CONSTRUCTION OF INFINITELY MANY SOLUTIONS FOR A CRITICAL
CHOQUARD EQUATION VIA LOCAL POHOZAEV IDENTITIES
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ABSTRACT. In this paper, we study a class of the critical Choquard equations with axisymmetric potentials,
—Au+V(|2'|,2")u = (|x\74 * |u\2)u in RY,

where (2/,2") € R? x R*, V(|2/|,2”) is a bounded nonnegative function in R* x R*, and # stands for the
standard convolution. The equation is critical in the sense of the Hardy-Littlewood-Sobolev inequality. By
applying a finite dimensional reduction argument and developing novel local Pohozaev identities, we prove
that if the function r2V(T, z'") has a topologically nontrivial critical point then the problem admits infinitely
many solutions with arbitrary large energies.
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1. INTRODUCTION AND MAIN RESULTS

The nonlinear Choquard equation
—Au+V(z)u= (\xr“ * \u|q) lu[2u, in RY (1.1)

arises in various fields of mathematical physics, such as the description of the quantum theory of a polaron
at rest [36] and the Hartree-Fock theory of one-component plasma which models of the electron trapped
in its own hole [26]. First mathematical results on equation (1.1) are due to Lieb [26], who proved the
existence and uniqueness, up to translations, of the ground state for (1.1)) with N =3, u =1, ¢ =2
and V a positive constant. Lieb’s results were improved and extended by Lions [28,29] established, in
particular, the existence of a sequence of radially symmetric solutions. In the case when V is a constant,
Moroz and Van Schaftingen [33] proved regularity, positivity and radial symmetry of the ground states for
an optimal range of ¢, and described asymptotic decay of solutions at infinity. Ackermann [1] proposed
a new approach to prove the existence of infinitely many geometrically distinct weak solutions in the
case of a periodic potential V. If the potential V' has the form of a deep potential well Aa(z) + 1 where
a(r) is a nonnegative continuous function such that 2 = int (a=1(0)) is a non-empty bounded open set
with smooth boundary, in [4] the authors studied the existence and multiplicity of multi-bump shaped
solution. The existence of nodal solutions for the nonlocal Choquard equation has also attracted a lot
of interest, see for example [22,38] , the sign-changing solutions is hard to obtain due to the nonlocal
interaction. The existence and concentration behavior of semiclassical solutions for the singularly perturbed
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subcritical Choquard equation have been considered in [2,3,15,34,41]. Among them, Wei and Winter [41]
constructed families of solutions by a using a Lyapunov-Schmidt type reduction. Chen [7] constructed
multiple semiclassical solutions to the Choquard equation with an external potential by Lyapunov-Schmidt
reduction argument. Luo et al. [32] established the uniqueness of positive solutions that concentrating at
the nondegenerate critical points of the potential by combining a local type of Pohozaev’s identities and
blow-up techniques.

To state the main results, we first recall the Hardy-Littlewood-Sobolev inequality (see [27, Theorem
4.3]) to clarify the meaning of “critical” for the Choquard equation.

Proposition 1.1. Lett, r > 1 and 0 < p < N be such that %—I— & —I—% = 2. Then there is a sharp constant
C(N, u,t) such that, for f € Lt(RN) and h € L"(RY),

h(y)
T dady| < C(N, Rl
/RN R |x—y| zdy| < ON, s )| Fl e Rl L )-

Ift =r=2N/(2N — ), then
N p N —1+4&
C(tNa,UaT):C(N;,U):ﬂ'%F(? l){F(Z)} )

2

In this case there is equality is achieved if and only if f = Ch and
h(w) = AG? + [ = af?)~ Y2
for some AcC,0#~vcR and a € RV.

According to Proposition 1.1, the functional

)P
[ ] err,,,
Ry Jry |z —ylH

is well defined in H*(RY) x H'(RY) if ZNT_“ <p< 2]]\,\[7:2“ Here, it is quite natural to call QNT_“ the lower
Hardy-Littlewood-Sobolev critical exponent and 2, = 211\,\77__2“ the upper Hardy-Littlewood-Sobolev critical
exponent.

For the upper critical case, by using the moving plane methods in integral developed in [8,9] , Lei [25],
Du and Yang [17], Guo et al. [23] classified independently the positive solutions of the critical Hartree
equation

— Au = (|x|_“ * |u|2:) |u[? 2y in RV, (1.2)
and proved that every positive solution of (1.2) must assume the form
(N—)(2=N) 2N N2 A 452
U — § AN i) O(N, p) TN - # D [N(N — 2)] "5 (—) : 1.3
Z,)\(x) ( /’L) [ ( )] 1 +)\2‘IL’ o 2’2 ( )

In [19] the authors considered the Brézis-Nirenberg type problem and established the existence, multiplicity
and nonexistence of solutions for the nonlinear Choquard equation in bounded domain. Ghimenti and
Pagliardini in [21] studied the existence of multiple solutions for the Choquard equation with slightly
subcritical exponent. In [3], by investigating the ground states of the critical Choquard equation with
constant coefficients, the authors studied the semiclassical limit problem for the singularly perturbed
Choquard equation in R3 and characterized the concentration behavior by variational methods. The
planar case was considered in [2], where the authors established the existence of a ground state for the
limit problem with critical exponential growth and then they also studied the concentration around the
global minimum set. Gao and Yang in [20] investigated the existence result for the strongly indefinite
Choquard equation with upper critical exponent in the whole space. In [18], Gao et al. studied the critical
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Choquard equations with subcritical perturbation and potential functions that might change sign and
proved the existence of Mountain-Pass solution via a nonlocal version of the concentration-compactness
principle. In [15], Ding et al. established a global compactness lemma and proved the multiplicity of high
energy semiclassical states for a class of critical Choquard equations without lower perturbation using the
Ljusternik-Schnirelman theory methods. In [45], the authors studied the existence of saddle type solutions.
For recent progress on the study of the Choquard equation we may refer the readers to [4,11,16,19,35] for
details.

The aim of this paper is to establish the existence of infinitely many solutions for the critical Choquard
equation with an axisymmetric potential V' (z) of a special form,

—Au+V(|2'|,2")u = (\x|_4 * ]u\2>u in R, (1.4)

where (', 2") € R? x R?, the potential V' > 0 is bounded, belongs to C! and V' # 0. The exponent p = 2
is critical since N = 6 and y = 4. We assume that the function 2V (r,2”) has a stable topologically
nontrivial critical point in the following sense, which was introduced in [37]:

(V) The function 72V (r,2”) has a critical point (rg, x{) such that ro > 0, V(ro,z{) > 0, and
deg(V (r*V (r, ")), (1o, 2)) # 0.
The main result of this paper is the following theorem.

Theorem 1.2. If V(|2'|,2") satisfies assumption (V'), then problem (1.4) has infinitely many solutions in
H(RY) and the energy of the solutions diverges to +oo.

As far as we are aware, this is the first result of its kind for nonlocal Choquard equations with
axisymmetric potentials. We will construct solutions of (1.4) with large number of bubbles in Theorem 1.2
by using a reduction argument together with the novel local Pohozaev’s identities. The idea is inspired by
recent works [10, 14, 24,42] for non-singularly perturbed elliptic problems. It is well understood that the
proofs of the existence of solutions with large number of bubbles for critical elliptic equations by reduction
arguments depends heavily on the nondegeneracy of the solutions of the critical Lane-Emden equation. It

is well known that the following equation
N+2

—Au=uv-2, zeRV, (1.5)
has a unique family of positive two-parameter solutions of the form
N-2 A 52
U, = [N(N -2 7(—) . 1.6
r(@) = NV = 20T (= (1.6

Furthermore, equation (1.5) has an (/N + 1)-dimensional manifold of solutions given by
Z= {zk,g = [N(N — 2)]122(“2‘2_5’2)%2,5 eRN te R*} .
For every Z € Z, it is said to be nondegenerate in the sense that the linearized equation
— Av=Zv3y (1.7)
in DY2(RYM) only admits solutions of the form
n=abDZ +b-VZ,

where a € R,b € RV, In [42], Wei and Yan developed the technique that allowed to study the prescribed
scalar curvature problem on SV

N(N — 2) n+2

—Agnu + 5 u=K(z)un—2 onS".
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Assuming that K(x) is positive and rotationally symmetric and has a local maximum point between the
poles, by using the stero-graphic projection, the prescribed scalar curvature problem can be reduced into

—Au = K(:U)uzitg in RY.

The authors took the number of the bubbles of the solutions as parameter and proved the existence of
infinitely many non-radial positive solutions whose energy can be made arbitrarily large. We may also
turn to the works by Deng, Lin, Yan [14], Guo, Peng, Yan [24] and Li, Wei, Xu [30] for the existence and
local uniqueness of multi-bump solutions. For the critical Schrodinger equation

—Au+V(|z))u = witt in RV,

Chen, Wei and Yan [10] applied the reduction argument to study the existence of infinitely many positive
solutions in the case of a radially symmetric potentials V. In [37], Peng, Wang and Yan developed
a new idea that allowed also to construct bubbling solutions concentrating at saddle points of some
functions. They used the Pohozaev identities to find algebraic equations which determine the location of
the bubbles. Results on the existence of infinitely many solutions for other elliptic problems can also be
found in [5,6,39,40,43,44] and the references therein.

Define
H, = {u € DYA(RY), u(wy, —w2,0") = u(ay, v2,2"),
25T 27
u(rcosf,rsinf, z") = u(r cos(6 + ‘77) rsin(f + Jﬂ) x”)}

m m

and let

2(5—1 29— 1
zj = (Fcos U )W,Fsin G =D *”) j=1,---,m,
m m
where 7" is a vector in RY. By the weak symmetry of V(x), we have V(zj) =V@FEz"),j=1,---,m

We will use U, x (see (1.3)) as an approximate solution. Let § > 0 be a small constant, such that
72V (r,2") > 0if |(r,2") — (ro,z()| < 106. Let &(z) = £(|2'|,2”) be a smooth function satisfying & = 1 if
|(r, ") — (ro,20)| <0, & =0if |(r,2") — (ro,x()| > 26, and 0 < £ < 1. Denote

Zz]-)\(x) = gUZj,)\(m) 7.z, 222]7 ’ r:v” )\ ZU237

and Y Y Y
25\ Zj,A 25,5\
o 20 = 2 20 = T2

In this paper, we always assume that m > 0 is a large integer, A € [Lom?, Lym?] for some constants
L1 > Lo >0 and

Zij1= fork=3,---,N, j=1,---m

|(7,7") = (ro, 20)| < ¥ <6,

where 9 > 0 is a small constant.
In order to prove Theorem 1.2, we will prove the following result.

Theorem 1.3. Under the assumptions of Theorem 1.2, there exists a positive integer mqg > 0, such that
for any integer m > my, (1.4) has a solution u,, of the form

m
Um = Zrp 3 A T Pron @ A = E EUz Am T O 7 A

where ¢p, . € Hs and Ay, € [LomQ,lez}. Moreover, as m — oo, (Tm,Ty,) — (ro,x(), and

w67, 7 A oo = 0.
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Before we finish this section, we would like to point out the main difficulties in the study of nonlocal
Choquard equations. First of all, the uniqueness and nondegeneracy of the ground-states is largely open.
The subcritical case for (1.1) was partially solved in [31,41,46]. In [31,41] the authors proved the uniqueness
and nondegeneracy for the case N =3, u =1 and ¢ = 2. Chen [7] generalized the nondegeneracy result
to higher dimensions and Xiang [46] generalized the results further by showing the nondegeneracy when
q > 2 is close 2. For the critical case (1.2), the nondegeneracy property is mostly open. As far as we
know, the only result is [17], there the authors established the nondegeneracy result when p is close to N.
Recently, the last two authors of the present paper obtained the nondegeneracy result for N = 6, u = 4.
In addition, the nonlocal convolution part in (1.1) makes it much more difficult to establish the local
Pohozaev identities and to obtain the error estimates.

The paper is organized as follows: In Section 2, we give some preliminary results including a nondegen-
eracy result for the critical Hartree equation (2.4). In Section 3, we carry out the reduction procedure
for the critical Choquard equation (1.4). In Section 4, we prove our main results by establishing local
Pohozaev identities.

2. PRELIMINARY RESULTS

In this section, we will introduce some estimates involving the convolution term and introduce a
nondegeneracy result for the limit critical Hartree equation (2.4).

Lemma 2.1. (Lemma B.1, [42]) For each fixed k and j, k # j, let
1 1
L |z =2 (14 | — /)P
where a > 1 and 8 > 1 are two constants. Then, for any constants 0 < § < min{a, B}, there is a constant
C > 0, such that

gr,j(z) = (

C 1 1
9r.j(x) < 5 ( -+ 7).
’ |2k = 2O \(L+ 2 = z)2HP0 0 (L |2 — ) >0~

Lemma 2.2. (Lemma B.2, [}2]) For any constant 0 < § < N —2, N > 5, there is a constant C > 0, such
that

L
- Y> 70 e
RN o=y N2 (14 Jy[)>+e (1+ [z])°
Using the methods to prove Lemma B.2 in [42], we can also establish the following lemma.
Lemma 2.3. For N =6 and 1 <1¢ < 'm, there is a constant C' > 0, such that
A2 C

—4
<
o (L Nz — )5+ = (L + Nz — )4

where n > 0.
Proof. First, we notice that
] 22 / 1 A2 J / 1 1
* = —_— — .
T+ Nz —zD)5 1 S Tyl (L Mz — 2 — gD ™ Joo Tyl (T4 Pz — Az — )57
Let d = 3|z — 2| > 1. Then, we have

dy.

/1 1 d<0/1d<0d2<0
a0 WL+ e =z — )50 Y = T a5 Jp 0 WA = W+ a0 = T+ ay=n

and

/ 1 1 < L / 1. C
T T y < :
BaOa—az) Y1t (L4 Az = Azi —y[)04n 5= dt [ g o) (14 [y[)+7 (1+ad)!
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Suppose that y € R%\(B4(0) U Bg(Ax — A\2;)). Then
1 1
IAx — Az —y| > 5])@ — Azil, ly| > §|)\:c — Az,

and, we have
1 1 < C 1 1
yl* (L + Az = Az —y))5F7 = (L4 d)* [y|* (1 + [Az — Az — y|)>F7

If ly| < 2|A\x — Az, then

i 1 < C < 1

yl* (L+ Az = Az —y)>T7 7 Jyl* (1 + [Ax = Az])2H7 = [y[*(1 + [y[)>+
If [y| > 2|Az — Az, then [Az — Az; — y| > |y| — [Az — Az| > |y|. As a result,

1 < C
yl* (L+ Az = Az — y)>T7 7~ y* (1 + [y])>T

Thus, we have

1 1 C 1 1 C
— dy < / 7 dy < .
/]RN\(Bd(O)UBd()\a:—Azi)) [y[* (1 + [Az — Az — y[)0+7 (I+ad)* Jrn ly|* (1 + [y[)*+n (I+d)*

[l
Using (1.3) and the identity (see (37) in [12] for example)
1 1 N—s 1 s N
dy =1 (7> 0<s<—, 2.1
o Gape) =10 " 2
where N
2T N—-2s 40
I(s) = TFFU\;_ZS)), and I'(s) = /0 e ™" dr, s > 0,
we have )
UZ\()
—4 2 Z,A
x| x| U (2 :/ dy = CU, \(x),
o~ Uae)? = [ 2 («)

N
4

(N—p)(2=N) 2—N _
where N > 5 and C = I(2)S - 12) C(N, p)2N=wt2) [N(N — 2)]72 So, we have the following lemma.
Lemma 2.4. For N =6 and 1 <1¢ < m, there is a constant C > 0, such that
|z~ 5 [ U (2) ] = CU, ().

Lemma 2.5. For every i # 1, a > 3, there is a constant C' > 0, such that

1 1 C
dy = . 2.2
l@u1+w—AmmGu+w—AaW2y DL 22)
Proof. First, by Lemma 2.1, we have

/ 1 1 J
ro (L4 [y —Az12)* (L+ [y — rzP)2 Y

__ ¢ / ( 1 N 1 )d e
= s — sl e N ly = Az (T ly = AaD™/ Y ™ (e — 2™

Next, we notice that

/ 1 1 ; _/ 1 1 ;
wo (L 1y — 22 (L4 [y — Azl 7 Jes L+ P (L+ [y + Aer — AaiP)2 -
Let d = %|zl — zi| > 1. Then, we have
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/ 1 1 duy > 1 / 1 duy > C
Yy = Y= =1
Ba0) (L [y[A)* (1 + |y + Az — Azi[?)? (1+ (3d)*)? Jy o) (14 [y[*)* d*

and

1 1
dy
/Bd()\zl'/\zﬂ (1 + |y|2)a (1 + ‘y + Az — AZ7l|2)2

1 1
Z AT Gane dy > ——.
B (1 + (3d)2)a /131(/\Zi)\z1) (1 + \y + Az — >\Zi|2)2 y= d2a
Let z € RO\ (By(0) U Bg(\z; — Az1)) with |z| = 2d and |z + Az; — Az;| = 2d. Then, we have

1 1
dy
/Rﬁ\(Bd(O)qu()\zi)\zl)) (T+[y[H)> (1 + [y + Az1 — Azi]?)?

1 1
> d
= /Bd<z> T+ WP L+ [y + o1 — Az )2

- C / 1 C
=W+ B2 Jpy A P~ at

Thus, we can obtain

/ 1 1 duy > C
ws L+ 1y —Az1 D)% L+ [y — AzP)2 Y = Ner =zt

O
To prove Theorem 1.2, we will use a nondegeneracy result. From [17,25], we know
1 1 1
U = 28720(6,4) " 224(——)? 2.3
0,1(1') \/> ( s ) (1_‘_’1_‘2) s ( )
where C(6,4) = %%{Eggg }%, is the unique family positive solutions of the critical Hartree equations:

1
— Au = 5(_72 su?)u, in RO, (2.4)

where I : R — R is the Riesz potential defined at each point = € RV\{0} by
A I'(2
I(z) = —24, where Ay = (7]1
|| I(1)7222

Here the coefficient % is taken to simplify the computations. In [47], Yang and Zhao proved a nondegeneracy
result, i.e.

Lemma 2.6. (see [/7, Theorem 2.1]) The linearization of equation (2.4) around the solution Uy,

1
—Ap =+ Ug 1) + (I * Ug 1) Uo 1 (2.5)
only admits solutions in DV2(RS) of the form
Y= aD)\Uo,l +b- VU(]J, aceR, be RS,

Proof. We sketch the proof for the convenience of the readers. Equation (2.4) is equivalent to the following
system
—Au=uww in RS,

1 (2.6)
—Aw:§u2 in RS,
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We define the Talenti bubbles functions

1 1 Ug
72)2 and W .= — 0,1(3/21 .
1+ |z 8wg Jrs |T — Y

U (x) := V257 2C(6,4)224( (2.7)

Then (Up1, W) solves system (2.6). The linearized equation of system (2.6) around the solution (Up 1, W)
is given by

—Ap = oW + Uy in RS,
{ p=¢ P 0,1 (2.8)

—Aﬂ} = (,DU()J m RG.

We aim to prove that equation (2.8) only admits solutions of the form

6
/ / 0Uo,1, W
J

j=1
where a,b; € R.
For general N, let r = |z| and 6 = I%I € SN1, we denote A, respectively Agv—1 to be the Laplace
operator in radial coordinates and the Laplace-Beltrami operator:

0 N-10
A= 2229
or? + r Or

1 0 0
Agn-1 = — E — U —)),
where g = det g and [¢¥] = [g;;]7!. Clearly
1
A = Ar + ﬁAgN—l. (29)

Let

k() :/S o(r,0)Y(0)do,

Vi (r) = / Y (r,0)Yy(6)db.
S5
Then, we can find

Apy = / Avip(r,0)Yi(6)d6
S5

1
= | ApYrpdd — 2/ Agn-19Yydo (2.10)
S5 T S5
Ak
= — (oW + ¥rUo1) + 3 Pk
and
Ak
Avpp = —pplog + 5V (2.11)
For any radial function f(r), it is easy to check that
N -1 N-—-1 . N-1,

AN =)+ ==L ) =)+ ——1"(r) -

Since (Up,1, W) satisfies system (2.6) and is radially symmetric, then we have
" 5 /
— AUy = —(Up; + ;Uo,l) = U W.

thus 5
U[;/71 + ;U(l),l +Up 1 W = 0.
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Differentiating both sides with respect to r, we can find

nr

5 1 5 ! / /
Uoi + Vo1 = 3Voa + UpnW + UoaW =0,
equivalently
’ 5 / / !
AUO,l - ﬁUO’l + U071W + U0’1W = 0, (212)

and .
AW - ﬁW + U071U0’1 =0. (213)

If & > 8, then we claim that ¢ = 1y, = 0. Suppose that the claim is false. Multiplying (2.10) and (2.11)
by U "and W', respectively, and integrating over B, centered at the origin with radius r, we obtain

’ / ’ A ’
0= A@kUml +/ SOkWUOJ +/ ¢kU0,1U0,1 — / r; QOk;UO,l. (214)
B, B,

We can calculate the first term of the above equation as follows

/ Apily = / din(Veor)Up
B, By
(2.15)

;0 U, ,
:/ U0,17S0k —/ Pk 0.1 +/ AUy 1 ¢
OB, v OB, B,

0
Oov
Substituting (2.12) and (2.15) into (2.14), we have

r

/ ’ ’ A !
0= / ASOkJUO,l +/ (pk‘WUOJ +/ T,Z)]gU071U071 — / %@kUO,l
B, B, B, B. T (2.16)
_/ (U/ 8g0k_ 6U(;71)_/ U W/ 4 1/}U U/ +/ 5—>\k U/ '
= o, 0,1 o Pk o : 0,1 Pk 5, kV0,1V0 1 ) 77,2 PrYo,1-
With similar arguments applied to (2.11), we can see that
/ / A ’
0= | AW +/ orUo 1 W / R okUs
Br br Bt (2.17)
B L Oy ow' , , 5— i , '
= /8BT(W 2 ¢kW) +/BT Uo,1Up, 1k /BT ¢ka,1Uo,1+/r 2 YW
Adding (2.16) and (2.17), we can deduce
. ’ a@k aUv(,]’l /a’l/Jk 8W/ 5 — )\k / /
0= /8BT'(U0,1 ERRAT )+/837.(W R ¢k81/>+/37, T(@kag + Uy 1) - (2.18)

-~

=J1(r) =Ja(r) =J3(r)
By choosing suitable r and we will estimate Ji(r), Ja(r) and J3(r), respectively. Since ¢y # 0, without
loss of generality, we may assume that there exists some r; > 0 such that ¢g(r) < 0in (0,7r1), pr(r1) = 0.
Then we can deduce that ¢, (1) > 0.
Next, we are going to prove that 1 (r) < 0 for r small enough. Assuming the contrary, we deduce from
(2.11) that vk (r) can not have a positive local maximum in (0, 71), hence ¥ (r) > ¥x(0) = 0 for r € (0,71).
Combining (2.10) with (2.6), we obtain

A
0> / (7’;901@ —rU0,1)Uop = / (Apr + o W)Up

1 B'“l

0
= / U()J% > 0,
9By, v
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which leads to a contradiction. It is sufficient to show that there exists some ry > 0 such that 15 (r) < 0 in
(0,72), ¥r(r2) = 0 and 1 (r2) > 0. We divide our argument into three cases:

(1). If 1y = ry, we take r = 1y = ry. It is easy to check that Ji(r) < 0, J2(r) < 0,J3(r) < 0, that
contradicts to (2.18).

(2). If 71 > 79, obviously Ja(r2) < 0, J3(r2) < 0. The difficulty here is to evaluate Jy(r2). Define

F(r)= 7’5Ulg0;C — 7“5U”<pk.
For any r € (rg,r1), from (2.10) and (2.12) we have

/ 1" 5 ! ! " 5 1"
F(r)=r"(¢p + ;@k)Um - 7’5(U0,1 + ;Uo,1)80k

= (N = 5)r3U g + 72Uo 1 (W pp, — U 190%).-

To obtain a contradiction, assume that 1, > 0 does not hold for all » € (ry,71). Then 1, must have a
zero for some rg € (r9,71), such that ¢y, (r) > 0,72 < r < rg and 1, (rg) < 0. For any ro < r < 7o, ¥5(r)
must have a local maximum. From the fact that

A
Ay, = —ppUp1 + TI;W >0, rp<r<ry, (2.19)

we know ¢ > 0 for all ro < r < ry. Since F'(r) > 0,79 <71 <71, then F(r9) < F(r;) < 0. Then we can
deduce that

which contradicts with (2.18).
(3). If ro > 7. Similar to the argument of (2), we need to evaluate J(r1) . Define

G(r) = T‘5W/’¢;g — T5W”1/1k.

We know that, for any r1 < r < ro,

G'(r) = e = 5)PW by, = r°Up 1 (W oy, — Up 10k
In order to prove G (r) > 0 for 1 < r < 9, we proceed to show that ¢ > 0,7 € (r1,72). On the contrary,
suppose that ¢ > 0 does not hold for all 1 < r < ry. Then ¢} must have a zero for some r3 € (r1,72),
such that ¢i(r) > 0,71 < r < rs and go;c(rg) < 0. Therefore

A
0< / (*];SOIC — U0 1)Uo,1 = / (Apr + W)U 1
By \Br, T Brg\Br,

5] 15)
:/ UO,lﬂ / UO,lﬂ <0,
BBT3 81/ aBrl 61/

Then we can deduce that Ja(r;) < 0 and (2.18) gives a contradiction.

From above arguments, we can find (¢, 1) = 0 for k > 8. Therefore, the linearization of system
(2.6) around the solution (Up,1, W) has a kernel with at most 7 dimensions. On the other hand, when
k = 1 we check at once that (¢1,v1) = (2Up1 + T‘U(;J,QW + rW') is a solution, when k = 2,---,7,
E)(Uao’ig;]fw)(l < j < 6) are solutions. Since (2Up; + T'U(/M,ZW +7rW') and B(U(g’i;j’m(l < 7 < 6) are linearly

/ !/ 6
independent, the family of solutions of (2.8) is given by (p, 1) = a(2Up1+7rUq 1, 2W+rW )+ > bja(UaO’i;;m
i=1
for some a,b; € R.
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3. FINITE-DIMENSIONAL REDUCTION

In this section, we carry out the finite-dimensional reduction argument in a weighted space introduced
in [42]. In this way, we can obtain a good estimate for the error term. Let

m 1 1 L
full = swp (3 e o) ATl

6
zeR =1

and
I#lle = sup ( ) AT @)
2RO ; (14 Az — z)++7
whereT:%.
Consider
~8¢+ V(r.a")o — (|a]™ x| Zegn a2 ) = 2(Jo] ™ 5 (Zrzr 10) ) Zrzo s
6 m
= b+ > ad (1ol 512 012) Zia + 2|2l ™+ (22,0 Z30) ) 22y 0] in RS,
=1 j=1
m
e H,, Z/(, |xy—4*\zzj,A\) JZ¢+2(\xy 5|2, 02, l\) Z]Mp}dx:o, [=1,2,-- 6,
\ j=1 R

(3.1)

for some real numbers ¢;.

Lemma 3.1. Suppose that ¢, solves (3.1) for h = hy,. If |||+« — 0 as m — oo, then ||¢pm ||« — 0.

Proof. We argue by contradiction. Suppose that there exist m — 400, Ty — 10, Yoy = Yo Am €
[Lom?, Lym?] and ¢, solving (3.1) for h = hpmy, A = A, T = T, ' = 7, with ||Am]l«« — 0 and
|omll« > ¢ > 0. We may assume that ||¢n, |« = 1.

By (3.1), we have

|&m

C/ ly — $,4 \y! I * (Z5 Ty ,A\fﬁm\)) m”,\( (\y| 4 ]Zru !2)\¢m(y)\dy

+OZrcz|[\Z / x|4 (1917 # (22,2 231)) 22, dyMZ / x|4 |yr4*\sz,x|2)zj,z<y>dy\]

1
+C h dy.
el

(3.2)
To estimate the first term in the right side of (3.2), from the fact that

7= <cC
DY (e IR
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applying Lemma 2.3, we have

/ |y—3:|4 ‘y’ 4 ( rx”)\’(bm’)) 7,z A(Z/)dy

2

<C m || % 7! d
< Cllémll«ll Zrz7 Al « / y— |4Z l—i—)\!y—zj 42 1+ Ny — 2 )2+ Y (3.3)

Jj=1

1 m
= C||m ][+ A2 dy.
Iomll /ry WZ A+ly- Azw; (EyEyr L

Now, we may define

x Z’- T )
Qj:{ = (2/,2") e R* x R : <|,| o |>>cosm},j:1,~~,m.

Then for y € Qq, we have |y — Az;| > |y — Az1]. Using Lemma 2.1, we obtain

m

1

<
= A+ ly =2z (1+|y Az 2JZ2 1+|y Azjl)?

m
<
(1+1y— )\21 4= sz:; )\\zl—z]
From the proof in Lemma B.3 in [42], we know

i 1

- <C,
2 W = )7
consequently, we have
i 1 C
< 34
2 Tr e < Tr = ral™ 3
Similarly, we have
- 1 C
< . 3.5
D P e (e TRy = 39

From (3.4) and (3.5), for y € ©, using Lemma 2.1 again, we know

m

5 1 3 1 - C
= A+ ly = Azt = [y = Az )7 = (L4 ly = Azal)07

Therefore, by Lemma 2.2, we have

1 1 = 1 C
dy < .
fy = 2 T3 & T = T =
In the following, we denote 8 = 2 — 27. Thus
1 1 1 = C
dy < .
/Re [y — af? E L+ [y =) ; Gy S 2 A

Combining this with (3.3), we have
< 1

1 2
[ o (7 (Zrnal6n) Zrea Wy < Cli]o )Y oy e e BCRY

=1
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Similarly, we can obtain the estimate for the second term in the right side of (3.2) as

1

1 4, 2
[ =l w~\)@a>uy<cwmuxgju+Am e

For the third term in the right side of (3.2), if [ = 1, we can get

A3 3
—4 —4 —4
oy 2\ <
Hy| *( Zj,A ,1)| —C‘y’ * (1+/\2]y— Zj‘2)5 +C‘y’ * (1+A2’y—2j‘2>4
A3 A3
<Cly|™* « + Cly| ™ * .
o (L4 Aly — 2[)10 ol (L+Aly — 2])®

Thus, by Lemmas 2.3 and 2.2, we have

1 . 1
Z..37:1)) Z.. A (y)dy| < O
/RG ’y _ x’4 <‘y’ *( ],)\ j,l)) ]7 ( ) y‘ (1 + )\“T _ Z |)2+7-

While for [ # 1, we can obtain

Zo 2\ d CA
[ (0« (20 20) 2 a0l < O3 e
and so,
1
—4 24n
AL 2 dy| < CN XM
Z/RG ’y _ .'17|4 <|y’ ( ],)\ jl)) )\( ) y C JZ: (1 +>\|$ o Z ’)2+T

where ny = —1, n; = 1,1 = 2,---,6. Similarly, we have

g —y Z,. )Z- dy| < C =™ E
; 1/Re ly — x| <‘y| | J’A‘ y)dy) < P (1+)\|:c—z )2+

For the last term, by Lemma 2.2, we know

1 1
hn(y)|dy < C|| B [|sxA?
[ o=ttty <l ;:u+xm—zD%T

In the following, we are going to estimate ¢;, [ = 1,2,- - -,6. Multiplying (3.1) by Z; 4, (¢

and integrating, we see that ¢; satisfies

6 m
ZZ<(|~”L‘| *|Z., A\) yl+2(\9ﬁ| (. zg,AZj,l)>Zzg-,le,t>Cz

=1 j=1

=( = D6+ V(2" )om = (1217 | Zezra2) bm = 2(|07* 5 (Zrzr sbm) ) Zron ps 21 ) —

From Lemma 2.1 in [37], we know that
[(hm, Z1,6)] < CX* [ ||,
and

A" || @]«
V(2" 6m, 21,0] < Ol

13

(3.9)

(3.10)

(3.11)

:1>27"'76)

(B, Z1.4).
(3.12)

(3.13)

(3.14)
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where £ > 0 is small constant. Since

A2 1 — y)\2
|~ () _ :/ L £ —y) —dy
(14 Mo —2z)0F  Jge [y|* (1 4+ Az — 2 —y[)0+7

</ N dy 1
T U Bas(e—(roa)) (Al — 2 —yl)®

and

_ E(x)\2 1
o~ (T e T e =)

¢ [ 1 E(z —y)N? E(z — y)A2
SW% ~ =il J. DA e o A e ey O
—0( 3), JF#4

thanks to Lemma 2.1, we have

4
Zr g AOm)| < m || * d
2= % (Zrgr adun)| <Clm /Rﬂy,gj T T B e
=1 ‘7 ]:1
2 o
—o("0nls)

So,
/]RG <|"L‘|_4 * (Zr z!! /\d)m)> (i )\Zl dx

m? m )\2 5)\2—1—7’“
< * = * T d
> CH¢mH ||Zr,x ,)\H A\ /RG ;:1: (1 +)\|l‘ — Zj’)2+7— (1 + >\|JJ — Zl|)4 £
m2\" m 1
< Cllém d
Cllémll-=——13z S T U e
A™ || |«

for some small constant € > 0. Similarly, we also have
- A" [Pl
(ol Zezal?) s Z10) = O( 5527

[ AZubuds = | (AT )1+ (U AHAE + 2960V 1))l

Notice that

where

oU, »
oA

By applying the argument as above, we have

oU, A oU, A

(U = y(Usn)2 = BFy (U )k = o for k=3,---,N.

% 28 1 AZFe \?
A(U, mdx < Clldom|l« / /
/RG§ Uz 0 )2 1oml ; ro Jre (1 4+ Az —z1|)8 |z —y[* (1 + Ay — z1))* (14 Ay — 24])?+7

Ane X d
< (— *
O ol | TSy = T
A"
O(M>
)\2

dxdy
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On the other hand, direct calculation gives

A AgNZe Ao
[ Tansonte < clonl. 3= [ AGN oN 6nll

15

(L4 Az = 2 )7 (1 + Az — 21[)* A2
and
< [VEIN? AHHn A" (|G|«
[ VeV Wi < Clowl g/R T g e = O
So,
A" D ||«
(-8, 21y = 0210l
Consequently,
- A™ || P«
4 4
(= 86 = (el 5 1 Zrar AP ém = 2|2l ™ * (Zrzr 19) ) Zrgrps Z1e) = O(C5520).

Combining (3.13)-(3.15), we have
(= 86+ V(g )om = (1217 %1 Zezn 212) b = 2(10]™ 5 (Zrr 26) ) Zrizr s Z10 ) = {foms Z1)
A" dmll« | yn
:0<7 A f”hmH**).

\l+e
On the other hand, it is easy to check that

Z<(’.’B‘ 4 ‘ZZ )\’ > ],laZIt> = (E+0(1))(5tl)\nl)\nt,
j=1
and
S (127 % (20 2Z30) ) Zeyas Z1a) = (@ + 0(1)A" A",
j=1
for some constant ¢ > 0 and ¢ > 0. And so, from(3.16), (3.17) and (3.18) into (3.12), we know

o = Am( o(llgmll) + OUlhmll«))-

Thus,
6 1

i=1 (It Nz—z, ) 2F7F0

6 1 '
2= L (I Afw—z;[)>+7
Since ||¢m |/« = 1, we obtain from (3.20) that there is R > 0 such that

||)‘72¢mHL°°(B§(zj)) >a>0,

for some j. However, let ¢,, () = A 2¢,, (A (x — z;)), then

L (V80 + Va6, )i < C.
RN

Thus there is a v € D?(RS), such that

b, — v, weakly in DV?(RE)

and

¢, — v, strongly in L3 (RO,

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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as m — +oo . Therefore it follows that v € D12(R) satisfies

Ui 2 U
Av= (/ [Coalw)i® dy)v -+ 2(/ 70’A(y)viy)dy) Uoa inRE, (3.22)
R [T =yl re [T =y
for some A € [Ay, Aq]. Since v is perpendicular to the kernel of (3.22), by the non-degeneracy of Up; in
Theorem 2.6, we can conclude that v = 0, this contradicts with (3.21). g
Let

={oemn,: Z/RG (12171 5122, A1) Z306 + 2|2l ™ 5|22, 7 Z3al ) Z2, 20 dz =0, 1=1,2,- 6},
j=1

endowed with the usual inner product [¢, 9] = [ps VoVipda. Problem (3.1) is equivalent to that of finding
a ¢ € E such that

(6,01 = (~V(r,a")0 + (|2l ™+ | Zrzr a2 )6+ 2(J0] ™ % (Zr g0 10) ) Zrr n + o), V00 € .

Similar to the proof of Proposition 4.1 in [13], Riesz’s representation theorem and Fredholm’s alternative
Theorem guarantee the existence of unique solution for any h provided the following equation

~86+V(r,a")o = (|al ™ | Zzr A1) & = 2(Jal ™ # (Zrr 26) ) Zrz s

icli[Ox\ k1220 ) Zja 4 2(Jal T (Z2,0250)) Zeyn | RS,

=1 j=1

m
¢ € H,, Z/ [(|1;y—4*|sz,,\
j=17R°

o~

2)Zj,l¢ n 2(|x|_4 X \sz,AZM)Zij} dr =0 1=1,2-- 6

(3.23)
for certain constants ¢;, has only trivial solution in E. This is true due to Lemma 3.1. We can also
conclude then that for each h, problem (3.1) admits a unique solution ¢ with

18]« < Cllhl -
In conclusion, we have the following Lemma:

Lemma 3.2. There exists mg > 0 and a constant C > 0, independent of m, such that for all m > myg
and all h € L>®(R"), problem (3.1) has a unique solution ¢ = L,,(h). Besides,

C
1Bl < Cllbllss el < 2l (3.24)
Next we consider the following equation
AZezn s+ 6) + V('1,0") Zrzr s+ 6) = (|27 [(Zrgo s + 0) ) (Zer s + 0)

e
ZCZ Z [(|90|_4 225

m
€ H., E/[<|x|_4*|sz7)\2)Zj7ld>+2<]:U|_4*|sz7>\Zj,l|)ZZj7>\¢]dm:0,l:1,2,...,6.
]RG

7j=1
(3.25)

2>Zj,l + 2(|35|_4 * (sz7,\Z‘7z))sz7>\} in RS,

<
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We can rewrite (3.25) as

~A6+V(1a'),a")6 ~ (o]~ | Zrzr a2 )6 = 2|2l ™ 5 Zr g 36) Zr o

6. m (3.26)
Y [(lel ™ 122 02) Zia + 2(Jal ™ (22,0250 22,0 0 RS,
=1 j=1
where
N (@) =2(lel ™ % (Zrz 16) )6 + (|01 5 161) Zrgr s + (I2 ™ 5 [612) 6
and

m
b = (1017 1 Zrzr A1) Zrgra = S (10175122, a2) Zeyp = V(12 8") B 5+ Zig \AE+2VEV 2 .
7j=1

In order to use the contraction mapping theorem to prove that (3.26) is uniquely solvable in the set
that ||¢||. is small, we need to estimate N(¢) and .

Lemma 3.3. There is a constant C' > 0, such that
IN ()]l < ClloI2- (3.27)
Proof. Notice that

(\x|74*(Z;5n ))]Qﬂ <O Zzz Al 25 /\6<|‘T’ - (Z 1+)\|x—z 2+T> )Z 1+>\|$—z )2+

J=1 =t
< 2)\4
_CH(bH* j; (1 _|_)\‘x _ Z] 2 ]; 1 +)\|x— Zj |)2+T
m 1
244
<CllgfliA ; (14 Az — z[)++7

where we applied the fact that, for any 1 < 57 < m, there is a constant C' > 0, such that
A2 1
—4
* <C ,
=1 (1 + ANz —z)427 = (14 Mz — z])?

whose proof is similar to Lemma 2.3. Similarly, we also have

1
—4 2 4
(el = = |912) 2 //A|<cu¢||xj§j(1ﬂ,x T

and

1
—4 4
(= *\¢r)\¢\<cr¢\ujz<lﬂ,x el

From the above, we have

IN(®)]l+x < Cll0I2-

Lemma 3.4. There is a constant € > 0, such that

1 €
1l ex < C(X>1+ : (3.28)
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Proof. Observe that

m
Iy = Z [(|l"_4 * |Zzi’>\|2> ZZZJ } —f-ZZZ <‘$| —4 |sz )\Z% )\,) A — (’SC’|,:E”)Z;E//7/\

i=1 j#i =1 i
+ (220 \AE+2VEVZE L, )

i =@ + Py + 3+ Py.
First, we estimate the term ®;. Recall that |z — z;| > |z — 21|, Vo € Q4, where

/

Z/
Qj—{ = (2/,2") e RZ x R*: <‘— ’—j’> cos:;}, j=1,---,m.

By Lemma 2.4, we have

A2 2 A2
’ <C .
A+ Nl —zP2l =T+ Nz — =)
Taking 0 < a < 4, by Lemma 2.1, we obtain that for any x € Q;,i=1,---,m and j # ¢
1 1 <C 1 1 ‘
A4+ Az =z (A + Az —z)* 7 A4 Az = 2)%* Az — 20)[*
We can choose a > 3 satisfying 4 — a > 7. Combining this with the fact

S s 3 e

i j=1,7#i

2] ™ | Z A ? < Cla| ™

we have

O\ m O\ 1
—4 2 a 14+
Z, E Z,. 2 < < Z)lte,
(‘x’ #1220 )#i XS T Me— a) (3 (1+)\‘$—2i’)4+7—()\)
And so,
|®y] < 0(1)1+€A4 §m L
=N (14 Az — )7

To estimate ®9, by taking 0 < av < 4 and applying Lemma 2.1 again, we obtain that for any x € €2; and
i FJ

A 1
(1+ Az = 2;)%7 [Mz) — 20)[*
We can choose a > 3 satisfying 6 —a > 7. Then

’ZZJ‘)\Z%)\‘ <C

4
(1+)\]a:—zj 42: —i—)\\x—z]) <(1+Ayfiz\)8a(7;)a'
By Lemma 2.2, we have
m 4
o] < cz_j (™ * e =) 12l
m i A2 = A2
a; (1+ Az — z;])6~ 0‘2(1—1—)\]3:—%\)4

1+€ 4
Z 1+ )\‘ZE — 2j |)4+7—
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For the remaining terms, it follows from Lemma 2.5 in [37] that

1 m 1 1 m 1
Bal < 71+€)\4 o, < 714’6)\4
B3] < OV Y TR gy 1M 2 OQTN L e

So,
1
lm *k < C N 1+E-
llwallex < C(5)

We are ready to conclude the following estimates for the solution and the constants ¢;.

Lemma 3.5. There is an integer mg > 0, such that for each m > mg, A € [Lom?, Lym?], T € [ro—0,r0+0)],
7" € By(xg), where 8 > 0 is a fived small constant, (3.25) has a unique solution ¢ = ¢z 7 € Hy, satisfying

1
[olls < C(x)HE, | < C(X)Hnﬁs, (3.29)
where € > 0 is a small constant.

Proof. First, we recall that A € [Lom2 Lim?]. Set

N ={w:we O®Y) N H, Jul. < 5 Z/ o]~ ¢ 122, 0 12) Zygw + 2(Jol ™ 5 122,25

)sz,)\w}dzn = O.},

where [ =1,2,--- 6. Then (3.26) is equivalent to
¢ = A(¢) = Lin(N(®)) + Lin(lm), (3.30)

where L,, is defined in Lemma 3.2. We will prove that A is a contraction map from N to N.
First, we have

Il < CUN @) s + lmllex) < CUISIE + (5 )1+5)<§-

Hence, A maps N to N.
Taking now ¢; and ¢9 in N, we see that

[A(d1) = A(P2)ll« = [[Lim (N (1)) = Lin(N(¢2)) [« < CIN (1) — N(d2)]|+x

It is also easy to see that
N(é1) = N(@2) =2(Jal ™ # (Zrgrad1) ) (61 = 62) + (Il % (61 + 62) (01 = 62) ) Zr o s
(Il 1812) (61 = 62) + 2|2l 5 (Zrgn 2 (61— 62)) ) 62
+ (|27 5 (61 + 62) (61— 62) ) 6.

Similar to the estimates in Lemma 3.3, we have
IN(¢1) = N(¢2)llsx <Clignlls (o1 = dall) + Clln ]l + l[g2ll) (g1 = dalls) + Cllga[F (o1 — 2]+)
+ Cllgall« (91 — p2lls) + Cllorll« + lld2lls) ([E1 — Pall«) | dz]|-
Therefore
[A(¢1) — A(@2) ||« < ClIN(¢1) — N(2)lsx < 2||¢>1 b2l

which means that A is a contraction mapping from A into itself. Thus we know that there exists a unique
¢ € N such that (3.30) holds. Moreover, by Lemmas 3.2, 3.3 and 3.4, we know

1
ol < ()

and the estimate of ¢; from (3.24). O
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4. LOCAL POHOZAEV IDENTITIES METHODS

In this section, we will look for suitable (7,Z", X) such that the function Zzz» \ + ¢z~ \ obtained by
reduction arguments is a solution of (1.4). For this purpose, we need to establish new local Pohozaev
identities for equation (1.4).

Lemma 4.1. Suppose that (T,T", \) satisfies

/ ( — Aup, + V(| 2'|, 2" Y — (\x]_4 * \um\Q)um> (x, Vup)dx =0, (4.1)
Dy
Ol .
/D p (= A + V(') 2" Yt — (|~ + rumﬁ)um)a%dx =0,i=3,--,6, (4.2)
and 87
. e . —4 2 TN g
/RG( B + V([ Yt — ([ 5t Yi) =22 = (4.3)

where Uy = Zpzn \ + ¢rzr\ and D, = {(r,2") = |(r,2") — (ro,20)] < p} with p € (26,50). Then
¢i=0,i=1,--06.

Proof. Since Zyz» x =0 in R%\D,, we see that if (4.1)-(4.3) hold, then

6 m
ch Z/ |:(|x‘74 * |sz,>\|2>Zj,l + 2(|CE’74 * (sz’)\ZjJ))ZZj,)\} vdxr = 0, (4.4)
=1 j=17K°
for v = (z, Vi), i = 3,6 and 255"

By direct calculations, we can prove
07
—4 2 2,2
|7 x| Z,, )Z~ dx
‘/IRG <‘ | 1201 ) Zis x; ’

1 1 (y, — )\fi)Q
< cﬁ/ / dzdy,
=50 Jae Joe Ul =P o —ylf U+ [y =22 L+ [y —xaP)P

where i = 3,---,6 and (T3,%4, -+, Tg) = . If [ = j, we have
_ 02,
/RG (Ial ™ #1257 23052 dg;‘ —0(N?).
K3

If [ # j, similar to the arguments in the proof of Lemma 3.4, we can prove the following result:

m
_ o0z 3
/ <\33| 4*|sz7)\\2)Zj7i ﬁl”\ dz :0()\2 ),
- =1t O

for some ¢ > 0. So, we can get

S OZz zv .
3 /RS (174122, 02) Zyi2 (2™ 4( 22y 0 Z30) ) 2oy 2| =522 = mlar +0(1)N2, i = 3,6, (4:5)
=1 ’

for some constants a; # 0. Similarly, we have

a;

> /R (2745125 02) Zia +2(Jol ™ 5 (22,0 Z30) ) Zey | =55 2de = G(as+o(1),  (47)
j=1
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for some constants as # 0 and ag > 0.
It is easy to check that

L

Zj,A ¢rm Zj —Yi)Z;j 7,z
/ / 12, (4) N dxder/ / | 22,7 Yi) é,l(y)¢, ,A(y)dxdy’
RS JRS \x—y[ RS JRS ]ac—y\

where j =1,2,---,m and i = 3,- - -,6. By direct calculations, by (3.6) and (3.29), we can obtain

]1
z, ; y%f" Y
// ! i (4) 7 )d:vdy
R6 JR6 |~’13—l/|

<C|¢| // N Zm: X Xl =2l g
' (1+ 2z = 2P) |x—y|4k:1<1+Ary—zk\>2+f<1+wy 5
4

A 1 A2 Ay — zj]
+ Cl|||« J dxd
Il /Re /Ra (1+ X2z — zj|2)* |z — y|* ; 1+ Ny — )2 (14 N2y — 224 rey

1 1 ly — Az
<CM\ * J dxd
<CAllel /R /R o2 o — g L+ Jy = Az
1 1 ly — Azj]
+C\ / / T g dud
19l oo oo T T =2, P T — g (L g = Az 200
1
—CAoll = O().

Similarly, we have

zj,A ’2 ) ( )¢rm )\( ) o i
/RG /RG |x _ y‘ﬁ dzxdy = O()\e).

- 8¢7,§”,>\ 1
[ (121 412.,07) 2555240 = 0.

)

And so,

Similarly, we can also conclude that

_ Oz 7 1
/RG <‘x| 4*(sz7)\Z‘71))sz’)\ 8{1}‘ )\d 20(7)

Therefore

Clilz/6 [(L’U‘ —4 |Zz >\|> ],1+2(]m| —4 «(Z ” 7 )>sz7)\} 8¢ar,xx;’,)\dxzo(m|cl|)'

— /R

<

Analogously, we can prove that

6 m P - 6

ZClZ/RG [(m x|z, A’) Jl+2(’$‘ (2,07 ))ZZJ,A} ¢g 24 zo(m)\z)ZM\,

=2 j=1 ! 1=2
and so

21

[§ m P - 6
o [ [ 12 0) 2+ 2 (el (20 230)) 2] 52 = o) Sl + ol

=1 j=1 =2
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where 7 = 3,- - -, 6. Repeating the same arguments, we can also obtain

6

6 m
Y Z/RG (12175122, 72) Zja 42 (e 74(22, 0 Z32) ) Zey 0| (2. T om0 ) e = 0(mA2) 3 feal-+o(mlen]).

=1 j=1 1=2
Therefore, from (4.4), we deduce that
6 m 6
>« Z/ (275122, 712) Zga + 2 (Jo) ™ 5 (22,0 25) ) Zey a o = 0(mX2) 3 Jaa] + ofmler ), (4.8)
=1 j=17/R° =
OZy g1 -
holds fOI' v = <£L’,VZ?,§//,)\>, 87331' == 3’ .. .76'
From
(%, V Zrzr \) = (2, Var Fa ) T (2", Vg FFA)
we find

6 m

> a Z/ K’wH * |ZzM’2) Zj, + 2(’95\74 * (ZZj,AZj,l)>sz,A} (,VZ5 g 5)dw
=1 j—17/R°
=G Z /6 [(’x‘_4 * ‘szv)\’2>Z]12 + 2(’1.‘_4 * (szv)‘ZJ72>>ZZ]7)‘:| <x/7 vm, ?7§/’7)\>d1' (49)
j=17%
6

+o(mA?) > el + o(mlea)),

1=3
and
: - —4 2 —4 8ZF,E”,)\
ch Z |:(’(IZ‘ * ‘szv/\| >Zj»l + 2(|(E’ * (ZZj,)\Zj,l))ZZj,)\:| Oz dx
=1 j=1’R° Li
Ui N B 07—
=g / [(\m| 4y ]Z%)\\Q) Zji+ 2(\56\ 4 (sz,)\Zj,i)>sz,/\] %d%‘ (4.10)
=1 /RS Ti
6
+o(mX*) > |al + o(merl), i =3,---,6.
11,

Combining (4.8)-(4.10), we are led to

m 6
2 / 7122, aP) Zia w2 (245 (22,0 Z30) ) Zeya | (0 Vs Zrr )l = 0(md) Y [ea|+o(m]ea),
=17

1=3

and

- -4 2 —4 0Lz 71 2 : .
CZZ/ [(W | Z; 0| )Zj,i+2(!x\ *(sz,)\Zj,i))sz,)\]#dﬂf = o(m\?) Z lci|[+o(mlei), i = 3, -, 6,

j=1/RO ¢ 1£1,i
which, together with (4.6) and (4.5), imply

1
¢i=o(=)e, i=2,-+,6. (4.11)

)\2
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Now we have

i/ V$| ez, A’) Jl+2<!x\ (. ZJ,AZj,l)>ZZj,A} aZg//’Ada;

82*7// m
4 4 .z
o / |~ ’ZZ Al ) 1+2<‘x| * ( z],)\Z‘,l))ZZj,A} wa—i_o(ﬁ)m
m(as +o(1))ex + o 33)er
Socy =0. 0
Lemma 4.2. We have
0Z* _ OZ— —n
e SR EN | Zr e 7 (@) P Zr g A () =552 (y) 1
/ / — dﬂ«“d —/ / Ry dedy = O(=).
RS JRS Iw yl R JRo Iz — y] \

Proof. 1t is easy to check that

Zz>\

U, » )
UZ UZ - Z ZZ
[ U@ U )57 0) // A@)? (4) W) g,
R6 JR6 |5U—y| R6 JR6 \x—y[
A

ouU., .
(1 —&2(2))|U., U, U.. x(2)2(1 - €U, L
/ / §°(2))|Uz; A (2)] ],A(y) ar d dy +/ / €U, A E)U A (y)—52 (y)dxd%
R6 JR6 | R6 JR6

z —yl* |z —y|*

where 7 = 1,2,- - -;m. On the other hand, by the Hardy-Littlewood-Sobolev inequality and direct
calculation, we have
aUz' A

/ / 1_52 |Uz3 ( )|2 2, ( ) 3%’ (y)dl‘d
o Jzo | !

z—yl*

—C’/ / (1—-&x+z)\ 1 Ay cos2( DT |y sin 2U=17 1)”)
roJre  (L+ M)t [z —yl! (1 +)\2ly!)

<C (/RG [(1 (—1i(§2_|;|22j))4)>\4]2d$>3 (/RG [%]ngOs

1
F)v

(1-E@+zN: 1 N L
Lo (| dr=oGe ma [ [ 5tyms] =00

=0(

where

So,

(1= &2(2))|Uz; A (2) Uz, A (y) =52 (y) _ oL
/Rﬁ/m ‘ dzdy = O(—).

z —y|*
Analogously, it is easy to check that

€U, ()2 (1 = DU\ (y)—2= () L
/RG/RG dzdy = O(—).

|z —y[*

Thus, we have

U, 07,
U, ’ Uz ( ) aﬁ Z,; | Zz (y) 317 (y) 1
oA T s A T _ L
/Ra /R P Doaady - /R /R =yt dwdy = O(37).
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where 7 = 1,2, - -, m. For other cases, we can obtain
au, 072,
Z] Uzin (x)UZz,A(m k/\ z], Zyn@)Zy 2 (y) aﬁk(y) o 1
dzdy = O(—),
RS JRE |z —yl* R6 /RS |z — y[* At
where 5,4,1,k =1,2,---,m. Thus,
zx_, 0Z— —n
|Z,,// /\ foll /\(y) Téf )\ | z! /\ z!’ )\(y) o (y) m4 1
T, T T,T T dd T,x T'I or dedy = O(—) = O(—).
L. rx—yv* -, . Rt wly =00 = 065)
O
Lemma 4.3. We have 8J(Z )
0 (Zy 1
(Zrara) _ 2ok
or (97'
where
2 ) [*lu(y)[?
/ \Vu|?dz + = / Vu“dr — / / d dy.
RR6 ro Jre |z —yl*
Proof. 1t is easy to check that
oU,. » 07, \ oU. A
VU, — 22 ()dy — | VZ,, e LY 1—¢2 5 i (4)d
| VU2 iy = [ VZoa) =2 Wy = [ V= )00 =52 iy
8Uz- A
<C 1—¢&2 ; 22 (y)dy,
<C [ (1= @)U =2 W)y
where j = 1,2,---,m. On the other hand, direct calculation gives
OU; \ (1-&(y)N Ny — 2]
1- 2 z 7]7 d C J
f - Eonts a2 o] < [ S s
1— 2 . )\2 )\4
<cf 0=¢ (y;r ZQJ)Q) |2y\ —dy
RS (1+A2[y?) (1+A2[y[?) (4.12)
A2 A
<C 2,122 Ly‘ 534y
RO\B;_y(0) (1 +A%[y[?)? (14 A2[y|?)
1
=0(3z)-
Analogously, for other cases, we can obtain
oU,. 0Z,. » 1
VU,, — dy — VZ, i (y)d =0(—),
[ VU 52 W)y — [ V) =5 )y = O(5)
where 7,7 =1,2,---,m. Thus, we have
07k _ o0z*_ 2
[ PN 7T\ m
Zikfu ; ’ - fon ; ’ d - ~a ) 41
/RG V( Tz A oF x' A oF ) £ O( A4) ( 3)

We observe that

0z 072
7,z A\ 7,z )\
/ AZ A 8 dx — 6 AZT R0 S —— 87‘ dx

*

r A . . . 8ZF,E",)\
AZ // d - f(fAZ? " ?f" )\Aé + 2V€VZT z! )\) a dﬂf
R T OF

By Lemma 4.2, we know

oz (1= @)U A @) PU A W) 222 ) m
/R6( ~E)AZ; 5 —Z/RG/RG dady = O(57)-

o — gt

[\
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Similar to the estimates of (4.12), we have

m2

PRI a2y
/Rﬁg 7,7\ g 8? T = ()\4 )7

and

OZL 2 EIVENy — 2| %7z m?
Z =11 TI d < J TI d == .
R6gvgv A 02/6 (RS e =02

So, we have proved

OZ5 1 m2 1
AZE Zra “Rde — | Az LT Gy = O O(<5)-
/. [ 870 (55) = 0(53)
Combining this with (4.12), (4.13) and Lemma 4.2, we can obtain the result. O

Lemma 4.4. We have

O (Zzzr )  (B1oV(F,a") B 1
or *m<ﬁ or §2TA4|21 —zi|* +O(>\1+6)>’

where Bj, j = 1,2 are some positive constants.

Proof. We know

a:]( 77 )\) % aer by —4 82;5//)\
T :/R6 V("II) F,E”,)\?d —/RG (’CL’| *| 5! /\| > 775 )‘Td'x

m 0zx
4 r af:”,)\ (414)
+ x| "% |U ) = dx
> [RCREl Al
=P + P2.
To estimate the first part P; in (4.14), integrating by parts, we notice that it is easy to show

U, x oV (x + z;) OU;
V Tz — 27\ T2 g T EA
/RG (2)Uz; A () o (z)d /RG [Uo ()] T /RG V(2)Uza(2) o (2)d,

and so,

/ V(z)Usa (2 )6 52 (1) da C/ U \2 (Z] dx +C/ U )‘25(V(x+zj)—V(Zj))dx
R6

or
C oV (r,z")
AZ/ Uoa()Pdz + O55).
Combining this and the fact
" OU, ~C 1 1
V(z)U, — dx < — d
o ) “(x)jzg or " x_z A /R (Tt e —xa)? (L+ [z = AgP
C & 1 m? 1
< — _—_— = —_) = _—
A )\2|21—Zj‘2 O( )\3) O(A2)7

[\

j:
we have o7
— * FE A ~Cm oV (F,z") ) m
P = /RG V(ﬂf)Z?,f//)\ or dx = 2 o /R6 ’U0,1($)| dx + O()\z)
Cm oV (7,7") ) 1
o /R Vo1 (2)]*d + O(512)-

(4.15)
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To estimate the second part P in (4.14), we observe that

m
/6 [(’$_4 * ‘Z;7EN7>\‘2>Z;’EH’>\ - Z (’%’_4 * ‘Uzj,/\‘2>Uzj,)\
R ;

Jj=1

*
LZF’EN”\ dx

=2m/ (Jo1= < U zm:U )z Wdﬁm/ [CREE ‘z)iU ]5Zi,mf',A
R6 Z1A P ZisA 7z A or R 21, 2 ET or

:=2mQ; +mQs.
(4.16)

dx

First, for the integral part Q2, if ¢ = 2,- - -, m, applying Lemmas 2.4 and 2.5, we have
ou. A2 A2 M(zp —7)
—4 2 21,A 1
Vs a2) Uz dz| < c/
‘/Rs [(m # Uz ) Uz or m' _‘ re (14 X2|x — 21]2)2 (1 4+ X2|x — 2]2)2 (1 + A2|z — 21|?)
A 1
<C
T Jre (T4 ]z — Az )8 (1 + |z — Azi])
C

<
Mz — z)°

3dac

de

Consequently,
ou,, .

é/m K‘x|_4 * |UZ17*’2>UZM} oF S

Second, by Lemma 2.4, we have

U\
—4 2 Zis
/RG (lal = 5 Uz A2 ) Uy p =22

A2 A2 A (2 — Teos 20T 0y 4 (2 — Fsin

- C Cm?® 1
< = = . .
— Zz; )\4|21 _ ZZ"E) )\4 O()\1+e) (4 17)

2(i;n1)7r)x2] ]
X

m

C
T /RG 1+ X2z — 212)% (1 4 A2[z — 2 2)2 1+ X2[z — z2)3
B C’/ A2 A2 M|z — z]? dx
7 Jre (1+ X2z — 21]2)2 (1 + A2z — 2|?)? (1 + \2|z — 2;|?)3
C )\2 /\2 )\4(33,/ _ f//)2
T e O Nz — PR (Lt Nz — 222 (L + A2z — z)
c. C_ C

==V — =Uy + =3,
T T r

3d:1:

where i = 2,- - -, m. In fact,
)\4 )\4 =
[ O INR
re (14 N2|x — 2;12)% (1 + N2z — 21|?)3
C

< .
- >\4|Zl — Z7;’5 + /\4|Z1 — Zi|4

2 2\
U < d
L= /Re (14 22|z — 21]2)% (1 4+ X2|x — 2;|?)* v

By (2.2), we also have
M A2 C

A A2
Wy = / d:r—/ de = ——,
re (1+ A2z —21[?)? (1+ X%z — z[*)* re (1+ A2z —21[?)? (1 + A%z — z[?)° Mz1 =zt

and
C

Ug < ——
3= /\4’21 — Zi|4
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Therefore, we obtain
—4 2 Uz
U. Us ,’ e VTR —Y
ZZ;/Ra [(|33| *’ 1,>\‘ ) w\} Z )\4|21 _ZZ|4 Z )\4\21 — % |5 Zz; 7 )\4|z1 _Zi|4
1 ~C 1
=0(——) — e —
()\H-s) ; T Az — 2|t
(4.18)
Third, for j # 1,4, by Lemma 2.1, we have
oU,,. »
4 Zj5
L[l 10, Y] =2 e
c A2 A2 M|z — z] dx
e (1+ Az —21]%)? (1 + A2z — z*)? (1 + N2z — z[*)?
CA 1 1 1
< d
- )\4‘Z1 — Zi’4 /RG ((1 + |.%' — )\Zl‘)4 + (1 + |.%' — )\Zl’)4) (1 + |.%' — )\Zj|)5 o
CA C 1 1
< d
= Mz =zt N2z — 242 /Re ((1 + |z — A2q])7 + (1+ |z — )\zj|)7) v
. CA C / < 1 i 1 )dx
)\4|Z1 — Zi|4 )\2‘22' — Zj|2 R6 (1 + |£L’ — )\Z¢|)7 (1 + |."L‘ — )\Zj|)7
C 1 . C 1
- )\4‘21—Zi|4)\’21—2j|2 )\4|Z1—Zi|4 )\|Zi—2j|2'
Thus, we can get
m m B 8UZ7>\
S [ (el ) S
i—2 j—2,4i ' R°
AN C 1 C 1
<
_Z Z Atz =zt Az — )2 Z Z M z1 = zi|* Mz — 252
1=2 j= 1=2 j=2,7#1
Cm® 1
=5 = Olsrr)-
Combining this and (4.17), (4.18), we have
0Z% “ B 1
4 T\ _ 2
/ (12 5 102, )ZUZZ, }7(% dz = ;M‘*m L Ol (4.19)

for some constant By > 0.
Next, we are going to estimate Q1. Observe that

- 0zZ%_,
—4 * T,z A
. foll ) } d
/]R(S <‘$| * |U21’AZZQUZ%)“) T ,)\ aF i
m —4 m aUz],)\ 4 Z],
:Z R6 <‘$| *|U21,)\ZUZ~;,)\)UZ]',)\ oF dr + (’x‘ |UZ1)\ZUZZ,/\|) Z17AZ
~1) Z / 2| ’UZl,AZU%Q\D - zj,

7j=1,#2

(4.20)
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Integrate by parts, we have

Zi A
(yx\ 44 |U,, AU, A|) A dx‘
[(z1 — y1) cos M + (22 — y2) sin W]

<c / JRCACIANE . Uy (y) Py

R6 JR6 ’55 Y|
<| [ (W 0P Xl =T cos 2EHT) cos BEVT + (3, — 7sin HEHT) sin 2]
=1 s Y Zj,A 21,4 (1+ N2y — z[2)3 Y

M[(y1 —7) cos 2= + 99 sin 26— l)ﬂ]

+ U, . dy|

(7 5 10 o)V TE e y

where i =2,--- - mand j=1,---,m. If j =1, we have
ouU
—4 21,
z Zi z 77 d
’/RG (|xy * Uz \Usin )Ul,A o l”
A2 A2 A3

dx

ouU.
4 21,
+ ‘/]R (|y‘ |UZ1 >\| ) ZiyA or dy‘

w0 (L Al — 21! (L+ Xz — 21P)? (L + Al — )P

</ 1 A dx + ¢

— Jgrs (1+’I‘—/\21‘)8 (1+‘$—)\Zi|)5 )\4‘2’1—21"5
S

_)\4‘2’1 —21‘5‘

Similarly, if j = ¢, we have

U, \ C
—4 zj,
Vs AUz Uz p =22 da| < .
/]R (|$| # Uz AUz, 2| iAo ‘/E‘ Mz — 2P
When j # 1 and j # i, we have

UZj,)\

0
—4
'/RG (’.’E‘ * |U21,)\Uzi,/\|>U2j,)\ 8? dw’
C

1 1 1
< d
_/\4’21 - Zi|4 /RG((I + ‘.%' - )\Z1’)4 + (1 + ‘.%' — )\Zz‘)4)(1 + ’.% - )\Zj’)4 *
C 1 1 1
<7 4 ( 7T 7
Mzi =zt Mz — 25| Jre (L 4+ o — Az1)T - (14 |z — Az))
C 1 1 1
T3 4 7 T 7
Mz1 =zt Nz — 25 Jre (L 4+ |z — Az])T (14 |z — Azj))
B C 1 N C 1
_A4’21 - Zi|4 )\’Zl - Zj‘ /\4’21 - ZZ'|4 )\]zz - Zj’ ’

)dx

)dx
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So,

ou,

m - A
;/R'S (|1:] 4*|U21,A;Uz ,\|) 2 ('9?] dx
m C m m

SZZ; >\4|21—Zi|5+; 22: )\4\21—Z|4)\\zl—z]| Z Z >\4]zl—z|4)\|zl—zj]

1=2 j=2,7#1
Cm?® o C m
- )\4 +Z)\4|zl—zi|4x

C Cmm? 1

Y 3 oa ~ G
Similarly, we have

1

/]1{6 (|x|_4>|< ]UZl,AZUz ,\|> zl,)\z Zﬁ ()\1+e)

and

m1) Z/ |4 \UMZUZN) iﬂ’ dr = O(5755).

7=1,#2

Now, recall that (4.20), (4.21), (4.22) and (4.23), we have

" 0230,
/RG (Fo1 ™ 00 D Ve al) B2 = O,
1=2

Combining this and (4.19), we can obtain

(9Z*

* m
4 Zs 0 A -4, Tz A
[ (o ) 20, o= [ (el 0 0P )0p = s

By 1
) m< ) jz;”‘A‘M — zj|* +O(>\1+€)>'

So, by Lemma 4.3, we obtain

8J(Zy75//7/\) o Bl 8V(?’ j”) B2 1
e G kDY +0(5152))

where Bj, j = 1,2 are some positive constants.

Lemma 4.5. We have

07~ —n
/RG(—Aum + V(I Yt = (]~ 5 ) um) =22
By m4BS 1
:m( — FV(r,x”) t—¢ O<)\1+5))'

29

(4.21)

(4.22)

(4.23)
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Proof. Direct calculations show

OZz 71 \
or

/ (—Aup, + V(|2'], 2"ty — (\x!fﬁl * ]um\Q)um) dx
R6
3Z?,f”,>\

= (Zrz2), )+ m( = Ao+ V(r,a")o — (o™ %1 Zez s?) 6

or
8Z 027*//
- 2(|5U|_4 * ZF,E”,)\QS) Lz 2 7?7)\> — / <’$|_4 * |Um|2>um#’)\d$
or RS or
O0Z =1 fo )/
+/(m4*%ww%¢;fAm+/2ww%Zmu@aMA rA gy
R6 T R6 or
afo//
+/ <|$’74 * | Zy /\‘Z)Z?E” e 2 dx
RS ’ ’ ’ ) ar
0L 1
=(J (Zrz 0, gf ’)\> +mly — Ip.
T
Using (3.14) and (3.15), we obtain
]« 1
I =0(777) = O(y52)-

By (3.3), we have

)\2
EDYFE

2]~ % (Zrzr ad)| < Cllgll D (
j=1

So,

_ 072 2
/]RG <|x] 4*(2?,5”,>\¢)>Z?@“,)\ 8;1 dl"

S A2 = A2 U,
<Co|<l| Z= 7 2l E E L2
> H¢|| H T,Z ,AH ‘/RG =i (1 T /\‘x _ Zj’)4 pt (1 + /\]x _ Zj‘)2+7—£ oF X

- A U,
< . 21, .
_CH(bH /RG; (1+)\’x—zj|)6+'r€ or dz

Using the same arguments Lemma 4.4, it is easy to show

<<‘$|_4 * (Z?,f”,kqb))ZF,@”,/\a aiz:7>\> = O()\11+5)7

and

<(\x!‘4 x !Zmu,ﬂ?)@ éi‘j’A> = 0(#).
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By direct calculations, we can prove

O I R [ e I (Y [ e

.z’ A\
w2 [ (il |Zmu¢\)r¢u—rdx

; " OU,.
< —4 2 Uz —4 2\\7 ., Zjs
<c [ (il <ol )|¢\§Z| el [ (117 16) 2ol 3 g
4 ZJ,

+0 [ (a5 25 A¢|)|¢rgz|

Cllel? (N “
< \d
- A / <‘ | (]Zl 1+)\|ZE—Z 2+7)>; 1+/\|x—z 2+TZUJ’)‘1.

CH¢H HZrm”)\’ = A2 U 22
U,. \d
- /]R6 ‘ ng 1+)\‘$—Z’)2+7—))Jz::1 1+/\|$—2 2+7‘Z 5 AAT
Cllell? HZ 7, - = m
‘ ]; —|—/\\x—z 2+7—) >]§::1 1—|—/\|x—z 2-i-7' ZUZJv)‘dw
Using the same arguments Lemma 4.4 and (3.29), it is easy to show
m
So, we have proved
0Zz =z >, OZ 71 >, m
] X, _ ] ., T, .
<‘] ( 7,z A + d)) or > - <J (Zr,x ,)\)7 oF > + O<>\1+z—:)
From Lemma 4.4, we obtain the result. O

Using the same arguments in Lemma 4.4 and Lemma 4.5, we can also prove

Lemma 4.6. We have

YA 31 1
! X, _ _ 7//
<J( raa T 9), O\ >—m( +Z)\5]21—z|4 (/\3+6))
(4.24)
By, _ Bsm?* 1
:m( - VT + =5+ O()\3+6))
and
aZFf” A By 8‘/(? f”) 1 .
! ) ) _ — ’ — o« e
(T (Zrgrn +0), oo ) =m(5 o O(575)): =36, (4.25)

where B;, i = 1,2,3 are some positive constants.

Lemma 4.7. It holds
m

/RG \Vo|>dx + /RG V(r,z")¢?dx = O(A2+a). (4.26)
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Proof. 1t follows from (3.25) that
/ |Vo|*dx + / V(r,z")¢?dx
RS RS
/R (BZr = V(2" Zrn s + (|27 5 | Zrgr g + 0 (Zro s + 6)) b
= [ (OZsast (jo1 4 Zr o) Zrgra)oda = [ V(r.a")Zp 00
R

[ (1 5 Zrna + 08 Zrra+ 0) = (ol £1 20 a ) Zn )
=0 — I, + I5.

By the estimates of &3 and ®4 in Lemma 3.4, we obtain

[ / Ui A\ i A2 Cm
AZy g \pdz| < C dr < ———.
/R A0 ‘ Alte RGZ (1+Mw—z-\)4+f Z (14 Mz —2z[)>7 — V“g
j=1 J

Moreover, from the estimates of ®; in Lemma 3.4, we obtain

(‘.@’ 4 ‘Z?f”)\‘> 7,z )\¢d$

1

So, we can prove

Cm
|| < Norae
By (3.37) in [37], we have
Cm
|[Ia| < N\2+2e”

By direct calculations, we can prove

i< ool + 16 [ (e~ (3 ) ) (8 e —apee) @ < e

Jj=1 Jj=1

So, we deduce
m

/RG \Vo|?dx + /RG V(r2")p?dr = O5a72):

Proof of Theorem 1.3. It is easy to see that (4.1) is equivalent to

—2/ \Vumlzdx—;/ 6V () + (z, VV (2))u2, dx—i—?)/Dp /Rﬁ [t ()t () dzdy

P |‘,'U_y|4
_2/ / @ P @P
D, JRS |z —y|

:o(/aDp <|V¢!2+¢2>ds+/8Dp (/Rb ‘L( 2‘24@)\@ ds)

||¢||*/ X X S Az Cm
dr < .
\+e Ro * Z (1+ Nz — zj|)3+7 + (1+ Nz — Z]|)8) ]Z: (1+ Nz — zj])2+" T = oy

Cm

(4.27)
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Since 3 7", fRG[(]x\*‘l * \sz’,\|2>Zj,lq§ + 2<\x]*4 JVASVAY )ZZ].,)\qﬁ]dx =0, we obtain from (3.25) that

6 m
|Vum]2dx+/ V(x)u?ndx—/ ]w\_4*|uml \um\de—i— cl / |z~ 4y \ZZ Al
/; Dp Dﬂ( ) ; J:Zl R() >

2(Jol ™ (22,0 Z30)) Ze, ) Zrr ik + O / (V6P + 6%)ds).

P

(4.28)
Inserting (4.28) into (4.27), we obtain
6 m
/D (V(x) + 1<x YV (@)))up, dx——22czz/ |~ \Zz]n) ]z+2<|$’ 4*ZZJ,AZJZ)ZZ],} Tz ad
I =1 j=1
2 2 y) 2
vo( [ (vorsat)ass [ ([ 2 Ga)ioras)
|6(2) o) .
+O /Dp/RG\Dp ' ‘)‘ ’ ‘(6 ’ d:l:dy>+0()\2+s) 1=36.
(4.29)

On the other hand, by direct calculations, we can prove

jf;/RG K’arl )220 ) l+2(]a;| v (2., AZj,z)>sz,A] aZg:”’Adx:O(m)P), I=2...6

and

S 8ZF§//

Z /]RG [(|$|_4 * |sz’>‘|2>ZJ?1 + 2<‘$|_4 * (sz,)\Z',l)>sz,>‘} T’Adx =O0(m).
Jj=1

Combining these and Lemma 4.5, (4.11), (4.24), (4.25) and (3.26), we can get the following estimate for ¢;:

1

Ci = O(W)?

i=2,--,6, (4.30)

and
1

Cl1 — O(W)

(4.31)

It is easy to see that

Noly — 2]
x|z, 27, < / / J -
/Res [(|=’L‘| #1220 ) adr < C r6 JR6 1+)\2\:U—z]| )4 |z y!4( +)\2|y—zj]2)5dxdy O,

where j = 1,---,m, and if 1 # j,

/RG|:<|$| h ’ZZ >\| ) Zj2Z, \dx

4 1 2 )\4 ..
SC// 2)\ 214 1 2)\ 212 |2y ZJ|2 dxdy
re Jrs (14 Az — 2;[2)4 [z — y|* (1 4+ X2y — 2]2)? (14 A2y — 2[?)3
1 A
<C dy
re (L+]y — Azi)* (1 + [y — Az)?
C

< ———.
~ Az — 2t
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by Lemma 2.5. So, for | = 2, we have

j;/JRG (|x|—4 * ‘ZZLAF)ZJ"QZ;E//’)\CZIL‘ < O(mA) + mj; )\3\210—zj|4 = O(mA).
Similarly, we have,
Z; /RB (117 5 22, 7Z52) Z2y 2\ Z g ad = O(m).
Consequently, )
Z/RG | % | Z2, ) g 2(|xy s 7., AZ‘,Q)ZZJ,A} Zy g rdz = O(m)). (4.32)
=

Using the same arguments as above, we have,
m
3 / Nl 5122 ) Zia + 2(Jel ™ 5 2,0 Z30) 22y 0| Zrgoada = O(md), 1=3,4,5,6. (4.33)
j=1"R

and

Z / 2|~ % |2, 5

By (4.32)—(4.34), we find from (4.30) and (4.31) that (4.29) is equivalent to

/Dp(V(m)+;<x,VV(m)>)u,2ndx ~otsz=)+o( [ (|v¢2+¢2)ds+/wp (/. |T(_yy|24dy)|¢|2ds)

14

|6(2) o (y)1? LIPS
+O /Dp /RB\D,, |z =yl dmdy>+0(v+a) BRORR
(4.35)

) o+ 2(|xy 1y ZZJ,AZJZ)ZZJ.,A} Zy o zda = O(%), I=1. (4.34)

for some small € > 0.
We integrate by parts to find that (4.2) is equivalent to

[ 2o, (- [, ([, )t

, |6(2) o (y)1? _
+0o( /D,,/]RG\D R P da:dy)+0(A2+E)z_3, 6.

From (4.36), we can rewrite (4.35)

/Dp(V(x)—FQW)uzndx— (A2)+o(/ (|V¢!2+¢2)ds+/aDP (/D ”;b( ?y||4)\¢| ds)

B@PWE
+ O</Dp /I%G\Dp(xi - yi)wdxdy), i=3,---,6,

(4.37)
that is,

/Dp;rWu’%dﬁ (A2)+0</ <N¢|2+¢2)d5+/ap,, (/Dp ‘f( 2’4)|¢>I ds)

. |6(2) |6 (y) I e
—|—O /DP/IRO\DP P dxdy), 1=23,---,6.

(4.38)
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From Lemma 3.5 in [37], we know

m

Vo|?dz = O(——)).
[ 9o = 0)

Which together with Lemma 4.7 implies that

leW)I” | (2)*|¢(y)]? m
Vo[> +¢? dx—i—/ / o|?dz+ dzdy = O ,
/D46\D36 (’ | ) Dys5\Dss ( Dy |z — y‘4 ‘ ‘ Dys\Dss RO\Dp |z —yl[° ()\2+5)
where ¢ = 3,---,6. As a result, we can find a p € (39,46), such that
leWI” |6(2) o (y) I m
V| + ¢ d8+/ / o|7ds +/ / ' —d:ndy:O ,
/8Dp <| | ) oD, ( p, |z — y\4 ‘ ¥ RG\DP |z —yl6 (>\2+5)

where i = 3,---,6. By Lemma 3.4 in [37], for any C! function g(r, "), it holds
/ g(r, 2" )u? dx = m(ig(F x")/ Ug dx + o( ! ).
D, ’ m A2 ’ RO 0,1 A2

We can obtain from (4.36) and (4.38) that

i et [ U ide o)) = ol 53,

and

m()\l2 21TW /RG Ug,dz + o(%)) = o(53)-

Therefore, the equations to determine (7, T") are

ov (7, z")

=o(1).i=3..-- 4.
s = o(l),i=3,50, (4.39)

and
oV (r,z"))
or
We have proved that (4.1), (4.2) and (4.3) are equivalent to (4.39), (4.40) and

= o(1). (4.40)

B1 m4Bg 1
3 5 = Olyg52):
A A AT

Let A = tm?, then t € [Lg, L1] since A € [Lom?, Lym?]. Then, we can get

V(r,z") +

_ %V(f 7') + % =o(1),t € [Lo, Ly]. (4.41)

Let
F(67,7") = (Ve PV (), 2 V) + 2
Then
deg(F (1,7, 7"), (Lo, Ln] x Bol((ro, ) = ~dea(Vr g0 (F2V (7, ), Bol(ro, ) # 0.
So, (4.39), (4.40) and (4.41) have a solution tm € [Lo, 1], (T, Z%) € By((ro, z1)). 0
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