
Applied Mathematical Modelling 113 (2023) 309–332 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Modal sensitivity of three-dimensional planetary geared rotor 

systems to planet gear parameters 

Ali Tatar a , ∗, Christoph W. Schwingshackl b , Michael I. Friswell c 

a University of Bristol, Department of Aerospace Engineering, Bristol, BS8 1TR, UK 
b Imperial College London, Department of Mechanical Engineering, London, SW7 2AZ, UK 
c Swansea University, Faculty of Science and Engineering, Swansea, SA1 8EN, UK 

a r t i c l e i n f o 

Article history: 

Received 8 February 2022 

Revised 13 September 2022 

Accepted 15 September 2022 

Available online 18 September 2022 

Keywords: 

Geared rotors 

Planetary gearbox 

Modal analysis 

Parameter effects 

Vibration sensitivity 

a b s t r a c t 

A parameter study is presented to determine effects of planet gear design parameters on 

the global modal behaviour of planetary geared rotor systems. The modal sensitivity anal- 

ysis is conducted using a three-dimensional dynamic model of a planetary geared rotor 

system for the number of planet gears, planet mistuning, mass of planet gears, gear mesh 

stiffness and planet gear speed. These parameters have varying impacts on both natural 

frequencies and mode shapes, therefore the sensitivity of the planetary geared rotor vibra- 

tion modes to the planet gear parameters is determined by computing the frequency shifts 

and comparing the mode shapes. The results show that the mass and mesh stiffness of 

planet gears have a larger influence on the global dynamic response. Torsional modes and 

coupled torsional-axial modes are more sensitive to gear mesh stiffness whereas lateral 

vibration modes are more sensitive to gearbox mass. Planet mistuning results in coupling 

between lateral and torsional vibrations. The planetary gearbox becomes more rigid in the 

torsional-axial modes and more flexible in the lateral modes with an increase in the num- 

ber of planet gears. Planet gears are also found to be having significant gyroscopic effects 

inside the planetary gearbox. The main original findings in this study can be directly used 

as initial guidelines for planetary geared rotor design. 
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1. Introduction 

Planetary gearboxes are used extensively in many industries such as aerospace [ 1 , 2 ], automotive [3] and marine [4] be-

cause of their higher power transmission capacity. The installation of a planetary gearbox into a rotating system introduces 

coupled dynamic problems which includes the dynamics of the gearbox and the whole rotor system, making the prediction 

of the dynamic, vibration and acoustic response of a geared rotor system somewhat challenging. Basically, a planetary gear- 

box can affect the vibrational behaviour of the rotor system with its mass and inertia, stiffness and damping, and gyroscopic

moments. 

Early papers on planetary gearbox dynamics research mostly focused on dynamic loads, stress and torsional vibrations 

in the 1970s and 1980s [5–12] . Purely torsional [13–16] , torsional-transverse [17–20] and three-dimensional (including 
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Nomenclature 

q Generalized coordinates 

ρp Material density of planet gears 

N Number of planets 

� Rotating speed of elements 

rpm Revolution per minute 

T Kinetic energy 

V Potential energy 

L Total energy 

ε Modal energy ratio 

Subscripts 

h = r, c, s Central member index 

r Ring gear 

c Carrier 

s Sun gear 

p Planet gear 

torsional, transverse, tilting and axial motions) models [21–26] were then developed for the dynamic and modal analy- 

ses of planetary gearboxes. Recently, numerically identified modal behaviour of the planetary gearboxes have been val- 

idated with several experimental and operational modal analysis studies [ 20 , 27–30 ]. Furthermore, the planetary gearbox 

parameters such as load, mesh stiffness, bearing stiffness, mass and inertia, gear eccentricity and planet mistuning have 

been extensively analysed to investigate the parameter effects on the modal behaviour of planetary gearboxes themselves 

[31–40] . 

To understand the parameter effects on the dynamic and modal behaviour of geared rotor systems, researchers have 

mostly focused on stiffness and gyroscopic parameters in the literature [41–51] . These research papers show that the stiff-

nesses of shafts, bearings and gear teeth can directly affect the modal behaviour and dynamic response of geared rotors. 

Numerous linear and nonlinear dynamic analyses have been undertaken to understand the time-varying mesh stiffness ef- 

fect on the dynamic behaviour of a gear pair since the gear mesh stiffness fluctuates during a contact period in reality

[52–55] . A few parameter studies have investigated the constant gear mesh stiffness effect on the dynamic behaviour of 

planetary gearboxes and geared rotor systems, which is a valid assumption for heavily loaded gears [53] . Chen et al. [42] in-

vestigated the mesh stiffness effect on the critical speeds of a double-helical gear transmission system and highlighted the 

importance of the frequency veering phenomenon. It is shown that both gear mesh stiffness and gyroscopic effects can 

change the critical speeds in geared rotors at higher operating speeds. Rao et al. [41] showed a gear mesh stiffness region

which affects the natural frequencies significantly in geared rotors. Parker and his colleagues [ 31 , 32 ] performed sensitivity

analyses of the planetary gearbox vibration modes with regards to the gear mesh stiffness. The general support stiffness, 

normally provided by the bearings, is an important parameter to control vibration and modal parameters of a rotor systems, 

and has been demonstrated in many rotor dynamics books [56–60] . The support stiffness effect on the modal behaviour of

geared rotors with flexible bearings [43] and with rigid bearings [ 45 , 46 ], and planetary gearboxes [ 31 , 32 ] has been studied

in great detail. In planetary gearboxes, the effect of the radial support stiffness of the ring gears on the forced vibration

response was presented by Li et al. [33] . It has been shown that bearings on the geared rotors have a considerable effect

on the dynamic forces at the gear contacts and the natural frequencies of the system [43] , and the gear mesh (contact)

forces are approximately equal to the forces of stiff bearings in geared rotors [44] . The gear mesh stiffness is usually higher

than other stiffness components in geared rotor systems, which makes it a significant parameter for higher vibration modes 

[ 47 , 48 ]. It is worth stating that lower modes (modes with lower natural frequency) can be controlled with bearing stiff-

nesses, and higher modes (modes with higher natural frequency) can be controlled with mesh stiffnesses in geared rotor 

systems. 

Planetary gearboxes are commonly designed and manufactured with equally spaced planet gears. However, there can 

sometimes be positioning errors between the planet gears due to unequally spaced planets, which breaks the cyclic sym- 

metry of the planetary gearbox structure. This phenomenon is known as planet mistuning in the literature, where there 

are some studies related to this phenomenon. For instance, the vibration mode sensitivity of planetary gears [32] and gen-

eral compound planetary gears [31] to planet mistuning, and the modal behaviour of mistuned planetary gears [34] were 

investigated to identify the mistuning effect. In some of these sensitivity analyses [ 31 , 32 ], it has also been shown that nat-

ural frequencies of planetary gearboxes can be controlled easily by changing their mass and inertia parameters. Different 

numbers of planet gears are employed in planetary gearbox applications, normally ranging from three to seven. Eritenel 

and Parker performed modal analyses with their dynamic model for four and five planet gears, and they showed modal 

properties for the lowest ten vibration modes in their paper [23] . There is no detailed survey available how different

numbers of planet gears affect the modal behaviour of planetary geared rotors. All of these studies considered the plan- 
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etary gearbox only and did not extend to the modal behaviour of planetary geared rotors to which these gearboxes are

attached. 

Although there are some parameter studies available for planetary geared rotors, they normally focus on particular as- 

pect of the planetary gearbox parameter effects on the dynamics of planetary geared rotors, limiting the understanding to 

individual problems [ 50 , 61–64 ]. For example, a simple model (low fidelity) of the planetary gearbox, was used for the over-

all mass and stiffness parametric studies in reference [62] , whereas a detailed three-dimensional model (high fidelity) of 

the planetary gearbox was used for modal behaviour identification in reference [63] . The simple model which assumes that 

planetary gearboxes consist of a certain distribution of mass/inertia and stiffness can capture the overall mass and stiffness 

parameters effect on the modal behaviour. However, it may not be sufficient to estimate the effect of the planetary gearbox

parameters, such as gear contact and planet gear parameters, on the global modal behaviour, since the simple model does 

not include gear parameters such as helix angle, pressure angle, gear mesh stiffness, in their formulation. Therefore, a de- 

tailed planetary gearbox model for understanding the planetary gearbox parameter effects such as gear contact and planet 

gear parameters is needed. 

When considering planetary gearboxes in a rotor dynamic system, two main aspects are of interest; their global effects 

on the overall dynamic behaviour of the geared rotor system, where mainly their mass, inertia and stiffness play a role, and

their potential as an excitation source due to gear meshing action. This research paper investigates the modal sensitivity 

of the planetary geared rotor systems to the planet gear parameters, which has not been addressed systematically in the 

literature so far. The main motivation of this research is to provide a detailed understanding of how a variety of planet gear

parameters affect the modal behaviour and global dynamics of planetary geared rotor systems, highlighting its novelty in 

terms of planetary geared rotor design. The focus of this research is on the global effect, rather than the internal planetary

gearbox dynamics and potential excitation source, since the latter has been presented in great detail [65] , while an in depth

understanding of the former is still lacking. For this purpose, a three-dimensional hybrid dynamic model of a planetary 

geared rotor system is employed from reference [63] , where the planetary gearbox and rotor system were modelled using

the lumped parameter and finite element methods, respectively. In order to investigate rotor dynamics in the design space 

of planetary gearboxes, and the significant uncertainty surrounding the input parameters for the planetary gearbox, an ex- 

tensive parameter study is then conducted to identify the sensitive planet gear parameters and highlight their impact on 

the modal behaviour of planetary geared rotors. Sensitivity of natural frequencies and vibration modes to the planet gear 

parameters is determined by computing the frequency shifts and comparing the mode shapes between the two extreme 

cases. 

2. Dynamic modelling and analysis method 

2.1. Dynamic model 

A typical planetary geared rotor system consists of input and output shafts, several bearings, and a planetary gearbox, as 

seen in Fig. 1 a. In planetary geared rotor systems, the main duty of the planetary gearbox is to couple the input and output

shafts, reduce or increase the speed ratio between the two shafts, and increase or reduce the torque in the output shaft. 

For the dynamic modelling in this research paper, a linear three-dimensional hybrid dynamic model of a planetary geared 

rotor system, including lateral, axial and torsional motions, is used from reference [63] . Robustness in global rotor dynamic

response and fast computation features make this dynamic model more innovative compared to the full FE models. In 

summary, the hybrid dynamic model of a planetary geared rotor system is created using a combination of lumped parameter 

and finite element methods to model the planetary gearbox and rotor system, respectively, as seen in Fig. 1 . All gear teeth

contacts (gear meshes) and gearbox bearings are assumed to be flexible in the lumped parameter model of the planetary 

gearbox, whereas the planetary gearbox members, which are the ring gear, carrier, planet gears and sun gear, are assumed 

to be rigid. Flexibility of gear meshes is represented by linear springs acting on the plane of action normal to the gear tooth

surfaces. Time-varying components of gear mesh stiffnesses due to changes in the number of tooth pairs in contact are 

neglected. Averaged gear mesh stiffnesses are used for the gear teeth contacts. 1-D rotating Timoshenko beam elements are 

used to construct the finite element model of the shafts. Both shaft and gearbox bearing elements are assumed to be flexible

and consist of linear uncoupled translational and rotational spring elements. Uncoupled translational and rotational springs 

for the bearing supports were chosen in the dynamic analysis of the geared rotor system, as is common in the literature

[ 41–43 , 66–68 ], to avoid complex cross-coupling due to the bearings [56–60] , which may overshadow the planet gear effects

in the parameter analysis. 

It is important to point out that the dynamic model of the planetary gearbox used in reference [63] is based on Kahra-

man‘s two papers [ 22 , 24 ], published in 1994 and 2013 respectively. In this study, the carrier is assumed to be fixed and a

stationary coordinate system is used for the modal sensitivity analyses. By using the already identified energy equations for 

the rotor-bearing system and planetary gearbox in reference [63] , the system equation of motions can be obtained using

Lagrange‘s equations of the second kind and a finite element assembly procedure. Finally, the system equation of motion of 

the planetary geared rotor system is written for free vibrations as 

M ̈q ( t ) + 

[
C + G 

(
�h , �pi 

)]
˙ q ( t ) + K q ( t ) = 0 . (1) 
311 
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Fig. 1. Planetary geared rotor system and its elements, a) planetary geared rotor system, b) lumped parameter modelling of planetary gearbox [63] . 

 

 

 

where q is the vector of generalized coordinates, including lateral, torsional and axial motions, given by 

q = [ q s , q g ] . (2) 

Here, q s and q g represent the generalized coordinates of the input/output shafts and planetary gearbox, respectively. They 

are written as 

q 

i 
s = 

[
x i s , y 

i 
s , z 

i 
s , θx s 

i , θy s 
i , θz s 

i 
]

q 

j 
g = 

[
x j g , y 

j 
g , z 

j 
g , θx g 

j , θy g 
j , θz g 

j 
] (3) 

In Eq. (3) , i is the index for input and output shafts ( i = 1:2) respectively, and j is the planetary gearbox index

( j = r ,c,s,p1,…..,pN) for the ring gear (r), carrier (c), sun (s) and planet gears ( p = p1,p2…..pN). In Eq. (1) , M, C, G, K represent

global system mass, damping, gyroscopic and stiffness matrices, which are explicitly written as 

[ M ] = M ( M s , M g ) , 
[ G ] = G ( G s , G g ) , 
[ K ] = K ( K s , K b , K g ) , 
[ C ] = C ( C s , C b , C g ) . 

(4) 

In Eq. (4) , subscripts which are s, g, b represent shaft (s), gearbox (g) and bearing (b). Details of the dynamic modelling

of planetary geared rotor systems are provided in reference [63] . 
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2.2. Modal analysis 

The main modal parameters of the planetary geared rotor system, which are natural frequencies and mode shapes, can be 

computed numerically by solving the eigenvalue problem. The system equation of motion given in Eq. (1) can be rewritten

as 

q̈ ( t ) + M 

−1 
[
C + G 

(
�h , �pi 

)]
˙ q ( t ) + 

(
M 

−1 K 

)
q ( t ) = 0 . (5) 

with the inverse matrix operation [69] . Then, the state space representation of the dynamic model in matrix form is obtained

as {
˙ q 

q̈ 

}
= 

[
0 I 

−M 

−1 K −M 

−1 [ C + G ] 

]{
q 

˙ q 

}
. (6) 

where I is the identity matrix. Eq. (6) can be rewritten as 

{ ̇ x } 2 n ×1 = [ J ] 2 n × 2 n { x } 2 n ×1 (7) 

which is the matrix equation for the standard eigenvalue problem. In Eq. (7) , x is the state vector, and J is the Jacobian

matrix. After solving the standard eigenvalue problem, the eigenvalue [ λ] and eigenvector [ φ] matrices can be computed, 

and the natural frequencies and mode shapes obtained. For the mode shape comparison between different cases in the 

parameter study, the Modal Assurance Criteria (MAC) is employed, which is defined as [70] 

MAC ( A, B ) ( i, j ) = 

∣∣{ φA } T i { φB } j 
∣∣2 

({ φA } T i { φA } i 
)({ φB } T j { φB } j 

) (8) 

where φA and φB represent the eigenvectors of the two cases. i and j are indices for the corresponding mode number. 

To quantify the modal sensitivity, frequency shifts between the two extreme cases are calculated as 

frequency shift ( % ) = 

∣∣ω i − ω f 

∣∣
ω i 

× 100 (9) 

where ω i and ω f represent the initial (baseline) and final (updated) natural frequencies. 

Modal energy analysis is also used for the coupling level quantification between the gearbox and rotor system. The modal 

energy percentage of the gearbox is written as 

ε = 

L g r 

L r 
× 100 . (10) 

Here, L 
g 
r and L r represent total energies of the gearbox and whole rotor system. They can be written as 

L r = T r + V r 

L g r = T g r + V 

g 
r (11) 

where T and V are the kinetic and potential energies. Full derivation of the modal energy analysis is available in reference

[63] . 

The modal analyses throughout this study are carried out in “GEAROT” [62] rotor dynamics software, where the standard 

eigenvalue solution is used because of its computational performance [ 69 , 71 ]. It should be noted that all damping in the

planetary geared rotor system is neglected. Although gyroscopic effects of the whole planetary gearbox were previously 

studied in reference [63] , gyroscopic effects of the planet gears are specifically investigated in this paper. The baseline system

parameters of the hybrid dynamic model are imported from reference [63] for this study, and are provided in Table 1 .

For this system, maximum speed and speed ratio were specified as 80 0 0 rpm and 3.04, respectively in reference [63] .

The specifications represent the expected higher power requirements of a geared turbofan, although the numbers used are 

purely academic. The maximum torque of this system has been approximately computed as 30 kNm by taking into account 

the torsional shear stresses. 

3. Modal sensitivity to planet gear parameters 

To provide a better understanding how the planet gear parameters affect dynamics of the planetary geared rotor systems, 

a comprehensive modal sensitivity analysis is presented in this section. The modal sensitivity analysis mainly shows the 

planet gear parameters effects on the natural frequencies and mode shapes. The parameter study includes the effect of 

number of planet gears, planet mistuning, gear mesh stiffness, planet gear mass and planet gear speed. Gyroscopic effects 

of the planetary geared rotor system are only considered in the parameter study of planet gear speed ( Section 3.5 ). 
313 
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Table 1 

Baseline system parameters of the planetary geared rotor system [63] . 

Parameter Output Shaft Input Shaft Carrier Ring Planets Sun Ring-Planet Sun- Planet 

Length [m] 2 2 

Width [m] 0.02 0.1 0.1 0.1 

Outer Diameter [m] 0.2 0.2 0.63 0.7 0.2 0.23 

Inner Diameter [m] 0.23 0.63 0.18 0.2 

Material density [kg/m 

3 ] 7800 7800 7800 7800 7800 7800 

Young‘s modulus [GPa] 211 211 

Shear modulus [GPa] 81.2 81.2 

Bearing radial stiffness [N/m] 10 9 10 9 10 9 10 9 10 9 10 9 

Bearing axial stiffness [N/m] 10 9 10 9 10 9 10 9 10 9 10 9 

Bearing tilting stiffness [N.m/rad] 10 7 10 7 10 7 10 7 10 7 10 7 

Bearing torsional stiffness [N.m/rad] 0 0 10 11 0 0 0 

Helix angle β [deg] 30 30 30 

Transverse pressure angle φ [deg] 22.5 22.5 22.5 

Mesh Stiffness [N/m] 10 8 10 8 

Number of planets 4 

Number of beam elements 18 18 

Total degree of freedom 114 114 6 6 24 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Number of planet gears 

In the parameter study of number of planet gears, three cases were considered, namely helical planetary geared rotors 

with three, four (baseline), five planets. The results of the modal analyses are given in Table 2 . It must be noted that the

other gear parameters for the planets were not changed, leading to an increased total mass of the planets and more total

gear contacts, and hence higher stiffness, for the five-planet gear configuration. 

The resulting mode shapes of the helical planetary geared rotors with three, four and five planets for the first 25 modes

are given in Figs. A1 , A2 and A3 in the Appendix, where rigid body torsional, lateral and coupled torsional-axial modes can

be clearly seen. In changing from three planets to five planets, the natural frequencies of the torsional-axial modes tend to

increase due to the fact that the added gear mesh stiffness in the system overshadows the added inertia of the two planets.

The exception here is 20th mode of the three-planet gear system, where a significant drop in frequency from 622 Hz to

573 Hz is observed. This is mainly because of the higher gearbox modal energy at the 20th mode as presented in Table 2 ,

which highlights the local dynamic behaviour rather than the global dynamic behaviour. Basically, most of the modal energy 

is stored in the gearbox and there is nearly no shaft activity in this mode. On the other hand, the natural frequencies of

the lateral modes tend to decrease with respect to the number of planets, except for the first four lateral modes which

remain constant. This behaviour is observed because the gearbox is located at the nodal point and has less modal energy in

these lateral modes. Overall, it is important to point out that the modes which have higher gearbox modal energy are more

sensitive to the frequency shifts with respect to the number of planet gears. 

The mode shapes of the helical planetary geared rotors with three and five planets were compared using the Modal 

Assurance Criteria, as seen in Fig. 2 . Generally, there is a reasonably good mode shape agreement between the two

configurations, although the order of the modes is significantly affected by the presence of different planet gear num- 

bers. This reordering is partially due to the presence of repeated modes and partially due to the mode veering. In some

cases, lower mode shape agreement is observed due to the mode shape distortions between the two configurations. Over- 

all, there is a good mode shape agreement except for some distorted mode shapes when mode veering is taken into

account. 

In general, the first five modes of the spur and helical planetary geared rotors are found to be insensitive to the param-

eters. This is due to the choice of system parameters. If rigid shorter shafts or more compliant gears were used, it would be

expected that the first five modes would be more sensitive to the system parameters. Increasing the number of planet gears

leads to an increase in the natural frequencies of the torsional-axial modes, whereas this leading to a decrease in the natural

frequencies of the lateral modes in general. Thus, a planetary gearbox behaves more rigidly in torsional-axial vibrations and 

more flexibly in lateral vibrations with the increase in the number of planet gears. From the modal behaviour perspective, 

it could be suggested that different numbers of planet gears can be used in order to control the natural frequencies of the

torsional-axial modes and lateral modes. It should also be noted that there is a reverse effect between the torsional-axial 

modes and lateral modes in terms of flexibility with respect to the number of planet gears. 

3.2. Planet mistuning 

Planet mistuning is known as the positioning errors between the planet gears due to unequally spaced planets phe- 

nomenon. In this parameter study, the planet mistuning range was chosen from 0 ° (baseline) to 14 ° with only one planet
314 
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Table 2 

First 30 modes for the helical planetary geared rotors with three, four and five planets. 

Three Planets Four Planets (Baseline) Five Planets 

Mode # Natural Freq. 

[Hz] 

Mode Type Gearbox Modal 

Energy% 

Natural Freq. 

[Hz] 

Mode Type Gearbox Modal 

Energy% 

Natural Freq. 

[Hz] 

Mode Type Gearbox Modal 

Energy% 

1 0 Torsional 26 0 Torsional 27 0 Torsional 28 

2 114 Lateral 10 114 Lateral 10 114 Lateral 10 

3 114 Lateral 10 114 Lateral 10 114 Lateral 10 

4 115 Lateral 9 115 Lateral 10 115 Lateral 10 

5 115 Lateral 9 115 Lateral 10 115 Lateral 10 

6 197 Torsional - Axial 65 220 Torsional - Axial 60 237 Torsional - Axial 56 

7 300 Torsional - Axial 30 301 Torsional - Axial 29 301 Torsional - Axial 30 

8 316 Torsional - Axial 26 318 Torsional - Axial 27 305 Lateral 98 

9 332 Lateral 16 322 Lateral 94 305 Lateral 98 

10 332 Lateral 16 322 Lateral 94 322 Torsional - Axial 27 

11 340 Lateral 48 333 Lateral 17 333 Lateral 16 

12 340 Lateral 48 333 Lateral 17 333 Lateral 16 

13 351 Lateral 62 346 Lateral 15 346 Lateral 12 

14 351 Lateral 62 346 Lateral 15 346 Lateral 12 

15 465 Torsional - Axial 17 466 Torsional - Axial 20 467 Torsional - Axial 22 

16 509 Lateral 61 508 Lateral 62 507 Lateral 62 

17 509 Lateral 61 508 Lateral 62 507 Lateral 62 

18 602 Lateral 21 595 Torsional - Axial 97 573 Torsional - Axial 97 

19 602 Lateral 21 601 Lateral 23 598 Lateral 27 

20 622 Torsional - Axial 98 601 Lateral 23 598 Lateral 27 

21 652 Lateral 29 649 Lateral 32 645 Lateral 34 

22 652 Lateral 29 649 Lateral 32 645 Lateral 34 

23 719 Lateral 91 710 Lateral 84 705 Lateral 77 

24 719 Lateral 91 710 Lateral 84 705 Lateral 77 

25 780 Torsional - Axial 16 782 Torsional - Axial 18 786 Torsional - Axial 20 

26 873 Lateral 27 873 Lateral 28 874 Lateral 29 

27 873 Lateral 27 873 Lateral 28 874 Lateral 29 

28 942 Lateral 19 908 Gearbox 100 908 Gearbox 100 

29 942 Lateral 19 943 Lateral 18 908 Gearbox 100 

30 1026 Torsional - Axial 85 943 Lateral 18 945 Lateral 18 

3
1

5
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Fig. 2. MAC comparison for the modes of helical planetary geared rotors with three and five planets. 

Fig. 3. Frequency shifts of planetary geared rotor vibration modes due to planet mistuning, a) helical, b) spur. 

 

 

 

 

 

 

 

in the assembly being re-located. Here, 14 ° for the mistuning is considered as an extreme case. The frequency shifts were 

computed for the helical and spur planetary geared rotors and are shown in Fig. 3 . 

Natural frequency sensitivity of the helical and spur planetary geared rotors to planet mistuning for the 6th to 25th 

modes are shown in Fig. 4 . Fig. 3 shows that there is no significant change in the natural frequencies due to planet mistuning

with all changes below 3% for the helical and spur gear configurations. The modes with more than a 1% frequency shift were

investigated further to identify the sensitive modes. 

In the helical planetary geared rotor, significant frequency shifts occur for the 9th and 10th modes at 2.6%, for the 23rd

mode at 1.2%, and for the 24th mode at 1.3%. It should be noted that these modes are originally lateral if there is no planet

mistuning. The torsional-axial modes are found to be barely affected by mistuning compared to the lateral modes, and the 

changes were less than 1%. For the spur planetary geared rotor, the significant frequency shifts are seen for the 11th and 12th

gearbox modes at 2.5% and 2.7% respectively, and for the 23rd and 24th lateral modes at 1.5% and 1.7%, respectively. In the

spur planetary geared rotor, it is found that the axial modes are not sensitive to mistuning because there is no geometric

interaction of the mistuning in the axial direction. Furthermore, the torsional modes are barely affected compared to the 

lateral modes. 

Due to the breaking cyclic symmetry of the planetary gearbox structure, the planet mistuning results in lateral-torsional- 

axial coupling in helical planetary geared rotors and lateral-torsional coupling in spur planetary geared rotors. Mode shapes 
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Fig. 4. Sensitivity of planetary geared rotor vibration modes to planet mistuning, a) helical, b) spur. 

 

 

 

 

 

 

of the highest frequency shifting observed modes in the helical planetary geared rotor are given in Fig. 5 , and show the

coupled lateral-torsional-axial modes due to the planet mistuning effect. As a result, modes of the mistuned helical planetary 

geared rotors are coupled in the lateral, torsional and axial directions. Depending on the vibration mode sensitivity levels, 

the coupled lateral-torsional-axial modes can be clearly detected in their mode shapes. 

The natural frequency shifts due to planet mistuning were negligible in both helical and spur planetary geared rotors 

while it can directly affect their mode shapes. Mistuning can lead to an increase or decrease in the natural frequencies of

the planetary geared rotors. 

The mode shapes for the tuned and mistuned cases were compared with the MAC matrices for the helical and spur

planetary geared rotors in Fig. 6 . For the helical planetary geared rotor, there is nearly 100% mode shape agreement for the

torsional rigid body, torsional-axial and gearbox modes. In contrast, there is a reduced MAC agreement for the lateral modes 

of the tuned system because of the occurrence of lateral-torsional-axial coupling for these modes in the mistuned case. For 

the spur planetary geared rotor, a good mode shape agreement can be observed for all torsional and axial modes and some

of the gearbox modes. Lower mode shape agreements are observed for the lateral modes of the tuned system due to the

lateral-torsional coupling in the mistuned one. 
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Fig. 5. Coupled lateral-torsional-axial vibration modes of the helical planetary geared rotor with unequally spaced planets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, planet gear mistuning appears to have a relatively small effect on the natural frequencies of the geared

rotor system, but it introduces lateral-torsional-axial coupling in the case of helical gearboxes and lateral-torsional cou- 

pling in the case of spur planetary gearboxes due to breaking cyclic symmetry. Original lateral modes in the tuned sys-

tem are also found to be more sensitive to the planet mistuning. It is important to point out that unexpected axial vi-

brations can lead to lateral vibrations in the mistuned helical planetary geared rotor systems due to the coupled lateral- 

torsional-axial modes. For instance, the axial thrust forces in geared turbofan engines may excite their lateral modes and vice 

versa. 

3.3. Gear mesh stiffness 

The gear mesh stiffness is defined as the contact stiffness between the engaging gear teeth, which includes the bending

stiffness, axial compressive stiffness, shear stiffness, Hertzian contact stiffness and fillet foundation stiffness [ 72 , 73 ]. It is

known that gear mesh stiffness is a function of several parameters such as gear tooth geometry, gear tooth profile, gear ma-

terial properties, transverse pressure angle, transmitted load, position of contact etc. [73–75] . There are different approaches 

to calculate gear mesh stiffness accurately in the literature such as analytical, finite element and hybrid analytical-finite 

element methods [ 76 , 77 ]. The gear mesh stiffness fluctuates during the gear contact period [ 52 , 53 ]. In order to perform

time-invariant modal analysis, the gear mesh stiffness is first obtained using the analytical method [72] . Subsequently, con- 

stant gear mesh stiffness is computed by averaging the stiffness, which is known as the averaged gear mesh stiffness. This

parameter study investigates the effect of the averaged gear mesh stiffness of spur and helical gears on a large range of

vibration modes of the presented planetary geared rotor systems. 

A gear mesh stiffness range between 10 8 N/m and 10 9 N/m (i.e. a factor of 10) was selected for the parameter study on

the basis of reference [22–24] . The first 30 modes and frequency shifts between the extreme 10 8 N/m and 10 9 N/m gear

mesh stiffness values were computed for both the helical and spur planetary geared rotors, as shown in Table 3 , where the

corresponding mode types are also given. It should be noted that k m 

= 10 8 [N/m] is the baseline gear mesh stiffness, as given

in Table 1 . The gear mesh stiffness effect on the natural frequencies is shown for the significant modes in Fig. 7 . Not sur-

prisingly, the natural frequencies of the geared rotor system increase with increasing mesh stiffness. There is no significant 

change in the natural frequencies up to the 6th mode, thus the first five modes were not plotted. To understand the reason
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Table 3 

Vibration modes of the helical and spur planetary geared rotors for two gear mesh stiffnesses. 

Helical Planetary Geared Rotor Spur Planetary Geared Rotor 

k m = 10 8 [N/m] (Baseline) k m = 10 9 [N/m] k m = 10 8 [N/m] (Baseline) k m = 10 9 [N/m] 

Mode # Nat. Freq. [Hz] Nat. Freq. [Hz] Mode Type Freq. Shift% Nat. Freq. [Hz] Nat. Freq. [Hz] Mode Type Freq. Shift% 

1 0 0 Torsional 0 0 0 Torsional 0 

2 114 114 Lateral 0 113 113 Lateral 0 

3 114 114 Lateral 0 113 113 Lateral 0 

4 115 117 Lateral 1 114 115 Lateral 0 

5 115 117 Lateral 1 114 115 Lateral 0 

6 220 283 Torsional - Axial 29 256 369 Torsional 44 

7 301 305 Torsional - Axial 1 298 298 Axial 0 

8 318 373 Torsional - Axial 17 311 311 Axial 0 

9 322 328 Lateral 2 333 334 Lateral 0 

10 322 328 Lateral 2 333 334 Lateral 0 

11 333 335 Lateral 1 340 340 Gearbox 0 

12 333 335 Lateral 1 340 340 Gearbox 0 

13 346 352 Lateral 2 345 347 Lateral 1 

14 346 352 Lateral 2 345 347 Lateral 1 

15 466 522 Torsional - Axial 12 473 540 Torsional 14 

16 508 514 Lateral 1 509 514 Lateral 1 

17 508 514 Lateral 1 509 514 Lateral 1 

18 595 614 Torsional - Axial 3 601 602 Lateral 0 

19 601 602 Lateral 0 601 602 Lateral 0 

20 601 602 Lateral 0 638 638 Gearbox 0 

21 649 651 Lateral 0 655 655 Lateral 0 

22 649 651 Lateral 0 655 655 Lateral 0 

23 710 825 Lateral 16 727 834 Lateral 15 

24 710 825 Lateral 16 727 834 Lateral 15 

25 782 879 Torsional - Axial 12 789 918 Torsional 16 

26 873 929 Lateral 6 880 946 Lateral 8 

27 873 929 Lateral 6 880 946 Lateral 8 

28 908 1783 Gearbox 96 948 1061 Lateral 12 

29 943 1035 Lateral 10 948 1061 Lateral 12 

30 943 1035 Lateral 10 1077 2119 Gearbox 97 

3
1

9
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Fig. 6. MAC for modes with planet mistuning, a) helical, b) spur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the vibration mode sensitivity, the modes which have more than 10% frequency shift were investigated further. For the 

helical planetary geared rotor, the highest frequency shifts were computed as 29%, 17%, 12% and 12% for the 6th, 8th, 15th

and 25th torsional-axial modes, respectively. Similarly, the frequency shifts were computed as 16% for the 23rd and 24th 

lateral modes and 96% for the 28th gearbox mode, as given in Table 3 . In general, the torsional-axial modes in the helical

planetary geared rotors are much more sensitive to the gear mesh stiffness change compared to the lateral modes. The gear-

box modes are directly affected by the gear mesh stiffness change as clearly seen for the gearbox mode (28th mode). For

the spur planetary geared rotor, the highest frequency shifts were computed as 44%, 14% and 16% for the 6th, 15th and 25th

torsional modes, respectively. Moreover, the frequency shifts for the 23rd, 24th, 28th and 29th lateral modes were computed 

as 15%, 15%, 12% and 12%, respectively, and 97% for the 30th mode (gearbox mode). All the torsional modes within the first

30 modes are found to be much more sensitive to the gear mesh stiffness change in the spur planetary geared rotor. The

axial modes of the spur planetary geared rotor are not sensitive to the gear mesh stiffness change since there is no axial

component of the gear mesh stiffness in spur gears. 

When comparing the helical and spur planetary geared rotor modes, there are some torsional-axial modes in the helical 

planetary geared rotor, which are more sensitive to the gear mesh stiffness change due to the fact that the torsional defor-

mation dominates the axial deformation for these modes. This can be directly inferred from the torsional and axial modes 

of the spur planetary geared rotor given in Table 3 . 

The MAC matrices between the modes for the 10 8 N/m and 10 9 N/m gear mesh stiffness values are shown in Fig. 8 .

They further highlight the dependence of the mode shapes of the helical and spur planetary geared rotors on the gear mesh

stiffness. For the helical planetary geared rotor, there is little change in the mode shapes up to the 26th mode and at the

28th mode. For the spur planetary geared rotor, a good mode shape agreement up to the 30th mode is also seen except the

26th, 27th, 28th and 29th modes due to the mode veering phenomenon for these modes, leading to unmatched cases in

the MAC plot. The reduced MAC agreement seen at the higher modes (modes with higher natural frequency) for both the

helical and spur planetary geared rotors, indicates that a change in gear mesh stiffness couples the higher global modes of

a planetary geared rotor system. 

Briefly, the torsional-axial modes of helical planetary geared rotors and the torsional modes of spur planetary geared 

rotors are more sensitive to gear mesh stiffness than their lateral modes. For the gear mesh stiffness, the dominance of

the torsional components in the torsional-axial modes of helical planetary geared rotors determine the vibration mode 

sensitivity level, because the axial modes in spur planetary geared rotors are not affected by these contact parameters. 

As a result, the torsional modes are sensitive to gear mesh stiffness. Gear mesh stiffness is more influential at the higher

lateral modes when looking at the frequency shifts and mode shape comparisons for these modes. Natural frequencies of 

planetary geared rotor systems increase with respect to the gear mesh stiffness. 

3.4. Planet gear mass 

The mass and inertia of gearboxes directly change with respect to gear material density. By considering this effect, a 

parameter study for different planet gear material densities of the spur and helical planetary geared rotors is presented. 

Aluminium, cast iron, bronze, steel and plastic are the commonly used gear materials in gearboxes [ 78 , 79 ]. amongst these

material, nylon plastic gears have the lowest density at 1150 kg/m 

3 and steel gears have the highest density at 7800 kg/m 

3 .
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Fig. 7. Sensitivity of the planetary geared rotor vibration modes to gear mesh stiffness, a) helical, b) spur. 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, a gear material density range from 1150 kg/m 

3 to 7800 kg/m 

3 was selected for an extensive parameter study. It

should be noted that gear mesh stiffness and other system parameters were assumed to be constant while changing gear 

material density. Material of the shafts was also unchanged. After the modal analysis was performed, the frequency shifts 

between the two extreme cases, which are 1150 kg/m 

3 and 7800 kg/m 

3 , were computed for the first 25 modes, as shown

in Table 4 . Frequency variations up to 30% were observed for both helical and spur gear configurations. 

The gear material density of 7800 kg/m 

3 is the baseline for the analysis of the vibration modes for both helical and spur

planetary geared rotors (see Table 1 ). The gear material density effect on the natural frequencies is shown in Fig. 9 for the

significant modes (more than 15% frequency shift) between the 6th and 25th modes since there is no significant change in

the natural frequencies up to the 6th mode. In the helical planetary geared rotor, the important frequency shifts are for the

13th and 14th lateral modes at 28%, and for the 18th torsional-axial mode at 25% respectively. Moreover, the 23rd and 24th

lateral modes show remarkable frequency shift at 16%. It is important to point out that there is a mode veering between the

13th and 14th mode family and the 9th and 10th mode family. Therefore, there can be an energy exchange between these

mode families. In the spur planetary geared rotor, the highest frequency shifts are seen for the 11th, 12th and 20th gearbox

modes. Furthermore, the 23rd and 24th lateral modes show remarkable frequency shift at 15%, similar to the lateral modes 

in the helical planetary geared rotor. On the other hand, the axial modes of the spur planetary geared rotor are not sensitive

to the density change due to the higher rigidity of the rotor system in the axial direction. Overall, the gearbox modes are
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Table 4 

Vibration modes of the helical and spur planetary geared rotors for two gear material densities of the planetary gearbox. 

Helical Planetary Geared Rotor Spur Planetary Geared Rotor 

ρp = 1150 kg/m 

3 ρp = 7800 kg/m 

3 (Baseline) ρp = 1150 kg/m 

3 ρp = 7800 kg/m 

3 (Baseline) 

Mode # Nat. Freq. [Hz] Nat. Freq. [Hz] Mode Type Freq. Shift% Nat. Freq. [Hz] Nat. Freq. [Hz] Mode Type Freq. Shift% 

1 0 0 Torsional 0 0 0 Torsional 0 

2 114 114 Lateral 0 113 113 Lateral 0 

3 114 114 Lateral 0 113 113 Lateral 0 

4 115 115 Lateral 0 114 114 Lateral 0 

5 115 115 Lateral 0 114 114 Lateral 0 

6 221 220 Torsional - Axial 1 258 256 Torsional 1 

7 302 301 Torsional - Axial 0 298 298 Axial 0 

8 318 318 Torsional - Axial 0 311 311 Axial 0 

9 345 322 Lateral 7 333 333 Lateral 0 

10 345 322 Lateral 7 333 333 Lateral 0 

11 333 333 Lateral 0 441 340 Gearbox 30 

12 333 333 Lateral 0 441 340 Gearbox 30 

13 443 346 Lateral 28 345 345 Lateral 0 

14 443 346 Lateral 28 345 345 Lateral 0 

15 474 466 Torsional - Axial 2 480 473 Torsional 2 

16 516 508 Lateral 1 515 509 Lateral 1 

17 516 508 Lateral 1 515 509 Lateral 1 

18 743 595 Torsional - Axial 25 607 601 Lateral 1 

19 606 601 Lateral 1 607 601 Lateral 1 

20 606 601 Lateral 1 751 638 Gearbox 18 

21 658 649 Lateral 2 656 655 Lateral 0 

22 658 649 Lateral 2 656 655 Lateral 0 

23 824 710 Lateral 16 838 727 Lateral 15 

24 824 710 Lateral 16 838 727 Lateral 15 

25 800 782 Torsional - Axial 2 808 789 Torsional 2 

3
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Fig. 9. Sensitivity of the planetary geared rotor vibration modes to gear material density, a) helical, b) spur. 
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Fig. 10. MAC for modes with different gear material densities, a) helical, b) spur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

more sensitive to the planet gear material density change compared to the other modes in planetary geared rotors. Another 

important observation is that the lateral modes are slightly more sensitive to the density change than the torsional and 

torsional-axial modes. Not surprisingly, the natural frequencies of both helical and spur planetary geared rotors decrease 

with increasing material density. 

A comparison of the mode shapes between the two extreme cases for the gear material density (1150 kg/m 

3 and

7800 kg/m 

3 ) via the modal assurance criteria is shown in Fig. 10 . There is a good mode shape agreement up to the 8th

mode for the helical planetary geared rotor, however for higher modes (modes with higher natural frequency) the agree- 

ment is much poorer due to mode veering and the distortion between the modes. Overall, there is a good agreement when

looking at the MAC for the spur planetary geared rotor. The gear density can have a significant impact on both the natural

frequencies and the mode shapes of the geared rotor system, highlighting the importance of taking the correct material 

properties into account when conducting a rotor dynamic analysis. 

When evaluating the gear mesh stiffness and planet gear mass parameters, the mode shapes of both spur and helical 

planetary geared rotors are not significantly affected by them. On the other hand, they can significantly affect their natural 

frequencies. Lateral vibration modes are found to be more sensitive to the gearbox mass compared with the other global 

modes (coupled torsional-axial, uncoupled torsional and uncoupled axial modes). It is found that the torsional and coupled 

torsional-axial modes are more sensitive to the gear mesh stiffness, whereas the lateral modes are more sensitive to the gear

material density. As general advice, the torsional and torsional-axial modes can be controlled by changing the gear mesh 

stiffness, and the lateral modes can be controlled by changing the mass of the planet gears. The latter implies that shafts

are stiffer than the planetary gearbox in terms of torsional and axial dynamics whereas they are softer than the planetary

gearbox in terms of lateral dynamics. This means that the dynamic model of the planetary gearbox should be stiffer in the

lateral directions and softer in the torsional and axial directions than the shaft dynamic model if a simple gearbox model is

used. 

3.5. Planet gear speed 

Operating speed of the planetary geared rotors can affect the modal parameters due to the generation of gyroscopic 

moments. The so-called gyroscopic moments in this planetary geared rotor system can originate from the sun, ring, planet 

gears, carrier and input/output shafts. They can create lateral backward and forward whirling modes on the global rotor 

system. 

In the previous study [63] , gyroscopic effect of the whole planetary gearbox was investigated. In this study, to understand

only the planet gear speed effect on the modal behaviour, three case studies have been created as presented in Table 5 .

They are (a) with gearbox gyroscopic effect (including gyroscopic effects of ring, sun and planet gears, carrier and shafts), 

(b) without gearbox gyroscopic effect (including gyroscopic effects of shafts) and (c) without planet gear gyroscopic effect 

(including gyroscopic effects of ring, and sun gears, carrier and shafts). For this purpose, Campbell diagrams were plotted 

for the five significant modes in Fig. 11 , where it is clearly seen that main gyroscopic effect inside the planetary gearbox is

produced by the planet gears for mode 9 (Lateral BW) and mode 10 (Lateral FW). On the other hand, gyroscopic moments

generated by the shafts are more dominant at mode 11 (Lateral BW) and mode 12 (Lateral FW). 
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Fig. 11. Campbell diagram, a) with gearbox gyroscopic effect, b) without gearbox gyroscopic effect, c) without planet gear gyroscopic effect. 
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Table 5 

Case studies for gyroscopic effects. 

Gyroscopic Effects With gearbox - Case A Without gearbox - Case B Without planet gears - Case C 

Shafts X X X 

Ring Gear X X 

Sun Gear X X 

Planet Gears X 

Carrier X X 

 

 

 

 

 

 

 

 

As presented in Table 2 , the gearbox has a higher energy at a value of 94% for the 9th (Lateral BW) and 10th (Lateral

FW) modes, whereas a lower modal energy at a value of 17% for the 11th (Lateral BW) and 12th (Lateral FW) modes. It

is important to point out that whole gearbox and planet gears can have significant gyroscopic effects at global system 

responses when they have higher modal energy in the vibration modes. 

4. Conclusion 

A comprehensive planet gear parameter study including the number of planet gears, planet mistuning, gear mesh stiff- 

ness, planet gear mass parameters and planet gear speed has been conducted on a hybrid dynamic model of planetary 

geared rotor systems in order to investigate the planet gear parameter effects on the natural frequencies and resulting mode 

shapes of helical and spur planetary geared rotors. 

In general, the investigated parameters have varying impacts on both natural frequencies and mode shapes, which high- 

lights the main original contributions of this paper and novelty of this research regarding planetary geared rotor design. 

The study of the number of planet gears reveals the reverse effect between the natural frequencies of the torsional-axial 

modes and the lateral modes. With an increase in the number of planet gears, the planetary gearbox becomes more rigid in

the torsional-axial modes and more flexible in the lateral modes. Planet mistuning results in coupled lateral-torsional-axial 

modes for helical planetary geared rotors and coupled lateral-torsional modes for spur planetary geared rotors, which is 

due to the breaking cyclic symmetric structure of the planetary gearbox (unequally spaced planets). However, the natural 

frequency shifts due to planet mistuning are negligible. Furthermore, modal behaviours of both helical and spur plane- 

tary geared rotors are significantly affected by planet gear mass and gear mesh stiffness parameters. The torsional and 

coupled torsional-axial modes are more sensitive to the gear mesh stiffness, while the lateral modes are more sensi- 

tive to the planet mistuning and planet gear mass. The axial vibration modes, in general, are found to be less sensitive

to the planet gear parameters. It is also found that planet gears have significant gyroscopic effects inside the planetary 

gearbox. 

The three-dimensional dynamic model of a planetary geared rotor system used in this study shows that the mass and 

mesh stiffness parameters of the planet gears have significant effects on the modal behaviour of planetary geared rotors in 

terms of natural frequency shifts and mode shape changes. If a simple model of the planetary gearbox, which consists of

mass and stiffness parameters, was used in this study instead of the complicated three-dimensional model, it might be able 

to capture the overall mass and stiffness parameters effect on the modal behaviour similar to the one shown in reference

[62] . However, it would not be sufficient to estimate the effect of the planetary gearbox parameters, such as gear contact

and planet gear parameters, on the global modal behaviour, since simple models do not include them in their formulations. 

Simple models assume that planetary gearboxes consist of a certain amount of mass/inertia and stiffness. They could be 

useful for the initial understanding of gearbox mass and stiffness effects. 

To conclude, the presented results highlight the strong sensitivity of the vibration response on the planet gear pa- 

rameters and the importance of investigating planet gear parameter effects on the modal behaviour of planetary geared 

rotor systems. The reader should note that although the presented quantitative results are specific to the system under 

investigation, the qualitative findings are more generically applicable for planetary geared rotor systems. Mechanical sys- 

tem designers can follow the main findings of this paper as general guidelines for the design of planetary geared rotor

systems. 

Data Availability 

The data that has been used is confidential. 

Acknowledgement 

This study was funded by the Ministry of National Education of the Republic of Turkey under YLSY grant. 

Appendix 

Figs. A1 , A2 , A3 
327 



A. Tatar, C.W. Schwingshackl and M.I. Friswell Applied Mathematical Modelling 113 (2023) 309–332 

Fig. A1. Mode shapes of the helical planetary geared rotor with three planets. 
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Fig. A2. Mode shapes of the helical planetary geared rotor with four planets. 
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Fig. A3. Mode shapes of the helical planetary geared rotor with five planets. 
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