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A B S T R A C T 25 

Emissions of the potent greenhouse gas nitrous oxide (N2O) from aquaculture remain a 26 

large knowledge gap in the global N2O budget. The water column and the sediment of 27 

aquaculture ponds present very different environmental conditions, but their relative 28 

contributions to N2O production and emission are poorly resolved. We sampled three 29 

aquaculture ponds in the Min River Estuary in southeastern China monthly throughout 30 

the farming season. Based on the dissolved N2O concentrations within the water column 31 

and in sediment porewater, we calculated the diffusive N2O fluxes across the water-32 

atmosphere interface (WAI) and sediment-water interface (SWI). The diffusive N2O flux 33 

averaged 216.9 nmol m-2 h-1 across WAI and 16.0 nmol m-2 h-1 across SWI. The estimated 34 

N2O production rate under steady-state condition was 0.13 nmol L-1
 h-1 in the water 35 

column and 1.07 nmol L-1 h-1 in sediment porewater. Hence, the water column 36 

compartment and the sediment compartment of the aquaculture ponds played different 37 

roles in N2O dynamics. Based on our data, it is calculated that China’s coastal aquacultural 38 

ponds would emit 0.2 Gg N2O yr-1, or less than 1% of all aquaculture N2O emission in 39 

China. Therefore, coastal shrimp aquaculture has a relative minor climate impact 40 

compared to other aquaculture operations. Future studies should examine the role of N-41 

cycling functional genes on N2O production and the mechanisms regulating N2O emission 42 

from aquaculture ecosystems. 43 
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1. Introduction 47 

 Nitrous oxide (N2O) is an ozone‐depleting greenhouse gas (GHG), contributing 48 

substantially to radiative forcing and global climate change (Maavara et al., 2018; Quick 49 

et al., 2019; Ravishankara et al., 2009). The Industrial Revolution and intensive 50 

fertilization for farming have increased nitrogen availability significantly in both land 51 

and water environments (Swaney et al., 2012; Howarth et al., 1996; Zhang et al., 2020), 52 

which in turn has caused the increase in atmospheric N2O. N2O has increased to 335.3 53 

ppbv this year (NOAA, 2022), exceeding the preindustrial concentration by ~24%, and 54 

the agricultural sector contributes ~60% (4.3 Tg N yr-1) of the global N2O emissions from 55 

anthropogenic activities (Tian et al., 2020; Webb et al., 2021). China has promised to be 56 

carbon neutral by 2060 (Yang et al., 2022). To effectively mitigate the impact of climate 57 

change, it is therefore crucial to better understand the N2O biogeochemical processes in 58 

various agriculture ecosystems. 59 

Nitrous oxide can be produced in soil (or sediment) and water by two main microbial 60 

processes, nitrification and denitrification (Audet et al., 2017; Li et al., 2021; Wrage et 61 

al., 2005; Wu et al., 2021), with oxygen (O2) and nitrogen (N) availabilities being 62 

important controlling factors (Murray et al., 2015; Xiao et al., 2019a; Yang et al., 2020a). 63 

Similar to crop fields, aquaculture systems (e.g., aquaculture ponds) receive heavy N 64 

loadings and are hotspots for N2O production (Hu et al., 2012; Yang et al., 2020a; Yuan 65 

et al., 2019, 2021) and emission (Paudel et al., 2015; Ye et al., 2022; Yogev et al., 2018). 66 

An aquaculture system contains two compartments—the water column and the sediment, 67 
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both of which can contribute to N2O production but are characterized by different 68 

reduction-oxidation conditions and microbial community compositions (Beaulieu et al., 69 

2015; Freing et al., 2012; Yuan et al., 2021). The anoxic sediment receives a large amount 70 

of organic matter (OM) from animal feces and residual feeds (Chen et al., 2016; Yang et 71 

al., 2021), where microbial mineralization of the OM fuels N2O production (Lin and Lin, 72 

2022; Yuan et al., 2021). On the other hand, the overlying water column tends to be better 73 

aerated and may support aerobic microbial activities, such as nitrification.  74 

Although efforts have been made to quantify N2O emissions from aquaculture 75 

systems, there is a paucity of information on the relative contributions of the two 76 

compartments (Hu et al., 2012). To close the knowledge gap, we analysed the diffusive 77 

N2O fluxes across the SWI and the WAI of aquaculture ponds in southeastern China. The 78 

objectives were to: (1) characterize the temporal variations in diffusive N2O fluxes across 79 

the sediment-water-atmosphere interfaces; (2) explore the environmental factors that 80 

drive the temporal variations in N2O fluxes; (3) compare the roles of sediment and water 81 

in N2O production and emission from the aquaculture ponds. We hypothesized that: (1) 82 

N2O fluxes would exhibit distinct temporal variations in response to differences in 83 

environmental variables (e.g., temperature and nitrogen availability); (2) the water 84 

column would contribute more than the sediment to the overall N2O emission to air. 85 

2. Materials and methods 86 

2.1. Study area 87 

Our research area is located in the Shanyutan wetland of the Min River Estuary 88 
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(MRE), southeastern China (Figure 1). The region has a humid subtropical monsoon 89 

climate (Tong et al., 2010), with a mean annual temperature of 19.6 °C and an average 90 

annual precipitation of 1,390 mm (Yang et al., 2020b). The wetland has three dominant 91 

vegetation types: two with the native species Cyperus malaccensis and Phragmites 92 

australis, and one with the invasive species Spartina alterniflora. During the past decades, 93 

large extent of the MRE tidal saltmarshes (mainly dominated by C. malaccensis and S. 94 

alterniflora) were converted to aquaculture ponds for shrimp (Litopenaeus vannamei) 95 

due to rising demand for seafood (Strokal et al., 2021; Yang et al., 2020c). Shrimp 96 

farming typically begins in May and ends in November, with one crop of shrimp 97 

produced annually. For more details of the aquaculture operation, please see Yang et al. 98 

(2020c). In this study, three aquaculture ponds of ~1.5 m deep were selected for monthly 99 

sampling of water and sediment from April 2019 to January 2020, for a total of 10 100 

sampling campaigns in each pond. In each pond, samples were collected from three sites: 101 

one near the bank, one in the feeding zone, and one at the center of the pond.  102 

2.2. Sediment collection and bulk properties 103 

Three surface sediments (top 15 cm) were collected at each site using a steel cylinder 104 

(5 cm in diameter), stored in sterile sample bags and transported in a cooler to the 105 

laboratory within 4–6 hr. All samples were stored at 4 oC, and analyzed within 72 hr. In 106 

the laboratory, the samples were analyzed for physicochemical properties of sediments, 107 

dissolved N2O concentrations and physicochemical properties of porewater, as explained 108 

below.  109 
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Subsamples of sediment were freeze-dried, homogenized and ground to fine powder 110 

to determine pH and salinity. Sediment pH was determined via a pH meter (Thermo 111 

Fisher Scientific, Sunnyvale, California, USA) in a sediment-to-water ratio of 1:2.5 (w/v 112 

with added deionized water). Sediment salinity (SAL) was measured by a Eutech 113 

Instruments-Salt6 salinity meter (Thermo Fisher Scientific, San Francisco, California, 114 

USA) in a sediment-to-water ratio 1:5 (w/v). Soil water content (SWC) and bulk density 115 

(BD) were determined after drying fresh soil at 105 °C for 48 h (Percival and Lindsay, 116 

1997; Yin et al., 2019); weight loss after drying was used to calculate sediment porosity 117 

(POR) (Zhang et al., 2013). In situ sediment temperature (TS) were measured by a 118 

portable temperature meter (IQ150, IQ Scientific Instruments, Carlsbad, California, 119 

USA). 120 

2.3. N2O concentration and dissolved chemicals in sediment porewater     121 

The dissolved N2O concentrations in sediment porewater was measured according 122 

to Dutta et al. (2015). Briefly, a subsample of sediment (6 cm3) was collected via a 10 123 

mL syringe, transferred to a 55‐mL glass serum vial, and then sealed using an open-124 

topped screw cap and a halobutyl rubber septum. The vial was shaken vigorously in an 125 

oscillator (IS-RDD3, China) for 10 min to achieve gas equilibrium between the slurry 126 

and the headspace. The concentration of headspace N2O (approximately 10 mL) was then 127 

analysed on a gas chromatograph (GC) with an electron capture detector (ECD) 128 

(Shimadzu GC‐2014, Kyoto, Japan). Three N2O gas standards, namely 0.3, 0.4, and 1.0 129 

ppm, were used in the calibration. The detection limit for N2O was 0.02 ppm, and the 130 
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relative standard deviations of N2O were ±4.5% in 24 h. The calculation of sediment 131 

porewater dissolved N2O concentration (nmol L-1) followed the method of Ding et al. 132 

(2005) and Johnson et al. (1990). 133 

The rest of the bulk sediment was centrifugated at 5000 rpm for 10 min (Cence® 134 

L550, De Vittor et al., 2012) to extract porewater. After being filtered through 0.45 μm 135 

acetate fiber membranes (Biotrans™ nylon membranes), the porewater filtrates were 136 

analyzed for the levels of nitrate-nitrogen (NO3
–-N) and ammonia-nitrogen (NH4

+-N) on 137 

a flow injection analyzer (Skalar Analytical SAN++, Netherlands), and Cl- and SO4
2- on 138 

an ion chromatograph (Dionex 2100, Thermo Fisher Scientific, Sunnyvale, California, 139 

USA).   140 

2.4. Water sample collection and analysis        141 

Water column samples were taken from the surface layer (~10 cm below the surface) 142 

and the bottom layer (~5 cm above the sediment) using a 1.5-L organic glass hydrophores, 143 

and then transferred into 150 mL polyethylene bottles and 55 mL pre-weighed serum 144 

glass bottles. All water samples were preserved with saturated HgCl2 solution (~0.5 mL) 145 

(Borges et al., 2018; Marescaux et al., 2018) and transported in a cooler to the laboratory 146 

within 4–6 hr. Approximately 100 mL water sample was filtered through a 0.45 μm 147 

acetate fiber membrane (Biotrans™ nylon membranes) and the filtrate was used to 148 

analyze the levels of NO3
–-N and NH4

+-N, total dissolved nitrogen (TDN), Cl- and SO4
2-. 149 

Dissolved N2O concentrations were determined by headspace equilibration and gas 150 

chromography (Yu et al., 2013; Musenze et al., 2014). Briefly, nitrogen gas (N2; >99.9% 151 
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purity) was injected into each serum glass bottle to displace a 25-mL headspace and the 152 

bottle was shaken vigorously for 10 min (IS-RDD3, China) to attain air-water 153 

equilibrium. After waiting for 0.5 hour, a 5 mL headspace sample was extracted and 154 

injected into a gas chromatograph as explained earlier (see Section 2.3). The in situ 155 

dissolved N2O concentrations (nmol L-1) were calculated according to Yu et al. (2013) 156 

and Musenze et al. (2014).  157 

2.5. Diffusive N2O fluxes across the sediment-water interface (SWI) 158 

The diffusive N2O fluxes across SWI (FS-W, nmol m-2 h-1; positive values indicate 159 

N2O fluxes from sediment to water) were calculated as (Gruca-Rokosz and Tomaszek, 160 

2015; Tan et al., 2014):  161 

���� = �� × ∆	/∆� = (�
 × POR) × (	� − 	�)/∆�                         (Eq. 1) 162 

where DS is the diffusion coefficient of N2O in sediment (cm2 s-1); ∆C/∆Z is the gradient 163 

for dissolved N2O concentration with depth; POR is sediment porosity; CS is dissolved 164 

N2O concentration in sediment porewater (nmol L-1); CW is the dissolved N2O 165 

concentration in overlying water (near the sediment surface) (nmol L-1); Z is diffusion 166 

distance (cm); Dw is the diffusion coefficient of N2O in water (cm2 s-1), which was 167 

calculated as:  168 

�� = −6.0 × 10����
� + 10���� − 3.0 × 10�                                 (Eq. 2) 169 

where TW is the temperature in overlying water (near the sediment surface) (oC). 170 

2.6. Diffusive N2O fluxes across the water-atmosphere interface (WAI) 171 

The diffusive N2O fluxes across SWI (FW-A, nmol m-2 h-1; positive values indicate 172 
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N2O fluxes from water to air) were calculated as (Musenze et al., 2014): 173 

���" = [2.07 + (0.215 × &'(
'. )](*+/660)�, × (	� − 	-.)             (Eq. 3) 174 

where CW is the dissolved N2O level (nmol L-1) in the surface water; Ceq is the N2O level 175 

in water that is in equilibrium with air at the in situ temperature; U10 is the frictionless 176 

wind speed (WS; m s-1) at 10 m height above the water surface according to Crusius and 177 

Wanninkhof (2003); Sc is the Schmidt number for N2O (Wanninkhof, 1992); n is a 178 

constant that varies between 0.50 (WS>3 m s-1) and 0.66 (for WS≤3 m s-1) (Cole and 179 

Caraco, 1998).       180 

2.7. Auxiliary data 181 

Meteorological parameters, including air pressure (AP), wind speed (WS) and air 182 

temperature (TA), were collected by an automated meteorological station on site. In each 183 

sampling campaign, in situ water salinity (Sal), temperature (TW) and dissolved oxygen 184 

(DO) were measured by a Eutech Instruments-Salt6 salinity meter (Thermo Fisher 185 

Scientific, San Francisco, California, USA), a temperature meter (IQ150, IQ Scientific 186 

Instruments, Carlsbad, California, USA) and a multiparameter probe (550A YSI, USA), 187 

respectively.   188 

2.8. Statistical analysis 189 

All data were checked for normality and homogeneity of variance before further 190 

statistical analysis. One–way ANOVA was conducted in SPSS 22.0 (IBM, Armonk, NY, 191 

USA) to explore the effects of sampling time on various environmental variables, N2O 192 

concentrations and diffusive N2O fluxes. Spearman correlation analysis was performed 193 
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to examine the relationships between diffusive N2O fluxes (or dissolved N2O 194 

concentrations) and environmental parameters, using R corrplot and Hmisc packages. 195 

The extent to which environmental variables regulated the temporal variations in 196 

diffusive N2O fluxes (or dissolved N2O concentrations) was analysed using Redundancy 197 

Analysis (RDA) in CANOCO 5.0 (Microcomputer Power, Ithaca, USA). The 198 

significance level was set at p<0.05 for all analyses.   199 

3. Results 200 

3.1. Physical and chemical characteristics  201 

The physicochemical properties of porewater and surface water are shown in Figure 202 

2. Air, water and sediment temperatures increased from April toward July and August, 203 

then decreased toward January. Across all sampling months, the mean temperature, NO3
-204 

-N and NH4
+-N concentrations in sediment porewater were 20.25±0.59 oC, 0.22±0.03 mg 205 

L-1 and 0.33±0.04 mg L-1, respectively, which were significantly lower than in the surface 206 

water (25.36±1.01 oC, 1.19±0.20 mg L-1 and 0.52±0.13 mg L-1, resepctively) (p<0.05 or 207 

<0.01). 208 

3.2. Dissolved N2O concentration in sediment porewater and water column 209 

Dissolved N2O concentration varied significantly over time (p<0.01; Figure 3). It 210 

ranged from 2.11±0.18 to 21.68±2.60 nmol L-1 in the surface water, 1.83±0.11 to 211 

22.04±5.54 nmol L-1 in the bottom water, and 5.02±0.63 to 40.48±5.31 nmol L-1 in the 212 

sediment porewater (Figure 3). The mean N2O concentration was significantly higher in 213 

sediment porewater (18.94±3.05 nmol L-1), followed by bottom water (9.88±2.11 nmol 214 
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L-1) and surface water (9.29±2.12 nmol L-1) (p<0.001). The highest N2O concentration 215 

was observed in September in the sediment porewater and in July in the surface water 216 

and bottom water (Figure 3). 217 

3.3. N2O fluxes across the sediment–water-atmosphere interfaces  218 

The diffusive N2O fluxes across the SWI were always positive (ranged 1.51‒48.84 219 

nmol m-2 h-1; Figure 4a), indicating net N2O releases from the sediment to the overlying 220 

water. The N2O fluxes across the SWI varied significantly between months (Fdf=9=4.962, 221 

p=0.001) with considerably higher values from August to October (Figure 4a). 222 

The diffusive N2O fluxes across the WAI of the ponds showed significant temporal 223 

variations (Fdf=9=32.227, p<0.001; Figure 4b), with higher fluxes from June to August, 224 

and lower fluxes from November to January (Figure 4b). Overall, the diffusive N2O 225 

fluxes across WAI ranged from 25.06 to 507.87 nmol m-2 h-1 (Figure 4b), indicating that 226 

the aquaculture ponds were an N2O emission source to the atmosphere.  227 

Across all the sampling campaigns, the mean diffusive N2O flux across WAI (216.85 228 

± 55.52 nmol m-2 h-1) was an order of magnitude higher than that across SWI (16.00 ± 229 

4.60 nmol m-2 h-1) (Fdf=1 = 38.319 p < 0.01).  230 

3.4. Environmental drivers of N2O concentrations and fluxes   231 

Spearman correlation analysis showed that N2O fluxes across SWI (or porewater 232 

N2O concentrations) correlated positively with TS (p<0.001) and NO3
--N (p<0.01), but 233 

negatively with sediment salinity (p<0.01), porewater Cl- (p<0.05) and SO4
2- 234 

concentrations (p<0.01) (Figure 5a). N2O fluxes across WAI (or water column N2O 235 
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concentrations) correlated positively with TA, TW, NO3
--N and TDN (p<0.01 or p<0.001), 236 

but negatively with AP, DO, pH, salinity, Cl- and SO4
2- concentrations (p<0.01 or p<0.001) 237 

(Figure 5b). 238 

Based on the results of RDA, TS (explaining 57.2% of the variations) and NO3
--N 239 

(16.9%) were the variables that explained most of the temporal variations in N2O fluxes 240 

across SWI (or porewater N2O concentrations) (Figure 6a), whereas variations in N2O 241 

fluxes across WAI (or water column N2O concentrations) were mostly explained by TW, 242 

(64.6%), followed by NO3
--N (21.4%) and TDN (8.8%) (Figure 6b).  243 

4. Discussion 244 

Nitrous oxide emissions from agriculture have been a main focus in climate science 245 

due to the increase in agricultural land use and application of fertilizer (Del Grosso et al., 246 

2008; Shcherbak et al., 2014). While the estimates of agricultural N2O emissions are 247 

reasonably well constrained at the global level, uncertainties persist at the regional and 248 

local levels (Reay et al., 2012). Earlier studies also highlighted that N2O emissions from 249 

aquaculture systems remain a critical knowledge gap, especially considering the rapid 250 

expansion of the aquaculture sector worldwide (Reay et al., 2012). 251 

The whiteleg shrimp Litopenaeus vannamei is one of the main species farmed in 252 

small-hold earthen ponds along the China’s coast (BFMA, 2019). The sediment and the 253 

water column of aquaculture ponds present very different reduction-oxidation 254 

environments to drive the different N2O production pathways, for example, via 255 

incomplete denitrification in anoxic condition and nitrification in oxic condition, using 256 
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NO3
--N or NH4

+-N as substrate (Hu et al., 2012, 2013; Yuan et al., 2021; Yang et al., 257 

2020d). In contrast to the expectation that the sediment is a sink of nitrogenous substrates 258 

from deposition of animal wastes and excess feed (Avnimelech and Ritvo, 2003; 259 

Hargreaves et al., 1998), our data showed that both NO3
--N and NH4

+-N concentrations 260 

were higher in the water column than in the sediment porewater (Figure 2). This perhaps 261 

reflects the high efficiency of the shrimp to convert feed to biomass and its ability to 262 

recycle nutrients within the water column (Avnimelech and Ritvo, 2003; Lacoste and 263 

Gaertner-Mazouni, 2016; Zhang et al., 2016). The large increase in surface-water NO3
--264 

N concentration in July–October was likely caused by the increased use of feed and 265 

increased feeding activity of the shrimp during its summer growth burst.  266 

Despite the much lower NO3
--N concentration in the sediment porewater than the 267 

water column (Figure 2), sediment porewater N2O concentration was comparable to or 268 

more than twice that in the overlying water (Figure 3). These observations suggest that 269 

N2O was produced mainly via denitrification and accumulated in the anoxic sediment 270 

(Blackburn and Blackburn, 1992), whereas N2O production via denitrification (using 271 

NO3
--N) or nitrification (using NH4

+-N) was rather limited in the water column. 272 

Movement of the shrimp in the pond bottom could disturb the sediment and 273 

accelerate chemical exchanges between the sediment and the overlying water. Previous 274 

experimental studies have suggested that bioturbation by L. vannamei released nutrients 275 

from the sediment and increased oxygen consumption in the overlying water (Yang et al., 276 

2017; Zhang et al., 2015); however, those measurements were made in artificial 277 
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enclosures where the shrimp may not behave normally. In this study, we observed that 278 

sediment porewater N2O concentration was consistently higher than that in the bottom 279 

water (~5 cm above sediment) on all but two occasions (Figure 3); therefore, there was 280 

no evidence of bioturbation by the shrimp in the pond that would have destroyed the N2O 281 

gradient across the water-sediment interface.  282 

Based on the N2O distributions, we calculated the N2O fluxes across the SWI and 283 

the WAI (Figure 4). The N2O fluxes across SWI were highest in the summer months 284 

(August-October), coinciding the higher porewater NO3
--N concentrations and sediment 285 

temperatures (Figure 2a and 2b), both of which would have increased microbial 286 

denitrification activity in the sediment (Hu et al., 2012; Murray et al., 2015; Reisinger et 287 

al., 2016). The N2O fluxes across WAI increased earlier, reaching a maximum in July, 288 

which was also consistent with the earlier rise in water temperature and water column 289 

NO3
--N concentration (Figure 2). These explanations were further supported by 290 

Spearman correlation and RDA analyses (Figures 5 and 6). 291 

Averaging across the study period, N2O flux across WAI was an order of magnitude 292 

higher than N2O flux across SWI, implying that the water column played a larger role in 293 

emitting N2O from the aquaculture pond. Overall, the N2O emissive fluxes from the 294 

shrimp ponds were comparable to other aquaculture ponds, static waters (reservoirs and 295 

lakes) and running waters (rivers and estuaries), but considerably less than the highly 296 

eutrophic waters (Table 1). Coastal shrimp aquaculture in China is dominated by small-297 

hold earthen ponds that cover a total area of ~2400 km2 (BFMA, 2019), the majority of 298 
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which are poorly monitored for their greenhouse gas emissions. Using data from this 299 

study, we estimate that coastal shrimp ponds in China would emit 0.2 Gg N2O yr-1 or 300 

4.5×10-3 Gg N yr-1. A recent study estimated that N2O emission from marine and 301 

freshwater aquacultures in China amounts to ~16.7 Gg N y-1 (Zhou et al., 2021). 302 

Notwithstanding the uncertainties associated with the feed conversion rates and emission 303 

factors used in Zhou et al.’s study, our calculations suggest that coastal shrimp ponds 304 

contribute <1 % of the aquaculture N2O emission in China. 305 

Assuming the aquaculture pond ecosystem was in steady state, we may estimate the 306 

N2O production rates in the sediment and the water column compartments as follows: 307 

We considered a sediment surface area of 1 m2. Assuming that deposition of nitrogenous 308 

substrates for N2O production was limited to the top 15 cm sediment and given the 309 

average N2O flux of 16 nmol m-2 h-1 across SWI and an average sediment porewater N2O 310 

concentration of 18.94 nmol L-1, the N2O turnover time for a 1 m2 × 15 cm sediment 311 

compartment would be 17.75 hours and the equivalent N2O net production rate would be 312 

1.07 nmol L-1 h-1 under a steady-state condition. For a water column of 1 m2 surface area 313 

× 1.5 m depth (average depth of the aquaculture pond), the N2O concentrations were 314 

similar between surface water (9.29 nmol L-1) and bottom water (9.88 nmol L-1); 315 

therefore, we used the average concentration of 9.59 nmol L-1. The net loss of N2O from 316 

the water column compartment through emission to air would be the difference between 317 

the average WAI flux (216.85 nmol m-2 h-1) and SWI flux (16.00 nmol m-2 h-1), i.e., 318 

200.85 nmol m-2 h-1. The water-column N2O turnover time would be 9.59 × 1500 ÷ 319 
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200.85 = 71.58 hours, and the equivalent net N2O production rate in the water column 320 

would be 0.13 nmol L-1 h-1. There is a lack of empirical data on ambient N2O production 321 

rates in aquaculture ponds; nevertheless, our estimates fall within the range observed in 322 

eutrophic coastal waters (De Wilde and De Bie, 2000; Punshon and Moore, 2004).  323 

5. Conclusions 324 

Overall, our results show that the sediment compartment and the water column 325 

compartment played opposite roles in N2O dynamics within the aquaculture ponds: The 326 

sediment had a much higher N2O production rate than the water column, whereas the 327 

water column contributed a much higher overall emission to air. Environmental 328 

temperatures and nitrogenous substrates were the main controlling factors in both 329 

compartments. Although our data showed that coastal aquaculture shrimp ponds were a 330 

net source of N2O emission to the atmosphere, their overall contributions were relative 331 

minor compared to other aquaculture operations in China; therefore, shrimp aquaculture 332 

remains a preferred solution to the growing demand for animal proteins without 333 

exacerbating the climate impact. 334 
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 1 

Figure 1. Map of the Shanyutan wetland within the Min River estuary showing the sampling 2 

sites in aquaculture ponds. The geographical coordinates of Pond I, Pond II and Pond III being 3 

26°01'43"N and 119°38'30"E, 26°01'37"N and 119°38'35"E, and 26°01'36"N and 119°38'38"E, 4 

respectively.5 
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Figure 2. Monthly temperatures, NO3
--N and NH4

+-N concentrations in the aquaculture ponds 7 

during the farming period. The bars represent the means + 1 standard error (n = 3).8 
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Figure 3. Monthly dissolved N2O concentrations in the surface layer water, bottom layer 10 

water and sediment porewater of the aquaculture ponds during the farming period. The 11 

bars represent the means + 1 standard error (n = 3).12 
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Figure 4. Monthly diffusive N2O fluxes across (a) sediment-water interface (SWI) and 14 

(b) water-atmosphere interface (WAI) of the aquaculture ponds during the farming 15 

period. The bars represent the means + 1 standard error (n = 3).  16 
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