
ω
< t < π

ω
,

s(t) =
2

ω(1− ε2)3/2

(
arctan

(
tan(ωt

2
) + ε

√
1− ε2

)
− arctan

(
ε√

1− ε2

))
− 2ε

ω(1− ε2)

+
2ε2 tan(ωt

2
) + 2ε

ω(1− ε2)
(
(tan(ωt

2
) + ε)2 + 1− ε2

) . (5.23)

Then s
(
±π
ω

)
= 2

ω(1−ε2)3/2

(
±π

2
− arctan

(
ε√

1−ε2

))
− 2ε
ω(1−ε2)

, and for t > π
ω

we use

the fact that the integrand of s(t) is 2π
ω

-periodic. We find that s
(

2π
ω

)
= 2π

ω
1

(1−ε2)3/2

and so, by the 2π
ω

-periodicity,

s(t) =

t∫
0

L2
0

L(ζ)2
dζ =

t

(1− ε2)3/2
+O(1) as t→∞. (5.24)

Therefore we conclude from Proposition 5.2 that

Dπ2

L2
0(1− ε2)3/2

≤ µ ≤ Dπ2

L2
0(1− ε)2

. (5.25)

To apply Proposition 5.5, we calculate γ−0 := min(L̈L3) and γ+
0 := max(L̈L3):

γ−0 = −L4
0εω

2(1 + ε)3 and γ+
0 =

L
4
0εω

2(1− ε)3 if 0 < ε ≤ 1
4

33

44
L4

0ω
2 if 1

4
< ε < 1.

(5.26)
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Let σ+
1 and σ−1 be the principal eigenvalues of (3.19), (3.20) with γ1 = 0, and

with γ0 = γ+
0 and γ−0 respectively. Part 2 of Proposition 5.5 together with (5.24)

then implies that
−σ+

1

(1− ε2)3/2
≤ µ ≤ −σ−1

(1− ε2)3/2
. (5.27)

To apply part 3 of Proposition 5.5, we calculate the 2π
ω

-periodic functions Q(t)

and Q(t) defined in (3.101):

Q(t) =


0 for 0 ≤ t ≤ π

ω

−L
2
0εω

2

2
sin(ωt)(1 + ε sin(ωt)) for π

ω
≤ t ≤ 2π

ω

(5.28)

Q(t) =


L2

0εω
2

2
sin(ωt)(1 + ε sin(ωt)) for 0 ≤ t ≤ π

ω

0 for π
ω
≤ t ≤ 2π

ω

(5.29)

and therefore∫ 2π
ω

0

Q(ζ)

2D
dζ =

L2
0εω

2D

(
1− επ

4

)
,

∫ 2π
ω

0

Q(ζ)

2D
dζ =

L2
0εω

2D

(
1 +

επ

4

)
. (5.30)

By equation (5.19) together with (5.24) we deduce that

Dπ2

L2
0(1− ε2)3/2

− L2
0εω

2

4πD

(
1− επ

4

)
≤ µ ≤ Dπ2

L2
0(1− ε2)3/2

+
L2

0εω
2

4πD

(
1 +

επ

4

)
.

(5.31)

Remark 5.7. Let µ(ω) be the principal periodic eigenvalue of Ω(t) = (0, L(t))

with L(t) as in Example 5.6 for a fixed ε ∈ (0, 1). The bounds (5.31) imply that

µ(ω) =
Dπ2

L2
0(1− ε2)3/2

+O(ω2) =
1

T

T∫
0

Dπ2

L(t)2
dt+O(ω2) as ω → 0. (5.32)

In the next section we shall see that (5.32) is an instance of a more general

property, valid for 2π
ω

-periodic domains Ω(t) in any dimension, as ω → 0.

5.3 Dependence of µ on the frequency ω

5.3.1 Converting to a 1-periodic problem in s = ωt
2π

In this section we consider the principal periodic eigenvalue µ as a function of

the frequency ω = 2π
T

. We consider a 1-periodic domain Ω̃(s) and let µ = µ(ω)
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be the principal periodic eigenvalue associated with the domain

Ω(t) = Ω̃

(
ωt

2π

)
. (5.33)

We shall give the limit limω→0 µ(ω) for a 2π
ω

-periodic domain in any dimen-

sion. For one-dimensional cases, we show that different types of asymptotic

behaviour of µ(ω) are possible as ω →∞, and we also prove a result concerning

monotonicity of µ(ω) with respect to ω > 0, under certain conditions.

Note that the map h(·, t) : Ω(t) → Ω0 which we used in the change of

variables can now be expressed as h(·, t) = h̃(·, ωt
2π

), for a 1-periodic map h̃(·, s) :

Ω̃(s) → Ω0. If we change variables from t to s = ωt
2π

in (2.1), (2.2), then the

operator ∂
∂t
− L(ξ, t) becomes an operator of the form ω

2π
∂
∂s
− Lω(ξ, s) where

Lω(ξ, s) =
∑
i,j

ãij(ξ, s)
∂2u

∂ξi∂ξj
+
∑
j

( ω
2π
b̃j(ξ, s) + c̃j(ξ, s)

) ∂

∂ξj
, (5.34)

ãij(ξ, s) =
∑
k

D

(
∂h̃i
∂xk

∂h̃j
∂xk

)
, b̃j(ξ, s) = −∂h̃j

∂s
, c̃j(ξ, s) = D∇2h̃j. (5.35)

So the principal periodic eigenvalue of Ω(t) = Ω̃
(
ωt
2π

)
is the same as the principal

periodic eigenvalue µ(ω) of the problem

ω

2π

∂φ

∂s
− Lω(ξ, s)φ = µ(ω)φ(ξ, s) ξ ∈ Ω0, s ∈ [0, 1] (5.36)

φ(ξ, s) = 0 ξ ∈ ∂Ω0, s ∈ [0, 1] (5.37)

φ(ξ, s) ≡ φ(ξ, s+ 1) ξ ∈ Ω0. (5.38)

For each ω > 0, the coefficients of Lω(ξ, s) are 1-periodic in s. However, we note

that the term ω
2π
b̃j(ξ, s)

∂
∂ξj

in (5.34) still depends on, and scales with, ω.

In the paper [46], Liu, Lou, Peng and Zhou consider parabolic equations with

periodic coefficients, and they investigate how the principal periodic eigenvalue

varies with respect to the frequency. However, the coefficients in their equation

are independent of the frequency ω except where it appears inside the periodic

functions as ωt. Therefore, after the change of time variables to give an operator

with 1-periodic coefficients, the problems they consider have the form

ω

2π

∂φ̂

∂s
− L̂(ξ, s)φ̂ = λ̂(ω)φ̂(ξ, s) ξ ∈ Ω0, s ∈ [0, 1] (5.39)
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φ̂(ξ, s) = 0 ξ ∈ ∂Ω0, s ∈ [0, 1] (5.40)

φ̂(ξ, s) ≡ φ̂(ξ, s+ 1) ξ ∈ Ω0, (5.41)

where the coefficients of the operator L̂(ξ, s) are 1-periodic in s and do not de-

pend on ω. Theorem 1.3 in [46] gives results about the limits of the principal

periodic eigenvalue λ̂(ω) as ω → 0 and as ω → ∞, and Theorem 1.1 in [46] is

a monotonicity property. Our proofs of the limit limω→0 µ(ω), and of a mono-

tonicity result, will be based on ideas from [46] but have to be adapted to our

own case since Lω(ξ, s) depends on ω through the ω
2π
b̃j(ξ, s)

∂
∂ξj

term.

5.3.2 Asymptotic behaviour of µ(ω) as ω → 0

Consider the limit ω → 0. The result of [46, Theorem 1.3(i)] for λ̂(ω) (the

principal periodic eigenvalue of (5.39), (5.40), (5.41)) is that

lim
ω→0

λ̂(ω) =

∫ 1

0

λ0(s)ds (5.42)

where for each 0 ≤ s ≤ 1, λ0(s) is the principal Dirichlet eigenvalue of the

elliptic operator −L̂(ξ, s) on Ω0. The result can be extended in a natural way

to the operator −Lω(ξ, s), and we deduce the following result for µ(ω).

Proposition 5.8. Let Ω0 be a smooth bounded domain, and for each s ∈ [0, 1]

and ω ≥ 0 let Lω(ξ, s) be as defined in equation (5.34), (5.35). Assume the

coefficients ãij, b̃j, c̃j belong to C1+α,1+α
2 (Ω0 × [0, 1]) for some α > 0. For each

s ∈ [0, 1] and ω ≥ 0, let λ0(s, ω) be the principal eigenvalue of the operator

−Lω(ξ, s) on Ω0, with zero Dirichlet conditions on ∂Ω0. For ω > 0, let µ(ω) be

the principal periodic eigenvalue of (5.36), (5.37), (5.38). Then

lim
ω→0

µ(ω) =

∫ 1

0

λ0(s, 0)ds. (5.43)

The proof is essentially the same as that used in [46, Theorem 1.3(i)] to prove

(5.42), however a slight generalisation is needed to allow for the ω-dependence

of the coefficients in Lω(ξ, s). For completeness, we give the proof here.
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Proof. For each s ∈ [0, 1] and ω ≥ 0, let λ0(s, ω) and φ0(ξ; s, ω) be the principal

eigenvalue and eigenfunction of the operator −Lω(ξ, s) on Ω0 with zero Dirichlet

conditions on ∂Ω0, and normalised to ||φ0(· ; s, ω)||L2(Ω0) = 1. As in [46], note

that for every ξ ∈ Ω0 and ω ≥ 0, both φ0(ξ; s, ω) and ∇φ0(ξ; s, ω) are C1 and

1-periodic in s. We also note that they, and λ0(s, ω), depend continuously on

ω.

For ω > 0 and s ≥ 0, define

ρω(s) = exp

(
2π

ω

(
s

∫ 1

0

λ0(τ, ω)dτ −
∫ s

0

λ0(τ, ω)dτ

))
, (5.44)

φω(ξ, s) = φ0(ξ; s, ω)ρω(s). (5.45)

Note that ρω > 0, ρω is periodic with period 1, and it satisfies

ω

2π

dρω
ds

=

(∫ 1

0

λ0(τ, ω)dτ − λ0(s, ω)

)
ρω(s). (5.46)

We shall show that given ε > 0, ωε > 0 can be chosen small enough such that(∫ 1

0

λ0(τ, ω)dτ − ε
)
φω ≤

ω

2π

∂φω
∂s
− Lω(ξ, s)φω ≤

(∫ 1

0

λ0(τ, ω)dτ + ε

)
φω

for all 0 < ω ≤ ωε. (5.47)

Then, since φω is positive, 1-periodic in s, and satisfies the Dirichlet boundary

conditions on ∂Ω0, it follows from [52, Proposition 2.1] that∫ 1

0

λ0(τ, ω)dτ − ε ≤ µ(ω) ≤
∫ 1

0

λ0(τ, ω)dτ + ε for all 0 < ω ≤ ωε, (5.48)

and so we reach the conclusion

lim
ω→0

(
µ(ω)−

∫ 1

0

λ0(s, ω)ds

)
= 0. (5.49)

Finally, since λ0(s, ω) depends continuously on ω, (5.49) implies (5.43).

It remains to show that ωε > 0 can be chosen such that (5.47) holds. Using

(5.45), (5.46), and the fact that φ0(ξ; s, ω) is an eigenfunction of −Lω(ξ, s) with

eigenvalue λ0(s, ω), we calculate:
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ω

2π

∂φω
∂s
− Lω(ξ, s)φω =

ω

2π

∂φ0(ξ; s, ω)

∂s
ρω +

ω

2π

dρω
ds

φ0(ξ; s, ω)

+ λ0(s, ω)φ0(ξ; s, ω)ρω (5.50)

=

(
ω

2π

∂φ0(ξ; s, ω)

∂s
+

∫ 1

0

λ0(τ, ω)dτ φ0(ξ; s, ω)

)
ρω.

(5.51)

Therefore (5.47) will hold provided we can choose ωε > 0 such that

ω

2π

∣∣∣∣∂φ0(ξ; s, ω)

∂s

∣∣∣∣ ≤ εφ0(ξ; s, ω) for all ξ ∈ Ω0, s ∈ [0, 1], 0 < ω ≤ ωε. (5.52)

Since φ0(ξ; s, ω) is positive in Ω0, we know that
∂φ0

∂s
(ξ;s,ω)

φ0(ξ;s,ω)
is finite for each ξ in

Ω0. Given ξ0 ∈ ∂Ω0 with outward normal ν, consider a sequence ξ ∈ Ω0, ξ → ξ0

with ξ−ξ0
|ξ−ξ0| · ν 9 0. For any s ∈ [0, 1] and ω ≥ 0 we have

lim
ξ→ξ0

∂φ0

∂s
(ξ; s, ω)

φ0(ξ; s, ω)
= lim

ξ→ξ0

∇∂φ0

∂s
(ξ; s, ω) · ν

∇φ0(ξ; s, ω) · ν
=
∇∂φ0

∂s
(ξ0; s, ω) · ν

∇φ0(ξ0; s, ω) · ν
= O(1) (5.53)

since Hopf’s Lemma in the elliptic case [51, chapter 3, Theorem 1.1] implies

that the normal derivative ∇φ0(ξ0; s, ω) · ν 6= 0. Then by continuity, and the

compactness of Ω0× [0, 1]× [0, 1], it follows that
∂φ0

∂s
(ξ;s,ω)

φ0(ξ;s,ω)
is bounded uniformly

with respect to (ξ0, s, ω) ∈ Ω0 × [0, 1] × [0, 1]. Therefore ωε > 0 can be chosen

to satisfy (5.52).

This leads to the following theorem. We recall also that
∫ 1

0
Dλ(Ω̃(s))ds is a

lower bound for µ(ω) for every ω > 0 (see Proposition 5.2).

Theorem 5.9. Let Ω̃(s) be a smooth bounded domain that varies smoothly and

1-periodically with s, and for each 0 ≤ s ≤ 1 let λ(Ω̃(s)) be the principal Dirich-

let eigenvalue of −∇2 on Ω̃(s). Let µ(ω) be the principal periodic eigenvalue

associated with Ω(t) = Ω̃
(
ωt
2π

)
. Then

lim
ω→0

µ(ω) =

∫ 1

0

Dλ(Ω̃(s))ds. (5.54)
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Proof. For 0 ≤ s ≤ 1 and ω ≥ 0, let λ0(s, ω) be as in Proposition 5.8. Then

limω→0 µ(ω) is given by equation (5.43). Now the change of variables h̃ from

Ω̃(s) to Ω0 transforms the operator D∇2 on Ω̃(s) to∑
i,j,k

D

(
∂h̃i
∂xk

∂h̃j
∂xk

)
∂2

∂ξi∂ξj
+
∑
j

D∇2h̃j
∂

∂ξj
on Ω0. (5.55)

By equations (5.34) and (5.35), this is precisely L0(ξ, s) (i.e. Lω(ξ, s) with

ω = 0). So we have

Dλ(Ω̃(s)) = λ0(s, 0) (5.56)

and then (5.43) is equivalent to (5.54).

Example 5.10. Let Ω(t) = (A(t), A(t) + L(t)) where A(t) = A0a
(
ωt
2π

)
and

L(t) = L0l
(
ωt
2π

)
for some smooth and 1-periodic functions l(·) > 0 and a(·).

By Theorem 5.9, as ω → 0 the principal periodic eigenvalue µ converges to∫ 1

0
Dπ2

L2
0l(s)

2ds.

In fact, since Q and Q as defined in (3.101) are both O(ω2) as ω → 0, we

can conclude from the bounds (5.19) that

µ(ω) =

∫ 1

0

Dπ2

L2
0l(s)

2
ds+O(ω2) as ω → 0. (5.57)

Theorem 5.9 gives a way to numerically compute a value for limω→0 µ(ω),

which is also a lower bound on µ(ω) for every ω > 0, provided that we can

compute the principal eigenvalue of the Laplacian on each domain Ω̃(s). The

following corollary gives an alternative approach, for cases where Ω̃(s) is ob-

tained by applying a known conformal mapping to some fixed domain Ω0, for

example a disk or an annulus. We can instead consider a set of weighted eigen-

value problems on this Ω0, where just the weight function depends on s.

Corollary 5.11. For 0 ≤ s ≤ 1 let Ω̃(s) ⊂ R2 be a smooth, connected, bounded

domain, and assume the dependence on s is smooth and 1-periodic. Let µ(ω) be

the principal periodic eigenvalue associated with the domain Ω(t) = Ω̃( ωt
2π

).

Identify R2 with the complex plane C, via

z = x1 + ix2, w = ξ1 + iξ2, (5.58)
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and let w 7→ q(s)(w) = z be a conformal mapping that maps Ω0 to Ω̃(s) for

some smooth bounded reference domain Ω0. For each 0 ≤ s ≤ 1 let λq(s) be the

minimum eigenvalue of the following weighted eigenvalue problem on Ω0:

−D∇2φ(ξ) = λ|(q(s))′(ξ1 + iξ2)|2φ(ξ) in Ω0, φ(ξ) = 0 on ∂Ω0. (5.59)

Then µ(ω) ≥
∫ 1

0
λq(s)ds for every ω > 0, and limω→0 µ(ω) =

∫ 1

0
λq(s)ds.

Proof. Write w = p(s)(z) for the inverse of z = q(s)(w). Then the mapping

ξ1 + iξ2 = p(s)(x1 + ix2) corresponds to a change of variables ξ = h(x, s) taking

x ∈ Ω̃(s) to ξ ∈ Ω0. The Cauchy-Riemann equations imply that∑
k

∂hi
∂xk

∂hj
∂xk

= |(p(s))′(z)|2δij =
1

|(q(s))′(w)|2
δij, ∇2hj ≡ 0. (5.60)

So, by equations (5.34), (5.35) and (5.60), the Dirichlet eigenvalue problem of

−L0(ξ, s) on Ω0 is equivalent to the following weighted eigenvalue problem:

−D
|(q(s))′(ξ1 + iξ2)|2

∇2φ(ξ) = λφ(ξ) in Ω0, φ(ξ) = 0 on ∂Ω0. (5.61)

In particular, if λ0(s, 0) denotes the principal Dirichlet eigenvalue of −L0(ξ, s)

on Ω0, then λ0(s, 0) = λq(s). Then the claimed results follow from Proposition

5.2 and Theorem 5.9 since these show that for each ω > 0,

µ(ω) ≥ lim
ω→0

µ(ω) =

∫ 1

0

Dλ(Ω̃(s))ds =

∫ 1

0

λ0(s, 0)ds. (5.62)

5.3.3 Asymptotic behaviour of µ(ω) as ω →∞

Consider next the limit ω → ∞. The large frequency limit of λ̂(ω) (the prin-

cipal periodic eigenvalue of (5.39), (5.40), (5.41)) is given in [46, Theorem

1.3(ii)]. They prove, by adapting an argument from [50, Theorem 3.10], that

limω→∞ λ̂(ω) = λ∞ where λ∞ is the principal eigenvalue of the elliptic operator

whose coefficients are equal to the time-averages of those of −L̂(ξ, s). Neither
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this result nor the analysis of [50] applies in cases such as ours when some of

the coefficients depend on ω and become unbounded as ω →∞.

As we shall see, in fact the behaviour of µ(ω) in the limit ω → ∞ depends

on the detail of the problem and there is no ‘general’ expression for the large

ω limit. For one-dimensional domains Ω(t) = (A(t), A(t) + L(t)), we shall give

conditions under which µ(ω) does and does not remain bounded as ω →∞.

Theorem 5.12. Let l(·) and a(·) be 1-periodic functions, belonging to C2+α([0, 1])

for some α > 0, and with min[0,1] l = 1, max[0,1] |a| = 1. For some L0 > 0,

A0 ≥ 0, ω > 0, let

L(t) = L0l

(
ωt

2π

)
, A(t) = A0a

(
ωt

2π

)
, (5.63)

and let µ(ω) = µu(ω) be the principal periodic eigenvalue associated with the

domain Ω(t) = (A(t), A(t) + L(t)). Then µ(ω) = O(ω2) as ω →∞, and if a(·)

is constant, then µ(ω) = O(1) as ω → ∞. If a(·) is non-constant, then there

exist constants C1, C2 depending only on the functions l and a such that:

1. If A0

L0
< C1 then µ(ω) = O(1) as ω →∞.

2. If A0

L0
> C2 then µ(ω) = O(ω2) as ω →∞.

Proof. If maxs∈[0,1](A0a(s)) < mins∈[0,1](A0a(s)+L0l(s)) then by Proposition 5.2

and Example 5.4, we have upper and lower bounds on µ(ω) that are independent

of ω > 0:

Dπ2

L2
0

∫ 1

0

1

l(s)2
ds ≤ µ(ω) ≤ Dπ2

(min[0,1](A0a+ L0l)−max[0,1](A0a))2
. (5.64)

So, µ(ω) = O(1) as ω →∞ as long as max[0,1](A0a) < min[0,1](A0a+L0l). If a(·)

is constant then this will be satisfied because, by assumption, min[0,1](L0l) > 0.

If a(·) is non-constant, then a sufficient condition is that

A0

L0

<
min l̃

max ã−min ã
. (5.65)
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Next, in order to prove the other claimed properties, we shall consider the

bounds (5.19) that were proved in Proposition 5.5. Define non-negative con-

stants c1, c2, c3, c4, c5, c6 in terms of the functions l and a as follows:

c1 =

∫ 1

0

1

l(s)2
ds, c2 =

∫ 1

0

a′(s)2ds, c3 =

∫ 1

0

l(s)[a′′(s)]+ds,

c4 =

∫ 1

0

l(s)[l′′(s)]+ds, c5 =

∫ 1

0

l(s)[a′′(s)]−ds, c6 =

∫ 1

0

l(s)[l′′(s)]−ds.

Then note that

1

T

∫ T

0

Dπ2

L(t)2
dt =

Dπ2

L2
0

c1,
1

T

∫ T

0

Ȧ(t)2

4D
dt =

( ω
2π

)2 A2
0

4D
c2, (5.66)

0 ≤ 1

T

∫ T

0

Q(t)

2D
dt ≤

( ω
2π

)2
(
A0L0

2D
c3 +

L2
0

4D
c4

)
, (5.67)

0 ≤ 1

T

∫ T

0

Q(t)

2D
dt ≤

( ω
2π

)2
(
A0L0

2D
c5 +

L2
0

4D
c6

)
. (5.68)

Therefore parts 1 and 3 of Proposition 5.5 imply that

Dπ2

L2
0

c1 +
( ω

2π

)2
(
A2

0

4D
c2 −

A0L0

2D
c3 −

L2
0

4D
c4

)
≤ µ(ω) ≤ Dπ2

L2
0

c1 +
( ω

2π

)2
(
A2

0

4D
c2 +

A0L0

2D
c5 +

L2
0

4D
c6

)
, (5.69)

which proves that µ(ω) = O(ω2) as ω →∞. Moreover, µ(ω) = O(ω2) as ω →∞

if
A2

0

4D
c2− A0L0

2D
c3− L2

0

4D
c4 > 0. If a(·) is non-constant then c2 6= 0, so this inequality

will hold for A0

L0
large enough (depending on c2, c3, c4).

Remark 5.13. Theorem 5.12 leads to questions about what happens in the ω →

∞ limit when A0

L0
is in the intermediate parameter range. For example, is there

a threshold value of A0

L0
at which µ(ω) stops being O(1), and if so, what is it? To

answer such questions may require different methods to those presented here.

In the following example we give the estimates of Theorem 5.12 explicitly.

Example 5.14. Let L0 > 0 be constant and let A(t) = A0 sin(ωt) with ω > 0,

A0 > 0. Consider the 2π
ω

-periodic domain Ω(t) = (A(t), A(t) + L0) and let

119



µ(ω) = µu(ω) be the principal periodic eigenvalue of Ω(t). By Proposition 5.2

we conclude that
Dπ2

L2
0

≤ µ(ω) for every ω > 0, (5.70)

and if 2A0 < L0, then µ(ω) ≤ Dπ2

(L0 − 2A0)2
for every ω > 0. (5.71)

To apply the bounds from Proposition 5.5, we calculate

t∫
0

Ȧ(ζ)2

4D
dζ =

A2
0ω

2

4D

(
t

2
+

sin(2ωt)

4ω

)
. (5.72)

We also calculate the 2π
ω

-periodic functions Q(t) and Q(t) as defined in (3.101):

Q(t) =

0 for 0 ≤ t ≤ π
ω

−A0L0ω
2 sin(ωt) for π

ω
≤ t ≤ 2π

ω
,

(5.73)

Q(t) =

A0L0ω
2 sin(ωt) for 0 ≤ t ≤ π

ω

0 for π
ω
≤ t ≤ 2π

ω
,

(5.74)

and so ∫ 2π
ω

0

Q(ζ)

2D
dζ =

∫ 2π
ω

0

Q(ζ)

2D
dζ =

A0L0ω

D
. (5.75)

By parts 1 and 3 of Proposition 5.5 we deduce that

Dπ2

L2
0

+
A2

0ω
2

8D
− A0L0ω

2

2πD
≤ µ(ω) ≤ Dπ2

L2
0

+
A2

0ω
2

8D
+
A0L0ω

2

2πD
, (5.76)

which is the bound (5.69) for this example. In agreement with Theorem 5.9 and

Theorem 5.12, the bounds (5.70), (5.71) and (5.76) show that:

µ =
Dπ2

L2
0

+O(ω2) as ω → 0. (5.77)

µ(ω) = O(ω2) as ω →∞. (5.78)

If
A0

L0

<
1

2
then µ(ω) = O(1) as ω →∞. (5.79)

If
A0

L0

>
4

π
then µ(ω) = O(ω2) as ω →∞. (5.80)

It would be very interesting to understand the ω →∞ limit in the intermediate

parameter range 1
2
≤ A0

L0
≤ 4

π
.

120



5.3.4 Monotonicity of µ(ω) with respect to ω > 0

It is proven in [46, Theorem 1.1] that, under the extra condition that their

parabolic operator has no advection term (i.e. ∂
∂ξ

term), the principal periodic

eigenvalue λ̂(ω) of (5.39), (5.40), (5.41) is non-decreasing with respect to ω > 0:

dλ̂(ω)
dω
≥ 0. In this section, we shall consider the principal periodic eigenvalue,

µ(ω), for a periodic interval Ω(t) = (A(t), A(t) +L(t)). This is the eigenvalue of

the operator L, which does have an advection term. However, we can convert

our problem to one with no advection term and which has principal periodic

eigenvalue µw(ω). We shall use certain aspects of the proof of [46, Theorem 1.1]

to derive a lower bound for dµw(ω)
dω

. A modification to their proof is needed in

order to account for the explicit dependence on ω in the coefficients. Finally,

the conversion (5.94) between µw(ω) and µu(ω) (i.e. µ(ω)) involves adding a

term which is quadratic in ω — this is related to the fact that the advection

term in our operator L is proportional to ω, which was not the case in [46]. The

consequent (linear in ω) term in dµ(ω)
dω

, together with the bound on dµw(ω)
dω

, is

what allows us to prove a monotonicity result for µ(ω) under certain conditions.

We consider the interval Ω(t) = (A(t), A(t) + L(t)) where, as in Theorem

5.12, L(t) and A(t) are given by equation (5.63) for 1-periodic functions l(·) > 0

and a(·) belonging to C2+α([0, 1]) for some α > 0. We shall show in Theorem

5.15 that µ(ω) is increasing in ω > 0 provided that a(·) is non-constant and A0

L0

is sufficiently large.

Since we shall need to work with a parabolic operator with no advection term,

we change variables to w(ξ, t) = u(ξ, t)H(ξ, t)e−f0t where (as before) H(ξ, t) is

given by equation (3.6), and we consider the operator that acts on w(ξ, t). This

is given in equation (3.11). Then we change variables to s = ωt
2π

, and this leads

us to consider the operator

Pω =
ω

2π

∂

∂s
− D

l(s)2

∂2

∂ξ2
−
( ω

2π

)2
((

ξ

L0

)
A0L0

2D
a′′(s)l(s) +

(
ξ

L0

)2
L2

0

4D
l′′(s)l(s)

)
(5.81)
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on 0 < ξ < L0. This has the form

Pω =
ω

2π

∂

∂s
− D̃(s)

∂2

∂ξ2
+ V (ξ, s, ω) (5.82)

where D̃(s) > 0 and V (ξ, s, ω) are both periodic in s with period 1.

As in [46], let uω(ξ, s) > 0 be the principal periodic eigenfunction of the

operator Pω = ω
2π

∂
∂s
− D̃(s) ∂2

∂ξ2
+ V (ξ, s, ω), and vω(ξ, s) > 0 the principal

periodic eigenfunction of its adjoint operator P∗ω = − ω
2π

∂
∂s
−D̃(s) ∂2

∂ξ2
+V (ξ, s, ω)

(see [20]), with zero Dirichlet boundary conditions and with uω(ξ, s) and vω(ξ, s)

normalised so that∫ 1

0

∫ L0

0

uω(ξ, s)2dξds =

∫ 1

0

∫ L0

0

uω(ξ, s)vω(ξ, s)dξds = 1. (5.83)

In [46, Lemma 2.1], given as Theorem A.9 here, Liu, Lou, Peng and Zhou prove

that for every ω > 0, ∫ 1

0

∫
Ω0

(vωPωuω − uωPωvω)dξds ≥ 0. (5.84)

Consequently (see [46])∫ 1

0

∫
Ω0

vω
∂uω
∂s

dξds =
π

ω

∫ 1

0

∫
Ω0

vω(Pω − P∗ω)uωdξds

=
π

ω

∫ 1

0

∫
Ω0

(vωPωuω − uωPωvω)dξds

≥ 0. (5.85)

When the coefficient V does not depend on ω (i.e. ∂V
∂ω

(ξ, s, ω) ≡ 0), it is proved

in [46, Theorem 1.1] that the principal periodic eigenvalue λ̂(ω) of their operator

Pω satisfies
dλ̂

dω
(ω) =

∫ 1

0

∫ L0

0

vω(ξ, s)
∂uω(ξ, s)

∂s
dξds. (5.86)

Combining this with (5.85) immediately gives dλ̂
dω

(ω) ≥ 0.

For our own case where V (ξ, s, ω) depends on ω, this argument must be

modified. In Theorem 5.15 we prove a monotonicity result for µ(ω) under certain

conditions, with a proof adapted from that of [46, Theorem 1.1].
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Theorem 5.15. Let L(t) and A(t) be given by equation (5.63) for 1-periodic

functions l(·) > 0 and a(·) belonging to C2+α([0, 1]) for some α > 0, and assume

a(·) is non-constant. Let µ(ω) = µu(ω) be the principal periodic eigenvalue on

Ω(t) = (A(t), A(t) + L(t)). Then there exist constants C, β > 0 depending only

on the functions l and a, such that if A0

L0
> C then dµ(ω)

dω
> β

D
ω for all ω > 0.

Proof. Let uω(ξ, s) and vω(ξ, s) be as above, for the operator Pω in (5.81).

From [46, Lemma 2.1], or Theorem A.9 here, we know that (5.85) holds for each

ω > 0. (Although [46] assumes that V does not depend on ω, [46, Lemma 2.1]

is a pointwise-in-ω result, and its proof is unchanged if the coefficient V (ξ, s, ω)

depends on ω.)

As in the proof of [46, Theorem 1.1], we take the equation Pωuω = µw(ω)uω

and differentiate the whole equation with respect to ω. Writing u′ω for ∂uω
∂ω

this

becomes:

Pωu′ω +
1

2π

∂uω(ξ, s)

∂s
+
∂V

∂ω
(ξ, s, ω)uω = µw(ω)u′ω +

dµw(ω)

dω
uω. (5.87)

Since the coefficient V (ξ, s, ω) now depends on ω, the term ∂V
∂ω
uω is new com-

pared to those in [46].

Next, we multiply equation (5.87) by vω and integrate, using the fact that

P∗ωvω = µw(ω)vω and the normalisation (5.83). We obtain the equation∫ 1

0

∫ L0

0

(
vω(ξ, s)

2π

∂uω(ξ, s)

∂s
+
∂V

∂ω
(ξ, s, ω)uω(ξ, s)vω(ξ, s)

)
dξds =

dµw
dω

(ω).

(5.88)

Upon combining this with (5.85), we get

dµw
dω

(ω) ≥
∫ 1

0

∫ L0

0

∂V

∂ω
(ξ, s, ω)uω(ξ, s)vω(ξ, s)dξds, (5.89)

and recalling the positivity of uω and vω, and the normalisation (5.83), this gives

the lower bound
dµw
dω

(ω) ≥ min
0≤ξ≤L0,0≤s≤1

∂V

∂ω
(ξ, s, ω). (5.90)

Now consider the form of the coefficient V (ξ, s, ω) in our operator. Define

b1 = max
s∈[0,1]

|a′′(s)l(s)|, b2 = max
s∈[0,1]

|l′′(s)l(s)|. (5.91)
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Then, uniformly in 0 ≤ ξ ≤ L0 and 0 ≤ s ≤ 1, we have the bound∣∣∣∣∣
(
ξ

L0

)
A0L0

2D
a′′(s)l(s) +

(
ξ

L0

)2
L2

0

4D
l′′(s)l(s)

∣∣∣∣∣ ≤ A0L0

2D
b1 +

L2
0

4D
b2, (5.92)

and so the coefficient V (ξ, s, ω) in our operator (see equation (5.81)) satisfies

∂V

∂ω
(ξ, s, ω) ≥ − 2ω

(2π)2

(
A0L0

2D
b1 +

L2
0

4D
b2

)
for all 0 ≤ ξ ≤ L0, 0 ≤ s ≤ 1.

(5.93)

Also, if c2 =
∫ 1

0
a′(s)2ds then we know from part 1 of Proposition 5.5 that the

eigenvalues µu(ω) and µw(ω) are related by

µu(ω) = µw(ω) +
( ω

2π

)2 A2
0

4D
c2. (5.94)

By combining this with (5.90) and (5.93), we have

dµu
dω

=
dµw
dω

+
2ω

(2π)2

A2
0

4D
c2 ≥

2ω

(2π)2

(
−A0L0

2D
b1 −

L2
0

4D
b2 +

A2
0

4D
c2

)
for all ω > 0.

(5.95)

Therefore if

A2
0c2 − 2A0L0b1 − L2

0b2 > 0 (5.96)

then there exists β > 0 such that dµu
dω

(ω) ≥ β
D
ω for all ω > 0. Since by assump-

tion c2 6= 0, the inequality (5.96) will be satisfied whenever A0

L0
is sufficiently

large (depending on c2, b1, b2).

Example 5.16. Let Ω(t) = (A(t), A(t) + L0) with A(t) as in Example 5.14.

Then b1 = 4π2, b2 = 0 and c2 = 2π2, and so we find that (5.96) holds and µu(ω)

is monotonically increasing in ω > 0 provided that A0

L0
> 4.

5.4 Nonlinear equation on a T -periodic domain

In this section, we consider the nonlinear periodic parabolic problem (2.1), (2.2)

where f is assumed to satisfy the conditions (2.20); that is, for some K > 0,

f(0) = f(K) = 0, f is Lipschitz continuous, f ′(0) exists and > 0,
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f(u)

u
is non-increasing on u > 0.

As above, let µ and φ(ξ, t) be the principal periodic eigenvalue and eigenfunction

satisfying equations (5.3), (5.4), (5.5), (5.6), and normalised so that ||φ||∞ = 1.

Now the solution to the linear equation (with f0 = f ′(0)) is a supersolution to

the nonlinear problem, so if f ′(0) < µ then u→ 0 as t→∞.

From now on, assume f ′(0) > µ. Fix any γ ∈ (0, f ′(0) − µ). Then since

f(u) = f ′(0)u + o(u) as u → 0, there exists ε > 0 (depending on γ) such that

for all 0 ≤ u ≤ ε,

(γ − f ′(0) + µ)u+ (f ′(0)u− f(u)) ≤ 0. (5.97)

Now, for every 0 < δ ≤ εe−γT , the function û(ξ, t) = δφ(ξ, t)eγt is a subsolution

for u(ξ, t) over 0 ≤ t ≤ T :

∂û

∂t
− Lû− f(û) = γû+ µû− f(û) (5.98)

= (γ − f ′(0) + µ)û+ (f ′(0)û− f(û)) ≤ 0 (5.99)

since û(ξ, t) ≤ ε for 0 ≤ t ≤ T . The function û also satisfies û(ξ, t) = 0 on

∂Ω0, and û(ξ, 0) ≤ û(ξ, T ), and so it is a subsolution to the periodic problem

(2.1), (2.2) in the sense of Hess [37, chapter III Definition 21.1]. Moreover the

constant K is a supersolution. By applying [37, Theorem 22.3, chapter III],

there exists a stable periodic solution u∗(ξ, t) to

∂u∗

∂t
= Lu∗ + f(u∗) for ξ ∈ Ω0, t ∈ R (5.100)

u∗(ξ, t) = 0 for ξ ∈ ∂Ω0 (5.101)

u∗(ξ, t) ≡ u∗(ξ, t+ T ) (5.102)

such that

εφ(ξ, t)eγ(t−T ) ≤ u∗(ξ, t) ≤ K for ξ ∈ Ω0, 0 ≤ t ≤ T. (5.103)

We now wish to prove that the periodic solution u∗ is unique and that for

every non-zero initial condition 0 ≤ u(·, 0) ≤ K, the solution u to (2.1), (2.2)

converges to u∗.
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Remark 5.17. It is straightforward to derive a lower bound on u(ξ, t) showing

that it does not converge to zero. We can assume without loss of generality that

there exists 0 < δ ≤ εe−γT such that δφ(ξ, 0) ≤ u(ξ, 0). Then since δφ(ξ, t)eγt is

a subsolution on 0 ≤ t ≤ T , we have

δφ(ξ, t′)eγt
′ ≤ u(ξ, t′) for all 0 ≤ t′ ≤ T. (5.104)

Then u(ξ, T ) ≥ δφ(ξ, T )eγT = δφ(ξ, 0)eγT ≥ δφ(ξ, 0) and, by applying this

argument repeatedly, we can conclude that

δφ(ξ, t′)eγt
′ ≤ u(ξ, t′ + nT ) for all 0 ≤ t′ ≤ T, n ∈ N. (5.105)

Therefore,

lim inf
t→∞

u(ξ, t) ≥ δ min
0≤t′≤T

(φ(ξ, t′)eγt
′
). (5.106)

To prove the convergence to u∗, we shall use the Poincaré map PT . For each

τ > 0, define Pτ to be the map Pτ (u0) = u(·, τ) where u(ξ, t) is the solution to the

problem (2.1), (2.2) with initial conditions u(·, 0) = u0(·). Since the coefficients

are periodic, this is the same as the map taking u(·, nT ) to u(·, nT +τ) for every

n ∈ N. The Poincaré map is PT , which takes the solution at time nT to the

solution at time (n + 1)T . Note that if u∗ is any T -periodic solution satisfying

equations (5.100), (5.101), (5.102) then u∗(·, 0) is a fixed point of the Poincaré

map PT . We shall use the following two properties of Pτ .

Lemma 5.18. For each τ > 0, the map Pτ is monotonic, in the sense that

if u0 ≤ v0 then Pτ (u0) ≤ Pτ (v0). Moreover, either u0 ≡ v0 or there is strict

inequality Pτ (u0) < Pτ (v0) on Ω0 and ∂
∂ν
Pτ (u0) 6= ∂

∂ν
Pτ (v0) on ∂Ω0.

Proof. This is a consequence of the parabolic comparison principle, strong max-

imum principle, and Hopf’s Lemma (see [51, chapter 2, Theorem 1.4]).

Lemma 5.19. Let f satisfy (2.20). Then for each τ > 0, the map Pτ is sublin-

ear, in the following sense. Let 0 ≤ α ≤ 1, and let u0 > 0 on Ω0 with u0 = 0

and ∂u0
∂ν
6= 0 on ∂Ω0. Then

αPτ (u0) ≤ Pτ (αu0). (5.107)
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Proof. If α = 0 or 1 then it is obvious, so assume 0 < α < 1. Let u(ξ, t) be

the solution to (2.1), (2.2) with initial conditions u(ξ, 0) = u0(ξ) and v(ξ, t)

the solution with initial conditions v(ξ, 0) = αu0(ξ). We need to show that

v(ξ, t) ≥ αu(ξ, t) for all t ≥ 0.

By the assumption that f(k)
k

is non-increasing on k > 0, we have that

f(αu0) ≥ αf(u0). For ε > 0 small, define fε(k) = f(k) − εk2, so that fε(k)
k

is strictly decreasing in k > 0 and

fε(αu0)− αfε(u0) ≥ εα(1− α)u2
0 > 0 in Ω0. (5.108)

Let vε, uε be the corresponding solutions to the problem with f replaced by fε:

∂uε
∂t

= Luε + fε(uε),
∂vε
∂t

= Lvε + fε(vε) (5.109)

with vε(ξ, 0) = αuε(ξ, 0) = αu0(ξ). We shall show that vε(ξ, t) ≥ αuε(ξ, t) for

every t ≥ 0. Then by taking ε→ 0 we conclude that the same inequality holds

for the solutions v, u with the original reaction function f .

At t = 0 we have

∂

∂t
(vε − αuε)|t=0 =L(αu0) + fε(αu0)− αL(u0)− αfε(u0)

=fε(αu0)− αfε(u0)

≥εα(1− α)u2
0. (5.110)

Therefore, there exists t̂ > 0 such that vε(ξ, t) ≥ αuε(ξ, t) for 0 ≤ t ≤ t̂. We

claim that t̂ can be taken as large as we like. Suppose not, and let t∗ be the

maximal such that vε(ξ, t) ≥ αuε(ξ, t) for 0 ≤ t ≤ t∗. Let ṽε be the solution

on t ≥ t∗ with ṽε(ξ, t
∗) = αuε(ξ, t

∗). Then by applying the same argument as

above, to the function ṽε at time t∗, we deduce that

∂

∂t
(ṽε − αuε)|t=t∗ ≥ εα(1− α)uε(·, t∗)2, (5.111)

and so there exists ∆t > 0 such that ṽε ≥ αuε for t∗ ≤ t ≤ t∗ + ∆t. But

the comparison principle gives vε ≥ ṽε for all t ≥ t∗, and so vε ≥ αuε for

t∗ ≤ t ≤ t∗ + ∆t, contradicting the maximality of t∗. Therefore, we do have

vε(ξ, t) ≥ αuε(ξ, t) for all t ≥ 0, as required.
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Now using the monotonicity and sublinearity properties of PT , we shall prove

the uniqueness of a periodic solution, given ordering.

Theorem 5.20. Suppose f ′(0) > µ, and suppose that U(ξ, t), U(ξ, t) are both

positive, T -periodic solutions to the problem (5.100), (5.101), (5.102), and such

that 0 ≤ U(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0. Then U(ξ, t) ≡ U(ξ, t).

Proof. By the strong maximum principle and Hopf’s Lemma [51, chapter 2,

Theorem 1.4], we know that 0 < U(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0, and that

U and U have non-zero normal derivatives on ∂Ω0. Therefore for r > 0 small

enough we have rU(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0. On the other hand this does

not hold for any r > 1. Let

r̂ = sup{r ∈ (0, 1) : rU(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0}. (5.112)

Then we know that

r̂U(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0 (5.113)

and by maximality of r̂ there exists some

ξ0 ∈ Ω0 such that r̂U(ξ0, 0) = U(ξ0, 0)

or ξ0 ∈ ∂Ω0 such that r̂
∂U

∂ν
(ξ0, 0) =

∂U

∂ν
(ξ0, 0). (5.114)

Now we apply the Poincaré map, PT . By the monotonicity (Lemma 5.18) we

have

PT (r̂U(·, 0)) ≤ PT (U(·, 0)) (5.115)

with either r̂U ≡ U or else strict inequality

PT (r̂U(·, 0)) < PT (U(·, 0)) on Ω0 (5.116)

and
∂

∂ν
PT (r̂U(·, 0)) 6= ∂

∂ν
PT (U(·, 0)) on ∂Ω0. (5.117)

Combining this with the sublinearity property (Lemma 5.19) and the fact that

U and U are fixed points of PT , we find that

r̂U(·, 0) = r̂PT (U(·, 0)) ≤ PT (r̂U(·, 0)) ≤ PT (U(·, 0)) = U(·, 0) (5.118)
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and that either r̂U ≡ U or else equations (5.116) and (5.117) hold. Incorporating

these strict inequalities into equation (5.118) would contradict the existence of

ξ0 as in equation (5.114). Therefore, in fact

r̂U ≡ U on Ω0 × [0, T ]. (5.119)

This shows that U and r̂U are both solutions to (5.100), (5.101), (5.102), and

hence r̂f(U) ≡ f(r̂U). By the assumption that f(u)
u

is non-increasing on u > 0,

this implies that either r̂ = 1 or else f(U) ≡ f ′(0)U . But we know that U

does not satisfy the linear equation because that would contradict the fact that

f ′(0) > µ. Therefore, it must be that r̂ = 1 and U ≡ U .

Next we prove convergence to u∗(ξ, t) (the positive T -periodic solution to

(5.100), (5.101), (5.102) whose existence is guaranteed by [37, Theorem 22.3,

chapter III]).

Theorem 5.21. Assume that f satisfies (2.20) and f ′(0) > µ, and let u∗(ξ, t)

be a positive T -periodic solution to (5.100), (5.101), (5.102). Given non-zero

initial conditions 0 ≤ u(ξ, 0) ≤ K, let u(ξ, t) be the solution to the nonlinear

problem (2.1), (2.2), and for n ∈ N define un(ξ, t) = u(ξ, nT + t). Then as

n→∞, un converges to u∗ in C2,1(Ω0 × [0, T ]). In particular, u∗ is unique.

Proof. Without loss of generality we can assume that

δu∗(ξ, 0) ≤ u(ξ, 0) ≤ Bu∗(ξ, 0) (5.120)

for some 0 < δ ≤ 1 and B ≥ 1. Let u(ξ, t) and u(ξ, t) be the solutions to (2.1),

(2.2) with initial conditions u(ξ, 0) = δu∗(ξ, 0) and u(ξ, 0) = Bu∗(ξ, 0). By the

comparison principle,

u(·, t) ≤ u(·, t) ≤ u(·, t) and u(·, t) ≤ u∗(·, t) ≤ u(·, t) (5.121)

for all t ≥ 0. For n ∈ N define un(ξ, t) = u(ξ, nT +t); also un(ξ, t) = u(ξ, nT +t)

and un(ξ, t) = u(ξ, nT + t). Then

un(·, t) ≤ un(·, t) ≤ un(·, t) and un(·, t) ≤ u∗(·, t) ≤ un(·, t) (5.122)
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for all 0 ≤ t ≤ T , n ∈ N. Using the fact that u∗(·, 0) is a fixed point of the

Poincaré map PT , together with the sublinearity (Lemma 5.19), we get that

u(ξ, 0) = δu∗(ξ, 0) = δPT (u∗(ξ, 0)) ≤ PT (δu∗(ξ, 0)) = PT (u(ξ, 0)) = u(ξ, T )

(5.123)

and

1

B
u(ξ, 0) = u∗(ξ, 0) = PT (u∗(ξ, 0))

≥ 1

B
PT (Bu∗(ξ, 0)) =

1

B
PT (u(ξ, 0)) =

1

B
u(ξ, T ). (5.124)

Therefore, u(ξ, 0) ≤ u(ξ, T ) and u(ξ, T ) ≤ u(ξ, 0). By applying PT again and

using the monotonicity property (Lemma 5.18) and the ordering (5.121), we

deduce that

u(ξ, nT ) ≤ u(ξ, (n+ 1)T ) ≤ u∗(ξ, 0) ≤ u(ξ, (n+ 1)T ) ≤ u(ξ, nT ) (5.125)

for all ξ ∈ Ω0, n ∈ N. Therefore, pointwise limits v(ξ) ≤ v(ξ) exist such that

v(ξ) ≤ u∗(ξ, 0) ≤ v(ξ) and

u(ξ, nT )→ v(ξ), u(ξ, nT )→ v(ξ) as n→∞. (5.126)

We can apply Theorem A.3 to un to deduce that there is a subsequence unk that

converges in C2,1(Ω0 × [0, T ]) to a solution U(ξ, t) of the nonlinear parabolic

problem (2.1), (2.2). By equating this to the pointwise limit at times 0 and T ,

we have that U(ξ, 0) = U(ξ, T ) = v(ξ). Likewise, there is a subsequence unr of

un that converges in C2,1(Ω0 × [0, T ]) to a solution U(ξ, t) of (2.1), (2.2), with

U(ξ, 0) = U(ξ, T ) = v(ξ).

Recall that U(ξ, 0) = v(ξ) ≤ u∗(ξ, 0) ≤ v(ξ) = U(ξ, 0) and so by the com-

parison principle, U(ξ, t) ≤ u∗(ξ, t) ≤ U(ξ, t) for all t ≥ 0. Therefore U and U

satisfy the conditions of Theorem 5.20, and we conclude that

U ≡ U ≡ u∗. (5.127)

Since the limit is uniquely identified, Lemma A.5 implies that actually the

whole sequences un and un converge to u∗ as n → ∞ and the convergence
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is in C2,1(Ω0 × [0, T ]). But since un satisfies (5.122), it must also converge uni-

formly to u∗ as n→∞, and by the same argument as above (applying Theorem

A.3 and Lemma A.5) the convergence is in C2,1(Ω0 × [0, T ]).

The convergence of u(ξ, nT + t) to a unique positive T -periodic solution

u∗(ξ, t) on Ω0 × [0, T ] can now be interpreted in terms of the original problem

for ψ(x, t) on the T -periodic domain Ω(t). The function u∗(ξ, t) for ξ ∈ Ω0

corresponds to a positive solution ψ∗(x, t) to (1.1), (1.2) that satisfies ψ(x, t) ≡

ψ(x, t + T ) for all x ∈ Ω(t), t ∈ R. Theorem 5.21 means that ψ(x, nT + t)

converges uniformly to ψ∗(x, t) as n→∞.
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Chapter 6

Nonlinear equation on a

bounded domain Ω0 moving at a

constant velocity c

We assume throughout this chapter that f is a nonlinear function satisfying

assumptions (2.20); that is, for some K > 0,

f(0) = f(K) = 0, f is Lipschitz continuous, f ′(0) exists and > 0,

f(u)

u
is non-increasing on u > 0,

and that the domain has the form Ω(t) = Ω0 + ct where Ω0 is bounded (either

smooth and bounded or box-like) and c is a constant vector. We prove con-

vergence to either zero or a positive stationary limit Uc which is unique. We

also derive a number of properties of this positive limit, many of which will

subsequently be used in Chapter 7.

6.1 Convergence to Uc(ξ) or zero

Let ξ = x− ct and u(ξ, t) = ψ(x, t). Then we have

∂u

∂t
= D∇2u+ c · ∇u+ f(u) for ξ ∈ Ω0 (6.1)
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u(ξ, t) = 0 on ∂Ω0. (6.2)

Let λ(Ω0) and y1 denote the principal eigenvalue and eigenfunction of −∇2 on

the bounded domain Ω0 with zero Dirichlet boundary conditions:

∇2y1 = −λ(Ω0)y1 in Ω0, y1 = 0 on ∂Ω0, y1 > 0 in Ω0. (6.3)

Define φ
(c)
1 (ξ) = y1(ξ)e−

c·ξ
2D and normalise to maxΩ0

φ
(c)
1 = 1. This is the principal

eigenfunction of

D∇2φ+ c · ∇φ = −µφ in Ω0, φ = 0 on ∂Ω0, (6.4)

and has principal eigenvalue µ = Dλ(Ω0) + |c|2
4D

. We shall see that the long-time

behaviour of u(ξ, t) depends on whether f ′(0) − Dλ(Ω0) − |c|2
4D

is < 0 or > 0.

First we show that there is convergence to zero if f ′(0) < Dλ(Ω0) + |c|2
4D

.

Proposition 6.1. If f ′(0) < Dλ(Ω0) + |c|2
4D

then as t → ∞, u(ξ, t) → 0 in

C2(Ω0), and ∂u
∂t

(ξ, t)→ 0 uniformly in Ω0.

Proof. For B > 0 large enough, u(·, 0) ≤ Bφ
(c)
1 on Ω0. Then the function

u(ξ, t) = Bφ
(c)
1 (ξ) exp

((
f ′(0)−Dλ(Ω0)− |c|

2

4D

)
t

)
(6.5)

is a supersolution for u, and tends to zero uniformly on Ω0. Proposition 2.13

then implies the claimed space and time derivatives also converge to zero.

Next we consider the case f ′(0) > Dλ(Ω0) + |c|2
4D

.

Lemma 6.2. Suppose f ′(0) > Dλ(Ω0) + |c|2
4D

. There exists δ0 > 0 such that for

0 < δ ≤ δ0, the function û(ξ) = δφ
(c)
1 (ξ) is a subsolution to the elliptic problem

D∇2U + c · ∇U + f(U(ξ)) = 0 in Ω0 (6.6)

U(ξ) = 0 on ∂Ω0. (6.7)

Proof.

D∇2û+ c · ∇û+ f(û) =

(
−Dλ(Ω0)− |c|

2

4D
+ f ′(0)

)
û+ f(û)− f ′(0)û (6.8)

=

(
f ′(0)−Dλ(Ω0)− |c|

2

4D

)
û+ o(û) as δ → 0. (6.9)

There exists δ0 > 0 such that the right hand side is ≥ 0 for all 0 < δ ≤ δ0.
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In Theorem 6.4 we shall show that if f ′(0) > Dλ(Ω0) + |c|2
4D

then u(ξ, t)

converges as t → ∞ to a positive solution to the elliptic problem (6.6), (6.7).

First, we show in Theorem 6.3 that such a solution is unique.

Theorem 6.3. Suppose f ′(0) > Dλ(Ω0) + |c|2
4D

. There exists a unique positive

solution 0 < Uc(ξ) ≤ K to the elliptic problem (6.6), (6.7).

Proof. Fix any 0 < δ ≤ δ0 and let û(ξ) = δφ
(c)
1 (ξ). This is a subsolution

for (6.6), (6.7) by Lemma 6.2, and the function ũ = K is a supersolution. By

applying the monotone iteration scheme results of [51, section 3.2], starting with

initial iterations û and ũ, we deduce the existence of solutions u and u such that

û ≤ u ≤ u ≤ ũ and that every solution u with û ≤ u ≤ ũ satisfies u ≤ u ≤ u.

We shall show that in fact u ≡ u. The uniqueness result will then follow, since

every non-negative, non-zero solution U of the elliptic problem (6.6), (6.7) must

be strictly positive (by the elliptic strong maximum principle) and have a non-

zero normal derivative on ∂Ω0 (by Hopf’s Lemma in the elliptic case [51, chapter

3, Theorem 1.1]), and so δφ
(c)
1 ≤ U for some 0 < δ ≤ δ0.

We multiply the u equation by uec·ξ/D and vice-versa, subtract, and integrate

(by parts) over Ω0. This yields that

0 =

∫
Ω0

ec·ξ/D
(
u(D∇2u+ c · ∇u)− u(D∇2u+ c · ∇u) + uf(u)− uf(u)

)
dξ

=

∫
Ω0

ec·ξ/Duu

(
f(u)

u
− f(u)

u

)
dξ ≤ 0 (6.10)

since f(u)
u

is a non-increasing function and since u ≥ u > 0 in Ω0. Therefore

there must be equality in (6.10) and

f(u)

u
≡ f(u)

u
in Ω0. (6.11)

Then the function u− u ≥ 0 satisfies u− u = 0 on ∂Ω0 and

D∇2(u− u) + c · ∇(u− u) +
f(u)

u
(u− u) = 0. (6.12)

If there is any interior point at which u− u = 0, then by the strong maximum

principle, u−u ≡ 0. If there is no such interior point, then u−u > 0 inside Ω0.
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But then, since f(u)
u

is non-increasing and f(u)
u
≡ f(u)

u
, it must be that

f(u)

u
= constant for u ∈ (min(u),max(u)) = (0,max(u)), (6.13)

and so the constant must be equal to limu→0
f(u)
u

= f ′(0). But then u and u are

positive solutions to the linear problem

D∇2u+ c · ∇u+ f ′(0)u = 0 in Ω0, u = 0 on ∂Ω0, (6.14)

which is a contradiction since f ′(0) > Dλ(Ω0) + |c|2
4D

(the principal eigenvalue).

This proves that u ≡ u.

Now we consider the parabolic problem (6.1), (6.2) with initial conditions

u0, and we fix some 0 < δ < δ0 such that

δφ
(c)
1 (ξ) ≤ u0(ξ) ≤ K in Ω0. (6.15)

Theorem 6.4. Suppose f ′(0) > Dλ(Ω0) + |c|2
4D

and let u(ξ, t) satisfy (6.1), (6.2)

with u(·, 0) = u0 satisfying (6.15). Then as t → ∞, u converges in C2(Ω0) to

the unique positive solution Uc to (6.6), (6.7), and ∂u
∂t
→ 0 uniformly in Ω0.

Proof. Let u be the solution with initial conditions u(ξ, 0) = δφ
(c)
1 (ξ), and let u

be the solution with u(ξ, 0) = K. Since δφ
(c)
1 (ξ) ≤ u0(ξ, 0) ≤ K, it follows from

the comparison principle that

u(ξ, t) ≤ u(ξ, t) ≤ u(ξ, t) for all t ≥ 0. (6.16)

Since u(ξ, 0) is a subsolution to (6.6), (6.7), we have ∂u
∂t
≥ 0 at time t = 0. By

applying the parabolic maximum principle to v(x, t) := u(x, t+ δt)− u(x, t) for

δt > 0, we deduce that u(ξ, t) is an increasing function of t. Since u(ξ, t) is also

bounded above by K, it converges to some limit U(ξ) as t→∞. Similarly, since

K = u(ξ, 0) is a supersolution, we can deduce that u(ξ, t) is a non-increasing

function of t, bounded below by 0, and converges pointwise to some limit U(ξ).

Proposition 2.13 implies that U(ξ) and U(ξ) are limits in C2(Ω0) and must

satisfy (6.6), (6.7). The inequality u(ξ, t) ≤ u(ξ, t) also implies that U(ξ) ≤
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U(ξ). So by Theorem 6.3, U ≡ U ≡ Uc. Finally, since u(ξ, t) lies between

u(ξ, t) and u(ξ, t), it must also converge pointwise to Uc(ξ). It then follows from

Proposition 2.13 that there is convergence in C2(Ω0) and ∂u
∂t

(ξ, t) converges

uniformly to zero.

We shall often use Theorem 6.4 in the following form.

Corollary 6.5. Let v(ξ, t) ≥ 0 satisfy

∂v

∂t
= D∇2v + f

(
ve
−c·ξ
2D

)
e
c·ξ
2D − |c|

2

4D
v in Ω0 (6.17)

v(ξ, t) = 0 on ∂Ω0 (6.18)

with 0 ≤ v(ξ, 0) ≤ Ke
c·ξ
2D not identically zero. If f ′(0) > Dλ(Ω0) + |c|2

4D
then as

t → ∞, v(ξ, t) → Uc(ξ)e
c·ξ
2D in C2(Ω0), and ∂v

∂t
→ 0 uniformly in Ω0, where Uc

is the unique positive solution to (6.6), (6.7).

Proof. Let u(ξ, t) = v(ξ, t)e
−c·ξ
2D . Then u satisfies (6.1), (6.2) and the result

follows from Theorem 6.4.

Remark 6.6. Consider an interval of the form Ω(t) = (A(t), A(t) + L0) with

Ȧ(t) = c, and let ξ = x− A(t). The equation becomes

∂u

∂t
= D

∂2u

∂ξ2
+ c

∂u

∂ξ
+ f(u) for 0 < ξ < L0 (6.19)

u(ξ, t) = 0 at ξ = 0 and ξ = L0. (6.20)

Theorems 6.3 and 6.4 then become as follows.

If f ′(0) > Dπ2

L2
0

+ c2

4D
then there exists a unique positive solution 0 < Uc,L0 ≤ K

to the nonlinear ordinary differential equation

DU ′′(ξ) + cU ′(ξ) + f(U(ξ)) = 0 for 0 < ξ < L0 (6.21)

U(ξ) = 0 at ξ = 0 and ξ = L0. (6.22)

As t→∞, u(·, t) converges in C2([0, L0]) to Uc,L0 and ∂u
∂t
→ 0 uniformly.
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6.2 Properties of Uc

In this section we prove certain properties of the unique positive solution Uc to

(6.6), (6.7), which features in Theorem 6.3 and Theorem 6.4. Many of these

properties will be needed in Chapter 7 in order to prove results on more general

time-dependent domains.

6.2.1 General properties

Lemma 6.7. Let U be a solution of equations (6.6), (6.7). Then∫
Ω0

D|∇U(ξ)|2dξ =

∫
Ω0

U(ξ)f(U(ξ))dξ (6.23)

and ∫
Ω0

D|∇U(ξ)|2ec·ξ/Ddξ =

∫
Ω0

U(ξ)f(U(ξ))ec·ξ/Ddξ. (6.24)

Proof. These follow by multiplying equation (6.6) by U(ξ), or U(ξ)ec·ξ/D, and

integrating by parts.

Next we give three results which all concern relationships between the solu-

tions Uc,Ω0 for different vectors c and/or different domains Ω0. We begin with a

reflection property which is a result of Lemma 2.10.

Lemma 6.8. Given a bounded domain Ω0 ⊂ RN and a vector c ∈ RN such that

f ′(0) > Dλ(Ω0) + |c|2
4D

, define also Ω̃0 = {ξ ∈ RN : (−ξ1, ξ2, . . . , ξN) ∈ Ω0} and

c̃ = (−c1, c2, . . . , cN). Then Uc̃,Ω̃0
(ξ1, ξ2, . . . , ξN) ≡ Uc,Ω0(−ξ1, ξ2, . . . , ξN).

Proof. This follows by applying Lemma 2.10 to the domains Ω0 +ct and Ω̃0 + c̃t,

taking the limit t→∞ and applying Theorem 6.4.

Next we give a comparison result for enclosed domains.

Lemma 6.9. If Ω1 + ξ0 ⊂ Ω2 then Uc,Ω1(ξ) ≤ Uc,Ω2(ξ + ξ0) for all ξ ∈ Ω1 and c

such that f ′(0) > Dλ(Ω1) + |c|2
4D

.
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Proof. Consider the solutions ψ, ψ̂ on Ω(t) = Ω1 + ξ0 + ct and Ω̂(t) = Ω2 + ct.

Since Ω(t) ⊂ Ω̂(t) for all t ≥ 0, the comparison principle (Lemma 2.11) gives

ψ(x, t) ≤ ψ̂(x, t) for all x ∈ Ω(t), t ≥ 0. Equivalently,

ψ(ξ + ξ0 + ct, t) ≤ ψ̂(ξ + ξ0 + ct, t) for all ξ ∈ Ω1. (6.25)

Let t→∞. By Theorem 6.4, the limit of the left hand side is Uc,Ω1(ξ) and that

of the right hand side is Uc,Ω2(ξ + ξ0).

In general the solutions Uc are not ordered with respect to c, but we shall

show next that Uc(ξ)e
c·ξ
2D does have an ordering property. Note that by a trans-

lation of the bounded domain, we can always assume that ξ1 ≥ 0 in Ω0.

Proposition 6.10. Let Ω0 ⊂ RN be a bounded domain, and with ξ1 ≥ 0 for all

ξ ∈ Ω0. Let c ∈ RN such that f ′(0) > Dλ(Ω0) + |c|2
4D

, and let c = (c1, c2, . . . , cN)

where c1 ≤ c1 ≤ −c1. Then Uc(ξ)e
c·ξ
2D ≤ Uc(ξ)e

c·ξ
2D for all ξ ∈ Ω0.

Proof. Suppose that v(ξ, t) and v(ξ, t) satisfy

∂v

∂t
= D∇2v + f

(
ve
−c·ξ
2D

)
e
c·ξ
2D − |c|

2

4D
v in Ω0 (6.26)

∂v

∂t
= D∇2v + f

(
ve
−c·ξ
2D

)
e
c·ξ
2D − |c|

2

4D
v in Ω0 (6.27)

with v(ξ, t) = v(ξ, t) = 0 on ∂Ω0, and with v(·, 0) ≡ v(·, 0). Since c1 ≤ c1 ≤ −c1

and ξ1 ≥ 0, we have the inequalities −|c|2 ≤ −|c|2 and e
−c·ξ
2D ≥ e

−c·ξ
2D for all

ξ ∈ Ω0. Using the assumptions (2.20) on f , it follows that

f
(
ue
−c·ξ
2D

)
e
c·ξ
2D ≤ f

(
ue
−c·ξ
2D

)
e
c·ξ
2D for all u > 0 and ξ ∈ Ω0. (6.28)

Therefore v is a supersolution for v, and so v(ξ, t) ≤ v(ξ, t) for all t ≥ 0. The

result follows by letting t→∞ and applying Corollary 6.5.

6.2.2 Continuity properties

The next result describes the continuity of Uc,Ω0 with respect to c and with

respect to scalings of the domain Ω0.
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Proposition 6.11. (Continuity with respect to Ω0 and c.)

Consider sequences of positive numbers R
(n)
1 > 0, . . ., R

(n)
N > 0, and vectors c(n)

in RN . For some fixed bounded domain Ω0 ⊂ RN , let

Ωn =

{
ξ ∈ RN :

(
ξ1

R
(n)
1

, . . . ,
ξN

R
(n)
N

)
∈ Ω0

}
. (6.29)

Assume that f satisfies assumptions (2.20), and f ′(0) > Dλ(Ωn) + |c(n)|2
4D

for

each n, and let Un be the unique positive solution to

D∇2Un(ξ) + c(n) · ∇Un(ξ) + f(Un(ξ)) = 0 in Ωn (6.30)

Un(ξ) = 0 on ∂Ωn. (6.31)

Assume that c
(n)
j → cj and R

(n)
j → 1 as n → ∞, for all 1 ≤ j ≤ N . Then

Ûn(X) := Un(R
(n)
1 X1, . . . , R

(n)
N XN) is convergent in C2(Ω0) to a non-negative

solution of

D∇2U + c · ∇U + f(U) = 0 in Ω0 (6.32)

U = 0 on ∂Ω0. (6.33)

Moreover:

1. If f ′(0) > Dλ(Ω0) + |c|2
4D

, then Ûn converges to the unique positive solution

of (6.32), (6.33).

2. Suppose f ′(0) = Dλ(Ω0) + |c|2
4D

. If f is not linear on any neighbourhood

[0, s0) of 0, then Ûn converges to zero. If f is linear on some neighbourhood

[0, s0) of 0, with s0 defined as the maximum such, then Ûn converges to

s0φ
(c)
1 .

Proof. The change of variables to Xj =
ξj

R
(n)
j

and Ûn(X) = Un(ξ) puts the

problem (6.30), (6.31) into the form

N∑
j=1

D

R
(n)
j

2

∂2Ûn
∂X2

j

+
N∑
j=1

c
(n)
j

R
(n)
j

∂Ûn
∂Xj

+ f(Ûn(X)) = 0 in Ω0 (6.34)

Ûn(X) = 0 on ∂Ω0. (6.35)

139



By Theorem A.1, there is a subsequence Ûnk that is convergent in C2(Ω0) to a

solution of (6.32), (6.33). Denote this solution by U .

1. Suppose that f ′(0) > Dλ(Ω0) + |c|2
4D

. Then we know U must be either zero

or the unique positive solution. So we just need to prove that U 6≡ 0.

Without loss of generality (by taking a further subsequence, and/or by

using the reflection property in Lemma 6.8 if needed) we can assume that

c
(nk)
j ≤ 0 for all 1 ≤ j ≤ N and all k ∈ N. Then we can find k∗ ∈ N, a

vector ĉ, and a domain Ω̂ such that

f ′(0) > Dλ(Ω̂) +
|ĉ|2

4D
(6.36)

and that for all k ≥ k∗,

ĉj ≤ c
(nk)
j ≤ 0 and Ω̂ ⊂ Ωnk . (6.37)

Define Û to be the unique positive solution to

D∇2Û(ξ) + ĉ · ∇Û(ξ) + f(Û(ξ)) = 0 in Ω̂ (6.38)

Û(ξ) = 0 on ∂Ω̂. (6.39)

Assuming (without loss of generality, by translating the domain if neces-

sary) that ξj ≥ 0 for all 1 ≤ j ≤ N and ξ ∈ Ω̂, Proposition 6.10 gives a

positive lower bound:

Unk(ξ)e
c(nk)·ξ

2D ≥ Û(ξ)e
ĉ·ξ
2D for all ξ ∈ Ω̂, k ≥ k∗. (6.40)

Therefore we also deduce a lower bound for Ûnk , and hence U , which rules

out U ≡ 0. So U must be the unique positive solution to (6.32), (6.33).

2. Suppose that f ′(0) = Dλ(Ω0) + |c|2
4D

. By equation (6.24),∫
Ω0

D|∇U(ξ)|2ec·ξ/Ddξ =

∫
Ω0

U(ξ)f(U(ξ))ec·ξ/Ddξ

≤ f ′(0)

∫
Ω0

U(ξ)2ec·ξ/Ddξ
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=

(
Dλ(Ω0) +

|c|2

4D

)∫
Ω0

U(ξ)2ec·ξ/Ddξ (6.41)

where the inequality follows from f(U) ≤ f ′(0)U . However, the char-

acterisation of the principal eigenvalue as the minimiser of the Rayleigh

quotient gives that for all u ∈ C2(Ω0) with u = 0 on ∂Ω0,(
Dλ(Ω0) +

|c|2

4D

)∫
Ω0

u(ξ)2ec·ξ/Ddξ ≤
∫

Ω0

D|∇u(ξ)|2ec·ξ/Ddξ. (6.42)

It follows that there is equality throughout (6.41) and that the limit U

satisfies f(U) ≡ f ′(0)U on Ω0. If f is not linear on any neighbourhood

[0, s0) of 0, then the only non-negative solution to this is zero, so U ≡ 0.

Suppose instead that f is linear on some neighbourhood [0, s0) of 0, with

s0 the maximal such. Then f(U) ≡ f ′(0)U implies that ||U ||∞ ≤ s0 and

(since f ′(0) = Dλ(Ω0) + |c|2
4D

) that U satisfies the linear elliptic problem

D∇2U + c · ∇U = −
(
Dλ(Ω0) +

|c|2

4D

)
U in Ω0 (6.43)

U(ξ) = 0 on ∂Ω0. (6.44)

Therefore U must be a multiple of the principal eigenfunction φ
(c)
1 with

||U ||∞ ≤ s0. However ||Ûn||∞ = ||Un||∞ > s0 for each n, as otherwise Un

would satisfy the linear equation, contradicting f ′(0) > Dλ(Ωn) + |c(n)|2
4D

.

Therefore the limit must satisfy ||U ||∞ ≥ s0. So, U = s0φ
(c)
1 .

In all cases, the limit is uniquely determined and so by Lemma A.5 the whole

sequence Ûn must converge, not just a subsequence.

A similar approach is used to prove continuity with respect to f .

Proposition 6.12. Let Ω0 be a bounded domain and c ∈ RN . Let fn be functions

satisfying conditions of type (2.20), and ||fn−f ||C0,1([0,K+ε]) → 0 as n→∞ (for

some ε > 0). Assume that f ′(0) > Dλ(Ω0) + |c|2
4D

and that f ′n(0) > Dλ(Ω0) + |c|2
4D

for each n, and let Un be the unique positive solution to

D∇2Un(ξ) + c · ∇Un(ξ) + fn(Un(ξ)) = 0 in Ω0 (6.45)
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Un(ξ) = 0 on ∂Ω0. (6.46)

Then Un converges in C2(Ω0) to the unique positive solution U of (6.32), (6.33).

Proof. The proof is similar to part 1 of Proposition 6.11. Again, Theorem

A.1 implies that there is a subsequence Unk that is convergent in C2(Ω0) to

a solution U of (6.32), (6.33). We just need to prove that U 6≡ 0. We are

assuming that f ′(0) > Dλ(Ω0) + |c|2
4D

and fn → f in C0,1([0, K + ε]), so in

particular f ′n(0) → f ′(0). Therefore there exists a function f̂ and k∗ ∈ N such

that f̂ satisfies conditions of the type (2.20), f̂ ′(0) > Dλ(Ω0) + |c|2
4D

, and f̂ ≤ fnk

for all k ≥ k∗. Let Û denote the unique positive solution with reaction term f̂ .

Then Û ≤ Unk for all k ≥ k∗ (which follows by considering the solutions û ≤ unk

to the parabolic problems with reaction terms f̂ and fnk respectively). Hence

also Û ≤ U . This shows that U 6≡ 0, and so U must be the unique positive

solution to (6.32), (6.33). Finally, by Lemma A.5 the whole sequence Un must

converge, not just a subsequence.

Example 6.13. Let fα,β,γ(u) = f((1+α)u)
(1+α)

+ βu − γu2 for sufficiently small α,

β, γ ≥ 0, and let Uα,β,γ be the unique positive solution to the problem (6.32),

(6.33) with reaction term fα,β,γ. Proposition 6.12 shows that as α, β and γ all

tend to 0, Uα,β,γ converges in C2 to the unique positive solution U with reaction

term f .

6.2.3 Asymptotic properties as the domain gets large

The next lemma is a Liouville-type property. It follows from Theorem A.10,

which is a special case of [8, Theorem 3.7].

Lemma 6.14. Let c ∈ RN and f ′(0) > |c|2
4D

. Then U(y) ≡ 0 and U(y) ≡ K are

the only solutions (with 0 ≤ U ≤ K) to

D∇2U + c · ∇U + f(U) = 0 y ∈ RN . (6.47)
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Lemma 6.14 shows that the constant K is the unique non-zero solution to

(6.47) on the whole space RN . We now use this to prove that Uc converges

locally uniformly to K as the domain Ω0 ⊂ RN gets large in all directions.

Proposition 6.15. Fix c ∈ RN with f ′(0) > |c|2
4D

. Let Ω1 be either a ball

Ω1 = {ξ ∈ RN : |ξ| < r0}, or a box Ω1 = {ξ ∈ RN : −lj < ξj < lj, 1 ≤ j ≤ N}.

For R > 0 let ΩR = RΩ1 =
{
ξ ∈ RN : ξ

R
∈ Ω1

}
and for R large enough let UR(ξ)

be the unique positive solution to (6.6), (6.7) on ΩR. As R → ∞, UR → K in

C2
loc(RN). In other words, for every compact set V ⊂ RN ,

||UR −K||C2(V ) → 0 as R→∞. (6.48)

Proof. Let Rn < Rn+1 → ∞ and un = URn . By Lemma 6.9, un is increasing

in n, and since it is bounded above by K there is some pointwise limit U(ξ),

defined on the whole of RN , such that un(ξ) → U(ξ) as n → ∞. Theorem A.1

and Lemma A.5 then imply that the convergence is in fact in C2(V ) for every

compact subset V ⊂ RN . So U(ξ) satisfies (6.47) on RN , and U 6= 0 since it is

the limit of the increasing sequence un. By Lemma 6.14, U ≡ K.

Next we would like to consider domains of the type

ΩL =

{
(ξ0, ξ) : ξ0 ∈ ω0,

−Lj
2

< ξj <
Lj
2
, 1 ≤ j ≤ N

}
(6.49)

where ω0 ⊂ Rm is bounded, and to understand the asymptotic behaviour of Uc

on such domains as Lj → ∞. The limiting domain is now ω0 × RN instead of

the whole space, and we begin by proving a uniqueness result for solutions to

D∇2Ũ + (c0, ĉ) · ∇Ũ + f(Ũ) = 0 in ω0 × RN (6.50)

Ũ(ξ0, y) = 0 on ∂ω0 × RN . (6.51)

If Uc0(ξ0) is the unique positive solution to

D∇2U(ξ0) + c0 · ∇U(ξ0) + f(U(ξ0)) = 0 in ω0 (6.52)

U(ξ0) = 0 for ξ0 ∈ ∂ω0, (6.53)
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then we show in Theorem 6.16 that the only solution to (6.50), (6.51) that

also satisfies the bounds (6.54) is Uc0(ξ0) itself. The proof uses a contradiction

argument based on that of H. Berestycki, Hamel and Rossi in [8, Theorem 3.7],

and also their strong maximum principle for strict super-solutions in unbounded

domains [8, Lemma 2.1(iii)], which is stated as Theorem A.11 here.

Theorem 6.16. Let ω0 ⊂ Rm be a bounded domain and let c0 ∈ Rm, ĉ ∈ RN .

Let f ′(0) > Dλ(ω0)+ |c0|2
4D

where f satisfies assumptions (2.20), and assume that

f(u)
u

is a strictly decreasing, uniformly continuous function of u > 0. Let Uc0(ξ0)

be the unique positive solution to (6.52), (6.53), and let Ũ(ξ0, y) be a solution to

(6.50), (6.51). Suppose there is some a > 0 such that

aUc0(ξ0) ≤ Ũ(ξ0, y) ≤ Uc0(ξ0) for all ξ0 ∈ ω0, y ∈ RN . (6.54)

Then Ũ(ξ0, y) ≡ Uc0(ξ0).

Proof. For y ∈ RN , let

V (y) =

∫
ω0

Ũ(ξ0, y)Uc0(ξ0)e
c0·ξ0
D dξ0. (6.55)

Then V satisfies

D∇2
yV + ĉ · ∇yV =

∫
ω0

(D∇2
yŨ + ĉ · ∇yŨ)Uc0(ξ0)e

c0·ξ0
D dξ0

=

∫
ω0

(−D∇2
ξ0
Ũ − c0 · ∇ξ0Ũ − f(Ũ))Uc0(ξ0)e

c0·ξ0
D dξ0

=

∫
ω0

(
−Ũ(D∇2

ξ0
Uc0 + c0 · ∇ξ0Uc0)− f(Ũ)Uc0

)
e
c0·ξ0
D dξ0

=

∫
ω0

(
Ũf(Uc0)− f(Ũ)Uc0

)
e
c0·ξ0
D dξ0 ≤ 0, (6.56)

which follows by using the equations satisfied by Ũ and Uc0 , and integrating by

parts with respect to ξ0. The right hand side is ≤ 0 due to 0 < Ũ ≤ Uc0 and

the assumption that f(u)
u

is a decreasing function. Define

V0 =

∫
ω0

Uc0(ξ0)2e
c0·ξ0
D dξ0 and µ =

infy∈RN V (y)

V0

. (6.57)
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By (6.54), we know that 0 < a ≤ µ ≤ 1. In order to prove the proposition we

just need to show that µ = 1, since this holds if and only if Ũ(ξ0, y) ≡ Uc0(ξ0).

We shall follow, where possible, the proof of [8, Theorem 3.7]. Suppose (for

a contradiction) that µ < 1, and let µ < ρ < 1. Choose y0 ∈ RN such that

V (y0) < ρV0, and let Ωρ ⊂ RN be the connected component of V −1 (−∞, ρV0)

that contains y0. If Ωρ were bounded then the elliptic maximum principle would

imply that V (y0) ≥ infΩρ
V = min∂Ωρ V = ρV0, which is not true. So Ωρ is

unbounded, and for all y ∈ Ωρ,

µV0 ≤ V (y) ≤ ρV0. (6.58)

We claim that there exists ε > 0 such that

D∇2
yV + ĉ · ∇yV ≤ −ε for y ∈ Ωρ. (6.59)

Let us assume this for now. Then in the unbounded domain Ωρ ⊂ RN ,

−(D∇2
y + ĉ · ∇y)V (y) ≥ ε > 0, −(D∇2

y + ĉ · ∇y)(ρV0) = 0 (6.60)

and V (y) = ρV0 > 0 for y ∈ ∂Ωρ. By applying [8, Lemma 2.1(iii)] (given as

Theorem A.11 here) to V (y) on Ωρ, we deduce that V (y) ≥ ρV0 in Ωρ, which

contradicts V (y0) < ρV0. So, in fact, µ = 1 and Ũ(ξ0, y) ≡ Uc0(ξ0).

So to complete the proof we just need to find ε > 0 such that (6.59) holds.

Step 1 : There is a constant K0 such that |∇Ũ(ξ0, y)| ≤ K0 (uniformly in

ω0 × RN) for every function 0 ≤ Ũ(ξ0, y) ≤ K that satisfies (6.50), (6.51).

Indeed, by Theorem A.1 we find that (for any l > 0) the functions Ũ(ξ0, ξ + y′)

are bounded in C2+γ(ω0 × [−l,+l]N), independently of y′ ∈ RN .

Step 2 : Define I(y) by

I(y) =

∫
ω0

Ũ(ξ0, y)Uc0(ξ0)

(
f(Uc0(ξ0))

Uc0(ξ0)
− f(Ũ(ξ0, y))

Ũ(ξ0, y)

)
e
c0·ξ0
D dξ0. (6.61)

Then equation (6.56) gives

D∇2
yV + ĉ · ∇yV = I(y) ≤ sup

Ωρ

I for y ∈ Ωρ. (6.62)
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We know this is ≤ 0, but we need to show the strict inequality supΩρ I < 0. Let

δ =
(1− ρ)V0∫

ω0
Uc0(ξ0)e

c0·ξ0
D dξ0

. (6.63)

Then for each y ∈ Ωρ there must exist a subset ω′y ⊂ ω0 such that

Ũ(ξ0, y) ≤ Uc0(ξ0)− δ for ξ0 ∈ ω′y. (6.64)

Indeed, if not, then there exists y ∈ Ωρ such that Ũ(ξ0, y) > Uc0(ξ0) − δ every-

where in ω0. Then

V (y) =

∫
ω0

Ũ(ξ0, ξ)Uc0(ξ0)e
c0·ξ0
D dξ0 >

∫
ω0

(Uc0(ξ0)− δ)Uc0(ξ0)e
c0·ξ0
D dξ0

= V0 − δ
∫
ω0

Uc0(ξ0)e
c0·ξ0
D dξ0 = ρV0 (6.65)

(by definition of δ), which contradicts y ∈ Ωρ.

Now using Step 1, |∇Ũ | ≤ K0 everywhere, and so in fact for each y ∈ Ωρ

there must be a subset ω′′y ⊂ ω0 such that

Ũ(ξ0, y) ≤ Uc0(ξ0)− δ

2
for ξ0 ∈ ω′′y and |ω′′y | ≥

(
δ

2K0

)m
. (6.66)

Step 3 : Since f(u)
u

is a strictly decreasing, uniformly continuous function, there

is an increasing function θf with θf (u) > 0 for u > 0, such that

f(u2)

u2

− f(u1)

u1

≤ −θf (u2 − u1) for all 0 ≤ u1 ≤ u2 ≤ K. (6.67)

Then, for y ∈ Ωρ and ξ0 ∈ ω′′y ,

f(Uc0(ξ0))

Uc0(ξ0)
− f(Ũ(ξ0, y))

Ũ(ξ0, y)
≤ −θf

(
δ

2

)
. (6.68)

Also, for ξ0 ∈ ω′′y , (6.66) implies Uc0(ξ0) ≥ δ
2

and then Ũ(ξ0, y) ≥ a δ
2

by (6.54).

So for y ∈ Ωρ,

I(y) =

∫
ω0

Ũ(ξ0, y)Uc0(ξ0)

(
f(Uc0(ξ0))

Uc0(ξ0)
− f(Ũ(ξ0, y))

Ũ(ξ0, y)

)
e
c0·ξ0
D dξ0

≤ −θf
(
δ

2

)∫
ω′′y

Ũ(ξ0, y)Uc0(ξ0)e
c0·ξ0
D dξ0 (6.69)
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≤ −θf
(
δ

2

)
aδ2

4
inf
ξ0∈ω0

(
e
c0·ξ0
D

)( δ

2K0

)m
. (6.70)

This bound is independent of y ∈ Ωρ, so supΩρ I < 0 and (6.59) holds with

ε = θf
(
δ
2

)
aδ2

4
infξ0∈ω0

(
e
c0·ξ0
D

)(
δ

2K0

)m
.

Having proved Theorem 6.16, we now use it to consider the asymptotic

behaviour of Uc on the domain ΩL as L→∞. Here we use the notation L→∞

to mean that Lj → ∞ for all 1 ≤ j ≤ N . Similarly, when we use inequalities

involving L, ξ, y, we mean that each component satisfies the inequality.

Theorem 6.17. Let ω0 ⊂ Rm be a bounded domain, and for positive vectors

L ∈ RN (Lj > 0 for 1 ≤ j ≤ N), let ΩL be given by (6.49). Let f satisfy (2.20),

and assume that f(u)
u

is a strictly decreasing, uniformly continuous function of

u > 0. Let c0 ∈ Rm, ĉ ∈ RN be such that f ′(0) > Dλ(ω0) + |c0|2
4D

+ |ĉ|2
4D

, and for

L large enough let Uc0,ĉ,L(ξ0, ξ) be the unique positive solution to

D∇2U + (c0, ĉ) · ∇U + f(U) = 0 in ΩL (6.71)

U(ξ0, ξ) = 0 on ∂ΩL. (6.72)

Also, let Uc0(ξ0) be the unique positive solution to (6.52), (6.53) on ω0 ⊂ Rm.

Then as L→∞,

sup
−L
2
≤ξ≤L

2

Uc0,ĉ,L(ξ0, ξ)→ Uc0(ξ0) uniformly in ξ0 ∈ ω0. (6.73)

Proof. For L large, let uL(ξ0, ξ, t) be the solution to

∂uL
∂t

= D∇2uL + (c0, ĉ) · ∇uL + f(uL) in ΩL (6.74)

uL(ξ0, ξ, t) = 0 on ∂ΩL (6.75)

with initial conditions u0(ξ0, ξ) ≥ 0, 6≡ 0. Also, let u∞(ξ0, t) be the solution to

∂u∞
∂t

= D∇2u∞ + c0 · ∇u∞ + f(u∞) in ω0 (6.76)

u∞(ξ0, t) = 0 on ∂ω0 (6.77)

147



with initial conditions u∞(ξ0, 0) ≡ ||u0||∞. The comparison principle implies

that uL(ξ0, ξ, t) ≤ u∞(ξ0, t) for all (ξ0, ξ) ∈ ΩL and t ≥ 0. We also know that

uL(ξ0, ξ, t) → Uc0,ĉ,L(ξ0, ξ) and u∞(ξ0, t) → Uc0(ξ0) as t → ∞. This gives the

upper bound

Uc0,ĉ,L(ξ0, ξ) ≤ Uc0(ξ0) (6.78)

which holds for all −L
2
≤ ξ ≤ L

2
, and all L large enough that Uc0,ĉ,L exists.

Lemma 6.9 implies that Uc0,ĉ,L is a non-decreasing function of L. Since it is

bounded above it must converge (pointwise) as L→∞: there is some function

Ũc0,ĉ defined on ω0 × RN such that

Uc0,ĉ,L(ξ0, y)→ Ũc0,ĉ(ξ0, y) (pointwise in ξ0, y) as L→∞. (6.79)

Theorem A.1 implies that the convergence is in fact in C2(ω0 × V ) for every

compact set V ⊂ RN , and so the limit function Ũc0,ĉ satisfies (6.50), (6.51) on

ω0 × RN . In order to prove (6.73) it just remains to show that Ũc0,ĉ(ξ0, y) ≡

Uc0(ξ0). Since (6.78) holds for all sufficiently large L, we have

Ũc0,ĉ(ξ0, y) ≤ Uc0(ξ0) for all y ∈ RN . (6.80)

Next we shall prove that there is some a > 0 such that aUc0(ξ0) ≤ Ũc0,ĉ(ξ0, y)

for all ξ0 ∈ ω0 and y ∈ RN . To get this, we consider some fixed (and sufficiently

large) L̂ < L
2
. Lemma 6.9 implies that

Uc0,ĉ,L̂(ξ0, y) ≤ Uc0,ĉ,L(ξ0, y + ŷ) (6.81)

for all ξ0 ∈ ω0, − L̂
2
≤ y ≤ L̂

2
and −

(
L−L̂

2

)
≤ ŷ ≤

(
L−L̂

2

)
. This leads to

sup
y
Uc0,ĉ,L̂(ξ0, y) ≤ Uc0,ĉ,L(ξ0, Y ) (6.82)

for every ξ0 ∈ ω0 and −
(
L
2
− L̂

)
≤ Y ≤

(
L
2
− L̂

)
. Fixing L̂ and letting L→∞

gives

Ũc0,ĉ(ξ0, Y ) ≥ sup
y
Uc0,ĉ,L̂(ξ0, y) ≥ Uc0,ĉ,L̂(ξ0, 0) for all ξ0 ∈ ω0, Y ∈ RN .

(6.83)
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But Uc0,ĉ,L̂(ξ0, 0) > 0 for ξ0 ∈ ω0 and the normal derivative is non-zero for

ξ0 ∈ ∂ω0. So, there must exist some a > 0 such that Uc0,ĉ,L̂(ξ0, 0) ≥ aUc0(ξ0)

and hence we get

Ũc0,ĉ(ξ0, Y ) ≥ Uc0,ĉ,L̂(ξ0, 0) ≥ aUc0(ξ0) for all ξ0 ∈ ω0, Y ∈ RN . (6.84)

It then follows from Theorem 6.16 that Ũc0,ĉ(ξ0, y) ≡ Uc0(ξ0).

6.2.4 Properties of Uc,L0
on the interval

Given 0 < L0 < ∞ and c ∈ R such that f ′(0) > Dπ2

L2
0

+ c2

4D
, let Uc,L0 denote

the unique positive solution to (6.21), (6.22). Several properties of Uc,L0 can be

proven in the one-dimensional case, in addition to those from Section 6.2.

Proposition 6.18. 1. Uc,L0 has a single maximum point ξ∗, such that

U ′c,L0
> 0 on [0, ξ∗), U ′c,L0

(ξ∗) = 0, U ′c,L0
< 0 on (ξ∗, L0]. (6.85)

2. |U ′c,L0
(L0)| < |U ′c,L0

(0)| if c > 0, or the opposite inequality if c < 0. Also

U ′′c,L0
(0) has the opposite sign to c, and U ′′c,L0

(L0) has the same sign as c.

Proof. 1. There must be an interior maximum since by Hopf’s Lemma [51,

chapter 3, Theorem 1.1] we know that U ′c,L0
(0) > 0 but U ′c,L0

(L0) < 0.

But at any interior stationary point ξ∗, DU ′′c,L0
(ξ∗) = −f(Uc,L0(ξ

∗)) < 0.

So U ′c,L0
can only change sign once, and ξ∗ is unique.

2. By multiplying equation (6.21) by U ′c,L0
and integrating by parts, we get

c

∫ L0

0

(U ′c,L0
(ξ))2dξ =

D

2

(
U ′c,L0

(0)2 − U ′c,L0
(L0)2

)
, (6.86)

which proves that |U ′c,L0
(L0)| < |U ′c,L0

(0)| if c > 0, or the opposite inequal-

ity if c < 0. Finally, note that at both endpoints, DU ′′c,L0
= −cU ′c,L0

which

can be used to deduce the sign of U ′′c,L0
at the endpoints.

149



In this one-dimensional case, the equation (6.21) for Uc,L0 is an ordinary

differential equation and we may consider the problem in the phase plane:

U ′ = V, V ′ = − c

D
V − f(U)

D
, (6.87)

where U = Uc,L0 and V = U ′. In the phase plane (see Figure 6.1) there are two

fixed points: a saddle point at (K, 0) and a spiral or centre at (0, 0).

Next we define the semi-wave of speed c. For c ∈ (−c∗, c∗), the semi-wave

Ûc is the function satisfying

DÛ ′′c + cÛ ′c + f(Ûc) = 0 for 0 < x <∞ (6.88)

Ûc(0) = 0, lim
x→∞

Ûc(x) = K, Ûc > 0 on (0,∞). (6.89)

Figure 6.1: Sketch of a typical phase plane for (6.87), with the semi-wave tra-

jectory highlighted.

In the phase plane (Figure 6.1), Ûc corresponds to the trajectory that tends

towards (K, 0) from the region U < K, V > 0. Along this trajectory U is mono-

tonically increasing, and following it backwards it crossed the U = 0 axis at some

point (0, Û ′c(0)) with Û ′c(0) > 0. We shall show that limL0→∞ U
′
c,L0

(0) = Û ′c(0).

Proposition 6.19. Fix c ∈ (−c∗, c∗), and let Ûc be the semi-wave satisfying

(6.88), (6.89). Then U ′c,L0
(0)→ Û ′c(0) as L0 →∞.
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Proof. If L1 ≤ L2 then by Lemma 6.9, Uc,L1(y) ≤ Uc,L2(y) for all 0 ≤ y ≤ L1 and

consequently also U ′c,L1
(0) ≤ U ′c,L2

(0). So U ′c,L0
(0) is monotonic non-decreasing

with respect to L0. By considering the phase plane, it must also be bounded

above by Û ′c(0) since the trajectories cannot cross. Therefore as L0 → ∞,

U ′c,L0
(0) converges to some finite value v̂ ≤ Û ′c(0). If v̂ < Û ′c(0) then we can

choose V0 ∈ (v̂, Û ′c(0)) and consider the trajectory starting from U = 0, V = V0

at ξ = 0. This must return to the U = 0 axis after some finite distance L in ξ,

and so it corresponds to Uc,L. But then U ′
c,L

(0) = V0, and this contradicts the

fact that U ′c,L(0) ≤ v̂ for all L. Thus, v̂ = Û ′c(0).

The following result relates to the case c = 0 only.

Proposition 6.20. Let L2 ≥ L1 > π
√

D
f ′(0)

. Then

U0,L1(ηL1) ≤ U0,L2(ηL2) for all 0 ≤ η ≤ 1. (6.90)

Proof. Let u1(ξ, t) and u2(ξ, t) satisfy

∂u1

∂t
= D

∂2u1

∂ξ2
+ f(u1) for 0 < ξ < L1 (6.91)

∂u2

∂t
= D

∂2u2

∂ξ2
+
L2

2

L2
1

f(u2) for 0 < ξ < L1 (6.92)

with u1(ξ, t) = u2(ξ, t) = 0 at ξ = 0 and ξ = L1, and with u1(ξ, 0) ≡ u2(ξ, 0) ≡

u0(ξ). Since L2 > L1 and f ≥ 0, it follows that u2 is a supersolution for u1, and

so u1(ξ, t) ≤ u2(ξ, t) for all 0 ≤ ξ ≤ L1 and t ≥ 0. Change variables in the u2

equation to z = L2

L1
ξ ∈ (0, L2) and s =

L2
2

L2
1
t, and write u2(z, s) = u2(ξ, t). This

satisfies
∂u2

∂s
= D

∂2u2

∂z2
+ f(u2) for 0 < z < L2 (6.93)

with u2(ξ, t) = 0 at ξ = 0 and ξ = L2. As t→∞ (and s→∞), we have uniform

convergence u1(ξ, t)→ U0,L1(ξ) and u2(z, s)→ U0,L2(z). Then the inequality

u1(ξ, t) ≤ u2(ξ, t) = u2

(
L2

L1

ξ,
L2

2

L2
1

t

)
for all 0 ≤ ξ ≤ L1, t ≥ 0 (6.94)

leads to U0,L1(ξ) ≤ U0,L2

(
L2

L1
ξ
)

for 0 ≤ ξ ≤ L1, which completes the proof.
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6.3 Convergence is locally uniform in c

In Theorem 6.4 we showed that supξ∈Ω0
|u(ξ, t)− Uc(ξ)| → 0 as t → ∞ if

f ′(0) > Dλ(Ω0) + |c|2
4D

. Next we shall prove that this convergence is uniform in

compact subsets of c. This will be used in the proofs of Theorems 7.5 and 7.8.

Theorem 6.21. Given some c′j ≤ c′′j , suppose that f ′(0) > Dλ(Ω0) + |c|2
4D

for

all c ∈ ∆ := {c ∈ RN : c′j ≤ cj ≤ c′′j : 1 ≤ j ≤ N}. Let uc(ξ, t) satisfy (6.1),

(6.2), with initial conditions uc(ξ, 0) = u0(ξ). Then the convergence to Uc(ξ) as

t→∞ (given by Theorem 6.4 for each c ∈ ∆) is uniform with respect to c ∈ ∆:

sup
c∈∆

sup
ξ∈Ω0

|uc(ξ, t)− Uc(ξ)| → 0 as t→∞. (6.95)

Proof. First, consider the solutions uc with initial conditions uc(ξ, 0) = δφ
(c)
1 (ξ).

As in Lemma 6.2 and Theorem 6.4, for δ small enough (0 < δ ≤ δ0 which can

be chosen independently of c ∈ ∆), uc(ξ, 0) is a subsolution to (6.6), (6.7). So,

as before, uc(ξ, t) is an increasing function of t and it converges uniformly to

Uc(ξ) as t→∞. Take any sequence tn →∞, and for c ∈ ∆ define

Φn(c) = sup
ξ∈Ω0

|uc(ξ, tn)− Uc(ξ)|. (6.96)

Then Φn is continuous with respect to c ∈ ∆ for each fixed n (by Proposition

6.11 and Lemma A.8); Φn is monotonic decreasing in n for each fixed c; and as

n → ∞, Φn converges pointwise in c to 0 (by Theorem 6.4). Hence, by Dini’s

Theorem [48, Example 5.4], Φn converges to 0 uniformly in c ∈ ∆. Since the

sequence tn →∞ was arbitrary, we have supξ∈Ω0
|uc(ξ, t)−Uc(ξ)| → 0 uniformly

in c ∈ ∆ as t→∞.

Next consider the solutions uc with initial conditions uc(ξ, 0) ≡ K. Each

uc(ξ, t) is a decreasing function of t, and converges uniformly to Uc(ξ) as t→∞.

We apply Dini’s Theorem to functions Φn defined as in (6.96) but with uc instead

of uc, and find that supξ∈Ω0
|uc(ξ, t)−Uc(ξ)| → 0 uniformly in c ∈ ∆ as t→∞.

Finally, δφ
(c)
1 (ξ) ≤ u0(ξ) ≤ K implies that uc(ξ, t) ≤ uc(ξ, t) ≤ uc(ξ, t) for

all t ≥ 0. Therefore also supξ∈Ω0
|uc(ξ, t) − Uc(ξ)| → 0 uniformly in c ∈ ∆ as

t→∞.
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Chapter 7

Nonlinear equation on other

time-dependent domains Ω(t)

In Chapter 6 the domain had the form Ω0+ct. Now, we consider several domains

Ω(t) that are not of this form. Sections 7.1–7.3 concern domains of Types 1 and

2 whose size and velocity are not constant but satisfy certain limiting behaviour

as t → ∞. We prove results about convergence to either positive stationary

solutions or K. We extend the analysis to cylinder-like (Type 3) domains in

Section 7.4. In the final part of the chapter, we consider the nonlinear equation

on an interval (A(t), A(t) + L(t)). We discuss the role of Lcrit(c) in Section

7.5.1, and investigate the long-time behaviour of the gradient at the boundary

in Section 7.5.2. Throughout the chapter, ψ will always denote a solution (≥ 0

and 6≡ 0) to the nonlinear problem (1.1), (1.2) on the specified domain Ω(t).

We begin with a corollary to Theorem 6.4.

Corollary 7.1. Assume that f ′(0) > Dλ(Ω1) + |c|2
4D

for some bounded domain

Ω1 and vector c.

1. Suppose Ω(t) is such that for all t sufficiently large Ω1 + ct ⊂ Ω(t). Then

lim inft→∞ infξ∈Ω1 (ψ(ξ + ct, t)− Uc,Ω1(ξ)) ≥ 0.

2. Suppose instead that for all t sufficiently large, Ω(t) ⊂ Ω1 + ct. Then

lim supt→∞ supx∈Ω(t) (ψ(x, t)− Uc,Ω1(x− ct)) ≤ 0.

153



Proof. These results follow by applying the comparison principle (Lemma 2.11),

then letting t→∞ and using Theorem 6.4.

7.1 A bounded domain moving at Ȧ(t)→ c

We extend the result of Theorem 6.4 to Ω(t) = Ω0 + A(t) with Ȧ(t)→ c.

Theorem 7.2. Let Ω(t) = Ω0+A(t) be as in equation (2.6), and u(ξ, t) = ψ(x, t)

where ξ = x−A(t). Suppose that Ȧj(t)→ cj and Äj(t)→ 0 as t→∞ (for each

1 ≤ j ≤ N), and suppose f ′(0) > Dλ(Ω0) + |c|2
4D

. Let Uc be the unique positive

solution to (6.6), (6.7). Then limt→∞ supξ∈Ω0
|u(ξ, t)− Uc(ξ)| = 0.

Proof. Without loss of generality (by using the reflection properties of Lemmas

2.10 and 6.8 if necessary) we may assume cj ≤ 0 for each 1 ≤ j ≤ N . Further-

more (by reordering co-ordinates) we can assume that in fact cj = 0 for j ≤ m,

and cj < 0 for j > m (where m is some number between 0 and N , and where

m = 0 if cj < 0 for all j, or m = N if cj = 0 for all j). Finally (by translating

the domain if necessary) we can assume ξj ≥ 0 for each 1 ≤ j ≤ N and all

ξ ∈ Ω0.

Let c, c ∈ RN be such that cj = cj = 0 for each j ≤ m, and cj < cj < cj < 0

for each m < j ≤ N . Assume cj and cj are sufficiently close to cj and ε0 > 0 is

sufficiently small that for 0 < ε ≤ ε0

f ′(0)(1−mε) > Dλ(Ω0) +
|c|2

4D
. (7.1)

For each 0 < ε ≤ ε0, there exists T such that for all t ≥ T , ξ ∈ Ω0, 1 ≤ j ≤ N :

1− ε ≤ e
−Ȧj(t)ξj

2D ≤ 1 + ε and

∣∣∣∣∣Äj(t)ξj2D
− Ȧj(t)

2

4D

∣∣∣∣∣ ≤ εf ′(0) if j ≤ m, (7.2)

−cj ≤ −Ȧj(t) ≤ −cj and − c2
j ≤ 2Äj(t)ξj − Ȧj(t)2 ≤ −c2

j if j > m. (7.3)

Let v(ξ, t) = u(ξ, t)e
Ȧ(t)·ξ
2D . Then for ξ ∈ Ω0,

∂v

∂t
= D∇2v + f

(
v(ξ, t)e

−Ȧ(t)·ξ
2D

)
e
Ȧ(t)·ξ
2D +

N∑
j=1

(
Äj(t)ξj

2D
− Ȧj(t)

2

4D

)
v(ξ, t) (7.4)
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with v(ξ, t) = 0 on ∂Ω0. For ξ ∈ Ω0, t ≥ T , let v and v be the solutions to

∂v

∂t
= D∇2v + f

(
(1 + ε)mv(ξ, t)e

−c·ξ
2D

)
(1 + ε)−me

c·ξ
2D −mεf ′(0)v − |c|

2

4D
v (7.5)

∂v

∂t
= D∇2v + f

(
(1− ε)mv(ξ, t)e

−c·ξ
2D

)
(1− ε)−me

c·ξ
2D +mεf ′(0)v − |c|

2

4D
v (7.6)

with v(ξ, t) = v(ξ, t) = 0 on ∂Ω0, and with v(ξ, T ) ≡ v(ξ, T ) ≡ v(ξ, T ). Then,

using (7.2), (7.3) and the fact that f(u)
u

is a non-increasing function of u > 0,

v(ξ, t) will be a subsolution for v and v(ξ, t) will be a supersolution. So,

v(ξ, t) ≤ v(ξ, t) ≤ v(ξ, t) for all t ≥ T. (7.7)

Now, v and v each satisfy problems of the form (6.17), (6.18) with (respectively)

constant velocities c, c and reaction terms

f
ε
(u) = f ((1 + ε)mu) (1 + ε)−m −mεf ′(0)u, (7.8)

f ε(u) = f ((1− ε)mu) (1− ε)−m +mεf ′(0)u. (7.9)

These satisfy conditions of the type (2.20), with f ′
ε
(0) = (1 − mε)f ′(0) and

f
′
ε(0) = (1 + mε)f ′(0). So for ε small enough and cj, cj such that (7.1) is

satisfied, Corollary 6.5 implies that v(ξ, t) → U c(ξ)e
c·ξ
2D and v(ξ, t) → U c(ξ)e

c·ξ
2D

uniformly in ξ as t→∞, where these are the unique positive solutions to

D∇2U c(ξ) + c · ∇U c + f
ε
(U c(ξ)) = 0 for ξ ∈ Ω0, (7.10)

D∇2U c(ξ) + c · ∇U c + f ε(U c(ξ)) = 0 for ξ ∈ Ω0, (7.11)

with U c(ξ) = U c(ξ) = 0 on ∂Ω0. Therefore we deduce from (7.7) and the

definition of v that

0 ≤ lim inf
t→∞

inf
ξ∈Ω0

(
u(ξ, t)e

c·ξ
2D − U c(ξ)e

c·ξ
2D

)
, (7.12)

lim sup
t→∞

sup
ξ∈Ω0

(
u(ξ, t)e

c·ξ
2D − U c(ξ)e

c·ξ
2D

)
≤ 0. (7.13)

As ε → 0 both f
ε

and f ε converge to f in C0,1([0, K(1 − ε0)−m]). So letting

ε→ 0, cj → cj and cj → cj, the continuous dependence (Propositions 6.11 and

6.12) means that U c and U c both converge uniformly to Uc on Ω0. Therefore,

we conclude that limt→∞ supξ∈Ω0
|u(ξ, t)− Uc(ξ)| = 0.
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We can also extend the result of Theorem 6.4 to domains whose size and

velocity are both non-constant but convergent as t→∞.

Theorem 7.3. Let Ω0 be either a ball, Ω0 = {ξ ∈ RN : |ξ| < R0}, or a box

Ω0 = {ξ ∈ RN : 0 < ξj < lj, 1 ≤ j ≤ N}. For a given A(t) ∈ RN , and

R1(t) > 0, . . ., RN(t) > 0, let

Ω(t) =

{
x ∈ RN :

(
x1 − A1(t)

R1(t)
, . . . ,

xN − AN(t)

RN(t)

)
∈ Ω0

}
. (7.14)

Assume that Rj(t) → 1, Ȧj(t) → cj, and Äj(t) → 0 as t → ∞ for 1 ≤ j ≤ N ,

where f ′(0) > Dλ(Ω0) + |c|2
4D

. If ξj =
xj−Aj(t)
Rj(t)

and u(ξ, t) = ψ(x, t) then

lim
t→∞

sup
ξ∈Ω0

|u(ξ, t)− Uc,Ω0(ξ)| = 0. (7.15)

Proof. Let ε > 0 be small enough that f ′(0) > Dλ(Ω0)
(1−ε)2 + |c|2

4D
. Then there exists

T such that 1− ε ≤ Rj(t) ≤ 1 + ε for all t ≥ T and 1 ≤ j ≤ N . Let

Ω±ε (t) =

{
x ∈ RN :

(
x1 − A1(t)

1± ε
, . . . ,

xN − AN(t)

1± ε

)
∈ Ω0

}
. (7.16)

Then Ω−ε (t) ⊂ Ω(t) ⊂ Ω+
ε (t) for all t ≥ T , and so the solutions ψ±(x, t) to

∂ψ±

∂t
= D∇2ψ± + f(ψ±) in Ω±ε (t), t ≥ T (7.17)

ψ±(x, t) = 0 on ∂Ω±ε (t) (7.18)

with ψ+(x, T ) = ψ−(x, T ) = ψ(x, T ), are a supersolution and subsolution for ψ.

Using the supersolution we get

ψ(x, t)− ψ+(x, t) ≤ 0 for all x ∈ Ω(t), t ≥ T. (7.19)

Equivalently,

u(ξ, t)−ψ+(R1(t)ξ1 +A1(t), . . . , RN(t)ξN +AN(t), t) ≤ 0 for all ξ ∈ Ω0, t ≥ T.

(7.20)

But by Theorem 7.2

sup
y∈(1+ε)Ω0

|ψ+(y + A(t), t)− Uc,(1+ε)Ω0(y)| → 0 as t→∞. (7.21)
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So we deduce from (7.20) and (7.21) that

lim sup
t→∞

(
sup
ξ∈Ω0

(
u(ξ, t)− Uc,(1+ε)Ω0(R1(t)ξ1, . . . , RN(t)ξN)

))
≤ 0, (7.22)

and thus

lim sup
t→∞

(
sup
ξ∈Ω0

(
u(ξ, t)− Uc,(1+ε)Ω0(ξ1, . . . , ξN)

))
≤ 0. (7.23)

Similarly, by applying Theorem 7.2 to the subsolution ψ−(x, t), we find that

lim inf
t→∞

(
inf

ξ∈(1−ε)Ω0

(
u(ξ, t)− Uc,(1−ε)Ω0(ξ)

))
≥ 0. (7.24)

Let ε → 0 in (7.23) and (7.24), and use the continuity (Proposition 6.11), to

conclude that limt→∞ supξ∈Ω0
|u(ξ, t)− Uc,Ω0(ξ)| = 0.

Remark 7.4. Having obtained the results of Theorems 7.2 and 7.3, it then

follows from Proposition 2.13 that in each case there is convergence not only

uniformly in ξ but in C2(Ω0), and that ∂u
∂t

converges uniformly to zero.

7.2 Time-dependent box in RN , as the side lengths

tend to ∞

Suppose that Ω(t) is a time-dependent box of the form (2.14); that is

Ω(t) =
{
x ∈ RN : Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N

}
for some Aj(t) ∈ R, and Lj(t) > 0, each twice differentiable. Changing variables

from xj to ξj =
(
xj−Aj(t)
Lj(t)

)
L0 and ψ(x, t) = u(ξ, t), the problem becomes (2.15),

(2.16); that is:

∂u

∂t
= D

N∑
j=1

L2
0

Lj(t)2

∂2u

∂ξ2
j

+
N∑
j=1

(
ξjL̇j(t) + L0Ȧj(t)

Lj(t)

)
∂u

∂ξj
+ f(u) for 0 < ξj < L0

u(ξ, t) = 0 at ξj = 0 and ξj = L0.

Let v(ξ, t) = u(ξ, t)E(ξ, t) where

E(ξ, t) = exp

(
N∑
j=1

(
ξ2
j L̇j(t)Lj(t)

4DL2
0

+
ξjȦj(t)Lj(t)

2DL0

))
. (7.25)
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Then for 0 < ξj < L0, v satisfies

∂v

∂t
=D

N∑
j=1

L2
0

Lj(t)2

∂2v

∂ξ2
j

+ f

(
v(ξ, t)

E(ξ, t)

)
E(ξ, t)

+
N∑
j=1

(
ξ2
j L̈j(t)Lj(t)

4DL2
0

+
ξjÄj(t)Lj(t)

2DL0

− Ȧj(t)
2

4D
− L̇j(t)

2Lj(t)

)
v (7.26)

v(ξ, t) = 0 at ξj = 0 and ξj = L0. (7.27)

In the following theorem we consider the nonlinear equation on a box (or an

interval, taking N = 1) such that Lj(t) → ∞ as t → ∞, with L̇j(t) → αj ≥ 0

and Ȧj(t) → cj. This may be compared with Corollary 3.6 for the separable

solutions to the linear equation. We make this comparison in Example 7.7.

Theorem 7.5. Let Ω(t) be given by (2.14). Suppose there are finite constants

cj and αj (for 1 ≤ j ≤ N) such that Ȧj(t) → cj, Äj(t) → 0, Lj(t) → ∞,

L̇j(t)→ αj ≥ 0, L̈j(t)→ 0, as t→∞. If the set

S =

{
ξ ∈ RN : ξj ∈ (0, L0), f ′(0) >

1

4D

N∑
j=1

(
cj + αj

ξj
L0

)2
}

(7.28)

is non-empty, then for every compact set V ⊂ S,

sup
ξ∈V
|u(ξ, t)−K| → 0 as t→∞. (7.29)

Proof. Each compact set V ⊂ S can be enclosed by a finite union of sets of the

form V ′ =
{
ξ ∈ RN : ξ

L0
∈ Λ

}
⊂ S where

Λ = {η
j
≤ ηj ≤ ηj : 1 ≤ j ≤ N} (7.30)

0 < η
j
≤ ηj < 1 with (cj + η

j
αj)(cj + ηjαj) ≥ 0, (7.31)

i.e. (cj +η
j
αj) and (cj +ηjαj) have the same sign as each other. So it is enough

to prove the claim on V ′. Moreover, by the reflection property (Lemma 2.10 and

Lemma 6.8) it is enough to prove it for the case where cj +η
j
αj ≤ cj +ηjαj ≤ 0

for every j. [If 0 ≤ cj + η
j
αj ≤ cj + ηjαj for some j then we can replace Aj(t)
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by Âj(t) = −(Aj(t) +Lj(t)), and ξj by ξ̂j = L0− ξj. Then cj + ηjαj is replaced

by −(cj + αj) + (1− ηj)αj = −(cj + ηjαj) which is ≤ 0.] So, we assume:

cj + η
j
αj ≤ cj + ηjαj ≤ 0 for 1 ≤ j ≤ N and f ′(0) >

1

4D

N∑
j=1

(
cj + αjηj

)2

.

(7.32)

Let us write c̃+ηα and A(t)+ηL(t) for the vectors with jth component c̃j+ηjαj

and Aj(t) + ηjLj(t) (and likewise for the time derivatives). Then we would like

to show that |ψ(A(t) + ηL(t), t)−K| → 0 uniformly in η ∈ Λ as t→∞.

Choose c̃j < cj close enough to cj and L∗ large enough such that

f ′(0) >
1

4D

N∑
j=1

(
c̃j + αjηj

)2

+N
Dπ2

L2
∗
. (7.33)

Then choose T ≥ 0 large enough such that for all t ≥ T and 1 ≤ j ≤ N ,

η
j
Lj(t) ≥ L∗ and (1− ηj)Lj(t) ≥ L∗, and also

c̃j + ηjαj ≤ Ȧj(t) + ηjL̇j(t),

−(c̃j + ηjαj)
2 ≤ −(Ȧj(t) + ηjL̇j(t))

2 + min(0, 2L∗(Äj(t) + ηjL̈j(t))). (7.34)

Write Ω∗ = {x ∈ RN : 0 < xj < L∗} and note that there exists some u∗ ≥ 0 not

identically zero such that

ψ(A(T ) + y + x, T ) ≥ u∗(x) for all x ∈ Ω∗, 0 ≤ yj ≤ Lj(T )− L∗. (7.35)

In particular, by choice of T , this holds with yj = ηjLj(T )− zj for every z ∈ Ω∗

and η ∈ Λ:

ψ(A(T ) + ηL(T )− z + x, T ) ≥ u∗(x) for all η ∈ Λ, z ∈ Ω∗, x ∈ Ω∗. (7.36)

Now let uη be the solution to

∂uη
∂t

= D∇2uη +
N∑
j=1

(Ȧj(t) + ηjL̇j(t))
∂uη
∂xj

+ f(uη) in Ω∗ × (T,∞) (7.37)

with uη(x, t) = 0 on ∂Ω∗, and with uη(x, T ) = u∗(x). Then for η ∈ Λ and every

z ∈ Ω∗, uη(x, t) is a subsolution for ψ(A(t) + ηL(t)− z+ x, t) on Ω∗. Therefore,

ψ(A(t) + ηL(t)− z + x, t) ≥ uη(x, t) for all z ∈ Ω∗, x ∈ Ω∗, t ≥ T, (7.38)
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and thus

ψ(A(t) + ηL(t), t) ≥ sup
x∈Ω∗

uη(x, t) for all t ≥ T. (7.39)

Also define

vη(x, t) = uη(x, t) exp

(
N∑
j=1

(Ȧj(t) + ηjL̇j(t))xj
2D

)
, (7.40)

which satisfies

∂vη
∂t

=D∇2vη +
N∑
j=1

(
xj(Äj(t) + ηjL̈j(t))

2D
− (Ȧj(t) + ηjL̇j(t))

2

4D

)
vη

+ f

 vη(x, t)

exp
(

(Ȧ(t)+ηL̇(t))·x
2D

)
 exp

(
(Ȧ(t) + ηL̇(t)) · x

2D

)
in Ω∗ (7.41)

vη(x, t) = 0 on ∂Ω∗. (7.42)

Using (7.34) and the fact that f(u)
u

is non-increasing in u, we see that vη(x, t) is

a supersolution for vη,c̃(x, t) where

∂vη,c̃
∂t

=D∇2vη,c̃ −
N∑
j=1

(c̃j + ηjαj)
2

4D
vη,c̃

+ f

 vη,c̃(x, t)

exp
(

(c̃+ηα)·x
2D

)
 exp

(
(c̃+ ηα) · x

2D

)
in Ω∗ (7.43)

vη,c̃(x, t) = 0 on ∂Ω∗ (7.44)

with vη,c̃(·, T ) = vη(·, T ). So,

vη(x, t) ≥ vη,c̃(x, t) for all x ∈ Ω∗, t ≥ T, η ∈ Λ. (7.45)

By Corollary 6.5, vη,c̃(x, t) converges to Uc̃+ηα,Ω∗(x) exp
(

(c̃+ηα)·x
2D

)
uniformly on

Ω∗ as t→∞, and by Theorem 6.21 this convergence is uniform in η ∈ Λ. So,

lim inf
t→∞

inf
x∈Ω∗,η∈Λ

(
vη(x, t)− Uc̃+ηα,Ω∗(x) exp

(
N∑
j=1

(c̃j + ηjαj)xj
2D

))
≥ 0. (7.46)

Using (7.40) and the convergence Ȧj(t)→ cj, L̇j(t)→ αj, this implies that

lim inf
t→∞

inf
x∈Ω∗,η∈Λ

(
uη(x, t)− Uc̃+ηα,Ω∗(x) exp

(
N∑
j=1

(c̃j − cj)xj
2D

))
≥ 0. (7.47)
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Recalling (7.39), we deduce that

lim inf
t→∞

min
η∈Λ

(
ψ(A(t) + ηL(t), t)− sup

x∈Ω∗

[
Uc̃+ηα,Ω∗(x) exp

(
(c̃− c) · x

2D

)])
≥ 0.

(7.48)

Now let L∗ →∞ and c̃→ c, and use Propositions 6.15 and 6.11. This leads to

lim inf
t→∞

min
η∈Λ

(ψ(A(t) + ηL(t), t)−K) ≥ 0. (7.49)

Since K is also an upper bound for ψ, the result follows.

Remark 7.6. By Proposition 2.13, we then deduce that on compact subsets of

S not only does u(ξ, t) converge uniformly to K, but its first time derivative and

its spatial derivatives of orders one and two all converge uniformly to zero.

The following example illustrates an application of Theorem 7.5.

Example 7.7. Consider the time-dependent intervals for which the linear equa-

tion has exact (separable) solutions ulin(ξ, t). Since u ≤ ulin, it is clear that

u(ξ, t)→ 0 for any ξ such that ulin(ξ, t)→ 0. Here, we shall consider the L(t),

A(t) and ξ for which ulin(ξ, t)→∞ as t→∞ (see Corollary 3.6).

First consider the case L(t) ≡ L0 and A(t) = ct+A0 with f ′(0) > Dπ2

L2
0

+ c2

4D
.

Theorem 6.4 implies that u(ξ, t)→ Uc,L0(ξ), uniformly in 0 ≤ ξ ≤ L0.

Next take L(t) =
√
L2

0 + 2ρt with ρ > 0, and A(t) = −γ1
ρ2

√
L2

0 + 2ρt+ ct+ d,

and f ′(0) > c2

4D
. Theorem 7.5 shows that u(ξ, t) → K as t → ∞, uniformly on

every compact subset of 0 < ξ < L0.

Finally we consider cases where either L(t) = L0 +αt with α > 0; or L(t) =√
at2 + 2bt+ L2

0 with a 6= 0, aL2
0 − b2 6= 0 and L(t) > 0 for all 0 ≤ t < ∞;

and Ä(t)L(t)3 ≡ γ1. There are constants α̂ ≥ 0 and ĉ such that L(t) → ∞,

L̇(t) → α̂ and Ȧ(t) → ĉ as t → ∞. Corollary 3.6 shows that ulin(ξ, t) → ∞

at any ξ ∈ (0, L0) such that
(
ĉ+ α̂ ξ

L0

)2

< c2
∗. Theorem 7.5 shows that for the

nonlinear equation, u(ξ, t)→ K uniformly on compact subsets in this range.
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7.3 Time-dependent domain in Rm+N , as the

side lengths tend to ∞ in N dimensions

Suppose that Ω(t) has the form (2.17); that is:

Ω(t) =
{

(x0, x) ∈ Rm+N : x0 − A0(t) ∈ ω0 ⊂ Rm,

Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N
}

for some smooth bounded domain ω0 and vector A0(t) in Rm, and some Aj(t),

Lj(t) > 0. As in Example 2.5, the change of variables to ξ0 = x0 − A0(t),

ξj =
(
xj−Aj(t)
Lj(t)

)
L0, and u(ξ0, ξ, t) = ψ(x0, x, t) leads to the problem (2.18),

(2.19); namely

∂u

∂t
=D∇2

ξ0
u+

N∑
j=1

D
L2

0

Lj(t)2

∂2u

∂ξ2
j

+ A0(t) · ∇ξ0u

+
N∑
j=1

(
ξjL̇j(t) + L0Ȧj(t)

Lj(t)

)
∂u

∂ξj
+ f(u) for (ξ0, ξ) ∈ Ω0

u(ξ0, ξ, t) = 0 for (ξ0, ξ) ∈ ∂Ω0.

Let v(ξ0, ξ, t) = u(ξ0, ξ, t)E(ξ0, ξ, t) where

E(ξ0, ξ, t) = exp

(
ξ0 · Ȧ0(t)

2D
+

N∑
j=1

(
ξ2
j L̇j(t)Lj(t)

4DL2
0

+
ξjȦj(t)Lj(t)

2DL0

))
. (7.50)

Then

∂v

∂t
=D∇2

ξ0
v +D

N∑
j=1

L2
0

Lj(t)2

∂2v

∂ξ2
j

+

(
ξ0 · Ä0(t)

2D
− |Ȧ0(t)|2

4D

)
v(ξ0, ξ, t)

+
N∑
j=1

(
ξ2
j L̈j(t)Lj(t)

4DL2
0

+
ξjÄj(t)Lj(t)

2DL0

− Ȧj(t)
2

4D
− L̇j(t)

2Lj(t)

)
v(ξ0, ξ, t)

+ f

(
v(ξ0, ξ, t)

E(ξ0, ξ, t)

)
E(ξ0, ξ, t) for ξ0 ∈ ω0, 0 < ξj < L0 (7.51)

v(ξ0, ξ, t) = 0 for ξ0 ∈ ∂ω0, and at ξj = 0 and ξj = L0. (7.52)

The following result is the analogy of Theorem 7.5, for this type of domain.
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Theorem 7.8. Let Ω(t) be of the form (2.17), with Ȧ0(t) ≡ c0 ∈ Rm. Let f

satisfy (2.20), and assume f(u)
u

is a strictly decreasing, uniformly continuous

function of u > 0. Suppose there are finite constants cj and αj (for 1 ≤ j ≤ N)

such that Ȧj(t) → cj, Äj(t) → 0, Lj(t) → ∞, L̇j(t) → αj ≥ 0, L̈j(t) → 0, as

t→∞. If the set

S =

{
ξ ∈ RN : 0 < ξj < L0, f

′(0) > Dλ(ω0) +
|c0|2

4D
+

1

4D

N∑
j=1

(
cj + αj

ξj
L0

)2
}

(7.53)

is non-empty, then for every compact set V ⊂ S,

sup
ξ0∈ω0,ξ∈V

|u(ξ0, ξ, t)− Uc0,ω0(ξ0)| → 0 as t→∞, (7.54)

where Uc0,ω0(ξ) is the unique positive solution to (6.52), (6.53).

Remark 7.9. Theorem 7.8 also holds under more general conditions on the

cross-section in Rm: ω0 + c0t can be replaced by ω0 + A0(t) with Ȧ0(t) → c0

and Ä0(t) → 0 as t → ∞. Also ω0 could be replaced by a box or ball in Rm

satisfying the assumptions of Theorem 7.3. These generalisations can be proved

by combining the proofs of Theorems 7.2 and 7.3 with that of Theorem 7.8.

Proof. The proof is similar to that of Theorem 7.5; it only differs at the end.

Subject to the inclusion of ξ0 and c0 in the required places, we follow exactly

the same steps as led to (7.48) in the proof of Theorem 7.5. These now lead to:

lim inf
t→∞

inf
η∈Λ,ξ0∈ω0

(
ψ(ξ0 + A0(t), A(t) + ηL(t), t)

− sup
ξ∈Ω∗

[
Uc0,c̃+ηα,ω0,Ω∗(ξ0, ξ) exp

(
(c̃− c) · ξ

2D

)])
≥ 0 (7.55)

where (as before) we write c̃+ ηα for the vector with jth component c̃j + ηjαj,

and where Uc0,c̃+ηα,ω0,Ω∗(ξ0, ξ) is the unique positive solution to

D∇2U(ξ0, ξ) + (c0, c̃+ ηα) · ∇U(ξ0, ξ) + f(U(ξ0, ξ)) = 0 for ξ0 ∈ ω0, ξ ∈ Ω∗

(7.56)

U(ξ0, ξ) = 0 for ξ0 ∈ ∂ω0 or ξ ∈ ∂Ω∗. (7.57)
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Now let L∗ →∞ and c̃→ c in (7.55), and use the results of Theorem 6.17 and

Proposition 6.11. This gives the lower bound

lim inf
t→∞

inf
η∈Λ,ξ0∈ω0

(ψ(ξ0 + A0(t), A(t) + ηL(t), t)− Uc0,ω0(ξ0)) ≥ 0. (7.58)

Finally, the solution u∞(ξ0, t) to (6.76), (6.77) with initial conditions u∞(ξ0, 0) ≡

||u0||∞, is a supersolution for u and so u(ξ0, ξ, t) ≤ u∞(ξ0, t) for all t ≥ 0.

Since u∞(ξ0, t) converges uniformly to Uc0,ω0(ξ0) as t → ∞, we deduce that

lim supt→∞ u(ξ0, ξ, t) ≤ Uc0,ω0(ξ0) uniformly in ξ0, ξ, and the result follows.

Remark 7.10. Proposition 2.13 then implies that for compact subsets V of S,

u(ξ0, ξ, t) converges to Uc0,ω0(ξ0) in C2(ω0×V ), and ∂u
∂t
→ 0 uniformly in ω0×V .

7.4 Cylinder-like domains

Here we consider domains of Type 3 (cylinder-like domains). As explained in

Chapter 2, we change variables from x in the time-dependent cross-section Ω̃(t)

to ξ in a fixed Ω̃0, and write the solution ψ(x, y, t) to (1.1), (1.2) as u(ξ, y, t).

We shall use Theorems 7.5 and 7.8 to prove convergence results on sets of the

form {ξ ∈ V, |y| ≤ c̃t} when (in the cross-section) Lj(t)→∞ and L̇j(t)→ 0.

Theorem 7.11. Let Ω(t) = Ω̃(t)× R ⊂ RN+1 where Ω̃(t) ⊂ RN is of the form

(2.14). Suppose that (for 1 ≤ j ≤ N) Ȧj(t) → cj, Äj(t) → 0, Lj(t) → ∞,

L̇j(t) → 0, L̈j(t) → 0 as t → ∞. Assume that f ′(0) >
∑N

j=1

c2j
4D

and let C > 0

be the positive solution to

C2

4D
= f ′(0)−

N∑
j=1

c2
j

4D
. (7.59)

Then for each compact set V ⊂ Ω̃0 and each 0 ≤ c̃ < C,

sup
ξ∈V,|y|≤c̃t

|u(ξ, y, t)−K| → 0 as t→∞. (7.60)

Proof. Fix L0 > 0 and let ψ1(x, y, t) be the solution to (1.1), (1.2) on the

domain Ω1(t) = Ω̃(t) × (−Ct − L0

2
, Ct + L0

2
). Let u1(ξ, ξN+1, t) denote the
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solution ψ1 in the transformed domain {ξ ∈ Ω̃0, 0 < ξN+1 < L0}, where ξN+1 =(
y

2Ct+L0
+ 1

2

)
L0. The domain Ω1(t) satisfies the conditions of Theorem 7.5,

with cN+1 = −C and αN+1 = 2C. Note also that the inequality

f ′(0) >
N∑
j=1

c2
j

4D
+

(
−C + 2C

ξN+1

L0

)2

(7.61)

is satisfied for ξN+1 in every compact subset of (0, L0). So Theorem 7.5 implies

that for all compact sets V ⊂ Ω̃0 and V ′ ⊂ (0, L0),

sup
ξ∈V,ξN+1∈V ′

|u1(ξ, ξN+1, t)−K| → 0 as t→∞. (7.62)

But since ψ1(x, y, t) = u1(ξ, ξN+1, t) is a subsolution for ψ(x, y, t) = u(ξ, y, t),

u1

(
ξ,

(
y

2Ct+ L0

+
1

2

)
L0, t

)
≤ u(ξ, y, t) ≤ K. (7.63)

Also, for 0 ≤ c̃ < C the range |y| ≤ c̃t corresponds to(
−c̃t

2Ct+ L0

+
1

2

)
L0 ≤ ξN+1 ≤

(
c̃t

2Ct+ L0

+
1

2

)
L0 (7.64)

which is always contained in the compact set

V ′ :=

[
L0

2

(
1− c̃

C

)
,
L0

2

(
1 +

c̃

C

)]
⊂ (0, L0). (7.65)

We apply (7.62) with this V ′, and combine with (7.63), to get the result.

We also have the analogous result for domains of the type (2.17).

Theorem 7.12. Let Ω(t) = Ω̃(t) × R where Ω̃(t) is of the form (2.17) with

Ȧ0(t) ≡ c0 ∈ Rm. Let f satisfy assumptions (2.20), and assume that f(u)
u

is a

strictly decreasing, uniformly continuous function of u > 0. Suppose that (for

1 ≤ j ≤ N) Ȧj(t) → cj, Äj(t) → 0, Lj(t) → ∞, L̇j(t) → 0, L̈j(t) → 0 as

t → ∞. Assume that f ′(0) > Dλ(ω0) + |c0|2
4D

+
∑N

j=1

c2j
4D

and let C > 0 be the

positive solution to

C2

4D
= f ′(0)−Dλ(ω0)− |c0|2

4D
−

N∑
j=1

c2
j

4D
(7.66)
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Then for each compact set V ⊂ Ω̃0 and each 0 ≤ c̃ < C,

sup
ξ0∈ω0,ξ∈V,|y|≤c̃t

|u(ξ0, ξ, y, t)− Uc0,ω0(ξ0)| → 0 as t→∞, (7.67)

where Uc0,ω0(ξ0) is the unique positive solution to (6.52), (6.53).

Proof. The proof is essentially the same as for Theorem 7.11, except now we

apply Theorem 7.8 to the domain Ω1(t) instead of Theorem 7.5.

Remark 7.13. As in Remark 7.9, Theorem 7.12 is also valid if we replace the

cross-section ω0 +c0t in Rm either by ω0 +A0(t) with Ȧ0(t)→ c0 and Ä0(t)→ 0,

or by a box or ball in Rm satisfying the assumptions of Theorem 7.3.

7.5 An interval (A(t), A(t) + L(t))

Throughout this section we assume that ψ(x, t) satisfies the nonlinear problem

(2.8), (2.9) on an interval A(t) < x < A(t)+L(t). Under the change of variables

to ξ =
(
x−A(t)
L(t)

)
L0 and u(ξ, t) = ψ(x, t), the problem becomes (2.10), (2.11).

In Section 7.5.2 we consider the behaviour of the gradient at the boundary,

∂ψ
∂x

(A(t), t), for certain forms of A(t) and L(t). We contrast this with our results

from Chapter 4 for the linear equation. Before that, in Section 7.5.1 we discuss

the role of the ‘critical length’ Lcrit(c) = π
√

D

f ′(0)− c2

4D

for c ∈ (−c∗, c∗).

7.5.1 Role of Lcrit(c) when Ȧ(t)→ c ∈ (−c∗, c∗)

Recall that in Section 3.5.2 we considered the role of Lcrit and Lcrit(c) for the

linear equation on a time-dependent interval, and we proved Corollaries 3.16,

3.18, 3.21 and 3.22. We now turn to some related properties for the nonlinear

equation.

Proposition 7.14. Suppose Ȧ(t)→ c ∈ (−c∗, c∗) and Ä(t)→ 0 as t→∞. Let

L = lim supt→∞ L(t) and L = lim inft→∞ L(t).

1. If L < Lcrit(c), then ψ(x, t)→ 0 uniformly in x as t→∞.
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2. If L = Lcrit(c) and f is not linear on any neighbourhood [0, s0) of 0, then

ψ(x, t)→ 0 uniformly in x as t→∞.

3. If f is linear on some neighbourhood [0, s0) of 0, then there exist cases

where Ȧ(t) ≡ c ∈ (−c∗, c∗) and L(t) < L = Lcrit(c) for all t and yet

ψ(x, t) does not tend to zero as t→∞ but has a non-trivial lower bound.

4. If L > Lcrit(c) and L1 ∈ (Lcrit(c), L), then lim inft→∞ ψ(A(t) + y, t) ≥

Uc,L1(y) uniformly on 0 ≤ y ≤ L1.

Proof. 1. Suppose L < L0 < Lcrit(c). Then for all t large enough, L(t) ≤ L0

and the solution ψL0 on A(t) < x < A(t) + L0 is a supersolution. Since

Ȧ(t)→ c and L0 < Lcrit(c), we know from Corollary 2.17 that uL0(ξ, t) :=

ψL0(A(t) + ξ, t) converges to zero in L2([0, L0]) as t → ∞. Then since

Ȧ(t)→ c and Ä(t)→ 0, Proposition 2.13 ensures that in fact uL0 converges

uniformly. Thus: ||ψ(·, t)||∞ ≤ ||ψL0(·, t)||∞ = ||uL0(·, t)||∞ → 0.

2. Next suppose that L = Lcrit(c). For each ε > 0, there exists T such that

L(t) ≤ Lε := Lcrit(c)+ε for all t ≥ T . The solution ψ̂ε(x, t) on the interval

A(t) < x < A(t) + Lε is a supersolution for ψ(x, t), and so ||ψ(·, t)||∞ ≤

||ψ̂ε(·, t)||∞ for all t ≥ T . But by Theorem 7.2, ûε(ξ, t) := ψ̂ε(A(t) + ξ, t)

converges to Uc,Lε(ξ) uniformly in ξ as t→∞. Therefore

lim sup
t→∞

||ψ(·, t)||∞ ≤ lim
t→∞
||ψ̂ε(·, t)||∞ = ||Uc,Lε||∞. (7.68)

If f is not linear on any neighbourhood [0, s0) of 0, then Proposition 6.11

implies that ||Uc,Lε||∞ → 0 as ε→ 0. So, limt→∞ ||ψ(·, t)||∞ = 0.

3. First suppose Ȧ(t) ≡ 0 and let Lcrit = Lcrit(0). The proof will be sim-

ilar to that of Corollary 3.16 for the linear equation. Suppose there ex-

ist constants m1, m2, M , I1, I2 such that 0 < m1 ≤ L(t) ≤ m2 and

|L̇(t)L(t)| ≤M and∣∣∣∣∫ t

0

(
1

L(ζ)2
− 1

L2
crit

)
dζ

∣∣∣∣ ≤ I1 and

∫ t

0

L(ζ)[L̈(ζ)]−dζ ≤ I2 (7.69)
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for all t ≥ 0. (These are satisfied if, for example, L(t) = Lcrit(1 − εe−αt)

with 0 < ε < 1 and α > 0.) Choose b̂ > 0 small enough such that both

u(ξ, 0) ≥ b̂ sin

(
πξ

L0

)
exp

(
−ξ

2L̇(0)L(0)

4DL2
0

)
(7.70)

and

b̂

(
L(0)

m1

)1/2

exp

(
I1 +

M

4D

)
≤ s0. (7.71)

Let Q(t) = L(t)[L̈(t)]−

2
. Then by Theorem 3.13 the function

û(ξ, t) =b̂ sin

(
πξ

L0

)(
L(0)

L(t)

)1/2

e

(
f ′(0)t+

∫ t
0

(
− Dπ2

L(ζ)2
−Q(ζ)

2D

)
dζ− ξ

2L̇(t)L(t)

4DL2
0

)
(7.72)

is a subsolution for the linear equation. But by choice of b̂, we have

0 ≤ û(ξ, t) ≤ s0 for all 0 ≤ t < ∞, and so û is also a subsolution for the

nonlinear equation. Therefore, for all t ≥ 0,

u(ξ, t) ≥ û(ξ, t) ≥ b̂

(
L(0)

m2

)1/2

exp

(
−I1 −

I2

4D
− M

4D

)
sin

(
πξ

L0

)
.

(7.73)

The proof for Ȧ(t) ≡ c 6= 0 is similar; see also Corollary 3.21.

4. Assume L > L1 > Lcrit(c), i.e. f ′(0) > Dπ2

L2
1

+ c2

4D
. Then for t large enough,

L(t) ≥ L1 and the solution ψL1 on A(t) < x < A(t) + L1 is a subsolution.

So ψ(A(t) + y, t) ≥ ψL1(A(t) + y, t) for all 0 ≤ y ≤ L1 and t sufficiently

large. Theorem 7.2 implies that as t → ∞, ψL1(A(t) + y, t) → Uc,L1(y)

uniformly on [0, L1].

7.5.2 Behaviour of ψ(x, t) near the endpoints

In this final section, we consider the solution ψ(x, t) to the nonlinear equation

on the interval (A(t), A(t) + L(t)) and its behaviour in a neighbourhood of the

endpoints. As in equation (1.5), c∗ = 2
√
Df ′(0). We begin by considering cases

where L(t) → ∞ and Ȧ(t) converges to some c ∈ (−c∗, c∗) as t → ∞. Here, as

before, Ûc is the semi-wave of speed c satisfying (6.88), (6.89).
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Proposition 7.15. Suppose that L(t)→∞, Ȧ(t)→ c ∈ (−c∗, c∗), and Ä(t)→

0 as t→∞. Then

lim inf
t→∞

(
∂ψ

∂x
(A(t), t)

)
≥ Û ′c(0). (7.74)

Proof. For L0 > 0, let ψL0 be the solution on the interval (A(t), A(t) +L0). For

t large enough, ψ is a supersolution for ψL0 . So ψ(A(t) + y, t) ≥ ψL0(A(t) + y, t)

for 0 ≤ y ≤ L0, and consequently also ∂ψ
∂x

(A(t), t) ≥ ∂ψL0

∂x
(A(t), t). Choose

L0 > Lcrit(c) and let t → ∞. Then Theorem 7.2 and Remark 7.4 imply that

ψL0(A(t) + y, t)→ Uc,L0(y) uniformly in y, and
∂ψL0

∂x
(A(t), t)→ U ′c,L0

(0). There-

fore for all L0 > Lcrit(c)

lim inf
t→∞

(
∂ψ

∂x
(A(t), t)

)
≥ lim

t→∞

(
∂ψL0

∂x
(A(t), t)

)
= U ′c,L0

(0). (7.75)

The result follows by letting L0 →∞ and using Proposition 6.19.

Under some additional assumptions, we shall also prove upper bounds on

lim inft→∞
(
∂ψ
∂x

(A(t), t)
)
, in Proposition 7.18. These are proved by comparing

the solution on A(t) < x < A(t) + L(t) with the free boundary solution on

g(t) < x < h(t) of Du, Lin and co-authors [24, 23, 17, 26]. In these papers they

fix µ > 0 and consider the problem (1.17), (1.18), (1.19) where f satisfies

f(0) = f(K) = 0, f > 0 on (0, K), f ∈ C1([0, K]), f ′(K) < 0 < f ′(0).

(7.76)

As discussed in Chapter 1 they prove that as t → ∞ either ġ(t) → −ĉ and

ḣ(t)→ ĉ for a constant speed ĉ = ĉ(µ) ∈ (0, c∗), or else g(t)→ g∞, h(t)→ h∞,

and u→ 0. In the case of spreading, the speed ĉ is determined by the property

that µq′ĉ(0) = ĉ where, qc denotes the unique semi-wave satisfying (1.21), (1.22).

Note that q′c(0) is a continuous and decreasing function of c ∈ [0, c∗), with

q′c(0) → 0 as c → c∗ and q′c(0) → q′0(0) ∈ (0,∞) as c → 0. The speed ĉ(µ) is

continuous and monotonic increasing in 0 < µ <∞, with ĉ(µ)→ c∗ as µ→∞

and ĉ(µ) = O(µ)→ 0 as µ→ 0 [24, 23, 17, 26]. It therefore has an inverse, µ̂(c)

for 0 < c < c∗. In our present notation, qc = Û−c and so

µ̂(c) =
c

Û ′−c(0)
for 0 < c < c∗. (7.77)
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The paper [24] includes the following comparison result.

Lemma 7.16. (See [24, Lemma 5.6 and Remark 5.8].) Let u be the solution to

the free boundary problem (1.17), (1.18), (1.19), and let ψ satisfy

∂ψ

∂t
= D

∂2ψ

∂x2
+ f(ψ) for g(t) < x < h(t) (7.78)

ψ(g(t), t) = 0, ġ(t) ≥ −µ∂ψ
∂x

(g(t), t) (7.79)

ψ(h(t), t) = 0, h(t) ≤ h(t) (7.80)

with some given initial values g(0) ≥ g0 and ψ(x, 0) ≤ u0(x) on [g(0), h(0)].

Then: g(t) ≥ g(t) for all t ≥ 0, and ψ(x, t) ≤ u(x, t) on g(t) < x < h(t).

We can use Lemma 7.16 together with the known behaviour of the free

boundary solution u(x, t), to prove a relationship between Ȧ(t) and ∂ψ
∂x

(A(t), t).

Lemma 7.17. Assume that f satisfies the conditions in equations (2.20) and

(7.76). Suppose there exists c ∈ (0, c∗) such that lim supt→∞

(
A(t)+L(t)

t

)
< c, and

a sequence tn →∞ such that A(tn) + ctn → −∞. Then

lim inf
t→∞

(
Ȧ(t) + µ̂(c)

∂ψ

∂x
(A(t), t)

)
≤ 0. (7.81)

Proof. Let µ = µ̂(c), and let g(t) = A(t) and h(t) = A(t) + L(t). For large

t, A(t) + L(t) < h(t) ∼ ct. If Ȧ(t) ≥ −µ∂ψ
∂x

(A(t), t) for all t sufficiently large,

then Lemma 7.16 would imply that A(t) ≥ g(t) ∼ −ct as t→∞. However this

contradicts the sequence tn. So, lim inft→∞

(
Ȧ(t) + µ∂ψ

∂x
(A(t), t)

)
≤ 0.

Lemma 7.17 then allows us to bound lim inft→∞
(
∂ψ
∂x

(A(t), t)
)

under certain

assumptions on A(t) and L(t).

Proposition 7.18. Assume that f satisfies the conditions in equations (2.20)

and (7.76). Suppose that there exist c > 0 and C < c such that Ȧ(t)→ −c and

A(t) + L(t) ∼ Ct as t→∞.

1. If 0 < c < c∗, then lim inft→∞
(
∂ψ
∂x

(A(t), t)
)
≤ Û ′−c(0).
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2. If C < c∗ ≤ c, then lim inft→∞
(
∂ψ
∂x

(A(t), t)
)

= 0.

Proof. Choose any c ∈ (0, c∗) ∩ (C, c) and apply Lemma 7.17. This gives

lim inf
t→∞

(
−c+ µ̂(c)

∂ψ

∂x
(A(t), t)

)
≤ 0, (7.82)

or equivalently,

lim inf
t→∞

(
∂ψ

∂x
(A(t), t)

)
≤
c Û ′−c(0)

c
. (7.83)

For part 1, let c→ c. For part 2, let c→ c∗ and use Û ′−c(0)→ 0 as c→ c∗.

Another result from [24], which provides an upper bound on ψ(x, t) near the

boundary under the much more general condition that Ȧ(t) is bounded above,

is the following adaptation of [24, Lemma 2.2].

Proposition 7.19. Let ψ(x, t) satisfy (2.8), (2.9). Suppose Ȧ(t) ≤ c0 is bounded

above and ψ(·, 0) = ψ0 ∈ C1([A(0), A(0) + L(0)]) satisfies the boundary condi-

tions. Then there exists 0 < m0 <∞ (depending on ψ0 and c0) such that

ψ(A(t) + y, t) ≤ K(2m0y −m2
0y

2) for 0 ≤ y ≤ min

(
1

m0

, L(t)

)
, t ≥ 0.

(7.84)

In particular, ∂ψ
∂x

(A(t), t) is bounded.

Proof. (Based on [24, Lemma 2.2].)

Let m > 0 and for t ≥ 0 define

Ωm(t) =

(
A(t), A(t) +

1

m

)
∩ (A(t), A(t) + L(t)) , (7.85)

w(x, t) = K
(
2m(x− A(t))−m2(x− A(t))2

)
for x ∈ Ωm(t). (7.86)

We will show that m = m0 can be chosen such that w is a supersolution for ψ

on Ωm0(t). First, w ≥ ψ on ∂Ωm(t), since w(A(t), t) = ψ(A(t), t) = 0 and

if
1

m
≤ L(t) : w

(
A(t) +

1

m
, t

)
= K > ψ

(
A(t) +

1

m
, t

)
, (7.87)

or if
1

m
> L(t) : w(A(t) + L(t), t) ≥ 0 = ψ(A(t) + L(t), t). (7.88)
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We also calculate

∂w

∂x
= K

(
2m− 2m2(x− A(t))

)
,

∂2w

∂x2
= −K2m2, (7.89)

∂w

∂t
= KȦ(t)

(
−2m+ 2m2(x− A(t))

)
≥ −2mKc0 on Ωm(t). (7.90)

Therefore, for M = sup[0,K] f and for m ≥ c0
2D

+

√
c20

4D2 + M
2DK

,

∂w

∂t
−D∂

2w

∂x2
− f(w) ≥ −2mKc0 +DK2m2 −M ≥ 0 on Ωm(t). (7.91)

Finally, we want to choose m so that ψ0(x) ≥ w(x, 0) on Ωm(0). Suppose

m ≥ 4
3K
||ψ0||C1 and m ≥ 1

L(0)
. Then for 0 < x− A(0) ≤ 1

2m
,

∂w

∂x
(x, 0) ≥ Km ≥ 4

3
ψ′0(x) and so w(x, 0) ≥ ψ0(x), (7.92)

and for 1
2m
≤ x− A(0) ≤ 1

m
,

w(x, 0) ≥ 3K

4
≥ 1

m
||ψ0||C1 ≥ (x− A(0))||ψ0||C1 ≥ ψ0(x). (7.93)

Therefore, if m0 satisfies

m0 ≥ max

{
c0

2D
+

√
c2

0

4D2
+

M

2DK
,

1

L(0)
,

4

3K
||ψ0||C1

}
(7.94)

then w is a supersolution for ψ on Ωm0(t). So ψ(x, t) ≤ w(x, t) for t ≥ 0 and

x ∈ Ωm0(t), which is (7.84). In particular, since ψ is below w at the boundary,

∂ψ

∂x
(A(t), 0) ≤ ∂w

∂x
(A(t), 0) = 2Km0. (7.95)

Remark 7.20. The symmetric result is as follows. If Ȧ(t) + L̇(t) is bounded

below, then there exists m0 > 0 such that ψ(A(t)+L(t)−y, t) ≤ K(2m0y−m2
0y

2)

for 0 ≤ y ≤ 1
m0

. In particular, ∂ψ
∂x

(A(t) + L(t), t) is bounded.

We can apply Proposition 7.19 to the case of the symmetric interval

−A(t) =
L(t)

2
= c∗t− α log

(
t

t0
+ 1

)
+
l0
2

(7.96)
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with α > 0. For the linear case, recall from Corollary 4.6 in Chapter 4 that

∂ψlin
∂x

(A(t), t) behaves exactly as order t
αc∗
2D
− 3

2 as t → ∞. When α > 3D
c∗

this

means that ∂ψlin
∂x

(A(t), t) → ∞ as t → ∞. Proposition 7.19 proves that this

sort of behaviour cannot happen in the nonlinear case: if Ȧ(t) is bounded above

then ∂ψ
∂x

(A(t), t) = O(1). However if α ≤ 3D
c∗

then ∂ψ
∂x

(A(t), t) is bounded for

both the linear and nonlinear cases. Moreover ∂ψ
∂x

(A(t), t) ≤ ∂ψlin
∂x

(A(t), t), and

one might wonder if they behave in a similar way. We know that ∂ψlin
∂x

(A(t), t)

behaves exactly as order t−β as t → ∞, with β = −αc∗
2D

+ 3
2
. In contrast, for

the nonlinear problem we shall see in Theorem 7.23 that ∂ψ
∂x

(A(t), t) cannot be

bounded below by any power of t. This proof is based on the integral transform

method of J. Berestycki, Brunet and Derrida from [12].

Write f(k) = f ′(0)k− f1(k). The assumptions (2.20) on f mean that f1 ≥ 0

and is bounded on [0, K].

Proposition 7.21. Let 0 ≤ ψ(x, t) ≤ K be a solution to (2.8), (2.9), where

A(t) = −c∗t+ δ(t), δ(t)→∞, δ(t) = o(t) as t→∞ (7.97)

and L(t) ≥ ct for some c > 0. Let X(t) ∈ (A(t), A(t) + L(t)) be such that

X(t)− A(t) ≥ c0t for some c0 > 0, and that Ẋ(t) and ∂ψ
∂x

(X(t), t) are bounded.

Let

F1(r, t) =

∫ X(t)−A(t)

0

f1(ψ(A(t) + z, t))erzdz. (7.98)

Then for 0 < ε0 < 1 small enough, the integral∫ ∞
0

e−
c2∗
4D
ε2t− c∗

2D
(1+ε)δ(t)

(
D
∂ψ

∂x
(A(t), t) + F1

(
− c∗

2D
(1 + ε), t

))
dt (7.99)

is infinitely differentiable in ε ∈ (−ε0, ε0).

Remark 7.22. For example, one could take X(t) such that (for all t large

enough) X(t) = X0 + (−c∗ + c1)t for some c1 > 0. It follows from Theorem 7.5

and Remark 7.6 that ψ(X(t), t) → K and ∂ψ
∂x

(X(t), t) → 0 as t → ∞, and so

X(t) satisfies the required conditions. Alternatively, if Ȧ(t) + L̇(t) is bounded

below, then one could take X(t) = A(t) +L(t). In this case ψ(X(t), t) ≡ 0 and,

by Proposition 7.19 and Remark 7.20, ∂ψ
∂x

(X(t), t) is bounded.
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Proof. For r ∈ R, let

g(r, t) =

∫ X(t)−A(t)

0

ψ(A(t) + z, t)erzdz. (7.100)

Differentiate this with respect to t and use equation (2.8), to get:

∂g

∂t
(r, t) =(Ẋ(t)− Ȧ(t))ψ(X(t), t)er(X(t)−A(t))

+ Ȧ(t)

∫ X(t)−A(t)

0

∂ψ

∂x
(A(t) + z, t)erzdz

+

∫ X(t)−A(t)

0

(
D
∂2ψ

∂x2
(A(t) + z, t) + f(ψ(A(t) + z, t))

)
erzdz.

(7.101)

After using f(k) = f ′(0)k − f1(k), integrating by parts in z and using the

boundary condition at A(t), this becomes:

∂g

∂t
(r, t) =

(
Dr2 − rȦ(t) + f ′(0)

)
g(r, t)−D∂ψ

∂x
(A(t), t)− F1(r, t)

+

(
(Ẋ(t)−Dr)ψ(X(t), t) +D

∂ψ

∂x
(X(t), t)

)
er(X(t)−A(t)). (7.102)

Use an integrating factor of eφ(r,t) where

φ(r, t) = −
(
Dr2t− rA(t) + f ′(0)t

)
= −

(
Dr2 + c∗r + f ′(0)

)
t+ rδ(t) (7.103)

= −D
(
r +

c∗
2D

)2

t+ rδ(t). (7.104)

This leads to the following equation, for every t > 0:

g(r, t)e−D(r+ c∗
2D )

2
t+rδ(t) − g(r, 0)erδ(0)

=−
∫ t

0

eφ(r,s)

(
D
∂ψ

∂x
(A(s), s) + F1(r, s)

)
ds

+

∫ t

0

eφ(r,s)+r(X(s)−A(s))

(
(Ẋ(s)−Dr)ψ(X(s), s) +D

∂ψ

∂x
(X(s), s)

)
ds.

(7.105)

Now consider the limit t → ∞. If r < 0 then g(r, t) ≤ K
∫∞

0
erzdz = O(1) and

therefore

g(r, t)e−D(r+ c∗
2D )

2
t+rδ(t) → 0 as t→∞. (7.106)
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So for each r < 0, we let t→∞ and get∫ ∞
0

eφ(r,s)+r(X(s)−A(s))

(
(Ẋ(s)−Dr)ψ(X(s), s) +D

∂ψ

∂x
(X(s), s)

)
ds

+g(r, 0)erδ(0) =

∫ ∞
0

eφ(r,s)

(
D
∂ψ

∂x
(A(s), s) + F1(r, s)

)
ds. (7.107)

Take equation (7.107) and apply it at r = − c∗
2D

(1 + ε) with ε ∈ (−ε0, ε0) (for

some small 0 < ε0 < 1 to be chosen). The term g
(
− c∗

2D
(1 + ε), 0

)
e−

c∗
2D

(1+ε)δ(0)

is infinitely differentiable in ε. Consider the term involving X(t). By choice of

X(t),

(Ẋ(s)−Dr)ψ(X(s), s) +D
∂ψ

∂x
(X(s), s) = O(1)

and − c∗
2D

(1 + ε)(X(s)− A(s)) ≤ −c∗c0

2D
(1 + ε)s as s→∞. (7.108)

So for ε0 > 0 small enough, the integrand in this term is O
(
e−

c∗c0
4D

s
)
× O(1),

uniformly in ε ∈ (−ε0, ε0). This term is then infinitely differentiable with respect

to ε ∈ (−ε0, ε0), with derivatives found by differentiating through the integral.

So the remaining term in equation (7.107), which is precisely (7.99), must

also be infinitely differentiable in ε ∈ (−ε0, ε0).

We now use this result to prove that ∂ψ
∂x

(A(t), t) decays faster than every

power of t, in the sense that it cannot be bounded below by any power.

Theorem 7.23. Let A(t) and L(t) satisfy the assumptions of Proposition 7.21.

Suppose that δ(t) = α log( t
t0

+ 1) + O(1) as t → ∞, for some α > 0. Then

∂ψ
∂x

(A(t), t) cannot be bounded below by any power of t. That is:

lim inf
t→∞

(
tβ
∂ψ

∂x
(A(t), t)

)
= 0 for every β ∈ R. (7.109)

Proof. Suppose this is false. Then we can fix some β > 0 and a > 0 such that

D
∂ψ

∂x
(A(t), t) ≥ a(t+ t0)−β. (7.110)

We can also assume that c∗α
2D

+ β /∈ N. We shall show that the integral∫ ∞
0

e−
c2∗
4D
ε2t− c∗

2D
(1+ε)δ(t)

(
D
∂ψ

∂x
(A(t), t) + F1

(
− c∗

2D
(1 + ε), t

))
dt (7.111)
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(with F1 defined as in Proposition 7.21) has a singularity at ε = 0, at least as

bad as order |ε|−2(ν+1) where ν = − c∗α
2D
− β. This will contradict Proposition

7.21, and so prove equation (7.109).

First, note that F1

(
− c∗

2D
, t
)
≥ 0 (since f1 ≥ 0). It follows from (7.110) and

Theorem A.12 that the leading singularity of∫ ∞
0

e−
c2∗
4D
ε2t− c∗

2D
δ(t)

(
D
∂ψ

∂x
(A(t), t) + F1

(
− c∗

2D
, t
))

dt (7.112)

is at least as bad as that of∫ ∞
0

e−
c2∗
4D
ε2t− c∗

2D
δ(t)a(t+ t0)−βdt =

∫ ∞
0

e−
c2∗
4D
ε2t+O(1)a(t+ t0)−

c∗α
2D
−βdt. (7.113)

By Theorem A.13 this is proportional to |ε|−2(ν+1) where ν = − c∗α
2D
− β. So it

remains to show that the leading singular term of (7.111) is the same as that of

(7.112).

Note that F1(r, t) is itself not singular at r = − c∗
2D

, and for each n ∈ N,

∂nF1

∂rn

(
− c∗

2D
, t
)

=

∫ X(t)−A(t)

0

znf1(ψ(A(t) + z, t))e−
c∗
2D
zdz. (7.114)

This can be bounded by splitting the integral as follows:∫ 2D
c∗
β log( t

t0
+2)

0

znf1(ψ(A(t) + z, t))e−
c∗
2D
zdz

≤
(

2D

c∗
β log

(
t

t0
+ 2

))n ∫ X(t)−A(t)

0

f1(ψ(A(t) + z, t))e−
c∗
2D
zdz (7.115)

= O

(
logn

(
t

t0
+ 2

))
F1

(
− c∗

2D
, t
)
, (7.116)

and, if M1 = sup[0,K] f1 then∫ X(t)−A(t)

2D
c∗
β log( t

t0
+2)

znf1(ψ(A(t) + z, t))e−
c∗
2D
zdz ≤M1

∫ ∞
2D
c∗
β log( t

t0
+2)

zne−
c∗
2D
zdz

= O

(
logn

(
t

t0
+ 2

)
t−β
)
. (7.117)

Adding (7.116) and (7.117), and combining this with the assumed bound (7.110),

gives:

∂nF1

∂rn

(
− c∗

2D
, t
)

= O

(
logn

(
t

t0
+ 2

)(
F1

(
− c∗

2D
, t
)

+D
∂ψ

∂x
(A(t), t)

))
.

(7.118)
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Therefore as ε → 0 the leading singularity in (7.111) does indeed come from

(7.112), since the next terms in the expansion are∫ ∞
0

e−
c2∗
4D
ε2t− c∗

2D
δ(t)

(
−εδ(t) c∗

2D

(
D
∂ψ

∂x
(A(t), t) + F1

(
− c∗

2D
, t
))

− ε c∗
2D

∂F1

∂r

(
− c∗

2D
, t
))

dt. (7.119)

Using the bound (7.118), and the fact that δ(t) = O(log( t
t0

+ 2)), this is∫ ∞
0

e−
c2∗
4D
ε2t− c∗

2D
δ(t)

(
D
∂ψ

∂x
(A(t), t) + F1

(
− c∗

2D
, t
))
×O

(
ε log

(
t

t0
+ 2

))
dt

(7.120)

and subsequent terms are (similarly) of the form∫ ∞
0

e−
c2∗
4D
ε2t− c∗

2D
δ(t)

(
D
∂ψ

∂x
(A(t), t) + F1

(
− c∗

2D
, t
))
×O

(
εn logn

(
t

t0
+ 2

))
dt,

(7.121)

all of which produce singularities of strictly lower order than that of (7.112).
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Chapter 8

Conclusions and further work

This thesis has been concerned with non-negative solutions to linear and non-

linear (of KPP type) reaction-diffusion equations on time-dependent domains

with zero Dirichlet boundary conditions. The main example has been a time-

dependent interval A(t) < x < A(t) + L(t); several higher dimensional domains

have also been considered.

For a linear reaction term, we have derived exact solutions when L̈L3 and

ÄL3 are constants, using changes of variables and a separation of variables

method. All of the terms in these exact solutions have been worked out explic-

itly, and the formulae are interesting because they show precisely how a solution

develops over time, as well as how it depends on L, A, and the spatial variable.

We have also proved similar results for time-dependent balls and boxes.

For more general time-dependent intervals and boxes, we have derived sub-

and supersolutions to the linear equation, which bound the long-time behaviour

of the solution in a useful way. By applying these results, it was shown that

different outcomes are possible if L(t) → Lcrit = π
√

D
f ′(0)

as t → ∞, and we

gave particular examples such that the solution does and does not tend to zero.

Continuing to consider the equation with a linear reaction term, we also

proved detailed bounds on the solution behaviour near the moving boundaries.

In several scenarios we derived a ‘critical’ choice of boundary movement, such
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that the gradient at the boundary is bounded above and below away from zero

for all time. For an interval, and also for a ball in dimension N ≤ 3, it was

remarkable that this ‘critical’ choice of moving boundary matched the asymp-

totic front position for the solution to the nonlinear KPP equation on the whole

space. We also considered boxes of the form

Ω(t) =

{
x ∈ RN+1 : Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N,

−LN+1(t)

2
< xN+1 <

LN+1(t)

2

}
, (8.1)

and for several cases of Aj(t) and Lj(t), we derived a ‘critical’ choice of LN+1(t).

For bounded time-periodic domains we derived useful upper and lower bounds

on the principal periodic eigenvalue µ associated with the domain. We also

proved results concerning the dependence of µ on the frequency ω, including

an expression for limω→0 µ(ω). For certain cases we proved monotonicity with

respect to ω, and considered the ω → ∞ limit. In some regimes µ remains

bounded as ω →∞, whereas in others it tends to infinity at the rate ω2.

For a nonlinear reaction term of KPP type, this thesis contains results about

long-time convergence — both on bounded time-periodic domains and on a num-

ber of time-dependent domains involving constant or asymptotically constant

velocities. Furthermore we proved results concerning the gradient at the moving

boundary for the nonlinear equation, and how this differs significantly to the

linear case.

Some further questions raised by this thesis, and recommended as directions

for future work, are:

• To investigate and explain the links between the linear equation on the

finite domains and the nonlinear KPP problem on unbounded domains.

• In the cases that remain unanswered (including where Lj(t) is of order

tk as t → ∞ with either 0 < k ≤ 1
4

or 1
2
< k < 1), to derive choices

of LN+1(t) such that the gradient at the boundary is bounded above and

below away from zero, for boxes of the form (8.1).
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• To discover whether the same formula for the ‘critical’ choice of radius

R(t) (for the linear equation on a ball) is also valid in dimensions N ≥ 4.

• To continue to study the nonlinear KPP equation on the time-dependent

cylindrical domain{
Aj(t) < xj < Aj(t) + Lj(t) : 1 ≤ j ≤ N, −∞ < xN+1 <∞

}
with zero Dirichlet boundary conditions. As t→∞, is there convergence

in some sense to a travelling wave? Are there asymptotic front positions at

xN+1 = ±L∗N+1(t)

2
+ O(1) (where LN+1(t) = L∗N+1(t) satisfies the ‘critical’

property for the linear equation on the box (8.1))?

• To conduct further research on time-periodic domains and gain a fuller

understanding of the ω-dependence of the principal periodic eigenvalue

µ(ω). What happens in the ω →∞ limit, in the cases where this remains

unknown? Is µ(ω) always monotonic increasing in ω > 0, or are there

cases where it is not monotonic in ω?

Additional topics to study on time-dependent domains could also include: (i)

two-component (or multi-component) competition systems; (ii) equations in-

volving a non-autonomous reaction term f(u, t), with f having a certain struc-

ture or asymptotic behaviour with respect to t; (iii) bistable nonlinear terms;

and (iv) exterior domains with time-dependent obstacles — among many other

interesting possibilities.
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Appendix A

Appendix of theorems

A.1 Elliptic and parabolic theorems

Theorem A.1. (Interior/boundary/global elliptic estimates)

Let Ω ⊂ RN be a bounded domain with ∂Ω sufficiently smooth (at least C2+γ

for some 0 < γ < 1). For n ∈ N, let c(n) and D(n) be constant vectors in RN .

Assume that there exist c0, D, D, such that |c(n)| ≤ c0 and 0 < D ≤ D
(n)
j ≤ D

for j = 1, . . . , N . Let fn be Lipschitz continuous functions, and let un satisfy

the elliptic equation

N∑
j=1

D
(n)
j

∂2un
∂x2

j

+ c(n) · ∇un + fn(un) = 0 in Ω. (A.1)

Let Ω′ ⊂ Ω be such that either (i) Ω′ ⊂⊂ Ω or (ii) there exists ∆ ⊂ ∂Ω such

that un = 0 on ∆, and Ω′ is such that (∂Ω′ ∩ ∂Ω) ⊂ ∆ and (if ∆ 6= ∂Ω)

dist(∂Ω′, ∂Ω\∆) > 0. Assume that 0 ≤ un ≤ K on Ω for some constant K,

and that |fn| ≤M on [0, K] and the Lipschitz constants of fn are bounded by θ.

Then the sequence un is bounded in C2+γ(Ω′). Hence for each 0 < γ′ < γ < 1,

there exists a subsequence unk that is convergent in C2+γ′(Ω′).

Proof. The existence of the convergent subsequence will follow from the compact

embeddings of the Hölder spaces, so we just need to prove the boundedness.

Let Ω′ ⊂ Ω′′ ⊂ Ω be such that, in case (i) Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, or in case (ii)
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(∂Ω′ ∩ ∂Ω′′) ⊂ (∂Ω′′ ∩ ∂Ω) ⊂ ∆ and (if ∆ 6= ∂Ω) with dist(∂Ω′, ∂Ω′′\∆) > 0

and dist(∂Ω′′, ∂Ω\∆) > 0. For p > N , the elliptic Lp estimates in [34, Theorem

9.13] imply that there is a constant C (depending on Ω, Ω′′, p, N , D, D, and

c0) such that

||un||W 2
p (Ω′′) ≤ C

(
||un||Lp(Ω) + ||fn(un)||Lp(Ω)

)
(A.2)

≤ C(K +M)|Ω|
1
p . (A.3)

So the sequence un is bounded in W 2
p (Ω′′). Let α = 1 − N

p
. Then the space

W 2
p (Ω′′) is continuously embedded in C1+α(Ω′′) (see [28, chapter 5, Theorem 6,

page 270]) and so there is also some constant B1 (depending on Ω, Ω′′, p, N ,

K, M , D, D, and c0) such that

||un||C1+α(Ω′′) ≤ B1. (A.4)

Then since each fn is Lipschitz continuous with Lipschitz constant bounded by

θ, the functions fn(un(x)) are bounded in Cγ(Ω′′), with the bound depending

only on B1, γ, and θ. The elliptic Schauder estimates in [34, Corollary 6.3 and

Corollary 6.7] then imply that there is a constant C ′ (depending on Ω′, Ω′′, N ,

γ, D, D, and c0) such that

||un||C2+γ(Ω′) ≤ C ′
(
||un||C(Ω′′) + ||fn(un)||Cγ(Ω′′)

)
. (A.5)

We therefore get the final result that

||un||C2+γ(Ω′) ≤ B2, (A.6)

where B2 is a constant depending only on Ω, Ω′, Ω′′, p, N , K, M , γ, θ, D, D,

and c0.

Remark A.2. If D(n) → D, c(n) → c, and ||fn − f ||C0,1([0,K]) → 0 as n →

∞, then the limit of the subsequence unk must satisfy the second-order elliptic

equation
N∑
j=1

Dj
∂2u

∂x2
j

+ c · ∇u+ f(u) = 0 in Ω′, (A.7)

and (in case (ii)) u = 0 on ∂Ω′ ∩∆.
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Theorem A.3. (Interior/boundary/global parabolic estimates)

Let Ω ⊂ RN be a bounded domain with ∂Ω sufficiently smooth (at least C2+γ

for some 0 < γ < 1), and let T > 0. For n ∈ N, let D(n)(t) ∈ RN be uniformly

continuous on 0 ≤ t ≤ T , uniformly with respect to n, and assume that there

exist D, D such that 0 < D ≤ D
(n)
j (t) ≤ D for all 1 ≤ j ≤ N , 0 ≤ t ≤ T , and

all n. Write ΩT = Ω × (0, T ], and let c(n)(x, t) ∈ RN be uniformly continuous

on ΩT , uniformly with respect to n. Let f be a Lipschitz continuous function,

and let un satisfy the parabolic equation

∂un
∂t

=
N∑
j=1

D
(n)
j (t)

∂2un
∂x2

j

+ c(n)(x, t) · ∇un + f(un) in ΩT . (A.8)

Assume that un is bounded (uniformly with respect to n) on ΩT . Let Ω′ ⊂ Ω be

such that either (i) Ω′ ⊂⊂ Ω or (ii) there exists ∆ ⊂ ∂Ω such that un = 0 on

∆, and Ω′ is such that (∂Ω′ ∩ ∂Ω) ⊂ ∆ and (if ∆ 6= ∂Ω) dist(∂Ω′, ∂Ω\∆) > 0.

1. Let 0 < t0 < T and 0 < α < 1. Then the sequence un is bounded in

C1+α, 1+α
2 (Ω′ × [t0, T ]). Hence there exists a subsequence unk such that unk

and ∇unk are uniformly convergent on Ω′ × [t0, T ].

2. Suppose D(n) and c(n) are Hölder continuous, uniformly with respect to n.

Then for 0 < t0 < T , the sequence un is bounded in C2+γ,1+ γ
2 (Ω′× [t0, T ]).

Hence there exists a subsequence unk that converges in C2,1(Ω′ × [t0, T ]),

i.e. unk ,
∂unk
∂t

, and the first and second spatial derivatives of unk , are all

uniformly convergent on Ω′ × [t0, T ].

Proof. The existence of the convergent subsequences will follow from the com-

pact embeddings of the Hölder spaces, so we just need to prove the boundedness.

1. Given 0 < α < 1, let p be such that α = 1 − N+2
p

. The parabolic Lp

estimates in [44, Theorem 7.30] together with [44, Lemma 7.20] imply that

there is a constant C (depending on Ω, Ω′, T , t0, p, N , D, the modulus of

continuity of the D(n) and the uniform bound on the c(n)), such that

||un||W 2,1
p (Ω′×(t0,T )) ≤ C

(
||un||Lp(ΩT ) + ||f(un)||Lp(ΩT )

)
. (A.9)
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Therefore if |un| ≤ K and |f | ≤M , then for each n,

||un||W 2,1
p (Ω′×(t0,T )) ≤ C(K +M)|ΩT |

1
p (A.10)

and so the sequence un is bounded in W 2,1
p (Ω′ × (t0, T )). Moreover, the

space W 2,1
p (Ω′× (t0, T )) is continuously embedded in C1+α, 1+α

2 (Ω′× [t0, T ])

(see [38, Theorem 3.14(3)]). So there is also some constant B1 (depending

on Ω, Ω′, T , t0, p, N , K, M , D, the modulus of continuity of the D(n) and

the uniform bound on the c(n)) such that

||un||
C1+α, 1+α2 (Ω′×[t0,T ])

≤ B1. (A.11)

2. Let Ω′ ⊂ Ω′′ ⊂ Ω be such that, in case (i) Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, or in case (ii)

(∂Ω′∩∂Ω′′) ⊂ (∂Ω′′∩∂Ω) ⊂ ∆ and (if ∆ 6= ∂Ω) with dist(∂Ω′, ∂Ω′′\∆) > 0

and dist(∂Ω′′, ∂Ω\∆) > 0. By applying part 1 to Ω′′ ⊂ Ω and ( t0
2
, T ] ⊂

(0, T ] we deduce that the un are bounded in C1+α, 1+α
2 (Ω′′× [ t0

2
, T ]). Then

since f is Lipschitz continuous, f(un(x, t)) is bounded in Cγ, γ
2 (Ω′′× [ t0

2
, T ])

independently of n, with the bound depending only on B1, γ, and the

Lipschitz constant of f . Now suppose we have Hölder bounds on the

coefficients. Then the parabolic Schauder estimates in [43, chapter IV,

Theorem 10.1] imply that there is a constant C ′ (depending on Ω′, Ω′′, T ,

t0, N , γ, D, the Hölder bound on D(n) and the Hölder bound on the c(n))

such that

||un||C2+γ,1+
γ
2 (Ω′×[t0,T ])

≤ C ′
(
||un||C(Ω′′×[

t0
2
,T ]) + ||f(un)||

Cγ,
γ
2 (Ω′′×[

t0
2
,T ])

)
.

(A.12)

We therefore get the final result that

||un||C2+γ,1+
γ
2 (Ω′×[t0,T ])

≤ B2, (A.13)

where B2 is a constant depending only on Ω, Ω′, Ω′′, T , t0, p, N , γ, the

Lipschitz constant of f , D, the Hölder bound on D(n) and the Hölder

bound on the c(n).
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Remark A.4. If D(n)(t) → D(t) and c(n)(x, t) → c(x, t) as n → ∞, then the

limit in part 2 must satisfy the second-order parabolic equation

∂u

∂t
=

N∑
j=1

Dj(t)
∂2u

∂x2
j

+ c(x, t) · ∇u+ f(u) in Ω′, (A.14)

and (in case (ii)) u = 0 on ∂Ω′ ∩∆.

Lemma A.5. (Unique limits and convergence)

Let X be a normed space and un ∈ X a sequence. Suppose there exists û ∈ X

such that, for every subsequence unm, there exists a sub-subsequence unmk that

is convergent to û. Then the whole sequence un converges to û:

||un − û||X → 0 as n→∞. (A.15)

Proof. Suppose not. Then there exists ε > 0 and a subsequence u∗nm , such that∣∣∣∣u∗nm − û∣∣∣∣X ≥ ε. But then applying the assumed property to u∗nm , there must

be a sub-subsequence u∗nmk
such that

∣∣∣∣∣∣u∗nmk − û∣∣∣∣∣∣X → 0 which is a contradiction.

Theorem A.6. (Rayleigh-Ritz formula: minimisation of the Rayleigh quotient;

see [53, Proposition 6.37 and Remark 6.38].)

Let λ1 be the principal eigenvalue of the regular Sturm-Liouville problem

(p(x)v′)′ + q(x)v + λr(x)v = 0 on a < x < b, v(a) = v(b) = 0 (A.16)

where p ∈ C1([a, b]), q, r ∈ C([a, b]), and p(x) > 0, r(x) > 0 on [a, b]. Then

λ1 = inf
u

∫ b
a
(p(u′)2 − qu2)dx∫ b

a
ru2dx

(A.17)

where the infimum is taken over functions u ∈ C2([a, b]) with u(a) = u(b) = 0,

u 6≡ 0. Moreover, the infimum is attained only by the principal eigenfunction.
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Lemma A.7. (Weak subsolutions)

Consider a problem of the form

Lu :=
∂u

∂t
−D(t)

∂2u

∂ξ2
−V (ξ, t)u = 0 for 0 < ξ < L0, u(0, t) = u(L0, t) = 0

(A.18)

where D(t) > 0 and V (ξ, t) are continuous. Let ξ̂(t) ∈ (0, L0), and let u1, u2 sat-

isfy (in the classical sense) Lu1 ≤ 0 on (0, ξ̂(t)) and Lu2 ≤ 0 on (ξ̂(t), L0), with

u1(0, t) = 0, u2(L0, t) = 0, u1(ξ̂(t), t) = u2(ξ̂(t), t) and ∂u1
∂ξ

(ξ̂(t), t) ≤ ∂u2
∂ξ

(ξ̂(t), t).

Then the function

u(ξ, t) :=

u1(ξ, t) 0 ≤ ξ ≤ ξ̂(t)

u2(ξ, t) ξ̂(t) < ξ ≤ L0

(A.19)

is a weak subsolution for (A.18).

Proof. We need to show that, for every T > 0 and ΩT = (0, L0) × (0, T ), we

have ∫ T

0

∫ L0

0

(
−u∂ϕ

∂t
+D(t)

∂u

∂ξ

∂ϕ

∂ξ
− V uϕ

)
dξdt ≤ 0 (A.20)

for all C∞, non-negative test functions ϕ compactly supported within ΩT . By

splitting the ξ integral at ξ̂(t), we find that the left hand side of (A.20) is:∫ T

0

∫ ξ̂(t)

0

Lu1dξdt+

∫ T

0

∫ L0

ξ̂(t)

Lu2dξdt

+

∫ T

0

D(t)

(
∂u1

∂ξ
(ξ̂(t), t)− ∂u2

∂ξ
(ξ̂(t), t)

)
ϕ(ξ̂(t), t)dt (A.21)

which is ≤ 0 as required.

Lemma A.8. For c ∈ RN and initial conditions uc(ξ, 0) that depend continu-

ously on c, let uc(ξ, t) satisfy the parabolic problem (6.1), (6.2). Then uc(ξ, t) is

continuous with respect to c for each t > 0 and uniformly in Ω0.

Proof. Fix T > 0 and c ∈ RN . Let c(n) → c and un(ξ, t) = uc(n)(ξ, t). We need

to show that un(ξ, T )→ uc(ξ, T ) uniformly in Ω0 as n→∞. Let vn(ξ, t) satisfy

∂vn
∂t

= D∇2vn + c · ∇vn + f(un) for ξ ∈ Ω0 (A.22)
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with vn(ξ, t) = 0 on ∂Ω0 and with initial conditions vn(ξ, 0) = un(ξ, 0). Similar

arguments to those in Theorem A.3 show that for every 0 < t0 < T there is a

subsequence nk and a limit v such that vnk converges to v in C2,1(Ω0 × [t0, T ]).

Since this holds for every 0 < t0 < T , we can take a sequence tm → 0 and take

vnk to be a diagonal subsequence that converges to v in C2,1(Ω0× [tm, T ]) for all

tm ∈ (0, T ). Since the initial conditions vary continuously with c, we also have

vnk(ξ, 0) = uc(nk)(ξ, 0)→ uc(ξ, 0).

Let Gc be the Green’s function of the parabolic operator ∂
∂t
−D∇2 − c · ∇

on Ω0. Then un − vn satisfies the integral equation

un(ξ, t)− vn(ξ, t) =

∫
Ω0

(Gcn(ξ, y, t, 0)−Gc(ξ, y, t, 0))un(y, 0)dy

+

∫ t

0

∫
Ω0

(Gcn(ξ, y, t, τ)−Gc(ξ, y, t, τ))f(un(y, τ))dydτ

(A.23)

for each 0 < t ≤ T . Let n → ∞ in this equation. Using the continuity of

Gc with respect to c, the boundedness of un(·, 0) and f , and the dominated

convergence theorem, we find that the right hand side tends to zero uniformly

in ξ. Therefore un(ξ, t)− vn(ξ, t)→ 0 uniformly in ξ, and so unk(ξ, t)→ v(ξ, t)

as k →∞. Thus, for each 0 < t ≤ T ,

v(ξ, t) = lim
k→∞

vnk(ξ, t)

= lim
k→∞

(∫
Ω0

Gc(ξ, y, t, 0)unk(y, 0)dy

+

∫ t

0

∫
Ω0

Gc(ξ, y, t, τ)f(unk(y, τ))dydτ

)
(A.24)

=

∫
Ω0

Gc(ξ, y, t, 0)uc(y, 0)dy +

∫ t

0

∫
Ω0

Gc(ξ, y, t, τ)f(v(y, τ))dydτ

(A.25)

and so v is a solution to (6.1), (6.2) with initial conditions uc(·, 0). By unique-

ness, it follows that v ≡ uc. Finally by Lemma A.5, the whole sequence un must

converge to uc and not just the subsequence unk .
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Theorem A.9. (A result for periodic-parabolic operators; see [46, Lemma 2.1].)

Let Ω0 be a smooth bounded domain, V ∈ C1,1(Ω0 × [0, 1]), and A ∈ C1([0, 1])

with A(s) > 0. Assume both V and A are periodic in s ∈ [0, 1] with period 1.

For ω > 0 consider the operator

Pωu =
ω

2π

∂u

∂s
− A(s)∇2u+ V (ξ, s)u. (A.26)

Let uω(ξ, s) > 0 be the principal periodic eigenfunction of the operator Pω,

and vω(ξ, s) > 0 the principal periodic eigenfunction of its adjoint operator

P∗ω = − ω
2π

∂
∂s
−A(s)∇2+V (ξ, s), with zero Dirichlet boundary conditions on ∂Ω0,

and with uω and vω normalised so that
∫ 1

0

∫
Ω0
u2
ωdξds =

∫ 1

0

∫
Ω0
uωvωdξds = 1.

Let S denote the set of functions ζ ∈ C2,1(Ω0× (0, 1))∩C1,1(Ω0× [0, 1]) that

are positive on Ω0 × [0, 1], satisfy the zero Dirichlet boundary conditions and

have non-zero normal derivative on ∂Ω0, and are 1-periodic in s. For ζ ∈ S

define the functional Jω by

Jω(ζ) =

∫ 1

0

∫
Ω0

uωvω

(
Pωζ
ζ

)
dξds. (A.27)

Then, for all ζ ∈ S,

Jω(uω)− Jω(ζ) =

∫ 1

0

∫
Ω0

A(s)uωvω

∣∣∣∣∇ log

(
ζ

uω

)∣∣∣∣2 dξds ≥ 0. (A.28)

In particular, for every ω > 0,∫ 1

0

∫
Ω0

(vωPωuω − uωPωvω)dξds = Jω(uω)− Jω(vω) ≥ 0. (A.29)

Theorem A.10. (A Liouville-type property for monostable reaction-diffusion

equations on RN ; see [8, Theorem 3.7].)

Let Lv =
∑

i,j aij(x) ∂2v
∂xi∂xj

+
∑

i qi(x) ∂v
∂xi

where aij, qi ∈ L∞(RN) and are locally

Hölder continuous, and aij is a uniformly elliptic matrix field with minimum

eigenvalue α(x) > 0. Suppose that v ∈ C2(RN) satisfies 0 ≤ v ≤ 1 and

−Lv ≥ f(v(x)) in RN (A.30)

where f is a Lipschitz continuous function, C1 on a neighbourhood of 0, and

f(0) = f(1) = 0, f > 0 on (0, 1), 4α(x)f ′(0)− |q(x)|2 > 0. (A.31)
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Then either v ≡ 0 or v ≡ 1 in RN .

Theorem A.11. (A strong maximum principle for strict super-solutions in un-

bounded domains; see [8, Lemma 2.1(iii)].)

Let Ω ⊂ RN be an unbounded domain, with a boundary ∂Ω, and let

Lu =
∑
i,j

bij(x)
∂2u

∂xi∂xj
+
∑
i

pi(x)
∂u

∂xi
+ c(x)u(x) (A.32)

where bij, pi, c ∈ L∞(Ω) and bij is a uniformly elliptic matrix field. Suppose u,

v ∈ C2(Ω) ∩ C(Ω) are such that for some positive number ε > 0

−Lu ≤ 0 in Ω, sup
Ω
u <∞, (A.33)

−Lv ≥ ε > 0 in Ω, inf
∂Ω
v > 0, (A.34)

and u ≤ v on ∂Ω. (A.35)

Then u ≤ v on Ω.

A.2 Laplace transforms and singularities

For functions h(t) ≥ 0 denote the Laplace transform as ĥ(s) for s > 0:

ĥ(s) =

∫ ∞
0

h(t)e−stdt. (A.36)

Theorem A.12. Let 0 ≤ h1(t) ≤ h2(t). Then as s→ 0 the first singular term

in ĥ2(s) is at least as bad as that in ĥ1(s), in the sense that 0 ≤ ĥ1(s) ≤ ĥ2(s),

and that if for some N ≥ 0 we can write

ĥj(s) =
N∑
n=0

ajns
n + θjN(s), θjN(s) = o(sN) as s→ 0 (for j = 1, 2),

(A.37)

then |θ1N(s)| ≤ |θ2N(s)|.

Proof. It is clear from the definition that 0 ≤ ĥ1(s) ≤ ĥ2(s). For the statement

involving θ1N and θ2N , write

EN(s, t) = e−st −
N∑
n=0

(−st)n

n!
. (A.38)
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For N even, EN ≤ 0 and so

0 ≥
∫ ∞

0

h1(t)EN(s, t)dt ≥
∫ ∞

0

h2(t)EN(s, t)dt. (A.39)

This is equivalent to

0 ≥ ĥ1(s)−
N∑
n=0

ĥ
(n)
1 (0)

n!
sn ≥ ĥ2(s)−

N∑
n=0

ĥ
(n)
2 (0)

n!
sn, (A.40)

which is precisely 0 ≥ θ1N(s) ≥ θ2N(s).

For N odd, EN ≥ 0 and so (A.39) holds with all the inequalities reversed,

and this becomes 0 ≤ θ1N(s) ≤ θ2N(s).

Theorem A.13. (See [12, equation (47)].)

For s > 0 and ν ∈ R,

∫ ∞
1

tνe−stdt = [analytic function of s] +

Γ(ν + 1)s−(ν+1) for − ν /∈ N

(−1)νs−(ν+1) log(s)
(−(ν+1))!

for − ν ∈ N.
(A.41)

Proof. Let Iν(s) =
∫∞

1
tνe−stdt. For ν > −1, the definition of the Γ function

gives

Iν(s) = −
∫ 1

0

tνe−stdt+ Γ(ν + 1)s−(ν+1), (A.42)

and the first term is an analytic function of s.

For ν = −1,

I−1(s) =

∫ ∞
1

t−1e−stdt =

∫ ∞
s

y−1e−ydy (A.43)

=

∫ 1

s

∞∑
n=0

(−1)nyn−1

n!
dy +

∫ ∞
1

y−1e−ydy (A.44)

= − log(s) +
∞∑
n=1

(−1)n(1− sn)

n!n
+

∫ ∞
1

y−1e−ydy.

(A.45)

The second terms is a convergent Taylor series and so an analytic function of s,

and the third term is a constant.
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Finally, for ν < −1, integrating by parts gives:

Iν(s) =
−e−s

ν + 1
+

s

ν + 1

∫ ∞
1

tν+1e−stdt =
−e−s

ν + 1
+

s

ν + 1
Iν+1(s). (A.46)

It follows that (A.41) holds for every ν ∈ R.

Remark A.14. By Theorem A.13, the singular term in∫ ∞
1

tνe−ε
2tdt (A.47)

is proportional to |ε|−2(ν+1) if −ν /∈ N, or ε−2(ν+1) log |ε| if −ν ∈ N. Therefore

the integral (A.47) will be an analytic function of |ε| if and only if

−ν /∈ N and − 2(ν + 1) ∈ N, (A.48)

which is if and only if −(ν + 1
2
) ∈ N, i.e. ν ∈ {−3

2
,−5

2
,−7

2
, . . .}. In these cases

(A.47) has one-sided derivatives of all orders with respect to ε at ε = 0, but it

is not analytic on any neighbourhood (−ε0, ε0) of 0.

Theorem A.15. [12, Equations (51), (52), (53), (54), and (55).]

For s > 0 and ν ∈ R:∫ ∞
1

log(z)zνe−szdz = [analytic function of s]

+ s−(ν+1) (−Γ(ν + 1) log(s) + Γ′(ν + 1)) for − ν /∈ N.

(A.49)∫ ∞
1

log(z)z−
3
2 e−szdz = [analytic function of s] + s

1
2

(
2
√
π log(s) + const

)
.

(A.50)∫ ∞
1

log(z)z−
5
2 e−szdz = [analytic function of s] + s

3
2

(
−4

3

√
π log(s) + const

)
.

(A.51)∫ ∞
1

log2(z)z−
3
2 e−szdz =[analytic function of s]

− 2π
1
2 s

1
2

(
log2(s)− (4− 4 log 2− 2γE) log(s) + const

)
.

(A.52)
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∫ ∞
1

log(z)z−2e−szdz = 1− s
(

log2(s)

2
− (1− γE) log(s) + const

)
+O(s2)

as s→ 0. (A.53)

Here γE is Euler’s constant.
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[65] C. Wu, Y. Wang, and X. Zou. “Spatial-temporal dynamics of a Lotka-

Volterra competition model with nonlocal dispersal under shifting envi-

ronment”. In: Journal of Differential Equations 267 (8) (2019), pp. 4890–

4921.

199



[66] B. Xia. “The Fokas method for integrable evolution equations on a time-

dependent interval”. In: Journal of Mathematical Physics 60 (2019), pp. 1–

60.

200




