
mathematics

Article

Evolving Deep Learning Convolutional Neural Networks for
Early COVID-19 Detection in Chest X-ray Images

Mohammad Khishe 1 , Fabio Caraffini 2,* and Stefan Kuhn 3

����������
�������

Citation: Khishe, M.; Caraffini, F.;

Kuhn, S. Evolving Deep Learning

Convolutional Neural Networks for

Early COVID-19 Detection in Chest

X-ray Images. Mathematics 2021, 9,

1002. https://doi.org/10.3390/

math9091002

Academic Editor: Alessandro

Niccolai

Received: 30 March 2021

Accepted: 26 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronic Engineering, Imam Khomeini Marine Science University of Nowshahr,
Nowshahr 16846-13114, Iran; m_khishe@alumni.iust.ac.ir

2 Institute of Artificial Intelligence, De Montfort University, Leicester LE1 9BH, UK
3 Cyber Technology Institute, De Montfort University, Leicester LE1 9BH, UK; stefan.kuhn@dmu.ac.uk
* Correspondence: fabio.caraffini@dmu.ac.uk

Abstract: This article proposes a framework that automatically designs classifiers for the early
detection of COVID-19 from chest X-ray images. To do this, our approach repeatedly makes use
of a heuristic for optimisation to efficiently find the best combination of the hyperparameters of a
convolutional deep learning model. The framework starts with optimising a basic convolutional
neural network which represents the starting point for the evolution process. Subsequently, at most
two additional convolutional layers are added, at a time, to the previous convolutional structure as
a result of a further optimisation phase. Each performed phase maximises the the accuracy of the
system, thus requiring training and assessment of the new model, which gets gradually deeper, with
relevant COVID-19 chest X-ray images. This iterative process ends when no improvement, in terms
of accuracy, is recorded. Hence, the proposed method evolves the most performing network with the
minimum number of convolutional layers. In this light, we simultaneously achieve high accuracy
while minimising the presence of redundant layers to guarantee a fast but reliable model. Our results
show that the proposed implementation of such a framework achieves accuracy up to 99.11%, thus
being particularly suitable for the early detection of COVID-19.

Keywords: COVID-19; heuristic optimisation; deep convolutional neural networks; chest X-rays

1. Introduction

Early detection of COVID-19 is becoming ever more important to prevent patients from
developing pneumonia [1]. Due to the delays with the production and implementation of
the vaccination campaign, prevention plays a major role and a controlled prognosis is only
possible if the protocol therapy [2] is applied since the very early stages. The Polymerase
Chain Reaction (PCR) test is the primary method for detecting COVID-19 as it is more
reliable than any other option available to practitioners in the health & care system [3–6].
However, PCR is laborious, very time-consuming, and sometimes difficult to process due
to shortages of kits and delays in their delivery in many countries worldwide. On the
contrary, X-ray images are broadly available, and scans come with significantly lower costs.

In this light, technology-driven alternative solutions can play a key role in achieving a
more sustainable, logistically simpler, and more timely early detection of this disease. In
the past, the research community in artificial Intelligence (AI) has actively engaged with
the health & care sector and produced relevant neural, fuzzy and evolutionary classifiers
for early diagnosis and prognosis [7–11]. Given the recent exceptional results obtained
with Deep Learning (DL) for image processing, see e.g., [12–15], the most logical choice for
designing early detection systems based on X-ray images is to employ this AI paradigm.
In terms of implementation, the most successful DL architecture seems to be those based
on Convolutional Neural Networks (CNNs), which have already been adopted in recent
studies on COVID-19 detection [4,16–19].

Mathematics 2021, 9, 1002. https://doi.org/10.3390/math9091002 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1024-8822
https://orcid.org/0000-0001-9199-7368
https://orcid.org/0000-0002-5990-4157
https://doi.org/10.3390/math9091002
https://doi.org/10.3390/math9091002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9091002
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9091002?type=check_update&version=2


Mathematics 2021, 9, 1002 2 of 18

Optimal tuning of DL systems is still an unsolved and challenging problem [20,21].
Established approaches to fine-tune parameters of a deep network are based on the for-
mulation of such task as an optimisation problem, then solved numerically with e.g., the
classic Conjugate Gradient (CG) solution method [22], reinforcement learning [23], or
gradient free approaches where the hessian matrix is empirically approximate as in the
“Krylov subspace” descent methods [24,25]. Amongst these, gradient-free methods are
most commonly used as they are easy to implement and fast - hence suitable for scenarios
considering several training samples. However, they require numerous manual parameter
tuning to work optimally and have a sequential nature making them very difficult to
implement in Graphics Processing Units (GPU). CG-based method are in contrast more
accurate but significantly slower, thus requiring multiple CPUs and large amounts of RAM
to be applicable to DL models [26,27].

An alternative approach to train AI models that is currently well-received by the
research community consists in solving the aforementioned optimisation problem with
heuristic algorithms, often nature-inspired ones as those mentioned in Section 2.3, which
have been successfully employed in training support vector machines [28], clustering
algorithms [8,29,30], autoencoders [10,31], fuzzy and neural systems [32,33]. An interesting
approach referred to as “neuroevolution” is based on encoding different network structures
in the form of candidate solutions of a Genetic Algorithm (GA) heuristic [34], thus evolving
the optimal architecture of the network while training it. It is worth mentioning that such
method is currently also available for DL neural models [35]. Similarly, further “evolu-
tionary” classifiers have been proposed e.g., using multi-objective optimisation methods,
as in [9], and more recent nature-inspired heuristics adapted to deal with convolutions
structures [36,37]. Other adaptive convolutional frameworks worth mentioning are e.g., the
“progressive unsupervised learning” strategies in [38–40], where a mechanism is designed
to select a pre-trained deep CNN from a pool, and the “automatic CNN architecture selec-
tion” system proposed in [41] to emphasise the parameters in image classification problems,
which also uses a GA. The latter are based on solid considerations, but do have some flaws
in terms of convergence speed as the employed genetic algorithms require an extremely
high computational budget to converge over the very large scale search space resulting
from encoding entire deep CNNs in the form of candidate solutions. To avoid this a GA
was used in [42] to optimise the hyperparameters of a 3-layer CNN, with promising results.
However, this approach presents a clear limitation as it cannot be applied to all cases
in which a 3-layer structure is not adequate. Generally, the optimal number of layers is
unknown. Hence, it should be preferably found during the training/optimisation process,
as done in [43] where the number of layers is dynamically and gradually increased with a
simple, and slow, mutation-only evolutionary approach.

To overcome the aforementioned limitations, we propose an efficient optimisation-
driven classification framework for early COVID-19 detection. The latter, returns a fine-
tuned convolutional model as a result of a number of subsequent optimisation phases
during which a “growing” DL model is built. This iterative process makes use of the
so-called “biogeography-based optimisation” algorithm, as discussed in Section 2.3, for
evolving classifiers. This proposed approach displays advantages in terms time and
memory complexity and produces a detection system that, once fed with X-ray chest
images, makes a fast decision (i.e., diagnosis) of high accuracy (up to 99.11%). Note that
the end result necessarily uses a CNN architecture, but its structure is not fixed. Depending
on data availability, the system can be restarted to generate the most suitable classifier with
optimised hyperparameters. The main contributions of the proposed approach are

• a system that efficiently discovers DL models with growing depths, with no constraints
on number of layers, thus optimising performances;

• a fast optimisation phase, making this method suitable also in devices plagued by
modest computational capabilities;

• an practical encoding strategy for the convolutional structures to be “evolved” that
allow for a practical model quality evaluation.



Mathematics 2021, 9, 1002 3 of 18

Hence, this piece of research does not aim at replacing PCR completely but at making
the existing X-ray process, which is used anyway, faster and more reliable. By doing this,
the posed method also facilitates decision-making in those uncertain cases that are difficult
to deal with by naked eye, and minimise human error due to the high volume of X-ray
images that radiologists are required to vision in peak periods.

The remainder of this article is organised as as follows:

• Section 2 reports the material and methods used in this study in terms of employed
dataset and optimisation algorithm;

• Section 3 describes all the components forming the proposed system;
• Section 4 shows our results;
• Section 5 comments on the our achievements;
• Section 6 draws the conclusions of this study.

2. Materials and Methods
2.1. COVID-X-ray Dataset

We make use of the COVID X-ray-5k dataset [44]. This currently contains 2084 training
and 3100 test samples amongst chest X-ray and CT images.

Note, that in the original release on 3 May 2020, this database contained 250 X-ray
images of COVID-19 patients, from which 203 images are anterior-posterior view. However,
this is constantly updated. Unlike lateral ones, the selected images are preferable for CVID-
19 detection-as advised in [45] by board-certified radiologists. Moreover, expert radiologists
evaluated the collected images and labelled 184 out of the 203 images as having clear signs
of COVID-19. 100 images were randomly selected to form the test set, and the remaining
84 to form the training set. It should be noted that we do not deal with the remaining cases
here, were experts did not detect clear signs of COVID-19. They require further research.

To be usable in DL models, that set of COVID-19 samples was increased to 420 via data
augmentation techniques such as flipping, application of small rotations and adding small
amount of distortions [45]. Supplementary images from the ChexPert dataset [46] were
then used as non-COVID-19 images. Note that this dataset includes 224,316 chest X-ray
images from 65,240 patients. Most importantly, it is worth highlighting that the considered
non-COVID-19 entries include a variety of scenarios reporting healthy cases as well as
cases of other diseases such as pneumonia. This aspect is key to unbiased training and
makes it possible to understand if the classifier is capable of distinguishing from COVID-19
cases and other pulmonary diseases. From this dataset 2000 and 3000 non-COVID images
were used for the training set and test set, respectively.

A summary of the images in the final (i.e., employed) version the dataset is given in
Table 1.

Table 1. Summary of the employed dataset.

Category COVID-19 Healthy

Training Set 84 (420 after augmentation) 2000
Test Set 100 3000

Figure 1 shows six random sample images from the COVID-X-ray-5k dataset, includ-
ing two COVID-19 and four standard samples.

These images are used to train and validate our model, whose structure is the result
of the iterative process explained in Section 3. The latter involves a number of optimisation
processes where the hyperparameters of an “evolving” convolutional DL structure are
fine-tuned with the optimiser introduced below in Section 2.3.



Mathematics 2021, 9, 1002 4 of 18

Figure 1. Six random sample images from the COVID-X-ray-5k dataset.

2.2. The Neural Network

As noted, CNNs have become the de-facto standard in image processing [47] and have
been used successfully for X-ray analysis [4,11,16,17]. The network which is optimised by
the algorithm lined out in the following section, is therefore a CNN. The type of layers
possible in the network are convolutional, pooling, fully connected, and dropout layers.
Table 2 shows the parameters which are emphasised during the process. These are the
parameters which are typically selected manually when using a CNN. In our case, this
is done using a specific optimisation approach. The resulting network will be called
OptiDCNN in this paper.

According to the standard work on the use of meta-heuristics to tune hyperparameters
of CNNs [42,43], the two most common problems encountered are:

• Underfitting if the CNN is too small.
• Overfitting if the CNN is too large.

Hence, the proposed approach has to start from a small CNN and sequentially grows
it as needed to overcome these two drawbacks. Every time that the depth of the network is
increased, the hyperparameters of the newly added blocks are optimised. This iterative
process stops when adding more layers does not improve the classification performances. In
this light, the returned classifier is optimised and cost-efficient, as requiring the minimum
number of resources in terms of memory and computational cost while guaranteeing
top performances.

Table 2. Hyperparameters emphasised during the evolution of the network.

Name Acronym Admissible Values

Number of Output Channels NOC 8, 16, 32,
64, 128, 256, 512

Convolution Kernel Size CKS 1× 1, 3× 3,
5× 5, 47× 7, 9× 9

Activation Type AT ReLU, Tanh
ELU, SELU

Include Pool IP Yes, No

Pooling Type PT Max pooling,
Average pooling

Batch Normalization BN Yes, No
Insert Skip IS Yes, No

Insert Layer IL Yes, No



Mathematics 2021, 9, 1002 5 of 18

All algorithms were implemented in Matlab. The deep learning toolbox was used for
implementing the neural networks.

We compare OptiDCNN to a number of recently published algorithms. Those are
classic DCNN [48], DeepCovid [49], and MSCAD [50].

2.3. Biogeography-Based Optimisation

Biogeography-Based optimisation (BBO) [51] is a population-based heuristic for opti-
misation, sharing common aspects with several Evolutionary Algorithms (EAs) and Swarm
Intelligence (SI) methods. Indeed, within the BBO framework candidate solutions in the
search space have a probability of being selected for undergoing variation/perturbation
operators, which is a typical feature of EAs [34], while not requiring “parents” to produce
novel trial solutions, as in the SI paradigm [52]. In facts, each solution is perturbed individ-
ually and its new position is kept and compared only to the best candidate solution, xbest,
which gets updated any time a better position is found as in the so called “1-to-1 spawning”
strategy. Like all nature-inspired heuristic approaches [53], BBO is general-purpose and
based on a trial-and-error working logic which is iterated to produce near-optimal solutions
of satisfactory quality - measured in terms of the so-called “fitness” value returned by the
objective function. Note that the latter is commonly referred to as Habitat Suitability Index
(HSI) in the BBO context. However, BBO has some characteristics making it particularly
suitable for the optimisation problem at hand, such as (1) its flexibility in dealing with both
discrete and real-valued optimisation problems, (2) its self-adaptive capabilities and facile-
ness in tuning its parameters, and (3) its algorithmic overhead and converge speed. Indeed,
in [51], BBO is compared to to other classic EAs and SI algorithms in terms of time complex-
ity and convergence capabilities and shown to be among the fastest algorithms under study
while being robust and less keen to prematurely converge or stagnate-drawbacks plagu-
ing also state-of-the-art algorithms [54]. This aspect is key in this study as our objective
functions require the training of DL convolutional architectures of increasing depths-see
Section 3-thus making fast-converging and robust optimisers preferable to those adding
undesired time overheads to the proposed system. Implementation details on the BBO
framework are available in [51,55]. However, for the sake of clarity, it is worth mentioning
that BBO draws its inspiration from the biogeography theory, see [56,57], and exploits it as
a search logic in which the so-called “habitats” encode n-dimensional solutions x in the
search space. Within the biogeography metaphor, each nth design variable forming the
habitat solution (i.e., x[n] with i = 1, 2, 3, . . . n) is referred to as “habitant”. Similarly to
Evolution Strategies [34], each jth habitat x (with j = 1, 2, 3, . . . N where N is the population
size) is associated with some control parameters that evolve and adapt during the optimi-
sation process. These are the emigration (µ[j]) and immigration (λ[j]) probabilities, and the
mutation rates (m[j]), which control the generation of new candidate solutions to explore
the search space to eventually converge within a neighborhood of the optimal solution.
This algorithmic behaviour is obtained by defining the control parameters as monotone
functions such that, in a maximisation context, habitants in a habitat with small HSI have
higher µ and are more likely to emigrate to most promising basin of attractions in the search
space, i.e., where the habitats have higer HSI, and viceversa for the immigration process, i.e.,
high HSI habitats have a small λ thus promoting immigration [58]. This is the case of the
proposed framework, where BBO is used to maximise accuracy. It must be further pointed
out that the objective functions of this study gets altered before each optimisation phase,
see Section 3, and the time required for computing its value can dramatically increase as
the CNN gets deeper. Hence, even if each optimisation process is expected to evolved a
fixed number of hyperparameters, these need to be concatenated to the previously found
optimal hyperparameters, see Section 3.1, to be able and obtain a fitness value. This means
that the optimisation problem changes, despite having the same representation scheme for
the candidate solutions. In this light, having adaptive control parameters plays a major role
and BBO is an optimal candidate due to the fact that only requires three upper-bounds for
the control parameters to be fixed a priori, i.e., the maximum migration rates E and I and



Mathematics 2021, 9, 1002 6 of 18

the initial/max mutation rate value M. Note that E and I are are relative quantities, i.e., if
they all change by the same quantity then BBO’s behavior does not change, thus being less
sensitive to variations and specific tuning [51]. In this light, the only control parameters
that may alter the algorithmic behaviour is M. However, also in this case, we know that
the mutation probability is not playing a major role when the population size is large as it
leads to marginal improvements. For this reason, in the original article [51], the probability
P[j] assigned to each jth individual for being selected to undergo mutation is set to 0 in the
proposed case study, even though and adaptive mechanism for computing and adjusting it
on-the-fly is also proposed (implementation details available in the source code at [59]).
Moreover, potential undesired algorithmic behaviours caused by a wrongly tuned value of
M are mitigated by the fact that the mutation rate is indeed self-adapted as shown below:

m[j] = M
1− P[j]

Pmax
(1)

with Pmax = argmax
j=1,...,N

{1−P[j]}. Similarly, also the emigration and immigration probabilities

are adapted as shown below:

µ[j] = E
j

N
; (2)

λ[j] = I
(

1− j
N

)
. (3)

3. Our Evolutionary Framework for CNNs

Due to the dynamic nature of our goal, a mechanism for preparing CNNs of increasing
depths must be designed. This must be accompanied with an encoding scheme allowing
for such networks to be represented as candidate solutions of the optimisation algorithm
within the search space. In the proposed framework, such solutions represent only a
portion of the whole network. These are evolved with an optimisation algorithm and
added to previously found convolutional models to gradually increase their length and
achieve an optimal design of the final CNN.

With reference to Figure 2, each one of these optimisation rounds occurs in the BBO
block, as this algorithms was chosen for the reasons explained in Section 2.3, which
then passes the best found network architecture to a decision block where it is tested for
convergence. Hence, according to this outcome, the iterative procedure is either ended,
with the resulting network being fed with images to be classified, or continued to the next
phase, where the hyperparamters of the layers are optimised.

Initial Habitat
(P0 – Figure 3a)

BBOConverge?

Initialise Habitat
for the next phase

Train the Model
Detection

(using best
Hyperparameters)

best habitat

No

Yes

Figure 2. A schematic overview of the evolutionary framework.



Mathematics 2021, 9, 1002 7 of 18

Note that the described framework starts with optimising an initial population where
solutions represent networks of the kind indicated in Section 2.2 and having only two
convolutional layers. Their hyperparamteres are randomly allocated. Solutions in the
search space are assessed in terms of the accuracy of the CNN they represent. This requires
the CNN to be evaluated over the validation images of the dataset described in Section 2.1.
So, in simple terms, the accuracy of the CNN model obtained from the validation dataset is
the fitness function value (HSI in the BBO context).

Relevant information for implementing the aforementioned “blocks” of the general
scheme are given in the remainder of this section.

3.1. Encoding the Networks

To represent networks as solutions in the search space, we use vectors containing the
hyperparameters reported in Table 2. These are encoded according to the scheme depicted
in Figure 3. As indicated in Section 2.2, we follow a given network type, but with variable
hyperparameters such as the number of layers, number of neurons, pooling type, activation
function type, number of Pooling Layer (PL), and so on. Each hyperparameter represent
a design variable forming the candidate solution. If the first (randomly generated) CNN
model does not pass the convergence test, a new “phase” is required. This consists of
encoding new layers into candidate solutions and running a further optimisation round.

NOC (a) CKS (a) AT IP? PT BN? (a) NOC (b) CKS (b) BN? (b) IS?

(a) Initial habitat–Phase 0 (P0)

NOC CKS (a) IP? PT BN? (a) IL (b)? NOC (b) CKS (b) B? (b) IS?

(b) Habitat at phase 1 (P1)

Solution at P0 Solution at P1 . . . Solution at Pn

(c) Concatenated solutions of n subsequent phases encoding the nth CNN model

Figure 3. Encoding of the neural networks during the various phases. In phase 0, there are two
convolutional layers, called (a,b). For the abbreviations, see Table 2. In phase 1 and subsequent
phases, which are identical, the activation type is no longer changed (therefore no AT in those phases),
but it can be decided if a second layer is included (IL?). The concatenation of the phases is shown in
subfigure (c). Yes/no hyperparameters are shown with a?

With reference to Figure 3, it can be seen that Phase 0 consists of the evolution of
CNNs having two convolutional layers (i.e., layer a and layer b). In this initial phase,
hyperparameters forming the design variables for the optimiation problem are the first six
from Table 2, where NOC, CKS, and BN are used for layer a and b, giving ten parameters
to emphasise. In all further phases, the parameters are those ten parameters except AT, but
including IL, which determines if one or two layers are included. This gives ten parameters
in every further phase. If a pooling layer is needed (PL = yes), this is be added after the
first convolutional layer. If an skip connection is inserted (IS = yes), it must have a 1× 1
convolution. The skip connection structure is depicted in Figure 4.

Layer a Layer b +

skip

Figure 4. An example of a skip connection.



Mathematics 2021, 9, 1002 8 of 18

In subsequent phases, at most two additional convolutional layers (Layer a and Layer
b) are added according to the scheme of Figure 3b (depicting Phase 1) and randomly
initialised. The newly added parts follow a similar scheme to the one described for Phase 0.
However, these lack the AT field and contain the “Include Layer b?” component. If the
latter is active (i.e., its value is 1), this phase will use two convolution layers. Conversely, if
its value is null, second layer will not be added. In both the cases, the CNN model grows
gradually deeper. An example of this expansion process is displayed in Figure 5.

7× 7 conv. 48

2× 2 pooling

BN

7× 7 conv. 114

BN

Global Max Pooling

Softmax

Best model at P1

7× 7 conv. 48

2× 2 pooling

BN

7× 7 conv. 114

BN

5× 5 conv. 82

2× 2 pooling

BN

Global Max Pooling

Softmax

Best model at P0

Best model at P0

transfer
weights

random
initialisation

Figure 5. CNN grows deeper when a new phase begins (Left: Phase 0, right: Phase 1).

In this graphical representation, the best model obtained in Phase 0 is reported on the
left-hand side. Note that the section inside the dashed box indicates the optimised part,
while the last two blocks are added after the optimisation process to complete the CNN
with the output node. To enter Phase 1, or any subsequent nth phase, the model obtained
in the previous phase gets copied and the new additional layers added as previously
explained to form the structure on the right-hand. The newly and deeper CNN models
are therefore built up by stacking together optimised layers and adding new blocks that
need to be optimised. Their optimisation is not completely independent to the previous
optimisation processes as the fitness function can only be evaluated by considering the
whole structure, and not only its parts. However, new candidate solutions are only formed
by the new parameters. In other words, best solutions returned by BBO in subsequent
phases need to be concatenated to encode the corresponding CNN. From the point of view
of the network, this is equivalent to say that only the optimiser only works on the new layer
while it grows. An example (referring to Phase 1) is shown in the right part of Figure 5.
The gray section is inherited from Phase 0 while the remaining layers in the dashed box



Mathematics 2021, 9, 1002 9 of 18

gets optimised. Figure 6 shows two example phases generating a network. This network
has three convolutional layers, since IL? in the second phase is no, meaning we only add
one more convolutional layer in the second phase. It also includes two pooling layers since
IP? is yes for both phases.

48 7× 7 ELU yes MAX yes 114 7× 7 yes no

(a)

48 7× 7 ELU yes MAX yes 114 7× 7 yes no 82 5× 5 yes MAX yes no 99 1× 1 no no

(b)

Figure 6. Building deeper CNNs by concatenating solutions from performed phases. (a) An example
of solution for P0 encoding the phase 0 CNN of Figure 5 (left), (b) Solutions at P0 and P1 encoding
the phase 1 CNN of Figure 5 (right).

It is worth noting that the encoding schemes described in this section generate two
different search spaces with the size of the optimisation problem being 156,800 for the first
phase, and 78,400 for each subsequent phase. These figures, obtained by timing the numbers
of admissible values for the 10 design variables forming a candidate solution, indicate the
maximum number of network configurations that each phase can generate. Hence, the
proposed framework is capable of generating a vast number of network configurations by
exploring a space of 156,800 + n·78,400 cases over n phases.

3.2. Fitness Function Evaluation

As previously indicated, the accuracy obtained using the training and test data de-
scribed in Section 2.1 is the fitness value assigned to the candidate solutions.

To obtain this value, the CNN encoded by a candidate solution is initialised (the two
final modules shown in Figure 5 have to be attached) and trained to converge. Comparing
the CNNs’ performance based on the test set is preferable, but not many epochs can be
used due to time required to complete this process. However, when the number of epochs
is low, deeper CNNs might have similar or even worse test accuracy than shallower ones.
To overcome this problem, intelligent initialisation is a solution. This motivates our choice
of embedding optimal results from previous parts into the network used in subsequent
phases. This way, the dimensional of the problem does not change after the first phase
(i.e., P0) and the fitness fiction does not require several epochs to return a reliable accuracy
measure. We noted that a CNN that is fitter in the initial training epochs tends to perform
better also in the remaining epochs. This empirical observation let us fix a number of
5 epochs for the fitness evaluation.

3.3. Optimising the Layers

At most two layers need to be optimised by tuning the corresponding hyperparame-
ters. This can be done with a metaheuristic algorithm that can handle discrete values. The
BBO algorithm was employed because of the advantages indicated in Section 2.3, and re-
turned satisfactory results. We empirically ruled out several configurations of the algorithm
and eventually employed an elitist version where the 50% fittest (i.e., CNNs with highest
accuracy) solutions are always carried forward to the next generation. A similar approach
was used for tuning the parameters of the BBO algorithm which confirmed the validity
of the suggested setting in [51]. To achieve the highest possible accuracy, we do employ
the mutation operator. The latter, is applied to individuals selected via the roulette-wheel
selection method [34] where the probability P[j] are obtained with the original self-adaptive
method in [51,59]. For the sake of clarity and applicability, the employed parameters setting
is reported in Table 3. Note that BBO is run for 4000 iterations during each phase of the
proposed framework.



Mathematics 2021, 9, 1002 10 of 18

Table 3. Employed parameters setting for BBO.

Max immigration (I) 1
Max emigration (E) 1

Max mutation rate (M) 0.02

3.4. Convergence Test

The evolving process terminates when there is no more significant enhancement (i.e.,
smaller than 0.01) on validation accuracy while adding more layers. In other words, if the
fitness of the best solution for a generic nth phase is fn, and the one the for the previous
phase was fn−1 such that fn − fn−1 > 0.01, then we found an optimal structure and the
network encoded with a chain of the n + 1 best solutions obtained with the performed
n + 1 phases is returned.

An example is available on Figure 7b, where the described process stops at the 15th

phase with a best solution having a fitness value of 0.9370. This is clearly show a significant
deterioration of the performances given that the fitness function value at phase number 14
was 0.9233, thus having 0.9370− 9233 = 0.0137 > 0.01.

(a) Effect of the optimisation process on the CNN size

(b) Best fitness value per phase trend

Figure 7. The resulting expansion process. In (a) the size of the CNN increases as the number of
its layers grows during the 15 performed phases. In (b) we show the optimisation process. The
decreasing trend at the last 15th phase graphically indicates that the termination criterion (Section 3.4)
is met.



Mathematics 2021, 9, 1002 11 of 18

4. Results

In this section, we describe the neural network ultimately designed by the system.
The performance of this classifier is then evaluated based on accuracy and complexity for
the COVID-19 problem and compared to benchmark methods in this field of study using
three benchmark datasets. Finally, we use the Class Activation Mapping technique to find
discriminative regions in the images.

4.1. The Final Neural Network

Then structure of the DCNN resulting from the optimisation process described before
is shown in Figure 8. On the input greyscale image, 500 convolutions are carried out with a
filter size of 13× 1 and a stride of 4× 1, resulting in 500 grayscale images of 73× 7 pixels.
Following this, a 3× 1 max-pooling is executed, with a 2× 1 stride, producing 500 images
of 36× 7 pixels. This is followed by three convolutional with different filter sizes and one
pooling layer, as reported in Table 4. After that, six extra convolutions are carried out, with
the first five convolutions being padded, resulting in four thousand images. Finally, three
layers of fully connected neurons are utilized, with four thousand, four thousand, and two
neurons, respectively. The outcome value from the final layer is the probability of target
and non-target.

The optimisation of the architecture is shown in Figure 9, which plots the result
of twenty candidate solutions developed gradually for five generations in each phase.
Each corresponding network is trained for five epochs to obtain the fitness value. The
evolution terminates at phase fifteen when the stopping criteria are satisfied. The number
of convolutional layers increases in each phase. Initially, when the algorithm enters
a new phase, there is a significant improvement in the candidate solutions’ accuracy.
This improvement gradually declines in the later stages. This shows that the increase of
convolutional layers can significantly influence the model performance, especially when
the model is relatively shallow and too small to deal with the problem. As the number of
layers increases, the network’s size grows, increasing the network’s capability.

Figure 8. The topology of designed OptiDCNN. The number below of each box indicates the size of
the outcome images, while the one above each box the number of filters used.



Mathematics 2021, 9, 1002 12 of 18

Figure 9. Fitness functions of the 20 fittest solutions returned after each performed phase. For
illustration purposes, 17 phases are reported to show the validity of the proposed stopping criterion.
Indeed, note that the accuracy slightly decreases after phase 15, i.e., layers added at phases 15, 16
and 17 are not needed.

Table 4. The details of layers used in the designed DCNN.

Layer Type No. Filters Size Stride Resulting Dimension

1 Convolution 500 13× 1 4× 1 73× 7× 500
2 Pooling 500 3× 1 2× 1 36× 7× 500
3 Convolution 1000 4× 3 1× 1 33× 5× 1000
4 Convolution 1000 3× 3 2× 2 16× 2× 1000
5 Convolution 2000 2× 1 1× 1 15× 2× 2000
6 Pooling 2000 3× 1 2× 1 7× 2× 2000
7 Convolution (padded) 1181 3× 1 1× 1 7× 2× 1181
8 Convolution (padded) 1181 3× 1 1× 1 7× 2× 1181
9 Convolution (padded) 1181 3× 1 1× 1 7× 2× 1181
10 Convolution (padded) 1181 3× 1 1× 1 7× 2× 1181
11 Convolution (padded) 1181 3× 1 1× 1 7× 2× 1181
12 Convolution 4000 3× 2 1× 1 5× 1× 4000
13 Fully connected (4000 nodes)
14 Dropout (probability = 0.8)
15 Fully connected (4000 nodes)
16 Dropout (probability = 0.8)
17 Fully connected (2 nodes)

4.2. Performance of the Designed Classifier

After training and validating the DCNN using the COVID X-ray-5k dataset, in this
step, we test the trained DCNN using the COVID-X-ray-5k dataset. Since the accuracy
rate alone does not give enough information about the classifier’s performance, Receiver
Operating Characteristic (ROC) curves were calculated by exploiting the classifier on all
the samples in the test dataset, thus producing a probability for each example. Afterward, a
threshold value was introduced, and for each threshold value, the accuracy was calculated.
The computed values were then plotted as a ROC curve. Generally, the area under the
ROC plot indicates the probability of the correct classification. Figure 10 demonstrates
the computed ROC curve for the classification of targets using OptiDCNN and classic
DCNN. The ROC curves indicate that we significantly outperform classic DCNN on the
test dataset.



Mathematics 2021, 9, 1002 13 of 18

Figure 10. TPR curves for OptiDCNN and classic DCNN. The bars indicate the range of the ten
runs performed.

The training was repeated ten times, resulting in training times betweeen five and
eight minutes, and an accuracy of between 89.22% and 93.98% on the validation set. Due to
the extensive range of accuracy values obtained, the ten trained OptiDCNNs are ensembled
by weighted average, using the weights’ validation accuracy. The ensemble OptiDCNN
achieves a validation accuracy of 91.09%, while DCNN had an accuracy of between 78% and
90%, and the resulting ensemble attained an accuracy of 88.3% on the validation dataset.

To further evaluate the OptiDCNN classifier’s performance, more testing data were
produced by adding synthesized noise to the sample images. Figure 11 indicates the
resulting ROC curve based on 2160 samples or ten various noisy realisations, using the al-
gorithms OptiDCNN, classic DCNN, DeepCovid, and MSCAD. As shown in Figure 11, the
OptiDCNN detector represents outstanding diagnostic results compared with other bench-
mark detection approaches. As a comparison, our proposed OptiDCNN provides over
93.5% diagnostic result with less than 6.5% false negative rate, which is an improvement
over results reported by other benchmark classification approaches.

Generally speaking, the precision-recall curve indicates the tradeoff between recall
and precision for various threshold levels. A high area under the precision-recall curve
shows high precision and recall. High precision indicates a low false-positive rate, and
high recall indicates a low false-negative rate. As can be observed from the curves in
Figure 11, DCNN-ALHBBO has a higher area under the precision-recall curves. Therefore,
it indicates a lower false positive and false negative rate than other benchmark classification
approaches.

(a) Precision-recall graphs (b) ROC curves

Figure 11. TPR/FPR graphs (a) and ROC curves (b) for OptiDCNN and other benchmark classifiers.



Mathematics 2021, 9, 1002 14 of 18

4.3. Comparison to Other Classifiers

The obtained accuracy for various classifiers is summarized in Table 5. The OptiDCNN
is evaluated only once for each epoch because the accuracy does not change if the evaluation
is repeated with the same experimental condition. In general, the tests conducted show
that the higher the epoch value, the better is the accuracy. For example, in the first epoch,
compared to DCNN (84.11%), the accuracy increased by 4.01% for MSCAD (88.12%), by
5.18% to OptiDCNN (89.2%9), and by 2.04% for DeepCovid (86.15%). While in the fifth
epoch, compared to DCNN (93.47%), the increase in accuracy is 1.94% for MSCAD (95.41%),
4.09 for OptiDCNN (97.56%), and 0.50% for DeepCovid (93.97%). In the case of 10 epochs,
as reported in Table 4, the increase in accuracy compared to DCNN (97.18%) is only 0.04
for MSCAD (97.22%), 2.67% for OptiDCNN (99.85%), and 0.28% for DeepCovid (97.46%).

Table 5. Accuracy and standard deviation ‘STD’ for benchmark networks.

Epoch OptiDCNN MSCAD DeepCovid DCNN

Accuracy STD Accuracy STD Accuracy STD Accuracy STD

1 89.63 N/A 88.12 0.41 87.26 0.33 84.11 0.75
2 93.11 N/A 92.11 0.37 91.33 0.21 89.22 0.31
3 96.15 N/A 93.12 0.31 92.09 0.22 91.11 0.38
4 97.22 N/A 94.62 0.24 92.89 0.32 92.47 0.11
5 97.27 N/A 95.41 0.18 93.55 0.09 93.47 0.29
6 98.41 N/A 95.92 0.17 95.25 0.18 94.02 0.39
7 98.55 N/A 96.11 0.16 96.13 0.19 95.17 0.19
8 98.88 N/A 96.77 0.12 97.24 0.11 96.58 0.21
9 99.01 N/A 96.99 0.09 98.11 0.15 96.76 0.09
10 99.11 N/A 97.22 0.15 98.22 0.09 97.18 0.11

4.4. Class Activation Mapping

In addition to the accuracy of the classification, we also look at finding regions in
the image which contribute to the classification. Class Activation Mapping (CAM) [39] is
used for this. This maps the probability predicted by the DCNN model back to the last
convolutional layer of the corresponding model to emphasize the discriminative regions,
which are unique for each class.

The CAM for a determined image class is the outcome of the activation map of the
Rectified Linear Unit (ReLU) layer following the last convolutional layer. It is identified by
how much each activation mapping contributes to the final grade of that particular class.
The novelty of CAM is the total average pooling layer applied after the last convolutional
layer based on the spatial location to produce the connection weights. Thereby, it permits
identifying the desired regions within an X-ray image that differentiates the class specificity
preceding the softmax layer, which can enhance trust in the results.

Figures 12 and 13 show the discriminative regions for some X-ray images. Figure 12
shows the outcomes for the case marked as ‘Covid-19’ by the radiologist, Figure 13 shows
the outcomes for a ‘normal’ case in Xray images. The OptiDCNN model predicts those
cases correctly, and also indicates the discriminative area for its decision. Clearly, different
regions are emphasised in the Covid-19 and the ‘normal’ cases. This shows that the network
does a useful classification. In a next step, this kind of CAM visualisation can provide a
useful second opinion to the medical specialists and radiology experts and improve their
understanding of deep learning models.

Figure 12. ROI for positive Covid-19 cases using ACM.



Mathematics 2021, 9, 1002 15 of 18

Figure 13. ROI for Normal cases using ACM.

5. Discussion

The network which is the result of the optimisation process shows a typical architecture
for an image classification task. In so far the result is conforming the view that such a
network is a good tool for the purpose. On the other hand, the exact number of layers, their
order, and other hyperparameters are not obvious. For example, the use of pooling layers
after the first and fifth convolutional layers only is quite specific and would probably not
have been chosen manually.

Figure 9 shows how the network develops during the optimisation. It indicates
the result of twenty habitats developing gradually for five generations in each phase.
Each habitat is trained for five epochs to approximate the fitness function. The evolution
terminates at phase fifteen when the stopping criteria are satisfied. The number of layers
increases in each subsequent phase. As expected, when a new phase starts, the accuracy of
the habitats improves significantly. This improvement in performance gradually decreases
in the later stages. This shows that the increase of layers can have a significant effect on the
performance of DCNNs, mainly when CNN is relatively shallow. The evolution clearly
shows that our network is a near optimal network for the purpose.

We have also shown that our network performs better than other classification ap-
proaches. In order to clearly establish the superiority of our network, we have used different
numbers of epochs for training. The results (Table 5) indicate that OptiDCNN represents
the best accuracy for all epochs. Accuracy improvement of OptiDCNN, compared to the
original DCNN, varies for each epoch, with a range of values between 1.93 (the tenth epoch)
up to 5.52 (the first epoch). OptiDCNN is also faster than other approaches, as shown in
Table 6. The computation time for OptiDCNN, compared to the classic DCNN, is in the
range of 97% (for the first epoch: 99.11/102.11) down to 82% times (for the tenth epoch:
934.54/1133.44). It is evident that as the number of epoch increases, the time efficiency of
the ALHBBO is more prominent because the adaptive length of the BBO algorithm leads to
decreasing the complexity of the search space.

Table 6. Computation time (in seconds) and STD for benchmark networks.

Epoch OptiDCNN MSCAD DeepCovid DCNN

Time STD Time STD Time STD Time STD

1 99.11 N/A 102.23 1.01 102.08 0.89 102.11 0.77
2 201.04 N/A 236.03 8.54 255.11 1.54 268.47 4.33
3 302.62 N/A 347.41 2.32 387.55 2.28 299.17 0.53
4 355.13 N/A 421.45 2.01 521.27 2.18 443.49 0.65
5 461.11 N/A 582.47 3.96 533.26 1.32 601.77 3.09
6 555.22 N/A 692.75 1.23 611.75 5.96 721.22 2.01
7 645.39 N/A 797.02 1.02 725.68 4.15 836.75 2.25
8 747.55 N/A 854.43 1.74 805.74 4.02 1007.9 1.53
9 875.35 N/A 964.12 2.01 953.89 6.05 1125.57 5.07
10 934.54 N/A 1112.36 1.97 1211.34 1.33 1133.44 4.25

Achieving a good result with respect to accuracy, precision, or other parameters is cru-
cial for solving the problem. In practice, domain specialists, in our case medical specialists
and radiologists, tend to be sceptical if result cannot be interpreted and justified. We have
therefore used Class Activation Mapping to provide more information about individual



Mathematics 2021, 9, 1002 16 of 18

instances. Since we can reliably identify critical regions in the scans, the network’s decision-
making can enhance the understanding of both medical specialists and data science experts.
This is a step towards explainable AI, a current topic in research and application.

6. Conclusions

In this paper, OptiDCNN was proposed to design an accurate DCNN model for
positive Covid-19 X-ray detection. The designed detector was benchmarked on the COVID-
Xray-5k dataset, and the results were evaluated by a comparative study with classic DCNN,
DeepCovid, and MSCAD. The results indicated that the designed detector is able to present
very competitive results compared to these benchmark models. The concept of CAM was
also applied to detect the virus’s regions potentially infected. It was found to correlate
with clinical results, as confirmed by experts. A few research directions can be proposed
for future work with the OptiDCNN, such as underwater sonar target detection and
classification. These application domains might different kind of heuristics to tackle multi-
objective optimisation problems. The investigation of the chaotic maps’ effectiveness to
improve the performance of the OptiDCNN can be another research direction. Although
the results are promising, further study is needed on a larger dataset of COVID-19 images
to have a more comprehensive evaluation of accuracy rates. Another interesting issue for
further exploration is the use of light or difficult to detect cases, since we have restricted
ourselves to clear cases. Further research should explore how the existing network works
on those cases and how it can be emphasised for them. Finally, to further improve upon the
proposed method, we envisage exploring different optimisation approaches and validation
methods for our model. As we obtained promising results by simply selecting validation
and training images at random, a worth trying approach would be the “repeated random
sub-sampling validation”, also known as Monte Carlo cross-validation [60].

Author Contributions: Conceptualization, all; methodology, M.K.; software, M.K.; validation, F.C.,
S.K.; formal analysis, all; investigation, all; writing—original draft, M.K., F.C. and S.K.; writing—
review and editing, F.C., S.K.; visualisation, M.K., F.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gabutti, G.; d’Anchera, E.; Sandri, F.; Savio, M.; Stefanati, A. Coronavirus: Update Related to the Current Outbreak of COVID-19.

Infect. Dis. Ther. 2020, 9, 241–253. [CrossRef]
2. WHO. What’s New in the Guidelines. 2021. Available online: https://www.covid19treatmentguidelines.nih.gov/whats-new/

(accessed on 3 February 2021).
3. Ün, M.K.; Avşar, E.; Akçalı, İ.D. An analytical method to create patient-specific deformed bone models using X-ray images and a

healthy bone model. Comput. Biol. Med. 2019, 104, 43–51. [CrossRef]
4. Toğaçar, M.; Ergen, B.; Cömert, Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and

structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 2020, 121, 103805. [CrossRef]
5. García-Ruesgas, L.; Álvarez Cuervo, R.; Valderrama-Gual, F.; Rojas-Sola, J.I. Projective geometric model for automatic determina-

tion of X-ray-emitting source of a standard radiographic system. Comput. Biol. Med. 2018, 99, 209–220. [CrossRef]
6. Kengyelics, S.M.; Treadgold, L.A.; Davies, A.G. X-ray system simulation software tools for radiology and radiography education.

Comput. Biol. Med. 2018, 93, 175–183. [CrossRef]
7. Bielby, J.; Kuhn, S.; Colreavy-Donnelly, S.; Caraffini, F.; O’Connor, S.; Anastassi, Z.A. Identifying Parkinson’s Disease through

the Classification of Audio Recording Data. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC),
Glasgow, UK, 19–24 July 2020; pp. 1–7. [CrossRef]

8. Santucci, V.; Milani, A.; Caraffini, F. An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis.
Mathematics 2019, 7, 1051. [CrossRef]

9. Thurnhofer-Hemsi, K.; López-Rubio, E.; Roe-Vellve, N.; Molina-Cabello, M.A. Multiobjective optimization of deep neural
networks with combinations of Lp-norm cost functions for 3D medical image super-resolution. Integr. Comput. Aided Eng. 2020,
27, 233–251. [CrossRef]

http://doi.org/10.1007/s40121-020-00295-5
https://www.covid19treatmentguidelines.nih.gov/whats-new/
http://dx.doi.org/10.1016/j.compbiomed.2018.11.003
http://dx.doi.org/10.1016/j.compbiomed.2020.103805
http://dx.doi.org/10.1016/j.compbiomed.2018.06.016
http://dx.doi.org/10.1016/j.compbiomed.2017.12.005
http://dx.doi.org/10.1109/CEC48606.2020.9185915
http://dx.doi.org/10.3390/math7111051
http://dx.doi.org/10.3233/ICA-200620


Mathematics 2021, 9, 1002 17 of 18

10. Charte, F.; Rivera, A.J.; Martínez, F.; del Jesus, M.J. EvoAAA: An evolutionary methodology for automated neural autoencoder
architecture search. Integr. Comput. Aided Eng. 2020, 27, 211–231. [CrossRef]

11. Togo, R.; Watanabe, H.; Ogawa, T.; Haseyama, M. Deep convolutional neural network-based anomaly detection for organ
classification in gastric X-ray examination. Comput. Biol. Med. 2020, 123, 103903. [CrossRef]

12. Colreavy-Donnelly, S.; Caraffini, F.; Kuhn, S.; Gongora, M.; Florez-Lozano, J.; Parra, C. Shallow buried improvised explosive
device detection via convolutional neural networks. Integr. Comput. Aided Eng. 2020, 27, 403–416. [CrossRef]

13. Bonet, I.; Caraffini, F.; Peña, A.; Puerta, A.; Gongora, M. Oil Palm Detection via Deep Transfer Learning. In Proceedings of the
2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

14. Gasienica-Józkowy, J.; Knapik, M.; Cyganek, B. An ensemble deep learning method with optimized weights for drone-based
water rescue and surveillance. Integr. Comput. Aided Eng. 2021. [CrossRef]

15. Hamreras, S.; Boucheham, B.; Molina-Cabello, M.A.; Benitez-Rochel, R.; Lopez-Rubio, E. Content based image retrieval by
ensembles of deep learning object classifiers. Integr. Comput. Aided Eng. 2020, 27, 317–331. [CrossRef]

16. Mahmud, T.; Rahman, M.A.; Fattah, S.A. CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and
other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput. Biol. Med.
2020, 122, 103869. [CrossRef]

17. Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Rajendra Acharya, U. Automated detection of COVID-19 cases
using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef]

18. Panwar, H.; Gupta, P.; Siddiqui, M.K.; Morales-Menendez, R.; Singh, V. Application of deep learning for fast detection of
COVID-19 in X-Rays using nCOVnet. Chaos Solitons Fractals 2020, 138, 109944. [CrossRef]

19. Apostolopoulos, I.D.; Mpesiana, T.A. Covid-19: Automatic detection from X-ray images utilizing transfer learning with
convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [CrossRef] [PubMed]

20. Aggarwal, C.C. Neural Networks and Deep Learning. A Textbook; Springer International: Cham, Switzerland, 2018.
21. Yun, K.; Huyen, A.; Lu, T. Deep Neural Networks for Pattern Recognition. arXiv 2018, arXiv:1809.09645.
22. Le, Q.V.; Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.; Ng, A.Y. On Optimization Methods for Deep Learning. In Proceedings

of the 28th International Conference on International Conference on Machine Learning, Bellevue, WA, USA, 28–2 July 2011;
Omnipress: Madison, WI, USA, 2011; pp. 265–272.

23. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

24. Vinyals, O.; Povey, D. Krylov Subspace Descent for Deep Learning. In Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, La Palma, Spain, 21–23 April 2012; Lawrence, N.D., Girolami, M., Eds.; PMLR: La Palma,
Spain, 2012; Volume 22, pp. 1261–1268.

25. Olshanskii, M.A.; Tyrtyshnikov, E.E. Krylov Subspace Methods. In Iterative Methods for Linear Systems: Theory and Applications;
Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2014; pp. 1–65. [CrossRef]

26. Kawaguchi, K. Deep Learning without Poor Local Minima. In Proceedings of the 29th International Conference on Neural
Information Processing Systems, Montreal, QC, Canada, 5–10 December 2015; pp. 586–594.

27. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings
of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Dasgupta, S., McAllester, D., Eds.;
PMLR: Atlanta, GA, USA, 2013; Volume 28, pp. 1139–1147.

28. Hu, K.; Jiang, H.; Ji, C.G.; Pan, Z. A modified butterfly optimization algorithm: An adaptive algorithm for global optimization
and the support vector machine. Expert Syst. 2020, 38, e12642. [CrossRef]

29. Yeoh, J.M.; Caraffini, F.; Homapour, E.; Santucci, V.; Milani, A. A Clustering System for Dynamic Data Streams Based on
Metaheuristic Optimisation. Mathematics 2019, 7, 1229. [CrossRef]

30. Demirel, D.; Cetinsaya, B.; Halic, T.; Kockara, S.; Ahmadi, S. Partition-based optimization model for generative anatomy modeling
language (POM-GAML). BMC Bioinform. 2019, 20, 105. [CrossRef]

31. Cho, M.; Dhir, C.S.; Lee, J. Hessian-Free Optimization for Learning Deep Multidimensional Recurrent Neural Networks. In
Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 18–23 December
2014; pp. 883–891.

32. Florez-Lozano, J.; Caraffini, F.; Parra, C.; Gongora, M. Cooperative and distributed decision-making in a multi-agent perception
system for improvised land mines detection. Inf. Fusion 2020, 64, 32–49. [CrossRef]

33. Khishe, M.; Mosavi, M. Classification of underwater acoustical dataset using neural network trained by Chimp Optimization
Algorithm. Appl. Acoust. 2020, 157, 107005. [CrossRef]

34. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computation; Springer: Berlin, Germany, 2003. [CrossRef]
35. Stanley, K.O.; Clune, J.; Lehman, J.; Miikkulainen, R. Designing neural networks through neuroevolution. Nat. Mach. Intell. 2019,

1, 24–35. [CrossRef]
36. Lee, W.Y.; Park, S.M.; Sim, K.B. Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-

free harmony search algorithm. Optik 2018, 172, 359–367. [CrossRef]
37. Rosa, G.; Papa, J.; Marana, A.; Scheirer, W.; Cox, D. Fine-Tuning Convolutional Neural Networks Using Harmony Search. In

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Pardo, A., Kittler, J., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; pp. 683–690.

http://dx.doi.org/10.3233/ICA-200619
http://dx.doi.org/10.1016/j.compbiomed.2020.103903
http://dx.doi.org/10.3233/ICA-200638
http://dx.doi.org/10.1109/CEC48606.2020.9185838
http://dx.doi.org/10.3233/ICA-210649
http://dx.doi.org/10.3233/ICA-200625
http://dx.doi.org/10.1016/j.compbiomed.2020.103869
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1016/j.chaos.2020.109944
http://dx.doi.org/10.1007/s13246-020-00865-4
http://www.ncbi.nlm.nih.gov/pubmed/32524445
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1137/1.9781611973464.ch1
http://dx.doi.org/10.1111/exsy.12642
http://dx.doi.org/10.3390/math7121229
http://dx.doi.org/10.1186/s12859-019-2626-7
http://dx.doi.org/10.1016/j.inffus.2020.06.009
http://dx.doi.org/10.1016/j.apacoust.2019.107005
http://dx.doi.org/10.1007/978-3-662-05094-1
http://dx.doi.org/10.1038/s42256-018-0006-z
http://dx.doi.org/10.1016/j.ijleo.2018.07.044


Mathematics 2021, 9, 1002 18 of 18

38. Bąk, S.; Carr, P.; Lalonde, J.F. Domain Adaptation Through Synthesis for Unsupervised Person Re-identification. In Proceedings
of the Computer Vision–ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.,
Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 193–209.

39. Fan, H.; Zheng, L.; Yan, C.; Yang, Y. Unsupervised Person Re-Identification: Clustering and Fine-Tuning. ACM Trans. Multimed.
Comput. Commun. Appl. 2018, 14. [CrossRef]

40. Qian, X.; Fu, Y.; Xiang, T.; Wang, W.; Qiu, J.; Wu, Y.; Jiang, Y.G.; Xue, X. Pose-Normalized Image Generation for Person
Re-identification. In Proceedings of the Computer Vision–ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 661–678.

41. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Lv, J. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image
Classification. IEEE Trans. Cybern. 2020, 50, 3840–3854. [CrossRef] [PubMed]

42. Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S.H.; Patton, R.M. Optimizing Deep Learning Hyper-Parameters through
an Evolutionary Algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments;
Association for Computing Machinery: New York, NY, USA, 2015. [CrossRef]

43. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-Scale Evolution of Image Classifiers.
In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70,
pp. 2902–2911.

44. Cohen, J.P.; Morrison, P.; Dao, L. COVID-19 Image Data Collection. arXiv 2020, arXiv:eess.IV/2003.11597.
45. Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Deep-covid: Predicting covid-19 from chest X-ray images using deep

transfer learning. arXiv 2020, arXiv:2004.09363.
46. Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al.

Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proc. AAAI Conf. Artif. Intell. 2019,
33, 590–597. [CrossRef]

47. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput.
Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

48. Berg, H.; Hjelmervik, K.T. Classification of anti-submarine warfare sonar targets using a deep neural network. In Proceedings of
the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–5. [CrossRef]

49. Rodríguez, A.; Tabassum, A.; Cui, J.; Xie, J.; Ho, J.; Agarwal, P.; Adhikari, B.; Prakash, B.A. DeepCOVID: An Operational Deep
Learning-driven Framework for Explainable Real-time COVID-19 Forecasting. medRxiv 2020. [CrossRef]

50. Hall, J.J.; Azimi-Sadjadi, M.R.; Kargl, S.G.; Zhao, Y.; Williams, K.L. Underwater Unexploded Ordnance (UXO) Classification
Using a Matched Subspace Classifier With Adaptive Dictionaries. IEEE J. Ocean. Eng. 2019, 44, 739–752. [CrossRef]

51. Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
52. Kennedy, J. Swarm Intelligence. In Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging

Technologies; Zomaya, A.Y., Ed.; Springer: Boston, MA, USA, 2006; pp. 187–219. [CrossRef]
53. Caraffini, F.; Santucci, V.; Milani, A. Evolutionary Computation & Swarm Intelligence; MDPI: Basel, Switzerland, 2020.
54. Yaman, A.; Iacca, G.; Caraffini, F. A comparison of three differential evolution strategies in terms of early convergence with

different population sizes. In LeGO 2018–14th International Global Optimization Workshop; AIP Publishing: Melville, NY, USA, 2019;
p. 020002.

55. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Let a biogeography-based optimizer train your multi-layer perceptron. Inf. Sci. 2014,
269, 188–209. [CrossRef]

56. Hanski, I. Metapopulation dynamics. Nature 1998, 396, 41–49. [CrossRef]
57. Hastings, A.; Higgins, K. Persistence of transients in spatially structured ecological models. Science 1994, 263, 1133–1136.

[CrossRef]
58. Ma, H. An analysis of the equilibrium of migration models for biogeography-based optimization. Inf. Sci. 2010, 180, 3444–3464.

[CrossRef]
59. Simon, D. Biogeography-Based Optimization. 2009. Available online: https://academic.csuohio.edu/simond/bbo/ (accessed on

27 April 2021).
60. Xu, Q.S.; Liang, Y.Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [CrossRef]

http://dx.doi.org/10.1145/3243316
http://dx.doi.org/10.1109/TCYB.2020.2983860
http://www.ncbi.nlm.nih.gov/pubmed/32324588
http://dx.doi.org/10.1145/2834892.2834896
http://dx.doi.org/10.1609/aaai.v33i01.3301590
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1109/OCEANS.2018.8604847
http://dx.doi.org/10.1101/2020.09.28.20203109
http://dx.doi.org/10.1109/JOE.2018.2835538
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1007/0-387-27705-6_6
http://dx.doi.org/10.1016/j.ins.2014.01.038
http://dx.doi.org/10.1038/23876
http://dx.doi.org/10.1126/science.263.5150.1133
http://dx.doi.org/10.1016/j.ins.2010.05.035
https://academic.csuohio.edu/simond/bbo/
http://dx.doi.org/10.1016/S0169-7439(00)00122-2

	Introduction
	Materials and Methods
	COVID-X-ray Dataset
	The Neural Network
	Biogeography-Based Optimisation

	Our Evolutionary Framework for CNNs
	Encoding the Networks
	Fitness Function Evaluation
	Optimising the Layers
	Convergence Test

	Results
	The Final Neural Network
	Performance of the Designed Classifier
	Comparison to Other Classifiers
	Class Activation Mapping

	Discussion
	Conclusions
	References

