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For Yang-Mills theories in four dimensions, we propose to rescale the ratio between topological 
susceptibility and string tension squared in a universal way, dependent only on group factors. We apply 
this suggestion to SU (Nc) and Sp(Nc) groups, and compare lattice measurements performed by several 
independent collaborations. We show that the two sequences of (rescaled) numerical results in these two 
families of groups are compatible with each other. We hence perform a combined fit, and extrapolate to 
the common large-Nc limit.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Lattice studies provide numerical evidence that, at zero tem-
perature, four-dimensional Yang-Mills theories with compact non-
Abelian gauge group G confine. This statement can be made pre-
cise, for instance by formulating it in terms of the expectation 
values of either the Polyakov loop or the Wilson loop, and then ex-
tracting the string tension σ from suitable correlation functions. It 
is of general interest to identify other observables that characterise 
the long-distance behaviour of Yang-Mills theories, for all choices 
of group G . By doing so, one can relate lattice results to alterna-
tive approaches based on the large-Nc expansion. A resurgence of 
interest in the latter, motivated by gauge-gravity dualities [1–4], 
led to much effort being focused on the glueballs, as the results 
of lattice calculations of their spectra [5–17] can be compared to 
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those of gravity calculations [18–27]—or other semi-analytical cal-
culations [28–30].

The topological susceptibility, χ , is a non-perturbative quan-
tity that plays a central role in our understanding of strong nu-
clear forces—see for instance the review in Ref. [31]. It enters the 
Witten-Veneziano formula [32,33] for the mass of the η′ particle, 
and the solution of the U (1)A problem. Being related to the θ -
dependence of the free energy, χ also enters the electric dipole 
moment of hadrons, the strong-CP problem, and its putative so-
lutions (the axion). Being topological in nature, χ is intrinsically 
difficult to compute on the lattice; yet, modern lattice techniques 
are mature enough that increasingly precise and reliable measure-
ments have been published in the past two decades for SU (Nc)

Yang-Mills theories [5,15,34–36]—see also Refs. [37–49]. Our col-
laboration has just completed the calculation of χ in the Sp(Nc)

Yang-Mills theories [50]. In this paper we propose a way to com-
pare χ in different sequences of gauge groups, and perform a 
combined large-Nc extrapolation.

2. Yang-Mills theories

The Yang-Mills theory with gauge group G , in four-dimensional 
Minkowski space, has the classical action:
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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SY M = − 1

2g2

∫
d4x Tr Fμν F μν , (1)

with g the coupling, Fμν ≡ ∂μ Aν − ∂ν Aμ + i[Aμ , Aν ] the field-
strength tensor, and Aμ ≡ ∑

A A A
μT A the gauge field. The matrices 

T A , with A = 1, · · · , dG , are the generators in the fundamental 
representation, normalised by the relation Tr T A T B = 1

2 δAB .
Yang-Mills theories are asymptotically free at short distance, 

hence can be interpreted as conformal theories admitting a 
marginally relevant deformation: the gauge coupling. Long distance 
physics is not accessible to perturbative calculations; its numerical 
treatment is implemented by discretising the Euclidean spacetime 
on a lattice. The discretised action and range of its parameters 
are chosen so that Monte Carlo numerical studies are performed 
within the basin of attraction of a fixed point belonging to the uni-
versality class of the aforementioned conformal theory. By doing 
so, it is possible to suppress non-universal features of the lat-
tice formulation and study the universal properties of the gauge 
dynamics characterising the continuum, four-dimensional physical 
system of interest. Observable quantities are measured as ensem-
ble averages of appropriately chosen operators, and extrapolated 
towards the continuum limit, where the lattice spacing a vanishes, 
by changing the lattice parameters so as to approach the fixed 
point in a controlled way.

We do not report the details of the lattice theories of interest 
here, except for highlighting the fact that in comparing measure-
ments with different ensembles, and extrapolating towards the 
continuum limit, one measures the dimensional observables of in-
terest in units of a physical scale, hence introducing a scale set-
ting procedure. We compare measurements in different theories, 
performed by different collaborations, with different lattice algo-
rithms, but all of them adopting the same scale-setting procedure, 
based upon the string tension σ .

2.1. String Tension

On the lattice, to extract the string tension σ one measures the 
correlation functions between non-contractible path-ordered loops, 
separated by Euclidean distance L. The resulting fluxtubes are de-
scribed by effective string theory when L/a � 1, and the mass 
am(L) (in lattice units) of the lightest (torelon) state is

am(L) = (σa2)
L

a

(
1 +

+∞∑
k=1

dk

(σ L2)k

)
. (2)

The effective string theory [51] is characterised by the values of 
dk , dimensionless coefficients that capture the dynamics at large 
distances; d1 = −π/3 is the universal Lüscher term [52]. One es-
timates σa2 by repeating lattice measurements for different L/a, 
and curve-fitting the results. For further details on the measure-
ments of σa2, we refer the reader to Ref. [12], for example.

Lattice measurements are affected by both statistical and sys-
tematic uncertainties that are difficult to reduce below the few 
percent level. Furthermore, one intrinsic limiting factor in the 
adoption of σ as a universal scale setting procedure in non-Abelian 
gauge theories is that σ is not well defined for asymptotically large 
L, if string-breaking effects are present, as is the case with dy-
namical matter fields. Yet many lattice collaborations report their 
results in terms of σ , because of the simplicity of its extraction 
and its intuitive meaning. We adopt this strategy for the purposes 
of this paper, and in this work we do not attempt to compare with 
results that use a different scale setting method, such as the gra-
dient flow, as done, e.g., in Ref. [45].
2

2.2. Topological Susceptibility

The topological charge Q of a gauge configuration is

Q ≡
∫

d4x q(x) , (3)

where

q(x) ≡ 1

32π2
εμνρσ Tr Fμν(x)Fρσ (x) , (4)

with εμνρσ is the Levi-Civita symbol. The topological susceptibility 
is defined as

χ ≡
∫

d4x 〈q(x)q(0)〉. (5)

The inclusion of a θ term yields the action S̃ , which extends 
Eq. (1):

S̃ = − 1

2g2

∫
d4x Tr Fμν F μν − θ

32π2

∫
d4xεμνρσ Tr Fμν Fρσ .(6)

The vacuum (free) energy (density) F (θ) is defined by the path 
integral

e−V 4 F (θ) ≡
∫

DAμe−S̃E , (7)

where V 4 is the four-dimensional volume, and S̃E the Euclidean 
version of Eq. (6). The topological susceptibility is then computed 
as

χ = ∂2 F (θ)

∂θ2

∣∣∣∣
θ=0

. (8)

In the continuum theory, the charge Q ∈ Z is quantised. Lat-
tice artefacts spoil the discreteness of the topological charge and 
prevent Q from taking integer values on configurations generated 
in numerical simulations. The assignment of integer topological 
charge on the lattice is affected by an ambiguity, though this is 
expected to be irrelevant in the continuum limit.

Other factors that affect the accuracy of the results stem from 
the practical limitations of Monte Carlo updating algorithms and of 
the finite range of lattice spacings that can be simulated. Among 
them, we mention the existence of (auto)correlation between con-
figurations, (partial) topological freezing, and numerical noise due 
to short-distance fluctuations, as well as the appearance of other 
uncertainties in the continuum limit extrapolation. We refer to the 
original literature for details [5,15,34–36,43,44,50], and for a sur-
vey of the advanced strategies that the lattice collaborations imple-
ment in order to minimise the statistical error and the systematic 
effects in the measurement of χ . Under the reasonable assumption 
that the identified errors have been evaluated correctly, a direct 
comparison of the results from the measurements of the differ-
ent groups is a way to assess the size of any potentially remaining 
systematic effects.

3. Towards large Nc

Since the θ term is topological, it does not affect the local dy-
namics of the gauge fields, such as the running coupling. It is 
therefore widely believed that at low energy Yang-Mills theories 
confine even in the presence of a non-vanishing θ , at least as 
long as θ is small. The θ -dependent vacuum is gapped, and all 
the excitations (glueballs) are color-singlets. In order for CP to be 
a well defined symmetry, we also expect the vacuum energy to 
be an even function of θ , minimised at θ = 0, by consequence 
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of the Schwarz inequality applied to the Euclidean partition func-
tion [53,54]:

F (0) ≤ F (θ) = F (−θ) . (9)

By defining the ’t Hooft coupling λ ≡ g2Nc , because the trace 
of any Nc × Nc matrix is proportional to Nc , while the couplings 
are proportional to λ/Nc , Yang-Mills theories can be analysed in a 
1/Nc expansion in which one holds λ fixed. For consistency at the 
quantum level, the θ term must be scaled holding θ/Nc fixed as 
well, and physical observables are multi-valued functions of θ with 
periodicity 2π [55]. For example, the vacuum energy is expected 
to take the form

F (θ) = fG min
k

h

(
θ + 2πk

Nc

)
, (10)

with k = 0, · · · , Nc − 1, and the pre-factor fG = O
(
N2

c

)
for large 

Nc . h is smoothly dependent on θ/Nc for small θ , and is deter-
mined by G in a way that admits a finite limit as Nc → ∞. For 
θ = 0, the minimum is expected for k = 0 [55], and the large-Nc

limit of the topological susceptibility is finite:

lim
Nc→∞χ = χ∞ , (11)

with χ∞ = h′′(0). As each gauge field contributes equally, one ex-
pects that

fG ∝ dG , (12)

where dG is the dimension of the group; dG = N2
c − 1 for SU (Nc)

and dG = (Nc + 1)Nc/2 for Sp(Nc). The proportionality factor must 
be finite in the large-Nc limit.

The string tension is the energy density per unit length of a 
fluxtube, the limiting case of a fermion-antifermion pair in the 
fundamental representation, separated by an asymptotically large 
distance. We hence expect σ to be proportional to the strength of 
the coupling between the fermions, which can be measured by the 
quadratic Casimir of the fundamental representation [28]:

σ ∝ C2(F ) =
{

N2
c −1

2Nc
for SU (Nc)

Nc+1
4 for Sp(Nc)

. (13)

The proportionality factor is itself a function of Nc , and encodes 
non-perturbative dynamics in such a way that the string tension 
has a finite large-Nc limit, σ∞ , as expected because the coupling 
of fundamental fermions scales as 1/

√
Nc , while there are Nc com-

ponents to them.
The topological susceptibility inherits its group-dependence 

from the vacuum energy. Hence, we expect the following ratio 
to capture universal features:

ηχ ≡ χC2(F )2

σ 2dG
= χ

σ 2
·
⎧⎨
⎩

N2
c −1

4N2
c

for SU (Nc)

Nc+1
8Nc

for Sp(Nc)
. (14)

Furthermore, we expect the ratio ηχ to be finite and universal in 
the limit Nc → ∞:

lim
Nc→∞

χC2(F )2

σ 2dG
= b

χ∞
σ 2∞

= ηχ (∞) < ∞ , (15)

where b = 1/4 for SU (Nc), while b = 1/8 for Sp(Nc).
3

Table 1
Summary table of measurements used in this study.

Group Reference χ/σ 2 C2(F )2/dG

Sp(2) Bennett et al. [50] 0.0519(27) 0.1875
Sp(4) Bennett et al. [50] 0.0424(27) 0.1562
Sp(6) Bennett et al. [50] 0.0396(49) 0.1458
Sp(8) Bennett et al. [50] 0.0424(40) 0.1406

SU (2) Lucini et al. [5] 0.0507(24) 0.1875
SU (3) Lucini et al. [5] 0.0355(32) 0.2222
SU (4) Lucini et al. [5] 0.0224(39) 0.2344
SU (5) Lucini et al. [5] 0.0224(49) 0.2400

SU (3) Del Debbio et al. [34] 0.0282(12) 0.2222
SU (4) Del Debbio et al. [34] 0.0257(10) 0.2344
SU (6) Del Debbio et al. [34] 0.0236(10) 0.2431

SU (4) Bonati et al. [35] 0.02480(80) 0.2344
SU (6) Bonati et al. [35] 0.02300(80) 0.2431

SU (3) Bonanno et al. [36,43,44] 0.0289(13) 0.2222
SU (4) Bonanno et al. [36] 0.02499(54) 0.2344
SU (6) Bonanno et al. [36] 0.02214(69) 0.2431

SU (2) Athenodorou et al. [15] 0.05565(64) 0.1875
SU (3) Athenodorou et al. [15] 0.0325(11) 0.2222
SU (4) Athenodorou et al. [15] 0.02469(67) 0.2344
SU (5) Athenodorou et al. [15] 0.0213(13) 0.2400

Fig. 1. Topological susceptibility χ , in units of the string tension σ , in the con-
tinuum limit, for various groups SU (Nc) and Sp(Nc), and as a function of the 
parameter 1/Nc . The measurements reported here are labelled by the collaboration 
that published them, and are also summarised in Table 1.

4. Numerical Results

We summarise in Table 1 lattice measurements for the quan-
tity χ/σ 2 taken from Refs. [5,15,34–36,43,44,50], extrapolated to 
the continuum limit. The same results are graphically displayed in 
Fig. 1, where we organise the measurements in terms of (the in-
verse of) the number of colors Nc in the gauge groups SU (Nc)

and Sp(Nc), respectively. In the table, we show also the group fac-
tor C2

F /dG , which we use in Fig. 2 to rescale the measurements of 
χ/σ 2, as described in Section 3. In this second plot we also change 
the abscissa to display 1/dG ; for large Nc , dG ∝ N2

c , and this more 
physical choice removes conventional ambiguities in comparing 
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Fig. 2. Ratio of topological susceptibility and string tension squared, rescaled by the 
group factor C2(F )2/dG , as a function of 1/dG . We also show the best-fit results of a 
2-parameter fit (dotted line) and of a 3-parameter fit including O (1/d2

G) corrections 
(dashed line), as explained in the main text. The horizontal dashed line is the NDA 
estimate 1/(4π)2.

across different sequences of groups within Cartan’s classification. 
The data of Table 1 and the analysis code used to prepare Figs. 1
and 2, as well as the numbers quoted later in this Section, are 
available at Ref. [56,57].

Before proceeding, we comment on some subtleties about the 
numerical results we quote, which have been obtained with het-
erogeneous treatments of systematic effects. The topological charge 
in pure gauge theories can be computed in different ways [46], 
from ensembles of gauge configurations generated with Monte 
Carlo algorithms, all converging towards the same continuum limit. 
Two technical aspects deserve special attention. Firstly, the contin-
uum χ is related to the lattice χL by both additive and multiplica-
tive renormalisation. Second, the lattice discretisation renders the 
lattice topological charge, Q L , non-integer.

All quoted calculations of χ make use of the definition of Q L

that employs the clover-leaf plaquette [58,59] on ensembles of 
configurations generated with the Cabibbo-Marinari implementa-
tion of the heat bath algorithm [60]. In order to circumvent the 
noisy signal resulting from ultraviolet fluctuations of Q L , one ex-
ploits the stability of the topological charge under smooth defor-
mations of the fields, and computes it after a smoothing process 
such as cooling or Wilson flow. An integer value of Q L on the lat-
tice can then be assigned either by small-instanton-correction [5], 
or by correction-and-rounding [34]. The former consists of rounding 
the lattice topological charge to one of its neighbouring integer val-
ues, chosen with the sign of the net contribution of small instan-
tons. The latter comprises rescaling Q L by minimising the average 
deviation of the lattice topological charge from integer multiples.

For SU (Nc) gauge theories, Ref. [34] assigns integer values 
to Q L by correction-and-rounding on cooled configurations and 
computes the continuum limit of χ for Nc = 3, 4, 6. The same 
strategy is used in Ref. [35], which reports the continuum lim-
its for Nc = 4, 6. With respect to these two works, Ref. [36]
differs because the configurations are obtained by an algorithm 
that considers a larger ensemble of systems with boundary con-
ditions interpolating from periodic to open to soften the effects of 
4

topological freezing (see the quoted work for details); the contin-
uum limits are then obtained for Nc = 3, 4, 6 although for SU (3)

the numerical results are taken from Refs. [43,44]. By contrast, in 
Refs. [5,15] small-instanton-correction is applied to Q L , obtained 
from cooled configurations, and the continuum χ is then extrapo-
lated for Nc = 2, 3, 4, 5.

In the case of Sp(Nc) gauge theories, we borrow the re-
sults from a companion publication, Ref. [50], which is part of 
the ongoing programme of study of Sp(Nc) lattice gauge the-
ories [11,13,61–63], and uses the HiRep code [64], adapted to 
Sp(Nc) groups [11]. The lattice topological charge is obtained from 
Wilson-flowed configurations [65,66], and correction-and-rounding 
is used to assign integer topological charge. The topological suscep-
tibility χ is obtained in the continuum limit for Nc = 2, 4, 6, 8.

By comparing Figs. 1 and 2, we observe two interesting facts. 
Firstly, the two sequences of measurements of χ/σ 2 are clearly 
dissimilar, yet they share interesting properties at the extrema: 
measurements by different collaborations for Sp(2) ∼ SU (2) are in 
broad agreement, and going to large Nc the two sequences show a 
tendency to converge towards two different constants for Nc � 4. 
Second, once we apply the rescaling by the group factor, C2

F /dG , 
the two sequences can no longer be distinguished, the measure-
ments for Sp(Nc) and SU (Nc) theories agreeing with one another, 
given current uncertainties. A rough estimate, based upon naive 
dimensional analysis (NDA) [67], yields:

ηχ = χC2(F )2

σ 2dG
= O

(
1

(4π)2

)
. (16)

This estimate falls straight in the middle of the range of measure-
ments, possibly by mere numerical coincidence. Yet, it is remark-
able that no more than a factor of 2 separates existing measure-
ments, for all groups G , and that this estimate yields the correct 
order of magnitude.

The scaling procedure allows us to perform a simple global fit 
of the whole set of measurement, in the form

ηχ = χC2(F )2

σ 2dG
= a + c

dG
. (17)

The result of the fit, which has reduced X̃ 2 ≡ X 2/Nd.o.f. = 1.58, is 
a = 0.004842(77) and c = 0.01635(46). Visual inspection of Fig. 2
and Table 1 highlights some modest tension between measure-
ments performed by different collaborations for SU (2), as well as 
for SU (3), suggesting that for these two groups the systematic un-
certainty is not negligible, compared to the statistical uncertainty. 
To quantify this effect, we repeat the same fitting procedure, but 
by omitting the Sp(Nc) measurements, and obtain as a result that 
X̃ 2 = 1.83, hence demonstrating that the combination of measure-
ments taken in theories with the two families of groups does not 
affect the goodness of the fit.

We also performed alternative fits, by including corrections 
O(1/

√
dG ) or O(1/d2

G), to test the scaling hypothesis we made; 
these additional terms do not change appreciably the results of 
the maximum likelihood analysis. Our final result is

lim
Nc→∞ηχ = (48.42 ± 0.77 ± 3.31) × 10−4 , (18)

where the first error is the statistical one from the 2-parameter fit 
in the form Eq. (17), while the second is the systematic error of the 
fitting procedure. The latter is conservatively estimated as the dif-
ference between using in the extrapolation either the 2-parameter 
fit or a 3-parameter fit including an additional term proportional 
to 1/d2

G —we show the result of both fits in Fig. 2.
For SU (Nc), C2(F )2 → dG/4 in the large-Nc limit, hence our 

combined result in Eq. (18) can be recast as χ/σ 2 → 0.01937 ±
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.

0.00136. This is � 1.4 standard deviations lower than the re-
sult χ/σ 2 → 0.0221(14) from Ref. [34], but in excellent agree-
ment with Ref. [36], which quotes χ/σ 2 → 0.0199(10), and with 
Ref. [15], from which one deduces that χ/σ 2 → 0.01836(56).

5. Outlook

We proposed a rescaling by group-theoretical factors of the di-
mensionless quantity χ/σ 2, the ratio of topological susceptibility 
and square of the string tension, to yield ηχ , a quantity that can be 
meaningfully compared across different (four-dimensional) Yang-
Mills theories. We collected from the literature the results of the 
continuum limit extrapolation of several independent lattice mea-
surements of ηχ in theories with groups SU (Nc) and Sp(Nc). All 
measurements of ηχ are of the order of magnitude indicated by 
a rough NDA estimate. The two sequences of groups display the 
same functional dependence of ηχ on the dimension dG of the 
group, in support of the proposed rescaling. We assessed this state-
ment by performing a combined fit of all the measurements, and 
by extrapolating towards the large-Nc limit.

We conclude by highlighting a number of open questions, de-
serving of further future investigation. The numerical evidence we 
collected suggests that the group-theoretical scaling we proposed 
allows to combine measurements of χ within the sequences of 
SU (Nc) and Sp(Nc) Yang-Mills theories. It would be fascinating to 
extend this analysis to other choices of gauge group. After rescal-
ing, there remains clearly visible a non-trivial (though mild) de-
pendence on the group dimension; the precise functional form of 
the quantity χC2(F )2/σ 2dG remains a subject for non-perturbative 
studies. It would be interesting to reassess these statements with 
future higher precision measurements.
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