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Abstract

A probabilistic approach to phase-field brittle and ductile fracture with random material and
geometric properties is proposed within this work. In the macroscopic failure mechanics, materi-
als properties and spatial quantities (of different phases in the geometrical domain) are assumed
to be homogeneous and deterministic. This is unlike the lower scale with strong fluctuation
in the material and geometrical properties. Such a response is approximated through some
uncertainty in the model problem. The presented contribution is devoted to providing a math-
ematical framework for modeling uncertainty through stochastic analysis of a microstructure
undergoing brittle/ductile failure. Hereby, the proposed model employs various representative
volume elements with random distribution of stiff inclusions and voids within the compos-
ite structure. We develop an allocating strategy to allocate the heterogeneities and generate
the corresponding meshes in two- and three-dimensional cases. Then the Monte Carlo Finite
Element Method (MC-FEM) is employed for solving the stochastic PDE-based model and ap-
proximate the expectation and the variance of the solution field of brittle/ductile failure by
evaluating a large number of samples. For the prediction of failure mechanisms, we rely on
the phase-field approach which is a widely adopted framework for modeling and computing
the fracture phenomena in solids. Incremental perturbed minimization principles for a class of
gradient-type dissipative materials are used to derive the perturbed governing equations. This
analysis enables us to study the highly heterogeneous microstructure and monitor the uncer-
tainty in failure mechanics. Several numerical examples are given to examine the efficiency of
the proposed method.

Keywords: Monte Carlo simulation, phase-field model, random distribution, brittle/ductile
fracture, probabilistic failure.

1. Introduction

Investigation of crack initiation and propagation in brittle and ductile materials is a
topic of intensive research to predict failure mechanisms for various engineering structures.
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These applications experience different failure-modes related to the desired operating
conditions. Hereby, material and geometrical properties are considered to be homogeneous
and deterministic at their macro-structure level. Whereas, strong fluctuation is observed
in those quantities at the microstructures [Il, 2, [3]. This is quite natural as materials
may contain a scatter range in their properties around a mean value. Furthermore, the
well-known tolerances in the industrial manufacturing processes along with their real-life
applications will produce a range of perturbations in the geometric properties. For a
better understanding of the structure variation, consider a real concrete specimen with
different microstructures, illustrated in Figure Herein, a random distribution of the
aggregates and pores within the cement matrix is observed. This can vary from one
point to another at the lower scale due to the segmentation-tolerance of the computer
tomography CT-images, see [4 [5].

For the safety assessment of such engineering applications, a sufficient large safety-
factor is a must in the design process to account for all the uncertainties in failure mechanic
problems. These applications can significantly benefit from a precisely predictive compu-
tational tool along with experimental techniques to model brittle and ductile fracture in
the design phase of products.

The computational modeling of crack propagation can be achieved in a convenient
way by the continuum phase-field approach to fracture, which is based on the regu-
larization of sharp crack discontinuities. Due to its simplicity, this methodology has
gained wide interest and started to be used in the engineering community since 2008.
From there on many scientists have worked in this field and developed phase-field ap-
proaches for finite elements, isogeometric analysis, and lately also for the virtual ele-
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Figure 1: Concrete real specimen with different microstructures. The representative
volume elements (RVEs) at the microscale are consisting of aggregates, pores and cement
matrix (CT-images source: www.baustoff.uni-hannover.de related to [0l [7, 8, 9]).



ment technology. The main driving force for these developments is the possibility to
handle complex fracture phenomena within numerical methods in two and three dimen-
sions. In recent years, several brittle [10, [11], 12, 13|, 14} 5] 16, 17, 18| 19, 20, 21], 22,
23], 241, 25, 26, 27, 28|, 29, 130, 311, 32, B3], 34], 35, 36, 37, 38|, 39, 40, 41, 42] and ductile
[43], 44 45, [7, 146, [47, 48, 149, 50, 511, 52], 53] 54], 55| 56, 57, 58, 59] phase-field fracture for-
mulations have been proposed in the literature. These studies range from the modeling of
2D /3D small and large strain deformations, variational formulations, multi-scale/physics
problems, mathematical analysis, different decompositions, and discretization techniques
with many applications in science and engineering. All these examples and the citation
therein demonstrate the potential of phase-field for crack propagation.

Due to the deterministic nature of most phase-field approaches, non-unique solutions
are explored for the material, geometric, and meshing perturbation. This raises the fea-
sibility of possible several solutions and their influence on the design process. Hence, a
detailed study of such randomness in those properties along with the associated system
response is inescapable. To this end, we utilize the probabilistic approach to the determin-
istic solution, which gives us an estimation of the bounds of system response. Specifically,
this work is devoted to a rigorous mathematical formulation of the stochastic-based vari-
ational framework of failure mechanisms at the micro-level. The key goal of development
is to predict the failure response of materials for certain randomness and fluctuations of
different phases in the highly heterogeneous microstructure. In this regard, the Monte
Carlo finite element method (MC-FEM) is employed to solve the stochastic PDE-based
model and approximate the expectation and the variance of the solution field of brittle/-
ductile failure by evaluating a large number of samples. In the MC-FEM, finite elements
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are utilized to discretize the computational domain and the random points according to
the probability distribution to model the uncertainty [60, 61, 62]. In order to improve the
convergence of the random points and the computational complexity, quasi Monte Carlo
techniques [63] 64, [65], multilevel Monte Carlo [66] 67, 68, [69] and their combination
[70, [68] are proposed in literature.

Compared to the deterministic modeling, different sources of uncertainty such as fluc-
tuations in experimental devices, noises due to the coupling of the model problems (cap-
turing all physical phenomena from the nano-to-macro scale), and spatial variation of
the material parameters lead to fluctuation in the observed results. A summary of these
sources is given in Figure 2

In the design and manufacturing process, it is essentially worthwhile to consider the
material’s probabilistic behavior using a microstructure. For instance, the concrete ma-
terial properties vary/fluctuate even using a similar manufacturing procedure [71], [72].
Therefore, considering the spatial variation of the concrete elastic properties, fracture
energy, and plastic property (e.g., hardening) provide a more reliable modeling platform.
In the Monte Carlo simulations, we generate random samples (according to the given
distribution) to estimate the possible events (randomness in materials and particles spa-
tial variations) and approximate the relative crack behavior. Of course, more number
of replications will include more possible events (provides more informative data) that
result in a more accurate expected value and variance. For the quasi-brittle materials,
the Monte Carlo finite element method (MC-FEM) was used to model the dependence of
the computed crack probabilities on the type of perturbation in [73], [74} [75], and the poly-
nomial chaos expansion in functionally graded materials with random material properties
is used to model the phase-field fracture, see [76]. In computational mechanics, stochastic
discretization techniques have been employed for variational theory for nonlinear prob-
lems with stochastic coefficients [77, 78 [79] 0], inelastic media under uncertainty [81],
elastic-plastic material with uncertain parameters [82], fatigue crack propagation due to
the inherent uncertainties according to the material properties [83], nonlinear fracture
mechanics of concrete [84], and stochastic fracture response and crack growth analysis of
laminated composites [85]. In addition to MC-FEM, different numerical methods, such as
polynomial chaos expansion (PCE) [86], sparse grid stochastic collocation using Smolyak
algorithm [87, 88], the method of time-separated stochastic mechanics (T'SM) [89, [0, O1]
and stochastic finite element method [92, 03] 04, ©95] with applications to fracture me-
chanics.

Recently, a Bayesian inversion approach as a probabilistic technique for the phase-
field fracturing modeling has been proposed to identify material/model parameters due
to the uncertainty of the fracturing material in [96], coupled with plasticity in [97]. In
stochastic analysis (more specifically MC-FEM) hundreds or thousand forward runs are
necessary to be performed. In numerical optimization using adjoint methods (the adjoint
problem is linear, but is running backward in time) resulting in a high computational
cost. Consequently, the general natural idea is to use dimension reduction techniques, as
proposed in [98]. For reducing the computational costs of the phase-field failure analysis
in a probabilistic framework (mainly Bayesian inversion), a non-intrusive global-local
approach is recently introduced, rather than using fine-scale high-fidelity finite elements
[99]. In this type of concurrent multiscale framework, the phase-field model is solved on
the fine-scale, and a linearized model (without phase-field) is employed on the global scale.



While the fracture propagates, the local and global sub-domains are adjusted dynamically
with the help of an adaptive predictor-corrector procedure, as shown in [100].

To explore the random nature of the material structure and its effect on the failure and
fracture, this contribution first extends the prescribed model in [97] to a stochastic setting.
The developed framework allows us to model the effect of the random distribution of the
particles (densities, positions, size) and the spatial variation of the material parameters.
Next, we will study the effect of the randomness on a local scale, i.e., microscopically, in
different parts of the structure in which crack patterns can occur. The results are extended
to a global approach, i.e., by computing the amount of the necessary forces for failure
initiation and, therefore full fracture. Using several replications enables us to provide an
accurate global pattern. Thus, by taking the expectations, the results can be extended
to the whole structure. Furthermore, we will have an interval (between maximum and
minimum of the forces) to determine how much force (at least) is needed for the fracture in
a part of the domain and applying which amount of forces will give rise to a full fracture.

The rest of the paper is organized as follows. In Section [2| a stochastic phase-field
framework for modeling fracture in brittle and ductile materials will be introduced. In
Section [3} an allocating strategy will be developed to model the random distribution of ag-
gregates/pores and cement matrix in the concrete structure for two- and three-dimensional
simulations. In Section [ we present different multi-dimensional test experiments to
model crack behavior for ductile and brittle concrete using the stochastic framework and
the allocating strategy. Finally, the obtained results are summarized in Section [5

2. Stochastic phase-field modeling of fracture

In this section, the effect of randomness, fluctuation, and variation in phase-field frac-
ture problems will be investigated.

2.1. Primary fields and function spaces

We consider B C R? be an arbitrary solid geometry, § = {2, 3} with a smooth boundary
0B. We assume Dirichlet boundary conditions on Op8 and Neumann boundary conditions
on OyB :=I'y UC, where I'y explains the outer domain boundary and C € R%~! points
out the fracture boundary. Furthermore, we present a probability space (€2, A, P), where
2 indicates the set of elementary events (the sample space), A is the o-algebra of all
possible events, and P: A — [0, 1] is a probability measure. A real-valued random variable
€ :Q — Ris a set of possible events (£2), mapping the probability space to the real
values. A realization w = (w;...w,) is given on the probability space and denote as
n-dimensional random variable. In this work, the randomness points out the stochastic
distribution of the heterogeneity (inclusions, voids), their random number (according to
random distribution), the relative random radius, and fluctuation in material parameters.
The randomness changes the macroscopic [73] as well as the microscopic structure and
affects the corresponding stiffness. We study this effect locally (monitoring the crack
propagation pattern) and globally (the variation of the load-displacement diagram).

Denoting the event w € (), the expectation function can be defined by E[{] :=
/f(w) dP and the variance function is defined by V[¢] := E[¢?] — (E[¢])2. We define
Q

an inner product for set of (£, () as a real-valued random variable (£,() : 2 — R for a
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possible events as a (£,()4 := E[¢(] and the following Lebesgue space of the random
variables using the finite variance

A= PQR) = {6: Q> R: €% = (6,64 = EE) < oo}. (1)

Using the above-mentioned definition, we define the the covariance operator given by
COV(E,C) = E|(€ —E[€]) (¢ — E[C))] = (€ — E[€],¢ — E[c])a. Obviously, the variance
function can be defined as V(¢) = COV((,(). We can set the uncorrelated random
variables when we have COV(€,()=0. A random variable {(x;w) : Q x X — R is related
to the spatial variable & € X and the random variable £ € 2. Considering the fixed
random variable w € Q, {(w, -) indicates the deterministic cases, which is one observation
in the phase-field problem (ductile/brittle).

Considering the random variable w € €2, the response of the material at point * € B
and at time t € T = [0, 7] can be presented by the random displacement field u(x,t;w) :
B x T x Q — R the random crack phase-field d(zx,t;w) : B x T x © — [0,1]. Here,
d(xz,t;-) = 0 and d(z,t;-) = 1 characterize an undamaged and a completely fractured
material state, respectively. The loading time interval can be discretized as

O<ti<ta<---<t,<---<ty=T. (2)

We note that for any variable used from now onward e, = e(¢,). Having a random
variable w, with the purpose of stating variational principles, we introduce the following
function spaces

U:={ucH(B) : wu=u ondpB}, (3)
Vi={deH(B) : d>d, d(t=0)=0}, (4)

where H'(B) = (H 1(5))6 and d,, is the damage value in a previous time instant which
introduces the evolutionary character of the phase-field, incorporating an irreversibility
condition in incremental form.

In the case of von-Mises plasticity theory, we define the plastic strain tensor
eP(x,t;w) : Bx T x Q — R and the hardening variable o, t;w) : B x T x Q — R,.

dev
Here, RO’ := {e € R . €T = e, tr[e] = 0} is the set of symmetric second-order
tensors with vanishing trace. Since, gradient non-local plastic theory is employed here,
the plastic strain tensor is considered as a local internal variable, while the hardening

variable is a non-local internal variable. Therefore, the rate of the hardening variable «a

follows the evolution equation
2
i= 5 ®

At the first time step, a(x, 0, -) can be viewed as the equivalent plastic strain, which starts
to evolve from the initial condition o = 0. Concerning the function spaces, we assume
sufficiently regularized plastic responses, i.e., endowed with hardening and/or non-local
effects, for which we assume e? € Q := L*(B; Rg:j ). Moreover, in view of , it follows
that « is irreversible. Assuming in this section the setting of gradient-extended plasticity,

we define the function spaces

Z:={acH'B) : a=o,+2/3]2[,2€Q, a(t=0)=0}. (6)



The hardening law is thus enforced in incremental form by restricting the solution
space Z where z € e — e (shown as Z.,_.r). Considering the random variable w, the
gradient of the displacement field defines the symmetric strain tensor of the geometrically
linear theory as

elx,t;w) = %[Vu(ac,t;w) + Vu(z, t;w)7]. (7)

In view of the small strain hypothesis and the isochoric nature of the plastic strains, the
strain tensor is additively decomposed into an elastic part € and a plastic part P as

elx,tiw) =e(x, t;w) + eP(x,t;w) with  tr[e] = tr[e°]. (8)

2.2. Variational principles

Let € denote the set of constitutive state variables. In the most general setting con-
sidered in this study, one has

C(x,t;w) :={e,e’, a,d,Va, Vd}, 9)

where the random variable w € € affects the functions (w, «, d). In order to derive the
perturbed variational formulation in the stochastic space, we set the perturbed energy
density function per unit volume W(C(aj; w); q(x; w)), such that

v B[ (ewupa@ia) )] = [ Wewpw), (10)

where q(-) is a random quantity denoting the randomness in the geometry (e.g. inclu-
sions/voids) along with the material parameters. Hereby, for a fixed random variable,
the perturbed energy function is additionally decomposed into a perturbed elastic con-
tribution Wes(- 5 q), a perturbed plastic contribution W,es(-; q), and a perturbed fracture
contribution W,q.(-; q) results in

W(E&; q) :=Wees(e, €7, d, o; q) + Wyias(a, d, Vo, q) + Weree(d, Vd; q), (11)
and therefore by taking the expectation we have

W= E[W] = ]E[welas(€> sp) d: Q; q)} + E[wplas(aa da VOé; q)] + ]E[wfrac(da Vda q)} : (12)

2.3. Computing statistical moments

Let us compute statistical moments for the response observed during different noises
arises from elastic-plastic setting. To do so, we introduce the quantity of interest as
J(u,d,o;w). Considering the stochastic space, M different realizations are employed to
compute the expected value and afterward the variance function as
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For the expected value function, we assume two random variables w and ¢ belong to €.
Then, J(w) and Q(¢) are two random scalar-valued function along with their expected
scalar-valued function E[J] and E[£Q], respectively, so the following properties holds:

e E[J + Q] = E[J] + E[LQ] holds, if both expected values are finite.
e For the constant ¢ € R, we have E[cJ]| = cE[J].

e Considering the Jensen’s inequality and the convex property of the norm function,
we have [[E[J]]| < E[[|J][]-

e Cauchy-Schwarz inequality: E[||JQJ|] < (E [|]3H2H)1/2 (E [HQHQDI/Q.
e Minkowski inequality for the H'-space: (E [||J + Q|| })1/2 < (E [H3H2D1/2 + (E [HQ\|2D1/2.

Regarding the spatial discretization, for a fixed time step t € T, and fixed random variable
w € ), we assume that E, = {E},..., Fyg} is a quasi-uniform mesh defined in B, ~ B
with mesh size h := maxp,cg, diam(E;). For the sake of simplicity, we use lowest order
Calerkin discretization in By, := SL(E,) x Sy (Ep) x SHY(E), where

SUYE) ={uc HY(B) : wu|lgpec P(E) VECcE,},
SyNER) ={de H'(B) : dlpeP(E) VEEE,},
SYE) ={ac H(B) : alpcP(E) VECE,}.

Here P,(E) and P;(F) indicate the vectorial and scalar space of polynomials of total
degrees less or equal than one, respectively [I01]. Hence, we define

Up:={u,€S,"(En) : wplopp=1u}, (13)
V= {dy € Sy ER)  : dp=dy,, dy(t=0)=0}, (14)

Zp = {ah € SYUE ¢ an=an, +/2/3 ], 2 € Q, an(t =0) = o} . (15)

Then, we define the continuous solution space X := U x V x Z with the corresponding
norm || - |[x and the discrete solution space X := Uj x Vj, x Z, which is a subset
of X. Considering a fixed random variable w € €, the quantity J(u,d,a;w) can be
approximated by J,(u,d, o;w) = J(up, dp, ap; w).

In MC-FEM simulations, to obtain an accurate estimation of the stochastic solution,
a sufficiently small mesh size in addition to several number of evaluations are needed. To
this end, we define the Bochner space L?(Q; X) for the function Y, giving

Wl = ([ PGl P@) " =E[IyGwl] (16)

Here, the variance function is given by V() = ||[E[Y] — )7||L2 0.x)- With respect to the
mesh size h the discretization error is computed by

T = (B [u — ) lx + E[d — di] x + [E o — ] | x)- (17)

Let us assume x is a member of (u, d, ), and xj, is one of the approximations (up, dp, ay,).
The following lemma denotes the convergence of the statistical Monte Carlo estimator.



Lemma 1. For the number of samples M, x € L*(Q; X)) satisfies [102]
IEL] — EnclXllzzx) = M2V, (18)

Proof. We use the defined Bochner norm in ({16])
2
N

M
1 %
= — > E[IIER] — x|
=1
1
S )
M

M

1 %

IEI] - ExelIz(acx) = E[||ED] - TS
=1

B[] - xI%] = M2y,
|
As the next step, we can compute the total error denoting the discretization error as

well as the statistical error. Lemma (I controls of the sampling error. The discretization
error also relates to used polynomial order in the finite element method.

Proposition 1. For x € L*(Q; X)) and its finite element approximation x,, we assume
that we have the convergence rate v of the discretization error [103]

IE[x = x,]ll220:x) < ah”, (19)
and we have the upper bound for the variance estimator
Vix,] <0, (20)

where a and b are positive constants, introduced in [103]. For the MC-FEM estimator, we
have the following upper error bound denoting discretization and statistical error

IEX] — Exiclxalllz2@x) < ah? +0M™Y2 = O(h") + O(M™'12). (21)

Proof. By defining the root mean square error (RMSE), employing the triangle inequality
and Lemma [ we will have

RMSE := |[E[x] — Emc[xn]l r20:x)
< [EX] = Elxa]llx + [[Elxn] = Emclxalllz2@:x)
< |Elx = xallx +M72V[xa)] (22)
< ah” +bM~/?
= O(h) +O(M~13).
|
The above-mentioned proposition points out that by reducing the mesh size and in-

creasing number of replications, the total error reduces. Thus, following , for the
couples system of equations (u,d, «), we have

B [u—un] | x < arh™ |[E[d—dp][[x <ah™ [[E[a —an]|x < agh™. (23)

So, by replacing in and by defining ¥ := max{v,, v,, v,}, we will have Z;, < ah*”
where a represents the three positive constants.
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2.4. Perturbed rate-dependent functionals

Herein, an extension of the model proposed in [97] is considered by further perturbing
the energy functional and domain space (the stochastic setting). We can define a per-
turbed pseudo potential energy functional augmented with the random quantity q(z;-)
as following:

E(u, e, a,d; q) rz/W(G;q)dv — Eent(us; q), (24)
B

here &,,; considers the perturbed external loads as

Eert(u; q) ::/T-udv +/ T - uda. (25)
B OnB

The quantity q indicates the perturbed material parameter in the homogeneous and het-
erogeneous structures can be defined using the perturbation value n as

q=4q+70, (26)

where © is a uniformly distributed random variable in [-1, 1], and 77 denotes as the material
parameters variations. For the phase-field fracture in brittle and ductile materials, a set of
parameters, i.e., q € {E, u, K,G., V., H, oy} is given in Table . Denoting the variation
parameter 7, the perturbed materials can be defined point-wise (heterogenous), or for
the whole domain (homogeneous). We use this notation to point out the fluctuation in
the material property (homogeneous/heterogeneous) in addition to the randomness due
to the random distribution of the particles (aggregates/voids).

Considering the effect of the randomness, the energy functional is defined as
g(“) €p7 a, d) = E[/ W(€7 q) dU] - E [gext(u; q)] : (27)
B

Next, to formulate the variational formulation setting, it is required to define the per-
turbed constitutive energy density functions, namely Weqos, Wpias, and Wypqc.

2.4.1. Elastic energy contribution. The elastic energy density function W, in
formulated based on the effective strain energy density (€% q). Here, the per-
turbed effective strain energy density function is additively decomposed into fracturing
and unfracturing parts is employed. Thus, the strain tensor is decomposed into volume-
changing (volumetric) and volume-preserving (deviatoric) to avoid failure in compression
parts, as

e(u, z;w) = e (u, z;w) + €% (u, z; w),

where

€e,vol(

U, T;w) = 1(Ee((u,a};w) DI,
(28)

1
e°(u, xyw) ;=P : e with P:=1- STol and Ly = (6irdju + 0djn).

N | —

The perturbed effective strain energy function v.(e¢; q) reads:

Ve <11(€e;w),12(€e;w); q(w;w)) = <11,Iz;q> + e (11,12; q>, (29)



11

such that

¢e+ = H+[Il]¢50l(11;q) +¢gev(11712;q) and ¢, = (1 —H+[11])¢:Ol(11;®- (30)

Therein, HY[I;(e%w)] is a positive Heaviside function which returns one and zero for
I1(e%w) > 0 and I;(e%w) < 0, respectively. We note that the volumetric and deviatoric
counterpart of energy admits following additive split:

2

K I
vt(lia) = 58 and 0 (L) = (3~ L)), (31)

in terms of the the bulk K and shear modulus u, where I; (g% w) := tr[e€] and Iy (e w) =
tr[(€%)?] denote the first and second invariants. So the total elastic contribution to the
pseudo-energy finally reads

welas(€7 &.p’ da Q; q) = g(d) ¢:(Il> IZ) q) + %_(117 127 q)7 (32)

such that
E |:welas(€7 €p7 da Q; q):| ~ EMC [welas (57 €p7 d7 a; q) ) (E)

where +g(d(x; q)) is the degradation function.

2.4.2. Fracture energy contribution. The phase-field contribution W.q. is ex-
pressed in terms of the crack surface energy density 7, and the regularized fracture length-
scale parameter /s to smooth fracture sharp response. In favor of regularization, following
[12], the sharp-crack surface topology C is modified by a smooth functional C;. The
regularized functional reads

c(d)=E| /B w(d, V) do]. (33)

For w € €, the standard density function for the ~; is defined as

1 (Ad !

v(d,Vd; q) .= — (% +1;Vd - Vd) with ¢; := 4/ vV A(b) db, (34)
Cr f 0

where A(d) is a monotonic and continuous local fracture energy function such that A(0) =

0 and A(1) = 1 where the effect of the randomness is taken into account as well. In the

following, two different accepted formulation denoted as a linear (with elastic stage) and

quadratic (without elastic stage) order are formulated. Hence, for a fixed event w we

define

d = Cf:8/3 AT-1,

Ald, ) = {d2 — ;=2 AT-2. (35)

Thus, the perturbed fracture contribution related to (11)) is computed denoting the
randomness, i.e.,

Wirac(d, Vd; q) := gryi(d, Vd; q)}, (36)

such that
]E[wfrac(d7 Vd; q)} ~ Enc [wfrac(d7 Vd; CI)]a (F)

where gy is a parameter that allows to recover different models. This will be formulated
in Section 2.5.
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2.4.3. Plastic energy contribution. The plastic energy counterpart Wy, is formu-
lated based on an effective plastic energy density denoted as v, in w € 2 for gradient-
extended von Mises plasticity, as:

1 1
Yp(a, Vas q) = §Ha2(a:;w) + 30Y EVo(z;w) - Va(z;w), (37)

here, oy is the initial yield stress, H > 0 is the isotropic hardening modulus and [, is the
plastic length-scale. Thus, the perturbed plastic pseudo-energy density formulated
as:

wplas(‘la da VOé; q) = g<d) wp(a7 VOé; q)7 (38)

such that
E | Wyas (v, d, Vay q)} ~ Ewmc [WpZas(Oéada VOGCI)} (P)

2.4.4. Plastic dissipation. Next, we define the plastic dissipation-potential density
function. This thermodynamically consistent function provides a major restriction on
constitutive equations for elastic-plastic and dissipative materials based on the principle
of maximum dissipation. This thermodynamical restriction is due to the second law of
thermodynamics (Clausius- Planck inequality) within a reversible (elastic) domain in the
space of the dissipative forces. So, let us define dual driving force {s”, —h?} with respect
to the primary fields {e?, a}. Following the classical von-Mises plasticity setting, the yield
surface function reads

1
BP(sP,hP,d; q) == \/3/2 |F?| — h? — g,(d)oy with F? :=dev[s’] = s’ — gtr[sp]I. (39)

Thus, with the yield function at hand, dissipation-potential density function for plastic
response reads

ZI\)plast<épa du d; Q) = Ssup {Sp : ép - hpa ’ ﬁp(sp’ hp; d; q) S 0}7 (40)
{s7,h7}

which follows from the principle of maximum plastic dissipation. Taking supremum of
inequality function yields, as a necessary condition, the primal representation of the
plasticity evolution problem in the form of a Biot-type equation:

{Sp, —hp} € a{s‘z’,d} (/Isplast(ép7 Oé, d7 q) (41)

Considering the effect of the randomness, the dissipation potential functional for plastic
flow defined as

Dyrast (€7, ¢, d; q) = / / B oy dvP(w) = E[ / B st dv]. (42)

QJB B
Following [12], the dissipative function @ms due to viscous resistance forces is defined as
Bois(d, i w) = %dQ(w; W)+ Lo (d) + %dz(w; W) + 1. (&), (43)

Here, n; and 7, are material parameters that characterize the viscous response of the
fracture and plasticity evolution, respectively. In this work, we assumed that the values
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for ny and 7, are not perturbed, so deterministic values are used. As before, a global rate
potential of the dissipative power density with viscous regularized evolution reads

Dvis(d7 04) =K |:/ (/I\)vis(d7 d; q) dv] . (44)
B
The total dissipation potential given by:
D(€; q) = Dyiast(€; q) + Dois(€; q). (Diss)

2.4.5. Minimization principle for the perturbed evolution problem. Here,
the governing equations of the failure analysis for brittle and ductile materials can be
derived from basis of the energy functional by invoking rate-type variational princi-
ples [104]. Hence, the energy functional for the fracturing elastic-plastic solid material is
required for the following potential

. d .
(¢, er,d,azq) : = - E(e, ", d, s q) + D(E, €7, d, &; q) — Eeur (W3 9), (45)

to be minimized. Thus perturbed rate-dependent gradient-extended energy functional is
miminzied through following compact form

d, - f inf f TI(¢, €7, d, ; in.rat
(¢,e7,d,d;q) = arg { inf inf {spa}el(ng , (€,er,d,a;q)}, (min.rate)

—&

2.5. Perturbed incremental functional

In this section, to formulate of transition rules from intact region to the fully damaged
bulk response, degradation function is introduced. Specifically, the fracture phase-field
enters as a geometric internal variable for both elastic and plastic contribution in a simple
quadratic form through following degradation function:

2
g9(d) = (1 - d(q(z;w)))
along with fracture constant g; = 2l;cs1)., where 1), is a specific critical fracture energy.

Next, to further extend a global rate potential form II(u, €?, a, d; q) given in (min.rate)),
in-line with our recent study in [97], a perturbed incremental energy minimization based
on II*(u,e?, a,d; q) is defined on the finite time increment [t,,t,.1], through following
potential

tn+1
[I*(e,e?,d,c;; q) : = / II(g, e, d, c; q) dt
tn

(46)
= E*(e, e, d,a; q) + D*(&,€7,d, c; q) + -, (w; q).
Considering the randomness, we take the expectation from the energy function as
(e, €, d, a; q) :E[/ (W(ea)-W(€,;a) d]
B
+E / 7O 4+ I(d— dn)) dv]
(47)

+ E plast + [+(O( - Oén)> d'l}]

—HE/ (u —u,) dv—i—/ ?-(u—un)da},
N
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with

By = (A= dp) 4 1o (d = dy) + 22 (0 — an?) + T (0 — a), (48)
272 272

and incremental plastic dissipation potential as

~ 1
¥ (€8 di el an;q) = - {S,}l,ﬁ,}{sp (P —€b) =W (a—ay) | BP(sP, WP, d) <0},
(49)

where 7 = t,,.1 —t, > 0 denotes the step length. Here, both plasticity and the phase-field
functions are a function of space € B and w € (). Through the incremental poten-
tial given in at hand, the time-discrete counterpart of the canonical rate-dependent
variational principle in takes the following compact form:

uelU deV {eP,a}cQxZ_, _p

(>}

(e,el,d,a) = arg{ inf inf inf 1" (e, P, d, a; q)} (min.incr)

Accordingly, the global primary fields are determined through the stationarity conditions
of the minimization problem (min.incr): find w € U, o € Z, and d € V such that

( E[/B [o(e,€”,d; q) : e(0u) — f - Su] dv} _E[/aNB

E[/B ( _ \/g|F”(e, & )| + (1 — d)oy + 0T, (a — o)

+(1-d*)Ha+oy2(1-d)*Va- V(éa))(hdv} 50 Via € Z.

F-éuda]:() Vou e U,

E[/ (((1—d)%—d)5d—ﬂ(d—dn)éd—@w.wad)) dv} —0 VodeV,
\ B T
(M)

In the crack driving force function shown as H(x, t; q) is used to impose the damage
irreversibility condition through history field as:

H(x,t;q) = ig[%?ti} 5(@:(:1:, s);q) with D:= C<% — 1> : (H)

where, the Macaulay bracket denotes the ramp function (z) := (z + |z|)/2. Additionally,
¢ > 0 is a scaling parameter to further providing relaxation of the formulation, allowing
to tune the post-critical range [97].

Remark 2.1. So far, we studied ductile phase-field fracture in a stochastic space which is
either elastic-plastic response followed by damage (hereafter E-P-D); or elastic, followed
by elastic-plastic, and then plastic-damage (hereafter E-P-DP). To reduce the model into
a brittle fracture response, it is sufficient that oy — oo and l, — 0 (hereafter E-D) to be
imposed. Additionally, in the case of E-D, we have used AT-2 in , while for E-P-D
AT-1 1is used.
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3. Random allocation of the heterogeneities

In line with [I05] 106, 107], we develop in this section a placing strategy to define
the random position, number, and size (radius) of the heterogeneities (particles) within a
matrix. A uniform probability distribution is assumed for those heterogeneities (namely
voids and inclusions). To this end, a given particle density is firstly considered, then
we follow the procedure described in Algorithm [1] as long as the volumes/areas of both
components(voids "V” and inclusions ”I”) are less than the given density. Furthermore,
we should guarantee that there is no overlap between the particles and that all of them
are fully allocated in the given domain (square/cube). Therefore, for each particle (void
or inclusion), we consider the minimum and maximum coordinates (Zmin/®max) and the
radius (7min/Tmax) in the Cartesian coordinate system as

T = Tyin + 0 (mmax - mmin) and r = Tmin + 0 (Tmax - Tmin) ) (50)

void with void/boundary

*;;dist = 2yry

inclusion with bounda inclusion with inclusion

dist = ZYTZ L

@’

inclusion with void

Figure 3: Allocating process of inclusions (aggregates) and voids (pores) to avoid over-
lapping.
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.a. ‘

¥

Figure 4: The RVE structure with different percentage of inclusions and voids. In the
first row, from left to right, the inclusions and voids densities are (3%+3%), (5%+5%),
(10%+6%), and (15%+7%). In the second row, the inclusions and voids densities are
(20%+8%), (30%+10%), (40%+10%), and (50%+12%).

where the random variable 6 is uniformly distributed between 0 and 1. In such a het-
erogeneous structure, the thickness of the matrix-material can be related to the particles
sizes as well documented in [105] [T06] 107]. Hereby, the allowed minimum thickness of
the matrix-material: a) between the heterogeneities (with radius r;) and the boundary is
considered as 2 - r; and b) between two heterogeneities is assumed as 7 times the size of
the component, as shown in Figure [3| The value of the distribution parameter v depends
on the volume fraction of heterogeneity. To ensure this condition, we enlarge the particles
size to (1 + 7)2r, then we follow the placing strategy to estimate the positions; however,
the radii will be determined without the enlargement. In the numerical examples, we set
~v = 0.1. However, the allocation strategy can be used for different values of v, even v = 0.
In summary, the chosen algorithm for the random distribution of the heterogeneities is
given in Algorithm [I We use the allocating strategy for the two- and three-dimensional
cases based on the explained randomness and the given densities. To study the efficiency
and the accuracy of the allocating algorithm, we produce RVE structures for different
densities of inclusions and voids as shown in Figure [l For the 2D distributions, we will
use quadrilateral meshes and for the 3D ones, the tetrahedral meshes will be employed.

4. Numerical examples

This section demonstrates the performance of the proposed stochastic phase-field ap-
proach for brittle and ductile fracture in one-, two- and three-dimensional cases. As
outlined in Section [T, the materials in standard phase-field problems are assumed to have
a uniform macroscopic structure and properties (globally). However, those properties vary
spatially at the heterogeneous microstructure (locally). In the local approach we monitor
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Algorithm 1 The allocating strategy

o .t ) with e € {V,I}, voids/inclusions percentage: V/T

maz’ " min’ ' max

Inputs: (z

domain B volume (volume), enlargement factor: ~.

Initialization: V=0, I=0,

V=volume xV and I = volume X I

while V<V and I<I

v 9 v v O 9 1 I

L = Lyip + (wmax - wmin) L = Lpax + (wmax - wmin)
v v 0 v v ’ 11 0 I I

T = Thmin + (rmax - Tmin) T = Thin + (Tmax - Tmin)

1) Assume the enlarged aggregates as 2(1 4 )r .

2) No overlap between the voids and aggregates.

3) The particles are within the domain boundary.

4) Determine total fraction of voids and inclusions:
V=V+ir(r')® and I=T+in(r)

5) Checking step I +V < /dw: volume
B
end while

Outputs: Cartesian coordinate: = = [2', |7, radii: » = [V, r!]T.

Table 1: The material parameters for the one-, two- and three-dimensional cases.

Example E[MPa] p[MPa] K [MPa] G.[MPam] v.[MPa] H [MPa] oy [MPa]
1D-brittle 70500 - 0.027 - - -
1D-ductile 70500 - - 30 250 330
2D-brittle - 75100 28010 25 - - -
2D-ductile - 136 500 70300 - 25 300 443
3D-brittle - 121150 80770 0.0027 - -

ZZ
e
Il
o
S
Il
&

vy
=

Il

o
X
=

I
~

Figure 5: Example 1. Geometry and loading setup for the one-dimensional bar.
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the propagation of crack through the matrix material. Whereas, in the global approach,
apart from the crack geometry, we will compute the expected value and the variance of
the force response normal to the top boundary. For this, at time step t € T, we define
the quantity ¥ as

I = Fu, d9 o) = / n-o.ndx Vic N, (51)
OpB | w0

where n is the outward unit vector normal to the Dirichlet boundary dpB.

Note that, in all the simulations we used MATLAB 2021a to solve the system of
equations. Hereby, the computations are done on an AMD EPYC 7H12 64-Core Cluster
Machine with 1 TB RAM.

4.1. One-dimensional brittle and ductile fracture

As the first case study, we consider the material (microscopic) fluctuation in brittle and
ductile fracture. Hereby, a bar of unitary length L = 1 is considered where x € B := [0, 1]
that is initially unstretched and undamaged. Its left end is fixed, i.e., x = 0, while on its
right end, i.e., x = 1, a monotonic displacement increment Az = 1 x 10~° mm is applied
for 151 time steps. The example setup and boundary conditions are shown in Figure [f
Regarding to the finite element mesh size, 300 elements are used and we replicate the
sampling in 400 iterations. The material parameters denoted as q based on deterministic
values q are given in Table

For the stochastic case, we define two scenarios. First, materials have a homogeneous
structure with a given variation. In each simulation, a value of the material parameter

-4
1.2 12 5 x10
1 4
0.8
3
= 0.6 ]
2
0.4
0.2 1
0 ' ' 0 .
0 0.2 0.4 0.6 0.8 1 [} 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
a[mm) x[mm] x[mm)|
1 1.2
0.025
08 1
0.02
0.8
0.6 -
= <06 < 0.015
0.4
0.4 0.01
02 02| 0.005 -
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

xz[mm) z[mm] x[mm)]

Figure 6: Example la (brittle fracture) with 10% variation. The mean value (first col-
umn), 100 different samples (middle), and the variance (third column) of the homogeneous
case (first row) and the heterogeneous case (second row).
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Figure 7: Example 1b (ductile Fracture) with 5% variation. The mean value (first
column), 100 different samples (middle), and the variance (third column) of homogeneous
case (first row) and heterogeneous case (second row).

is determined using . The second possibility is related to the heterogeneity, in which
at each point of the bar, the material parameters are fluctuated (i.e., the point-wise
variation). In other words, we use to estimate the material values at each point.

4.1.1. Brittle fracture. In this numerical test, the Elastic-Damage behavior in one-
dimensional setting will be considered. Specifically, we investigate how the uncertainty
affects the crack-surface. Figure[0] (the first row) shows the mean value and 100 different
crack patterns (using 400 simulations) for the homogeneous case. As the crack phase-field
profile is regularized (using the length scale), only a minor variation around the peak
point (at = 0.5 where the crack starts) is occurred. However, the fluctuation does not
affect the fracture point (zero variance at x = 0.5). In heterogeneous cases, the crack
point has been varied due to the heterogeneity, and the variance is significantly higher
compared to the homogeneous case.

4.1.2. Ductile fracture. In this numerical example, we perform a stochastic analy-
sis on the Elastic-Plastic-Damage behavior in one-dimensional setting of ductile fracture.
Similar to the brittle fracture, two cases are considered, namely homogeneous and het-
erogeneous cases with a 5% variation. The results are demonstrated in Figure[7] Herein,
although the crack profile is regularized, the imposed variation affects the crack-pattern
significantly. However, the crack point shows a fixed value (negligible variation in the
crack point). In contrast to the homogeneous case (first row), a negligible variation for
the heterogeneous scenario will change the crack profile considerably. As Figure m(second
row) shows, a significant variance is observed in the crack profile indicating the effect of
the heterogeneity.
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4.2. Two-dimensional microstructural RVE under tension

In the second case study, a two-dimensional microstructure RVE with stochastically
distributed inclusions (aggregates) and voids (pores) under tension is considered. Both
brittle (E-D), and ductile fractures (E-P-D) settings are considered. A boundary value
problem applied to the square plate is shown in Figure [fh. We set H = 1 mm and
W = H hence B = (0,1)?> mm? that includes randomly allocated inclusions and voids in
domain. As a loading setup, we set the initial values for displacement and phase-field as
uy := 0 € B and dy := 0 € B. Here, Galerkin finite element method with H!-conforming
bilinear (2D) elements are used for the ()-finite elements. A minimum element size of
h = 0.01 mm is considered such that the spatial discretization of the model includes
approximately 20,000 four-node quadrilateral elements. Thus, the fracture length-scale
is set as | = 0.02 mm. The condition fulfills the heuristic requirement h < /2 for the
element size inside the localization zone (i.e., the support) of d, see [12]. Note that the
plane-strain situation is considered. The displacement control is used with increments of
At =1 x 107* and 600 time steps. The material parameters are given in Table

To deal with heterogeneous microstructure materials, we further define the mismatched
ratio between two categories of materials (inclusions and voids) pointing out by x, de-
scribed as

®nc = X ®mat for o€ {EMU’J K; GcawmaY}’

In the upcoming examples, we set x = 10, i.e., inclusions (aggregates) are 10 times stiffer
compared to the listed homogeneous structure in Table[I} Next, we employ our allocating
strategy to simulate the random distribution of voids and inclusions. This randomness
procedure includes:

1. Random density of inclusions/voids:

e Inclusions varies between 30 and 40 percent of the whole volume.

e Voids varies between 5 and 10 percent of the whole volume.

2. Random size of the particles (inclusions/voids).

u=(0,i)

IRARRARRARARARRARA) TTTuT:T(TO’TﬁT)TTT
. . t ’ _inclusion
. ’)'i’I‘lC]USiOIl =
." _________ void
H . . . --------- void .
7 matrix

VP o R e
- " . H, ﬁ(o,—ﬁ)‘/
a b

Figure 8: Geometry and loading setup for (a) the two-dimensional setting in Example
2, and (b) the three-dimensional setting in Example 3.
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Table 2: A comparison of CPU time for different 2D mesh sizes in brittle and ductile
fractures.

Naof 15372 19402 28384 39380 51591
CPU time-brittle [s] 2504 2675 3506 4177 4805
Naof 11527 15017 18 316 30115 25175
CPU time-ductile [s] 1802 2661 3103 3906 5870

e Inclusions varies between 5 mm and 20 mm (radius).

e Voids varies between 0.2 and 5 mm (radius).

3. Random position of the particles (see Algorithm .

The random position of the particles will give rise to different crack propagation behav-
ior. For instance, congestion of the inclusions (aggregates) in a part prevents the crack
extension in this region. On the other hand, several voids will facilitate crack propagation
easily. Figure [J] shows the different distribution of the inclusions and voids. Considering
the brittle case, we have the corresponding crack behavior in Figure [0} As observed,
the randomness in the matrix-material (e.g. concrete) leads to completely different crack
patterns. In fact, after the crack nucleation, it propagates through the voids and among
the inclusions. Considering the ductile concrete, 16 different mesh configurations along
with the related fracture behavior and hardening are illustrated in Figure 10} To study
the effect of mesh size on the CPU time, we use a fixed distribution of the particles and
produce different mesh configurations to model brittle and ductile fractures. The results
are shown in Table 2

In order to study the crack behavior during different time-steps, the load-displacement
curve for 300 different random distributions are plotted for both brittle and ductile struc-
ture materials. Furthermore, we define a region denoting the maximum and minimum
of the load-displacement curves for these simulations. The obtained information shows
the possible range for all events. Figure [11] demonstrates the diagrams, ranges and the
mean values (shown in red). As shown, the ductile materials are much more resistant to
fracture compared to the brittle materials, i.e. more than 3 times of the force is needed.
Furthermore, in the brittle case, the fracture happens sharply; whereas, in the ductile
case, the crack requires more time to initiate (due to the plastic deformation).

4.3. Three-dimensional microstructural RVE under tension

In the last case study, a three-dimensional microstructure RVE with stochastically
distributed aggregated and pores under tension is considered. The three-dimensional
setting helps us to monitor the crack propagation more illustratively. In this section,
we only consider the brittle fracture (E-D) behavior, to avoid repetition compared to the
analysis introduced in previous sections.

A boundary value problem applied to the block specimen is shown in Figure [8b. This
is a tension test such that monomaniacal load is applied in both top and bottom (in
opposite) directions. We set H; = 1 mm and H; = Hy = Hj, and hence the cube space
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Figure 9: Example 2. 16 different mesh configuration denoting the random distribution
of voids and inclusions in 2D and the corresponding crack pattern in brittle fracture.
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Figure 10: Example 2. 16 different mesh configuration denoting the random distribution
of voids and inclusions in 2D along with the corresponding crack pattern and hardening
in ductile fracture case.
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Figure 11: Example 2. The load-displacement curves for 300 different random distribu-
tion of inclusions and voids for the brittle (top) and ductile (bottom) materials. The gray
region (in the right column) shows the area between the maximum and the minimum of
the diagrams during different time-steps. The mean values are shown with a solid red
line.

Table 3: The three-dimensional example: Two defined cases considering the sources of
uncertainty in inclusions/voids and material parameters. In Case a, the heterogeneous
structure using a variation 7 = 10% in the material parameters is considered. In Case b,
the first row is related to inclusions and the second one is for voids. Here, U denotes the
uniform distribution.

Uncertainty radius position density materials
Case a constant  constant constant n=10%

U(6,15) random  U(10,25) constant
U4,8) random Us,12) constant

Case b

is B = (0,1) that includes randomly allocated inclusions (aggregates) and voids (pores).
As a loading setup, the initial values for displacement and phase-field are ug := 0 € B
and dy := 0 € B. For the element technology, Galerkin finite element method with H!-
conforming trilinear (3D) elements is employed for FEM simulations. In this regard, the
density of the inclusions varies between 10 and 25 percent, and the void density varies from
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Figure 12: Example 3 (Case a). The evolution of the crack phase-field for the 3D
distribution of voids and inclusions in a heterogeneous case.

. o ot &% ¥

Figure 13: Example 3 (Case b). The evolution of the crack phase-field for the 3D
distribution of voids and inclusions.

5 and 12 percent of the whole structure (concrete). The radii are from 6 mm to 15 mm for
the inclusions and between 4 mm and 8 mm for the voids. Hereby, a tetrahedral meshes
with an element size of h = 0.02mm is considered with averagely 500000 elements in
each simulation. A prescribed load of @ = 2 x 10~* with 250 time-steps is used in the
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Figure 14: Example 3. The load-displacement curve. Case a (left): Random heteroge-
neous material structure in a fixed spatial coordinates of different phases. Case b (right):
Different random distribution of inclusions and voids using 300 replications for the brittle
materials. The gray region shows the area between the maximum and the minimum of the
diagrams during different time-steps. The mean values are plotted with a solid red-line.
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numerical simulation. The material properties are given in Table [I| and x = 10. In the
following, we consider two different cases regarding the material fluctuation, described in

Table (3).

4.3.1. Case a - Random Material Properties. First, we consider a heterogeneous
structure using the material parameters variation of n = 10% applied in . However,
the inclusions/voids have no spatial fluctuation. Specifically, for different samplings, we
have only a point-wise material variation with a constant position and number of the
particles (inclusions/voids).

The crack propagation during time is shown in Figure[12|for an arbitrary sample. The
variation interval for the load-displacement diagram using 300 simulations is depicted in
(left). As only a variation in the material parameters is considered, the gray area of
all possible solutions is smaller than other examples.

4.3.2. Case b - Geometrical Perturbation. Next, different distribution of parti-
cles are investigated, in which the inclusions are 10 times stiffer than the matrix material.
We monitor the crack propagation during different time-steps, as shown in Figure (13| for
an arbitrary sample. The crack initiates in different parts of the specimen and propagates
until the complete failure. In this analysis, the simulations are replicated 300 times. Fig-
ure [14] (right) shows the maximum and minimum of the load due to uncertainties versus
prescribed displacement and the corresponding expected value.

To present the effect of uncertainties due to spatial variations of different phases, 16
specific three-dimensional distributions of inclusions (aggregates) and voids (pores) are
shown in Figure [15| at the final deformation states. As expected, the randomness results
in different fracture patterns.

5. Conclusions

Heterogeneous materials at the lower scale are typically subjected to several uncertain-
ties that inherently exist through the volume fraction defects at the micro or mesoscale.
The classical approach to formulate those defects relies on a deterministic approximation
of failure response, while such effects are not captured for the unavoidable uncertainties of
each parameter associated with experimental observations. To overcome that, the current
work is devoted to a rigorous mathematical formulation of stochastic-based variational for-
mulations of failure mechanisms at the micro/meso-level. More specifically, uncertainties
in brittle and ductile failure are investigated. The primary objective of this contribution
is to model randomness and fluctuations of different phases in the highly heterogeneous
meso/microstructures.

To explore the fundamental nature of the proposed model, first, we studied a local-
ization effect within a one-dimensional bar due to the variation in material proprieties
for gradient-based plasticity and damage models. The main observation is that point-
to-point correlations of the crack phase fields in the underlying heterogeneous bar can
be captured. These stochastic solutions are represented by random fields or random
variables in contrast to the classical deterministic solution spaces. Next, in two- and
three-dimensional scenarios, by using the Monte Carlo finite element method, we mod-
eled the random distribution of the inclusions/voids and considered their effects on the
material stiffness locally (the crack propagation pattern in different slides) and globally
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(considering the force-displacement diagram). In this way, different evolution of cracks
at the lower scale emerges as a consequence of the underlying uncertainty of physical
model parameters. To formulate these uncertainties, we developed a procedure for the
allocating process of highly numbers of inclusions/voids with different volume fractions in
such a way that there is no intersection between them. The results enable us to provide
a confidence interval for the fracture energy denoting the minimum/maximum necessary
force for the fracture. Hereby, the computed expected value represents the average for all
heterogeneities.
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