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Abstract

The use of Electro-Active Polymers (EAPs) for the fabrication of evermore sophisticated
miniaturised soft robotic actuators has seen an impressive development in recent years. The
incorporation of crystallographic anisotropic micro-architectures, within an otherwise nearly
uniform isotropic soft polymer matrix, has shown great potential in terms of advanced three-
dimensional actuation (i.e. stretching, bending, twisting), especially at large strains, that
is, beyond the onset of geometrical pull-in instabilities. From the computational point of
view, the design of accurate and robust albeit efficient constitutive models is a very active
area of research. This paper introduces a novel polyconvex phenomenological invariant-
based transversely isotropic formulation (and relevant computational frameworks) for the
simulation of transversely isotropic EAPs at large strains, where the ab initio satisfaction
of polyconvexity is exploited to ensure the robustness of numerical results for any range of
deformations and applied electric fields. The paper also presents key important results both
in terms of the existence of minimisers and material stability of coupled electro-mechanics,
enhancing previous works in the area of large strain elasticity. In addition, a comprehensive
series of selected numerical examples is included in order to demonstrate the effect that
the anisotropic orientation and the contrast of material properties, as well as the level of
deformation and electric field, have upon the response of the EAP when subjected to large
three-dimensional stretching, bending and torsion, including the possible development of
wrinkling and the potential loss of ellipticity in ill-posed constitutive models.
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1. Introduction

Electro-Active Polymers (EAPs) are a type of soft smart materials capable of displaying
significant change in shape in response to electrical stimuli. EAPs have been thoroughly
studied over the years [8, 48, 67, 25] and dielectric elastomers are recognised as one of
the most popular EAPs [68, 66, 50] due to their outstanding actuation capabilities5 (i.e.,
lightweight, fast response time, flexibility, low stiffness properties), which makes them ideal
for their use as soft robots [9, 17, 21, 48, 62, 8, 20, 73, 54], flexible energy generators [59, 49]
or tunable optics [5, 71]. However, a large electric field is still generally required in order to
access the large actuation regime in EAPs, an aspect that very often places them at risk of
electromechanical pull-in instabilities or even electrical breakdown [12].

It was shown in [94] that fibre reinforcement can suppress the electro-mechanical pull-in
instability and improve EAPs’ applicability. A dielectric elastomer stiffened with fibers in
the hoop direction leading to large, voltage-induced deformations was proposed in [44]. In
[40], a voltage-driven deformation of dielectric elastomer reinforced with a family of helical
fibres leading to torsional behaviour is studied and the effect of fibre orientation on the
actuation of a fibre-reinforced bending actuator is analysed in [1].

In order to reduce the operational voltage required for actuation in EAPs, some authors
have advocated for the design of composite-based EAPs [95, 43, 42], typically combining an
ultra-soft and low-permittivity elastomer matrix with a stiffer and high-permittivity inclusion
[69, 38, 42, 83]. Due to the continuous improvement in layer-by-layer fabrication techniques
[33], multi-layered laminated EAP composites have gained popularity. From the modelling
point of view, References [53, 52, 26, 86, 35, 36, 86, 25, 12, 72] have demonstrated that
the contrast between the properties of the composite constituents is one of their critical
design factors, where the actuation performance of an EAP composite subjected to simple
in-plane stretching can be amplified by several orders of magnitude with respect to that of
a single-phase EAP, even in the linearised regime.

The use of computational methods constructed on the basis of variational principles is
nowadays acknowledged as the preferred method for the in-silico simulation of complex actu-
ation. Building upon the works of Toupin [88, 87] and Dorfmann, Ogden, MacMeeking, Suo,
and co-workers in [27, 28, 60, 84, 29, 51, 92, 90], recent contributions in the field of compu-
tational electro-mechanics can be found in [91, 46, 32, 13]. In these works, the constitutive
behaviour of a single-phase electro-mechanical material is encoded within a carefully (phe-
nomenologically) defined energy functional which depends upon appropriate strain measures,
a Lagrangian electric variable and, if dissipative effects are considered, an electromechanical
internal variable [55]. Bustamante et al. in [18, 19] presents an irreducible invariant basis

5It is worth noting that the maximum achieved voltage-induced area deformation of a dielectric elastomer
has been 2200% [4].
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for transversely isotropic EAPs (without piezoelectric effects) as well as several constitutive
restrictions that the final energy density must fulfilled, such as the Baker–Ericksen inequality
[19].

However, in order to design and optimise EAPs for a specific application, a robust and
reliable physics-based mathematical theory is needed. Despite great recent progress in the
field of constitutive modeling of electro-active materials (see above), the polyconvexity condi-
tion [6], which represents a sufficient condition for a mathematically well-posed formulation,
has been introduced only recently6, see [37, 63, 78]. In previous publications [37, 65, 63, 70],
the authors put forward a new computational framework for single-phase reversible electro-
mechanics, where material stability is always ensured via the selection Convex Multi-Variable
(CMV) energy densities, that is, convex with respect to the minors of the deformation gra-
dient tensor (F ,H , J), the Lagrangian electric displacement D0, and the spatial electric
displacement d = FD0. CMV energy densities (generally referred to as polyconvex or A-
polyconvex [80]) guarantee existence of minimisers [80], ellipticity [37] in the quasi-static
case and hyperbolicity in the dynamic case [63], thus precluding anomalous mesh depen-
dency effects. The theory of polyconvexity for mechanical anisotropic energy densities was
magnificently explored by Schröder and Neff [76] and it was also initially studied for electro-
mechanics anisotropic energies in [45]7.

As a result, the aim of this paper is three-fold. First , the in-silico modelling of realis-
tic three-dimensional deformation scenarios (namely, combined bending/torsion/stretching),
way beyond the onset of geometrical instabilities and without the need to resort to any simpli-
fications in the kinematics of the EAP (e.g., plane strain, exact incompressibility). Second ,
the consideration of internal micro-architectures beyond the simpler single-phase isotropy,
with focus on the very relevant transverse isotropy groups, with the idea of developing
computationally efficient (phenomenological, invariant-based) constitutive models for EAPs,
which could be in the future enriched by state-of-the-art data assimilation techniques [89].
Third , to ensure the existence and material stability (ellipticity) of computer simulations by
unifying and enhancing key results scattered in the literature. From the macroscopic point of
view, the loss of ellipticity leads to a mathematically and numerically ill-posed problem that
needs to be regularised, e.g., by introducing higher-order derivatives into the constitutive law
resulting in the so-called higher-order continua, see [11, 41] for a recently proposed theory
of gradient-polyconvexity. Such regularisation is out of the present article’s scope and will
be studied in a forthcoming publication.

From the constitutive modelling standpoint, this paper will apply polyconvexity, ob-
jectivity, and isotropicisation, in order to develop energy densities constructed on the basis
of polyconvex invariants forming an irreducible basis for the characterisation of transversely
isotropic EAPs. From the numerical implementation standpoint , Finite Element anal-

6Note that, in the context of a boundary value problem, polyconvexity together with coercivity guarantees
the existence of global minimizers.

7However, the differential constraint imposed by the Gauss’s law was not accounted for, leading to an
incomplete polyconvexity condition, omitting the coupled electro-mechanical contributions.
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ysis of transversely isotropic EAPs will be presented using both the standard displacement-
potential (ϕ, φ) varational principle and an enhanced mixed Hu-Washizu three-field type of
formulation (ϕ,D0, φ). The high nonlinearity of the quasi-static electro-mechanical problem
will be addressed via a monolithic Newton-Raphson scheme, with an arc length technique
used to bypass geometrical instabilities. A tensor cross product operation between vectors
and tensors [14, 15] will be used to reduce the complexity of the algebra.

The outline of this paper is as follows. Section 2 describes the necessary elements of non-
linear continuum reversible electro-mechanics and some key variational principles. Section
3 focusses on the concept of polyconvexity as a basis for the description of phenomeno-
logical constitutive models for EAPs. The section starts with some generalised convexity
conditions, before introducing the actual definition of polyconvexity or A-polyconvexity (as
referred to by Šilhavý [80], also referred as Multi-Variable Convexity by Gil and Ortigosa
[37]). The section summarises and puts into context key results in terms of existence of
minimisers [80] and material stability for coupled reversible electro-mechanics, beyond those
of single mechanics [74]. Section 4 describes the basis for the anisotropic invariant-based
constitutive models adopted in this work, where special attention is paid to the important
crystallographic groups D∞h and C∞ [56, 97, 75]. The section concludes by listing so-called
polyconvex basis of invariants for the creation of polyconvex invariant-based constitutive
models. Section 5 presents a series of numerical examples in order to assess the capabilities
of the proposed model. Specifically, in a first example, a local analysis is conducted at a
quadrature (Gauss point) level where the effect of orientation of anisotropy upon purely
mechanical and electro-mechanical tests is presented. In the second example, complex three-
dimensional bending/torsion/stretching combined modes of deformation are studied for a soft
robot actuator, monitoring macroscopic stability, and observing the effect that anisotropy
has in the predominance of a deformation mode against others. In the third example, the
effect of anisotropy orientation on the development of wrinkling patterns in an EAP is stud-
ied. In the last example, complex three dimensional torsion is studied for a piezoelectric-type
material along with the satisfaction of polyconvexity. Eventually, section 6 provides some
concluding remarks about the paper.

2. Nonlinear continuum electromechanics

This section briefly summarises the fundamental electro-mechanical equations governing
the response of an Electro-Active Polymer (EAP) at large strains.

2.1. Kinematics: motion and deformation

Let us consider the deformation of an Electro-Active Polymer (EAP) (see Figure 1)
with reference configuration given by a bounded Lipschitz domain Ω0 ⊂ R3 with boundary
∂Ω0, and its unit outward normal N . After the deformation, the EAP occupies an actual
configuration given by a set Ω ⊂ R3 with boundary ∂Ω and unit outward normal n. If the
deformation is continuous and bijective then Ω is also open. The deformation of the EAP
is defined by a mapping ϕ : Ω0 → R3 linking material particles X ∈ Ω0 to x ∈ Ω = ϕ(Ω0).

4



Associated with ϕ (X), the deformation gradient tensor F is defined as8

F = ∇0ϕ (X) ; FiI =
∂ϕi

∂XI

. (2.1)

Related to F , its co-factor H and its Jacobian J [23, 15] are defined as

H = Cof F =
1

2
F F ; J = detF =

1

3
H : F , (2.2)

with (A B)iI = EijkEIJKAjJBkK , ∀A,B ∈ R3×3, where Eijk (or EIJK) symbolises the third-
order alternating tensor components and the use of repeated indices implies summation9.
The deformation mapping is assumed to be sufficiently smooth, bijective and orientation
preserving, so that J > 0 a.e. to avoid interpenetrability.

Figure 1: Deformation mapping ϕ (X).

2.2. Governing equations in electro-mechanics

In the absence of inertial effects, the conservation of linear momentum (i.e. equilibrium)
can be written in a Total Lagrangian fashion as

DIV P + b0 = 0 in Ω0, (2.3)

where DIV denotes the divergence operator computed in the material configuration, P rep-
resents the first Piola-Kirchhoff stress tensor, b0 is a body force per unit undeformed volume,

8Lower case indices {i, j, k} will be used to represent the spatial configuration, whereas capital case
indices {I, J,K} will be used to represent the material description. Zero as the lower index next to the nabla
operator indicates that it is the referential gradient.

9In addition, throughout the paper, the symbol (·) indicates the scalar product or contraction of a single
index a · b = aibi; the symbol (:), double contraction of two indices A : B = AijBij ; the symbol (×),
the cross product between vectors (a × b)i = Eijkajbk; and the symbol (⊗), the outer or dyadic product
(a⊗ b)ij = aibj .
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and the accompanying boundary conditions are given by

PN = t̄ on ∂Ωt
0; (2.4a)

ϕ = ϕ̄ on ∂Ωu
0 , (2.4b)

where t̄ denotes the prescribed traction over part of boundary ∂Ωt
0, and ϕ̄ are prescribed

positions over ∂Ωu
0 , where ∂Ω

t
0 and ∂Ω

u
0 are two complementary subsets, that is, ∂Ωt

0∩∂Ωu
0 =

∅ and ∂Ωt
0 ∪ ∂Ωu

0 = ∂Ω0. In addition, conservation of angular momentum leads to the well-
known symmetry condition PF T = FP T [16].

In the absence of magnetic and time-dependent effects, the description of the EAP re-
sponse is completed with Faraday’s and Gauss’ laws. Although, in general, the presence of
electric fields in the surrounding media, that is, the vacuum, must be accounted for, in the
case of EAPs this can be safely neglected due to its negligible influence10. With this in mind,
Faraday’s law and associated boundary conditions are expressed as

E0 = −∇0φ in Ω0; (2.5a)

φ = φ̄ on ∂Ωφ
0 , (2.5b)

and Gauss’ law and associated boundary condition as

DIV D0 = ρ0 in Ω0; (2.6a)

D0 ·N = −ω0 on ∂Ωω
0 , (2.6b)

where E0 and D0 are the Lagrangian electric field and Lagrangian electric displacement,
respectively, φ is the electric potential subjected to prescribed value φ̄ on the boundary ∂Ωφ

0 ,
ρ0 is the electric density charge per unit undeformed volume and ω0 is the electric charge
per unit undeformed area applied over part of boundary ∂Ωω

0 , such that ∂Ωω
0 ∩ ∂Ω

φ
0 = ∅ and

∂Ωω
0 ∪ ∂Ωφ

0 = ∂Ω0. To close the system of governing equations (2.1) to (2.6b), constitutive
equations describing the behaviour of the EAP need to be introduced, which are presented
in the following section.

2.3. Constitutive equations: reversible electro-mechanics

In the present paper, we resort to reversible behaviour described by electro-hyperelasticity [29]
and introduce an internal energy e per unit volume in Ω0, typically defined in terms of the
two-point deformation gradient tensor F and the Lagrangian electric displacement vector
D0, that is, e = e(F ,D0), where e : R3×3 × R3 → R ∪ {+∞}. For simplicity, we write
e = e(U) with U = (F ,D0).

Following standard thermodynamic arguments, that is the so-called Coleman–Noll pro-
cedure [85], the first directional derivative of the internal energy with respect to variations

10The reader is referred to [37] for the consideration of the vacuum at a continuum level and [92, 90] for
its numerical implementation.
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δU = (δF , δD0) gives the first Piola-Kirchhoff stress tensor P and the electric field E0 as
work (dual) conjugates of F and D0 as

De[δU ] = ∂Ue • δU = P : δF +E0 · δD0, (2.7)

with
P (U) = ∂F e(U); E0(U) = ∂D0e(U), (2.8)

where ∂Ae denotes the partial derivative of e with respect to the field A and • denotes
a suitable inner (dual) product. Similarly, assuming sufficient smoothness of the internal
energy e, the second directional derivative of the internal energy yields the Hessian operator
He, that is,

D2e[δU ; ∆U ] = δU •He •∆U . (2.9)

where symbol ∆ is used to denote linearization. For the sake of material characterisation,
it is convenient to rewrite the Hessian He in terms of a fourth order type of elasticity tensor
Ce ∈ R3×3×3×3, a third order type of piezoelectric tensor Q ∈ R3×3×3 and a second-order
type of dielectric tensor θ ∈ R3×3 defined as

D2e[δU ; ∆U ] = [δF : δD0·]He

[
: ∆F
∆D0

]
; He =

[
Ce QT

Q θ

]
, (2.10)

where
Ce(U) = ∂2FF e(U); Q(U) = ∂2D0F

e(U); θ(U) = ∂2D0D0
e(U), (2.11)

with
(
QT

)
jJI

= (Q)IjJ .

2.3.1. The Helmholtz’s free energy density function

For completeness, it is possible to introduce an alternative Helmholtz’s type of energy
density Ψ = Ψ(W) with W = (F ,E0), where Ψ : R3×3 × R3 → R ∪ {+∞}, as

Ψ(W) = − sup
D0

{E0 ·D0 − e (U)} , (2.12)

via the use of a partial Legendre transform in (2.12)11, where the first Piola-Kirchhoff stress
tensor and the electric displacement can be alternatively defined as

P (W) = ∂FΨ(W) D0(W) = −∂E0Ψ(W). (2.13)

Similarly to (2.9), the second directional derivative of the Helmholtz’s free energy density
gives rise to the Hessian operator HΨ of Ψ as

D2Ψ[δW ; ∆W ] = δW •HΨ •∆W , (2.14)

11A sufficient condition for the existence of the Helmholt’z energy density (2.12) is the convexity of the
internal energy density e with respect to the field D0.

7



which can be re-expressed in terms of the elasticity tensor CΨ ∈ R3×3×3×3, the piezoelectric
tensor P ∈ R3×3×3 and the dielectric tensor ϵ ∈ R3×3 defined as

D2Ψ[δW ; ∆W ] = [δF : δE0·]HΨ

[
: ∆F
∆E0

]
; HΨ =

[
CΨ −PT

−P −ϵ

]
, (2.15)

where

CΨ(W) = ∂2FFΨ(W); P(W) = −∂2E0F
Ψ(W); ϵ(W) = −∂2E0E0

Ψ(W), (2.16)

with
(
PT

)
jJI

= (P)IjJ . It is possible [65] to relate the components of the Hessian operators

of Ψ (2.11) and e (2.16) as

ϵ = θ−1; PT = −Q · ϵ; CΨ = Ce +QT ·P , (2.17)

where the inner product · above indicates contraction of the indices placed immediately
before and after it.

2.4. Variational principles in reversible electro-mechanics

The solution of the boundary value problem defined by the governing equations (2.1) to
(2.6b), in conjunction with a suitable definition of the internal energy density e or Helmholtz’s
free energy density Ψ, is typically solved based on the direct methods of the calculus of
variations. With that in mind, the first variational principle can be introduced as

(ϕ∗,D∗
0) = arg inf

AΠe

Πe (ϕ,D0) , (2.18)

where

Πe (ϕ,D0) =

∫
Ω0

e (F ,D0) dV − Πm
ext (ϕ) , (2.19)

Πm
ext(ϕ) representing the external work done by the mechanical actions, defined as

Πm
ext (ϕ) =

∫
Ω0

b0 · ϕ dV +

∫
∂Ωt

0

t̄ · ϕ dA, (2.20)

and with the functional space AΠe given by

AΠe =
{
ϕ∈Gϕ(Ω0;R3),D0∈GD0(Ω0;R3); s.t.(2.4b), (2.6a), (2.6b)

}
. (2.21)

with Gϕ,GD0 suitable functional spaces to be defined. The use of the asterisk (·)∗ in (2.18)
denotes the solution (minimiser) of the variational principle. As it is well-known, for the
existence of minimisers of the above variational problem, some mathematical restrictions
must be imposed on AΠe and on the form that the internal energy density e must adopt
[6, 80], which will be the focus of the following section.

From the computational standpoint, it is convenient to resort to an alternative variational
principle in order to by-pass the strong imposition of conditions (2.6) and allow the possi-
bility of imposing boundary conditions directly on the electric potential (i.e. via electrodes
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attached to the EAP). Indeed, after the introduction of the electric potential φ (which can
be understood as a Lagrange multiplier for the weak enforcement of Gauss’ law (2.6), see
[37] and [61] for more details), the second variational principle emerges as

(ϕ∗, φ∗,D∗
0) = arg inf

AΠ̃e,ϕ

inf
AΠ̃e,D0

sup
AΠ̃e,φ

Π̃e (ϕ, φ,D0) , (2.22)

where

Π̃e (ϕ, φ,D0) =

∫
Ω0

e (F ,D0) dV +

∫
Ω0

D0 ·∇0φdV − Πext (ϕ, φ) , (2.23)

where Πext(ϕ, φ) represents the combined external work done by the mechanical and electrical
actions, defined as

Πext (ϕ, φ) = Πm
ext (ϕ) + Πe

ext (φ) ; Πe
ext (φ) = −

∫
Ω0

ρ0φdV −
∫
∂Ωt

0

ω0φdA, (2.24)

and with

AΠ̃e,ϕ
=

{
ϕ∈G̃ϕ(Ω0;R3); s.t.(2.4b)

}
;

AΠ̃e,D0
=

{
D0∈G̃D0(Ω0;R3)

}
;

AΠ̃e,φ
=

{
φ∈G̃φ(Ω0;R); s.t.(2.5b)

}
,

(2.25)

with G̃ϕ, G̃D0 , G̃φ suitable functional spaces to be defined. Furthermore, use of the Helmholtz’s
free energy density functional (2.12) in (2.22) leads to the third variational principle as
follows,

(ϕ∗, φ∗) = arg inf
AΨϕ

sup
AΨφ

ΠΨ (ϕ, φ) , (2.26)

where

ΠΨ (ϕ, φ) =

∫
Ω0

Ψ(F ,E0) dV − Πext (ϕ, φ) , (2.27)

where AΨϕ
and AΨφ are suitably adapted functional spaces analogous to their counterparts

AΠ̃e,ϕ
and AΠ̃e,φ

in (2.25). The latter variational principle is typically preferred for numerical
simulations due to its compact form and reduced number of degrees of freedom, described
solely in terms of the mapping ϕ∗ and the electrical potential φ∗.

3. Polyconvexity in electromechanics

To ensure the existence of solutions of the above variational principles Πe (2.18), Π̃e

(2.22) or ΠΨ (2.26), the energy density e must fulfil certain mathematical requirements. In
particular, we require, that the energy functionals are lower semicontinuous in a suitable
topology. This relates to the convexity properties of the integrands. Prior to introducing the
notion of polyconvexity in the context of electromechanics, the section starts by introducing
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some alternative mathematical restrictions (the reader is referred to the excellent monograph
[74] for an in-depth discussion in the context of mechanics). The section continues by in-
troducing the requirement of polyconvexity and its most relevant implications, namely, the
existence of minimisers and the assurance of material stability.

3.1. Some notions on generalised convexity conditions

One of the simplest conditions is that of convexity of e(U), that is

e(λU1 + (1− λ)U2) ≤ λe(U1) + (1− λ)e(U2); ∀ U1,U2; λ ∈ [0, 1], (3.1)

which for functions with first order differentiability can be alternatively written as

e(U + δU)− e(U)−De(U)[δU ] ≥ 0; ∀U , δU , (3.2)

and for functions with second order differentiability (in terms of the Hessian [He]) as

D2e(U)[δU ; δU ] = δU • [He] • δU ≥ 0; ∀U , δU , (3.3)

which requires (refer to (2.10), (2.11)) positive semi-definiteness of Ce and θ, independently,
and further restrictions on the form that the third-order tensor Q can adopt. However,
convexity away from the origin (i.e. F ≈ I and D0 ≈ 0) is not a suitable physical restriction
as it precludes the realistic behavior of materials such as buckling in the purely mechanical
context, as well as the possibility of voltage-induced buckling, inherent to soft dielectric
materials [30]. An alternative mathematical restriction is that of A-quasiconvexity of e
[31]. Unfortunately, A-quasiconvexity is a nonlocal condition that is very difficult, even
impossible, to be verified.

A necessary restriction implied by A-quasiconvexity is that of generalised rank-one
convexity of e. A generalised rank-one convex energy density verifies

e(λU + (1− λ)Ũ) ≤ λe(U) + (1− λ)e(Ũ); ∀ U ; λ ∈ [0, 1], (3.4)

and with Ũ = U + δU and δU = (u ⊗ V ,V ⊥), where V · V⊥ = 0 and with u, V and V ⊥
any arbitrary vectors. For the case of energies with first order differentiability, generalised
rank-one convexity can alternatively be written as

e(U + δU)− e(U)−De(U)[δU ] ≥ 0; δU = (u⊗ V ,V ⊥); ∀U ,u,V ,V ⊥, (3.5)

and for energies with second order differentiability,

D2e(U)[δU ; δU ] = δU •He • δU ≥ 0; δU = (u⊗ V ,V ⊥); ∀U ,u,V ,V ⊥. (3.6)

The generalised rank-one convexity restriction in its form (3.5) plays a key role in the
suitable definition of jump conditions across a travelling interface defined by a normal vector
V moving with speed c (i.e. singular surface [79]). Analogously, condition (3.6) is referred
to as the Legendre-Hadamard condition or ellipticity of e, linked to the propagation of
travelling plane wave within the material defined by a vector V and speed c. These two
aspects will be presented in the following two subsections.
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3.1.1. Generalised rank-one convexity conditions and jump conditions

Consider a travelling discontinuity within an EAP, moving at speed c and defined by a
normal vector V separating states (•)a and (•)b, where J•K = (•)a − (•)b denotes the jump
across the interface and (•)Av = 1/2((•)a + (•)b) the average state. Following [63], the jump
or Rankine-Hugoniot conditions for the combined set of Cauchy-Maxwell (electro-magneto-
mechanical) equations are given by

−cJF K = JvK ⊗ V ; (3.7a)

−cρRJvK = JP KV ; (3.7b)

−cJB0K = JE0K × V ; (3.7c)

cJD0K = JH0K × V ; (3.7d)

−cJe+ 1/2ρRv · vK = Jv · P K · V − JE0 ×H0K · V , (3.7e)

where, in addition to previously defined fields, ρR, v, B0 and H0 denote the density of the
material per unit undeformed volume, the velocity, the magnetic induction vector and the
magnetic field, respectively. Substitution of (3.7a)-(3.7d) into (3.7e) renders

JeK = P Av : JF K +EAv
0 · JD0K +HAv

0 · JB0K, (3.8)

which, by re-defining (•)Av = (•)a + J•K/2 and removing the upper index (•)a for simplicity,
can be rewritten as

JeK − P : JF K −E0 · JD0K −H0 · JB0K = JP K : JF K + JE0K · JD0K + JH0K · JB0K. (3.9)

For the case when magnetic effects are neglected (i.e. JB0K ≈ 0) the last term on both
sides of above equation (3.9) can be neglected. Moreover, notice that the term JE0K·JD0K ≈ 0
as E0 can only jump tangentially across the discontinuity (refer to (3.7c)) whilst D0 can
only jump along V (refer to (3.7d)), that is, JD0K = V ⊥, V · V ⊥ = 0. Thus, we arrive at
the simpler equation

JeK − P : JF K −E0 · V ⊥ = JP K : JF K. (3.10)

Redefining −JvK/c = u, that is JF K = u⊗ V , and making use of (3.7a) and (3.7b), it is
straightforward to show that JP K : JF K = ρRc

2u · u, which finally gives

JeK − P : (u⊗ V )−E0 · V ⊥ = ρRc
2u · u ≥ 0, (3.11)

which can be equivalently written as

e(F +u⊗V ,D0+V ⊥)−e(F ,D0)−∂F e(F ,D0) : (u⊗V )−∂D0e(F ,D0) ·V ⊥ ≥ 0. (3.12)

Notice that above inequality (3.12) holds for an energy density e defined as generalised
rank-one convexity (refer to equation (3.5)).
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3.1.2. Ellipticity and Legendre-Hadamard condition

Condition (3.6) is referred to as the Legendre-Hadamard condition or ellipticity of e and
is related to the propagation of travelling plane waves12 within the material defined by a
vector V and speed c. Notice that the above expression (3.6) is a generalisation of the
concept of ellipticity from elasticity to the more general case of electro-elasticity, which can
be easily verified by neglecting the piezoelectric and dielectric components of the Hessian
operator, that is

(u⊗ V ) : Ce(U) :
(
u⊗ V

)
≥ 0; ∀U ,u,V . (3.13)

Similarly, particularising for u = 0 in either (3.5) or (3.6), it reduces to the condition of
convexity with respect to D0. This condition is crucial in order to guarantee the existence of
the Helmholtz’s free energy density function (2.12) and thus that of the variational principle
ΠΨ (2.26).

The derivation of the above Legendre-Hadamard condition (3.6) has its roots in the study
of the hyperbolicity (or stability in the quasi-static case) of the system of the generalised
Cauchy-Maxwell equations [63] in order to ensure the existence of real wave speeds propa-
gating throughout the domain. Crucially, the ab initio existence of real wave speeds for the
specific system of governing equations (2.1) to (2.6b) (i.e. magnetic and time-dependent ef-
fects are neglected in the Maxwell equations) can be monitored via the study of the so-called
electro-mechanical acoustic tensor Q defined as

Q = Ce,V V +QV
Tθ−1

[
V ⊗ θ−1V

V · θ−1V
− I

]
QV , (3.14)

where
[Ce,V V ]ij = Ce,iIjJVIVJ , [QV ]Ij = QIjJVJ , [I]IJ = δIJ . (3.15)

Specifically, the eigenvalues of the acoustic tensor Q are proportional to the squared
of the volumetric and shear wave speeds of the electroactive material. Hence, the above
tensor Q can be used as a suitable localisation measure for the onset of material instabilities
by ensuring that the wave speeds are kept real throughout the entire electro-deformation
process. This can be achieved by ensuring that

u ·Q(U)u ≥ 0; ∀U ,u,V (3.16)

or alternatively written as

(u⊗ V ) :

Ce +QTθ−1

[
V ⊗ θ−1V

V · θ−1V
− I

]
Q︸ ︷︷ ︸

C′
e

 : (u⊗ V ) ≥ 0; ∀u,V . (3.17)

12This concept is also strongly related to that of the propagation of acceleration waves within a dis-
continuity defined by a normal vector V with speed c.
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Comparison of (3.17) against (3.13) permits to identify the modification of the traditional
ellipticity condition in elasticity with that of electro-elasticity via the additional contribution
C′
e, playing a key role in the modification of the dilatational and shear wave speeds from

those of simple elasticity. The reader is referred to [63] for a comprehensive derivation of
the acoustic tensor for the combined electro-magneto-mechanical case. A more compact
derivation for the specific electro-mechanical case of interest in this paper is included in
Appendix 7.1.

3.2. A-polyconvexity

Motivated by considerations of material stability (i.e. existence of real wave speeds)
first and existence of minimisers subsequently, Gil and Ortigosa in [37, 64, 63, 65] and
Šilhavý in [80] extended the concept of polyconvexity [6, 7, 76, 77, 47] from elasticity to
electro-magneto-elasticity and proposed a new convexity restriction on the form that the
internal energy can adopt, that is, A-polyconvexity of e. Following [80], the internal
energy e : R3×3 × R3 → R ∪ {+∞} is defined as A-polyconvex if there exists a convex and
lower semicontinuous function W : R3×3 × R3×3 × R × R3 × R3 → R ∪ {+∞} (in general
non-unique) defined as

e(U) = W (V); V = (F ,H , J,D0,d); d = FD0. (3.18)

Notice that convexity of W (V) implies that

W (λV1 + (1− λ)V2) ≤ λW (V1) + (1− λ)W (V2); ∀ V1,V2; λ ∈ [0, 1]. (3.19)

which for functions with sufficient differentiability, can be alternatively written as

W (V + δV)−W (V)−DW (V)[δV ] ≥ 0; ∀V , δV , (3.20)

or even in terms of the Hessian operator [HW ] as

D2W (V)[δV ; ∆V ] = δV • [HW ] •∆V ≥ 0; ∀V , δV ,∆V . (3.21)

As presented by Šilhavý in [80], A-polyconvexity in conjunction with suitable growth
conditions, ensures the existence of minimisers in nonlinear electro-magneto-elasticity, which
is briefly recalled in the following section.

3.3. A-polyconvexity and existence of minimisers

The extended set of arguments in W , that is V , has a special property; namely, they are
weakly sequentially continuous [22].

Proposition 3.1. Let Ω0 ⊂ R3 be a bounded Lipschitz domain. Let (ϕk)k∈N ⊂ W 1,p(Ω0;R3)
for some p > 3 and let ϕk → ϕ weakly for some ϕ ∈ W 1,p(Ω0;R3). Then

Cof∇0ϕk → Cof∇0ϕweakly in Lp/2(Ω0;R3×3) , (3.22a)

det∇0ϕk → det∇0ϕweakly in Lp/3(Ω0) . (3.22b)
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Proposition 3.2. Let Ω0 ⊂ R3 be a bounded Lipschitz domain. Let ϕk → ϕ weakly in
W 1,p(Ω0;R3) for some 1 < p < +∞ and let D0,k → D0 weakly in Lq(Ω0;R3) where 1/q +
1/p < 1 and DIVD0,k = DIVD0 = ρ0 for every k ∈ N and for some ρ0 ∈ W−1,1(Ω). Then
dk = F kD0,k → d = FD0 weakly in L1(Ω0;R3), where F k = ∇ϕk and F = ∇ϕ.

Referring now to the variational principle Πe previously presented in (2.19), it is now
possible to introduce the following theorem of existence of minimisers. Indeed,

Theorem 3.1. Let Ω0 ⊂ R3 be a bounded Lipschitz domain. Let p > 2, pc ≥ p/(p − 1),
r > 1, and q > p/(p − 1), and let the following growth conditions be satisfied for some
constant C > 0.

e(U)

{
≥ C(||F ||p + ||H||pc + Jr + ||D0||q) if J > 0 ,

= +∞ otherwise.
(3.23)

Moreover, assume that e is A-polyconvex, i.e., that (3.18) holds for some convex and lower
semicontinuous function W : R3×3 × R3×3 × R× R3 × R3 → R ∪ {+∞} and that

e(U) = W (V) → +∞ if J → 0. (3.24)

Let
A = {ϕ ∈ W 1,p(Ω0;R3), D0 ∈ Lq(Ω0;R3);

s.t.H ∈ Lpc(Ω0;R3×3); J ∈ Lr(Ω0) , J > 0 a.e.;

s.t. (2.4b), (2.6a), (2.6b)}
be non-empty and such that infAΠe < +∞. Then there is a minimiser of Πe on A.

Proof. The proof follows the same lines as in [22]. If (ϕk, (D0)k) ⊂ W 1,p(Ω0;R3)×Lq(Ω0;R3)
is a minimizing sequence then (3.23) and the Dirichlet boundary conditions ensure that this
minimizing sequence is bounded in W 1,p(Ω0;R3)×Lq(Ω0;R3). Therefore, it holds for a non-
relabeled subsequence that ϕk → ϕ weakly and (D0)k → D0 weakly. Further, F k(D0)k →
F (D0) weakly in Lpq/(p+q)(Ω;R3) due to Proposition 3.2.

3.4. A-polyconvexity and material stability: extended set of work conjugates and the tangent
operator

As presented in [37, 64, 63, 65], the consideration of the function W (instead of its
equivalent energetic expression e) permits the introduction of the set ΣV of work conjugate
fields ΣV = (ΣF ,ΣH ,ΣJ ,ΣD0 ,Σd) defined as

DW [δV ] = ΣV • δV ; ΣV(V) = ∂VW (V). (3.25)

Moreover, for the particular case when δV = DV [δU ], comparing equations (2.7) and
(3.25) yields [37]

P = ΣF +ΣH F + ΣJH +Σd ⊗D0; E0 = ΣD0 + F TΣd, (3.26)
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which, for the case of a suitably defined convex energy function W , facilitates the evaluation
of P and E0 in terms of the sets V and ΣV . Assuming sufficient regularity of the function
W , its second directional derivative yields the Hessian operator HW as

D2W [δV ; ∆V ] = δV •HW •∆V , (3.27)

By definition, A-polyconvexity implies semi-positive definiteness of the Hessian operator
HW (refer to (3.21)). Moreover, as also shown in [37, 64, 63, 65], the second directional
derivative of the internal energy e (2.9) can be equivalently expressed in terms of its extended
representation W as

D2e [δU ; ∆U ] = D2W [DV [δU ];DV [∆U ]] + (ΣH + ΣJF ) : (δF δF ) + 2Σd · δF δD0,
(3.28)

where
D2W [DV [δU ];DV [∆U ]] = STHWS, (3.29)

with S defined as

S =


: δF

: (δF × F )
δF : H
·δD0

· (δFD0 + F δD0)

 . (3.30)

As presented in [65], it is possible to relate the components of the Hessian He in (2.9)
to those of the Hessian HW via appropriate algebraic transformations, which is advanta-
geous for the case of energetic expressions defined in terms of W . Moreover, replacing δF
and δD0 in (3.28) with δF = u ⊗ V and δD0 = V ⊥, respectively, and noticing that
De[δU ] = DW [DV [δU ]], implies that equation (3.20) reduces to (3.5), which shows that
A-polyconvexity implies generalised rank-one convexity (in the more generic sense of elec-
tromechanics). Moreover, replacing δF and δD0 in (3.28) with δF = u⊗V and δD0 = V ⊥,
respectively, permits to cancel the last two terms (also known as geometric terms) on the
right-hand side of (3.28), and leads to

D2e[u⊗ V ,V ⊥;u⊗ V ,V ⊥] = STHWS ≥ 0. (3.31)

Relation (3.31) clearly illustrates that smooth A-polyconvex internal energy functionals,
characterised by a semi-positive definite Hessian operator HW , guarantee semi-positiveness
of the left-hand side of equation (3.31), and hence the fulfilment of the ellipticity condition
in (3.6).

4. Polyconvex transversely isotropic invariant-based electromechanics

In addition to the requirement of A-polyconvexity (i.e. existence of minimisers and
material stability), the internal energy density e must be defined satisfying additional re-
quirements. The following subsection summarises them leading to an invariant-based repre-
sentation of the energy density.
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4.1. Invariant energy representation

Objectivity or frame invariance implies independence of the energy density with respect
to arbitrary rotations Q of the spatial configuration, which can be formulated as

e(QF ,D0) = e(F ,D0); ∀Q ∈ SO(3), (4.1)

with SO(3) the special (proper) orthogonal group [39]. Notice that in above objectivity
requirement, the rotation tensor Q is only applied to the two-point tensor F and not to the
Lagrangian vector D0. As it is well-known, the requirement of objectivity implies that
the internal energy e must be expressible in terms of an objective set of arguments as
e(F ,D0) = ẽ(C,D0), where C = F TF denotes the right Cauchy-Green strain tensor and
with e and ẽ denoting alternative functional representations of the same internal energy
density.

In addition, for the case of transverse isotropy13 characterised by a material unit vector
M , the energy must be independent with respect to rotations/reflections Q ∈ Gm ⊂ O(3) of
the material configuration, where Gm denotes the corresponding symmetry group and O(3)
the full orthogonal group. The associated symmetry transformation is formulated as

ẽ(QCQT ,QD0) = ẽ(C,D0); ∀Q ∈ Gm ⊂ O(3). (4.2)

As stated e.g. in [75], there exist five types of transverse isotropy. In this work, we re-
strict ourselves to those that affect most EAPs of interest, that is, the symmetry D∞h, which
corresponds to the usual definition of transverse isotropy (e.g. applicable to electro-active
polymers), and the symmetry C∞, the so-called rotational symmetry (e.g. applicable to
electro-active materials exhibiting piezoelectric effects). Please refer to [56, 97, 75] for fur-
ther details regarding the various types of transverse isotropy. Moreover, these two symmetry
groups can be characterised by appropriate structural tensors which encapsulate the symme-
try attributes of their corresponding groups, which in this case are given by the second-order
tensor M ⊗M (for D∞h) and the first-order tensor (vector) M (for C∞).

By making use of the isotropicisation theorem [97], it is now possible to re-express above
anisotropic restriction (4.2) for every Q ∈ O(3) as

ēD∞h
(QCQT ,Q(D0 ⊗D0)Q

T ,Q(M ⊗M)QT ) = ēD∞h
(C,D0 ⊗D0,M ⊗M ) (4.3a)

ēC∞(QCQT ,QD0,QM ) = ēC∞(C,D0,M ) (4.3b)

where ēD∞h
and ēC∞ represent alternative isotropic functional representations of the internal

energy density e particularised for their corresponding transverse isotropy groups D∞h and
C∞, respectively. It is now straightforward to obtain an irreducible list of isotropic invariants
(a so-called integrity basis) for the characterisation of above energy densities ēD∞h

and ēC∞ .

13Or any other kind of anisotropy characterised by a possibly more complex crystal symmetry structure.
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For the case of ēD∞h
(refer to Table 12 in [97]), we obtain

isotropic elasticity: tr[C]; tr[C2]; tr[C3];

+isotropic electro: tr[D0 ⊗D0]; tr[C(D0 ⊗D0)]; tr[C
2(D0 ⊗D0)];

+transverse-isotropic elasticity: tr[C(M ⊗M )]; tr[C2(M ⊗M)];

+transverse-isotropic electro: tr[(D0 ⊗D0)(M ⊗M )]; tr[(D0 ⊗D0)C(M ⊗M)],
(4.4)

and for the case of ēC∞ (refer to Table 12 in [97]), we obtain14

isotropic elasticity: tr[C]; tr[C2]; tr[C3];

+isotropic electro: tr[D0 ⊗D0]; tr[C(D0 ⊗D0)]; tr[C
2(D0 ⊗D0)]

+transverse-isotropic elasticity: tr[C(M ⊗M)]; tr[C2(M ⊗M)];

+transverse-isotropic electro: tr[D0 ⊗M ]; tr[C(D0 ⊗M)].

(4.5)

Notice that both integrity bases (4.4) and (4.5) are comprised of ten invariants, only
differing in the expression of the two invariants responsible for the transversely isotropic
electro-mechanic effect. It is now possible to re-express the above energy densities in terms
of the invariants of the above integrity bases. Specifically, for the case of ēD∞h

, it yields

ēD∞h
(C,D0 ⊗D0,M ⊗M ) = êD∞h

(J1, J2, J3, J4, J5, J6, J7, J8, K
D∞h
1 , KD∞h

2 ), (4.6)

where Ji, {i = 1 . . . 8} denote the following set of invariants

J1 = tr[C]; J2 = tr[C2]; J3 = tr[C3]; J4 = tr[C(M ⊗M)]; J5 = tr[C2(M ⊗M)];

J6 = tr[D0 ⊗D0]; J7 = tr[C(D0 ⊗D0)]; J8 = tr[C2(D0 ⊗D0)],
(4.7)

and KD∞h
1 , KD∞h

2 are

KD∞h
1 = tr[(D0 ⊗D0)(M ⊗M )]; KD∞h

2 = tr[(D0 ⊗D0)C(M ⊗M )], (4.8)

note that J1 . . . J5 denote the mechanical invariants, J6 . . . J8 denote the invariants intro-
ducing (isotropic) electro-mechanical effects and KD∞h

1 and KD∞h
2 are the two invariants

responsible for introducing fibre dependent electro-mechanical effects.
Similarly, in the case of ēC∞ , it yields

ēC∞(C,D0,M ) = êC∞(J1, J2, J3, J4, J5, J6, J7, J8, K
C∞
1 , KC∞

2 ), (4.9)

where the alternative fibre dependent electro-mechanical invariants are

KC∞
1 = tr[D0 ⊗M ]; KC∞

2 = tr[C(D0 ⊗M )]. (4.10)

14In the original Table 12 in [97], the invariant tr[C2(D0⊗D0)] is missing whilst the invariant tr[C2(D0⊗
M)] is included in the basis. Notice that it is possible to show (refer to [18] and references therein) that
either invariant can be expressed in terms of the rest of the invariants of the basis.
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A further restriction, albeit not strictly necessary, is that of zero energy at the origin (i.e.
U0 = (F = I,D0 = 0)), that is, e(U0) = 0. However, an important restriction is that of
zero stresses and electric field at the origin, namely,

P (U0) = ∂F e|U0
= 0; E0(U0) = ∂D0e|U0

= 0. (4.11)

It is interesting to observe that for EAPs exhibiting symmetry of the group D∞h, the
electric field E0 evaluated at the origin of electric displacements, that is, D0 = 0 (regardless
of the value of deformation), is zero, which is indeed the case as these materials do not
experience any piezoelectric effects. This is obtained implicitly due to the dependence of the
integrity basis on the second order tensor D0 ⊗D0 (refer to invariants J6 . . . J10), that is,

E0(F ,D0 = 0) =
10∑
i=6

[(∂Ii ēD∞h
)(∂D0⊗D0Ii)]|(F ,0) 2 D0︸︷︷︸

=0

= 0. (4.12)

However, for electro-active materials of the group C∞, this restriction does not apply.
Indeed, invariants KC∞

1 , KC∞
2 depend linearly on D0 and not on D0 ⊗ D0, which permits

lifting of the restriction (4.12).
Finally, material characterisation typically requires calibration of material parameters at

U0, that is

Ce(U0) = ∂2FF e
∣∣
U0

= Clin
e ; Q(U0) = ∂2D0F

e
∣∣
U0

= Qlin; θ(U0) = ∂2D0D0
e
∣∣
U0

= θlin,

(4.13)
or in case of using the Hessian components of the Helmholtz’s free energy function [HΨ]

CΨ(W0) = ∂2FFΨ
∣∣
W0

= Clin
Ψ ; P(W0) = ∂2D0F

Ψ
∣∣
W0

= P lin; ϵ(W0) = ∂2E0E0
Ψ
∣∣
W0

= ϵlin,

(4.14)
where W0 = (F = I,E0 = 0).

4.2. A-polyconvex transversely isotropic invariant representations

It is possible to re-express the above integrity bases of invariants Ji, {i = 1 . . . 8}, KD∞h
j ,

KC∞
j , {j = 1, 2} in terms of an alternative basis of invariants more amenable to the study of

A-polyconvexity. The purely mechanical isotropic invariants can be re-defined as

I1 = J1 = F : F ; I2 = H : H ; I3 = J, (4.15)

where
J2 = I21 − 2I2; J3 = I31 − 3I1I2 + 3I23 . (4.16)

The transversely isotropic mechanical invariants can be re-defined as

I4 = J4 = (FM) · (FM); I5 = (HM ) · (HM ); (4.17)

where
J5 = I1I4 − I2 + I5. (4.18)
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Similarly, the isotropic electro-mechanical invariants can be re-defined as

I6 = J6 = D0 ·D0; I7 = J7 = d · d; I8 = (HD0) · (HD0), (4.19)

where
J8 = I1I4 − I2 + I8, (4.20)

and the transversely isotropic electro-mechanical contributions as

KD∞h
1 = (D0 ·M )2; KD∞h

2 = (d · FM)2, (4.21)

and
KC∞

1 = D0 ·M ; KC∞
2 = d · FM . (4.22)

Thus, energies ēD∞h
and ēC∞ can be re-written as

ēD∞h
(C,D0,M ) = ˆ̂eD∞h

(I1, I2, I3, I4, I5, I6, I7, I8, K
D∞h
1 , KD∞h

2 ); (4.23a)

ēC∞(C,D0,M ) = ˆ̂eC∞(I1, I2, I3, I4, I5, I6, I7, I8, K
C∞
1 , KC∞

2 ). (4.23b)

It is customary to split the energy density into mechanical and electro-mechanical com-
ponents, further splitting the former into isochoric and volumetric components, via suitable
modification of the invariants I1 and I2. This can be formulated as follows

ēD∞h
(C,D0,m) = ˜̂eiso,mec

D∞h
(I iso1 , I iso2 , I4, I5) + evol(I3)

+ ˜̂eeleD∞h
(I1, I2, I3, I4, I5, I6, I7, I8, K

D∞h
1 , KD∞h

2 ); (4.24a)

ēC∞(C,D0,m) = ˜̂eiso,mec
C∞ (I iso1 , I iso2 , I4, I5) + evol(I3)

+ ˜̂eeleC∞(I1, I2, I3, I4, I5, I6, I7, I8, K
C∞
1 , KC∞

2 ), (4.24b)

where the different energetic contributions are identified by corresponding upper indices and
where

I iso1 = I
−2/3
3 I1 = J−2/3F : F ; I iso2 = I

−4/3
3 I2 = J−4/3H : H . (4.25)

It is now possible to construct polyconvex energy density functions by combining (1) a
convex (with respect to invariant I3) volumetric energy evol contribution and (2) a polyconvex
isochoric energy density contribution. To accomplish the latter, it is possible to use a linear
combination (with positive weighting coefficients) of A-polyconvex invariants I1, I2, I

iso
1 , I4,

I5, I6, I7,K
D∞h
1 , andKC∞

1 . Notice that as invariants I iso2 , I8,K
D∞h
2 , andKC∞

2 are not rank-one
convex, thus, they are not A-polyconvex and cannot be arbitrarily used for the construction
of the isochoric energy density. A potential way around this issue can be through the careful
selection of the weighting coefficients so that the A-polyconvex invariants compensate those
non A-polyconvex.

Yet another more robust possibility (preferred in this paper) consists of polyconvexifying
the non A-polyconvex invariants, cf [74, 37, 80] so that a straight linear combination of
invariants can then be used. Polyconvexification is, in general, not trivial and may potentially
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lead to the onset of non-coercive terms. Such modification has to be designed case by case,
e.g., I iso2 can be modified to

I iso2,pol =
(
I iso2

)3/2
= J−2 (H : H)3/2 , (4.26)

which is polyconvex [74]. Similarly, a possible polyconvex invariant expression for I8 is

I8,pol = α2 (H : H)2 + β2 (D0 ·D0)
2 + αβ(HD0) · (HD0) = α2(I2)

2 + β2(I6)
2 + αβ(I8),

(4.27)
where α, β are positive material constants. Analogously, a possible modification of KC∞

2 is

KC∞
2,pol = (ηd+ ψFM) · (ηd+ ψFM) = η2I7 + ψ2I4 + 2ηψKC∞

2 , (4.28)

where η, ψ are positive material constants. Finally, KD∞h
2 can be replaced with

KD∞h
2,pol =

(
(α1D0 + α2M ) · (α1D0 + α2M ) + (α3d+ α4FM) · (α3d+ α4FM)

)2

, (4.29)

where αi, i = 1 . . . 4 are positive material constants. Notice that above invariant KD∞h
2,pol in

(4.29) contains the term 8α1α2α3α4K
D∞
2 . Unfortunately, such convexification also contains

the term 4α1α2α
2
4K

C∞
1 I4, which is piezoelectric (linear with respect to D0) and cannot be

generated from the integrity basis of the anisotropy group D∞. Instead, this invariant is
valid for the anisotropy group C∞, as it is formed as product of invariants KC∞

1 and I4, both
in the integrity basis of the referred group. In order to remedy this shortcoming, we propose
to replace invariant KD∞

2 with an alternative invariant K̃D∞
2 defined as

K̃D∞
2 =

(
KC∞

2

)2
= (d · FM)2 , (4.30)

followed by the introduction of the following polyconvex counterpart K̃D∞
2,pol defined as

K̃D∞
2,pol = I27 + K̃D∞

2 + I24 . (4.31)

Clearly, above polyconvex invariant K̃D∞
2,pol is comprised of invariants which are part of the

integrity basis of the anisotropy group D∞.
Proof of polyconvexity of invariants I8,pol, K̃

D∞h
2 and KC∞

2,pol is included in Appendix 7.2.
Additionally, in order to fulfill assumptions of Theorem 3.1, we need to ensure that the
energy is coercive, cf. (3.23). For example, invariant KC∞

1 = D0 ·M is A-polyconvex, but
not coercive. Notice that D0 · M = 0 if D0 is perpendicular to M . To ensure coercivity
of the overall energy e, we must combine non-coercive invariants with coercive ones, e.g.,
aI6 + bKC∞

1 is coercive for a > 0.

5. Numerical examples

This section presents a series of numerical examples modelling the performance of trans-
versely isotropic EAPs at large strains. The first numerical example, restricted to the case
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of homogeneous deformation, circumvents the need to use a Finite Element (FE) spatial
discretisation and studies the behaviour, at a local level, of the response of the EAP. A
comprehensive study will be conducted where the influence of the deformation and the level
of transverse anisotropy has on the stability of the model. In addition, polyconvex and
non-polyconvex constitutive models will be studied and compared for a range of deforma-
tions and electric fields, emphasising that seemingly similar models might lead to unexpected
results. The rest of numerical examples abandon the assumption of uniform deformation.
The second example explores the use of three-dimensional Finite Elements in the case of
transversely isotropic EAPs in the form of thin rectangular films subjected to appropriate
mechanical and electrical boundary conditions. The influence of the orientation of the vector
of anisotropy and electro-mechanical properties will be studied, especially into their effect
on the stability of the model, so as to prevent the onset of spurious mesh dependence re-
sults. The third example explores the effect of anisotropy orientation on the development of
wrinkling patterns in a thin EAP film. The final example explores the twisting behaviour of
a piezoelectric-type material.

5.1. Numerical example 1

Through this example we aim to:

• Analyse the response of A-polyconvex and non-A-polyconvex energy functionals in
homogeneous states of deformation and electric field.

• Appreciate the importance of using arc-length techniques in order to bypass instability
regions and harness actuator performance beyond the moderate regime.

Figure 2: Numerical example 1. Experimental set-up. The application of a uniform electric field along the
OX3 direction causes a stretch of the DE laminated composite along OX1 direction.

We consider a prototypical set-up very similar to that already explored by several authors
in the past, both numerically [34, 93] and experimentally [96]. This consists of a Dielectric
Elastomer film, such as the one depicted in Figure 2, which is subjected to a homogeneous
state of deformation and electric field. Two electrodes are placed at opposite faces of the
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film and an externally controlled Lagrangian electric field E0 is applied across and orien-
tated along the X3 axis, whilst maintaining stress-free conditions, in turn generating a state
of uniform deformation and electric displacement across the film. This uniform state of
deformation and electric field is exploited in order to study the response of the elastomer
from a local point of view, without the need to resort to a finite element discretisation. As a
result, in the absence of any further loads and electric charges, the homogeneous solution to
this problem corresponds to the stationary points {F ∗,D∗

0} of the Helmholtz’s free energy
functional defined as

Π(F ∗,D∗
0,E0) = inf

F
inf
D0

{e(F ,D0)−E0 ·D0} , (5.1)

where E0 is the externally controlled electric field. Thus, the stationary conditions of the
above functional arise as

RF (F ,D0) = ∂F e = 0; RD0(F ,D0) = ∂D0e−E0 = 0. (5.2)

The above nonlinear stationary conditions (5.2) are solved in terms of unknowns F ∗ and
D∗

0 dependent upon the externally controlled electric field E0. A similar set-up has been
previously used in many references [35, 33], albeit restricted to the condition of plane strain
and strict incompressibility. Here, these kinematic assumptions are relaxed and the defor-
mation gradient tensor is left to adopt a more complex expression. Specifically, F and E0

are formulated as

F =

F11 0 0
0 F22 0
0 0 F33

 ; E0 =

 0
0
E0

 , (5.3)

Typically, F33 is constrained through the condition of strict incompressibility, as this
permits to obtain closed-form solutions to the problem. Notice that these simplifying as-
sumption does not apply to this study, where the nonlinear stationary conditions (5.2) are
solved by an iterative Newton-Raphson method. In addition, in order to track the entire equi-
librium path beyond the onset of limit points (i.e., snap-through, snap-back), an arc-length
technique is employed. Two constitutive models have been considered in this study. The
first restricts to the isotropic case whereas the second considers the case of the transversely
isotropic symmetry group D∞.

5.1.1. Isotropic case

For the isotropic case, two energy functionals have been considered. The first, denoted
as ēiso,1(F ,D0) is given in equation (5.4) and it has been additively decomposed into two
terms. The first represents strain energy of a Mooney-Rivlin model and that of an ideal
dielectric elastomer. This entire contribution has been denoted as ēID(F ,D0). The second
term in the additive decomposition contains the non- A-polyconvex invariant I8(F ,D0).

ēiso,1(F ,D0) = ēID(F ,D0) +
1

ε2
I8(F ,D0);

ēID(F ,D0) =
µ1

2
I iso1 (F ) +

µ2

2
I iso2 (F ) +

λ

2
(I3(F )− 1)2 +

1

2ε1

I7(F ,D0)

I3(F )

(5.4)
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where
I8(F ,D0) = HD0 ·HD0. (5.5)

Furthermore, a second energy functional, denoted as ēiso,1(F ,D0) has been considered.
This is also additively decomposed into the ēID(F ,D0) and the additional invariant I8,pol,
which results from the polyconvexication of I8. The explicit expression for ēiso,1pol(F ,D0)
can be seen in equation (5.6), i.e.

ēiso,1pol(F ,D0) = ēID(F ,D0) + I8,pol(F ,D0)− 12α2 log(I3(F )), (5.6)

where
I8,pol = α2I2(F ) + αβI8 + β2I26 (D0). (5.7)

Table 1: Material properties for constitutive model in equation (5.4)

µ1 µ2 λ ε1 ε2

1× 105 1.0µ1 103µ1 4.82ε0 24ε0

Table 2: Material properties for the constitutive model in equation (5.6)

Parameters Pol. Mat. 1 Pol. Mat. 2 Pol. Mat. 3 Pol. Mat. 4 Pol. Mat. 5

µ1 105 105 105 105 105

µ2 105 105 105 105 105

λ 108 108 108 108 108

ε 4.82ε0 4.82ε0 4.82ε0 4.82ε0 4.82ε0
α 1.78× 108 2.90× 109 4.91× 109 6.92× 109 8.93× 109

β 2.52× 102 4.11× 103 6.95× 103 9.80× 103 1.26× 104

For the non-A-polyconvex model in (5.4), the values of the material parameters can
be found in Table 1. For the A-polyconvex model in 5.6, five combinations of material
parameters can be found in Table 2. It can be seen that the material parameters {µ1µ2, λ, ε}
for the polyconvex models have been kept the same as their counterparts {µ1µ2, λ, ε1},
respectively, for the non-polyconvex case. Several values for the two remaining material
parameters {α, β} have been considered in order to see their influence in the equilibrium
path of the elastomer. From Figures 3a,b, the combination of values for {α, β} that yields
a closer response to the non-polyconvex model is that corresponding with the polyconvex
material 2 (Pol. Mat. 2), whose values for {α, β} can be found in the third column of Table
2. These values have been determined by performing an optimisation problem. Specifically,
for each pair of values (F ,D0) in the equilibrium path of the non-polyconvex model, we
have formulated the following minimisation problem

min
α,β

{
J
s.t. α > 0, β > 0

(5.8)
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where the objective function J is defined as

J =

√√√√ n∑
i=1

||∂F ēiso,1pol(F i,D0i)||2 +

√√√√ n∑
i=1

||∂D0 ēiso,1pol(F i,D0i)− ∂D0 ēiso,1(F i,D0i)||2

||∂D0 ēiso,1(F i,D0i)||2
,

(5.9)
where n refers to the number of discrete data pairs (F ,D0) describing the discrete equilib-
rium path of the non-polyconvex model.

The similarity between the equilibrium paths of the non-polyconvex model and that whose
material parameters {α, β} have been obtained through the optimisation method described
above is very reasonable up to a 10% in the F11 component of the deformation gradient
tensor, beyond which both equilibrium paths start diverging (see Figure 3). Clearly, this is
due to the fact that the polyconvex model contains higher nonlinear terms I24 and I26 , yielding
a slightly more stable response to that of its non-polyconvex counterpart. From Figure 3, it
is possible to observe the regions where the Hessian operator loses positive definiteness and
hence, where the loss of convexity occurs. Interestingly, the non-polyconvex model loses also
ellipticity (see the yellow region in Figure 3c). This has been checked by monitoring the least
of the minors of the acoustic tensor Q in equation (3.14). Evidently, this is not appreciated
in any of the five A-polyconvex models in Figures 3d-3h.

5.1.2. Anisotropic case

In this example, we consider the transversely anisotropic group D∞h. Two energy density
functions are considered. The first, denoted as ēD∞h,1

(F ,D0,M ), is not A-polyconvex. This
is additively decomposed into the isotropic density function ēID(F ,D0) (A-polyconvex) and

the non-polyconvex invariant K
D∞h,1

2 (F ,D0,M)

ēD∞h,1
(F ,D0,M ) = ēID(F ,D0) +

1

ε2
KD∞h

2 (F ,D0,M ), (5.10)

where
KD∞h

2 (F ,D0) = (d · FM)2 . (5.11)

The material parameters {µ1, µ2, λ, ε1, ε2} featuring in the resulting non-polyconvex model
ēD∞h,1

(F ,D0,M) can be found in Table 3.

Table 3: Material properties for non-polyconvex model in equation (5.10)

µ1 µ2 λ ε1 ε2

1× 105 1.0µ1 103µ1 4.82ε0 24ε0

The second strain energy density function considered, denoted as ēpolD∞h,1
(F ,D0,M )

can be seen in equation (5.12). Notice that, in contrast to equation (5.10), the non-

polyconvex invariant K
D∞h,1

2 (F ,D0,M ) has been replaced with its polyconvex counterpart

24



1 1.05 1.1 1.15 1.2 1.25 1.3

0

2

4

6

8

10

0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

(a) (b)

LPD

LE

(c) (d)

LPD LPD

(e) (f)

LPD
LPD

(g) (h)

Figure 3: (a)-(b) Equilibrium paths for non-polyconvex model in equation (5.4) with material properties in
Table 1 and for the five polyconvex models (see equation (5.6)) with material parameters in Table 2. (c)-(h)
represent the regions where loss of positive definiteness (LPD) of the Hessian operator and loss of ellipticity
(LE) occurs for the non-polyconvex and polyconvex models. The reference values for the dimensionless
electric field are µ = 105 and ε = 4.8ε0.
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KD∞h
2,pol (F ,D0,M) and an additional term (third term on the right hand side of (5.12)) which

guarantees the stress-free condition in the origin, namely

ēpolD∞h,1
(F ,D0,M ) = ēID(F ,H , J,d) +KD∞h

2,pol (F ,D0,M ) + β2
(
I5(F ,M )− log(I3(F ))

)
;

KD∞h
2,pol (α1, α2, α3, α4,F ,D0,M) = α2I27 (F ,D0) + αβKD∞h

2 (F ,D0) + β2I24 (F ,M ).
(5.12)

For all the models, the preferred direction M was set to M =
[
0 0 1

]T
.

Table 4: Material parameters for polyconvex model in equation (5.12)

Parameters Pol. Mat. 1 Pol. Mat. 2 Pol. Mat. 3 Pol. Mat. 4 Pol. Mat. 5

µ1 3.67× 105 6.30× 105 5.12× 105 0.44 8.33× 105

µ2 21.86 9.56× 103 6.25× 103 2.87× 10−2 0.25
λ 108 108 108 108 108

ε1 7.48ε0 9.6ε0 12.36 4.9ε0 9.6ε0
α 3.97× 106 4.20× 106 6.50× 106 1.27× 107 2.47× 106

β 110.13 0.232 37.40 193.12 1.42× 10−2

For the A-polyconvex model in 5.12, five combinations of material parameters can be
found in Table 4. Unlike in the isotropic case, (where {µ1, µ2, λ, ε1}) kept the same values as
the non-polyconvex model, in this case, all the six material parameters {µ1, µ2, λ, ε1, α, β}
have been varied in order to observed their influence in the equilibrium path of the resulting
polyconvex model. This can be observed in Figure 4a,b. From this figure, the combination of
values for {µ1, µ2, λ, ε1, α, β} depends on the interval of F where the optimisation problem
described in that yields a closer response to the non-polyconvex model is that corresponding
with the polyconvex material 2 (Pol. Mat. 2), whose values for {α, β} can be found in the
third column of Table 2. These values have been determined by performing an optimisation
problem. Specifically, for each pair of values (F ,D0) in the equilibrium path of the non-
polyconvex model, we have formulated the following minimisation problem (5.8) was carried
out. This entails that the minimisation problem in this case can be reformulated as

min
µ1,µ2,λ,ε1,α,β

{
J
s.t. {µ1, µ2, λ, ϵ1, α, β} > 0

(5.13)

where the objective function J is defined as

J =

√√√√ n2∑
i=n1

||∂F ēpolD∞h,1
(F i,D0i)||2 +

√√√√ n2∑
i=n1

||∂D0 ē
pol
D∞h,1

(F i,D0i)− ∂D0 ēD∞h,1
(F i,D0i)||2

||∂D0 ē
pol
D∞h,1

(F i,D0i)||2
,

(5.14)
where n1 and n2 refer to the initial and final elements within the set F i,D0i, describing
the discrete equilibrium path of the non-polyconvex model, which are considered for the
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optimisation problem. It can be seen that case corresponding with the polyconvex material
4 (Pol. Mat. 4 in Figure 4a,b, with material parameters in the fifth column of Table 4)
fifts the non-polyconvex model extremely well for values of F11 close to 1. However, this
agreeement disappears beyond this point and both models are extremely disimilar past this
point. On the other hand, the case corresponding with the polyconvex material 1 (Pol. Mat.
1 in Figure 4a,b, with material parameters in the second column of Table 4), only fits very
well the equilibrium path of the non-polyconvex model for high values of F11.

From Figure 4, it is possible to observe the regions where the Hessian operator loses
positive definiteness and hence, where the loss of convexity occurs. Interestingly, the non-
polyconvex model loses in addition ellipticity (see the yellow region in Figure 4c). This has
been checked by monitoring the least of the minors of the acoustic tensor Q in equation
(3.14). Evidently, this is not appreciated in any of the five A-polyconvex models in Figures
4d-4h.

5.2. Numerical example 2

The objective of this example are to:

• Demonstrate the influence of the fibre orientation on the mode of deformation of the
EAP in the case of bending in a realistic three-dimensional setting.

• Study the loss of the generalized rank-one convexity.

Note that a similar example exploring the effect of fibre orientation on bending and twisting
actuation of a fibre-reinforced magneto-elastomer has been studied in [82]. The ratio between
length a, width b, and height c of the EAP are taken as c = a/50, b = a/6. The sample,
depicted in Figure 5, is clamped at one end and is loaded by the application of electric
potential in the electrodes in the bottom and in the middle of the height. ∆V = Λh

√
µ1/ε1

where Λ is a loading parameter, and µ1 and ε1 are material parameters, see Table 5.2.1.
Note that the specimen was discretised with 120× 20× 6 elements and the calculations are
performed using the mixed Hu–Washizu variational principle, see Appendix 7.3 for more
details. In addition, two different material models are considered. D∞h symmetry applicable
to electroactive polymers, is assumed in both cases.
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Figure 4: (a)-(b) Equilibrium paths for non-polyconvex model in equation (5.10) with material properties in
Table 3 and for the five polyconvex models (see equation (5.12)) with material parameters in Table 4. (c)-(h)
represent the regions where loss of positive definiteness (LPD) of the Hessian operator and loss of ellipticity
(LE) occurs for the non-polyconvex and polyconvex models. The reference values for the dimensionless
electric field are µ = 105 and ε = 4.8ε0. 28



Figure 5: Problem setting

5.2.1. Model 1: A-polyconvex constitutive law

The energy is constructed to beA-polyconvex meaning that it is composed ofA-polyconvex
invariants only. The proposed model is defined through the energy written as

ēD∞h,1(F ,D0,M ) = ē1(F ) + ē2(F ,M ) + ē3(F ,D0) + ē4(F ,D0,M ), (5.15a)

ē1(F ) =
µ1

2
I iso1 (F ) +

µ2

2
I iso2,pol(F ) +

λ

2
(I3(F )− 1)2, (5.15b)

ē2(F ,M ) =
µ3

2α
Iα4 (F ,M) +

µ3

2β
Iβ5 (F ,M)− µ3lnI3(F ), (5.15c)

ē3(F ,D0) =
1

2ε1

I7(F ,D0)

I3(F )
+

1

2ε2
I6(D0), (5.15d)

ē4(D0) =
1

2ε3
KD∞h

1 (D0). (5.15e)

Naturally, to assure A-polyconvexity of the model, positive material constants have to be
chosen, which is a reasonable physical requirement leading also to coercivity. The material
constants used in the following simulation are presented in Table 5.

Table 5: Material properties for Material model 1

µ1 µ2 µ3 λ ε1 ε2 ε3 α β

1× 105 1.0µ1 1.0µ1 103 × µ1 9.6ε0 2.88ε0 1.92ε0 1 1

We study three samples with fibre alignment of 0◦, 45◦, and 90◦ and evaluate the influence
of the fibre orientation upon the electrical loading. The three aforementioned fiber orienta-

tions correspond to M 0 =
[
1 0 0

]T
, M 45 =

[
1/
√
2 1/

√
2 0

]T
, and M 90 =

[
0 1 0

]T
respectively. The results of simulation are depicted in Figure 6 showing clearly that design
of fibers alignment substantially influence response of an EAP leading to bending, twisting,
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Figure 6: Deformation of an EAP with different fiber alignment, columns from left to right correspond

to M =
[
1 0 0

]T
, with the snapshots corresponds to loading parameter Λ = (0, 10, 15, 30, 60); M =[

1/
√
2 1/

√
2 0

]T
, Λ = (0, 5, 15, 20, 30, 45), and M =

[
0 1 0

]T
, Λ = (0, 5, 10, 15, 20, 30). Contour plots

in the first row display deformation gradient component F22, the second row displays electric displacement
component D03, and the last row displays the minimal value of minor of acoustic tensor normalized by µ1.
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or combined modes of deformation. Therefore, the computational approach can be used to
carefully tailor the fiber orientation to obtain the response of an EAP required for a specific
application.

5.2.2. Model 2: Non A-polyconvex constitutive law

In the previous example, we have examined the behaviour of a fibre-reinforced EAP
with a constitutive law comprised of A-polyconvex invariants. However, the model does not
contain electro-mechanical coupling of the fibres described by invariant KD∞h

2 . The model
from the previous section is enhanced as

ēD∞h,2(F ,D0,M ) = ēD∞h,1(F ,D0,M ) +
1

2ε4
KD∞h

2 (F ,D0,M ). (5.16)

Note that coupled electro-mechanical behaviour of fibres is often neglected see, e.g., [1, 3].
Since the model contains a non A-polyconvex contribution, it is difficult to prove the A-

polyconvex of the model. Therefore, a possible loss of rank-one convexity is investigated for

the case with fixed fiber orientation defined by M =
[
1/
√
3 1/

√
3 1/

√
3
]T
, and material

parameter ε4 = 19.2ε0.
The loss of rank-one convexity, i.e., ellipticity can be detected through evaluation of the

minors of the acoustic tensor (3.14). However, evaluation of ellipticity loss is computation-
ally demanding and not practical for real three-dimensional simulations. Note that several
efficient strategies for the detection of loss of ellipticity have been proposed, see, e.g., [2] and
references therein.

It is well known that homogenization of fibre-reinforced composites with the matrix and
fibres described by polyconvex material laws does not generally lead to a polyconvex model
at the macroscale, i.e., polyconvexity is not preserved by homogenization [24, 10]. It can
be demonstrated that the loss of polyconvexity of fibre-reinforced elastomers has a clear
physical meaning of a long wave-length instability [81].

The results of the simulation for three levels of ∆V are shown in Figure 7. The contour
plots display values of the minimal minor of the acoustic tensor normalized by µ1. The
results in case (a) show only positive values of the minor. The value is approaching zero in
one element in case (b), and negative values can be detected in case (c), meaning that the
rank-one convexity has been lost. The loss of rank-one convexity proves that the proposed
energy (5.16) is not A-polyconvex. Even though the loss of rank-one convexity indicates
that the governing equations of the electro-mechanical problem become ill-posed and the
simulation should be terminated, the evolution of loss of ellipticity is further demonstrated
in Figures 7(d).

5.3. Numerical example 3

The objectives of this example are to:

• Detect the onset of instabilities on a rank-one DE laminated composite square mem-
brane.
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(a) (b)

(c) (d)

Figure 7: Deformation of an EAP reinforced with fibers in direction M =
[
1/
√
3 1/

√
3 1/

√
3
]T

for four
levels of loading parameter, namely, Λ = (40, 44, 47, 49). Contour plots display minimal minor of the acoustic
tensor normalized by µ1. The negative value of a minor of the acoustic tensor means that rank-one convexity
has been lost.
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• Observe the different buckling patterns in terms of the preferred orientation of trans-
verse isotropy.

The geometry for this numerical example is given by a square membrane of side l = 0.06
m and thickness h = 0.001 m, clamped along all its side faces, as represented in Figure 8.
The membrane is subjected to a prescribed electric surface charge on its base while grounded
to zero potential on its topside. Geometrical and Finite Element simulation parameters are
presented in Table 6. Q3 Finite Elements are used to interpolate both displacement and
electric potential, being 104, 188 the total number of degrees of freedom, and the surface
charge is applied incrementally, being Λ ∈ [0, 1] the load factor. The two-field variational
formulation ΠΨ (ϕ, φ) in equation (2.27) has been considered using the aforementioned Finite
Element discretisation. A volumetric force acting along the positive 0X3 axis of value 10,
N · kg−1 is considered.

Figure 8: Numerical example 4. Geometry and boundary conditions.

Table 6: Numerical example 4. Geometrical and simulation parameters.

Geometrical parameters l 0.06 m Simulation parameters Nx 60
h 0.001 m Ny 60

Nz 2
Electric charge ω0 0.02 C/m2 Newton tolerance 10−6

A similar study was conducted in [57, 58], where a squared membrane, made of a rank-
one laminated DE, was subjected to electrical stimuli in order to observe the development of
instabilities as it deforms. In this work, we consider the transversely isotropic constitutive
model given in equation (5.15). The material parameters featuring in the model can be
found in Table 7.

With regards to the preferred direction M , six values have been considered (see Fig-
ure (9)). The electrically induced deformation pattern attained by the elastomeric material
is indeed highly influenced by the preferred directionM , as it can be clearly appreciated from
Figure 9. Naturally, this influence is also reflected in the contour plot pressure distribution
over the elastomeric material, as shown in Figure 10.
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Table 7: Material properties for example 3

µ1 µ2 µ3 λ ε1 ε2 ε3

1× 105 1.0µ1 1.0µ1 103 × µ1 9.6ε0 2.88ε0 1.92ε0

(a) (b)

(c) (d)

(e) (f)

Figure 9: Electrically induced buckling for numerical example 4 for a value of the accumulated load
factor Λ of Λ = 0.4. Different preferred directions M , spherically parametrised according to M =[
cos θ sin(ϕ) sin θ sin(ϕ) cos(ϕ)

]T
, with (θ, ϕ): (a) (0, 0); (b) (π/8, 0); (c) (π/4, 0); (d) (3π/8, 0); (e)

(π/2, 0); (f) (π/4, π/4).
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Electrically induced buckling for numerical example 4 for a value of the accumulated load factor Λ
of Λ = 0.4. Contour plot distribution of hydrostatic pressure p = tr(J−1PF T ). Different preferred directions

M , spherically parametrised according to M =
[
cos θ sin(ϕ) sin θ sin(ϕ) cos(ϕ)

]T
, with (θ, ϕ): (a) (0, 0);

(b) (π/8, 0); (c) (π/4, 0); (d) (3π/8, 0); (e) (π/2, 0); (f) (π/4, π/4).

35



5.4. Numerical example 4

The objectives of this example are to:

• Demonstrate the influence of the fibre orientation on the deformation of a piezoelectric
EAP in the case of twisting in a realistic three-dimensional setting.

• Study the loss of the generalized rank-one convexity.

XY

Z

1 1

6

1

1

3

Z

XY

Z

(a) (b)

Figure 11: Example 4. Problem setting

In the last example, we examine a constitutive law with C∞ symmetry, i.e., the symmetry
applicable to electroactive materials exhibiting piezoelectric effects. This example includes
the twisting of a piezoelectric material whose geometry is characterised in Figure 11(a).
The Figure also displays the finite element structured mesh used for the simulation with an
element size chosen as 0.25 × 0.25 × 0.25. Note that this example is an extension of the
elastic case taken from [16] to electromechanics. The structure is clamped at the bottom,
i.e., Z = 0, and loaded by pressure follower load p = 0.45µ1, see 11(b). The electric potential
is fixed to zero at the plane defined by Y = −0.5.
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Table 8: Material properties for example 4

µ1 µ2 µ3 µ4 λ ε1 ε2 ε4 α β

1× 109 1.0µ1 1.0µ1 1.0µ1 103 × µ1 4.8ε0 106 × ε1 103 × ε1 1 1

The proposed energy of the material has the form

ēC∞(F ,D0,M ) = ē1(F ) + ē2(F ,M) + ē3(F ,D0) + ē4,C∞(F ,D0,M), (5.17a)

ē4,C∞(F ,D0,M ) =

√
µ4

ε4

(
KC∞

2 (F ,D0,M)−KC∞
1 (D0)

)
, (5.17b)

where KC∞
1 = D0 · M , and KC∞

2 = d · FM . The material parameters have been chosen
according to Table 8. We already know that invariant KC∞

2 is not A-polyconvex; thus, A-
polyconvexity of ēC∞ can not be guaranteed. However, invariant KC∞

2,pol = η2I7 + ψ2I4 +

2ηψKC∞
2 is A-polyconvex meaning that invariants I4 and I7 can compensate for non A-

polyconvexity of KC∞
2 . A-polyconvexity of ēC∞ depends on the relation between material

coefficients µ3/2, 1/(2Jε1), and
√
µ4/ε4. Combining ē2, ē3, and ē4,C∞ leads to

ē2(F ,M ) + ē3(F ,D0) + ē4,C∞(D0) =
(µ3

2
− η2

)
(FM · FM) +

(
1

2ε1J
− ψ2

)
(FD0 · FD0)

+ η2(FM · FM) + ψ2(FD0 · FD0) +

√
µ4

ε4
FD0 · FM

− µ3lnI3(F ) +
1

2ε2
I6(D0)−

√
µ4

ε4
KC∞

1 (D0). (5.18)

Clearly, the energy is A-polyconvexity if there exist η and ψ such as the following conditions
are satisfied

2ηψ =

√
µ4

ε4
,

µ3

2
≥ η2,

1

2ε1J
≥ ψ2. (5.19)

Note that the last condition contains J ∈ (0,∞); however, this condition can be satisfied
if we restrict to nearly incompressible formulation which is considered in this example. To
satisfy the above conditions for the considered material parameters given in Table 8, one can
for example choose

η2 =
µ3

2
, ψ2 =

1

2ε4
Figure 12 display the contour plots of the deformation gradient component F13, the electric
displacement component D03, and the minimal value of minor of acoustic tensor normal-

ized by µ1 for three different orientations of the fibers,namely M =
[
0 0 1

]T
; M =[

1/
√
3 1/

√
3 1/

√
3
]T
, and M =

[
1/
√
2 1/

√
2 0

]T
. Note that the calculations were

performed using the mixed Hu–Washizu variational principle, see Appendix 7.3 for more
details.
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Figure 12: Deformation of an EAP with C∞ symmetry, i.e., exhibiting piezoelectric effects; columns from left

to right correspond to different fiber alignment, namely to M =
[
0 0 1

]T
; M =

[
1/
√
3 1/

√
3 1/

√
3
]T

,

and M =
[
1/

√
2 1/

√
2 0

]T
. Contour plots in the first row display deformation gradient component F13,

the second row show electric displacement component D03, and the last row display minimal value of minor
of acoustic tensor normalized by µ1.

6. Conclusions

This paper has presented a polyconvex phenomenological invariant-based transversely
formulation and computational framework for the simulation of EAPs at large strains. The

38



paper permits the stable in silico simulation at large strains of an internal transversely
isotropic crystallographic structure of the selected types D∞h and C∞ [30]. The paper also
bridges the gap between the work developed by Šilhavý [80] regarding the existence of min-
imisers and other key computational requirements, such as, rank-one convexity and ellipticity
[37], the latter necessary to prevent the appearance of spurious mesh-dependent results.

Four numerical examples are included in order to demonstrate the effect that the anisotropic
orientation and the contrast of material properties, as well as the level of deformation and
electric field, have upon the response of the EAP when subjected to large three-dimensional
stretching, bending, and torsion, including the possible development of wrinkling. Whilst the
first example focuses on an academic type of problem, that is, homogeneous deformation, the
latter three explore the use of Finite Element discretisations to monitor the response of the
framework in realistic three-dimensional in-silico simulations. This manuscript paves the way
towards the in-silico simulation of novel soft robotics components made up of predominantly
dominant transversely isotropic Electro-Active Polymers (EAPs). Crucially, this type of phe-
nomenologically based model can be enhanced and informed via the use of laboratory data
experiments, the up-scaling of computational homogeneisation of complex micro-architecture
EAPs, or even the use of Artificial Intelligence type of approaches. These will be the focus
of our future work.
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7. Appendices

7.1. Ellipticity and acoustic tensor

As shown in [63], the unknown fields ϕ and D0 can be written as a perturbation with
respect to equilibrium states ϕeq and Deq

0 , respectively, by means of the addition of transient
travelling (plane) wave functions as

ϕ = ϕeq + uf(α); D0 = Deq
0 + V ⊥g(α); α = X · V − ct, (7.1)

where V represents the polarisation vector of the travelling wave, c the associated speed
of propagation of the perturbation with amplitudes u and V ⊥ and f and g two arbitrary

39



α-scalar functions. Substitution of above ansatzs into (2.1) and (2.6a), respectively, results
in

F = ∇0ϕ
eq︸ ︷︷ ︸

=F eq

+(u⊗ V )f ′(α); (7.2a)

DIVD0 − ρ0 = DIVDeq
0 − ρ0︸ ︷︷ ︸

=0

+(V ⊥ · V ) g′(α) = 0, (7.2b)

hence, V ⊥ must be orthogonal to V . Linearisation of the first Piola-Kirchhoff stress tensor
P and the electric field E0 about equilibrium states P eq = P (U eq) and Eeq

0 = E0(U eq),
with U eq = (F eq,Deq

0 ), gives[
P
E0

]
=

[
P eq

Eeq
0

]
+

[
Ce QT

Q θ

] [
: (u⊗ V )f ′(α)

V ⊥g(α)

]
. (7.3)

Substitution of (7.3) into (2.3) and into Faraday’s law (2.5a)15 gives

DIVP + b0 = DIVP eq + b0︸ ︷︷ ︸
=0

+Ce,V V uf ′′(α) +QV
TV ⊥g

′(α)︸ ︷︷ ︸
ρRc2uf ′′(α)

; (7.4a)

CURLE0 = CURLEeq
0︸ ︷︷ ︸

=0

+EV [QV uf ′′(α) + θ V ⊥g
′(α)] = 0, (7.4b)

where
[Ce,V V ]ij = Ce,iIjJVIVJ , [QV ]Ij = QIjJVJ , [EV ]IJ = EIJKVK , (7.5)

where EIJK denotes the Levi-Civita third-order tensor. Notice that the last underbraced
term on the right-hand side of (7.4a) is identified with the inertial term corresponding to the
acceleration effect with ρR the density of the electroactive material. Naturally, a satisfaction
of (7.4b) requires the vector within squared brackets to be collinear to V , which permits to
obtain

V ⊥g
′(α) = θ−1 [βV V −QV uf ′′(α)] (7.6)

with βV a proportionality constant, which can be easily computed from (7.6) by projecting
both sides of the equation against V , rendering

βV =
V ·

(
θ−1QV

)
u

V · θ−1V
f ′′(α). (7.7)

Substitution of (7.7) into (7.6) and after some algebraic manipulation gives

V ⊥g
′(α) = θ−1ΩQV f

′′(α); Ω =

[
V ⊗ θ−1V

V · θ−1V
− I

]
. (7.8)

15In this case, use is made of the more generic expression for Faraday’s law, namely CURLE0 = 0.
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Substitutions of above equation (7.8) into (7.4a), results in

Qu = ρc2u; Q = Ce,V V +QV
Tθ−1ΩQV , (7.9)

where Q is the so-called electro-mechanical acoustic tensor which is a function of the con-
stitutive tensors Ce, Q, θ (dependent upon the state of electro-deformation), as well as the
polarisation orientation V . A reasonable physical requirement is that of the existence of real
wave speeds, which requires the positive semi-definiteness of the acoustic tensor Q, that is,

u ·Qu ≥ 0; ∀U ,u,V . (7.10)

7.2. Polyconvex invariants

7.2.1. Proof of polyconvexity of Ipol8

The purpose here is prove that invariant Ipol8 is convex with respect to H and D0. For
that, let us compute D2Ipol8 [δH , δD0; δH , δD0], i.e.

D2Ipol8 [δH , δD0; δH , δD0] = 4α2||H||2||δH||2 + 8α2(H : δH)2

+ 2αβ||δHD0 +HδD0||2 + 4αβHD0 · δHδD0

+ 4β2||D0||2||δD0||2 + 8β2(D0 · δD0)
2

≥ 4α2||H||2||δH||2 + 4αβHD0 · δHδD0 + 4β2||D0||2||δD0||2
(7.11)

Application of the Cauchy-Schwarz inequality in the previous equation yields

D2Ipol8 [δH , δD0; δH , δD0] ≥ 4
(
α2||H||2||δH||2 − αβ||HD0||||δHδD0||+ β2||D0||2||δD0||2

)
(7.12)

and by definition, the norm of a matrix H verifies that

||Hv|| ≤ ||H||||v|| (7.13)

for any vector v. Therefore, it is possible to conclude that

D2Ipol8 [δH , δD0; δH , δD0] ≥ 4
(
α2||H||2||δH||2 − αβ||H||||D0||||δH||||δD0||+ β2||D0||2||δD0||2

)
≥ 4

(
α2||H||2||δH||2 − 2αβ||H||||D0||||δH||||δD0||+ β2||D0||2||δD0||2

)
= 4

(
α||H||||δH|| − β||D0||||δD0||

)2

≥ 0

(7.14)
which therefore, concludes the proof.

41



7.2.2. Proof of polyconvexity of K̃D∞h
2pol

The purpose here is prove that invariant K̃D∞h
2pol

is convex with respect to d and F . For

that, let us compute D2K̃D∞h
2pol

[δd, δF ; δd, δF ], i.e.

D2K̃D∞h
2pol

[δd, δF ; δd, δF ] = 4α2||d||2||δd||2 + 8α2(d · δd)2

+ 2αβ (δd · FM + d · δFM)2 + 4αβ ((d · FM) (δd · δFM))

+ 4β2||FM ||2||δFM ||2 + 8β2(FM · δFM)2

≥ 4α2||d||2||δd||2 + 4αβ ((d · FM) (δd · δFM)) + 4β2||FM ||2||δFM ||2
(7.15)

Application of the Cauchy-Schwarz inequality in the previous equation yields

D2K̃D∞h
2pol

[δd, δF ; δd, δF ] ≥ 4
(
α2||d||2||δd||2 − αβ||d||||δd||||FM ||||δFM ||+ β2||FM ||2||δFM ||2

)
(7.16)

Therefore, it is possible to conclude that

D2K̃D∞h
2pol

[δd, δF ; δd, δF ] ≥ 4
(
α2||d||2||δd||2 − αβ||H||||D0||||δH||||δD0||+ β2||FM ||2||δFM ||2

)
≥ 4

(
α2||d||2||δd||2 − 2αβ||H||||D0||||δH||||δD0||+ β2||FM ||2||δFM ||2

)
= 4

(
α||d||||δd|| − β||FM ||||δFM ||

)2

≥ 0

(7.17)
which therefore, concludes the proof.

7.2.3. Proof of polyconvexity of KC∞
2,pol

The purpose here is prove that invariant KC∞
2,pol is convex with respect to d and F 0. For

that, let us compute D2KC∞
2,pol[δd, δF ; δd, δF ], i.e.

D2KC∞
2,pol[δd, δF ; δd, δF ] = 2η2||δd||2 + 4ηψ (δd · δFM) + 2ψ2||δFM ||2

= 2||ηδd+ ψδFM ||2 ≥ 0
(7.18)

which therefore, concludes the proof.

7.3. Finite Element implementation

This Appendix briefly summarises the Finite Element spatial discretisation procedure
implemented for the second and third numerical examples. Specifically, we focused on the
mixed Hu-Washizu type of variational principle Π̃e (2.22), whose stationary conditions yield

DΠ̃e[δϕ] =

∫
Ω0

∂eF : ∇0δϕ dV −DΠext[δϕ] = 0;

DΠ̃e[δD0] =

∫
Ω0

(∂eD0 +∇0φ) · δD0 dV = 0;

DΠ̃e[δφ] =

∫
Ω0

D0 ·∇0δφ dV −DΠext[δφ] = 0,

(7.19)
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where {ϕ,D0, φ} ∈ Vϕ

ϕ̄
× VD0 × Vφ

φ̄ and with admissible variations {δϕ, δD0, δφ} ∈ Vϕ
0 ×

VD0 × Vφ
0 , defined as

Vϕ

ϕ̄
=

{
ϕ : Ω0 → R3; [ϕ]i ∈ H1(Ω0); J > 0; | ϕ = ϕ̄ on ∂Ωu

0

}
;

Vφ
φ̄ =

{
φ : Ω0 → R; φ ∈ H1(Ω0) | φ = φ̄ on ∂Ωφ

0

}
;

VD0 =
{
D0 : Ω0 → R3; D0 ∈ L2(Ω0)

}
.

Further, we apply standard isoparametric Finite Elements and the domain Ω0 is divided
into elements and the displacement, electric potential and electric displacement fields are
approximated by means of approximation finite element spaces Vϕ

ϕ̄,h
⊂ Vϕ

ϕ̄
, V φ

φ̄,h ⊂ V φ
φ̄ , and

V D0
h ⊂ V D0 defined as

Vϕ

ϕ̄,h
=

{
ϕ : Ω0 → R3; ϕ =

∑nϕ
nod

a=1 N
a
ϕd

a
ϕ | ϕ = ϕ̄ on ∂Ωu

0

}
;

V φ
φ̄,h =

{
φ : Ω0 → R3; φ =

∑nφ
nod

a=1 N
a
φd

a
φ | φ = φ̄ on ∂Ωφ

0

}
;

V D0
h =

{
D0 : Ω0 → R3; D0 =

∑nD
nod

a=1 N
a
D0

da
D0

}
,

where for any field i =
{
ϕ,D0, φ

}
, ni

nod denotes number of interconnected nodes, Na
i is

the a-th basis function and da
i is the a-th node associated with the appropriate field. Use of

above Finite Element interpolation spaces into (7.19) leads to a system of nonlinear algebraic
equations, whose solution is obtained via a consistent Newton-Raphson linearisation iterative
procedure. In order to reduce the computational cost of the proposed formulation, a piecewise
discontinuous interpolation of the field D0 is followed. A standard static condensation
procedure [64] is used to condense out the degrees of freedom of the field D0, yielding a
formulation with a cost comparable to that of a two-field (ϕ, φ) formulation.
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