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Abstract
1.	 Generalised additive models (GAMs) are increasingly popular tools for estimat-

ing smooth nonlinear relationships between predictors and response variables. 
GAMs are particularly relevant in ecology for representing hierarchical func-
tions for discrete responses that encompass complex features including zero 
inflation, truncation and uneven sampling. However, GAMs are less useful for 
producing forecasts as their smooth functions provide unstable predictions out-
side the range of training data.

2.	 We introduce dynamic generalised additive models (DGAMs), where the GAM 
linear predictor is jointly estimated with unobserved dynamic components to 
model time series that evolve as a function of nonlinear predictor associations 
and latent temporal processes. These models are especially useful for analys-
ing multiple series, as they can estimate hierarchical smooth functions while 
learning complex temporal associations via dimension-reduced latent factor 
processes. We implement our models in the mvgam R package, which estimates 
unobserved parameters for smoothing splines and latent temporal processes in 
a probabilistic framework.

3.	 Using simulations, we illustrate how our models outperform competing formula-
tions in realistic ecological forecasting tasks while identifying important smooth 
predictor functions. We use a real-world case study to highlight some of mvgam's 
key features, which include functions for calculating correlations among se-
ries' latent trends, performing model selection using rolling window forecasts 
and posterior predictive checks, online data augmentation via a recursive par-
ticle filter and visualising probabilistic uncertainties for smooth functions and 
predictions.

4.	 Dynamic GAMs (DGAMs) offer a solution to the challenge of forecasting dis-
crete time series while estimating ecologically relevant nonlinear predictor as-
sociations. Our Bayesian latent factor approach will be particularly useful for 
exploring competing dynamic ecological models that encompass hierarchical 
smoothing structures while providing forecasts with robust uncertainties, tasks 
that are becoming increasingly important in applied ecology.
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1  |  INTRODUC TION

Rapidly changing climates and landscape modification are impact-
ing species and ecosystems at all micro- and macroecological levels, 
incurring substantial economic and environmental costs (Kennedy 
et al., 2019; United Nations, 2015; World Health Organization, 2005). 
There is broad consensus among scientists, parliamentarians and ap-
plied decision makers that anticipating probable future states is vital 
to mitigate the impacts of environmental change on ecosystem func-
tionality and services (Dietze et al., 2018; Intergovernmental Panel 
on Climate Change, 2018; Schmidt et al., 2010).

Two challenges impede the improvement and adoption of 
common forecasting tools in ecology. First, ecosystems are driven 
by networks of interacting biotic and abiotic processes (Choler 
et al.,  2001; Levin,  1998; Massoud et al.,  2018). These dynamic 
natural processes are the products of multiple sources of variation 
including long-term trends, seasonal and other cyclic oscillations, 
environmental forcing, temporal dependence or species interac-
tions (Auger-Méthé et al., 2021; Choler et al., 2001; Dietze, 2017). 
Second, ecological time series are often integer-valued variables, 
such as observations of species presence or abundance, that ex-
hibit complex features including observation error, zero inflation, 
overdispersion, truncation at hard bounds, missing values and un-
even sampling (Kowal & Canale, 2020; Lindén & Mäntyniemi, 2011; 
Simpson, 2018; Warton, 2018). Such discrete time series are far less 
supported in existing software than are real-valued series that can 
be readily modelled using assumptions of Gaussian error (Hyndman 
& Khandakar, 2008). Moreover, ecological observations are almost 
always multivariate when contextual information, such as data from 
environmental predictors or observations of non-target species, is 
considered. These features make it difficult to analyse ecological 
time series while sufficiently accounting for important systematic 
temporal components and multivariate dependencies (Auger-Méthé 
et al., 2021).

Time-series analyses are often concerned with decomposing 
temporal variation into components representing trend, seasonality 
and other cyclic changes. Generalised additive models (GAMs), which 
are increasingly used in ecology to identify nonlinear functional 
relationships (Guisan et al.,  2002; Hughes et al.,  2018; Pedersen 
et al., 2019; Simpson, 2018), offer a way to accomplish this decom-
position. Outlined in detail previously (Hastie & Tibshirani,  1990; 
Wood,  2004), GAMs can briefly be described as modified gener-
alised linear models (GLMs) in which the linear predictor includes a 
sum of smooth functions representing functional relationships be-
tween covariates and the response:

where E(Y) is the conditional expec tation of a response assumed to 
be drawn from an exponential family distribution, �0 is the unknown 
intercept, the si’s are a set of smooth functions over one or several 
predictor variables (the x's) and g is a monotonic link function. Each 
smooth function si is composed of basis functions whose coefficients, 
which must be estimated, act as weights for the basis functions to con-
trol the function's shape. The total number of basis functions limits the 
potential complexity of the smooth function, with a larger set of basis 
functions allowing greater flexibility. In addition to their ability to rep-
resent complex and nonlinear ecological relationships, several other 
advantages of GAMs are that they can model a diversity of response 
families that accommodate ecological features (such as zero inflation) 
and that they can be formulated to include hierarchical smoothing for 
multivariate responses (Pedersen et al., 2019; Wood, 2017).

Given the set of basis coefficients that comprise each smooth 
function, a GAM can in principle be estimated as a GLM. However 
due to their incredible flexibility, GAMs will invariably overfit if left 
unconstrained (Hastie & Tibshirani,  1990; Marra & Wood,  2011; 
Wood,  2004). Penalised likelihood estimation avoids this overfit-
ting by placing quadratic penalties on the basis coefficients (re-
ferred to as smoothing penalties), which penalise the function's 
‘wiggliness’ and control the trade-off between fit and smoothness 
(Wood, 2004, 2016). From a Bayesian perspective, another way to 
represent a smooth function is to draw the set of basis coefficients 
from a multivariate Gaussian distribution with the penalty acting 
on the prior precision. Larger penalties shrink the coefficient co-
variances, effectively forcing the function towards a straight line 
when the data do not justify a nonlinear relationship (Marra & 
Wood, 2011; Wood, 2016). GAMs are particularly sought after for 
modelling time series to identify nonlinear or time-varying covari-
ate effects, perform smoothing of historical time series and uncover 
periods of rapid change, though strong temporal autocorrela-
tion can make it challenging to estimate key parameters (Camara 
et al.,  2021; Knape,  2016; Simpson,  2018; Spooner et al.,  2018; 
Yang et al., 2012).

For many ecological studies that employ GAMs, a primary objec-
tive is predicting future states (Clark et al., 2020; Kaplan et al., 2016; 
Koolhof et al., 2021; Malick et al., 2020; Ward et al., 2014). However, 
a lingering issue in using GAMs for forecasting is the way in which 
smooth functions predict outside the range of training data. Many 
of the smooth functions used in ecological GAMs have zero second 
derivatives at the boundaries, meaning they will linearly extrapolate 
beyond the last observation (Elith et al., 2010; Zurell et al., 2012). 
This projection of a straight line indefinitely into the future can pro-
duce unrealistic forecasts, particularly if the estimated function ‘wig-
gles’ (i.e. exhibits a pronounced change in the response–predictor 
relationship) near the boundary (Figure 1 top). There are technical 
solutions to help with this problem, for example, by extending the 
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evaluation of the penalty into the range of values that we wish to 
forecast (i.e. weeks or years ahead of the training data) to ensure 
model uncertainty grows in a more realistic fashion out of sample, 
or by forcing the function to use the last observed value (with fixed 
uncertainty) when forecasting by imposing a first derivative penalty 
(Figure 1 bottom). However, these modifications are not always suf-
ficient to generate robust forecasts with appropriate probabilistic 
uncertainties as they do not adequately capture the temporal de-
pendence in the data (see examples in Appendix S1 in Supporting 
Information).

Here, we outline a Bayesian dynamic GAM (DGAM) that provides 
a general solution to the problem of estimating smooth functions 
while generating forecasts for discrete time series. The approach is 
simple: for a given series, we augment the GAM linear predictor with 
a latent dynamic component to capture the series' temporal evolu-
tion process (currently either as a random walk, an autoregressive 
process up to order 3 or a Gaussian process). To model multiple time 
series, we accommodate possible dependencies among series' tem-
poral components in a parsimonious way using a dynamic latent fac-
tor process. We introduce our associated R package mvgam (https://
github.com/nicho​lasjc​lark/mvgam) and illustrate its utility via simu-
lations and empirical examples.

We begin by introducing DGAMs, including background mate-
rial for the dynamic factor process. We then illustrate our pack-
age's utility for ecologists and other users interested in forecasting 
discrete time series using both simulations and a case study. An 
introduction to mvgam's primary functions via more in-depth repro-
ducible examples is provided in the Appendices S1–S3 (Supporting 
Information).

2  |  DYNAMIC GENER ALISED ADDITIVE 
MODEL S

2.1  |  Univariate models for a single ecological time 
series

A Bayesian framework to model fitting and parameter estimation 
involves defining a joint probability distribution over all observ-
able and unobservable quantities in a statistical model that aligns 
with expert beliefs about the data generating process (Gelman 
et al.,  2017). A DGAM is naturally viewed from a Bayesian per-
spective, where prior beliefs about the nonlinearity of a function 
can be elicited to inform the complexity and penalisation of the 
smooth (Miller,  2019; Pedersen et al.,  2019; Wood,  2013) while 
accounting for possible unobserved temporal dependence in line 
with the expectation that time series evolves as serially autocor-
related dynamic processes (Hyndman & Athanasopoulos, 2018). In 
its basic form, the DGAM for a discrete integer-valued time series 
is written as:

where E
(

Yt
)

 is the conditional expectation of the response at time 
t and zt is the (latent) dynamic process estimate at time t. Readers 
familiar with state-space models will recognise the benefits of sep-
arating the temporal and observation processes (Auger-Méthé 
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F I G U R E  1  Estimated trends and 
forecasts from two GAMs applied to a 
discrete time series. In the top panel, 
a thin plate regression spline with a 
penalised second derivative is used for 
the trend, leading to a smooth function 
(top left) and linear extrapolation when 
forecasting (top right). In the bottom 
panel, the trend penalty is placed on 
the first derivative, resulting in flat 
extrapolation when forecasting. Trend 
shading shows 95% confidence intervals, 
while forecast shading shows empirical 
quantiles. Both models were fitted to a 
simulated seasonal discrete time series in 
R using the mgcv package with the general 
formula: Y ~ s(year, bs = ‘tp’) + s(season, 
bs = ‘cc’) + ti(season, year), family = nb()).
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et al., 2021; Heilman et al., 2022), but it is worth clarifying these ad-
vantages explicitly. First, estimating the trend as a dynamic random 
variable avoids problems that can occur in competing autoregressive 
observation models where measurement error or outliers can have 
large influences on estimated AR parameters and cause highly unsta-
ble forecasts (see an example in Appendix S1). Second, it is far easier 
to handle missing or irregularly sampled observations using latent 
processes. Because the zt are unobserved latent variables, they will 
continue to evolve, even when an observation Yt is missing, via dy-
namic equations that conveniently provide recursive expressions for 
h-step ahead prediction, historical filtering and updating of forecasts 
(Durbin & Koopman, 2012). In contrast, a missing observation in an 
AR3 observation model will result in NAs for four rows of the de-
sign matrix (one missing Yt and three missing AR predictors) that can 
make parameter estimation difficult for software that automatically 
excludes rows with missing values (such as commonly used linear 
modelling packages in R). Other advantages of a state-space form 
are that trend dynamics provide a probabilistic model for the tem-
poral evolution of a process, which can often be more useful than a 
smoothed trend (such as a penalised spline) by facilitating simulation 
and comparison with other processes, allowing new observations to 
be assimilated to adapt a forecast distribution via recursive Kalman 
or particle filtering (Massoud et al.,  2018) and providing a means 
for multiple observation processes to depend on shared latent pro-
cesses (Ward et al., 2021).

In its simplest form, temporal dependence can be modelled 
as a random walk with possible drift, where �0 in Equation (3) is 
the drift parameter and the residual error et is drawn from a zero-
centred Gaussian distribution with a fixed (time-invariant) standard 
deviation. This can easily be expanded to include autoregressive 
(AR) processes. For example, the following specifies a latent AR2 
model:

The assumption of a fixed standard deviation for the process error could 
potentially be a limitation if the series of interest displays nonconstant vol-
atility with perturbations that may be evidence of responses to ‘shocks’. 
The time series literature is rich with model specifications for accom-
modating dynamic distributional models, including stochastic volatility, 
GARCH or Lévy processes (Bartumeus, 2007; Carrasco & Chen, 2002). In 
sharp contrast, temporal dependence could also be modelled via a latent 
Gaussian process (or other stochastic process), which provides a nonpara-
metric probability distribution over functions. Gaussian processes are 
particularly suitable for ecological time series where we often expect 
dynamics to evolve as a smooth function and we wish to estimate the co-
variances among time points to facilitate probabilistic forecasts (Riutort-
Mayol et al., 2020; Ward et al., 2021). To save computational costs, it is 
possible to use low-rank approximate Bayesian Gaussian processes that 
are approximated using Laplace eigenfunctions, which have been shown 
to have excellent forecasting properties via simulations by Riutort-Mayol 
et al. (2020).

2.2  |  Dynamic factor DGAMs for analysing 
multiple ecological time series

Here, we describe how a DGAM can be modified into a joint mul-
tivariate statistical model for collections of time series with poten-
tially common dynamics. Dynamic factor models that account for 
relationships in time-series data are closely aligned with static la-
tent factor models, which are used in quantitative ecology to jointly 
model abundances of multiple species by estimating shared re-
sponses to unmeasured ecological drivers (Ovaskainen et al., 2017; 
Thorson et al., 2016; Ward et al., 2021; Warton et al., 2015). A la-
tent factor model is a function of unmeasured random predictors 
(factors) that induce correlations between multiple responses via 
factor loadings while exercising dimension reduction. Often, spe-
cies do demonstrate correlated responses to environmental gradi-
ents, meaning that a smaller set of factors (i.e. a low-dimensional 
representation) than the total number of possible species–predictor 
relationships can adequately capture the main axes of covariation 
(Letten et al., 2015; Warton et al., 2015). A dynamic factor model 
assumes the factors evolve as time series. The strength of this ap-
proach is that a small number of common factors can often model 
the temporal behaviours of a much larger set of series. This dimen-
sion reduction simplifies the estimation and forecasting tasks, as 
only the smaller set of factors and the series' specific factor loadings 
need to be estimated to generate forecasts (De Stefani et al., 2019). 
In a dynamic factor DGAM, each series' latent trend is composed of 
a linear combination of these common factors:

where E
(

Yj,t
)

 is the expected response for series j at time t, the zm,t's are 
estimates for the M factors at time t and the �j's are factor loadings. As 
in the univariate case, the factors can evolve either as random walks 
with drift or as autoregressive processes up to order 3.

A challenge with any factor model is the need to determine 
the number of factors M (Bhattacharya & Dunson,  2011; Fox 
et al., 2009; Thorson et al., 2016; Tobler et al., 2019). Setting M 
too small prevents temporal dependencies from being adequately 
modelled, leading to poor convergence and difficulty estimating 
smooth parameters. By contrast, setting M too large leads to un-
necessary computation. The problem can be approached by for-
mulating a prior distribution that enforces exponentially increasing 
penalties on the factor variances to allow any un-needed factors 
to evolve as flat lines. Following Welty et al.  (2009) and Wells 
et al.  (2016), one such prior assumes that factors up to a certain 
threshold number π have precisions of similar magnitudes, after 
which they increase exponentially (leading to variances that shrink 
towards zero). Along with π, two other hyperparameters can be 
estimated to control the baseline penalty and the rate at which 
penalties exponentially increase, respectively, allowing the data 
to inform the selection of dynamic factors. We caution, however, 
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that setting M too large could result in trends that are overly flex-
ible, making it challenging to simultaneously estimate important 
smooth functions such as seasonality. It is certainly worth check-
ing whether inferences or forecasts are sensitive to M, perhaps 
using the guidelines outlined by Tobler et al.  (2019). Additional 
constraints are also needed to preserve identifiability by setting 
the upper triangle of the factor loading matrix to zero and ensuring 
non-negative diagonals (Hui, 2016; Tobler et al., 2019).

3  |  ESTIMATING DGAMS WITH THE m vg a m 
R PACK AGE

While it is possible to model residual autocorrelation for univari-
ate series in the popular R package mgcv using restricted maximum 
likelihood via the gamm() or bam() functions (Wood, 2017), there 
is no straightforward way to include an autocorrelation process 
in forecasts. There is also no simple way that we are aware of to 
estimate dynamic factor DGAMs using existing open-source soft-
ware. We introduce the mvgam R package as an open-source soft-
ware tool to estimate the parameters of DGAMs for discrete time 
series and use them to generate probabilistic forecasts. Our mod-
els are coded in either the JAGS or Stan probabilistic programming 
languages using the function mvgam(), which relies on the jagam() 
function from mgcv to generate a skeleton model file and necessary 
smooth penalty matrices (Wood, 2016). The model is modified to 
include dynamic components (either as random walk, AR trends up 
to order 3 or Gaussian processes) and to update any prior distribu-
tions specified by the user, while all data reformatting necessary 
for modelling is done automatically. Employing either the JAGS 
software through the R interface rjags (Plummer, 2003) or the Stan 
software through the interfaces rstan (Carpenter et al., 2017) or 
cmdstanr (Gabry & Češnovar, 2021), the model is conditioned on 
observed data using Markov Chain Monte Carlo (MCMC) simula-
tion to calculate the posterior probability distribution of the unob-
served parameters of interest. The mvgam R package provides the 
following key functions:

•	 Estimate the parameters of DGAMs in a Bayesian Markov Chain 
Monte Carlo framework via either the Gibbs sampling software 
JAGS (Plummer, 2003; Wood, 2016) or using Hamiltonian Monte 
Carlo in the software Stan (Carpenter et al., 2017) using the func-
tion mvgam()

•	 Plot estimated smooth functions and posterior predictions, along 
with their probabilistic uncertainties and derivatives, using the S3 
function plot.mvgam()

•	 Perform residual diagnostic checks using randomised quantile 
(Dunn–Smyth) residuals (Dunn & Smyth, 1996) using the S3 plot 
function plot.mvgam(type = ‘residuals’)

•	 Plot posterior retrodictive and predictive checks to examine 
discrepancies between observed data and model-generated 
simulations (Gabry et al.,  2019) using the S3 function ppc.
mvgam()

•	 Compute correlations among latent trends for multivariate sets of 
series using the function lv_correlations()

•	 Perform model selection using rolling window forecast eval-
uation with functions eval_mvgam(), roll_eval_mvgam() and 
compare_mvgams()

•	 Update forecasts online via a Sequential Monte Carlo particle fil-
ter using functions pfilter_mvgam_init() and pflter_mvgam_online()

•	 Create the model file and all necessary objects needed to ini-
tialise and condition the model so that users can modify the 
model structure to fit their bespoke needs using the function 
mvgam(run_model = FALSE)

mvgam extends functions available in existing software in 
several ways. First, while fully Bayesian GAMs can be estimated 
using a variety of software including brms (Bürkner, 2017), BayesX 
(Brezger et al.,  2005) and bamlss (Umlauf et al.,  2018), mvgam is 
the only software we are aware of that can simultaneously esti-
mate any smooth function available in mgcv together with latent 
dynamic trends (bamlss and BayesX can estimate a diversity of 
smooth functions, but to our knowledge, dynamic latent processes 
cannot be estimated; brms offers more flexibility for time series 
and can accommodate dynamic latent processes, including AR and 
ARMA processes of order 1, but we are not aware of extensions to 
dynamic factors). Second, our software can employ Hamiltonian 
Monte Carlo using Stan for much more efficient and unbiased 
MCMC sampling compared to Gibbs samplers (BayesX uses its 
own custom Gibbs samplers, while bamlss does not employ full 
MCMC). Perhaps the most important advantage of Hamiltonian 
Monte Carlo is the powerful diagnostics it provides for detect-
ing posterior degeneracies, which can help uncover model inad-
equacies or incompatibilities between model and observed data 
(Betancourt, 2017). Finally, our package is designed for analysing 
and forecasting sets of discrete time series, and as such the addi-
tional utilities we offer for working with time series (including op-
tions to compare models using rolling forecast evaluation as well 
as routines to assimilate new observations ‘online’ for automatic 
forecast updating; Appendix S1) make our software attractive for 
a range of applied forecasting tasks.

It is notable that our design permits any formula allowed in 
mgcv to be used for the GAM component of the linear predictor, 
providing a user-friendly way to explore dynamic ecological mod-
els that encompass nonlinear smooth functions. Other advantages 
of our framework are (1) missing values are allowed for the re-
sponses; (2) upper bounds can be used via truncated likelihoods; 
(3) smooth distributed lag covariate functions can be estimated 
alongside latent temporal components to form complex dynamic 
nonlinear models (Gasparrini, 2011); and (4) dynamic components 
can easily be forecasted via their autoregressive equations (for 
random walk and AR trends) or via their estimated covariance 
functions (for Gaussian process trends), providing robust proba-
bilistic uncertainties.

While the mvgam package does not currently support stochastic 
volatility or moving average trends, these processes could be added 
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by the user at any time (the package can be used to generate all 
model files, data objects and initial values, so that a model can be 
easily modified for conditioning outside of mvgam, i.e. with rstan, 
rjags or other interfaces directly).

4  |  SIMUL ATIONS

We used simulations to examine the performance of our DGAM 
formulation. Briefly, we simulated multiseries datasets with 72 time 
points (6 years of data for monthly series) consisting of Negative 
Binomial observations (size parameter = 5) for sets of series whose 
log-linear predictors included a hierarchical seasonal pattern (where 
each series' seasonal pattern was created by drawing from a global 
seasonal pattern with common Gaussian noise; see function sim_
mvgam() in the mvgam package for R code to produce simulations) and 
uncorrelated latent trends. Temporal dependences followed inde-
pendent random walk processes. We investigated model sensitivity 
to missingness (proportion missing = 0, 10 or 50%), dimensionality 
(number of series  =  2, 4 or 12) and the magnitude of the tempo-
ral component relative to seasonality (0.3 for moderate dynamics 
or 0.7 for strong dynamics; see Figure  S1 for an example of two 
series with the same seasonality but different strengths of trend). 
Each simulated dataset was fit with the same set of four models. 
First, we fit a hierarchical GAM using mgcv that included a random 
intercept per series (s(series, bs =  ‘re’)), a cyclic smooth function for 
global seasonality (s(season, m = 2, k = 8, bs = ‘cc’)), local smooth func-
tions for series-specific deviations from global seasonality (s(season, 
series, m = 1, k = 4, bs =  ‘fs’)), a smooth function for a global trend 
(s(year, k = 4)) and local smooth functions for series-specific devia-
tions from the global trend (s(year, series, m = 1, k = 4, bs = ‘fs’)). Our 
next model was a GAM (also fitted with mgcv) that used a stochas-
tic trend via an autoregressive observation model. This model used 
same hierarchical seasonality smooths functions as the GAM above 
but replaced the trend smooths with an AR1 parametric term for 
the effect of log(yt−1), with separate AR1 terms estimated for each 
series. We chose to model the AR1 term on the log scale as this 
reduces sensitivity of the AR parameter estimates to outliers (see 
Appendix  S1 for an investigation of the forecasting behaviours of 
autoregressive observation models for discrete time series). Note, 
however, that because each missing observation results in additional 
missing rows in the design matrix (due to missing values in AR predic-
tors), we were unable to fit this model for the simulations where 50% 
of observations were missing. We next asked whether a dynamic 
factor process could capture the multiseries temporal dynamics by 
fitting a dynamic factor DGAM (with M = half the number of series) 
with identical random effect and seasonal smooth functions but no 
yearly smooth function. Finally, we fit a ‘null’ dynamic factor DGAM 
that only estimated random intercepts but no seasonal smooth func-
tion. Negative binomial distributions were specified for each model 
and AR1 models were used for modelling the DGAM dynamic fac-
tor processes. Each combination of missingness, dimensionality and 
strength of dynamics was used to generate five replicate datasets, 

yielding a total of 60 simulations. For mgcv models, estimation of 
smoothing penalties was performed using restricted maximum 
likelihood (method = ‘REML’). Gaussian priors were specified for AR 
parameters (�) (mean = 0; variance = 0.1) in the mvgam implemen-
tation. Following Wood (2016), zero-centred multivariate Gaussian 
priors were used for each smooth's ß parameters and exponential 
priors were used for the smoothing penalties. Following Simpson 
et al. (2017), we used complexity-penalising priors for the Negative 
Binomial overdispersion parameters (which are used by default in 
mvgam to penalise an observation model towards a Poisson if there 
is minimal support for overdispersion). For mvgam models, we ran 
four MCMC chains using Stan's Hamiltonian Monte Carlo sampler 
for 1000 iterations as warmup and collected 4000 samples from 
the joint posterior. Convergence of chains was checked with the 
Gelman–Rubin diagnostic (Gelman & Rubin, 1992) and by visual in-
spection of posterior chains.

The relative performances of each model were explored using 
out of sample forecasts. We trained models on the first 5 years of 
data (60 observations) and generated forecasts for the remaining 
year (12 observations). Probabilistic forecast performance was eval-
uated using a discrete version of the Rank Probability Score (DRPS; 
Gneiting & Raftery, 2007) and coverage of 90% prediction intervals. 
Forecasts with lower DRPS and coverage closer to 0.9 were consid-
ered more accurate.

5  |  C A SE STUDY: FOREC A STING TICK 
ABUNDANCES

Amblyomma americanum and Ixodes scapularis are two widespread 
species of hard ticks capable of transmitting a diversity of para-
sites to animals and humans, many of which are zoonotic (Rochlin 
& Toledo,  2020). Due to the medical and ecological importance 
of these species, a common goal is to understand factors that in-
fluence their abundances. The National Ecological Observatory 
Network (NEON) carries out standardised long-term monitoring of 
tick abundances as well as other important indicators of ecologi-
cal change (Thorpe et al., 2016). Nymphal abundances of both tick 
species are routinely recorded across NEON plots by drag cloth 
sampling, with plots nested within sites (Springer et al.,  2016). 
These plot-level series show strong seasonality and incorporate 
many of the challenging features associated with ecological data 
including overdispersion, high proportions of missingness and ir-
regular sampling in time, making them useful for exploring the util-
ity of DGAMs.

Temperatures between −5°C and 5°C can affects various 
components of tick physiological diapause and host-seeking be-
haviours (Clark, 1995). We included a cumulative growing degree 
day (cum_gdd) variable using temperature records for each site's 
nearest weather station from NOAA's Daily Global Historical 
Climatology Network daily database as a covariate. The predictor 
was calculated as the total number of days up to the start of the 
tick season (1st June) in which the mean of the day's maximum and 
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minimum temperatures was above 0°C. We fit species-specific 
DGAMs to 4 years of data (2015–2018) for 17 A. americanum 
plots (nested in seven NEON sites) and for eight I. scapularis plots 
(nested in three sites) using the most recent release of the NEON 
tick drag sampling product (National Ecological Observatory 
Network, 2022). Counts of ticks were aggregated at the tempo-
ral resolution of epidemiological week, a standardised method of 
counting weeks developed by the US Centers for Disease Control 
and Prevention to facilitate direct comparisons across years. Time 
points during winter (epidemiological weeks 1–14 and 41–53) had 
entirely missing observations as no sampling occurred during this 
period, but we kept these in the model as missing data. For each 
species, we fit four models representing different hypothetical dy-
namics, though we caution that our goal here was not to carry out 
a rigorous analysis but to highlight how DGAMs could be used to 
facilitate model selection and scrutiny:

•	 Null: There is no seasonality, rather the latent factors/random 
site-level effects of cum_gdd fully influence the dynamics for the 
plot-level series. We hypothesised that the site-specific partial ef-
fects of cum_gdd could be mildly nonlinear, so we set k = 5 for this 
smooth function. Formula in R syntax: y ~ s(site, bs = ‘re’) + s(cum_
gdd, site, k = 5, bs = ‘fs’) + Z

•	 Hyp1: All plots share a seasonal pattern, with any remaining 
variation captured by the latent factors and site-level cum_gdd 
effects. In addition to the assumption of cum_gdd nonlinear-
ity, we assumed the global seasonal pattern was moderately 
nonlinear and flexible enough to capture the characteristic 
double peaks commonly seen in hard tick nymph abundance 
survey time series (Wallace et al., 2019), and we assumed the 
seasonal function was cyclic with equal values between the end 
of December and the beginning of January. Formula: y ~ s(site, 
bs = ‘re’) + s(cum_gdd, site, k = 5, bs = ‘fs’) + s(season, k = 12, m = 2, 
bs = ‘cc’) + Z

•	 Hyp2: as above but with hierarchical seasonality, including 
a global seasonality smooth function and a seasonal smooth 
function that can deviate from the global seasonality across 
each site. Formula: y ~ s(site, bs  =  ‘re’) + s(cum_gdd, site, k  =  5, 
bs = ‘fs’) + s(season, k = 12, m = 2, bs = ‘cc’) + s(season, site, m = 1, 
k = 6, bs = ‘fs’) + Z

•	 Hyp3: as above but the seasonal deviations occur at the bottom 
level of aggregation (plot rather than site level). Formula: y ~ s(site, 
bs = ‘re’) + s(cum_gdd, site, k = 5, bs = ‘fs’) + s(season, k = 12, m = 2, 
bs = ‘cc’) + s(season, plot, m = 1, k = 4, bs = ‘fs’) + Z

We used random walk dynamic factor models (M = 4 for Ixodes 
and 5 for Amblyomma) for the temporal evolution and assumed a 
Poisson distribution for the observations. Each model was estimated 
using four MCMC chains for 1000 iterations as warmup. We col-
lected 4000 posterior samples to evaluate parameter estimates and 
inspect forecasts. The 2019 observations for each plot were held 
out as testing data to evaluate forecasts using the same evaluation 
criteria as in the simulations above.

6  |  RESULTS

6.1  |  DGAM forecast performance—simulation 
results

Our simulations explored the relative forecast performance of 
DGAMs versus static and autoregressive GAMs. The seasonal 
DGAM outperformed its GAM counterparts in terms of DRPS, pro-
viding better probabilistic forecasts in all comparisons (Figure 2). 
As expected, the correctly specified seasonal DGAM was the best 
performer when the trend dynamics were moderate compared to 
the seasonal magnitude, while the nonseasonal DGAM performed 
nearly as well under strong trend dynamics (Figure 2). The static 
and autoregressive seasonal GAMs were the worst performers in 
nearly all comparisons (Figure  2). Results were similar when in-
specting DRPS as a function of the number of series in the simula-
tion, with DGAMs clearly providing better probabilistic forecasts 
(Figure S2).

Comparisons of 90% interval coverages strongly favoured the 
two DGAMs (Figure 3). Intervals for the DGAMs frequently included 
25%–35% more of the out of sample observations than did the in-
tervals for the two GAMs. There was little distinction between the 
two DGAMs, even as the number of series and the strength of the 
underlying dynamics increased (Figure 3). Results were similar when 
inspecting 90% interval coverage as a function of missingness, with 
the DGAMs strongly outperforming the GAMs (Figure S3).

6.2  |  DGAM and NEON tick abundance forecasts

Our results suggested that Hyp3, which captured hierarchical sea-
sonality by allowing individual plot-level seasonal patterns to de-
viate from a global seasonality function, was the best-performing 
model when forecasting I. scapularis nymphal abundance across 
NEON sites, while the null model that did not include seasonal-
ity was the worst performing (Figure  4). Nominal coverages of 
90% intervals were accurate for the three seasonal models (rang-
ing from 87% to 88%), while the intervals for the null model were 
generally wider than they needed to be (97% coverage; Figure 4). 
However, there was variation across plots in terms of forecast 
performance, suggesting that an ensemble forecast (which com-
bines forecasts from multiple models) could improve performance 
(Figure S4). Inspection of probability integral transform (PIT) his-
tograms, which should be uniform if predictions are evenly dis-
tributed about the truth (Simonis et al.,  2021), revealed that all 
models apart from the null tended to underpredict to some degree 
(left-skewed PIT histograms; Figure S5). Figure 5 shows example 
mvgam visualisations for a single plot, including estimated smooth 
functions, forecasts and dynamic trend estimates (along with their 
probabilistic uncertainties). When conditioning on seasonality 
and the trend, I. scapularis abundances demonstrated no appar-
ent association with variation in cumulative growing degree days 
(Figure  5). Inspection of the latent dynamic components for the 
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three seasonal models revealed positive within-site correlations 
for sites SCBI and SERC (Figure S6). Example mvgam visualisations 
of posterior checks for training (retrodictive) and forecast periods 
(predictive), useful for checking if a model is capable of simulat-
ing time series that resemble key aspects of the observed data 
without notable discrepancies, are shown in Figure S7. Examples 
highlighting how smooth function and trend realisations can be 
plotted, which can improve model interpretation over quantile or 
density plots, are shown in Figure S8.

In agreement with the I. scapularis models, A. americanum abun-
dance was also best predicted by the Hyp3 model. Example visu-
alisations of estimated plot-level seasonal functions are shown in 
Figure 6, while a visualisation of estimated random effect intercept 
distributions is shown in Figure S9. Our model estimated that tick 
abundances in some plots (i.e. SERC_001) tended to show earlier 
peaks around epidemiological week 24, while abundance in other 
plots (i.e. TALL_001) followed a broader curve with a peak around 
epidemiological week 30 (Figure 6).

6.3  |  Quantifying uncertainty contributions among 
mvgam model components

In addition to plotting smooth functions and forecasts, mvgam offers 
utilities to compute relative contributions of the latent dynamic and 

GAM components to forecast uncertainty. This process of partition-
ing uncertainty is an important step in analysing a model's forecasts to 
diagnose the main drivers of prediction uncertainty and prioritise as-
pects of models or data that require further investigation (Dietze, 2017; 
Heilman et al., 2022). Comparisons of uncertainty contributions for 
four of the A. americanum forecasts indicate that both components 
contribute to forecast uncertainty, but to varying degrees over time 
and across plots (Figure 7). However, across all plots, dynamic trend 
uncertainty tended to increase over time, becoming relatively more 
important during the peak tick season (3–22 weeks ahead).

7  |  DISCUSSION

We have introduced an R package for fitting Bayesian Dynamic 
GAMs (DGAMs) that incorporate the flexibility of the widely popu-
lar penalised smoothing functions in mgcv with latent dynamic com-
ponents for analysing and forecasting discrete time series. Keys to 
mvgam's performance are its ability to cope with substantial miss-
ing data, scale to large collections of discrete time series and pro-
vide robust uncertainty quantification. In recent years, there has 
been increased interest in using time-series models for uncertainty 
interval estimation as opposed to point predictions, a trend that 
lends well to Bayesian inference (Gelman et al., 2017; Makridakis 
et al., 2020). This is particularly relevant for ecological forecasts, 

F I G U R E  2  Log(discrete rank 
probability score) (DRPS) performance for 
out of sample forecasts from competing 
models fitted to sets of simulated discrete 
time series. Panels depict models fitted 
with different levels of data missingness 
(proportion of observations set to NA) 
and temporal dynamics strength. The 
seasonal GAM was fitted using R package 
mgcv, while the seasonal and nonseasonal 
DGAMs were fitted using the mvgam 
package (using the Hamiltonian Monte 
Carlo software Stan). Lower scores 
indicate better model performance.

None missing 10% missing 50% missing

Nonseasonal DGAM

Seasonal DGAM

Seasonal GAM

Seasonal ARGAM

Moderate dynamics

None missing 10% missing 50% missing

−1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5

Nonseasonal DGAM

Seasonal DGAM

Seasonal GAM

Seasonal ARGAM

log(DRPS) calibration (lower is better)

Strong dynamics
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F I G U R E  3  90% interval coverage for 
out of sample forecasts from competing 
models fitted to sets of simulated discrete 
time series, plotted as a function of 
dimensionality (total number of series) 
and dynamics strength. The vertical line 
in each plot marks a coverage of 0.9. The 
GAM was fitted using R package mgcv, 
while the DGAMs were fitted using the 
mvgam package. Scores closer to 0.9 are 
better.

2 series 4 series 12 series

Nonseasonal DGAM

Seasonal DGAM

Seasonal GAM

Seasonal ARGAM

Moderate dynamics

2 series 4 series 12 series
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Seasonal DGAM

Seasonal GAM

Seasonal ARGAM

90% interval coverage

Strong dynamics

F I G U R E  4  Forecast performance rank 
distributions based on out of sample 
discrete rank probability score for four 
competing models fitted to NEON's Ixodes 
scapularis abundance series. Numbers on 
the left-hand side of the top plot indicate 
coverages of 90% posterior predictive 
intervals. Thick black lines show medians. 
Hypothesis definitions are outlined in 
section CASE STUDY: FORECASTING 
TICK ABUNDANCES.
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F I G U R E  5  Visualisations from the 
best-performing mvgam model (Hyp3) for 
a single Ixodes scapularis plot (SCBI_002). 
Top left, the estimated seasonal smooth 
function; top right, estimated cumulative 
growing degree days function; bottom 
left, predicted tick abundances over time 
(observed values shown as black points); 
bottom right, estimated latent dynamic 
component. For all plots shading shows 
posterior empirical quantiles. Hypothesis 
definitions are outlined in section 
CASE STUDY: FORECASTING TICK 
ABUNDANCES.
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F I G U R E  6  Output from the 
plot_mvgam_smooth function in mvgam 
showing seasonal smooth functions 
for four Amblyomma americanum plots 
estimated from a dynamic GAM with 
hierarchical seasonality. Shading shows 
posterior empirical quantiles.
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where point estimates are less important for making informed deci-
sions than are conditional probability statements (Clark et al., 2022; 
Dietze, 2017; Dietze et al., 2018; White et al., 2019).

Notably, JAGS or Stan model files, together with all data nec-
essary to condition the model, are made available to the user in 
mvgam, allowing an enormous diversity of bespoke models to be im-
plemented through addition of other stochastic or hierarchical el-
ements. The case studies (available in Appendices S1–S3, online at 
https://rpubs.com/NickC​lark4​7/mvgam, https://rpubs.com/NickC​
lark4​7/mvgam2, https://rpubs.com/NickC​lark4​7/mvgam3 and at a 
permanently archived Zenodo repository (https://doi.org/10.5281/
zenodo.6918047; Clark & Wells, 2022)) discuss a range of models 
that can be fitted and interrogated with mvgam, while an example 
JAGS model file complete with automatic descriptions of required 
data structures is shown in Appendix S5. While our intention is that 
researchers use mvgam as a backbone to simplify the task of prepar-
ing smoothing splines for more bespoke joint probability models, we 
do see several avenues for improving model flexibility and estima-
tion. These include but are not limited to:

•	 Recommending and accommodating ways for users to include 
principled prior specifications for the behaviours of nonlinear 
smooth functions (Simpson et al., 2017)

•	 The inclusion of observation model options for modelling contin-
uous, proportional or other non-integer valued time series

•	 The addition of other structured latent temporal components, 
such as multivariate random walks, hierarchical Gaussian 

processes and other models of stochastic processes, to increase 
the diversity of models that can be interrogated using mvgam

•	 The addition of Markov-switching processes to allow dynamic 
factor loadings to be drawn from different sets of correlation ‘re-
gimes’, allowing correlation structures to change over time in a 
principled way (Fox et al., 2010)

•	 The incorporation of covariates into the latent temporal models 
(i.e. as dynamic linear models) to explicitly address broader hy-
potheses about the factors that influence temporal dynamics 
(Heilman et al., 2022)

7.1  |  Challenges in estimating DGAM parameters

The joint estimation of smoothing parameters, basis coefficients, latent 
trend variances or overdispersion parameters is not without its chal-
lenges (Wood,  2016). Posterior geometries for such high-dimensional 
models can become complex enough that traditional MCMC samplers 
based on Random Walk proposals (e.g. Gibbs samplers) will not be able 
to sample the parameter space without reverting to painfully small step 
sizes that result in high posterior autocorrelation and very slow explora-
tion (Betancourt, 2017). Maximum likelihood and related estimators will 
not likely produce better uncertainty quantification, as verifying how and 
when posterior geometries can be accurately approximated under an 
asymptotic regime is a huge and elusive challenge. mvgam's exploitation 
of Hamiltonian Monte Carlo is a major advantage for tackling DGAM pa-
rameter estimation, but we stress that there is no one-size-fits-all default 

F I G U R E  7  Output from the plot_
mvgam_uncertainty function in mvgam 
showing relative contributions of the 
dynamic temporal (grey) and GAM (red) 
components to forecast uncertainty 
for four Amblyomma americanum plots 
estimated from a dynamic GAM with 
hierarchical seasonality. Forecast horizons 
were varied over a ‘1-year’ horizon 
(52 weeks matching data availability).
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solution for prior modelling. Indeed, while choice of priors is important 
in any Bayesian analysis, in DGAMs, it is particularly crucial for ensur-
ing the latent trend and observation models do not compete to induce 
further complexity in the joint posterior. In mvgam, informative priors for 
parametric terms (i.e. intercepts and additive linear covariate effects) 
are guided based on 50 steps of penalised iteratively re-weighted least 
squares from a comparable non-dynamic model using mgcv, while suitable 
priors for operating on the log scale are used for latent trend parameters 
such as drift, AR and variance parameters. Together this prior combina-
tion works well in most cases, especially because of the convenience of 
the link-scaled latent trends. Run times in our simulations and empirical 
examples took 1–20 minutes to reach effective sample sizes >800 for all 
parameters on an Intel(R) Core(TM) i5-8500 CPU with 32Gb RAM and 
six processing cores. Nevertheless, priors in any Bayesian analysis should 
be carefully considered and inferences interrogated with appropriate 
prior sensitivity analyses (Gelman et al., 2020). One illuminating situation 
that we have encountered is the difficulty in jointly estimating a latent 
trend and overdispersion parameters such as in the Negative Binomial 
or Tweedie distributions. This is because both processes (overdispersion 
and autocorrelation) may be able to explain the dispersion around the 
mean, particularly when using Random Walk or AR trends that can jump 
around easily. Users will need to use theory and judgement to decide how 
to tackle these challenges, for example, by assuming there is overdisper-
sion in the observation process (with consultation from appropriate ref-
erences; i.e. Bliss & Fisher, 1953, Lindén & Mäntyniemi, 2011) but that 
the trend is smooth, in which case a latent Gaussian process with suitable 
prior on the length scale would be appropriate. Smoothing splines are also 
challenging in a way because they do not readily facilitate principled prior 
modelling, where expert elicitation could help to constrain prior function 
shapes towards those that are compatible with domain expertise as part 
of a Bayesian workflow (Betancourt, 2021; Gelman et al., 2020). Users 
are recommended to refer to the wealth of material relating to the mgcv 
package for choosing a smoothing basis and basis dimension that are 
compatible with expected function shapes (Wood, 2004, 2013, 2017).

8  |  CONCLUSION

The R package mvgam provides a user-friendly tool for researchers 
and practitioners interested in fitting DGAMs to analyse and forecast 
ecological time series. The problems associated with smooth spline 
extrapolation are not limited to ecology however, as the need to fore-
cast sets of discrete nonlinear time series is a common challenge in 
areas as diverse as speech recognition, tourism demand, natural lan-
guage processing and finance (Hyndman & Athanasopoulos, 2018; 
Makridakis et al.,  2018). Beyond the examples showcased here, 
the package can be especially useful to identify avenues for model 
improvement via its ability to assimilate new observations online 
to update forecast distributions (showcased in Appendix S1). With 
growing interest in both the application of hierarchical GAMs to 
ecological problems and the need to use iterative forecasts to make 
ecology a more predictive discipline, mvgam can become a vital addi-
tion to the applied ecologist's analytical toolbox.
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