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We study the correspondence between AdS; massive IIA supergravity vacua and two-dimensional
N = (0,4) quiver quantum field theories. After categorizing all kinds of gravity solutions, we demystify
the ones that seem to reflect anomalous gauge theories. In particular, we prove that there are bound states of
D-branes on the boundary of the space that provide the dual quiver theory with exactly the correct amount
of flavor symmetry in order to cancel its gauge anomalies. Then we propose that the structure of the field
theory should be complemented with additional bifundamental matter, which we argue may only be
N = (4,4) hypermultiplets. Finally, we construct a Bogomol’'nyi-Prasad-Sommerfield (BPS) string
configuration and use the old and new supersymmetric matter to build its dual ultraviolet operator.
During this holographic synthesis, we uncover some interesting features of the quiver superpotential and
associate the proposed operator with the same classical mass of its dual BPS string.
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I. INTRODUCTION

The AdS/CFT correspondence constitutes a primo
realization of the holographic principle while it ties string
theory to the most well-studied particle theories we
possess. In other words, besides being a conceptual break-
through in its own right, holography brings strong con-
fidence that a complete quantum theory of gravity shines
upon the physics of the superstring. Nonetheless, the
power of this duality does not limit itself in supporting
quantum gravity but also unravels the properties of certain
supersymmetric quantum field theories that otherwise are
yet out of our reach through the standard methods or
techniques.

While over the years many type II supergravity solutions
have made their appearance in the holographic arena, there
is a certain kind that has recently been popping up more
frequently and has become quite popular. These are
supergravity backgrounds whose entirety of fields is
defined by functions of the coordinates of the internal
manifolds and are dual to supersymmetric quiver gauge
theories. Studying those backgrounds ultimately boils
down to understanding their defining functions. The dual
physics of these vacua is generally described by super-
symmetric conformal field theories (SCFTs), which for
d < 4 are assumed to be strongly coupled IR fixed points
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that flow to better-understood ultraviolet (UV) quiver field
theories through the renormalization group (RG) equations.
The latter are defined on supersymmetric multiplets of
fundamental fields, whose interactions are usually well
defined and provide an understandable particle theory.

SCFTs exist exclusively in d < 7 dimensions [1] and
there has been intensive work on all of their diversity, both
field theoretically and holographically. In six dimensions,
an infinite family of A/ = (0,1) theories has been dis-
cussed in [2—-13]. In five dimensions, solutions in a variety
of supersymmetry were analyzed in [14-21]. For A = 2
supersymmetry in four dimensions there has been a fruitful
study in [22-28], while three dimensional N = 4 theories
were discussed in [29-33].

The case of AdS; supergravity solutions is somewhat
unique. Three dimensional gravity as well as the algebra of
two-dimensional field theory make the study of AdS;
holography of particular interest and this is reflected in
the rich literature regarding the subject, some representa-
tives of which are [34-49].

Another family of such AdS; solutions was recently
introduced in [49-52]. These massive ITA vacua are asso-
ciated with D2-D4-D6-D8 Hanany-Witten brane setups [53]
and were first build in [49]. The D2- and D6-branes exist as
fluxes and they are dual to gauge symmetries, while the
D4- and D8-branes live explicitly in the background and
provide dual flavor symmetries. In [51] a particular class of
them that exhibits the local geometry AdS; xS?>xCY, xR
was distinguished and was proposed to be dual to two-
dimensional quiver quantum field theories with N' = (0, 4)
supersymmetry. Some holographic aspects of these quivers
were studied in [54,55]. Those are the theories that we are
about to consider.

Published by the American Physical Society
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The defining functions of a supergravity solution render
the form of the fields on the gravity side of the correspon-
dence, while they accordingly shape the exact structure of
the dual quiver field theory. In order to validate the
correspondence and study the whole range of its potential,
one should explore the various properties of these functions
and confirm that every single time they make perfect sense
on their dual field-theoretical attribution. This makes up the
starting point of this article, where we take the most unusual
choice of such defining functions which seems to give an
anomalous dual quantum field theory. By carefully focus-
ing on the right regions of the supergravity background we
discover D-branes that are realized as global symmetries in
the dual quiver structure, providing exactly the flavors
needed to cancel the apparent gauge anomalies. Because of
strong Ramond-Ramond (RR) fluxes on the boundary of
the space these D-branes come exclusively in bound states,
forming polarizations that provide flavor symmetries in an
idiosyncratic way.

Observing the quiver structure of the theories under
consideration, we realize that there must be some linking
multiplets missing. Such multiplets bind color D2-branes
with flavor D4-branes and color D6-branes with flavor D8-
branes, while it is shown that those may only be N = (4, 4)
hypermultiplets corresponding to suspended superstrings
between D2- and D4-branes or D6- and D8-branes in the
ancestral Hanany-Witten setup.

The existence of this new matter complements the quiver
structure, while it seems to be also vital in the construction of
the dual operator for a particular Bogomol nyi-Prasad-
Sommerfield (BPS) string state. To be precise, after picking
a semiclassical string configuration connecting two stacks of
D-branes in the background, we prove that this is a BPS state
and propose a string of scalar fields as its dual UV operator.
We argue that this is a unique choice of a dual operator and,
while two-dimensional scalars have mass dimension zero
implying a vanishing conformal dimension for that operator,
we conclude that the latter property is attained nonpertur-
batively. That is, we bring to the surface the superpotential of
the UV quiver theory to find interactions between the scalars
inside the operator, supporting the idea of a totally non-
perturbative anomalous dimension at the IR of the RG flow.

Finally, we find that scalars inside the vector superfields
should obtain a vacuum expectation value (VEV) through a
Fayet-Iliopoulos term due to the U(1) theory inside each
U(N) gauge group. Superpotential interactions between the
vector and hypermultiplets then dictate that bifundamental
matter acquires a mass, ultimately associating the dual UV
operator with a classical mass equal to that of the BPS
string. Since the operator mass is a sum of all the individual
scalar field masses, this renders the operator very much like
a classical bound state of particles dual to a bound string
state between D-branes.

The plan of this paper is as follows. In Sec. II we review
the massive IIA supergravity backgrounds and quantum

field theory first constructed in [49]. We also give a brief
but complete summary of two-dimensional A = (0,4)
quantum field theory that is useful in understanding gauge
anomalies, R-current charges, and superpotentials between
multiplets, all basic ingredients for the self-containment of
the present work. In Sec. III we study special solutions of
vacua that naively give anomalous quiver theories and
show how these are canceled by flavor symmetries pro-
duced by dielectric branes on the boundary of the space. In
Sec. IV we illustrate that new matter should be added in the
structure of the field theory in the form of A = (4,4)
hypermultiplets. Finally, in Sec. V we construct a BPS
string soliton and propose a dual operator, which both seem
to exhibit the same classical mass.

II. AdS; MASSIVE ITA VACUA
VS N =(0,4) THEORY

A. The supergravity solutions

In [49] a new family of AdS; massive IIA supergravity
solutions with A/ = (0,4) supersymmetry was introduced.
A subclass of these solutions with local geometry
AdS; x §? x CY, x I, was conjectured in [50-52] to be
dual to N = (0,4) quiver quantum field theories in two
dimensions. These vacua have an NS-NS sector, in string
frame,

hyh Vhahs
ds? = dskgs, + o ds? ) + R dp?
P dhyhg 4 (W) S u

\/_
4
\/;Sc%
<2kn p+4l’l4hg T )>V01(Sz)

e = 4hyhs + ()2,

(2.1)
2W

where u, hy, hg are functions of the coordinate p, defining
this family of supergravity backgrounds. Note that we also
allow for large gauge transformations B, — B, + wkvolg
every time we cross a p interval [2zk,2z(k+ 1)], for
k=0,...,P. The RR sector reads

A N

- _%(hg — hi(p — 2d/7k))vol(S2),

/
P, = <a (;‘Z ) 4 2h8>dp A vol(AdS;) — 1,vol(CY,),

(2.2)

where F' = e~ A F is the Page flux. These functions are
locally constrained as
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" " "
hy =hg =u" =0,

(2.3)

where the first two equations come from the Bianchi identities, while the last comes from supersymmetry. This results in

piecewise linear functions

ao—i-g—gp 0<p<2n

hy(p) = oy +L2:(p—2ak) 22k <p<2a(k+1) k=1,...,P-1, (2.4)
ap+22(p—22P) 27P < p <27(P+1)
Ho +3%p 0<p<ir

hs(p) = { w+%(p—27k) 27k <p<2a(k+1) k=1,...,P—1, (2.5)
pp +352(p—27P) 2P <p <2x(P+1)

while u = a+ bp globally, for supersymmetry to be
preserved. Note that P, o, u; have to be large for the
supergravity limit to be trusted, while continuity of these
equations along p implies s, = > %' v, and o, = YK g,

Nonetheless, the defining functions have to be chosen
with some care for the space to properly close on the p
dimension. Considering a linear u# function, both hy, hg
need to be zero at the p = 0 endpoint whereas at p =
27(P + 1) = p; only one of them needs to vanish. For a
constant u function, on the other hand, just one of them has
to vanish at any endpoint. The study in [50,51] focused
exclusively on solutions where both of these defining
functions vanish at the endpoints, i.e., for ay = pg = a =
0 and vp = —up, fp = —ap in the above definitions (2.4)
and (2.5), a particular choice being represented by Fig. 1. In
Sec. III of the present work, we investigate all other
possible cases, where A, and hg generically do not vanish
at the endpoints of the p coordinate.

This particular choice of backgrounds—where %, and hg
are both zero at the endpoints of the p dimension—start in a
smooth fashion on this coordinate as the non-Abelian T

huhs,u

. H i i : P
0 2n(P+1)

FIG. 1. An example of piecewise linear functions /h,, hg and of
u, defining a particular supergravity background. Here, both A,
and hg vanish at the endpoints of the p dimension.

duals of AdS; x S? x CY, [49]. Near the endpoint p =
27z(P + 1) — x with x = 0, on the other hand, the space
becomes

S X
ds? ~ ;dsf\dSz + s3dsgy, + = (dx? + slszdsﬁz),
; oS

e = 5,22, (2.6)

where s; are constants. According to the extremal p-brane
solutions, classified in the Appendix A, this space is a
superposition of O2/06 planes, where the O2 are smeared
over O6.

In order to gain a better grip on the parameters of the
system, let us consider the RR charges on the intervals
[2mk,27n(k 4 1)]. For o = g, = 1, a Dp-brane is charged
under Qp, = (27)7~’ fzg,,, Fg_p; thus, in our setup they

read
0 ! / Fg = hy — hi(p — 27k)
= — = —_ — LT :a’
D2 3075 CYaxs? 6 4 4P k
1 A
= — F = .
Ops g /CY2 4= Pk
1 o
QD6_2_/ Fy = hg = hi(p — 27k) = py.,
)

QD8 = 277.'F0 = 277,']’lé = V. (27)

Also, Ons =702
vol(CY,) = 16z*. These results imply that oy, B, Hy Uk
are integers. A study of the Bianchi identities in the next
section reveals that no explicit D2- and D6-branes are
present in the geometry, just their fluxes.' This associates
their amount, o, and py, respectively, with the ranks of the

oxe H3 =1, while we used that

"This is true when the world volume gauge field on the D§-,
and D4-branes is absent. When it is on, as we are about to see,
there is a D6 and D2 flavor charge induced on the D8s and D4s.
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(color) gauge groups in the dual field theory. On the other
hand, as restated, D8- and D4-branes do exist in the
geometry and modify the Bianchi identities by a delta
function. Thus, S, and v, are associated with the ranks of
the (flavor) global symmetries of the dual field theory.

B. Bianchi identities

The above story is conjectured [50-52] to be generated
by a certain Hanany-Witten brane setup [53]. However, in
this case the D-branes are not distributed across flat space
as usual but along flat dimensions and a CY, manifold
instead, as indicated by Table I.

The family of supergravity backgrounds (2.1) comes to
be as the near-horizon limit of this brane setup.
Nevertheless, not all D-branes are explicitly present in
the near-horizon limit of a Hanany-Witten setup; some
are there while others exist only as RR fluxes. This
distinction is immensely important to Sec. III and, thus,
to clarify the situation we turn our attention to the Bianchi
identities.

We begin by noticing that dFy = hidp and df, =
hydp A vol(CY,) where, as reflected on Eq. (2.3), k) =
hg = 0 at a generic point along p. However, h, and hg are
piecewise functions, given by (2.4) and (2.5), which means
that at the points where their slope changes we get

P
i =Y (P ot - 2um)

k=1

P
Vi1 — Vg
hil = ——— |6(p — 2kx).
8 E ( o )(/’ ”)

k=1

These give the source equations

TABLE 1 %—BPS brane setup, generator of our super-
gravity backgrounds. The dimensions (xg, x| ) are where the
2D CFT lives. The dimensions (x,, ..., x5) span the CY,, on
which the D6- and the D8-branes are wrapped. The
coordinate x4 is associated with p. Finally, (x7, xg, x¢) are
the transverse directions realizing an SO(3) symmetry
associated with the isometries of S?.

0/1/2|3|4|5|6|7|8 |9
o

D2
D4

NS5

dF, = hldp,
A A, 1
dFg =dfe = Ehﬁ{(p — 2kz)dp A vol(S?) A vol(CY,),

dF, = df, = Kldp A vol(CY,),

S A

dF2 = df2 = %h«/g/(p - 2k7f)dp A VO](S2), (29)
indicating that there are localized D4- and/or D8-branes at
points p = 2kzx, whenever the slope between the intervals
[k — 1, k] changes. In fact, the D4-branes are smeared over
CY,, while note that f, represents the magnetic part of a
RR flux F,. We also used that x6(x) = 0, which yields that
there are no sources present for the D6- and D2-branes.
This is because of the large gauge transformations of the
Kalb-Ramond field.

The above source equations suggest that the D2- and
D6-branes play the role of color branes, while the D4- and
D8-branes play that of flavor branes. Since gauge trans-
formations vanish at infinity, it is the gauge fields fluctuat-
ing on the D4- or D8-branes in the bulk that are realized as
global (flavor) symmetries in the dual field theory.
Ultimately, the essential feature of the Bianchi identities,
which becomes crucial in the forthcoming analysis, is that
the derivatives of h, and hg source D4- and D8-branes,
respectively.

In the above source equations, however, we have not
considered the gauge fields living on the D4- and D8-
branes. Switching on a gauge field f, on both kinds of
D-branes, we form the gauge invariant field strength
F, = By + Af,, where A = 2x/2, and the Bianchi identities
now become

d}z — /1}‘2 VAN dFo,

A A2 -
dfy = hidp A vol(CYs) + - Fo A Fo A dFy,
dfe = 4f2 A (K{dp A vOl(CY,))

3
+/31—‘f2 A fa A fa AdF. (2.10)
In regard to the gauge field dynamics, it being of order 2,
one may neglect it and keep only the zeroth order
contribution, which are the Bianchi identities (2.9) that
give only D8- and D4-branes; this is what was assumed in
[50]. In Sec. III of the present work, however, we deal with
cases where the gauge field does become important and
completely redefines the supergravity picture on the boun-
daries of the space.

C. N'=(0,4) SCFT

The conjecture of [51] is that the above family of
supergravity backgrounds is dual to a set of two-dimensional
SCFTs with A/ = (0, 4) supersymmetry. These SCFTs are
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considered to be the low energy fixed points on the RG flows
of well-defined quantum field theories. Here, we just
introduce the basic idea on those better-understood UV
particle theories, ultimately aiming to cancel gauge anoma-
lies that shall arise and also to unravel some interesting
properties of the quiver superpotential.

1. Gauge and global anomalies

The quiver gauge theory of [51] may be outlined by its
fundamental building block of superfields, given by Fig. 2.
The field content and action of those multiplets is given in
Appendix B 1 and, besides giving basic insight on the
quiver structure, it is used in Sec. V to build an operator and
challenge its interacting properties.

Each SU(N) gauge theory living on N D2 or D6
color branes is represented by a gauge node that yields a
N = (4,4) vector multiplet. In N' = (0, 2) language, each
gauge node includes a vector, a Fermi, and two twisted
chiral multiplets in the adjoint representation of SU(N).
A gauge node connects with other (gauge or flavor) nodes
which in turn represent theories of (gauge or global)
symmetry groups SU(P), SU(R), and SU(Q), providing
altogether a quiver network that reflects superstrings
suspended between branes.

In the notation of Fig. 2, the SU(N) gauge node connects
to the SU(P) (gauge or flavor) node through a V' = (4,4)
hypermultiplet. In N = (0, 2) language, each such hyper-
multiplet includes two Fermi and two chiral multiplets.
Since there are N P kinds of strings between the SU(N) and
the SU(P) brane stacks, we realize 2NP of each of these
Fermi and chiral multiplets. The SU(N) gauge node also
connects to a SU(R) node, through a A" = (0,4) hyper-
multiplet. That is, through two A = (0,2) chiral multip-
lets. Since there are N R kinds of strings between the SU(N)
and the SU(R) brane stacks, we realize 2NR chiral
multiplets connecting the two nodes. In the same manner,

FIG. 2. The building block of our quiver field theories. The
solid black line represents a A = (4,4) hypermultiplet, the
maroon line a NV = (0,4) hypermultiplet, and the dashed line
represents a A” = (0,2) Fermi multiplet. Inside the node repre-
senting an SU(N) gauge theory lives a N = (4,4) vector
multiplet. The groups SU(P), SU(Q), and SU(R) can be gauge
or global symmetries.

the SU(N) gauge node connects to a SU(Q) node, through
NQ N = (0,2) Fermi multiplets.

All that being said, we may consider the superfield
content of Appendix B 1 to find the overall anomaly of the
gauge group SU(N) and impose that it cancels, the result
given by

2R=0Q (2.11)
which analogously must hold for each gauge group in a
consistent quiver gauge theory.

Noncritical for the consistency of the gauge theory but as
much essential to our analysis is the anomaly produced by
the R-symmetry current. Focusing on the SU(N) gauge
theory of our building block and considering the U(1), R
charges that are given in Appendix B 2, we find that the
total R anomaly reads Tr[y3Q7] ~ 2(npy, — nye:) Which is
proportional to the difference between the hypermultiplets
and the vector superfields of the building block. As derived
in [50,56] this anomaly is linked to the central charge of the
theory

c= 6(nhyp - nvec) (212)
which will be vital in Sec. IV, where we want to add matter
in the theory while leaving this charge intact.

2. Quiver superpotential

As promised, we now realize a superpotential on our
quiver theory by focusing on its building block given by
Fig. 2. In particular, we just take one simple connection of
it, which is the link between a hypermultiplet and a vector
superfield. All other links on the quiver structure can be
deduced as generalizations of this connection. In fact, a
particular two-dimensional superpotential was developed
in [57] that serves exactly our case; we briefly reproduce
this here, in order to extract the field interactions which
furnish a certain operator in Sec. V with special features.

Through A/ = (0, 2) supersymmetric eyes, a N = (4,4)
vector superfield breaks into a vector multiplet ), a Fermi
multiplet ®, and two (twisted) chiral multiplets =, &. On the
other hand, a N' = (4,4) hypermultiplet breaks into two
chiral multiplets ®, ® and two Fermi multiplets I", T". First
things first, considering transformation properties under the
R symmetry, the Fermi multiplet ® inside the vector
superfield may only be defined through D,® = Eg by
the holomorphic function

Eg = [Z.3] (2.13)
and by the superpotential Wg = ®O®, where Jg = O is
another holomorphic function.

On the contrary, the R-symmetry representations furnish-
ing the N = (4,4) hypermultiplet, define their Fermi
multiplets as
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Ep =X, Ef = —®X (2.14)
and let for the superpotential Wy + Wg = ®@ET + T E @,
where Jp = ® % and J; = .

In reality, it is not just the R-symmetry representations
that we took into account to shape the above functions, but
also the constraining condition E-J = ), E,J* = 0 that
should hold for supersymmetry to be preserved; of course,
it is easy to see that this is satisfied for the given functions.
The holomorphic functions E, and J* give the potential
terms ~|E,(¢;)|> and ~|J,(¢;)|? in the action and produce
an interesting interactive sector in our theory that is going
to become decisively important in Sec. V.

III. DIELECTRIC BRANES ON THE BOUNDARY

The case studied in [50,51] and in the previous section is
dedicated to supergravity solutions defined by functions /y,
hg that vanish at the endpoints of the p dimension, as in
Fig. 1. Nevertheless, this is just one choice among many.

To classify all other possible kinds of solutions we must
first consider the restrictions that apply on the functions /4,
hg and u. That is, these defining functions have to be
chosen in such a way that the space properly closes on the p
dimension. Considering a linear u function, both Ay, hg
need to be zero at the p = 0 endpoint whereas at p = py
only one of them needs to vanish. For a constant « function,
on the other hand, just one of them has to vanish at any
endpoint. As we are about to find out, the physical setup
significantly changes depending on whether the function u
is linear or just a constant, both being legitimate solutions
of the BPS equation u”(p) = 0.

While all those novel cases are totally valid as super-
gravity solutions [i.e.; they satisfy the equations of motion
(2.3)], a particular ambiguity arises in their dual quiver field
theories. The ambiguity is that the gauge anomalies for

huhs,u

, .« P
0 2m(P+1)

(@) A background with linear uw and a non-
vanishing h4 at the endpoint.

FIG. 3.
endpoint p = py.

these new quivers do not seem to cancel. In particular, it is
the color nodes on the edges of the quivers that—naively—
seem anomalous.

A promising answer to this riddle arises by focusing back
on the supergravity side and observing the limiting geom-
etry at the endpoints of the p dimension (where the physics
is dual to the aforementioned color nodes at the quiver
edges). On those limiting vicinities, in contrast with the
original paradigm of the previous section where the limit-
ing space is either smooth or has O planes, we now find
D-branes. This is promising because explicit D-branes
correspond to flavor symmetries (i.e., flavor nodes) that
may contribute in the necessary way to cancel the gauge
anomalies. Indeed, this is exactly what happens. But let us
better realize all this through some solid examples.

A. Linear u(p)

As restated, the physics of the supergravity solutions
changes depending on whether the function u is linear or
just a constant. Therefore, we split our analysis into two
distinct parts, with regards to this property. The possible
classes of backgrounds with linear « and a nonvanishing
or hg at the endpoint p = p, are classified in Fig. 3.

1. Example 1

We begin by studying the class of backgrounds that is
defined by a linear function u and a nonvanishing function
hy at the endpoint p = py, which is Fig. 3(a). Nevertheless,
because all the interesting action takes place in the last
interval of the p dimension (and its dual quiver gauge end
node) whose behavior we essentially care about, we shall
study the simplest version of this class. That would be
Fig. 4(a).

The class of backgrounds represented by Fig. 4(a) are
defined by a linear function u and by the functions

hihs,u

oHp

: P
0 2n(P+1)

(b) A background with linear u and a non-
vanishing hg at the endpoint.

All the possible classes of backgrounds defined by a linear function u(p) and a nonvanishing function (a) i, or (b) hg at the
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huhs,u

0 2nP 21!:(1.’+1)p

(a) A simplified version of Figure 3a. The func-
tion wu is linear, hg starts and closes with a van-
ishing value and h4 vanishes at zero but not at

p=ps-

FIG. 4.

(P+1)v

- \
L4 - 4 ‘\

) (P+1)B
eecsssscccece a

(b) This is the naive quiver dual to the back-
ground defined by (3.1), (3.2). In reality, there is
one more flavor node, canceling the gauge anoma-
lies for the last D6 gauge node.

D4

(a) A simplified version of the background given in Fig. 3(a) and (b) its dual quiver theory. Here, besides a linear function u, hg

starts and closes with a vanishing value, while A, starts at zero but finishes at a nonzero value.

L 2nk <p<2z(k+1) k=0,...P—1,
me={*", ol B
a=%(p—2a(P+1)) 22P <p<2za(P+1)
Lp 2rk <p<2a(k+1) k=0,...,P—1.
o) ={ s el 32
LQ2a(P+1)—p) 272P <p<2z(P+1)

The background defined by these functions is—naively—
dual to the quiver theory given by Fig. 4(b). The fact that
this quiver is not the right one can be easily seen by
observing the last D6 gauge node, i.e., the one with gauge
rank Pv; using the anomaly cancellation condition (2.11),
the gauge anomalies on this node do not cancel. On the
contrary, anomaly cancellation would occur if the gauge
node was to connect with an additional flavor node of rank
a through a N/ = (0,2) Fermi multiplet.

This raises a puzzle since the standard Hanany-Witten
brane setup introduced in [50,51] (and represented by
Fig. 1) does not include any additional D-branes at the
endpoints of the p dimension, which would support such an
additional flavor symmetry. Nonetheless, in contrast to that
particular case, our solution defined by (3.1) and (3.2) has
the novelty of a nonvanishing function iy at p = p;. Hence,
we shall focus on that vicinity of the supergravity back-
ground, which is dual to the problematic D6 gauge node,
and see whether there is anything interesting there. That is,
we focus near the end point p = 2z(P + 1) — x, for x = 0,
where the geometry and the dilaton read

1
ds? = — (sldsids3 + szds(ijz) + Vx(s3dx? + S4dS§z),

VX

e = s5x73, (3.3)

with s; real constants. As foreseen, we reached an interest-
ing outcome since this background corresponds to D6-
branes on AdS; x CY, and smeared over S%. To be exact,
the above metric and dilaton also correspond to O6 planes;
however, only D6-branes can host open strings on their
world volume and, thus, we only consider those to deduce
global symmetries. That is, being explicit branes, these D6s
contribute to the flavor structure of the quiver theory and, in
principle, they should cancel the gauge anomalies on the
last D6 gauge node.

On the other hand, the Bianchi identities yield no explicit
D6-branes in our supergravity construction. According to
the violation of these identities, the h, function—that
appears here to feed the boundary of the space with
D6-branes—may only give rise to D4-branes. Hence, since
we do know we should have D4-branes at the endpoint
where h, does not vanish, while we do not see them, we go
on and study their sources. That is, we look upon their full
Chern-Simons action [58]

Sgé = m/TrZ e”“‘b"DC(n)ef2
= /,[4/TI'C§I + Cgl A\ Fz + l./’{(lcbl(p)csl

- Az(lq;l(p)z(Cgl + C;l AN .Fz + ) (34)
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where the sum keeps only five-form terms that may source
D4-branes. C¢ is the electric part of a potential form, F, =
B, + Af, is the gauge invariant field strength that incor-
porates the D4 world volume gauge field, and 4, reflects the
inner product with the D4-brane transverse modes @'.
Dimensional analysis here implies 4 = 2z12. The first term
in the second line sources standard D4-branes, the second
term reflects a D4/D2 bound state, while the third gives a
D4/D6 bound state and so on. While the object C3 A F,
realizes a D2 charge induced into the D4-brane world
volume, the seminal work by Myers [58] showed that an
RR potential coupled to the transverse modes ®' represents
a polarization of lower-dimensional D-branes into a higher-
dimensional one.

Taking into account the RR fluxes of (2.2) and the
functional forms (3.1) and (3.2) near the endpoint p — py,
we pick a convenient gauge choice and deduce that

Cs!, ¢ — const.,

-1
CY « ( )VOI(AdS3) A vol(CY,) = —co,
Pr—pP

C§! « (log(ps — p))vol(AdS;) A vol(CY,) A vol(S?)
(3.5)

— —00.

Since C¢ and C¢ blow up at the boundary, their
corresponding source terms in the Chern-Simons action
(3.4) dominate the game as opposed to the rest. Between
those two potentials, C?l scales infinitely faster as we
approach p, and therefore we argue that, at the boundary,

the D4-branes couple to an infinitely strong C¢ RR
potential and condense out into D6-branes, yielding the
analogous background (3.3). In fact, it should be the fifth
term in the expansion of (3.4) that prevails; it is this
particular term that yields bound states of D6-branes that
are smeared over S? (under the coupling to F,), which
agrees with the background (3.3). The third term in (3.4)
gives just ordinary (not smeared) bound states of D6-
branes.” Finally, notice the fact that we have a nonvanishing
C§l ; this is vital for the very existence of the constituent
D4-branes on the D4/D6 bound state.

Recalling our original goal, we want to find the way this
D4/D6 bound state contributes to the flavor symmetry of
the theory. That is, the strings on the condensed D4-branes
form a U(N,) gauge theory under certain conditions, N,
being the number of those branes given by the Bianchi
identity

%A more elaborate proof of this is based in the string length (1-)
order of those C¢/-terms and comes through the analogous case of
the upcoming Sec. III B, which is thoroughly analyzed in
Appendix C. There, we will show that only terms of, at least,
order O(4%) can provide nontrivial solutions for the D-brane
bound states.

df, = Ridp A vol(CY,). (3.6)
The U(N,4) flavor gauge group is what we are after and
anticipate it canceling the gauge anomalies in the quiver
theory.

To calculate (3.6) at the boundary, we have to handle
things delicately. This is because the number of four-branes
is associated with 7, and a derivative is not well defined
on the endpoint of a closed interval. Therefore, we shall

demand that | oy = 0, so that the derivative becomes well

defined near the endpoint pf.3 This is not a physical

requirement of any sort; it is just a trick to calculate the
D-branes at the end of the space. Thus, we now have the
derivative

ha(py) = ha(ps — -
|y, = lim ) = slor =) o
f x=0 X

h/
4 x—0 X

(3.7)

and, in order to calculate all the four-branes on the
endpoint, the D4 Page charge in (2.7) has to be integrated4

towards py as
Pr
N4 = —/ hg = Q.
pr=x

Bottom line, we found a D4-branes sitting on the endpoint
of the p interval and existing in a D4/D6 bound state.

The polarization that takes place should raise the ques-
tion of whether the D4-branes are enough in number,
throughout the bound state, to support massless string
modes and thus a unitary gauge theory. In reality, though,
we are not obligated to know the precise geometry of the
polarized branes, just that they are enough in number to be
close to one another so that the modes do not get massive.
And fortunately we do know that the D4-branes are a lot,
since o must be large in the supergravity limit by con-
struction. Therefore, U(a) should be the gauge group we
have anticipated.

Being explicit branes, the world volume theory of those
D4-branes feeds, through a A" = (0, 2) Fermi multiplet, the
D6 color chain of the quiver with flavor. In particular, this
U(a) gauge group is dual to a global symmetry in the
quiver theory which, using (2.11), gives exactly the flavor

(3.8)

The essence of differentiation is to realize how a function
changes. In our particular context, the measure of this change is
associated with the number of branes at a point. Since the
background is defined on a closed interval, it makes sense
to realize the absence of branes out of it as a shift of the
defining function to a vanishing value. Stated otherwise, we
exchange emptiness for a zero.

The trick we applied on the A4 function forms a situation
where the branes appear smeared near the endpoint, instead of
being localized with a delta function as with the rest of the
D4-brane stacks along the p dimension. This is merely an artifact
of our particular handling that is resolved just by adding up
(integrating over) all the branes near that endpoint.
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FIG. 5. This is the actual quiver dual to the background defined
by (3.1) and (3.2). Here, the extra four-brane flavor node cancels
the gauge anomalies for the last g (D6) gauge node.

needed in order to cancel the gauge anomalies of the last D6
color chain node. This is all visualized in Fig. 5, where the
quiver theory is now consistent.

Focusing on the starting point p = 0 of the p interval,
the background becomes the non-Abelian 7 dual of
AdS; x S* x CY,, which yields no D-branes there. This

|

mie) = {

2P
hg(ﬂ) = { vP—p

n=5Lp—2n(P+1))

The background defined by these functions is—
naively—dual to the quiver theory given by Fig. 6(b).
Again, this quiver cannot be the right one and this can be
seen by using the anomaly cancellation condition (2.11) on
the last D2 gauge node, i.e., the one with gauge rank Pf.
For that node the gauge anomalies do not cancel. On the
contrary, anomaly cancellation would occur if it connected

hihs,u

1%

[
P
(0] 2rP 2mn(P+1)
(a) A simplified version of Figure 3b. The func-

tion u is linear, hy starts and closes with a van-
ishing value and hg vanishes at zero but not at

p=pj-

Ly 2rk <p <2n(k+1)
LPQra(P+1)—p) 2P <p<2z(P+1)

27k < p < 27(k + 1)
27P < p <2z(P + 1)

is to be expected from the supergravity side, since every-
thing is obviously smooth there. But even by just looking at
the field theory, the quiver is nonanomalous at its beginning
(and now everywhere for that matter), which means that no
additional D-branes should be there. If there were any, these
would contribute with flavor and spoil the anomaly
cancellation balance.

2. Example I1

Next, let us study the case represented by Fig. 3(b).
Again, we consider Fig. 6(a) instead which falls into the
same class of backgrounds but is way simpler. This is the
class of backgrounds where hg does not vanish at the end of
the p interval while h, does.

Therefore, according to Fig. 6(a) the defining func-
tions read

k=0,....P—1,
(3.9)

k=0,...P—1.
(3.10)

to a flavor node of rank u through a N' = (0,2) Fermi
multiplet.

We go on and focus on the dual geometric vicinity
of the “anomalous” gauge node, anticipating again to
find the necessary portion of D-branes that cancel the
gauge anomalies. We find that near the endpoint, p =
27(P + 1) — x, for x — 0, the backgrounds reads

4
. 4

- \
L4 - 4 ‘\

(b) This is the naive quiver dual to the back-
ground defined by (3.9), (3.10). In reality, there is
one more flavor node, canceling the gauge anoma-
lies for the last D2 gauge node.

(P+1)B

D4

FIG. 6. (a) A simplified version of the background given in Fig. 3(b) and (b) its dual quiver theory. Here, besides a linear function u, h,
starts and closes with a vanishing value, while g starts at zero but finishes at a nonzero value.
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s
ds? = —=mdsdgs, + Va(madp? + mayds®, + mydsty).

v
e = msxi, (3.11)
with m; real constants, which correspond to D2-branes on
AdS; and smeared over CY, x S2. To be exact, this
background also corresponds to O2 planes, but strings
may live only on D2-branes and, thus, we only consider
those to search for global symmetries. Being explicit
branes, these D2-branes contribute to the flavor structure
of the quiver theory and, in principle, they should cancel the
gauge anomalies.

However, we encounter the same problem as with
example I. That is, the Bianchi identities yield that the
hg function only gives rise to D8-branes and certainly not to
D2-branes. Therefore, since we do know we should have
D8-branes at the endpoint p = p; where the hg function is
nonvanishing, while we do not see them, we look up the
D8-branes’ source terms, that is, their Chern-Simons action

AYeHd _%/Trcgl + CANFy+CdANFynFy

+C{ ANFyNFaNF, (3.12)
where the first term sources standard D8-branes and the rest
reflect eight-branes as bound states of D6-, D4-, and
D2-branes, respectively. Here, we omitted the coupling
to the single D8 transverse mode since there is no object
into which this brane could possibly polarize.

Taking into account the RR sector (2.2) near the endpoint
p = py, we again pick a convenient gauge and deduce

cel, C§l — const.,

C¢ « (log(ps — p))vol(AdS;) A vol(S?) — —c0,

-1
CY < >V01(AdS3) - —00.
Pr—P

(3.13)

Since C¢' and C¢' blow up at the boundary, then their
corresponding source terms in the Chern-Simons action
(3.12) dominate the game as opposed to the rest. Between
those two potentials, C§' scales infinitely faster as we
approach p, and therefore we argue that, at the boundary,
the D8-brane gauge field couples to an infinitely strong Cgl
RR potential and induces a D2 charge on its world volume,
yielding the analogous background (3.11). Additionally,
the smearing of those D2-branes can be understood by the
coupling of C4 to (A F,)3, in the D8/D2 source term
of (3.12).

We conclude that the D8-branes’ gauge field couples to
the D2 charge through the term

D8/D2 _ Ho
s (2n)?

/Trcgl AFaAFanfy (3.14)

together forming a D8/D2 bound state. The D8 gauge flux
on CY, x S? should be quantized as

1

—3/ fz/\fz/\f2:N2 fOszEZ (315)
(27m)? Jev,xs?

and the D2-branes are explicitly given by the Bianchi
identity

A A3 -
dfs :§f2 A fa N dF
13
= §N2V01(CY2) A vol(S?) A (hidp).  (3.16)
Hence, we conclude that every eight-brane on the
boundary should exist exclusively in a D8/D2 bound state,
sourced by

SEP = [ ). (3.17)
That is, each D8-brane contains N, units of a D2 charge.
Nonetheless, there is no just one D8-brane (with an
Abelian gauge field) but there should be multiple coinci-
dent D8-branes at the boundary. The number of these
branes is given by the Bianchi identity
dFy = hidp (3.18)

where, following the same procedure for /g as in example I
with /), we find that at the boundary p = p, they amount to

Ng| (3.19)

P=ps = H.
Since those D8-branes are coincident and thus their gauge
field is non-Abelian, a U(u) gauge theory arises that is
realized as a global symmetry in the dual quiver theory and
which should cancel the apparent gauge anomalies there.

Indeed, the D8-branes, as D8/D2 bound states, feed with
flavor the end of the D2 color chain of the quiver through a
N = (0,2) Fermi multiplet, as usual. As expected, using
the anomaly cancellation condition (2.11), they give
exactly the flavor needed in order to cancel the gauge
anomalies of the last D2 node. This is all visualized in
Fig. 7, where the quiver theory is now consistent.

B. Constant u(p)

The class of supergravity backgrounds with constant
function u(p) is analogous but, at the same time, dissimilar
to the linear case. The representative kinds of backgrounds
in this class are the ones presented in Fig. 8, distinguished
by their constant u(p) curve. Instead of going through both
examples again, we now combine them into one that
includes all the interesting behavior. That is, at the begin-
ning of the p dimension /4 does not vanish while /g does,
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FIG. 7. This is the actual quiver dual to the background defined
by (3.9) and (3.10). Here, the extra D2 and D6 flavor nodes
cancel the gauge anomalies for the first D6 and the last
D2 gauge nodes.

D4

the opposite being true at the other endpoint. Of course, we
again realize simplified versions of these cases as in the
previous examples and, depending on the behavior of the
defining functions at each endpoint, the precise form of A,
and hg can be read off from (3.1) and (3.2) as well as (3.9)
and (3.10). Accordingly, for this new background, we seek
U(a) and U(u) flavor symmetries at p =0 and p = py,
respectively, in order to cure the apparent gauge anomalies
at the dual edge nodes of the quiver chain.

1. At the beginning of the p dimension

The background we consider begins on its p dimension,
for p = x while x — 0, with a vanishing hg but a non-
vanishing A, function, giving

1
ds? = — (mlds%\d& + mzdsgz + m3dS%Y2) + my/xdx?,

Vx
e? = msx7i, (3.20)
which corresponds to D8-branes on AdS; x S? x CY,,
which again seems odd since /4 only gives D4-branes.
Our experience gained from the precious sections drives
us to study the full Chern-Simons source action of N,

hihs,u

2n(P+1)

(a) A background with constant u and a non-
vanishing hy4 at the beginning p = 0.

FIG. 8.
h, and hg may be exchanged in (a) and (b).

D4-branes, including the coupling of the transverse string
modes to the higher-dimensional RR fields, as

SPE =y / TrC¢ + C§' A Fy + id(1ple) CY

— P (1p10)*(C + C& N Fy+...) (3.21)
where the first term represents standard D4-branes and the
second D4/D2 bound states, while the rest reflect polarized
D4-branes into higher-dimensional ones. Considering the
RR sector (2.2) near the beginning p = 0, we deduce
Cgl, C?Z - 0, Cgl — const., CSI - —o0, (3.22)
at the vicinity of that boundary, where again a convenient
gauge was chosen.

Therefore, at p — 0, only the first and fourth terms
survive in (3.21), which stand for standard D4-branes and
D4/D8 bound states, respectively. Since the potential Cgl
blows up, without any competition this time, the fourth
term in the above action dominates the first and this is why
the background metric and dilaton behave according to
(3.20). That is, the D4-branes couple to an infinitely strong
RR potential C¢§ and condense out into an eight-brane,
forming a D8/D4 bound state while giving a D8-brane
background on that boundary. Of course, the nonvanishing
ng is vital for the very existence of those constituent
D4-branes. As it is the case with example I and (3.4), both
the coupling to the transverse scalars and the string length
order in the Chern-Simons action (3.21) would make a
more detailed treatment instructive here, a calculation that
is held in Appendix C.

Casting the usual trick on /), we count @ D4-branes on
p =0, on which open strings end and make up a U(a)
gauge theory. The polarization that takes place over CY,
should raise the question of whether the D4-branes are

huhs,u

P
o 2r(P+1)

(b) A background with constant u and a non-
vanishing hg at the endpoint p = py.

The representative backgrounds defined by a constant u(p) and a nonvanishing (a) &, or (b) hg at either endpoint. The roles of
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enough in number, throughout the bound state, to support
massless string modes and thus a unitary gauge theory. As
restated though, we do know that the D4-branes are a lot
since @ must be also large in the supergravity limit, by
construction. Therefore, U(a) is the flavor group we
anticipated for the beginning node of the quiver chain,
canceling exactly the gauge anomalies there through a
N = (0,2) Fermi multiplet.

2. At the end of the p-dimension

Focusing on the other endpoint, p =2z(P+ 1) —x
while x — 0, the same background ends on its p dimension
with a vanishing /4 but a nonvanishing hg, giving

1
ds? = —= (s1ds3gs, + $2d5%) + Vx(s3dx* + s4dsgy),

VX
e = ssx7i, (3.23)
which corresponds to D4-branes smeared over CY,. While
this seems odd since hg only produces D8-branes, our
wisdom from the previous section guides us to study the
source terms

=i [ 5+ O AFr+ G AF A,

+C{ ANFyNFanNF, (3.24)
where the first term sources a standard D8-brane and the
rest reflect a D8-brane in a bound state with D6-, D4-, and
D2-branes, respectively.

Studying the RR fluxes (2.2) at p — p; for a constant
function u again, the potentials behave as
cs -0, cy, cg — const., C¢d - -0, (3.25)
where we again chose a convenient gauge. The fact that C%’
vanishes excludes the D8/D6 bound states entirely.
Between the rest of the terms in (3.24), the one that
couples to C¢' dominates since it is this potential that
blows up at the vicinity of that endpoint.

We conclude that the D8-brane gauge field couples to the
D4 charge through the term

§P8/D2 _ Ha

= 3.26
CS 47[2 ( )

TrCY A fr A fo
together forming a D8/D4 bound state. The fact that C¢' is
infinitely strong makes the source term (3.26) dominant in
(3.24) and this is why the eight-branes are geometrically
realized as smeared D4-branes. The D8 gauge flux on CY,
should be quantized as

1 ~ -
—2/ f2 /\f2 = N4 for N4 eZ (327)
4 CY,

and the D4-branes are explicitly given by the Bianchi
identity

N AR
df :3f2 A fa A dF
12
Hence, we conclude that every eight-brane on the boundary
should exist exclusively in a D8/D4 bound state, sourced by

Sg;éDS/Dél _ N4 (/"4 / C§Z>

That is, each D8-brane contains N, units of a D4-charge.

Nonetheless, there is no just one D8-brane but there
should be multiple coincident D8-branes at the boundary.
The number of these branes, same as in the last section with
example II, is given by Ng = p. Since those D8-branes are
coincident and thus their gauge field is non-Abelian,
a U(u) gauge theory arises that is realized as a global
symmetry in the dual field theory and which cancels
exactly the gauge anomalies in the end of the quiver chain
through a A/ = (0,2) Fermi multiplet.

Note that the smeared D4- and the D8-branes in this
section are backgrounds equivalent to smeared O4 and O8
planes, respectively. Of course, strings may only live on the
former which is why we only consider those to find the
desired flavor symmetries.

As alast remark on the whole section, let us clarify a few
details about the RR potentials. First, the fact that we chose
a particular gauge does not change any of the results.
Indeed, by studying the RR fluxes we realize that had
picking any other gauge choice would have made no
difference; the qualitative relationship between the C),
forms (which one is stronger at the endpoints) would have
stayed the same. Second, one may wonder whether such
objects blowing up test the supergravity approximation.
However, as argued in [51], singularities are bound to exist
when D-branes do, while they are not dangerous as long as
they are regulated and stay far apart from each other (here,
along the p dimension). This is exactly the case with the
Ricci scalar (which diverges at the positions of localized
sources) and with the RR potentials, as long as f;, vy, P are
large. Indeed, large S, v, control all divergences, while
large P keeps the singularities far apart (for the back-
grounds we considered, RR potentials only blow up at
the endpoints, anyway). Nonetheless, we believe that the
particular divergence of some of the RR potentials at the
endpoints is an artifact of the functions /4, hg being defined
on a closed interval; this was the case when we counted
D-branes at those endpoints, where we had to go around the
fact that A}, h§ are not well defined there. The essence of
those infinities in our context is that some potentials are
profoundly stronger than others.

(3.29)
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Aside from curing a problem and better realizing the way
the dual field theory works, this section has an additional
value. Since the discovery of particular flavor branes was
the exact thing that made the quiver theory consistent, this
calculation provides an additional validity check of the
whole field-theoretical structure. Further validation of the
quantum quiver structure is especially important here, since
the matter content of these quiver theories is by no means
trivial. This is the subject of the following section.

IV. ADDING MATTER IN THE
QUIVER FIELD THEORY

The quantum quiver theory dual to the AdS; supergravity
vacua we consider was presented in Sec. I C. In [51] these
linear quiver theories were thoroughly analyzed and tested,
while our previous section suits as further validation.
Nevertheless, there is more to their story to tell. That is
they are ultimately characterized by additional structure.

Let us address the problem in a constructive way. In a
Hanany-Witten brane setup, we have all possible kinds of
oscillating strings stretched between the branes. In the dual
quiver theory, these kinds of strings correspond to super-
symmetric multiplets that bind the gauge theories (gauge
nodes) together and constitute the matter content of the
overall field theory. Thus, when we try to build the correct
dual field theory of a particular kind of brane setup, the
problem boils down to finding all the possible matter content.

Establishing the quiver theory introduced [50-52] as a well-
tested structure, we realize that there are two kinds of super-
field connections missing. These are the multiplets connecting
D2 gauge with D4 flavor nodes and the ones connecting D6
gauge with D8 flavor nodes, respectively, representing D2-D4
and D6-DS strings. Instead of quantizing, we may just ask
what multiplets can possibly fill this gap. The problem gets
quickly simplified, since we know we do not want to consider
additional " = (0, 4) hyper multiplets or A = (0, 2) Fermi
multiplets. This is because their presence would spoil the
fragile balance of the gauge anomaly cancellation once and for
all, a balance that was further confirmed to holographically
hold by the last section. Therefore, we should only consider
N = (4,4) hyper multiplets.

Nonetheless, our unique choice should be in harmony
with the central charge of the field theory. In particular,
since the central charge was found in [51] to be holo-
graphically correct for the (original) quiver theory, then the
new matter content we want to add should change nothing
and be entirely invisible to it. Indeed, this is exactly the
case. The central charge of the quiver field theory reads

- nvec)

= 6(2(0{]-#/—0(] —/4? +2) +Z_:(

J=1 j=1

¢ = 6(nyy,
;g +ﬂjﬂj+1)>

(4.1)

which means that it is sensitive to the number of the hyper
multiplets. This may sound discouraging with respect to
adding new N = (4,4) hyper multiplets, since we want to
leave the central charge intact, but it is not. This is because
we work in the supergravity limit, i.e., for P — oo, which
means that we are eligible to add new hyper multiplets as
long as their number is subleading in P with respect to the
old ones.

In the supergravity limit the sources (flavor nodes)
should exist far apart along the linear quiver, which means
that the new hyper multiplets escorting them are much less
than the old ones that exist between the flavor positions
(connecting the gauge nodes). The proposed, enhanced
quiver theory is visualized in Fig. 9.

In order to prove that the new hyper multiplets are
always of lower order in P than the old ones, we expand the
already existing ones as

=1 \k=0 =0
P-1 J—1 J Jj—1 J

+ |:<Z/}k Zﬁz) + < Vi ZW)} (4.2)
=1 L\l=0 =0 k=0  1=0

while the new ones, nﬁyp, read

Mhyp = Z - 1+Zﬂ1 J-1

J=0 J=i

—Z(Zﬂkﬂn p)+ Z(Z 1=

J=h k=0 J=h k=0

(4.3)

where j = iy, ..., i)y are the M, N intervals with sources
for the D4- and D8-branes, respectively. The fact that in the

Fk I"-m

Fu

..
B

FIG.9. This is the new dual quiver theory, with additional N' =
(4,4) hyper multiplets binding the D4 and DS flavor nodes with
the D2 and D6 gauge nodes, respectively. The already existing
N = (4,4) hyper multiplets are represented with black solid
lines, while the new additional ones with orange solid lines.
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supergravity limit the sources (flavor nodes) should exist
far apart along the linear quiver means M, N < P.

In order to compare ny,, and "ﬁyp we can just focus on
similar terms between them. These are, for instance, the
second term of (4.2) and the first of (4.3). For them, we
observe that their first summation is to P —1 and iy,
respectively. Since M, N < P, this means that the former is
of order P while the latter is not. Focusing on the inner
summations of the same terms, we realize that their
summing products are of the same order, whatever that
is. Therefore, overall, nyy, is always an order higher in P
than nﬁyp’ which makes the latter invisible in the central

charge for P — .

The whole situation would be immediately cleared out if
we quantized the system of D-branes. What is more,
quantizing the D2-D4 and D6-D8 systems in flat space
seems to indeed reproduce the new N = (4,4) hyper-
multiplets that we just proposed should exist. However, this
particular Hanany-Witten setup is assumed to live in CY,
dimensions as well, which makes the standard quantization
techniques obscure in the case at hand and, therefore, such
a study remains on the sidelines at this point.

Another link that we intentionally left out is the multiplet
corresponding to superstrings between D4 and D8 flavor
branes. Those superfields transform in the bifundamental
representation of two flavor groups; they do not couple to
vector superfields and, thus, are not gauged. Hence, they
decouple from the quiver gauge theory.

Truth be told, there is another path through which we
might have imagined that the additional matter is an
essential ingredient to our theory. This argument too
surfaces from the supergravity side of the duality, but in
order to illustrate it we need to consider a particular state
of the bosonic string. This is what we deal with in the
following section.

V. THE MESON STRING

Having worked out even the most exotic parts of the
correspondence between the massive IIA vacua and the
dual quantum field theory, we certainly want to test their
holographic performance. In that vein, we look for a simple
object to construct, starting off with the supergravity side of
the story.

A. A BPS state

The most accessible state in our theory of gravity is a
semiclassical string stretching between D-branes. That is,
we consider a meson string soliton M, ,, on the super-
gravity background that extends between stacks of flavor
branes at p = 2xk and p = 2zm, respectively, and which is
a point on the rest of the dimensions sitting at the center
r =0 of AdS;. An analogous calculation was performed
in [59].

Therefore, we allow a string embedding with 7 =1,
o = p, whose mass is essentially its length

1 1
M/\/l :h/dﬁ\/—detgabzzﬂ_l

TT)

2zm

dp\/—det gy,
k

=m-—k (5.1)
where g, is the world sheet pullback of the metric in (2.1).
If F} and F,, are the number of D-branes in the respective
stacks where the string endpoints end, then this configu-
ration transforms in the bifundamental representation
of SU(F;) x SU(F,,).

Since we are always interested in states that preserve
some supersymmetry, we may upgrade the above configu-
ration to a BPS state just by considering the suspended
string to fluctuate on the two-sphere, whose SU(2) isometry
corresponds to the dual R symmetry. This is done by
including ¢ = wr in the above configuration, where we let
this fluctuation be small, i.e., ® < 1—so that the embed-
ding simplifies still into the expression (5.1).

Picking a U(1); inside SU(2)g, we now seek the R
charge of the above state. Since the generator of the U(1) on
the two-sphere is associated to the 1-form cos Od¢, then we
look for the string coupling terms

Sp « /cos 0dg. (5.2)
As far as the R charge is concerned, it may be read off the

source terms of the form [JgA; = Qg [A;, with A| =
cos @d¢. The relevant term in the world sheet action is

1
Swu=-— [ B
=y [ B2

where X = [2zk,2zm] x R. Ultimately, after some
manipulation given in Appendix D, this term may be
actually seen as the source term

(5.3)

Syu=(m=k) / cos Od¢p (5.4)
R
which yields an R charge
Or =m—k. (5.3)

Comparing this with the string mass in (5.1), we conclude
that this is indeed a BPS state.

B. An ultraviolet operator

Now, we want to look for the operator dual to this BPS
state. To this end—since the IR SCFT is completely
unknown—we consider the UV quiver theory on the p
interval [27k, 2zm] and pick the appropriate field excitations
inside the supersymmetric multiplets.
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Since we are dealing with a purely bosonic state, we are
immediately led to consider the complex scalars ¢; inside
the A/ = (0,2) chiral multiplets ®@;, since these are the
obvious on-shell bosonic degrees of freedom in our theory.
In particular, we choose to excite one scalar in each of the
(m—k)+2 N = (4,4) hypermultiplets that connect two
flavor nodes; this makes a perfect fit with the fact that string
fluctuations transverse to the world volumes of branes are
also scalar modes with respect to these world volume
theories. It also illustrates why we need the additional
N = (4,4) matter, as promised in the beginning of this
section; if it was not for these new hypermultiplets, there
would be no way to build a string of bosonic field
excitations that connect two flavor nodes. And such a dual
bosonic connection must somehow exist, given that the
meson string we consider is a legitimate BPS state.

Shortly, however, we spot a problem. As illustrated in
Appendix B 2, the ¢; scalars inside any of the N = (0,4)
hypermultiplets are uncharged under R symmetry, while we
do need an R charge—according to (5.5), proportional to
(m — k)—for our proposed operator. In fact, the only
scalars that are charged under the U(1), subgroup of
the R symmetry are the ones in the N = (0,4) twisted
hypermultiplets (X;,%;), inside the N = (4,4) vector
superfields of the gauge nodes. This leads us to consider
these scalars, let us call them o;, as well. The inclusion of
these scalar fields is also somewhat compelling, since these
are the ones that let the ¢; scalars interactively talk to each
other; this realizes an interactive continuance among the
string of fields in the operator, holographically analogous to
the compactness of the string. These supersymmetric
interactions will become apparent shortly.

All in all, choosing a o; excitation as well in each gauge
node between the A = (4,4) hypermultiplets, we acquire
the meson operator

m—1
Mk,m = Tty <H 6i¢i> Ol
i=k

which transforms in the bifundamental representation of
SU(Fy) x SU(F,,), with F; and F,, as the ranks of the
flavor groups in the corresponding positions of the quiver
chain. Here we named z; the scalars inside the end-point
hypermultiplets connecting to the flavor nodes and also
chose them to be in conjugate representations of each gauge
group. Such an operator has two z;’s, (m — k) ¢;’s, and
(m — k4 1)o;’s, which, in the supergravity limit—where
sources are far apart—account for 2(m — k) complex
scalars. Since only half of those (the o;’s) are R charged,
this is the desired R charge considering the BPS string
charge (5.5). For clarity, the operator is highlighted
in Fig. 10.

The only quantities left to compare are the mass (5.1) of
the BPS state and the conformal dimension of the operator
M, .- At this point, of course, we may have an actual

(5.6)

Fk Fm

o - N

4 'y

'i 'o
FIG. 10. The meson operator M consists of the supersym-
metric multiplets that are highlighted with blue, while the
rest of the quiver structure is left blurred. If k and m are the
positions of the flavor nodes along the quiver chain, then
this operator runs over m —k +2 N = (4,4) hypermultiplets
and m —k+1 N = (4,4) vector multiplets. Such an operator

may also connect D4 with D8 flavors by jumping through
N = (0,4) hypermultiplets.

problem; scalar fields in two dimensions have mass
dimension zero, at least classically. At first sight, this
degrades our proposal for the operator that seems to have a
vanishing scaling dimension. However, before rushing into
conclusions, we remind ourselves that we have actually
considered the UV operator and not the actual IR situation;
it is the IR operator that should necessarily acquire the
appropriate scaling dimension. Therefore, if the choice of
operator is correct, our only way out is the possibility of the
operator acquiring an anomalous dimension through quan-
tum effects. Whatever the case is with the IR SCFT, such
quantum effects should be present in the UV Lagrangian,
pointing towards an anomalous dimension y(g) that scales
with energy.

On the other hand, studying quantum corrections is
obscure in our case. This is exactly because it is the UV
theory that we use to organize fields into an operator;
therefore, even if we assume a completely anomalous
dimension A ,, = y(g), our SCFT is assumed to be strongly
coupled which discredits any perturbative calculation. To
be exact, it is the nonintegrability of our AdS; backgrounds
[60] that prohibits surfing along the range of the coupling
constant, as it is possible with, e.g., the work of BMN [61]
in the AdS5 x S3 correspondence. Regardless, the possibil-
ity itself of a nonperturbative anomalous dimension
requires certain interactions to be there, between the fields
of interest; finding whether those exist is essential to our
proposal. Interestingly, such interactions indeed exist.

The interactions between the ¢;’s of the hyper-
multiplets and the o;’s of the twisted hypermultiplets have
actually already appeared in our study of the Fermi
multiplet interactions. As seen in Sec. IIC2, Fermi
multiplets defined by D.T', = E,(®;,%;) give a potential
|E,(¢;,06;)|?, which for our interactive chain of multiplets
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exhibits quite a few components. From those, the ones that
couple ¢;’s and o,’s are the

Er,. (¢i’ 01‘) =oip; (5-7)
or Ep = —¢;0,, depending on which scalar field we excite
inside a certain hypermultiplet. Accordingly, if we choose
to excite &; inside a twisted hypermultiplet, instead of its
twin o;, then these scalars couple through the super-
potential term |J,(¢;,0;)|> and, in particular, through the
components

Jr (¢i.6;) = 69, (5.8)
or J r, = &515 i

These are all the interactions present between the differ-

ent scalars we choose to excite and which furnish our
operator (5.6) with quantum effects. We presume that those

are capable of correcting it nonperturbatively to the desired
conformal dimension A, = y(g) = m — k.

C. Dual mass

While the scaling dimension of the meson operator stands
as a proposal, there is another insight as to the mass of the
BPS state that both enforces the proposed duality and digs
out an interesting feature of the field theory.

It is simpler to explore things heuristically here. While
coincident branes give massless modes, a superstring
suspended between two distanced D2- or D6-branes gives
a BPS hypermultiplet [in our kind of theory, presumably of

N = (4,4) supersymmetry] of mass \/|X|, where X is the
spatial vector connecting the branes. While a hypermultip-
let is massless, a mass is obtained by its coupling to a vector
superfield, since the latter obtains a VEV through a Fayet-
Iliopoulos D-term lying on the U(1) gauge theory in the
brane world volume. That is, as seen from (B1) and (B2),
for a U(1) vector superfield we have a D-related action
1 i,

SD:/?DZ‘FUDG—&D (59)
where the last term is the Fayet-Iliopoulos term. After
integrating out the auxiliary field D, the potential energy

V = ¢*(|o]* — £)? is formed which yields the new classical
vacuum

(o) = V¢

which in turn couples to the hypermultiplet and is felt as
a mass.

When instead we have two stacks, one of n; and
another of n, D-branes, we acquire n;n, hypermultiplets
that transform under the (n;,71,) representation of
U(n;) x U(n,). In Hanany-Witten setups we have parallel

(5.10)

stacks of branes distanced and bordered by NS five-branes,
where the gauge group actually breaks down to
SU(n;) x U(1); the nontrivial U(1) center provides a
Fayet-Iliopoulos D-term whose coupling is identified
with & = |X|. That is, the D-term coupling is given by
the distances between the NS five-branes [3,53]

$=piy1 —Pi- (5.11)
Each U(1) is actually the center of mass of the stack of
branes and D is really its Hamiltonian function, where the
Fayet-Iliopoulos coupling reflects the fact that we may
always add a constant to such a function. While this story is
generally studied, let us bring it down onto our case and
clarify how it actually works.

By adding a Fayet-Iliopoulos D-term to the N' = (4, 4)
vector superfield action and integrating out D, we acquire
the new vacuum (o;) = \/p;y1 — p; = 1/2. As restated, o;
is one of the scalars of the N = (0,4) twisted hyper-
multiplet inside the vector superfield on a stack of D2- or
D6-branes, placed between the (i + 1)th and ith stack of
NS five-branes. Notice here that we also normalized,
by a redefinition, the fundamental p-interval distance
piv1 —pi =27 to 1/4, for convenience that will become
apparent momentarily. Now, this VEV gives a mass to a
N = (4,4) hypermultiplet coupled to it and, in particular
for our operator of interest, this is achieved through the
interactive terms (5.7) and (5.8) that we brought up in the
previous section. That is, if we choose to consider the o;
scalar inside the vector superfield and the ¢; scalar inside
the hypermultiplet then a mass is acquired by the latter as

EP=GRIBE =gk (512)
Accordingly, for other choices of scalar fields inside those
multiplets, the mass is obtained through other E-terms or
superpotential |J|?>-terms with J as in (5.8).

Now, each such hypermultiplet is actually linked to two
stacks of D-branes (gauge nodes), one on its left and one on
its right along the p dimension. This means that the mass
that is gained comes from two VEV contributions, that is,

1
|Er, P+ |Er,, [P = (00 + (0:1))i* =5 |il* (5.13)

where the mass is now unity. Notice that the value of the
mass comes from normalization and thus it is a matter of
convention on absolute distances along the p dimension.
What really matters though is the relative positions of NS
five-branes; changing those shifts the masses of the hyper-
multiplets in between. Since all the NS five-branes in our
brane setup are equally separated along p, accordingly all
masses will be the same. Moreover, note that there are as
many massive hypermultiplets as the U(1)’s. That is, all
hypermultiplets between the gauge nodes along the quiver
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chain are massive. Therefore, we only care about the
number of those hypermultiplets that contribute to our
operator.

Ultimately, the meson operator (5.6) contains m — k
scalar fields ¢; which are massive, associating the operator
itself with a total classical mass

My=m-k (5.14)
which exactly agrees with the mass (5.1) of the BPS
string.

In regard to our particular choice of the BPS operator,
besides the agreement on the dual masses, it is worth
emphasizing the way that this equality is supported. That is,
as with the R charge (or even the presumable anomalous
dimension), it again takes both scalar fields ¢; and o; to
holographically reflect a dual semiclassical soliton;
the o;’s adjust a mass (and a R charge) and the ¢;’s
realize it.

Again, it is the UV particle theory that shapes the
proposed meson operator M and not the actual IR
SCFT that sits on the dual side of our AdS; supergravity
backgrounds. While this cautions us to be careful about our
statements on what the actual dual BPS operator looks like,
we are encouraged by the agreement in mass to make an
otherwise bold conjecture: if the choice of operator is
correct, then the operator mass somehow transforms into a
scaling dimension. This is not as presumptuous as it may
sound if we consider that the nonperturbative anomalous
dimension A, = y(g) = m — k that we expect should be
generated by the same interactions that produced the Fayet-
Iliopoulos mass. Thus, the aforementioned transformation
is really thought to be a change on how we realize the same
field interactions at different energy scales. That is, the
interactions given by (5.7) and (5.8) may be realized as a
classical mass in the UV or an anomalous dimension in the
IR. This idea is strongly advocated by the fact that the
coupling is relevant at the IR of the two-dimensional
quantum theory, where the quantum corrections should
be important and the scalar masses get integrated out.

As a final comment, the BPS string is a semiclassical
bound state which inspires us to assume that its dual operator
should too reflect a bound state of two-dimensional
fields. That being said, we notice that the operator mass
is a sum of all the individual scalar field masses, a fact which
renders the UV operator indeed very much like a classical
bound state of particles. This is a statement on classical
bound states in the sense that we neglect an unimportant
interaction energy, as we already did with the implicit
quantum corrections between fields inside the operator
or with the sphere fluctuations on the string mass. While
the latter is geometrically obvious through (5.1), the former
may be supported by the fact that the gauge coupling is
irrelevant at the UV of two-dimensional quantum field
theory.

D. An alternative operator

Although the last two sections follow the standard
examples in the literature (e.g., see [59]), there is an
alternative choice of bosonic operator dual to the suspended
string. Such an operator may be built out of spinor
products, which render it bosonic, as long as it satisfies
the desired holographic features, i.e., the correct conformal
dimension and R charge.

This can be achieved through products of left- and right-
handed spinors inside the N = (4,4) hypermultiplets that
connect the two flavor nodes at stake. Ultimately, the
operator reads

m—1
My =7 7 <H ! -/1@);?&’”) m(5.15)

where y., w,, and A_ are chiral spinors inside the (4,4)
hypermultiplets. Again, y are spinors inside the end-point
hypermultiplets connecting to the flavor nodes. The oper-
ator transforms in the bifundamental representation
of SU(N,) x SU(N,,) and consists of mass dimension
AQy=m—k (since [y]= m: in two dimensions) and
R[M|] =m —k, since R[y,] = —1 and R[A_] = 0. Both
of those features are exactly what we need.

Though unusual, the new UV operator constitutes a good
holographic fit for the suspended string; maybe, it is even
better than the more conventional choice of the previous
sections, considering that we do not have to assume an IR
anomalous dimension or anything else. Nonetheless, there
is no obvious reason to choose between the given options of
dual operators; as long as the IR SCFT is in the shadows,
both of them could be correct. In fact, we could also build
operators that are combinations of those two, which would
also fit the desired standards. As a final remark, note that
even if the scaling dimension of the operator (5.15) exhibits
small corrections in the IR, this holographically agrees with
the small mass corrections of the BPS string due to its S?
fluctuations that we neglected in (5.1).

VI. EPILOGUE

Summarizing, in Sec. III we studied all possible catego-
ries of vacua within a particular AdS; family of massive ITA
supergravity solutions, first given in [52]. Apart from the
original solutions introduced there, we presented the
remaining types of vacua in the same family which all
naively seem to give anomalous dual quiver gauge theories.
We proved that these erratic solutions imply D-branes on
the boundary of the space, which in turn correspond to
flavor symmetries that exactly cancel the apparent gauge
anomalies. A special feature of the situation is that, due to
strong RR fluxes on the boundary of the space, these
D-branes come exclusively in bound states forming polar-
izations that provide the quiver with flavor in a quite
idiosyncratic way.
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After dealing with all possible kinds of solutions and
quiver theories, in Sec. IV we supplement the quiver
structure with additional matter in the form of bifunda-
mental links between color and flavor nodes. These,
we argue, may only be NV = (4,4) hypermultiplets corre-
sponding to suspended superstrings between D2- and
D4-branes or D6- and DS8-branes in the ancestral
Hanany-Witten setup.

Having introduced the complementary bifundamental
matter too, in Sec. V we put holography to the test by
considering a semiclassical string inside the AdS; back-
ground stretched between two D-branes. We call this a
meson string and by finding its mass and R charge we show
that it is a BPS state. Next, we propose a UV operator dual
to the soliton and we argue that there is a unique choice of
fundamental scalar fields that synthesize it. Moreover,
crucial to the construction of this operator is the additional
bifundamental matter we have introduced. While the R
charge of the proposed operator seems to get along with our
expectations, its conformal dimension is classically zero
since scalar fields in two spacetime dimensions have a
vanishing mass dimension. What is more, since the two-
dimensional SCFT we are assuming is strongly coupled and
these AdS; vacua have been proven to be nonintegrable, the
perturbative regime of calculations is out of our reach.
Nonetheless, by bringing to the surface the superpotential
of the UV quiver theory, we find interactions between the
scalars inside the operator and we are led to the conclusion
that the latter should acquire a totally nonperturbative
anomalous dimension at the IR, equal to the mass of the
BPS string.

Pursuing the holographic picture of the meson string, we
focus on the quiver structure and find that scalars inside the
vector superfields should obtain a VEV through a Fayet-
Iliopoulos term. The latter is due to the U(1) theory inside
the U(N) gauge group of each stack of branes in the setup.
Superpotential interactions between the vector and hyper-
multiplets then dictate that bifundamental matter acquires a
mass, ultimately associating the dual meson operator with a
classical mass equal to that of the BPS string. Since the
operator mass is a sum of all the individual scalar field
masses, this renders the operator indeed very much like a
classical bound state of particles dual to a bound string state
between D-branes.
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APPENDIX A: EXTREMAL
p-BRANE SOLUTIONS

Extremal p-branes are supergravity solutions that, in
the context of superstring theory, are identified with
stacks of Dp-branes. These are distinct from O planes that
essentially constitute boundary conditions for strings. The
leading order backgrounds for all the above read

T-p
p-brane: ds* ~x7dsy,,
=
+x7 (dx? + x2dsie, ).
B=p)(p=7)
et ~x 1

~ T=p=s pts=1
-brane smearedon¥°: ds? ~x =z ds2,, +x 2
M!-P

x (dx? + dsés + xzdsés,,,,s),

3-p 5=
e‘/’~x( 1)(£+ 7)

bl

1
Op-plane: ds? ~ sti/[‘*” + Vx(dx* + ds3s, ).

et ~ X7, (A1)
where we schematically acknowledge constants. Here M'-?
is a manifold that the brane fills, X8~7 is a compact space—
on which one integrates to obtain the associated charge of
the brane—and Z* is the manifold over which a brane may
be smeared.

APPENDIX B: TWO-DIMENSIONAL
N =(0,4) SUPERFIELDS

1. Field content and action

Traditionally, extended supersymmetric theories are
best realized through constituent, minimal supersymmetric
multiplets. A = (0,4) supersymmetry is no different
and boils down to N = (0,2) superfields, which we
now introduce. The language and content we present is
mainly based on [57,62], which both hold excellent reviews
on the subject.

Gauge multiplet. This is a real superfield, )V, which
consists of an adjoint-valued complex left-handed fermion
{_, a real auxiliary field D, and a gauge field A. The
standard kinetic term for the gauge multiplet expands into
the action

1 1 -
Sgauge = ?TY d2x<§F0, +i¢_(Dy +Dy)¢- + D2>-
(B1)

Chiral multiplet. A N = (0,2) chiral superfield, ®,
consists of a right-moving fermion y, and a complex
scalar ¢, which both transform in the same gauge group
representation. The kinetic term for the gauged chiral
multiplet expands into
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Schiral = /dzx(_lDy¢|2 + l.l,_U+(D0 - Dl)l//Jr

—ipl_w + iyl ¢+ $D). (B2)

Fermi multiplet. This is an anticommuting superfield,
¥, containing a left-moving spinor w_ and a complex
auxiliary field G. The Fermi superfield is constrained by
D, V¥ = E where D, = 0y — i07 (D, + D)), with Dy, =
0o.1 + iAp, and E = E(®;), a holomorphic function of the
chiral superfields ®,. The kinetic term for the Fermi
multiplet expands into

Sremi = [ dzx(np_wo LD+ |G — [E(g)P

OE OE
WV T W —_l//—> . (B3)

i op

The holomorphic function E(¢;) comes up as a potential
~|E(¢;)|* inside the action and thus its particular choice,
along with superpotential terms, determine the interactions
of the theory.

Superpotentials. Considering multiple Fermi superfields
¥, which couple to scalar chiral superfields J¢(®;) through
Sy~ [W,J¢ over half of the superspace, supersymmetry
dictates that superfields are constrained as E-J =
S ElJé=0. J%(¢) produce potential terms ~|J%(¢;)|*
which are usually referred to as the superpotential in N' =
(0,2) theories. Therefore, besides the E-terms, the J-terms
also give potential terms in N = (0,2) supersymmetric
theories, all of them directly connected to Fermi multiplets.
The attachment, E - J = 0 when multiple Fermi and chiral
multiplets are present, decides for the particular interactions
in the theory. But to see how this plays out we must first
introduce N = (0, 4) supersymmetric multiplets.

Two-dimensional A = (0,4) supersymmetry has four
real right-moving supercharges that rotate in the (2,2),
representation of a SO(4), = SU(2), x SU(2)x R sym-
metry, where the plus sign indicates the chirality under the
SO(1,1) Lorentz group. The superfields in this kind of
theories are the following.

N = (0,4) vector multiplet. Since in two dimensions the
gauge field is not propagating, it is natural that two-
dimensional N = (0,4) vector superfields are composed
of left-handed spinors, which do not transform under
right-moving supersymmetry. Thus, a A/ = (0,4) vector
superfield consists of an adjoint-valued N = (0,2) Fermi
superfield ® and a A = (0, 2) vector superfield.

Besides the gauge field, there are two left-handed
complex fermions, {? and three auxiliary fields, trans-
forming in the (2,2)_ and (3,1) R symmetry representa-
tions, respectively. The Fermi superfield is constrained
through D, O = Eg with Eg depending on the matter
content, i.e.,the chiral superfields present in the theory.

N = (0, 4) hypermultiplet. The first way to couple matter
fields to a V' = (0,4) vector multiplet [essentially to its
constituent A/ = (0,2) Fermi multiplet] is to consider a
N = (0,4) hypermultiplet that consists of two N = (0, 2)
chiral superfields, ® and ®, which transform in conjugate
gauge group representations and whose pairs of complex
scalars and right-handed spinors transform in the (2, 1) and
(1,2), representations, respectively, under the R symmetry.

N = (0,4) twisted hypermultiplet. Another possible way
to couple matter fields to a A/ = (0,4) vector multiplet
N = (0,4) is through a twisted hypermultiplet. This con-
sists of a pair of NV = (0, 2) chiral multiplets, X and 3., which
too transform in conjugate gauge group representations.
Now, nonetheless, a different R charge is being enforced by
the coupling to the Fermi field ®. In contrast to hyper-
multiplets, the scalars and right-handed spinors now trans-
forminthe (1,2) and (2, 1) representations of R symmetry.

N = (0,4) Fermi multiplet. Those contain two N =
(0,2) Fermi superfields, I" and I', which transform in
conjugate gauge group representations and whose left-
moving spinors transform in the (1,1)_ R-symmetry
representation.

N = (0,2) Fermi multiplet. Finally, it is acceptable in
N = (0,4) supersymmetric theories to consider N =
(0,2) Fermi multiplets, as long as their left-moving spinors
are SO(4), singlets and, according to that R-symmetry
transformation, couple appropriately to the rest of the
matter in the theory.

As we are about to see, our quantum field theory also
contains N = (4,4) superfields that decompose under
N = (0,4) supersymmetry into their A" = (0,4) super-
field constituents. The N = (4,4) vector multiplet splits
into an A/ = (0,4) vector multiplet and an adjoint-valued
N = (0, 4) twisted hypermultiplet. The chiral superfields £
and £ inside the twisted hypermultiplet couple to the Fermi
multiplet ® inside the A = (0,4) vector superfield.
Finally, a N' = (4,4) hypermultiplet decomposes into an
N = (0,4) hypermultiplet, ® and ®, and an N = (0,4)
Fermi multiplet, I" and T

2. U(1) R charge

From the SU(2)g xSU(2)r R symmetry of the
N = (0,4) theory, we single out a U(l), inside one
SU(2) and give the U(1), charge of each fermion in
the above multiplets.

For the N = (0, 4) vector multiplet we have that the left-
handed fermion inside the vector has R[{_] = +1 while the
same holds for the left-handed fermion inside the Fermi
multiplet, i.e., Ryy_] = 4+1. On the contrary, both right-
handed fermions inside the A = (0,4) twisted hyper-
multiplet have R[y | ] = 0. For both right-handed fermions
inside the N = (0, 4) hypermultiplet we have Ry, | = —1.
Finally, the fermion inside the A/ = (0, 2) Fermi multiplet
is uncharged under R symmetry.
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APPENDIX C: THE D8/D4 BOUND STATE

We consider the background of the case with a constant u
function and study the beginning of its p dimension where
D4-branes seem to polarize into a D8/D4 bound state. The
fact that the C§ field becomes infinitely strong at that
endpoint reasonably makes the D8/D4 bound state dom-
inant, yet a more formal proof of it being the true vacuum is
in order.

Comparing to Myers’s original calculation [58], here we
are dealing with higher dimensional branes. Furthermore,
the method developed in [58] holds in the flat space limit,
whereas our bound state takes place in AdS; xS?xCY, x L,
|

What is more, Calabi-Yau manifolds lack a particular
metric tensor entirely.

However, the situation is less dramatic than it may look.
First, the Chern-Simons term

Sgé = H4 / Tr Z eMl‘qu) C(n) €f2

gets only deformed away from the flat space limit by terms
coupled to the B, field. These terms would be unimportant
compared to our infinitely strong C§ potential coupling,
but the Kalb-Ramond field vanishes at p = 0 for constant
u(p) anyway. Next, the Dirac-Born-Infeld (DBI) action

(C1)

Spir = —T4 / ETre ™\ /= det(Gyp + Gui( Q' = 8)7Gyy + 4] up) det(Q))

where

Qf = & + iA@', DGy, (C3)
The a, b are indices pulled back on the D4-brane world
volumes, while i, j are their transverse dimensions. That is,
G, = (Gaps G;;) where G,; = 0 and the transverse field
G;; includes the p dimension and an independent CY,
block.

(€2)

Choosing a static gauge where the D4-branes’ world
volumes fill up AdS; x S?, i.e., choosing world volume
coordinates and the transverse modes (which are scalars in
the D4 world volume) as

¢ =X=(t,x,1,0,¢),  X(£&) =D&, (C4)
where the 4 was included on dimensional grounds, the DBI
action then reads

SB%I = —T4 / d4ﬂr€_¢\/— det(Gab + /lzaaCDiabCDjG,-j) det(&; + l/’{[q)l, ch]Gk])

where we ignored the D4-brane gauge field f as unim-
portant. Using the fact that the determinant behaves like
det(A 4+ AB) = detA + ATrB + - - - for small 4, we obtain
the potential energy

T M 2%

V(®) = N,T,M, — Tr[®, ®/]2
T M3
12

—i Tr[®!, ®/]° + ... (C6)

where the ellipsis contains higher-order potential terms and
contractions with the transverse metric G;; are implied. Ny is

the number of D4-branes and M, comes from the factor
e~? det G, which for our background (3.20) atp — 0 scales as

—0
e detG 25 Mypip=i =M, (C7)
which goes to a constant. Notice that in the flat space limit, the
second term of (C6) reflects the familiar supersymmetric
Yang-Mills potential.

(C5)

[

So far, the sole deviation from the flat space analysis is
the contraction of indices in the potential (C6) with the
transverse metric G;;. This field includes the p-dimension
component and an independent CY, block. The former is
known but unimportant since the ®” modes will not be
ultimately involved in the potential energy and thus no such
indices will need to contract, while the latter is essential but
lacks a particular metric tensor. We could maybe realize
some generic algebraic constraints on the Calabi-Yau
block, like its Ricci flatness, but we do need a particular
metric tensor which makes it is easier to assume CY, = T*
and thus let for a Euclidean R* metric.

Our study significantly simplifies by choosing a con-
venient gauge for the RR potential as

2
csl = —Z—svol(AdS3) A Vol(S2) A vol(CY,).

(C8)

On these grounds, while picking the static gauge (C4), we
can expand the source term
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12
SR8/ ~Shs / Tr(1pte)*Cy!
/12 L
— _EM / d5<§TrCI>’<I>J<I>kCDlCijkzzxra¢

/12

g [ el ool ale,  (co)

8

where we redefine the latin letters i, j, k, [ to denote only
CY, directions. The transverse modes @' are, in general,
anticommuting matrices, where the diagonal elements are
the positions of the D4-branes, while the nondiagonal ones
reflect their quantum geometry due to the superposition of
strings ending on them. The fact that @' are oscillations in
nonflat dimensions is not restrictive in any way, since we
fundamentally assume those modes as generic anticom-
muting matrices that may (and actually do) give a fuzzy
geometry. Also, note that, in general, we should include ®”
too, but not in our particular gauge of Cg'.

Now we want to focus on p = 0 where all the action
takes place, i.e., expand Cg’ around that endpoint. It being a
singular endpoint implies a Laurent expansion but, since it
is also the endpoint of a closed interval, this series is not
well defined around it. Thus, we just pick a point x close to
p = 0 and expand around it, inside a circular region (of the
complex domain)—of radius x too—which touches the
singularity. That is, the expansion reduces to a Taylor series
around x as

2 .
Ses=~%m / FETr@!, /][@%, &)(Cy|

FADPF |,y + ... (C10)

Since hg — 0 for small x, the RR fields Cq and F'( blow up
there and thus from now on we will consider them as
largely valued quantities.

The above source term adds to the interactions (C6) of
the DBI action and hence, taking into account the full
D4-brane action S = Spg; + Scs, wWe acquire the potential
energy

22 2 o
V(®) = =7 Tr[@, O/ + 2 Tr[@', &/][0F, & C9‘
pP=x
/13 ) . 13 . .
— i35 TH@ @] + L Tr(d ][0, d”]@P"Flo(p

=X

(C11)

where we have assumed a constant mode @” to simplify the
game and reparametrized the fields conveniently to absorb
numerical factors. Reparametrizing once more, the poten-

tial gets an order by order variation % =0 as

o) [0, @] = [(I)k7q)l]cijkl...

OF): [0, /][@), @] = —i[@', @"|Fyy,...  (CI2)
which has a trivial solution [®/, ®/] =0 giving V, = 0,
corresponding to separated D4-branes. Alternatively, com-
bining both of these equations, the potential also exhibits
the nontrivial solution

[@, /] = —ie"0, (C13)
which in momentum space reads
(@, ®/] =€'ip, (C14)

where we abuse the antisymmetric tensor just to sustain the
antisymmetry of the commutator into the rhs. Placing this
solution back into the supersymmetric Yang-Mills potential
we get

V* = Azpfz)c9|/)—>0 + O(ﬂ“g) (CIS)
where we used the fact that Cy is large at p — O.

As a matter of fact, Cy is not only large but also negative
at that endpoint, which means that V, < 0. Since the
separated D4-branes correspond to the null energy state
Vo = 0, the latter is unstable and condenses out into the
nontrivial D8/D4 bound state with V, which is the true
stable vacuum at p = 0. Also, notice the fact that specifi-
cally V, — —oo, due to the strong RR potential Cg — —o0
at p — 0, which saves us from having to also investigate
other bound states. In our case, Cg’l, C?Z —0atp—->0
anyway, but even if this was not the case there just cannot
be any lower energy than V,.

APPENDIX D: R CHARGE OF THE BPS STATE

Naively, the B, field in (2.1) has nothing to do with the
1-form cos @d¢. However, B, exhibits large gauge trans-
formations across the p intervals [2zk, 2z(k + 1)], which
are explicitly realized through the 1-form

A =0O(p —27k)O2n(k + 1) — p)wkcosOdg.  (D1)

Therefore, the large gauge transformations B, — B, + dA;
read
B, = B, +0O(p —27k)®(2x(k + 1) — p)mkdQ,
+ [6(p — 27k) — 6(2n(k + 1) — p)|zkdp A cos Od¢p
(D2)
where, in this explicit formulation, the only difference now

is the novel delta-terms, Bg. The latter, which are the ones
producing the R charge, are integrated over a p interval as
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1 2
— [ BS==— / cosOdg
2 2 R

2(k+1)
y A a0t —20k) ~5(2a{k-+ 1) =)k

—6(2xk—p)a(k—1)+6(p—2n(k+1))z(k+1)}
(D3)

where the first line is the contribution coming from B
defined on the interval [2zk,2z(k + 1)] as expected,
while the second line includes the contributions coming
from the intervals prior and next to that. Considering
J&° 5(x)dx = 1/2, the above integral gives

(D4)

1
— [ BS = od
o 2 A{ cos Od¢

and the whole meson string M, ,, acquires the R-charge
source term

Sy =(m—k) / cos 0d¢ (D5)
R
which yields its R charge
QOr =m—k. (D6)
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