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Abstract
Manipulators actuate joints to let end effectors to perform precise path tracking tasks.
Recurrent neural network which is described by dynamic models with parallel pro-
cessing capability, is a powerful tool for kinematic control of manipulators. Due to
physical limitations and actuation saturation of manipulator joints, the involvement of
joint constraints for kinematic control of manipulators is essential and critical. However,
current existing manipulator control methods based on recurrent neural networks
mainly handle with limited levels of joint angular constraints, and to the best of our
knowledge, methods for kinematic control of manipulators with higher order joint
constraints based on recurrent neural networks are not yet reported. In this study, for
the first time, a novel recursive recurrent network model is proposed to solve the ki-
nematic control issue for manipulators with different levels of physical constraints,
and the proposed recursive recurrent neural network can be formulated as a new
manifold system to ensure control solution within all of the joint constraints in
different orders. The theoretical analysis shows the stability and the purposed recursive
recurrent neural network and its convergence to solution. Simulation results further
demonstrate the effectiveness of the proposed method in end‐effector path tracking
control under different levels of joint constraints based on the Kuka manipulator
system. Comparisons with other methods such as the pseudoinverse‐based method and
conventional recurrent neural network method substantiate the superiority of the
proposed method.

1 | INTRODUCTION

Manipulators, which can greatly reduce the heavy burden on
labour forces of workers, nowadays have been widely applied
in many industrial fields such as welding, painting, and
assembling areas. By using extra degrees of freedom (DOFs),
manipulators are able to make use of inherent redundancy to
perform flexible operations and fulfil complicated tasks [1, 2].
Kinematic control of manipulators by taking advantage of such
inherent redundancy in various circumstances have drawn
intensive interests and concerns in recent years [3].

Generally, kinematic control of manipulators is to seek a
suitable control action in the joint space that produces a
desired motion for the end effector in the workspace.

However, strong coupled non‐linearity exists in the mapping
between a joint space and a Cartesian workspace of a
redundant manipulator when it executes manipulation tasks.
It is difficult to tackle this problem for analytical solutions in
the joint space level through directly solving the coupled
non‐linear equations that are used to describe the kinematic
characteristics of manipulators. Therefore, the kinematic
control problem in the joint space is converted into a
problem depicted by the velocity kinematic equations. Some
early research studies found the control solutions directly by
solving the pseudoinverse of the Jacobian matrix of a
manipulator [4, 5], and such a way of processing may increase
local instability and even need more computational costs
which were not expected.
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To overcome the shortcomings of pseudoinverse‐based
approaches, optimisation‐based (e.g. quadratic programming)
methods have been proposed to find the optimal control so-
lutions [6, 7]. Such optimisation‐based methods can involve
physical constraints into the optimisation formulation [8] and
solutions to such constrained optimisation problems cannot be
obtained in an analytical manner as well. Thus, numerical
methods in a way of serial processing were applied, but they are
still resulting in low computational efficiency. In order to
remedy this weakness, recurrent neural networks with parallel
processing ability have been proposed for manipulator control
[9–18]. Many researchers have developed kinematics control
paradigms with the involvement of one or two of the three
levels of constraints: joint angle and joint velocity, and joint
acceleration constraints. In ref. [19], joint limits and joint ve-
locity limits are taken into account for the kinematic resolution
based on a dual neural network. In ref. [20], automatic handling
of kinematic constraints is proposed in a real‐time operational
space motion planner. In ref. [21], repetitive motion planning is
performed with acceleration‐level constraints. In ref. [22], ki-
nematic control of manipulators with obstacle avoidance in the
joint‐acceleration level is proposed with a minimum accelera-
tion norm as the optimisation objective. In ref. [23], kinematic
control of the manipulators with joint velocity constraints is
solved by a passivity‐based approach from an energy perspec-
tive. In ref. [24], the velocity‐level and acceleration‐level
redundancy resolution are combined to form a unified
quadratic programming for joint torque optimisation. In ref.
[25], visual serving control of manipulators with joint physical
limits to ensure safety. In ref. [26], both velocity‐level and
acceleration‐level constraints are integrated into the kinematic
control of manipulators. However, for joint constraints in a
higher level such as more than the fourth‐order joint con-
straints, kinematic control methods based on recurrent neural
networks have not yet been proposed and reported.

Motivated by the aforementioned points, as current kine-
matic control methods based on recurrent neural networks can
only deal with joint angular velocity and joint acceleration
constraints, in this study, we are making breakthroughs to
propose a novel recursive recurrent neural network for kine-
matic control of manipulators with different levels of physical
constraints, with high‐order joint constraints considered. The
contributions of this study are summarised as follows:

(1) To the best of our knowledge, this article is the first work
to propose the kinematics control method for manipulators
with different levels of physical constraints simultaneously.

(2) The proposed method is described by a novel recursive
recurrent neural network model, and the theoretical results
on the purposed recursive recurrent neural network show
the stability in a manifold system perspective and its
convergence to kinematic control solutions with afore-
mentioned physical constraints.

(3) Simulation results with comparisons to the pseudoinverse‐
based method and conventional recurrent neural network
method on the Kuka manipulator system demonstrate the

efficiency and superiority of the proposed method in kine-
matic control with different levels of physical constraints.

2 | PROBLEM FORMULATION

Let us consider the following velocity kinematics equation for
manipulator control

_r ¼ J _θ ð1Þ

where J ∈ Rm�n denotes the Jacobian matrix of the
manipulator, r ∈ Rm denotes trajectory in the Cartesian space
of the end effector, and θ ∈ Rn denotes the joint space
variable. The end effector has to follow the desired path rd
to make the tracking error e = r − rd as small as possible
with suitable control actions from the joint space of the
manipulator. Due to the physical restrictions of joint actua-
tion of the manipulator, generally, the joint variable usually
has to follow the limits in the joint angle level, joint velocity
level, joint acceleration level, and higher order levels as
follows

θ−
0 ≤ θ ≤ θþ0

θ−
1 ≤ _θ ≤ θþ1

θ−
2 ≤ €θ ≤ θþ2

⋮
θ−
n−1 ≤ θðn−1Þ ≤ θþn−1

θ−
n ≤ θðnÞ ≤ θþn

where θ−
0 and θþ0 denote the lower and upper bounds of the

joint angle, respectively, θ−
1 and θþ1 denote the lower and upper

bounds of the joint angular velocity, respectively, θ−
2 and θþ2

denote the lower and upper bounds of the joint angular ac-
celeration, respectively, and θ−

i and θþi ði ≥ 3Þ denote the lower
and upper limits of the higher order joint variables, respectively.
As manipulators are usually actuated by electrical motors, the
high‐order time derivative term θ(n) (n ≥ 2) may reflect the
physical constraints.

2.1 | Convectional kinematic control of
manipulator with joint constraints of lower
levels

Note that, current existing works mainly focus on solving the
kinematic control issue with the first two low levels of con-
straints for joint variables as follows:

r → rd
θ−
0 ≤ θ ≤ θþ0

θ−
1 ≤ _θ ≤ θþ1
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The kinematic control solution for the manipulator with the
joint angle and joint velocity constraints is depicted by the
following constrained optimization problem

min _θT _θ=2

s:t: _rd ¼ J _θ

  θ−
0 ≤ θ ≤ θþ0

  θ−
1 ≤ _θ ≤ θþ1

It can be further transformed to the following optimization
formulation

min _θT _θ=2

s:t: _rd ¼ J _θ

−κ θ − θ−
0

� �
≤ _θ ≤ −κ θ − θþ0

� �

θ−
1 ≤ _θ ≤ θþ1

where κ > 0 denotes the scaling parameter for constructing joint
limits from the joint angle level to the joint acceleration level.
Here, we define the solution set for _θ as Ω0 ¼ _θj − κ θ − θ−

0

� ��

≤ _θ ≤ −κ θ − θþ0
� �

g⋂ _θjθ−
1 ≤ _θ

�
≤ θþ1 g. Then the optimization

for manipulator control issue becomes

min _θT _θ=2

s:t: _rd ¼ J _θ

  _θ ∈ Ω0

For solving the optimization problem above, according to
the Karush‐Kuhn‐Tucker condition [27], one can construct a
recurrent neural network solver as follows:

ϵ _w¼ −wþ PΩ0 −κJT
Z t

0
J _θ − _rd
� �

dt
� �

¼ −wþ PΩ0 −κJT r − rdð Þ
� �

ð2Þ

where w ∈ Rn denotes the state variable of the recurrent
neural network, ϵ > 0 denotes the convergence parameter,
and PΩ0ð⋅Þ denotes the piecewise linear projection function
array.

2.2 | Kinematic control of manipulator with
joint constraints of higher levels

However, as we may know, the following kinematic control
issue with additional higher levels of joint variable constraints is
still not considered and investigated

Tracking control of end ‐ effector r → rd

Lower ‐ order constraints
θ−
0 ≤ θ ≤ θþ0

θ−
1 ≤ _θ ≤ θþ1

(

Higher ‐ order constraints

θ−
2 ≤ €θ ≤ θþ2

θ−
3 ≤ θð3Þ ≤ θþ3

  ⋮

θ−
n−1 ≤ θðn−1Þ ≤ θþn−1

θ−
n ≤ _θðnÞ ≤ θþn

8
>>>>>>>>>><

>>>>>>>>>>:

This situation can be frequently encountered. For
instance, in jerk operations, the manipulator needs to
compute the time derivatives of the joint acceleration, which
leads to the third‐order term for the joint angular variable. To
avoid unnecessary dynamic vibrating that is affected by large
variations from joint acceleration, it would be very useful to
limit the range of the fourth‐order term for the joint angular
variable.

Therefore the aforementioned original solver for the kine-
matic control of manipulator with lower order joint constraints

ϵ _w¼ −wþ PΩ0 −κJT r − rdð Þ
� �

ð3Þ

is not able to handle with additional higher order constraints
and simultaneously fulfil the tracking control task for the
end effector, because the higher order constraint information
cannot be involved in current recurrent neural network model.

As the lower order time derivative of joint variables can be
obtained through the integration of the higher order time de-
rivative of joint variables, in this paper, we try to solve the ki-
nematic control issue by letting the higher order joint target
firstly tracked and then lower order joint target tracked by the
recurrent neural network solver. Under these considerations, we
let the higher order time derivative of the state variable w
follow

wðn− 2Þ → wðn− 2Þ
d

θ−
n ≤ wðn−1Þ ≤ θþn

and we get w(n−1) → θ(n). And this procedure repeats for the
next lower order situation, that is,

wðn−3Þ → wðn−3Þ
d

θ−
n−1 ≤ wðn−2Þ ≤ θþn−1

The recursive procedures repeat until

_w → _wd

θ−
3 ≤ €w ≤ θþ3
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and we get €w → €wd . Thus the equilibrium point for the tracking
task of the end effector is

wd ¼ PΩ0 −κJT r − rdð Þ
� �

ð4Þ

then we have

w → wd

θ−
2 ≤ _w ≤ θþ2

and we get _w¼ _wd finally by the recursive updating of the
corresponding recurrent neural network solver.

3 | CASCADED RECURSIVE
RECURRENT NEURAL NETWORK

In order to achieve kinematic control of the manipulator with
all levels of joint constraints, based on the aforementioned
discussions, we have the equilibrium points in a different order
as follows:

wð1Þd ¼ PΩ1 −k1JT r − rdð Þ
� �

wð2Þd ¼ PΩ2 −k2 wð1Þ − wð1Þd
� �� �

wð3Þd ¼ PΩ3 −k3 wð2Þ − wð2Þd
� �� �

  ⋮

wðiÞd ¼ PΩi −ki wði−1Þ − wði−1Þd

� �� �

  ⋮

wðn−1Þ
d ¼ PΩn−1 −kn−1 wðn−2Þ − wðn−2Þ

d

� �� �

wðnÞ ¼ PΩn −kn wðn−1Þ − wðn−1Þ
d

� �� �

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

where PΩ1ð⋅Þ; PΩ2ð⋅Þ; PΩ3ð⋅Þ; …; PΩið⋅Þ; …; PΩn−1ð⋅Þ; PΩnð⋅Þ
denote the piecewise linear projection function arrays for the
solution sets Ω1, Ω2, Ω3, …, Ωi, …, Ωn−1, Ωn in different
levels of time derivatives for joint variables, and k1, k2, k3, …,
ki, …, kn−1, kn denote the convergence scaling parameters for
desired equilibrium points in different levels of time derivatives
for joint variables, which are all positive scalars.

In order to track the aforementioned equilibrium points in
different levels, we first define the following state variables for
constructing a state‐space dynamic model which can describe
the time derivatives of different orders for the state variables of
the recurrent neural network solver

x0 ¼ wð0Þ

x1 ¼ wð1Þ

x2 ¼ wð2Þ

  ⋮
xn−1 ¼ wðn−1Þ

8
>>>><

>>>>:

ð6Þ

The state‐space dynamic model is constructed as follows:

_x0¼ x1
_x1 ¼ x2
_x2 ¼ x3
  ⋮

_xn−2 ¼ xn−1

_xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �h i

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð7Þ

Therefore, the equilibrium points can be described by the
state variables as follows:

wð1Þd ¼ PΩ1 −k1JT r − rdð Þ
� �

wð2Þd ¼ PΩ2 −k2 x1 − wð1Þd
� �� �

wð3Þd ¼ PΩ3 −k3 x2 − wð2Þd
� �� �

  ⋮

wðiÞd ¼ PΩi −ki xi−1 − wði−1Þd

� �� �

  ⋮

wðn−1Þ
d ¼ PΩn−1 −kn−1 xn−2 − wðn−2Þ

d

� �� �

wðnÞ ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

Next, we define the congregation state variable vector as
the following form

xn−2 ¼

x0
x1
x2
⋮

xn−2

2

6
6
6
6
4

3

7
7
7
7
5
: ð9Þ

Thus, we can get the following state‐space dynamic equations

_xn−2 ¼ f xn−2; xn−1ð Þ

_xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �

8
<

:
ð10Þ

where f(⋅) denotes themapping function arraywhich is composed
of the linear projection function arrays PΩ1ð⋅Þ; PΩ2ðÞ;…;

PΩn−1ð⋅Þ. The first equation is a fast‐manifold relative to the
second equation when kn ≫ 1. Applying a singular perturbation
analysis [28], we conclude the following slow manifold _xn−2 with
the faster manifold _xn−1 as follows:

_xn−2 ¼ f xn−2; xn−1; 1=knð Þ

_xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �

8
<

:
ð11Þ
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where 0 < 1/kn ≤ 1. We expect the manifold system, which is
also a recursive recurrent neural network solver, can converge
to the equilibrium points when dealing with the kinematic
control of the manipulator system with high‐level joint con-
straints involved as shown in Figure 1. In the recurrent neural
networks with different solution sets, the higher order desired
target variables are gradually generated as the inputs until the
highest desired one is satisfied, and then the resolved joint
angular variables in descending orders are generated until the
resolved joint velocity variable is obtained. In this manner,
lower order desired end‐effector variable is acting as the input
to the recurrent neural network model with a corresponding
solution set to generate the output as the higher order desired
end‐effector variable, and higher order desired joint angular
variable is acting as the input to the recurrent neural network
model with the corresponding solution set to generate the
output as the lower order joint angular variable. The overall
computational complexity depends on the calling times of the
primal‐dual neural networks, but the dimension of the network
variables is not increased which does not increase the
complexity of each single constrained optimization. In the
ensuing sections, we present the stability analysis and show the
convergence properties.

4 | THEORETICAL ANALYSIS

In this section, we present a theoretical analysis on the solution
of the control actions by the aforementioned recursive neural
network based on the manifold system with stability and
convergence results provided.

4.1 | Constraint compliance analysis

For the manifold system equations

_xn−2 ¼ f xn−2; xn−1; 1=knð Þ

_xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �

8
<

:
ð12Þ

It can be rewritten as

_xn−2 ¼ f xn−2; xn−1; 1=knð Þ

_xn−1 ¼ knPΩ0n − xn−1 − wðn−1Þ
d

� �� �

8
<

:
ð13Þ

where solution set cone Ω0n is scaled by the parameter kn from
the original solution set cone Ωn.

Therefore, the equations above can be equivalently

_xn−2 ¼ f xn−2; xn−1; 1=knð Þ

1
kn

_xn−1 ¼ PΩ0n − xn−1 − wðn−1Þ
d

� �� �

8
><

>:
ð14Þ

Recall the stability properties of singular perturbation system,

if the second equation 1
kn

_xn−1 ¼ PΩ0n − xn−1 − wðn−1Þ
d

� �� �
is

asymptotically stable with 0 < 1/kn ≤ 1, then the first equation
_xn−2 ¼ f xn−2; xn−1; 1=ð knÞ can be exponentially stable. It means
that

_xn−2 ¼ f xn−2; xn−1; 1=knð Þ

_xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �

8
<

:
ð15Þ

is stable at least _xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �
is asymp-

totically stable, that is, _xn−1 → 0 and xn−1 → wðn−1Þ
d make

_xn−2 → 0. So such a recursive procedure repeats until the final
equilibrium state is achieved, that is, _x1 → 0 and x1 → wð1Þd
make _x0 → 0, and the desired path rd can be tracked by the
manipulator system.

4.2 | Stability and convergence analysis of
intermediate variables for high‐order joint
constraints

Review the second equation of the manifold system

_xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �
: ð16Þ

Now we analyse its stability and convergence for the so-
lution. Define a Lyapunov function V ¼ kxn−1 − wðn−1Þ

d k
2
=2,

and its time derivative is

_V ¼ xn−1 − wðn−1Þ
d

h iT
_xn−1: ð17Þ

According to the definition of the piecewise linear projec-
tion function PΩnð⋅Þ, we have

F I GURE 1 Flow chart of the proposed recursive recurrent neural network model for kinematic control with different level of physical constraints satisfied
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kPΩn −kn xn−1 − wðn−1Þ
d

� �� �
þ kn xn−1 − wðn−1Þ

d

� �
k
2

≤ k2nkxn−1 − wðn−1Þ
d k

2
ð18Þ

That is

�
�
�
�PΩn −kn xn−1 − wðn−1Þ

d

� �� ���
�
�

2

þ k2nkxn−1 − wðn−1Þ
d k

2

þ 2kn PΩn −kn xn−1 − wðn−1Þ
d

� �� �h iT
xn−1 − wðn−1Þ

d

� �

≤ k2n

�
�
�
�xn−1 − wðn−1Þ

d

�
�
�
�

2

ð19Þ

Thus, we have

�
�
�
�PΩn −kn xn−1 − wðn−1Þ

d

� �� ���
�
�

2

þ 2kn PΩn −kn xn−1 − wðn−1Þ
d

� �� �h iT
xn−1 − wðn−1Þ

d

� �
≤ 0

ð20Þ

As the following inequality always holds

�
�
�
�PΩn −kn xn−1 − wðn−1Þ

d

� �� ���
�
�

2

≥ 0

For the residual term, we have

PΩn −kn xn−1 − wðn−1Þ
d

� �� �h iT
xn−1 − wðn−1Þ

d

� �
≤ 0 ð21Þ

that is,

_V ≤ 0 ð22Þ

which is a negative definite. According to Lyapunov theory, as
the Lyapunov function V is a positive definite, the second
equation of the manifold system is asymptotically stable.

According to LaSalle's invariant set principle [28] and lett-
ing _V ¼ 0, it yields

PΩn −kn xn−1 − wðn−1Þ
d

� �� �h iT
xn−1 − wðn−1Þ

d

� �
¼ 0 ð23Þ

Since the following inequality holds

�
�
�
�PΩn −kn xn−1 − wðn−1Þ

d

� �� ���
�
�

2

þ 2kn PΩn −kn xn−1 − wðn−1Þ
d

� �� �h iT
xn−1 − wðn−1Þ

d

� �
≤ 0

ð24Þ

we can obtain

PΩn

�
− kn xn−1 − wðn−1Þ

d

� �
¼ 0 ð25Þ

Review the definition of the linear projection operator PΩn,
the equation above is equivalent to

arg min
z∈Ωn

�
�
�
�zþ kn xn−1 − wðn−1Þ

d

� ���
�
�¼ 0 ð26Þ

Therefore, we have
�
�
�
�kn xn−1 − wðn−1Þ

d

� �
k
2 ≤ kzþ kn xn−1 − wðn−1Þ

d

� ���
�
�

2

; ∀z ∈ Ωn

ð27Þ

That is

kzk2 þ 2knzT xn−1 − wðn−1Þ
d

� �
≥ 0;∀z ∈ Ωn ð28Þ

For the inequality above, there exists a value ρ > 0 such that

kzk ¼

�
�
�
� − ρ xn−1 − wðn−1Þ

d

� ���
�
�

2
�
�
�
�xn−1 − wðn−1Þ

d

�
�
�
�

≤ ρ ð29Þ

which yields

�
�
�
�ρ xn−1 − wðn−1Þ

d

� ���
�
�

2

4
�
�
�
�xn−1 − wðn−1Þ

d

�
�
�
�

2

− kn
ρ xn−1 − wðn−1Þ

d

� �

kxn−1 − wðn−1Þ
d k

2

0

@

1

A

T

xn−1 − wðn−1Þ
d

� �
≥ 0

ð30Þ

Thus, we can get the following inequality
�
�
�
�xn−1 − wðn−1Þ

d

�
�
�
� ≤

ρ
4kn

ð31Þ

Recall that the value of ρ can be chosen to be as small as
possible and parameter kn is large enough, and thus the
inequality holds for any ρ > 0. This implies that

�
�
�
�xn−1 − wðn−1Þ

d

�
�
�
�→ 0 ð32Þ

that is,

xn−1 → wðn−1Þ
d ð33Þ
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In addition to the stability analysis, nowwe show that xn−1 can
converge to wðn−1Þ

d , that is, the equilibrium point can be got as

xn−1 ¼ wðn−1Þ
d . In this case, we can substitute xn−1 ¼ wðn−1Þ

d into

_xn−2 ¼ f xn−2; xn−1; 1=kn−1ð Þ ð34Þ

and then we obtain

_xn−2 ¼ f xn−2;w
ðn−1Þ
d ; 1=kn−1

� �

_xn−1 ¼ PΩn −kn xn−1 − wðn−1Þ
d

� �� �

8
><

>:
ð35Þ

Recursively, we have the following equations for the
manifold system in the similar form

_xn−3 ¼ f xn−3; xn−2; 1=kn−1ð Þ

_xn−2 ¼ PΩn−1 −kn−1 xn−2 − wðn−2Þ
d

� �� �

8
<

:
ð36Þ

and the convergence relationship

�
�
�
�xn−2 − wðn−2Þ

d

�
�
�
� ≤

ρ
4kn−1

ð37Þ

which indicates xn−2 → wðn−2Þ
d with a small enough value ρ and

a large enough value kn−1.
Repeat the similar derivation procedure as for

_xn−3; _xn−4;…; _x2, we can get

kxn−3 − wðn−3Þ
d k ≤

ρ
4kn−2

kxn−3 − wðn−3Þ
d k ≤

ρ
4kn−2

⋮

kx2 − wð2Þd k ≤
ρ
4k3

and the convergence solution xn−3 → wðn−3Þ
d , xn−4 → wn−4

d , ⋯,
x2 → wð2Þd .

Repeat the same procedure until concerning _x1, we can
finally get

_x0 ¼ f x0; x1; 1=k2ð Þ

_x1 ¼ PΩ2 −k2 x1 − wð1Þd
� �� �

8
<

:
ð38Þ

with the convergence relationship

kx1 − wð1Þd k ≤
ρ
4k2

ð39Þ

showing that x1 → wð1Þd .

Generally, based on the aforementioned derivations, we can
summarise that for the manifold system equation

_xn−i ¼ f xn−i; xn−iþ1; 1=kn−iþ2ð Þ

_xn−iþ1 ¼ PΩn−iþ2 −kn−iþ2 xn−iþ1 − wðn−iþ1Þ
d

� �� �

8
<

:
ð40Þ

it can produce

kxn−iþ1 − wðn−iþ1Þ
d k ≤

ρ
4kn−iþ2

ð41Þ

and we can conclude that xn−iþ1 ¼ wðn−iþ1Þ
d where i = {1, 2,

…, n}.

4.3 | Stability and convergence analysis for
the end effector in tracking path

After showing the stability and convergence of the state‐space
dynamic systems with intermediate variables for high‐order
constraints, we still need to analyse the stability and conver-
gence properties for the end effector of the manipulator
system to track the desired path. According to the velocity
kinematics equation and the proposed recursive recurrent
neural network solver, we define the term e = r − rd as the
tracking error of the end effector of the manipulator, and we
have

_r ¼ JPΩ1 −k1JT r − rdð Þ
� �

¼ JPΩ1 −k1JT e
� �

ð42Þ

As _e¼ _r − _rd ¼ _r provided that the _rd is constant, thus the
equation above further becomes

_e¼ JPΩ0 −k1JT e
� �

ð43Þ

Define a Lyapunov function V = ‖e‖2/2, and its time de-
rivative is

_V ¼ _eT e¼ JPΩ1 −k1JT e
� �� �T

e ð44Þ

According to the definition of the projection operation, we
have

kPΩ1 −k1JT e
� �

þ k1JT ek2 ≤ kk1JT ek2 ð45Þ

As the following inequality holds

kPΩ1 −k1JT e
� �

þ k1JT ek2

¼ kPΩ1 −k1JT e
� �

k
2
þ kk1JT ek2

þ 2 PΩ1 −k1JT e
� �� �T

k1JT e
� �

≤ kk1JT ek2
ð46Þ

Thus, we have
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kPΩ1 −k1JT e
� �

k
2 ≤ −2 PΩ1 −k1JT e

� �� �T
k1JT e
� �

ð47Þ

which leads to

JPΩ1 −k1JT e
� �� �T

e ≤ 0 ð48Þ

Therefore, we have

_V ≤ 0 ð49Þ

which indicates that the tracking system is stable.
Next, we again use LaSalle's invariant set principle [28] and

force _V ¼ 0, and then it yields

JPΩ1 −k1JT e
� �� �T

e¼ 0 ð50Þ

As

kPΩ1 −k1JT e
� �

k
2 ≤ −2 PΩ1 −k1JT e

� �� �T
k1JT e
� �

ð51Þ

we can get

PΩ1 −k1JT e
� �

¼ 0 ð52Þ

The equation above can be equivalent to

arg min
y∈Ω1
kyþ k1JT ek ¼ 0 ð53Þ

Therefore, we have the following inequality

kk1JT ek2 ≤ kyþ k1JT ek2; ∀y ∈ Ω ð54Þ

That is

kyk2 þ 2k1yT JT e ≥ 0; ∀y ∈ Ω ð55Þ

There exists a value ρ > 0 such that

F I GURE 2 Tracking performance of circle and square paths by the proposed method.
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k − ρJT ek
2kJT ek

≤ ρ ð56Þ

which yields

k − ρJT ek2

4kJT ek2
þ 2k1

ρJT e
2kJT ek2

 !T

JT e ≥ 0 ð57Þ

Therefore, we have

kJT ek ≤
ρ
4k1

ð58Þ

Recall that the value of ρ can be chosen to be as small as
possible and k1 > 1 can be enlarged. This implies that

kJT ek→ 0 ð59Þ

that is,

JT e → 0 ð60Þ

If the Jacobian matrix is full rank, which means the
manipulator will not fall into the singularity situation during
motion control process, then we have

e → 0 ð61Þ

which indicates that the tracking error of the end effector of the
manipulator can converge to zero.

5 | RESULTS

In this section, the proposed recursive recurrent neural network
(10) based on the manifold system is utilised to control the
manipulator with fifth‐order joint variable constraints, that is,
θ−
1 ≤ _θ ≤ θþ1 , θ−

2 ≤ €θ ≤ θþ2 , θ−
3 ≤ θð3Þ ≤ θþ3 , θ−

4 ≤ θð4Þ ≤ θþ4 and
θ−
5 ≤ θð5Þ ≤ θþ5 . The desired targets for the manipulator to track
are circle and square paths. In order to perform such kinematic
control with these joint constraints, the resultant recursive
recurrent neural network controller is

_x3 ¼ f x3; x4ð Þ

_x4 ¼ PΩ5 −k5 x4 − wð4Þd
� �� �

8
<

:
ð62Þ

According to aforementioned analysis, controller (62)
depicted by recurrent neural network recursively updates to
produce _x2; _x3

� �
, _x1; _x2
� �

and _x0; _x1
� �

to perform the path
tracking tasks and ensure the constraints of different orders are
satisfied during control. The solution sets Ω1, Ω2, Ω3, Ω4 and
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F I GURE 3 Joint variables of different orders in motion planning of the
manipulator for circle path tracking by the proposed method.
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F I GURE 4 Joint variables of different orders in motion planning of the
manipulator for circle path tracking by the pseudoinverse method.
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Ω5 are also generated to correspond the joint variable con-
straints in different orders.

5.1 | Simulation setup and parameter
configuration

In the simulation, we evaluate the performance for the Kuka
manipulator by the proposed method. The forward kinematics
modelling of the manipulator is established based on the D‐H
table in ref. [2].

For the circle path tracking task, the radius of the circle is
0.15 m, and the parameters for the proposed recursive recurrent
neural network are configured as follows: k1 = 100, k2 = 100k1,
k3 = 200k1, k3 = 200k1, k4 = 200k1, k5 = 200k1, ϵ1 = 0.0001, ϵ2
= 0.9, ϵ3 = 0.8, ϵ4 = 0.7, ϵ5 = 0.7. The joint constraints of
different orders are set as θ ∈ θ−

0 θþ0
� �

¼ ½−2 2� rad,
_θ ∈ ½−0:2 0:2� rad/s, €θ ∈ ½−0:1 0:1� rad/s2, θ(3) ∈ [−0.1 0.1]
rad/s3, θ(4) ∈ [−0.2 0.2] rad/s4, θ(5) ∈ [−0.2 0.2] rad/s5. The
motion duration is limited to 30 s. From the boundaries of the
joint variable in different orders for the solution sets Ω1, Ω2, Ω3,
Ω4 and Ω5, we have θ−

1 ¼max −0:2;− θ − θ−
0

� �� �
(rad/s) and

θþ1 ¼min 0:2;− θ − θþ0
� �� �

(rad/s), θ−
2 ¼ −0:1 and θþ2 ¼ 0:1,

θ−
3 ¼ −0:1 and θþ3 ¼ 0:1, θ−

4 ¼ −0:2 and θþ4 ¼ 0:2, θ−
5 ¼ −0:2

and θþ5 ¼ 0:2.
For the square path tracking task, the length of the square is

0.20 m, and the parameters for the proposed recursive recur-
rent neural network are configured as follows: k1 = 100, k2 =
1000k1, k3 = 1500k1, k3 = 2000k1, k4 = 2500k1, k5 = 3000k1, ϵ1
= 0.0001, ϵ2 = 1, ϵ3 = 1, ϵ4 = 1, ϵ5 = 1. The joint constraints of
different orders are set as θ ∈ θ ∈ θ−

0 θþ0
� �

¼ ½−2 2� rad,
_θ ∈ ½−0:1 0:1� rad/s, €θ ∈ ½−0:15 0:15� rad/s2, θ(3) ∈ [ − 0.2
0.2] rad/s3, θ(4) ∈ [−0.4 0.4] rad/s4, θ(5) ∈ [−0.5 0.5] rad/s5.
The motion duration is limited to 40 s. From the boundaries of
the joint variable in different orders for the solution sets Ω1,
Ω2, Ω3, Ω4 and Ω5, we have θ−

1 ¼max −0:1;− θ − θ−
0

� �� �

(rad/s) and θþ1 ¼min 0:1;− θ − θþ0
� �� �

(rad/s), θ−
2 ¼ −0:15

and θþ2 ¼ 0:15, θ−
3 ¼ −0:2 and θþ3 ¼ 0:2, θ−

4 ¼ −0:4 and
θþ4 ¼ 0:4, θ−

5 ¼ −0:5 and θþ5 ¼ 0:5.

5.2 | Tracking performance

Figure 2 shows the tracking performance of the manipulator
for circle and square paths by the recursive recurrent neural
network solver (62) with the aforementioned parameters

(a) (b)

(c) (d)

(e) (f)

F I GURE 5 Joint variables of different orders in motion planning of the
manipulator for circle path tracking by the conventional recurrent neural
network method.

0 20 40
-2

-1

0

1

(a)

0 20 40
-0.1

-0.05

0

0.05

0.1

(b)

0 20 40
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(c)

0 20 40
-0.2

0

0.2

(d)

0 20 40
-0.4

-0.2

0

0.2

0.4

(e)

0 20 40
-0.5

0

0.5

(f)

F I GURE 6 Joint variables of different orders in motion planning of the
manipulator for square path tracking by the proposed method.
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configured. From Figure 2a and 2b, we could observe that, the
manipulator can fulfil the path tracking tasks well with its end
effector promisingly following the positions of the paths. As
seen from Figure 2c and 2d, the position errors e = [ex, ey, ez]
between the end effector and the desired paths can be rather
small, with the range being from less than 10 � 10−3 m for the
circle path and less than 8 � 10−3 m for the square path. These
results demonstrate the efficiency of the proposed recurrent
neural network solver based on the manifold system for kine-
matic control of the manipulator in the aspect of tracking
accuracy.

5.3 | Joint constraints

In additional to fulfiling path tracking control, the manipulator
system has to simultaneously follow the joint constraints in
different orders. Figures 3 and 6 show the joint variables of
different orders for circle and square path tracking tasks by the
proposed method, that is, joint angles, joint angular velocity,
joint angular acceleration, joint variable of third order, joint
variable of fourth order, and joint variable of fifth order.

For the circle path tracking task, Figure 3a shows the
revolved joint angle, and Figure 3b‐f show other joint variables
of different orders which have to be within the aforementioned

constraints. Clearly seen from Figure 3, the joint angular ve-
locity _θ successfully falls into [− 0.2 0.2] rad/s, the joint angular
acceleration €θ falls into [− 0.1 0.1] rad/s2, the joint variable of
the third order θ(3) falls into [− 0.1 0.1] rad/s3, the joint variable
of the fourth order θ(4) falls into [− 0.2 0.2] rad/s4, and the joint
variable of the fifth order θ(5) falls into [− 0.2 0.2] rad/s5.
Together with the tracking results of the end effector in Sec-
tion V‐B for circle path tracking, the proposed method is
demonstrated as an efficient way to deal with joint constraints
in high order when fulfiling kinematic control. For compari-
sons, Figures 4 and 5 show the joint variables of different or-
ders based on the pseudoinverse method and the conventional
recurrent neural network method in the circle path tracking
tasks, and it can be observed that, when encountering the
higher order (>= 2) joint constraints (shown in Figures 4c‐f
and 5c‐f, these two methods cannot work well as the higher
order joint variables obviously exceed the corresponding joint
limits.

For the square path tracking task, Figure 6a shows the
revolved joint angle, and Figure 6b‐f show other joint variables
of different orders which have to be within the aforementioned
constraints. Clearly seen from Figure 6, the joint angular ve-
locity _θ successfully falls into [ − 0.1 0.1] rad/s, the joint
angular acceleration €θ falls into [ − 0.15 0.15] rad/s2, the joint
variable of the third order θ(3) falls into [ − 0.2 0.2] rad/s3, the

(a) (b)

(c) (d)

(e) (f)

F I GURE 7 Joint variables of different orders in motion planning of the
manipulator for square path tracking by the pseudoinverse method.
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(c) (d)

(e) (f)

F I GURE 8 Joint variables of different orders in motion planning of the
manipulator for square path tracking by the conventional recurrent neural
network method.
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joint variable of the fourth order θ(4) falls into [ − 0.4 0.4] rad/
s4, and the joint variable of the fifth order θ(5) falls into [ − 0.5
0.5] rad/s5. Together with the tracking results of the end
effector in Section V‐B for square path tracking, the proposed
method is demonstrated as an efficient way to deal with the
joint constraints in high order when fulfiling kinematic control.
Furthermore, Figures 7 and 8 show the joint variables of
different orders based on the pseudoinverse method and the
conventional recurrent neural network method in the square
path tracking tasks, respectively and it can be observed that,
when encountering the higher order (>= 2) joint constraints
(shown in Figure 7c‐f and Figure 8c‐f), these two methods
cannot work well as the higher order joint variables evidently
exceed the corresponding joint limits.

To summarise, from all these results including comparisons,
we can conclude that the proposed recursive neural network
method is efficient and superior for the manipulator control
with high‐order joint constraints.

6 | CONCLUSION

Due to physical limitations and actuation saturation of
manipulator joints, the involvement of joint constraints for
kinematic control of manipulators is essential and critical. In
this work, for the first time, a novel recursive recurrent network
model is proposed to solve the kinematic control issue for
manipulators with different levels of physical constraints, and
the proposed recursive recurrent neural network model can be
formulated as a new manifold system to ensure a control so-
lution within all of the joint constraints in different orders.
Theoretical analysis shows the stability and convergence of the
purposed recursive recurrent neural network and its conver-
gence of solution. Simulation results further demonstrate the
effectiveness and superiority of the proposed method in end‐
effector path tracking control under different levels of joint
constraints based on the Kuka manipulator system.
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