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Machine learning offers a new approach to predicting the path-dependent stress—strain response of granular
materials. Recent studies show that temporal convolution neural (TCN) networks, a mutation of the 1D
convolution neural network (CNN), have a powerful capability of addressing time-related prediction tasks.
In this work, TCN networks are constructed to explore their potential in capturing the constitutive law of
granular materials. To train and test the TCN network, three types of numerical experiments are implemented
to generate datasets via discrete element modelling. The Bayesian optimisation method is employed to find the
optimum architecture of the network. Furthermore, to improve the training accuracy and efficiency, a transfer
learning (TL) scheme is innovatively leveraged, which utilises the trained network parameters from a set of
shorter time steps and/or coarser data points of the training strain-stress loading curves, as the initial values,
to train the network for a longer time step. The prediction ability of the trained TCN network is assessed and
compared with a recurrent neural network which has been proved to perform well in predicting constitutive
laws of the granular materials. In addition, training datasets with artificially added noise are also used to test
and analyse the robustness of TCN networks.

1. Introduction

Granular materials, consisting of diverse sizes, shapes, and porosity
of grains, present complex constitutive characteristics. When subjected
to external loads, the granular media tends to form inhomogeneous
and discontinuous force chain networks to transfer the internal and
external forces and thus exhibits remarkable anisotropy (Qu et al.,
2019b; Anandarajah, 2008; Ueda and Iai, 2019) and strain localisation
(Qu et al., 2019a; Desrues and Ando, 2015; Bréchet and Louchet, 1988)
in the macroscopic scale. Additionally, the stress—strain response of the
granular media is also state and rate-dependent (Das and Das, 2019;
Alipour and Lashkari, 2018) and highly depends on the path of defor-
mation. All these complicated physical and mechanical features make
it very challenging to predict the elasto-plastic response of granular
materials.

Many traditional methods have been leveraged to explore and de-
scribe particle behaviours. Physical experiments (Wang et al., 2018;
Ezzein and Bathurst, 2011; Wei and Yang, 2014) have been widely
used to capture the constitutive characters of granular materials but can
only provide a qualitative analysis rather than a quantitative descrip-
tion. Theoretical and phenomenological constitutive models are also
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employed to formulate the stress—strain relations of particle assemblies
(Zhu et al., 2010; He et al., 2019; Yang et al., 2020b) but they are
limited by involving not only sophisticated mathematical formulations
but also numerous free parameters (Zhang and Yin, 2021), and cannot
precisely predict the large deformation of granular material (Qu et al.,
2021c). As a complement to the theoretical method, numerical meth-
ods, such as hierarchical multiscale analysis (Liu et al., 2016; Jeong
et al.,, 2018; Guo and Zhao, 2014), are introduced (Liu et al., 2016;
Jeong et al., 2018) to address some of the problems mentioned, but
still confront the problem of prohibitive computational costs. Therefore,
there are still many obstacles that have prevented the generation of
universal models to characterise the constitutive features of granular
materials.

As a potential methodology to resolve the above challenge, artificial
neural networks (ANNs) have been applied to represent constitutive
laws of particle materials since the 1990s (Ghaboussi and Sidarta,
1998). Resorting to multi-layer affine transformation and nonlinear
squashing functions, the ANN is regarded as a data-driven surrogate
model to approximate any complex mapping relation. Recently, many
reliable deep neural networks (DNNs) for time-sequential problems
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have been exploited because of the advancement of computational
science (Ali et al., 2019; Fernandez et al., 2020). Particularly, recurrent
neural networks (RNNs) (Qu et al.,, 2021a,b; Ma et al., 2022) are
generally applied in describing constitutive laws for granular materials
and can acquire good prediction results (Gorji et al., 2020; Mozaffar
et al.,, 2019). The trained model has also been adopted to simulate
macroscopic problems within the coupled finite element and machine
learning modelling framework (Shaoheng Guan et al., 2022).

More recently, a variant of convolution neural networks (CNNs)
(Wang et al., 2022; Abueidda et al., 2019; Yang et al., 2020a; Gu et al.,
2018), termed the temporal convolutional neural (TCN) network, has
also been adopted to address time sequence prediction problems with
a more flexible architecture. The TCN network is firstly proposed in
computer graphics to detect the action segment from video recordings
(Lea et al., 2017) and subsequently employed in other sequential tasks,
such as word prediction, digital recognition (Bai et al., 2018), weather
and wind speed prediction (Hewage et al., 2020; Fukuoka et al., 2018),
and energy-related time series forecasting (Lara-Benitez et al., 2020).
Compared with CNNs, the TCN network can be fed with time sequence
data directly rather than image information and therefore can be
trained with variable-length inputs, and at the same time keeps all
advantages of CNNs, such as parallelism and stability (Bai et al., 2018).

In solid mechanics, both RNNs and TCN networks have demon-
strated excellent performance on time series problems involving path-
dependent plasticity and thermo-viscoplasticity (Abueidda et al., 2021),
but the TCN network has higher computational efficiency on GPU than
RNNs (Abueidda et al., 2021). However, to the best of our knowledge,
there is currently very limited work on exploring the potential of the
TCN network to predict constitutive relations of granular materials.

In this study, the capability of the TCN network in capturing the
stress-strain response of granular materials is investigated and com-
pared with one of the RNNs, the Gated Recurrent Unit (GRU) network
(Qu et al.,, 2021a), which is recognised as a powerful network for
the problem concerned. Three types of numerical experiments are per-
formed via discrete element modelling (DEM) to generate the dataset
used to train and test the TCN network. The first type is triaxial com-
pression experiments including the conventional triaxial compression
(CTC), and the true triaxial compression (TTC) testing based on the
same granular sample and confining stress. The second type is the TTC
experiment but with different granular samples, intermediate principal
stress coefficients (e.g. b value), and initial stress states. The final one
is triaxial experiments with random strain loading paths.

Different from 1D-CNN, both dilated casual layers and the residual
layer are introduced to the TCN architecture. To fully explore the
capability of the TCN network, the difference between the TCN network
and the 1D-CNN network is first investigated, and then the Bayesian
optimisation method is leveraged to optimise the hyper-parameter
combination of the TCN network in the certain hyper-parameter space
identified by experiments.

Furthermore, a transfer learning scheme is proposed to accelerate
the training stage and improve the training accuracy of the TCN net-
work. In this scheme, the trained network parameters from a set of
shorter time steps and/or coarser datapoints of the training strain—stress
loading curves are used as the initial values to train the network for a
longer time step. The effectiveness of this transfer learning scheme is
validated by performing three comparison experiments with or without
transfer learning.

The trained TCN network is tested by loading cases that are never
involved in the training stage. To further demonstrate the prediction
capability of the TCN network, the test result of each case is compared
with the prediction of a GRU network trained on the same dataset. By
recognising the fact that training datasets may often contain errors from
different sources, the robustness of TCN networks is also investigated
with the dataset contaminated by artificially generated noise data.

The remaining of the paper is structured as follows: Section 2
introduces the architecture of the TCN network and the general training
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strategy to be used. Section 3 describes the three types of numerical
experiments based on discrete element modelling for training data
generation. Section 4 provides a detailed description of the training
procedure used, particularly the transfer learning scheme proposed.
Some representative prediction results of the TCN and GRU networks
under different loading conditions are presented and compared in
Section 5. The robustness of the TCN network is also demonstrated by
the training dataset that is contaminated by the artificially added noise.
Concluding remarks are made in Section 6.

2. Methodology

In this section, a brief introduction to deep learning (DL) theory is
first provided, then the general training strategy using the Bayesian op-
timisation and the transfer learning scheme is introduced for obtaining
a well-trained TCN network with higher efficiency.

2.1. The basic principle of using deep learning to train stress—strain relations

Under the quasi-static condition, the constitutive law of granular
materials can be presented as follows:

o ="k @

where o and ¢ are stress and strain tensors, respectively; fPL denotes
the relation between the ¢ and . However, when subjected to com-
plicated loading paths, such as recycling loading, the path-dependent
stress—strain response of granular materials will no longer be a one-
to-one mapping, and history variables should be taken into account.
Consequently, the constitutive relationship of granular materials can
be modified as follows:

o=fPle,a) )

where a represents a set of history variables. Including these his-
torical states significantly increase the complexity of establishing the
stress-strain relation of granular materials with traditional methods.

According to the theorem of universal approximation, the deep neu-
ral network, with the combination of linear matrix multiplications and
nonlinear activation functions, can approximate any continuous func-
tion to any precision (Hornik et al., 1989). The relationship between
the input and output of one neural network layer can be generally
expressed as:

a(l+1) — W(H—l)fl(z(l)) 4 b(l+1)
20 — g

1=(0,1,...,0) 3

where [ represents the I'" layer in the neural network; Q refers to the
number of hidden layers; / = 0 and / = Q denote the input and output
layer in the neural network, respectively; W and b represent the weight
and bias matrices; f;, denotes the nonlinear squashing or activation
function; and a is the activation of the activation function; z is the
output of one neuron in the neural network layer.

Constructing an Al-based constitutive model for granular materials
is to train a neural network to approximate the stress—strain relation
based on a (large) set of strain-stress data. The whole process can be
formulated as:

6(e, W(K+1),b(K+l)) — fK+1(a(K+l)) 4

where 6 represents the predicted stress via the neural network, and
Eq. (3) is used to obtain a*+D, W&+D p(K+D when | = Q with a©® = &.
In the train stage, a loss function L(6,0) is defined to update weight
and bias metrics of every layer until the error between the output of
the neural network 6 and the actual stress ¢ reduces to an acceptable
level.

The history dependency of the stress—strain curve is accounted for
by using a discrete strain-stress data sequence as the input for the

network training and prediction:
" =8{€p_pi> o Emr Eme1> Em)) 5)

where n is called the time step.
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The input of next 2D-TCN Block

The output of the last 2D-TCN Block

(b) One 2D-TCN block in the TCN network

Fig. 1. Temporal convolution part of a TCN network.

2.2. The architecture of the temporary convolution network

The temporary convolution neural network is a mutation of the CNN
and is composed of two parts: the temporary convolution (FC) part, and
the fully-connected (FC) part. As shown in Fig. 1, the FC part consists
of several stacked 2D-TCN blocks, while each block comprises of many
dilated casual convolution (DCC) layers. The detailed description of the
DCC layer can be found in Appendix A.

For an objective function h(a) with input argument a, it can be
equivalently expressed as:

h(@) = a+ f(a) ®)

where a is called the identity function, and f(a) = h(a) — a is defined
as the residual function. It has been demonstrated (Cybenko, 1989)
that approximating the residual function f(a) may be more effective
than directly approximating h(a) via neural networks. Consequently,
as shown in Fig. 1(b), a residual layer, which is a branch combining
the input data and the output of the last DCC layer in one 2D-TCN
block, is included in each 2D-TCN block. However, unlike the standard
ResNet whose input and output have an identical dimension and can
be added directly, a 1 x 1 convolution operation has to be adopted to
offset the shape difference between the input and output of the TCN
block. Further details about the 2D-TCN blocks used can be found in
Appendix A.

In the TC part, as illustrated in Fig. 2, the number of 2D-TCN blocks
is set to be M. The input strain sequent data with a time step of » is
processed by the first TCN block, and the output of each TCN block is
used as the input of the next 2D-TCN block. The output of the final M*"
2D-TCN block with depth K has the shape of a 2D array (n X K), where
K represents the number of filters of the last DCC layer of the M** TCN
block.

After obtaining the outputs of the TC part, they are stretched into
a 1D vector that can be accepted by the FC part via the flatten layer
and then fed into the FC part. Eventually, the TCN network acquires
the prediction of the three principal stresses corresponding to the nth
principal strain of the input data.

2.3. Network training strategy

As the architecture of the TCN network is determined by the TCN
blocks, DCC layers, filters, and kernel size, there are many hyper-
parameters involved that influence the prediction ability of the TCN
network. To fully explore the potential of the TCN network, the opti-
mal combination of the hyperparameters should be searched. In this
study, the Bayesian optimisation method is employed to obtain the

d

: Output: &, '
i p * T :
@ {The FC part
Flatten layeri -1 e !
b A
A
ool s
I 17 | |0 The output
§ o of the A
B| _7_2-3-4 _k| TCNblock
n = “n

=i =
- e
A Depth

2D-TCN Block XM |

Fig. 2. The architecture of the TCN network.

optimal hyperparameters. The detail of the optimisation will be given
in Section 4.1.

In addition, the training of a time-sequential neural network, such
as RNN and TCN, can be time-consuming. To reduce the training costs,
and also improve the training accuracy, the transfer learning scheme
mentioned in the introduction will be used. The detail of this scheme
will be described in Section 4.2.

2.4. Evaluation of the trained data-driven models

To evaluate the prediction accuracy of a deep learning network, the
mean absolute error, MAE, is always used as the loss function during
the training and computed as:

_— @

where M and N represent the number of stress—strain curves in the
dataset and the data points of each curve, respectively; m and n refer
to the »'" point on the m™ stress-strain curve; and 6, and o;; denote
the actual and prediction main principal stresses at the n'" data point
of the m'" stress—strain curve.

In addition to the MAE, many other metrics, such as Euler angles
and Frobenius norm (Heider et al., 2020), can also be used to estimate
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the performance of the neural network. However, these metrics may
not provide an explicit indication of how well the prediction for a
whole stress—strain loading path is. Therefore we adopt a score A,,,.,
first introduced in Wang and Sun (2019) and also used in Qu et al.
(2021a), as an alternative index to describe the prediction results over
test datasets directly.

Before defining A,.,,., the scaled squared error (SSE) of every single
point i on the ' stress-strain curve is calculated as:

SSE = (j’[j - y[j)2 = (j}[j - yij)2 (8)
where j;; and y;; are the scaled prediction value and the ground truth at
the i point of the j™ stress-strain curve, respectively. After calculating
all SSE values of the j™ stress—strain curve, they will be ranked in as-

cending order, and then the empirical cumulative distribution function
(eCDF) F; of the jth stress-strain curve can be defined as:

r
F;(SSE) = Fj(r= L,2,...,N;) €)]
where N; is the total number of data points in the j™ stress—strain
curve.

Based on the obtained SSE values and the F; of the j™ stress—strain
curve, A, can be defined as:

log [max(ep%, em,)]
A = —_———F.0 10
score max < IOg(EC”-,) ( )

where ¢, refers to the SSE value when r/N; is designated to be p% in
the F;; e,,;, is regarded as the critical accuracy to judge if a prediction
is good enough to obtain a score of one. In this work, 90% is selected
as p% and ¢,,;, is set to be 0.001.

3. Data preparation for the data-driven constitutive model

In this section, three types of numerical experiments are performed
using discrete element modelling of representative volume elements
(RVE) of particle systems to generate training and test datasets for TCN
networks. The first type includes two triaxial compression experiments
under the same particle size distribution (PSD) and initial stress state:
the conventional triaxial compression (CTC) and true triaxial compres-
sion (TTC). The second type is also a TTC experiment but with particle
systems which have different PSDs, initial stress states and b values.
The third type involves experiments with random strain loading paths.

3.1. CTC and TTC compression experiments

In the CTC testing, multiple loading-unloading-reloading condi-
tions will be considered, while the TTC testing will incorporate both
the isobaric axisymmetric triaxial loading, i.e., constant-p (CP), where
p = —(o1, +0y +033)/3, and the intermediate principal stress coefficient
tri-axial loading, i.e., constant-b (CB), where b = (65, — 033)/(61; — 033).

All the experimental data is obtained from the discrete element
modelling of a granular system, also used in Qu et al. (2021a). In the
granular system, as shown in Fig. 3, a total of 4037 spherical particles,
whose radii are uniformly allocated between 2 mm and 4 mm and
with a density of 2600 kg/m?, are used to generate the dataset. Both
the inter-particle frictional coefficient and the local contact damping
ratio are set to be 0.5. The initial particle packing is consolidated to a
hydrostatic confining stress of 200 kPa. The maximum axial strain is
limited to 12% for all numerical experiments.

Based on the observation that the reloading strain usually has a
smaller value than its preceding unloading strain, a set of unloading—
reloading points is employed to generate stress—strain curves for CTC
and CP conditions. Only the monotonic loading path is considered in
the CB condition, and different b values, increasing from 0 to 1.0 at an
interval of 0.05, are used to generate CB samples.

To provide an overview of the distribution of the specimens, all one-
cycle loading paths of CTC and CP specimens are plotted in the lower
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Fig. 3. The granular system used to generate the data for CTC and TTC experiments.
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Fig. 4. The distribution of train, validation, and test samples under CTC and CP loading
conditions.

right part of Fig. 4. Meanwhile, partial CTC test specimens with multi-
cycle loading paths are presented in the radar map in the upper left part
of Fig. 4 via the combination of scatter points and different colours of
dashed lines, where the values in the radial and circular axes represent
the unloading and reloading strain, respectively.

Eventually, 297 CTC tests and 143 TTC tests are conducted. To test
the prediction ability of TCN networks, 80 samples, including CTC, CP,
and CB experiments, are extracted from all samples in advance, and the
remaining samples are used to train and validate the TCN network.

3.2. The TTC experiments with different granular samples and loading paths

Considering the diversity of microstructure in grain media, the RVEs
with different PSDs are generated, and the TTC testing, including CB
and CP loading, is conducted again under different initial stress states
via discrete element modelling.

Before constructing the particle samples, the fractal particle size
distribution, which is defined as F(d) = (@*F — d>-7)/(dn.t — d).7),
is used to guarantee that the samples with different PSDs comprise
comparable particle numbers by adjusting the minimum diameter d,,;,
and maximum diameter d,,, of one sample, where g is the frac-
tal distribution. In this section, as shown in Fig. 5(a), four RVEs,
e.g., the Original, Constant, Binary, and Uniform, with different PSDs
are adopted. Corresponding to each RVE, the detailed parameters,
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(a) Four different granular samples.
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Table 1
The granular parameters of the different samples.

PSD Particle size range Mean particle Particle number
(m) diameter (m)

Original 0.006-0.0175 0.0125

C.onstant 0.0107-0.0118 0.0112 10000

Binary 0.009-0.018 0.0180

Uniform 0.0022-0.018 0.0151

including particle size range, mean particle diameter, etc., are listed
in Table 1.

In addition to considering different PSDs, the constitutive behaviour
of the granular material under different loading paths is also simulated
using discrete element modelling. Different from the TTC testing of
Section 3.1, where the p values of the CP cases and b values of the CB
cases are kept constant, both the p and b values of the TTC cases are set
to different values in this section. The specified loading paths can be
found in Table 2 and Fig. 5(b). Especially, when b = 0 or 1, the particle
sample is subjected to triaxial compression and triaxial extension states,
respectively.

Eventually, a total of 450 loading cases are performed in the DEM
modelling, where 90 TTC loading cases with different PSDs, p values,
and b values are selected as the test set.

3.3. Random strain loading experiments

To further explore the potential of the data-driven model, training
cases with random strain loading paths are generated to validate the
prediction capability of the TCN network in this work Each random
loading path is realised by randomising the loading step and loading
rate. In one loading case, as shown in Fig. 6(a), the maximum loading
rate and step are limited to 0.05 and 600 (100 loading steps in one
second), respectively. Before calculating the strain path, the loading
steps are randomly separated into different segments, and the loading
rate used in each segment is randomly selected and kept constant. After
determining the loading rate of each loading step, the strain path at
each loading step can be obtained by integrating the production of the
loading rate and step, as demonstrated in Fig. 6(b). Then, the random
strain paths are used to generate different loading cases (see Fig. 6).

In this work, 300 random strain loading cases are performed in the
DEM modelling, where 284 cases are used to train the TCN network,
and the rest 16 cases are for the test set.
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Table 2
The loading paths for TTC testing.
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Loading path

Controlled variable 1

Controlled variable 2

CP with different p, b
CB with different p, b

p = 1.0, 2.0, 4.0 (MPa)
o33 = 1.0, 2.0, 4.0 (MPa)

b = 0.00, 0.25, 0.50, 0.75, 1.0
= 0.00, 0.25, 0.50, 0.75, 1.0

3B—-3L—-16F—-TS510

-1.01 ---- Val/noRe /noD —— Los/noRe /noD
Val | noRe /| D —— Los/noRe | D
Val /Re /D —— Los/Re/D
-1.5 A
—2.0 A
o
< 251
o))
o
—3.0 A
—=3.51
4.0
0 40 80 120 160 200
Epoch

(@) The training results of experiment 1.

3B—3L—-8F—-TS5

-0.9 1 ---- Val / noRe | noD —— Los / noRe [ noD
Val | noRe | D —— Los/noRe | D
Val /| Re /D —— Los/Re/D
-1.44
’#‘ —-1.9 1
2
5
= =241
—2.9 1
—3.4
0 40 80 120 160 200
Epoch

(b) The training results of experiment2.

Fig. 7. The training results of two experiments.

4. The training process for the data-driven model

In this section, both the TCN and GRU networks are trained with
the generated experimental data in Section 3.1. Before training the
TCN network, the hyperparameters are first determined by the Bayesian
method, and then the transfer learning scheme is employed in the
training stage of the TCN network. For the GRU network, the hyper-
parameters used in Qu et al. (2021a) are adopted in this work.

4.1. The determination of the hyperparameters in the TCN network

4.1.1. The residual structure and dilation factor

Different from 1D-CNN (Vlassis and Sun, 2021), the dilation fac-
tor and residual structure are introduced to the TCN network as the
architecture hyperparameters. Consequently, it is worth investigating
the function of the dilation factor and the residual connection in the
TCN network, before determinating other hyperparameters with the
Bayesian optimisation method.

For this purpose, two experiments are executed. In each experiment,
three TCN networks consisting of the same number of TCN blocks, DCC
layers, filters, and kernel size are trained with or without the dilation
factor and residual architecture. The training results of two experiments
are plotted in Fig. 7, where B, L, F, and TS refer to the TCN block,
DCC layer, filter, and time step, respectively; the Val, Los, Re, and
D denote the validation loss, loss, residual architecture, and dilation
factor, respectively. More detail about the dilation factor can be found
in Fig. 34(d) of Appendix A.

Fig. 7 shows that the TCN network with the residual architecture
and dilation factor obtains a lower MAE in a certain epoch. Comparing
Fig. 7(a) and (b) indicates that the added residual architecture and
dilation factor can also improve the training accuracy of the TCN
network and accelerate the convergence of the training MAE even
though the TCN network has a different hyperparameter combination.

Table 3

The ranges of hyperparameters of the TCN network.
Hyperparameter Range
TCN blocks @, 3)
DCC layers in one TCN block 3,4
Filters (16, 64)
Kernel size 2,34

4.1.2. Bayesian optimisation method

The prediction of the TCN network is a high dimensional function
of hyperparameters (including the numbers of TCN blocks, DCC layers,
filters, the kernel size of each filter, etc.) that decide the architecture
of the TCN network. To maximise the potential of the TCN network,
Bayesian optimisation, a sequential design strategy for global optimi-
sation of black-box functions, is introduced to search for the optimum
solution (i.e., the best prediction precision of the TCN network) of a
high dimensional function.

After having validated the effect of the residual architecture and
dilation factor on the performance of the TCN network, the other hy-
perparameters are determined by the Bayesian optimisation experiment
to be described below. However, the parameter space (i.e., the range of
each hyperparameter) should be first determined to improve the com-
putational efficiency. To this end, a total of 11 comparison experiments
are carried out to determine the range of each key hyperparameter. The
specific experiment parameters and the training results of each experi-
ment are attached in Appendix B. Based on the experiment results and
considering the balance between the computational efficiency and the
training accuracy of TCN networks, the range of each hyperparameter
is determined and listed in Table 3.

After having determined the ranges of the hyperparameters, it is
still tedious to find what is the most suitable combination of these
hyperparameters to form the TCN network. To address this problem,
the Bayesian optimisation method is introduced.

Based on the ranges of TCN blocks and DCC layers in Table 3,
four Bayesian search experiments are conducted. In each Bayesian
experiment, the number of filters increases from 16 to 64 with a gap
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Fig. 8. The influence of the number of units in the dense layer on the training result of the TCN network.

Table 4
Best 4 results obtained via Bayesian optimisation method.
Architecture Parameters Filters Kernel Learning Loss Batch Time
size rate value size (s/epoch)
2B-3L 66 499 64 3 0.0001 0.006796 64 10
2B-4L 62339 64 2 0.0001 0.006955 64 10
3B-3L 40659 48 2 0.001 0.006528 256 8
3B-4L 52627 48 2 0.001 0.006253 256 15

of 16; the kernel size changes in the range of two to four. In addition
to the hyperparameters related to the architecture of the TCN network,
other hyperparameters including learning rate and batch size are also
investigated. The parameter spaces of learning rate and batch size are
set to be (0.1, 0.01, 0.001. 0.0001) and (64, 128, 256) in four Bayesian
search experiments, respectively.

In each Bayesian search, 100 different combinations of hyperparam-
eters are explored and the combinations with the top five minimum
mean absolute errors (MAEs) are selected, which are listed in Ta-
bles 10 to 13 in Appendix C. Subsequently, one best combination is
chosen from each Bayesian search experiment. The principle is that
if the difference of their MAEs of two combinations is less than le-
3, then the combination with fewer parameters is adopted. Thus, four
TCN networks are chosen. Finally, these four TCN networks are trained
again with longer epochs. The training results are listed in Table 4.

Based on Table 4, by considering the balance between the precision
of the TCN network and the computational cost, the third architecture
(3B-3L) which has the following hyperparameters: three TCN blocks,
three DCC layers in each TCN block, 48 filters in each DCC layer with
the kernel size of two, the learning rate of 0.001 and batch size of 256,
is chosen.

4.1.3. The hyperparameters of the FC part in the TCN network

All the experiments proceeded above with the Bayesian optimisation
method have only one fully-connected layer (i.e., the output layer).
Now a dense layer is inserted between the flatten layer and the output
layer in the four networks listed in Table 4. The optimal number of units
in the dense layer is determined through the trial-and-error method at
an interval of five.

Fig. 8 shows that with the increase of the units, no apparent im-
provement is observed in the final performance of the TCN network.
Consequently, the TCN network only uses the output layer as the
fully-connected layer.

Parameters of the TCN network
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data « o e ’
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Fig. 9. The transfer learning process in the TCN network.

4.2. The transfer learning

To further improve the training efficiency and accuracy of the TCN
network, transfer learning, a strategy that applies the experience gained
while addressing one problem to different but related problems, is
leveraged in this work. Based on this conception, the following transfer
learning scheme, also illustrated in Fig. 9, is adopted.

A TCN network, which includes N 2D filter blocks, is first trained
with a (small) time step, and the trained weights and biases of the TC
part of the TCN network are stored in each filter block. Subsequently,
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Table 5

Training result of four methods with the increasing of time-step.

No. Time step = 5 Time step = 10 Time step = 20 Time step = 40 Time step = 80
1 0.0103 0.0086 0.0067 0.0053 0.0051
2 0.0103 0.0075 0.0057 0.0046 0.0044
3 0.0130 0.0086 0.0061 0.0047 0.0048

the trained N filter blocks are transferred to a new TCN network, and
the newly-built TCN network is trained again using the training data
with a larger time step. Then, the trained network with the current
time step is regarded as the one with a smaller time step and thus can
be used to initialise the parameters for the next network with a larger
time step. The whole process is repeated until a TCN network trained
with a designated time step is obtained. This method is feasible as only
the time step of the training data is altered, while the shape of each
filter (e.g. the kernel size) is kept constant.

4.2.1. The data generation method

In the transfer learning scheme, two different approaches are used
to group the input data series from the training data required with
different time steps. One is called the temporal appending (TA), and
the other is the resolution refinement (RR). In the TA method, which
is shown in Fig. 10(a), a total of N stress—strain pairs are first grouped
as the input at a time step of five. Then, to obtain the input training
data for a longer time step, the time series is simply extended to 10 (see
Fig. 10(b)), and N new input data series are yielded. By repeating this
process, the training data with the final time step of 80 can be obtained.

While for the RR approach, as illustrated in Fig. 11(a), the principal
strains at time instances 0, 20, 40, 60, and 80 with a gap or resolution
of 20 are first selected to form the input training data series for the
time step of five. Then, the principal strains at extra time instances at
a halved resolution of 10 are also added to form the input data for
the time step of 10, as shown in Fig. 11(b). By further reducing the

resolution, the input training series for the final time step of 80 can be
obtained.

4.2.2. The training results with the transfer learning scheme

Using the training data generated in Section 3.1 and the two ap-
proaches to (re-)group the input data series, three experiments are
designed to explore the effect of the transfer learning scheme proposed,
and five TCN networks are trained in each experiment.

In the first experiment, the TCN networks are trained with different
time steps (e.g. 5, 10, 20, 40, and 80) directly without invoking the
transfer learning scheme. The transfer learning is applied in the second
and third experiments where the input data series are formed by the
temporal adding and resolution refinement approaches respectively.
The training results of the three experiments are plotted in Fig. 12 and
also listed in Table 5.

It is clear from Table 5 that transfer learning can enhance the
training precision using identical training data. Besides, although the
performance of the third experiment is not well when the time step is
less than 20, it still acquires a similar training precision to the second
experiment when the time step increases to 40.

Compared with training TCN networks with a regular method, as
demonstrated in Fig. 12(a), it is found that the transfer learning scheme
can remarkably accelerate the convergence rate in the initial stage
of the training process. Furthermore, from the training results of the
second and third experiments, as shown in Fig. 12(b) and (c), the train-
ing efficiency has been significantly improved when training the TCN
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networks with the data generated by the resolution method. Fig. 12(d)
plots all MAE values of the three experiments and demonstrates that

increasing the time step can improve the training accuracy until the
time step reaches 40.

5. Results analysis

In this section, three datasets generated in Section 3 are used to
validate the prediction ability of the TCN network. In each dataset, in
addition to the MAE of the test cases, the evaluation proposed in Sec-
tion 2.4 is also employed to provide a direct score for each prediction
result. To offer a more intuitive demonstration of the capability of the
TCN network, some representative prediction results are plotted from
each dataset. To further demonstrate the prediction capability of the
TCN network, the stress-strain mapping of each case is also predicted
by the trained GRU network with the same dataset.

5.1. The prediction result for two types of tri-axial loading

In this section, a total of 80 test cases, including 36 CP/B and
44 CTC cases, are used to validate the prediction ability of the TCN
network. An overall MAE distribution of the 80 test cases with the TCN
and GRU networks is demonstrated in Fig. 13. The result shows that the
GRU and TCN have similar performance under CTC and CP/B loading
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Fig. 14. Prediction results of the TCN network under the CTC loading condition.

conditions. Both the TCN and GRU networks have better performance
in the CP/B loading cases than that in CTC cases. Furthermore, except
for some outliers, the MAEs of the test cases are located in a similar
range under each loading condition in the TCN and GRU network. In
addition, the median and mean MAE of test samples in one certain
loading condition are almost the same using the TCN and GRU network.

10

Using the TCN and GRU networks, the 44 CTC samples obtain an
average score of 0.973 and 0.0989, respectively, and the 36 CP/B
cases acquire an average score of 0.977 and 0.986, respectively. Some
representative prediction results of CTC and CP/B cases of the TCN
network are demonstrated in Figs. 14 to 16, and the prediction result
of the GRU is also given for direct comparison in each case.
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Fig. 15. Prediction results of the TCN network under the CP loading condition.

Fig. 14 shows that both the TCN and GRU networks demonstrate
a strong capability of capturing the mechanical features of particle
assemblies in CTC experiments, and both the best and worst predictions
stem from the one unloading-reloading loop condition. Especially,
Fig. 14(c) and (d) demonstrate that the worst prediction of the TCN
network can still capture the stress—strain response satisfactorily even
though they have lower scores. Besides, Fig. 14(e) and (f) show that the
trained TCN and GRU networks can also forecast multi-cycle loading
cases well, including two and three unloading-reloading loops, which
are not included in the training data.

Four prediction cases, the best, 2nd best, worst, and 2nd worst of the
TCN network under the CP condition are plotted in Fig. 15. Especially,
Fig. 15(c) and (d) show that both the TCN and GRU networks with
the worst evaluation results can still capture most of the stress—strain
features of granular materials in the CP experiments.

The best and worst predictions under the CB condition are plotted
in Fig. 16(a) and (b), and both cases obtain a score of 1 with the TCN
and GRU networks.

In conclusion, the TCN and GRU networks have a similar ability to
model the stress—strain response for the same granular material in the
tri-axial compression experiment.
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5.2. The prediction result for different granular samples and loading paths

This section investigates the performance of both the TCN and GRU
networks for granular samples with different PSDs and initial states in
the TTC experiment. The hyperparameters and training procedure used
in Section 4 are also adopted here. The two networks are trained again
with the 360 TTC cases in Section 3.2, and the remaining 90 samples,
including 45 CB and 45 CP cases with different RVEs, b values, and
initial stress states, are selected as the test set.

An overall MAE distribution of the 90 test cases is demonstrated in
Fig. 17. It is found that the test cases obtain similar best, median, and
mean MAE value using the TCN and GRU networks under the same
condition. However, the MAE distribution of the CB and CP cases has a
lower upper bound in the GRU network than that in the TCN network.

All 90 selected test cases obtain a score of 1 with both the TCN
and GRU networks. To provide a more intuitive demonstration of the
prediction ability of the TCN and GRU networks, the prediction results
of CB and CP test cases with different PSDs, b values, and p values are
plotted in Figs. 18 and 19, where ¢ represents the confining stress; C, U,
and O represent the particle samples of Constant, Uniform, and Original
(see Table 1), respectively.

In the CB condition, Fig. 18(a) and (b) respectively plot the pre-
dicted principal stresses of the TCN and GRU networks in different
particle samples with the same confining stress. Fig. 18(c) demonstrates
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Fig. 17. The MAE distribution of the 90 test samples with different PSDs.

that both the TCN and GRU networks can accurately describe the
constitutive relations for different particle samples in different loading
paths.

A similar conclusion also drawn under the CP loading condition
from the prediction results of Fig. 19.

All the above results demonstrate that both the TCN and GRU can
not only predict the mechanical behaviour of the same particle assem-
bly but also forecast the stress—strain response for granular materials
with different PSDs and loading paths.

5.3. The prediction results for random stain loading

To further explore the potential of the TCN network, the dataset
with random strain loading is also considered. Two data-driven models
based on the TCN and GRU networks are constructed, respectively,
utilising the random strain loading cases. The training method and
hyperparameters used here are kept consistent with Section 4.

In this section, 16 test cases with random strain loading paths
are selected to further test the capability of the TCN network. The
prediction results of the TCN and GRU networks are plotted in Fig. 20,
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where the MAEs and scores of the 16 random strain loading cases are
presented in Fig. 20(a) and (b), respectively.

The results in Fig. 20 show that both the TCN and GRU have a
similar prediction ability in the random strain loading cases. Based
on the GRU and TCN networks, the 16 test cases obtain an almost
identical average MAE (0.0102 and 0.0113) and average score (0.990,
and 0.986), respectively.

To offer a more intuitive exhibition of the capability of the TCN
network, four prediction cases, the best, 2nd best, worst, and 2nd worst,
of the TCN network are plotted, together with the prediction result of
the GRU network, in Figs. 21 to 24. In each case, the predicted principal
stress is plotted against the DEM simulated stress as the ground truth,
respectively.

As demonstrated in Figs. 21 and 22, the predictions of the TCN and
GRU networks are almost identical for the best two results, and both
the TCN and GRU networks are capable of accurately capturing the
unloading-reloading features of each principal stress.

In the two worst cases results, as shown in Figs. 23 and 24, although
there are some differences between the prediction results and the
ground truth, both the TCN and GRU networks can still reasonably
capture the stress—strain responses.

All the prediction results in this subsection show that the TCN and
GRU networks have a similar prediction ability in random strain load-
ing cases, and both of them perform well in describing the stress—strain
response under a complex loading path.

5.4. The robustness of the TCN network

Generally speaking, some low levels of data noise, due to random
and/or system errors, are inevitably present in practical applications. In
this section, the performance of the TCN network with different noise
levels of training datasets is first investigated. Then, the capability of
the network to filter out noise data is also studied. The contaminated
training datasets used for the investigation are generated by adding
artificial noise data to the pure DEM modelling datasets used in Sec-
tion 5.1. The time step of the dataset and hyperparameters of the TCN
network used here are the same as in Section 4.1.

5.4.1. Effects of data noise on network performance

The noise data are yielded via normal distribution functions with
different standard deviations (sd). For each sd value, three different
columns of noise data are generated with different random seeds and
added to the three principal stress sequences of each stress-strain
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curve. The sd value ascends from 0.5% to 5% at an interval of 0.5%,
and consequently, 10 groups of contaminated datasets with different
sd values are created to train and validate new TCN networks. The
prediction capability of newly-trained TCN networks is tested via 80

uncontaminated test samples.

13

The noise level has an impact not only on the training stage but also
on the prediction ability of the TCN network. For the former, the MAE
value rises with the increase of the sd value, as shown in Fig. 25.

To explore the influence of noise level on the prediction capability
of the TCN network, datasets with three different sd values (0.5%,
1.5%, 2.5%, 3.5%, and 4.5%) are used to train TCN networks. The
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trained networks referred to as contaminated or polluted networks
later are tested for the original uncontaminated 80 triaxial compression
cases in Section 3.1. Corresponding to different sd values, the detailed
empirical cumulative distribution (ECD) of MAEs and scores for all 80
test cases are provided in Fig. 26. The result shows that the maximum
MAE and the lowest score of the 80 test cases increase with the growth
of the sd values.

To further demonstrate the performance of the TCN networks with
polluted datasets, the loading cases in Section 5.1 are predicted again
using the contaminated TCN networks when the sd is equal to 0.5%,
2.5%, and 4.5%, respectively.

For the CTC loading condition, the best and worst prediction results
are given in Fig. 27. It is found that the polluted TCN networks can still
describe the main constitutive features of granular materials, although
they obtain lower scores and higher MAEs. However, for multi-cycle
loading cases, the polluted TCN networks perform worse when the sd
value reaches 4.5% and seem no longer make accurate predictions.

Fig. 28 provides a direct demonstration of the robustness of the
TCN networks under the CP loading condition. Fig. 28(a) demonstrates
that TCN networks are capable of making good predictions for the CP
loading condition with different noise levels. For the worst loading
cases (Fig. 28(b)), the polluted TCN networks can still predict the most
stress-strain response of the granular system.

A similar conclusion can also be drawn for the CB loading cases, as
shown in Fig. 29.

5.4.2. Data noise filtration of the TCN network.

The cases shown in Figs. 27 to 29 also suggest that the TCN network
might be able to filter out data noise to some extent. Thus eight repre-
sentative cases in Section 5.4.1 are selected to further investigate this
seemingly desirable feature. As both the bias and variance significantly
affect the level of data noise, two normal distributions with the same
sd value of 4.5% but different bias (u) values (0.15 and —0.15) are
used as data noise to generate the contaminated dataset again to train
the network. The prediction result of each test case, corresponding
to the polluted stress, are plotted in Figs. 30 to 32. Then comparing
the contaminated strain-stress curve with the prediction in each case
should illustrate to what level randomly added noise may be filtered
out by the TCN network.

For the CTC loading condition, compared to the results in Fig. 27,
Fig. 30 demonstrates that the added bias value in the noise data
has a slight influence on the prediction of the TCN. Furthermore,
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the TCN network can filter out most of the noise and make good
predictions for cases with one loading-unloading cycle (Fig. 30(a) and
(b)). However, the network gradually loses this favourable feature for
cases with multiple loading—unloading cycles (Fig. 30(c) and (d)), as
there are no such cases that are included in the training, and thus
the network has a weaker resistance to the disturbance of noise data
in the corresponding loading condition, although the TCN network
performs well in uncontaminated multiple-cycles loading test cases (see
Fig. 14(e) and (f)).

For the cases in both CP and CB conditions shown in Figs. 31
and 32, respectively, the filtering effect of the TCN network to the
noise data with different sd and bias values is confirmed. Thus it can
be concluded that TCN networks have the capability of filtering out
randomly generated noise data to a certain extent, and thus generally
enhance the prediction performance.

Meanwhile, the MAEs of the polluted and predicted stresses in
each case are also calculated and plotted in Fig. 33. This favourable
feature is in fact due to the nature of neural networks that can learn a
representation to optimally fit the given data if over-fitting is avoided
in the training, and hence should also be possessed by other neural
networks.

6. Conclusion

This paper has attempted to construct a TCN network-based consti-
tutive model to capture the history/path-dependent nature of granular
stress—strain relation. To train and validate the TCN network, three
types of numerical experiments, including CTC, TTC, and random
strain loading experiments, are implemented to generate datasets via
discrete element modelling of representative volume elements (RVE)
of particle systems. Furthermore, to maximise the potential of the
proposed model, the Bayesian optimisation method is employed to find
the optimum architecture of the TCN network. Meanwhile, the training
data generation strategy is optimised and a transfer learning (TL)
scheme is innovatively embedded into the TCN algorithm. It is found
that the training efficiency and accuracy obtained can be significantly
improved when applying the optimised data generation method and the
transfer learning scheme together to the TCN algorithm. The prediction
results of the trained model demonstrate that the TCN is reliable in
predicting mechanical features of the granular materials. In addition,
the noise data with different variances and biases are artificially added
to training datasets to test and analyse the robustness of TCN networks.
The result shows that TCN networks have the capability of filtering out
randomly generated noise data to a certain extent, which is crucial
in engineering. This favourable feature should also be possessed by
other neural networks, although the numerical investigation has been
conducted here.

However, some issues have not been covered or considered in
the current work. For instance, the homogenisation assumption is not
adopted when generating training data, and thus the TCN model is
trained in the principal stress-strain space, instead of in an invariance
space (Lefik et al., 2009). In addition, the strain-stress pairs on each
stress—strain curve in the training database are sampled with more or
less similar strain increments. Thus the TCN network trained on the
current dataset may perform badly when making predictions for stress—
strain datasets with different or variable strain increments, as pointed
out in Qu et al. (2021a). Besides, all time-sequence neural networks
are of a multiple-time-step nature which is different from conventional
material constitutive models and therefore are generally incompatible
with the standard finite element solution procedure where a single step
strain or increment is provided for evaluating the corresponding stress
state. All the above issues will be addressed and reported in our further
work.
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Appendix A. The DCC layer and TCN block in the TCN network

(1) The 1D-DCC layer

A dilated casual convolution layer is a modified casual convolution
neural network that is evolved from the standard 1D-convolution
layer. A standard 1D-convolution layer is shown in Fig. 34(a), where
(ag,ay,...,a;) is the input sequential data with time-step r, and
(29, 21, ... » z;) is the output sequence obtained by applying a convolution
calculation with a (three-element) filter (an array that stores weights
and bias). To maintain the identical length of the input and output
data, both ends of the input data are padded with zeros first. In the
convolution operation, the filter slides along the direction of the time
sequence from the beginning of the zero-padded input data at a stride
of one. However, this type of architecture involves future information
in the current convolution calculation, e.g., the output z; depends on
the input a; ;. This is incorrect for time sequence data.

To overcome the above defect, the casual convolution neural net-
work (Bai et al., 2018) is proposed, as presented in Fig. 34(b), which
adopts the manner of one-end zero padding to the input data to guar-
antee that only past or historical data is included for each convolution
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18

noise data under the CP loading condition.
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Table 6
Training results with the different number of TCN blocks.
No. DCC layers Filters Kernel size TCN blocks Loss value Time (s/epoch)
1 3 32 2 1/2/3/4 0.0139/0.0084/0.0077/0.0074 2/4/6/9
2 3 32 4 1/2/3/4 0.0105/0.0076/0.0073/0.0072 3/6/9/13
3 3 64 2 1/2/3/4 0.0089/0.0067/0.0065/0.0065 4/8/12/18
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Fig. 33. The MAEs of the polluted TCN networks and polluted samples.

calculation. This makes the network suitable for addressing time series
prediction problems.

Meanwhile, to improve the prediction accuracy of the casual con-
volution layer, a dilated factor D is introduced to invoke more past in-
formation in each convolution calculation, resulting in a dilated causal
convolution (DCC) layer (Bai et al., 2018), as shown in Fig. 34(c). To
further take the advantage of the dilation, multiple DCC layers with
increasing dilation factors D are stacked together to form one casual
convolution unit in the TCN network. Such a casual convolution unit
with two (hidden) DCC layers is shown in Fig. 34(d).

When assuming that there are a total of L layers in one TCN
block, the output and input layer of the TCN block is regarded as
the first and the L™ layer, respectively. The relationship between the
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involved historical information length (IHIL) of each layer and the
hyperparameters kernel size K, dilation factor D in one convolution
calculation can be expressed as:

IHIL® = M®

>
{IHIL““) = [(K — YDV 4 M — pi+h N+l =2

an
where i denotes the ith layer of one TCN block, and i € (1, L-1). In
the current work, the dilation factor at the ith layer is taken to be:

Dl =2U~D 12)

To generate one element in the output layer, the number of elements
involved in one convolution calculation of each layer can be expressed
by M, where M) represents one element in the output layer of the
TCN block. N is the number of elements that are repeatedly involved
when the filter slides along the historical strain sequence. The relation
between the M and N can be formulated as:

MUY = g MO+D _ NO(K —2)
{ N = p® _q

As the input of the TCN network is numerous 2D arrays (three
principal strain sequences), each DCC layer is extended from 1D to
2D by adding multiple columns. The added dimension is called depth.
Consequently, each 1D filter is also extended to a 2D filter block.
The shape of this 2D filter block can be described in a form of C x
kernelsize, where C represents the number of columns in the depth in
one filter block and kernelsize refers to the number of elements along
the direction of the time step of the filter. Note that the number of filters
blocks used for processing one DCC layer is the same as the depth of
the next layer and different C’s can be used between different layers
(see Fig. 35).
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Appendix B. The sensitivity analysis of hyperparameters

Tables 6 to 9 provide the parameters used in experiments that
are designed to determine the hyperparameter space. The learning
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Fig. 35. The TCN block with multiple 2D filter blocks.

curves and the training time of one epoch in each experiment are
demonstrated in Figs. 36 to 39, where V, L, b, f, and k represent the
validation loss curve, loss curve, the number of TCN blocks, filters, and
kernel size, respectively.

(1) TCN blocks As listed in Table 6, to determine the range of
TCN blocks in one TCN network, three experiments are implemented.
In each experiment, four TCN networks are established with one,
two, three, and four TCN blocks, respectively. Other hyperparameters,

20

including the numbers of the DCC layers, the filters, and the kernel
size, are kept the same but are set to different values for different
experiments.

Fig. 36 indicates that the accuracy of the network has the most
notable improvement when the number of TCN blocks increases from
one to two but has almost no change when the number of TCN blocks
increases from three to four. Consequently, the maximum number of
the TCN blocks is set to be three.
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Fig. 36. Learning curves with different number of TCN blocks.

(2) DCC layers

Then, another three comparison experiments are implemented to
identify the range of DCC layers in one TCN block. As listed in Table 7,
in each experiment, three TCN networks with the same number of
TCN blocks, but with two, three, and four DCC layers in one block
respectively, are constructed. The other hyperparameters (the filters,
and kernel size) are kept constant.

Fig. 37 shows that the MAE of the networks decreases with the
increase of DCC layers in one TCN block, especially when it increases
from two to three, and there is still a slight improvement in the

21

accuracy when continuing to increase the number of DCC layers to four.
Therefore, the maximum number of the DCC layers is limited to four.

(3) Filters

Furthermore, two extra comparison experiments are used to explore
the number of filters in one DCC layer, based on one certain architec-
ture of the TCN network (i.e., a certain number of TCN blocks and the
DCC layers in one block). In each experiment, as listed in Table 8, four
TCN networks are built with 32, 64, 96, and 128 filters in each DCC
layer, respectively.

Fig. 38 indicates that the value of MAE in different TCN networks
decreases sharply when increasing the filters from 32 to 64 in each DCC
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Table 7

Training results with the different number of DCC layers in one TCN block.
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No. DCC layers Filters Kernel size TCN blocks Loss value Time (s/epoch)
1 2/3/4 32 2 3 0.0099/0.0077/0.0071 3/6/8
2 2/3/4 32 4 3 0.0085/0.0071/0.0068 6/9/12
3 2/3/4 64 2 2 0.0085/0.0067/0.0062 5/8/11
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Fig. 37. Learning curves with different number of DCC layer in one TCN block.
Table 8

Training results with the different number of filters in one TCN block.

No. DCC layers Filters Kernel size TCN blocks Loss value Time (s/epoch)
1 3 32/64/96/128 2 0.0139/0.0089/0.0079/0.0077 2/4/6/10
2 3 32/64/96/128 2 0.0084,/0.0067/0.0062/0.0061 4/8/13/22
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Fig. 38. Learning curves with the different number of filters in one DCC layer.
Table 9
Training results with different Kernel sizes of one filter.
No. DCC layers Filters Kernel size TCN blocks Loss value Time (s/epoch)
1 3 32 2/4/6/8 2 0.0084/0.0076,/0.0075/0.0072 4/6/7/9
2 3 32 2/4/6/8 3 0.0077/0.0071,/0.0071/0.0070 6/9/10/14
3 4 32 2/4/6/8 2 0.0075/0.0068/0.0068/0.0067 5/8/11/14

layer. It has less effect on enhancing the precision of the network when
increasing the number of filters to 128 but results in a rapid rise in the
computational cost. As a result, the maximum number of filters in one
TCN network should be limited to 64.

(4) Kernel size

Finally, the range of kernel size is determined by three comparison
experiments after determining the number of TCN blocks, DCC layers,
and the corresponding number of filters in one DCC layer. As listed in
Table 9, the kernel sizes of two, four, six, and eight are adopted in one
TCN network in each experiment to investigate the influence of kernel
size on the training accuracy of the TCN network.

As shown in Fig. 39, the MAE values of TCN networks have a rapid
decline (i.e., an improvement in accuracy) when increasing the kernel
size from two to four. However, this phenomenon almost disappears
when the kernel size increases from four to six and eight. Accordingly,
the upper limit of the kernel size is set to four.

Appendix C. The results of the Bayesian search experiment

See Tables 10-13.
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Table 10
The results of Bayesian search trial 1 with 2 TCN blocks and 3 DCC layers in one

block.

Trial Parameters Filters Kernel size Learning rate Batch size Loss value
1 66 499 64 3 0.0001 64 0.015125
2 50019 48 4 0.0001 64 0.017683
3 87171 64 4 0.0001 128 0.020305
4 66 499 64 3 0.0001 128 0.020535
5 26691 64 2 0.0001 64 0.020557

Table 11

The results of Bayesian search trial 2 with 2 TCN blocks and 4 DCC layers in one

block.
Trial Parameters Filters Kernel size Learning rate Batch size Loss value
1 91203 64 3 0.0001 64 0.014678
2 62339 64 2 0.0001 64 0.015043
3 52275 48 3 0.0001 64 0.015780
4 68547 48 4 0.0001 64 0.016139
5 120067 64 4 0.0001 64 0.017517
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Fig. 39. Learning curve with different kernel size in one filter.
Table 12 Table 13
The results of Bayesian search trial 3 with 3 TCN blocks and 3 DCC layers in one The results of Bayesian search trial 4 with 3 TCN blocks and 4 DCC layers in one
block. block.
Trial Parameters Filters Kernel size Learning rate Batch size Loss value Trial Parameters Filters Kernel size Learning rate Batch size Loss value
1 40659 48 2 0.001 256 0.012501 1 140611 64 3 0.001 256 0.010109
2 136515 64 4 0.0001 64 0.012586 2 52627 48 2 0.001 256 0.011159
3 103555 64 3 0.0001 64 0.012767 3 95363 64 2 0.001 256 0.011261
4 59235 64 2 0.0001 64 0.014421 4 185859 64 4 0.0001 64 0.011490
5 18915 32 2 0.001 256 0.014540 5 140611 64 3 0.0001 64 0.011858

24



M. Wang et al.

References

Abueidda, D.W., Almasri, M., Ammourah, R., Ravaioli, U., Jasiuk, .M., Sobh, N.A.,
2019. Prediction and optimization of mechanical properties of composites using
convolutional neural networks. Compos. Struct. 227, 111264.

Abueidda, D.W., Koric, S., Sobh, N.A., Sehitoglu, H., 2021. Deep learning for plasticity
and thermo-viscoplasticity. Int. J. Plast. 136, 102852.

Ali, U., Muhammad, W., Brahme, A., Skiba, O., Inal, K., 2019. Application of artificial
neural networks in micromechanics for polycrystalline metals. Int. J. Plast. 120,
205-219.

Alipour, M., Lashkari, A., 2018. Sand instability under constant shear drained stress
path. Int. J. Solids Struct. 150, 66-82.

Anandarajah, A., 2008. Multi-mechanism anisotropic model for granular materials. Int.
J. Plast. 24 (5), 804-846.

Bai, S., Kolter, J.Z., Koltun, V., 2018. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

Bréchet, Y., Louchet, F., 1988. Localization of Plastic Deformation, Vol. 3. Trans Tech
Publ.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Math.
Control Signals Systems 2 (4), 303-314.

Das, S.K., Das, A., 2019. Influence of quasi-static loading rates on crushable granular
materials: A DEM analysis. Powder Technol. 344, 393-403.

Desrues, J., Ando, E., 2015. Strain localisation in granular media. C. R. Phys. 16 (1),
26-36.

Ezzein, F.M., Bathurst, R.J., 2011. A transparent sand for geotechnical laboratory
modeling. Geotech. Test. J. 34 (6), 590-601.

Fernandez, M., Rezaei, S., Mianroodi, J.R., Fritzen, F., Reese, S., 2020. Application
of artificial neural networks for the prediction of interface mechanics: a study on
grain boundary constitutive behavior. Adv. Model. Simul. Eng. Sci. 7 (1), 1-27.

Fukuoka, R., Suzuki, H., Kitajima, T., Kuwahara, A., Yasuno, T., 2018. Wind speed
prediction model using LSTM and 1D-CNN. J. Signal Process. 22 (4), 207-210.

Ghaboussi, J., Sidarta, D., 1998. New nested adaptive neural networks (NANN) for
constitutive modeling. Comput. Geotech. 22 (1), 29-52.

Gorji, M.B., Mozaffar, M., Heidenreich, J.N., Cao, J., Mohr, D., 2020. On the potential
of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys.
Solids 143, 103972.

Gu, G.X., Chen, C.-T., Buehler, M.J., 2018. De novo composite design based on machine
learning algorithm. Extreme Mech. Lett. 18, 19-28.

Guo, N., Zhao, J., 2014. A coupled FEM/DEM approach for hierarchical multiscale
modelling of granular media. Internat. J. Numer. Methods Engrg. 99 (11), 789-818.

He, X., Wu, W., Wang, S., 2019. A constitutive model for granular materials with
evolving contact structure and contact forces—Part I: framework. Granul. Matter
21 (2), 16.

Heider, Y., Wang, K., Sun, W., 2020. SO (3)-invariance of informed-graph-based deep
neural network for anisotropic elastoplastic materials. Comput. Methods Appl.
Mech. Engrg. 363, 112875.

Hewage, P., Behera, A., Trovati, M., Pereira, E., Ghahremani, M., Palmieri, F., Liu, Y.,
2020. Temporal convolutional neural (TCN) network for an effective weather
forecasting using time-series data from the local weather station. Soft Comput.
24 (21), 16453-16482.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are
universal approximators. Neural Netw. 2 (5), 359-366.

Jeong, H., Signetti, S., Han, T.-S., Ryu, S., 2018. Phase field modeling of crack
propagation under combined shear and tensile loading with hybrid formulation.
Comput. Mater. Sci. 155, 483-492.

Lara-Benitez, P., Carranza-Garcia, M., Luna-Romera, J.M., Riquelme, J.C., 2020. Tempo-
ral convolutional networks applied to energy-related time series forecasting. Appl.
Sci. 10 (7), 2322.

25

Computers and Geotechnics 152 (2022) 105049

Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D., 2017. Temporal convolutional
networks for action segmentation and detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 156-165.

Lefik, M., Boso, D., Schrefler, B., 2009. Artificial neural networks in numerical
modelling of composites. Comput. Methods Appl. Mech. Engrg. 198 (21-26),
1785-1804.

Liu, G., Li, Q., Msekh, M.A., Zuo, Z., 2016. Abaqus implementation of monolithic and
staggered schemes for quasi-static and dynamic fracture phase-field model. Comput.
Mater. Sci. 121, 35-47.

Ma, G., Guan, S., Wang, Q., Feng, Y., Zhou, W., 2022. A predictive deep learning
framework for path-dependent mechanical behavior of granular materials. Acta
Geotech. 1-16.

Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M., 2019.
Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116 (52),
26414-26420.

Qu, T., Di, S., Feng, Y., Wang, M., Zhao, T., 2021a. Towards data-driven constitutive
modelling for granular materials via micromechanics-informed deep learning. Int.
J. Plast. 103046.

Qu, T., Di, S., T Feng, Y., Wang, M., Zhao, T., Wang, M., 2021b. Deep learning predicts
stress—strain relations of granular materials based on triaxial testing data. CMES
Comput. Model. Eng. Sci. 128 (LA-UR-21-21583).

Qu, T., Feng, Y., Wang, M., 2021c. An adaptive granular representative volume element
model with an evolutionary periodic boundary for hierarchical multiscale analysis.
Internat. J. Numer. Methods Engrg. 122 (9), 2239-2253.

Qu, T., Feng, Y., Wang, Y., Wang, M., 2019a. Discrete element modelling of flexible
membrane boundaries for triaxial tests. Comput. Geotech. 115, 103154.

Qu, T., Wang, S., Fu, J., Hu, Q., Zhang, X., 2019b. Numerical examination of EPB
shield tunneling-induced responses at various discharge ratios. J. Perform. Constr.
Facil. 33 (3), 04019035.

Shaoheng Guan, Tongming Qu, Feng, Y., Gang Ma, Wei Zhou, 2022. A machine learning
based multi-scale computation framework for granular materials. Acta Geotech. (in
press).

Ueda, K., Iai, S., 2019. Constitutive modeling of inherent anisotropy in a strain space
multiple mechanism model for granular materials. Int. J. Numer. Anal. Methods
Geomech. 43 (3), 708-737.

Vlassis, N.N., Sun, W., 2021. Sobolev training of thermodynamic-informed neural net-
works for interpretable elasto-plasticity models with level set hardening. Comput.
Methods Appl. Mech. Engrg. 377, 113695.

Wang, H.-L., Cui, Y.-J., Lamas-Lopez, F., Calon, N., Saussine, G., Dupla, J.-C., Canou, J.,
Aimedieu, P., Chen, R.-P., 2018. Investigation on the mechanical behavior of track-
bed materials at various contents of coarse grains. Constr. Build. Mater. 164,
228-237.

Wang, K., Sun, W., 2019. Meta-modeling game for deriving theory-consistent,
microstructure-based traction-separation laws via deep reinforcement learning.
Comput. Methods Appl. Mech. Engrg. 346, 216-241.

Wang, X., Zhang, H., Yin, Z.-Y., Su, D., Liu, Z., 2022. Deep-learning-enhanced model
reconstruction of realistic 3D rock particles by intelligent video tracking of 2D
random particle projections. Acta Geotech. 1-24.

Wei, L., Yang, J., 2014. On the role of grain shape in static liquefaction of sand-fines
mixtures. Géotechnique 64 (9), 740-745.

Yang, C., Kim, Y., Ryu, S., Gu, G.X., 2020a. Prediction of composite microstructure
stress-strain curves using convolutional neural networks. Mater. Des. 189, 108509.

Yang, Z., Liao, D., Xu, T., 2020b. A hypoplastic model for granular soils incorporating
anisotropic critical state theory. Int. J. Numer. Anal. Methods Geomech. 44 (6),
723-748.

Zhang, P., Yin, Z.-Y., 2021. A novel deep learning-based modelling strategy from image
of particles to mechanical properties for granular materials with CNN and BiLSTM.
Comput. Methods Appl. Mech. Engrg. 382, 113858.

Zhu, Q., Shao, J.-F., Mainguy, M., 2010. A micromechanics-based elastoplastic damage
model for granular materials at low confining pressure. Int. J. Plast. 26 (4),
586-602.


http://refhub.elsevier.com/S0266-352X(22)00386-X/sb1
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb1
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb1
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb1
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb1
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb2
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb2
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb2
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb3
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb3
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb3
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb3
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb3
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb4
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb4
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb4
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb5
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb5
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb5
http://arxiv.org/abs/1803.01271
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb7
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb7
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb7
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb8
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb8
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb8
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb9
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb9
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb9
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb10
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb10
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb10
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb11
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb11
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb11
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb12
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb12
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb12
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb12
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb12
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb13
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb13
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb13
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb14
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb14
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb14
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb15
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb15
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb15
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb15
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb15
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb16
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb16
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb16
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb17
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb17
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb17
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb18
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb18
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb18
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb18
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb18
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb19
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb19
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb19
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb19
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb19
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb20
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb20
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb20
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb20
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb20
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb20
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb20
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb21
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb21
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb21
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb22
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb22
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb22
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb22
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb22
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb23
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb23
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb23
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb23
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb23
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb24
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb24
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb24
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb24
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb24
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb25
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb25
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb25
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb25
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb25
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb26
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb26
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb26
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb26
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb26
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb27
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb27
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb27
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb27
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb27
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb28
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb28
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb28
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb28
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb28
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb29
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb29
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb29
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb29
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb29
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb30
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb30
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb30
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb30
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb30
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb31
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb31
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb31
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb31
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb31
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb32
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb32
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb32
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb33
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb33
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb33
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb33
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb33
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb34
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb34
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb34
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb34
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb34
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb35
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb35
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb35
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb35
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb35
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb36
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb36
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb36
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb36
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb36
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb37
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb37
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb37
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb37
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb37
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb37
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb37
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb38
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb38
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb38
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb38
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb38
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb39
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb39
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb39
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb39
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb39
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb40
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb40
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb40
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb41
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb41
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb41
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb42
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb42
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb42
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb42
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb42
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb43
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb43
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb43
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb43
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb43
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb44
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb44
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb44
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb44
http://refhub.elsevier.com/S0266-352X(22)00386-X/sb44

	Data-driven strain–stress modelling of granular materials via temporal convolution neural network
	Introduction
	Methodology
	The basic principle of using deep learning to train stress–strain relations 
	The architecture of the temporary convolution network
	Network training strategy
	Evaluation of the trained data-driven models

	Data preparation for the data-driven constitutive model
	CTC and TTC compression experiments
	The TTC experiments with different granular samples and loading paths
	Random strain loading experiments

	The training process for the data-driven model
	The determination of the hyperparameters in the TCN network
	The residual structure and dilation factor
	Bayesian optimisation method
	The hyperparameters of the FC part in the TCN network

	The transfer learning
	The data generation method
	The training results with the transfer learning scheme


	Results analysis
	The prediction result for two types of tri-axial loading
	The prediction result for different granular samples and loading paths
	The prediction results for random stain loading
	The robustness of the TCN network
	Effects of data noise on network performance
	Data noise filtration of the TCN network.


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. The DCC layer and TCN block in the TCN network
	Appendix B. The sensitivity analysis of hyperparameters
	Appendix C. The results of the Bayesian search experiment
	References


