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Abstract:  

Purpose: To understand the difference between irreversibility in heat and work transfer processes. To explain that 

Helmholtz or Gibbs energy does not represent ‘free’ energy but is a measure of loss of Carnot (reversible) work 

opportunity.  

Approach: The entropy of mass is described as the net temperature-standardised heat transfer to mass under ideal 

conditions measured from a datum value. An expression for the ‘irreversibility’, is derived in terms of work loss 

(Wloss) in a work transfer process, unaccounted heat dissipation (Qloss) in a heat transfer process and loss of net 

Carnot work (CWnet) opportunity resulting from spontaneous heat transfer across a finite temperature difference 

during the process. The thermal irreversibility is attributed to not exploiting the capability for extracting work by 

interposing a combination of Carnot engine(s) and/or Carnot heat pump(s) that exchanges heat with the 

surrounding and operates across the finite temperature difference.  

Findings: It is shown, with an example, how the contribution of thermal irreversibility, in estimating reversible 

input work, amounts to a loss of an opportunity to generate net work output. The opportunity is created by 

exchanging heat with surroundings whilst transferring the same amount of heat across finite temperature 

difference. An entropy change is determined with a numerical simulation including calculation of local entropy 

generation values and results are compared with estimates based on an analytical expression. 

Originality: A new interpretation of entropy combined with an enhanced mental image of a combination of Carnot 

engine(s) and/or Carnot heat pump(s) is used to quantify thermal irreversibility.  
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Nomenclature:  

CWnet: The net Carnot (reversible) work opportunity created by interposing a combination of Carnot 

engine(s) and/or Carnot heat pump(s) that exchanges heat with the surrounding and operates across 

the finite temperature difference. The loss of CWnet opportunity is defined as the thermal 

irreversibility.  

du: An infinitesimal change in the specific internal energy (J/kg) of a control volume.  

U: The internal energy of control volume (J). 

δQ: An infinitesimal amount of heat transfer to the control volume.  

δQgain: An infinitesimal value of the heat gain due to work loss (Wloss) is assumed to have appeared 

under ideal conditions. 

Qloss: An unaccounted heat dissipation to surroundings during a heat transfer process. 

δW: An infinitesimal amount of work transfer to the control volume. 

G: Gibbs energy. 

F: Helmholtz energy. 

H: The enthalpy of fluid under consideration.  

I: Irreversibility – the sum of the loss of work, Wloss , in a work transfer process, unaccounted heat 

dissipation to immediate surrounding, Qloss , in a heat transfer process  and the thermal irreversibility 

or the loss of work opportunity, CWnet, when heat is transferred across finite temperature difference.   

q: Heat flux across the control volume boundary.  

S: The entropy of mass within a control volume (J/K). It is defined as the net temperature-

standardised heat transfer to mass under ideal conditions measured from a datum. It is a measure of 

the heat transfer the mass has experienced under ideal conditions. 

�̇�̅: Volume averaged entropy rate within the control volume (W/ m3 K). 

�̇�𝑙𝑜𝑐𝑎𝑙 : Nodal entropy rate values in determined in a finite element simulation (W/K). 

ΔSc.v.: Change in the entropy of the control volume (J/K). 

Sfinal: Final entropy of the control volume (J/K). 

Sinitial: Initial entropy of the control volume (J/K). 

Sin: Entropy of mass transferred to the control volume (J/K). 

Sout: Entropy of mass transferred from the control volume (J/K). 

Sgen: Entropy generation term. It is a measure of generation of temperature standardised 

irreversibility. 

𝑆∗: The dimensionless entropy generation term of the fluid. 

�̇�𝑐𝑜𝑛𝑑 : Local entropy generation rate due to conduction.  

�̇�𝑐𝑜𝑛𝑣 : Local entropy generation rate due to viscous dissipation.  



𝑇: Temperature (K) of a control volume under uniform conditions.  

�̅�: Volume averaged temperature within the control volume in K.  

𝑇𝑙𝑜𝑐𝑎𝑙 : Nodal temperature values in the finite element simulation. 

Tmass: Temperature (K) of a control volume under uniform conditions. 

TH: The temperature of a source with which the control volume has exchanged heat with.  

TL: The temperature of a sink with which the control volume has exchanged heat with.  

T0: The atmospheric (constant) temperature in Kelvin (K) 

�̅�𝑏 : Volume averaged boundary temperature at the heating section. 

𝑉𝑙𝑜𝑐𝑎𝑙 : Nodal volume values in the finite element simulation. 

Wloss: Work loss (energy dissipated as heat) in a work transfer process due to irreversibility.  

Zdiss: Entransy dissipation term.  

 

1. Introduction 
  

The thermal irreversibility topic has gained much attention since Guo et al. (2007) presented an analogy 

between heating a piece of solid (metal) and charging an electric capacitor. It is claimed that the 

entransy concept was developed to fill an existing gap in the heat transfer analysis that there was no 

measure of irreversibility that was directly related to the optimization of heat transfer not involving in 

a thermodynamic cycle or heat-to-work conversion (Guo et al. 2014). The differential change in entransy 

for an incompressible object is given by (du T) whereas (du/T) that represents a differential change in 

entropy. According to Guo (2014 a), the entransy of a system represents its heat transfer ability during 

a time period without heat-work conversion and consequently is a function of the temperature only, 

while the entropy of a system, which can measure the system ability of heat-work conversion, is a 

function of two independent system properties. Guo classifies heat transfer processes into two 

categories according to their purpose (Guo 2014 a, Chen et al. 2013): for heat-work conversion in 

thermodynamic cycles and for pure object heating or cooling, and recommends to use the entropy 

generation rate as the measure of the heat transfer (thermal) irreversibility for the first category. For the 

second category Guo proposes to use the entransy dissipation rate as the measure of the thermal 

irreversibility. 

Cheng and Liang (2019) have attempted to reinforce the credibility of the analogy between the heat and 

electrical conduction even though the irreversibility, or the loss of work, referred to as Joule heating 

(I2R losses) are physical energy losses resulting from a work transfer process. This analogy is incorrect 

and must not be used. The mechanisms for irreversibility during heat transfer and work transfer 

process are distinctively different. It is true that the energy dissipation due to irreversibility in a work 

transfer process always occurs in the form of heat and hence its effect appears in both the first and 

second law of thermodynamics.  

 

The effect of thermal irreversibility, or the irreversibility in a heat transfer process when heat flows 

across a finite temperature difference, can only be accounted by the second law of thermodynamics. 

This paper defines thermal irreversibility as a loss of the net Carnot (reversible) work opportunity. The 

effect of thermal irreversibility does not appear in the first law of thermodynamics, or the conservation 

of energy principle, as it represents a loss of work opportunity rather than loss of work.  



 

Bejan has undoubtedly pioneered the research on quantifying irreversibility in heat and flow problems 

since seventies and has been one of the main advocates of using the minimisation of the entropy 

generation principle (Bejan 1977, 1978, 1979, 1982, 1987). The mathematical equations proposed are 

rigourous and widely accepted. Using the TdS relationships and the second law of thermodynamics 

expression, Bejan categorised the work lost due to irreversibility in heat and fluid flows into two parts: 

the first part is the energy lost due to fluid friction (viscous effect) and the second part is the energy loss 

due to thermal irreversibility. In addition to thermal and fluid friction irreversibility, Qayyum et al. 

(2019) used terms associated with Joule dissipation and diffusive irreversibility.  Armaghani et al. (2019) 

used non-dimensional form of entropy generation term to model the effect of heat source location on 

heat transfer. Sheremet et al. (2017) used the Bejan number to compare the effect of fluid friction and 

heat transfer irreversibility on the natural convection of nanfluid flow in a wavy cavity. Several authors 

(Ellahi et al. (2020), Riaz et al. (2021), Akbarzadeh et al. (2018) and Sheikholeslami et al. (2019)) have 

studied the effect of magnetic and electromagnetic field parameter as well as radiation parameter on 

irreversibility for flow of nano-fluids through porous media. Authors non-dimensionalised the entropy 

generation term with a characteristic entropy generation rate.  Lukose and Basak (2021) used the heat 

transfer and fluid friction contributions of the entropy generation term to study the effect of container 

curved and straight walled shapes on thermal performance or efficiency of convection process. At low 

Reynolds number (~1000) the effect of thermal irreversibility was dominant in comparison to fluid 

friction irreversibility. It is relatively easy to visualise how fluid flow losses can be reduced by 

minimising fluid friction irreversibility. Identifying methods to minimise the thermal irreversibility 

component of the entropy generation term is more challenging particularly when the heat flows across 

a finite temperature difference without any work conversion (simple heating or cooling process).     

 

Subject to the following condition, ∆T << T i.e. (1 +
∆𝑇

𝑇
) ≈ 1, the entropy generation rate for the thermal 

irreversibility part is shown equal to 
𝐤(𝛁𝑻)2

𝑇2 .  Bejan (1978) derived an expression for the dimensionless 

entropy generation rate, 
𝑆𝑔𝑒𝑛 𝑇

𝑞
, as follows: 

 

 
𝑆𝑔𝑒𝑛 𝑇

𝑞
= (

∆𝑇

𝑇
) (1 +

∆𝑇

𝑇
)

−1

                                                                                                                           (1) 

 

This expression holds irrespective whether the condition ∆T << T is satisfied or not. T is the absolute 

temperature value of mass in a control volume at a given spatial location and temporal instance. 

Hesselgreaves (2000) reviewed various approaches to second law analysis of one dimensional heat 

transfer problems including the approach given by Bejan (1978) and Witte and Shamsundar (1983).   

 

Liu et al. (2011) expressed the entropy generation rate, 
k(∇𝑇)2

𝑇2 , as a dot product of temperature-

standardised heat flux term, 
𝒒

𝑇
 , and −

𝛁𝑻

𝑇
. The entransy dissipation term, k(∇𝑇)2, is expressed as a dot 

product of 𝒒𝑇 and −
𝛁𝑻

𝑇
. This dot product cancelled the temperature value that represented the 

temperature level and simplified the entransy dissipation minimisation problem as minimisation of the 

square of temperature gradients. The results were shown different to the ones obtained from the 

traditionally used entropy generation minimisation method and has been claimed as more appropriate 

for optimization of the heat transfer process (Liu et al. 2011, Chen et al. 2011).   

 

Whether the cancellation of the temperature value that represents the temperature level at which the 

heat transfer has occurred from degrades or enriches information content of thermal irreversibility is 

explored in this paper.  

 

Since the introduction of entransy in 2007, the Clarivate Web of Science citation report identified 566 

publications with the word ‘entransy’ and it is cited 12,131 times producing an H-index of 52 as of 31st 

December 2021 (Figure 1). These numbers illustrate the scale of intense academic engagement and 

scrutiny that the entransy concept has received over the last decade. 



 

 
Figure 1: The Clarivate Web of Science citation report for ‘entransy’ as of 31st December 2021. Average citations 

per year are in excess of 800.  

  

Bejan (2014, 2018) is a vocal critic of using the entransy minimisation principle and has claimed the 

entransy research as duplication of science by introducing new terms suggesting an impression of 

citations cartel and nationalism. Recently, he has argued that all of the entansy papers are worthless 

(Bejan 2020). Oliveria and Milanez (2014) showed the equivalence between the entransy dissipation and 

entropy generation terms.    

 

The relevance of entransy in quantifying the thermal irreversibility is explained by Chen, Guo and 

Liang (2014) in one their rebuttals and is reproduced below in their own words: 

 

“Irreversibility is indeed a universal tendency in nature, but entropy generation and exergy destruction are not 

the only measures of the irreversibility of any heat transfer process. When the transferred heat is used for doing 

work, the entropy generation is the irreversibility measure and the entropy generation minimum is the heat 

transfer optimization objective to maximize heat-work conversion efficiency. Oppositely, when the transferred 

heat is used to only warm or cool an object, the entransy dissipation is the irreversibility measure and the entransy 

dissipation extreme is the optimization objective to maximize heat transfer coefficient. Please take the sentence as 

a whole and do not separate it into two parts. For instance, for heat conduction problems with heat flux boundary 

conditions, the objective of entropy generation minimization is to minimize the average difference of the reciprocal 

of the temperature, min (∆(1/T)ave), while that of the entransy extremum principle is to minimize the average 

temperature difference, min (∆Tave).” 

 

Kostic (2017) reviewed all criticisms, and the subsequent rebuttals, surrounding entransy and has 

cautioned against its subjective praise or criticism. He has pointed out that currently there is no 

justification on why the product (du T) is a better or worse term in comparison to the division (du/T). 

As both terms represent the quantity and quality of heat, i.e. the stored thermal heat and its temperature 

level, he has envisioned that entransy may contribute to better comprehension of the often obscured 

and elusive thermal phenomena of thermal irreversibility. 

 

Guo (2014 b) has made the following two observations/concerns in his rebuttal to Bejan (2014). These 

concerns have not yet been responded to in the open literature. 

 

“1. For pure heat transfer processes not concerning heat to work conversion, neither ambient nor absolute 

temperature should be blindly added into the irreversibility measure and the corresponding optimization objective.  

 

2. The entransy approach is valid for various heat transfer process not involved in a thermodynamic cycle 

without the limitation of ∆T << T, whereas the entropy or exergy approach is not. Why not to discuss the case 

that ∆T << T is not held.”  



It is also important to understand how authors researching the entransy concept perceive its 

interpretation. In a recent paper Liu et al. (2021) have explained the physical interpretation of entransy 

as follows: “The scientific problem behind these arguments is: whether entransy and entropy are equivalent 

physical concepts or whether entransy dissipation and entropy production have an equal effect. It is clear that 

entransy can correspond to the energy in other transport systems, such as kinetic energy, potential energy, 

electrical energy and so on. Therefore, physical meaning of the entransy can only be equivalent to the energy but 

not to entropy.”. The authors go further and claim that “(the entransy dissipation rate) … are limited to the 

framework related to the first law of thermodynamics, not to the second law of thermodynamics”.    It is not clear 

whether this claim was noticed and assessed by the referees during the peer review process of the 

International Journal of Heat and Mass Transfer. It is commonly understood that work transfer 

irreversibility terms do contribute to the first law of thermodynamics expression. However, it is 

explained in this paper why any measure of thermal irreversibility can only be accounted in the second 

law of thermodynamics and NEVER in the first law of thermodynamics. The entropy balance equation 

based on the second law of thermodynamics accounts for both work transfer and thermal irreversibility 

terms.  

 

In summary, it appears that the following four claims are emerging from this discussion:  

 

1. Whether the physics associated with heat transfer across a finite temperature difference 

depends on its purpose in order to require purpose specific approach e.g. whether heat is 

transferred to:  

(i)  heat or cool an object 

(ii) achieve heat-to-work conversion.  

 

2. It is claimed that for heat transfer problems that do not relate to heat-to-work conversion, the 

use of entransy i.e. multiplication of the change in the internal energy du for an incompressible 

object by the absolute instantaneous temperature T is a better option for minimising thermal 

irreversibility as compared to entropy that involves a division operation with T. 

3. The absolute temperature term is added to the thermal irreversibility measure without 

justification.  

4. The current equations and science does not have an expression for the irreversibility measure 

when the condition ∆T << T is not satisfied. The entransy dissipation term does not have this 

limitation.  

 

The aim of this paper is to unravel the elusiveness of thermal irreversibility by identifying a unique 

measure that only entropy determines and to provide the much needed justification to the claim 

whether entransy is more suitable than entropy to quantify thermal irreversibility when heat is 

transferred to heat or cool an object.  

 

The objective of this paper is to directly address both of the concerns Guo (2014 b) has made in his 

rebuttal to Bejan (2014). The objectives are listed below.  

 

1. Refine the entropy concept to develop a unique measure in addition to the existing measure of 

thermal disorder.  

2. Develop a mental image of thermal irreversibility to visualise if the heat transfer across a finite 

temperature difference can depend on its purpose.     

3. Derive an expression for the thermal irreversibility from first principles to assess whether it is 

necessary to add the absolute temperature variable in the irreversibility measure for the 

following two cases:  

a. ∆T << T condition is satisfied. 

b. ∆T << T condition is not satisfied 

 

Section 2 briefly reviews some of the current interpretations of entropy used in the literature and 

introduces a mental image for visualising thermal irreversibility.   Section 3 defines entropy, explains 



ideal conditions and describes the associated temperature-standardisation concept. This 

interpretation has allowed the change in the entropy values under real and ideal conditions to be 

equated with each other for a control volume with, or without, mass transfer. This led to the 

development of a new expression for calculating the entropy generation term in terms of the loss of 

net Carnot work, CWnet, opportunity during heat transfer across a finite temperature difference in a 

process, unaccounted heat dissipation, Qloss, to immediate surrounding in a heat transfer process and 

the work loss, Wloss, that occurred during work transfer in the process. It is shown how the Gibbs and 

Helmholtz energy is related to the net Carnot work, CWnet, opportunity. An example is illustrated in 

Section 4 to discuss how the proposed methodology is applied and how thermal irreversibility can be 

used as a tool to gain insights on developing novel energy efficient solutions. Section 5 derives an 

expression for thermal irreversibility for simple heat conduction achieving heating or cooling effect 

using the Carnot heat engine and heat pump analogy. Section 6 presents a numerical example for a 

transient process with heat generation and natural convection to relate the local entropy generation 

term with the total entropy generation between the final and initial states. The paper is concluded in 

Section 7. 

2. Entropy, disorder and irreversibility 

 

Perhaps, one of the main reason why the thermal landscape is elusive is because entropy has been 

exclusively associated with thermal disorder of molecules and how organized/disorganized energy is 

(Kostic 2014). It is often forgotten that entropy is not the only measure of thermal disorder. Other 

properties such as ‘enthalpy’ and/or ‘temperature’ of mass are also a measure of thermal disorder.  

 

Entropy is neither elusive nor confusing. We, as a society, are responsible for keeping entropy elusive 

and confusing. Wilhelm (2021, Chapter 1, p.11) has concluded in his recent book, published by the 

Royal Society of Chemistry, in the UK, that Classical thermodynamics does not provide an explicit 

definition of the total entropy. The reality is that the connection of ‘entropy and disorder’ is engraved 

at the subconscious level in the young and unsuspecting minds not just by Wikipedia, text books and 

literature (Bejan 2020) but more importantly, the exam boards. Most of us were introduced with the 

entropy concept, alongside of the Gibbs energy, while learning chemistry in the final year of school 

before starting a formal University education. Many chemistry text books define Gibbs energy (G) for 

an isothermal and isobaric non-flow chemical process as (H - T0S) where H is the enthalpy of fluid 

under consideration, T0 is the atmospheric (constant) temperature in Kelvin (K), and S is the entropy 

of the fluid. 

 

Many international exam boards, including some of the UK’s leading exam boards, such as Oxford 

Cambridge and RSA (OCR) [I], the Assessment and Qualification Alliance (AQA) [II], the Welsh Joint 

Education Committee (WJEC) [III] and a qualification brand, ‘Edexcel’ for academic and general 

qualifications from Pearson [IV], still use the term ‘Gibbs free energy’ rather than ‘Gibbs energy’ whilst 

introducing the concept, probably for the first time, to students studying chemistry at A levels. As an 

example, the Edexcel board explains the Gibbs free energy “as the enthalpy content minus TS which 

represents the substance’s energy that is already disordered. This difference is the energy that is 

available to become disordered by doing work” [IV]. Entropy is defined as “a measure of the dispersal 

of energy in a system, which is greater, the more disordered a system” by the OCR board [I]. The AQA 

board introduces entropy as a concept of increasing disorder [II], which is echoed by the Edexcel board 

that defines entropy as a measure of disorder [IV]. The WJEC board defines entropy of a system as “a 

measure of the freedom possessed by particles within it and the increase in entropy towards a 

maximum for all natural changes” in it’s A Level chemistry specification [III]. This makes it very 

difficult for everyone to unlearn the mental image of disorder and chaos from entropy.  

 

Order and disorder are a distinct phenomenon to irreversibility. Bejan (2020) has argued that 

‘increasing disorder’ is a misunderstanding of entropy. He has associated generation of irreversibility 



with an entropy generation term and introduced entropy change (not “entropy”) as “a mathematical 

expression formulated by Clausius in order to show the irreversibility of “any” process (any change of state) 

experienced by any system. This way, the second law is an inequality. The measurement of the severity of the 

inequality sign is the entropy generated during the process, and this is being used as a measure of how irreversible 

(dissipative, imperfect) the process is”. Associating entropy with order/disorder or organized/disorgaised 

energy is a pointless exercise. Its connection to the probability of energy states as perceived in statistical 

thermodynamics narrows down its applicability. In Bejan’s (2020) words: “thermodynamics is immensely 

more general and more applicable than statistical mechanics”. 

 

Lambert’s (2002 a) view of entropy as a measure of energy dispersal at temperature T is a significant 

advancement over an incorrect interpretation of entropy; a measure of molecular disorder. The 

description of entropy; as a measure of the freedom possessed by particles within it, needs to be 

avoided, including any references to statistical micro-states, as it is likely to cause confusion in 

understanding the entropy concept in the context of Classical thermodynamics. Lambert’s (2002 a) 

energy based view of entropy is certainly a step in the right direction. However, the interpretation of 

energy diffusion, or dispersal, to more microstates does not give clarity on how heat transfer affects 

the internal energy, flow work, boundary work or kinetic energy of mass of a control volume at the 

continuum level. It does not account for heat dissipation due to irreversibility in a work transfer 

process. Indeed, the last sentence in Lambert’s (2002 b) second paper refers to entropy change as being 

related to the dissipation of energy, however, it was used in the context of dispersal of molecular 

energy.  A distinction is made in this paper to relate entropy change from the dispersal of energy to 

temperature-standardised heat transfer across the control volume boundary, including heat 

dissipation resulting from work loss due to an irreversibility in a work transfer process. 

 

Ben-Naim’s (2011) work on Shannon’s measure of information offers a statistical based explanation of 

entropy. The mixing processes described in the first figure of Ben-Naim’s paper illustrates an example 

of why Shannon’s measure of information interpretation of entropy is useful as compared to the energy 

based interpretation of Lambert. The mixing process of two ideal gases follow a reversible isothermal 

expansion process. It is obvious that the internal energy for the ideal gas does not change as the 

temperature remains constant. The changes in volume are described as boundary work. However, 

what is not mentioned in the paper is that, although the pressure will remain directly proportional to 

the density of the gas under reversible isothermal conditions, the boundary work is either supplied 

externally by an infinitesimal addition of heat to the gas, or another frictionless mechanical device. 

This is the only way that the internal energy and the temperature of the control volume can remain 

constant. The change in the entropy of the control volume resulting from volume changes is equal to 

the corresponding changes to heat transfer for reversible isothermal processes. However, it is not clear 

how Shannon’s measure of information would explain heat dissipation due an irreversibility that is 

associated with all real processes. 

 

Bhattacharyya and Dawlaty (2019) have attempted to relate statistical interpretation of entropy with 

thermodynamic entropy. This connection seems unnecessary if the objective of the study is to 

understand thermodynamic efficiency, the existence of impossible states or processes, or to quantify 

and minimise irreversibility effects in a process. 

 

2.1 A mental image of thermal irreversibility in terms of loss of Carnot work 

 

Kostic (2020) explains that ‘entropy is always generated with heat generation due to all kinds of 

irreversibilities, including the conduction heat transfer’. In one of the early papers, Kostic (2004) used 

a combined Carnot heat engine-heat pump analogy to explain reversible heat transfer. The Carnot heat 

engine drove the heat pump and the heat rejected by the engine was fed to the heat pump. This allowed 

the heat transfer to occur without loss of Carnot work opportunity or the thermal irreversibility. Bejan 

(2019) has also used Carnot engine analogy to explain reversible and irreversible heat transfer.  

However, one of the best analogy that is often not cited is the analogy of a combined Carnot heat engine-

heat pump given by Witte and Shamsundar (1983).  The analogy was given for a heat exchanger but is 



equally applicable to general heat transfer problems across a finite temperature difference (Figure 2). 

The mental image of Witte and Shamsundar’s Carnot heat engine-heat pump analogy is extended to 

all four combinations as heat is transferred from T + ∆T to T (Figure 3 a: T > T0, b:  T+ ∆T < T0) and from 

T to T + ∆T (Figure 3 c : T > T0, d: T+ ∆T < T0). When heat is transferred from a high temperature to low 

temperature for heating purpose (Figure 3 (a, b)), the net Carnot work output value that represents 

thermal irreversibility is notional, it represents an opportunity. For cooling purpose, the heat is 

transferred from a lower temperature to higher temperature and the net Carnot work input value is 

real or physical (Figure 3 (c, d)).   It needs to be made clear here that the term ‘Carnot work’ is used in 

this paper as a general case to cover all ‘reversible work’.   

 

                                       
                          
   Figure 2:  When heat is transferred from a high temperature to low temperature for a purpose of heating, the 

net Carnot work output value that represents thermal irreversibility is a notional value. It represents an 

opportunity to produce work.    

 

          
 

Figure 3:  A mental image of thermal irreversibility based on Witte and Shamsundar (1983). Heat is transferred 

from T + ∆T to T (a) T > T0, (b) T + ∆T < T0 and from T to T + ∆T (c) T > T0, (d) T+ ∆T < T0). 

 

 



3. The entropy of mass within a control volume 

 

A new description that excludes words ‘disorder’ and ‘disorganised’, helps to create a mental image 

of entropy is proposed in this paper. The entropy is described as a ‘measure of the heat transfer the 

mass has experienced under ideal conditions’.  

 

Entropy is a property of the mass i.e. mass at a given state will have a unique entropy value irrespective 

of how the state was reached. The entropy of mass is described as the net temperature-standardised 

heat transfer to mass under ideal conditions measured from a datum. 

 

There are three important concepts to note in this description: 

(i) temperature standardisation 

(ii) ideal conditions 

(iii) a datum 

 

The ideal conditions for heat transfer are described in the next sub-section. The entropy value is 

assumed as zero at an arbitrary chosen datum. This is the reason why an estimation of an entropy 

value at a given state is different in many thermodynamics tables, or diagrams such as enthalpy-

entropy or pressure-entropy.  

 

It is important to understand the temperature value used for standardisation for both real and ideal 

cases. Clausius (1879) (p 90) defined that in a reversible cyclical process, every element of heat taken 

in, positive or negative, should be divided by the absolute temperature at which it is taken in, and the 

newly formed differential be integrated for the whole course of the process. Here, the integral is 

observed as zero. Clausius has suggested to use the magnitude of heat exchanged with the external 

reservoir and that it be standardised with the reservoir temperature value. It is the temperature of the 

source (TH)/sink (TL)/surroundings (T0) i.e. the external reservoir temperatures with which the mass 

has exchanged heat. 

 

In short, you never standardise the heat transfer value with reference to the temperature of mass in a 

control volume, except under the following two conditions: 

(i) when the heat is transferred under ideal conditions, as the temperature of the external 

reservoir remains the same as the temperature of mass in a control volume at all times 

(ii) when the heat is generated by a source within the control volume rather than being 

transferred to the mass across the control volume boundary. For example, this happens 

during an adiabatic irreversible work transfer process. The work loss due to irreversibility 

reappears as heat gain within the control volume like a heat source. Therefore, to calculate 

the entropy increase in this case, the infinitesimal value of the heat gain, δQgain, is assumed to 

have appeared under ideal conditions, and therefore, it is standardised by the temperature of 

mass (or control volume). 

 

3.1. Heat transfer under Ideal and Real Conditions and Loss of Carnot Work opportunity 

 

Ideal conditions assume that there is no irreversibility in the process. This is a theoretical possibility 

that constitutes the most efficient form of heat transfer without any loss of the Carnot (reversible) work 

opportunity. The heat transferred under ideal conditions assumes the heat transfer to have occurred 

extremely slowly under quasi-equilibrium conditions. As the mass changes its temperature, Tmass, with 

heat transfer (Figure 4a and 5a), it is assumed that at all times the mass remains in thermal equilibrium 

with the external reservoir with which it exchanged heat. The entropy change value, ∆S, under ideal 

conditions is standardised with the mass temperature, Tmass. The isothermal heat transfer process at 

each quasi-equilibrium state constraints the Carnot heat engine work output equal to the Carnot heat 



pump work input. The heat rejected by the Carnot engine is input to the heat pump. The net Carnot 

work, δCWnet, is zero at each quasi-equilibrium state. This integration gives a summation of all 

temperature-standardised heat transfer values δQH, or δQL, under ideal conditions. The equation is S = 

S0 + ∫ δQ/Tmass, where S0 is an arbitrary chosen datum value taken as the initial value and assumed as 

zero. 

 

The ideal-conditions assumption helps us to relate the magnitude of heat exchanged with the external 

reservoir with the control volume properties. Therefore, it is this assumption that makes it possible for 

entropy to be defined as a property of mass. As a result, the change in the entropy of mass can be 

interpreted as a measure of the heat transfer the mass has experienced under ideal conditions. 

 

 
 

Figure 4. Heat transfer to control volume under (a) ideal and (b) real conditions. The ∆S value calculated for the 

corresponding reversible +δQrev case is same as for the real +δQ case. 

 

In reality, the heat transfer occurs at the fastest possible rate under given constraints. This contrasts the 

quasi-equilibrium assumption. For a real process, if we assumed that the control volume exchanges 

heat QH with a source at constant temperature TH, and/or rejects heat QL to a sink at constant 

temperature TL, then the resulting loss of net Carnot work, δCWnet, output is determined with the 

summation of the following two expressions:  

 

(a) The difference between the work output of a Carnot engine that receives heat δQH at 

temperature TH, which operates between temperatures TH and T0, and the work input to a 

Carnot heat hump that delivers heat δQH at temperature, Tmass, which operates between 

temperatures Tmass and T0 (Figure 4b). 

(b) The difference between the work output of a Carnot engine that receives heat δQL at 

temperature, Tmass, and operates between temperatures Tmass and T0, and the work input to a 



Carnot heat hump that delivers heat δQL at temperature TL which operates between 

temperatures TL and T0 (Figure 5b).      

 

       
 

Figure 5. Heat transfer from control volume mass under (a) ideal and (b) real conditions. The ∆S value calculated 

for the corresponding reversible -δQrev case is same as for the real -δQL case. 

 

This loss of net Carnot work output, CWnet, is captured within the extended boundary (Figures 4b and 

5b). To calculate the resulting entropy change ∆S value of control volume mass; +δQH is standardised 

with the source temperature, -δQL is standardised with the sink temperature, and δCWnet with the 

surroundings (atmospheric) temperature value. The summation is done until the control volume 

reaches the final temperature. The change in the entropy of the control volume for heat addition under 

real conditions is +QH /TH + CWnet /T0, whereas for heat rejection under real conditions, it is -QL/TL. + 

CWnet/T0. 

 

3.2 Work transfer, with and without heat transfer, under ideal and real conditions 

 

The ideal conditions during a work transfer process assume no dissipation of energy (Figure 

6a (upper half). For a real adiabatic work transfer process, the work loss due to irreversibility, Wloss, 

appears as heat gain, Qgain, within the control volume, and the heat does not cross the control volume 

boundary (Figure 6a (lower half)). 

 



  
 

Figure 6. Work transfer to and from control volume: (a) without heat transfer under ideal (the upper half of (a)) 

and real (the lower half of (a)) conditions; (b) with heat transfer from the control volume under real (the lower half 

of (b)) conditions. 

 

The entropy difference is a measure of the heat transfer the mass has experienced under ideal 

conditions. The entropy of the mass in a control volume changes as the work loss, δWloss, appears as 

heat gain, δQgain, within the control volume. This results in increasing the temperature of the mass Tmass. 

Therefore, the term δWloss, or δQgain, is standardised with Tmass. Note that under uniform condition 

assumption, there is no spatial variation of temperature (Tmass) across control volume and the 

temperature will only depend on time. The increase in the entropy, due to Qgain, is calculated by 

integrating the (δQgain / Tmass) term from an initial to a final condition. It contributes to the entropy 

generation term. There is no heat transfer across the control volume boundary under adiabatic 

conditions. The heat gain (Qgain) appears within the control volume under ideal conditions. There is no 

heat transfer across finite temperature difference within the control volume. Therefore, the net Carnot 

work output (δCWnet) during the heat gain process, or the thermal irreversibility, is zero.  An example 

with a numerical simulation is illustrated in Section 6 to further clarify this concept.  

 

For a non-adiabatic work transfer process, the heat transfer across control volume boundary is QL 

(Figure 6b (lower half)). The net heat transfer to the control volume is Qgain - QL.  

 

The corresponding entropy change is given by the integral of (δQgain- δQL)/Tmass. The entropy difference 

under real conditions is given by –QL/TL + Sgen. This entropy generation term is a measure of 

irreversibility which is the sum of temperature standardised the loss of work, δWloss or δQgain, and the 

loss of net Carnot work, δCWnet, opportunity.  

 

 

 



For the combined Carnot engine-heat pump, at each quasi-equilibrium step, the Carnot engine operates 

between temperature values Tmass and T0, and the Carnot heat pump between temperature values TL and 

T0. The resulting entropy generation term is: 

 

 Sgen = (Wloss + CWnet) / T0.                                                                                                                         

 

A heat transfer process under real condition may also be associated with an unaccounted heat 

dissipation to immediate surrounding. This dissipation is referred to as Qloss and needs to be considered 

in the entropy generation term. The Wloss term is due to the irreversibility in a work transfer process and 

CWnet is corresponds to the thermal irreversibility.  

 

Sgen = (Wloss + CWnet + Qloss) / T0.                                                                                                                        (2) 

 

The irreversibility (I) and the exergy destruction term (T0 Sgen) is expressed as:   

 

I = T0 Sgen = Wloss + CWnet  + Qloss                                                                                                                            (3) 

 

 

3.3 An expression for thermal irreversibility during heat exchange with a source and sink.  

 

The change in the entropy of mass is a measure of the heat transfer the mass has experienced under 

ideal conditions. Note that the heat gain term, δQgain, although is a result of the loss of work, Wloss, 

during a work transfer process, appears as heat gain within the control volume under ideal heat 

transfer conditions. A uniform temperature distribution is assumed within a control volume. It is 

assumed that there is no unaccounted heat dissipation during a heat transfer process (Qloss = 0). 

 

The entropy change expression for a process with work transfer under real conditions and heat transfer 

under ideal conditions (source and sink temperature is equal to Tmass) is:  

 

         ΔSc.v. = Sfinal – Sinitial + (Sout – Sin)mass flow = ∫(δQH / Tmass) – ∫(δQL /Tmass ) + ∫(δQgain / Tmass)                   (4) 

 

Where:   

ΔSc.v.: Change in the entropy of the control volume (J/K) 

Sfinal: Final entropy of the control volume (J/K) 

Sinitial: Initial entropy of the control volume (J/K) 

Sin: Entropy of mass transferred to the control volume (J/K) 

Sout: Entropy of mass transferred from the control volume (J/K) 

 

The term ∫(δQgain / Tmass) contributes to the entropy generation term  and is a measure of work transfer 

irreversibility, Wloss, in the process. The average temperature, Tmass,avg, is determined from the following 

equation:  

 

ΔSc.v. = Qnet / Tmass,avg                                                                                                                              (5) 

 

Equation 4 is expressed as:  

 

ΔSc.v. = (QH / Tmass,avg) – (QL /Tmass,avg ) + (Qgain / Tmass,avg) 

 

Tmass,avg ΔSc.v. = QH – QL + Qgain  

 



0 = Tmass,avg ΔSc.v. - QH + QL - Qgain                                                                                                                                                                             (6) 

 

If unaccounted heat dissipation to immediate surrounding, Qloss, occurs during a heat transfer process, 

then the entropy change expression for heat transfer under real conditions is: 

 

ΔSc.v. = (QH / TH) – (QL /TL ) + Sgen  

 

Where, Sgen = (CWnet + Wloss + Qloss) / T0 

 

T0 ΔSc.v. = QH (T0 / TH) – QL (T0 /TL ) + T0 Sgen 

 

T0 Sgen = T0 ΔSc.v. - QH (T0 / TH) + QL (T0 /TL )                                                                                              (7) 

 

Subtracting Equation 6 from Equation 7, we get: 

 

I = T0 Sgen = (T0 - Tmass,avg) ΔSc.v. + QH (1 - T0 / TH) – QL (1 - T0 /TL ) + Qgain 

 

I = T0 Sgen = (T0 - Tmass,avg) ΔSc.v. + QH (1 - T0 / TH) – QL (1 - T0 /TL ) + Wloss                                                                                     (8) 

 

Using Equation 3: 

 

Wloss + CWnet + Qloss = (T0 - Tmass,avg) ΔSc.v. + QH (1 - T0 / TH) – QL (1 - T0 /TL ) + Wloss  

 

       CWnet + Qloss = (T0 - Tmass,avg) ΔSc.v. + QH (1 - T0 / TH) – QL (1 - T0 /TL )                                                            (9) 
 

Equation 9 gives an expression for thermal irreversibility when the mass in a control volume has 

uniform temperature distribution and has exchanged heat with an external source or sink. Note that 

the Qloss is assumed to be zero in Equation 9.  

 

For Helmholtz (ΔF) and Gibbs energy (ΔG) equations, the temperature is assumed to remain constant 

at T such that T = T0 = TH = TL. For the Gibbs energy equation, QH – QL = ΔH where H is the enthalpy of 

control volume (J) where as for the Helmholtz energy equation, QH – QL = ΔU where U is the internal 

energy of control volume (J). Substituting these values in Equation 7 and multiplying both terms by -1 

yields:  

 

   ΔF = - T Sgen = ΔH - T ΔSc.v. 

 

  ΔG = - T Sgen = ΔH - T ΔSc.v. 

 

Using Equation 3 and noting that the Wloss term is zero for the Helmholtz and Gibbs energy equation 

and it is assumed that there is no unaccounted heat dissipation, Qloss, the equation is rewritten as: 

 

  ΔF = - CWnet = ΔH - T ΔSc.v. 

 

  ΔG = - CWnet = ΔH - T ΔSc.v. 

 

This, it is shown that the Gibbs, or Helmholtz, energy is NOT free energy as commonly perceived but 

is equal to the negative of the Carnot (reversible) work opportunity. It should be noted that for non-

spontaneous isothermal reactions where ΔG is calculated as a positive number, the entropy balance 

equation (Equation 7) needs to be applied with an extended boundary assumption to accurately account 

for the thermal irreversibility yielding a positive entropy generation value.     

 

The expression for thermal irreversibility for heat conduction is derived in Section 5.  

 



4. A numerical example of heating a home on a cold winter night.   

 

Care should be taken in interpreting reversible work input requirement calculated using the entropy 

generation term that includes contributions from both thermal and work transfer irreversibility. This is 

explained with an example below.   

 

Assume that a house has lost 500,000 kJ of heat on a cold winter night during a period of ten hours. The 

house was kept at 22 oC at all times during this period with a controlled heat release from a number of 

water tanks holding 1000 kg of hot water at 80 oC, and the remaining heat was supplied by an electrical 

resistance heater. The water was heated to 80 oC with solar energy before the start of the ten-hour 

period. The outside surrounding temperature during the ten-hour period is 5 oC. The specific heat of 

water is assumed as 4.18 kJ/kgK. Determine the reversible input work required to heat the house.  

 

4.1 Current approach to a solution:  

 

Assume the house boundary is the control volume, and that the mass does not cross the control volume. 

The change in the internal energy of air in the house is zero as the temperature of the house remains 

constant at 22 oC. Hence, using the first law of thermodynamics, the change in the internal energy of 

water is equal to the heat lost from the house and the heat supplied by the electrical resistance heater 

(Win) i.e.:  

 

1000 (kg) * 4.18 (kJ/kgK) * (22-80)(oC) = -(500,000) (kJ) + Win 

 

-242,440 = -(500,000) + Win 

 

Win = 257,560 kJ 

 

As the temperature and pressure of air in the house remains constant, the entropy change of air during 

the ten-hour period is zero. There is no mass flow of air or water across the control volume. The entropy 

change of water as it cools from 80 oC (353 K) to 22 oC (295 K) is equal to -750.282 kJ/K. The outside air 

temperature is 278 K.  

 

Sgen = -750.28 + (500,000)/278 = 1048.3 kJ/K 

  

T0 Sgen = 278 * 1048.3 = 291,422.3 = 291,422 kJ 

 

Win,rev = Win – T0 Sgen = 257,560 - 291,422 = -33,862 kJ 

 

Unless, we use Equation 9, it is not clear how thermodynamics insights can be used that can lead to an 

innovative design of a system that has potential to generate the work output of 33,862 kJ.  

 

4.2 New insights gained with the use of the Wloss and CWnet terms:  

 

The electrical resistance heater supplied 257,560 kJ of heat. The entropy change of air is zero.  

 

0 = -257560 / 278 + Sgen   

T0 Sgen = 257560 kJ = Wloss + CWnet + Qloss 

 

Each term of Equation 9 that determines CWnet is zero. There is no unaccounted heat dissipation to 

immediate surrounding. Therefore, Qloss is zero. As a result, the term T0 Sgen is equal to the term Wloss 

which is equal to 257560 kJ. The net Carnot work for a combined Carnot engine and Carnot heat pump 

operating between temperature limits 22 oC (295 K) to 5 oC (278 K) is zero as the Carnot efficiency will 

 
2 1000 * 4.18 * ln (295/353) = -750.28. 



be equal to the reciprocal of the Carnot heat pump coefficient of performance. An air sourced Carnot 

heat pump delivers heat to the house at 22 oC, and is powered by a Carnot engine that takes heat from 

the house at 22 oC and rejects to the surrounding air at 5 oC. Hence, the reversible work input always 

remains as zero.  

 

The heat loss from hot water tanks is subdivided into two steps. In the first step the hot water at 80 oC 

rejects heat into a sink, i.e. house at 22 oC. This heat is lost to surroundings at 5 oC in the second step.  

 

During the first step, as the temperature of water at 80 oC drops to 22 oC under ideal conditions, at each 

quasi-equilibrium state, a Carnot engine is assumed to have produced an incremental work (δCW). The 

entropy change of water as it cools from 80 oC (353 K) to 22 oC (295 K) is equal to -750.28 kJ/K.  

 

T0 Sgen  = 278*(-750.28 + 242440/295) = 19,891.18 = 19,891 kJ.                                                      (10) 

        = CWnet + Wloss  

 

As Wloss is equal to zero during the first step, the work output potential of a Carnot engine that is lost in 

the first step is 19,891 kJ. The terms in the proposed Equation 8 for the T0 Sgen term give further insights 

on the Carnot work opportunity. 

 

T0 Sgen = (T0 - Tmass,avg) ΔSc.v.; mass flow – QL (1 - T0 /TL) 

 

19,891 = (278 – Twater,avg) (-750.28) – 242,440 (1 - 278 /295) 

 

Twater,avg = 50.13 oC 

 

As the heat loss depends linearly on the temperature drop for convective heat transfer, Twater,avg is 

approximately equal to ((80+22)/2) = 51 oC.  

 

The term QH (1 - T0 / TH) of Equation 8 is also equal to zero. The term QL (1 - T0 /TL) is equal to 13,971.1 

kJ and it represents the Carnot work opportunity for the heat that was transferred from the hot water 

to the house and then eventually rejected from the house to the surroundings. The term (T0 - Tmass,avg) 

ΔSc.v.; mass flow is equal to 33,862 kJ and it represents the Carnot work opportunity of a combined Carnot 

engine-Heat Pump operating between temperatures T0 and Twater,avg. A value of 33,862 kJ can also be 

directly obtained if 278 K (the surrounding temperature value) is substituted in Equation 10 instead of 

295K (the temperature of house).  

 

5. An expression for thermal irreversibility during heat conduction.  

 

The expression for the net Carnot work, CWnet, opportunity developed in this paper for cases shown in 

Figure 2 is based on the definition of efficiency, 𝜂, given by Witte and Shamsundar (1983) for thermal 

irreversibility IT and heat transfer Q.   

 

𝜂 = 1 −  
𝐼𝑇

𝑄
= 1 + 

𝑇0

𝑇ℎ
−

𝑇0

𝑇𝑐
                                                                                                               (11) 

 

Bejan (1988) pointed out for very low temperatures, e.g. experienced in cryogenic applications, this 

efficiency expression leads to a negative number as the thermal irreversibility IT exceeds the value of 

heat transferred Q.  Hesselgreaves (2000) refers to this as conceptually inconvenient result but has used 

the concept in his analysis.  Figure 3d illustrates why the irreversibility, δIT which is same as the net 

Carnot work input δCWnet, can exceed δQ at temperatures experienced in cryogenic applications. The 

δQnet needs to be pumped back all the way to the surrounding temperature T0. This increases the 

corresponding value of δCWnet  and makes it greater than the heat δQ that is being transferred at very 

low cryogenic operating temperatures. 

 

 



For heat conduction the terms Th and Tc are replaced by T + ∆T to T. The Equation 11 is written as:  

 
𝛿𝐶𝑊𝑛𝑒𝑡

𝛿𝑄
= − 

𝑇0

𝑇+∆𝑇
+

𝑇0

𝑇
                                                                                                   (12) 

 

A Carnot heat engine operating between temperature T+ ∆T and T0 with heat input of δQ will produce 

Carnot work of δQ (1 - T0 / (T+ ∆T)). A Carnot heat pump, operating between temperature T and T0 and 

powered by a Carnot heat engine, takes the necessary heat from the surroundings and delivers δQ at 

temperature T.  The net Carnot work output (δCWnet) is given by the following expression which is same 

as Equation 12:  

 

𝛿𝐶𝑊𝑛𝑒𝑡 =  𝛿𝑄 (1 −
𝑇0

𝑇 + ∆𝑇
) −  𝛿𝑄 (1 −

𝑇0

𝑇
) 

 

=  𝛿𝑄 ((
𝑇 − 𝑇0 + ∆𝑇

𝑇 (1 +
∆𝑇
𝑇

)
) − (

(𝑇 − 𝑇0) (1 +
∆𝑇
𝑇

)

𝑇 (1 +
∆𝑇
𝑇

)
)) 

 

=  𝛿𝑄 ( 
𝑇0

∆𝑇
𝑇

𝑇 (1 +
∆𝑇
𝑇

)
) 

 

=  𝛿𝑄 
𝑇0

𝑇
 
∆𝑇

𝑇
(1 +

∆𝑇

𝑇
)

−1

 

 

Therefore, for a one dimensional heat conduction problem, the local value δCWnet,is expressed in terms 

of a dimensionless parameter 
𝑇0

𝑇
 

∆𝑇

𝑇
(1 +

∆𝑇

𝑇
)

−1

that represents quality of heat transfer. For three 

dimensions, the dimensionless number is expressed as  
𝑇0

𝑇
 
∇𝑇

𝑇
(1 +

∇𝑇

𝑇
)

−1

. 

 

Expression for non-dimensional entropy generation term (or irreversibility) for one dimensional 

convective heat transfer is given below (Bejan 1978).  

 

𝑑𝐼̇

𝑞′𝑑𝑥
=

𝑑�̇�

𝑑𝑥

𝑇

𝑞′
=  

�̇�

𝜌𝑞′
 (−

𝑑𝑃

𝑑𝑥
) +  

∆𝑇

𝑇
 (1 +  

∆𝑇

𝑇
)

−1

 

 

Bejan (1978) has split the non-dimensional irreversibility term into two parts: the loss of kinetic energy 

of fluid due to fluid friction (viscous effects), 
�̇�

𝜌
 (−

𝑑𝑃

𝑑𝑥
) is equivalent to the loss of energy during work 

transfer process and is captured by the Wloss term and the second part 𝑞′ ∆𝑇

𝑇
 (1 + 

∆𝑇

𝑇
)

−1

corresponds to 

the thermal irreversibility.  

 

Shaw and Skiepko (2004) used a dimensionless entropy generation term. The generalised expression 

for the dimensionless entropy generation term in one dimension was given as 𝑆∗ =
 𝑆𝑔𝑒𝑛𝑇0

𝑞
.   Wenterodt 

and Herwig (2004) introduced a new term ‘entropic potential’, 
𝐸

𝑇0
 , of energy E to assess thermal 

irreversibility during energy transfer process. The ratio of the entropy generation term and the entropic 

potential of energy was defined as an energy devaluation number: 
𝑆𝑔𝑒𝑛 𝑇0

𝑞
. For a fully developed pipe 

flow the expression for the energy devaluation number is given as 
∆𝑇 𝑇0

𝑇2 . Herwig (2016) concludes that 

the temperature level on which the heat transfer occurs is important and the Nusselt number does not 

include this information. The energy devaluation number quantifies the quality of heat transfer 

between zero and one as fraction of consumption of the entropic potential.  However, Herwig’s newly 

proposed energy devaluation number has a striking similarity with the previously defined 

dimensionless entropy generation number when ∆T << T. 



   
𝑆𝑔𝑒𝑛  𝑇

𝑞
=

∆𝑇

𝑇
 

 

 
𝑆𝑔𝑒𝑛 𝑇0

𝑞
=  

𝑆𝑔𝑒𝑛  𝑇

𝑞
 
𝑇0

𝑇
=  

∆𝑇

𝑇

𝑇0

𝑇
=  

∆𝑇 𝑇0

𝑇2
   

 

If ∆T << T condition is satisfied, then the dimensionless entropy generation term is given by:  

 

𝑆∗  =
 𝑆𝑔𝑒𝑛𝑇0

𝑞
=

𝛿𝐶𝑊𝑛𝑒𝑡

𝑞
 
𝑇0

𝑇
=  

𝑇0

𝑇
 
∆𝑇

𝑇
 

 

∆T << T condition is not satisfied then the dimensionless entropy generation term is given by: 

 

𝑆∗  =
 𝑆𝑔𝑒𝑛𝑇0

𝑞
=

𝛿𝐶𝑊𝑛𝑒𝑡

𝑞
 
𝑇0

𝑇
=  (

𝑇0

𝑇
)

2 ∆𝑇

𝑇
(1 +

∆𝑇

𝑇
)

−1

 

 

If ∆T << T then 1 +  
∆𝑇

𝑇
≈ 1. It is shown below that the thermal irreversibility term 𝑞′ ∆𝑇

𝑇
 is equal to CWnet. 

𝛿𝐶𝑊𝑛𝑒𝑡 =  𝛿𝑄 (1 −
𝑇0

𝑇 + ∆𝑇
) −  𝛿𝑄 (1 −

𝑇0

𝑇
) 

 

=  𝛿𝑄 ((
𝑇 − 𝑇0 + ∆𝑇

𝑇
) −  (

(𝑇 − 𝑇0)

𝑇
)) 

 

=  𝛿𝑄 
∆𝑇

𝑇
 

 

δQ transferred over length ∆ x and time dt represents the heat flux and represents the quantity of heat 

transfer. The quality of heat transfer is given by the dimensionless ratio ∆T/T where ∆T is the 

temperature gradient in x direction. Therefore, for a three dimensional heat conduction problem, the 

local value CWnet, the entropy generation term Sgen and the entransy dissipation term Zdiss is: 

 

 𝐶𝑊𝑛𝑒𝑡 =  𝒒 .
𝛁𝑻

𝑇
                                                                                                                               (13) 

 

𝑆𝑔𝑒𝑛 = 𝐶𝑊𝑛𝑒𝑡/𝑇 = 𝒒 .
𝛁𝑻

𝑇2
 

 
𝑍𝑑𝑖𝑠𝑠 = 𝐶𝑊𝑛𝑒𝑡 ∗ 𝑇 = 𝒒 . 𝛁𝑻 

 

Equation 13 highlights that the same temperature gradient on a higher temperature level contributes 

less to the loss of net Carnot work, or the thermal irreversibility, as compared to a lower temperature 

level. It is suggested that researchers using the entransy dissipation principle for minimising thermal 

irreversibility, instead of the commonly used entropy generation principle, understand the limitation 

posed this subtle difference.  

 

The minimization of thermal irreversibility corresponds to minimising the δCWnet value. Ideally the dot 

product of heat flux and the ratio 
∆𝑇

𝑇
 i.e. the term 

k(∆𝑇)2

𝑇
 needs to be minimised. Therefore the term 

1

𝑇
 is 

not added blindly into the irreversibility measure. It is shown that the dimensionless ratio 
∆𝑇

𝑇
 is an 

integral part of the thermal irreversibility measure irrespective of the objective of the heat transfer 

whether it is for heat-work conversion, or for achieving heating or cooling effect.  The entransy 

minimisation term loses a link with the temperature level 𝑇 on which the heat flux q occurs. This affects 

its ability to account for the quality of heat transfer.  

 



6. A numerical simulation example for an unsteady process with heat generation and natural 

convection within an adiabatic control volume.  

 

The objective of this numerical simulation is to determine entropy change value, ∆𝑆𝑖𝑑𝑒𝑎𝑙,𝑠𝑖𝑚, under ideal 

conditions (Equation 17) and compare with a numerically calculated value for the entropy change, 

∆𝑆𝑖𝑑𝑒𝑎𝑙 , using Equation 14. The local entropy generation values are calculated in order to estimate the 

entropy change value under real conditions, ∆𝑆𝑟𝑒𝑎𝑙 (Equation 19). 

 

A simplified SIMPLEC model with gravity and energy function is used an ANSYS Fluent simulation. 

The transient heat transfer with natural convection is modelled using incompressible ideal air. Assume 

that an adiabatic 5m cube is filled with air at 101 kPa and 300 K. Using ideal gas law, the density of air 

is 1.1731 kg/m3. Thermal conductivity, k and Dynamic Viscosity, μ values for air are taken as 26.38*10-

3 W/ m K and 18.45*10-6 N s/m2. The specific heat value at constant pressure, CP is 1.005 kJ / kg K.  

 

As shown in Figure 7 (a), a 2kW electric resistance heater with a square cross section of 0.5m side and 

1 m length is placed in the center of the cube at the bottom surface. The volume of the heater is volume 

0.25m3. The surface area of the heater is calculated as 2.25 m2 i.e. (4*(1*0.5)+(0.5*0.5) = 2.25 m2). To 

simulate a heater in a room, a 3D model of a 5m3 was created with a Boolean subtract of volume 0.25m3. 

The mass of air in the control volume is 146.34 kg i.e. (1.1731 kg/m3 *174.75 m3 = 146.34 kg).  The heat 

flux in the room is calculated as 2000/2.25 = 888.89 W/m2. 1900 kJ of heat was added in the control 

volume over 950 seconds in 95 steps with each time step size of 10 seconds. Thus the heat added at each 

of the 95 time steps through the heater surface is 20kJ. The corresponding temperature increase is 

12.92K i.e. (1900/(146.34*1.005) = 12.92). The expected final temperature of air is 312.92K.  

 

As explained in Section 3.2, the increase in the entropy under ideal conditions, ∆𝑆𝑖𝑑𝑒𝑎𝑙, due to δWloss, or 

δQgain, is calculated by integrating the (δQgain / Tmass) term from an initial (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙) to a final (𝑇𝑓𝑖𝑛𝑎𝑙) 

condition. It contributed to the entropy generation term. The heat gain, δQgain, appears within the 

control volume under ideal conditions. In other words, it is assumed to be uniformly generated across 

the control volume. With uniform temperature conditions, there were no spatial temperature gradients 

and velocity of the fluid within the control volume was zero. There is no heat transfer across finite 

temperature difference within the control volume.  Therefore, the net Carnot work output opportunity, 

δCWnet, during the heat gain process, or the thermal irreversibility, is zero. It is also assumed that there 

is no unaccounted heat dissipation, δQloss, to immediate surrounding. Note that the value of �̇�𝑓𝑙𝑢𝑥 in the 

following equation is 2kW. 

 

∆𝑆𝑖𝑑𝑒𝑎𝑙 = ∫
�̇�𝑓𝑙𝑢𝑥

𝑇
 𝑑𝑡 = 𝑚𝐶𝑃 ln (

𝑇𝑓𝑖𝑛𝑎𝑙

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) =  146.34 ∗  1005 ∗ ln (

312.92

300
) = 6201.3 𝐽/𝐾             (14) 

  

Figure 7 (a) and (b) shows the model and the mesh applied. A general mesh size of 0.25 m was applied 

to the model after conducting the mesh independency study shown in Figures 7 (c) and (d). As heat 

transfer occurred around the Boolean subtract, a mesh refinement was applied in this section. Once a 

mesh independency study was conducted, this refinement was 0.03m. 

 



        
Figure 7. (a) Control volume showing 5m adiabatic cube with a heater shown in the bottom centre. (b) Mesh shown at the 
diagonal cross section refined after mesh sensitivity study as shown in (c) and (d). 

 

Whilst the simulation ran, volume averaged temperature, �̅� in K and entropy, 𝑆 ̇̅ in W/ m3 K were 

calculated as follows.  

�̅� =
1

𝑉
∫ 𝑇𝑙𝑜𝑐𝑎𝑙𝑑𝑉 =

1

∑ 𝑉𝑙𝑜𝑐𝑎𝑙
∑ 𝑇𝑙𝑜𝑐𝑎𝑙𝑉𝑙𝑜𝑐𝑎𝑙                                                                                                      (15) 

�̇�̅ =
1

𝑉
∫ �̇�𝑙𝑜𝑐𝑎𝑙𝑑𝑉 =

1

∑ 𝑉𝑙𝑜𝑐𝑎𝑙
∑ �̇�𝑙𝑜𝑐𝑎𝑙𝑉𝑙𝑜𝑐𝑎𝑙                                                                                              (16) 

Where 𝑇𝑙𝑜𝑐𝑎𝑙, 𝑉𝑙𝑜𝑐𝑎𝑙, �̇�𝑙𝑜𝑐𝑎𝑙  are nodal temperature, volume and entropy rate values. 

 

The volume average temperature increase from the simulation is 13.08K and the volume averaged 

entropy change, ∆𝑆𝑖𝑑𝑒𝑎𝑙,𝑠𝑖𝑚 ,  is calculated using Equation 16 as follows:  

 

∆𝑆𝑖𝑑𝑒𝑎𝑙,𝑠𝑖𝑚 =  �̅̇�𝑓𝑖𝑛𝑎𝑙 − �̅̇�𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.5 J/Kg K = 42.5 * 146.34 = 6219.45 J/K.                               (17) 

 

The simulation error is less than 1.25% for temperature prediction and 0.3% for entropy change 

estimates. The temperature contours at the final timestep (950 seconds) at five planes at -2, -1, 0, 1 and 

2 m location as shown in Figure 8 (a) are illustrated in Figure 8 (b-f). The corresponding velocity vectors 

at plane 0m are shown in Figure 9. It can be observed that the velocity of the air accelerates around the 

heater and follows the path of the temperature funnel shown.  

 

 
Figure 8. (a) Cut sections at five locations from the centre 0m and at 1 and 2 m at each side. (b-f) Temperature distribution 
from the ANSYS model at 950 seconds.  

 



 

 

Figure 9. Velocity vectors for air due to natural convection from the ANSYS model at 950 seconds.  

 

The close inspection of results around the heating section showed (partly shown in Figure 8, 0m plane) 

overheating of air to temperatures up to 600K. This is unrealistic although not surprising due to the 

simplistic model chosen in the ANSYS simulation. A selection of 2500 nodes was made around the 

heating section to estimate the volume averaged boundary temperature, �̅�𝑏, at the heating section. After 

200 seconds, ie. 20 time steps, its value approximately remained constant at 522K. For the first 200 

seconds the �̅�𝑏 value is approximated as 300K.   

 

�̅�𝑏 =
1

∑ 𝑉𝑏,𝑙𝑜𝑐𝑎𝑙
∑ 𝑇𝑙𝑜𝑐𝑎𝑙𝑉𝑏,𝑙𝑜𝑐𝑎𝑙                                                                                                             (18) 

 

As derived in Equation 13, for a heat conduction problem, the local entropy generation term represents 

a temperature standardised value of Carnot (reversible) work opportunity. For the ANSYS simulation 

illustrated in Figure 7 (a), the input heat flux, �̇�𝑓𝑙𝑢𝑥 , through the heating section is 2kW. As discussed 

in Section 3.3, the entropy change value is same for real, ∆𝑆𝑟𝑒𝑎𝑙 , and ideal, ∆𝑆𝑖𝑑𝑒𝑎𝑙,𝑠𝑖𝑚, conditions.  

 

∆𝑆𝑖𝑑𝑒𝑎𝑙,𝑠𝑖𝑚 = ∆𝑆𝑟𝑒𝑎𝑙 =  ∑ {[
�̇�𝑓𝑙𝑢𝑥

�̅�𝑏
+ 𝑉�̅̇�𝑔𝑒𝑛 + 𝑉�̅̇�𝑔𝑒𝑛,𝑢𝑛𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑑] ∆t} 

𝑖

𝑛
𝑖=1                                                (19) 

 where,  

N = number of timesteps and t = duration of timestep, 

�̇�̅
𝑔𝑒𝑛𝑉 = �̇�̅

𝑔𝑒𝑛 ∑ 𝑉𝑙𝑜𝑐𝑎𝑙 = ∑ �̇�𝑔𝑒𝑛,𝑙𝑜𝑐𝑎𝑙𝑉𝑙𝑜𝑐𝑎𝑙 

 

�̇�𝑔𝑒𝑛,𝑙𝑜𝑐𝑎𝑙 = �̇�𝑐𝑜𝑛𝑑 + �̇�𝑐𝑜𝑛𝑣 

�̇�𝑐𝑜𝑛𝑑 =
1

𝑇2
𝑞 ∙ ∇𝑇 



�̇�𝑐𝑜𝑛𝑑 =
𝑘

𝑇2 {(
𝜕𝑇

𝜕𝑥
)

2

+ (
𝜕𝑇

𝜕𝑦
)

2

+ (
𝜕𝑇

𝜕𝑧
)

2

} 

�̇�𝑐𝑜𝑛𝑣 =
𝜇

𝑇
𝜑 

𝜑 = 2 {(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

+ (
𝜕𝑤

𝜕𝑧
)

2

} + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

2

 

The volume averaged entropy generation, caused by viscous dissipation, 𝑉 �̅̇�𝑐𝑜𝑛𝑣,  is negligible in 

value i.e. 44*10-9 W/m3K (0.000289 J/K). The time integrated entropy generation value, 𝑉�̇�̅
𝑔𝑒𝑛, is 

calculated as 144.7 J/K. 

∆𝑆𝑖𝑑𝑒𝑎𝑙,𝑠𝑖𝑚 =  ∆𝑆𝑟𝑒𝑎𝑙  = 6219.45 𝐽 𝐾⁄  

∆𝑆𝑟𝑒𝑎𝑙 = ∑ [
�̇�𝑓𝑙𝑢𝑥  ∆t

�̅�𝑏

] 𝑖

20

𝑖=1

+ ∑ [
�̇�𝑓𝑙𝑢𝑥  ∆t

�̅�𝑏

] 𝑖

95

𝑖=21

+ ∑ [𝑉�̇�̅
𝑔𝑒𝑛  ∆t] 𝑖

95

𝑖=1

+  ∑ [𝑉�̇�̅
𝑔𝑒𝑛,𝑢𝑛𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑑∆t] 𝑖

95

𝑖=1

 

6219.45 𝐽 𝐾⁄ =
20 ∗ 2000 ∗ 10 

300
+ 

75 ∗ 2000 ∗ 10 

522
+ 144.7 +  𝑆𝑔𝑒𝑛,𝑢𝑛𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑑  

6219.45 𝐽 𝐾⁄ = 1333.33 +  2873.56 + 144.7 +  𝑆𝑔𝑒𝑛,𝑢𝑛𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑑  

𝑆𝑔𝑒𝑛,𝑢𝑛𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑑 = 1867.86 𝐽 𝐾⁄   

The 𝑆𝑔𝑒𝑛,𝑢𝑛𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑑  value has resulted from almost certainly due to the temperature spike around the 

heating section and the approximation used in calculating the ∫
�̇�𝑓𝑙𝑢𝑥

𝑇
 𝑑𝑡 term. The average �̅�𝑏,𝑎𝑣𝑔 

value is back calculated from 𝑉�̇�̅
𝑔𝑒𝑛 and ∆𝑆𝑟𝑒𝑎𝑙  values as follows:  

�̅�𝑏,𝑎𝑣𝑔 =
20 ∗ 2000 ∗ 10 ∗ 95

6219.45 + 144.7
= 312.8 𝐾 

This value is close to the estimated volume averaged final temperature of air in the control volume. 

For ideal conditions, as there is no thermal irreversibility, this estimate should approximate to the 

average of final and initial temperatures. The calculation of �̅�𝑏,𝑎𝑣𝑔 as 306.4 𝐾 gives confidence in the 

reliability of the methodology used.  

�̅�𝑏,𝑎𝑣𝑔 =
20 ∗ 2000 ∗ 10 ∗ 95

6201.3
= 306.4 𝐾 

 

Using Equation 13, the loss of Carnot (reversible) work opportunity, 𝐶𝑊𝑛𝑒𝑡, resulting from heat 

transfer across finite temperature difference within the adiabatic control volume is calculated as 

follows:  

 𝐶𝑊𝑛𝑒𝑡 =  𝑇𝑎𝑣𝑔 ∑ [𝑉�̇�̅
𝑔𝑒𝑛  ∆t] 𝑖 =

300+313.08

2
∗  144.7 = 44.36 kJ95

𝑖=1   

 

It should also be noted that the proposed understanding of thermal irreversibility does NOT alter 

various mathematical formulations proposed by Bejan, and many other researchers, on entropy 

generation minimization techniques including topics such as unsteady flow and convective heat 

transfer. However, the proposed insights should explain why it is impossible for thermal (or heat 

transfer) irreversibility value to approach zero even when heat is transferred across a finite temperature 

difference without any energy dissipation. The thermal irreversibility represents the loss of opportunity 

to do useful work by exchanging heat with surroundings during the heat transfer process across a finite 



temperature difference. This insight explains one practical way of minimising thermal irreversibility 

that is the reduction of the magnitude of heat transfer across a finite temperature difference using one 

or more methods e.g. employing regeneration, or heat storage, techniques at elevated temperatures.  

 

7. Conclusion 

 

It is shown that the ambient temperature, the temperature of mass and the temperature of external 

bodies with which the mass has exchanged heat are not added blindly into the irreversibility measure 

and is based on the definition of thermal irreversibility. When heat is transferred across a finite 

temperature difference, the opportunity to extract useful work is lost. This loss, estimated by thermal 

irreversibility calculations, is independent of the purpose of heat transfer whether heat is transferred 

to heat or cool an object or achieve heat-to-work conversion.  The entransy minimization term loses a 

link with the temperature level on which the heat flux occurs and hence, it degrades the information 

content of the entropy generation term Sgen.   

 

The entropy of a mass at any given state is defined as the net temperature-standardised heat transfer 

to mass under ideal conditions measured from a datum value.  This interpretation is consistent with 

how entropy values are calculated in Classical thermodynamics. The entropy value is assumed to be 

zero at a given reference/datum temperature value including the absolute zero, and the subsequent 

entropy change is calculated by combining the conservation of energy and the Clausius inequality 

expressions. It is argued that the entropy change of mass is defined as a measure of the heat transfer 

the mass has experienced under ideal conditions. 

 

The commonly held view that irreversibility during heat and work transfer process has the same 

physical interpretation as ‘dissipation of energy in terms of lost work’ is challenged in this paper. The 

irreversibility has three parts: (i) the loss of work, Wloss, in a work transfer process, (ii) the dissipation of 

unaccounted heat, Qloss, during a heat transfer process, and (iii) the missed opportunity to create the net 

Carnot work, CWnet, during heat transfer across a finite temperature difference.  Its numerical value is 

the same as the exergy destruction term, T0 Sgen. The loss of net Carnot work from a heat transfer process 

(thermal irreversibility) is visualised with an independent two-way heat exchange with its 

surroundings through a combined Carnot engine-heat pump that delivers the same amount of heat 

across a finite temperature difference, and produces a net Carnot work output. Hence, thermal 

irreversibility is not ‘dissipation energy in terms of lost work’ but represents ‘a notional loss of work 

opportunity’ or ‘a missed opportunity to do useful work by exchanging heat with the surrounding’. It 

is also explained in this paper, how the net Carnot work output value further reduces the reversible 

work input estimation of an internally reversible compressor that is losing heat to its surroundings. The 

Gibbs and Helmholtz energy is linked to the entropy balance equation and shown to be a measure of 

loss of exploiting the Carnot work opportunity by exchanging heat with surrounding rather than 

interpreting it as a source of ‘free’ energy.  

 

Once we understand how the irreversibility occurs at every stage of a heat and work transfer process, 

the thermodynamics insights gained have potential to lead to the development of innovative design 

solutions.  
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