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ABSTRACT ARTICLE HISTORY

A reduced order model technique is presented to perform the parametric Received 6 March 2022
Noise, Vibration and Harshness (NVH) study of a vehicle body-in-white Accepted 27 June 2022
(BIW) structure characterized by material and shape design variables. The
ultimate goal is to develop a methodology which allows to efficiently
explore the variation in the design space of the BIW static and dynamic decomposition; BIW; shape
global stiffnesses, such that the NVH performance can be evaluated optimization; real-time;
already in the preliminary phase of the development process. The pro- parametric modal analysis;
posed technique is based on the proper generalized decomposition (PGD) inertia relief; NVH
method. The obtained PGD solution presents an explicit dependency on

the introduced design variables, which allows to obtain solutions in 0.1

milliseconds and therefore opens the door to fast optimization studies and

real-time visualizations of the results in a pre-defined range of parameters.

The method is nonintrusive, such that an interaction with commercial soft-

ware is possible. A parametrized finite element (FE) model of the BIW is

built by means of the ANSA CAE preprocessor software, which allows to

account for material and geometric parameters. A comparison between

the parametric NVH solutions and the full-order FE simulations is per-

formed using the MSC-Nastran software, to validate the accuracy of the

proposed method. In addition, an optimization study is presented to find

the optimal materials and shape properties with respect to the NVH per-

formance. Finally, in order to support the designers in the decision-making

process, a graphical interface app is developed which allows to visualize in

real-time how changes in the design variables affect pre-defined quantities

of interest.

KEYWORDS
Proper generalized

1. Introduction

The noise, vibration and harshness (NVH) performance of a vehicle has an ever increasingly
stronger impact on the customer perception of ride comfort and brand quality, and it has become
one of the most prioritized attributes when purchasing a new car. To be competitive in the global
market, car manufacturers need to improve the NVH properties of their products without deteri-
orating other targets, often conflicting, such as crashworthiness, light-weight, safety, ecological
impact and styling.
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The automotive NVH optimization represents a multidisciplinary field of research in continu-
ous evolution. To give some examples, it needs experimental techniques for the measurements of
noise and vibrations (Panza 2015), methods based on psychoacoustics to evaluate the human per-
ception of the discomfort (Griffin 2007), and strategies to correlate numerical and experimental
results (Abdullah et al. 2017).

Several solutions have been proposed to improve the NVH experienced by the occupants of
the cabin. Most of the times, the attention is focused on the source of noise and vibrations (Qatu
2012). In the past, this was mainly represented by the engine and the powertrain. Nowadays, with
much quieter, the focus is mainly shifted to other sources of noise, such as road excitation and
tyre performance (Backer, Gallrein, and Roller 2016; Uhlar, Heyder, and Konig 2021).
Nevertheless, many times the most effective way of improving the NVH performance is to act on
the material and geometric properties of the global body-in-white (BiW) structure. In fact, the
NVH response is particularly sensitive to changes in the design parameters, as it strictly depends
on the static and dynamic global stiffness of the vehicle body structure.

The dynamic properties, which provide important information about the vibrational behavior
of the BiW, are usually obtained in terms of natural frequencies and mode shapes by performing
the standard FE modal analysis. The standard FE static analysis, instead, allows to evaluate the
global static stiffness and extract indicators of the ride comfort.

A common approach employed by the automotive industry to find the optimal BiW design,
with respect to specific targets, is to perform optimization studies based on the design of experi-
ments (DoE). This consists of generating a random set of possible design configurations and eval-
uating their performance by using full-order simulations. The obtained results are then used to
build a statistical surface response (also called surrogate model), which approximates the behavior
of the structure, and it can be used to perform efficient optimization studies (Kiani and Yildiz
2016). Due to the large number of configurations to be tested in real applications and the high
cost of each static and dynamic simulation involved, standard DoE studies are computationally
too expensive to be performed in the early phase of the design process. For this reason, the NVH
analysis is traditionally performed at a later stage, risking to encounter late undesired issues. To
speed up the design cycle and to avoid the unsustainable waste of time and resources in prototyp-
ing non-optimal products, the automotive industry is highly interested in new software (De
Cuyper et al. 2007) and advanced simulation-based methodologies able to predict the vehicle per-
formance already during the preliminary phase of the development process (Jans et al. 2006).

To this end, significant efforts have been placed in developing new techniques that substitute
the detailed FE model, formed by shell elements, with an equivalent simplified FE model of the
BiW characterized by beams, joints and panels (Qin et al. 2017; Mundo et al. 2009; Van der
Auweraer et al. 2005). This approach leads to a significant reduction of the degrees of freedom,
such that the calculation time of each simulation is much less and fast optimization studies can
be performed. On the other hand, these methods require a preprocess step where full-order simu-
lations are performed to calibrate the properties of the equivalent simplified model. Moreover,
the transition from the optimized simplified model to the optimized detailed FE model is not
straightforward and it generally introduces errors.

A valuable alternative which allows to work with detailed FE models, whilst reducing the com-
putational effort, is to employ reduced order modeling (ROM) techniques. The basic idea behind
ROMs is that the essential behavior of complex systems can be accurately described by simplified
low-order models. Typical reduced techniques available in the literature (e.g., Krylov-based meth-
ods (Freund 2003), POD (Feeny and Kappagantu 1998), reduced basis (Rozza, Huynh, and Patera
2007)) are projection-based methods which aims at computing a reduced set of basis, able to
accurately approximate the solution. These methods are also referred as a posteriori ROM techni-
ques, as they typically need to first solve the full-order problem for a set of representative design
configurations, based on which the set of reduced basis is built. The obtained reduced model can
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be then used to evaluate the response of new configurations at a significantly lower computational
cost.

Several works have been recently proposed which combine ROM techniques with surrogate
models. Such choice is particularly advantageous when optimization studies are performed in the
context of crash simulations (Rocas et al. 2021, 2022; Le Guennec et al. 2018), where designers
have to deal with complex parametric problem involving material and geometric design variables,
high displacements and material non-linearities. As already mentioned, the noise and vibration
properties of a BiW structure are typically evaluated by performing standard linear static and
dynamic FE analyses. A ROM technique which proved to work very well in the context of linear
problems is the proper generalized decomposition (PGD) method (Ammar et al. 2006; Chinesta,
Ladeveze, and Cueto 2011; Chinesta, Keunings, and Leygue 2014).

Unlike standard a posteriori ROM approaches, that require special attention on how to select
appropriate snapshots to obtain accurate reduced models, the PGD is an a priori technique that
computes the reduced basis without relying on previously computed full-order solutions associ-
ated with arbitrary samples of the parametric space. This is possible thanks to the main assump-
tion of the method, that is to treat the parameters as extra-coordinates and approximate the
solution of the resulting high-dimensional problem as a sum of “rank-one” terms. Each of these
“rank-one” terms is given by the product of basis functions depending explicitly on the coordi-
nates of the problem (spatial and parametric coordinates). This compact approximated expression
of the solution, also known as computational vademecum, is particularized, in the online phase,
for any set of the design variables at a negligible computational cost and with very low computa-
tional resources. As a consequence, it can be uploaded on light computational devices (such as
tablets or smartphones), such that the visualization of the results, optimization studies or inverse
analysis can be performed in real-time. In the last years, the method has been successfully tested
in the most diverse areas of application, such as flow problems (Dumon, Allery, and Ammar
2011; Leblond and Allery 2014; Ibanez et al. 2017; Diez, Zlotnik, and Huerta 2017; Garcia-Blanco
et al. 2017; Giacomini et al. 2021), thermal problems (Ghnatios et al. 2012; Aguado et al. 2015;
Huerta, Nadal, and Chinesta 2018), solid mechanics (de Almeida 2013; Reis et al. 2020), fracture
mechanics (Giner et al. 2013; Garikapati et al. 2020), geophysical problems (Zlotnik et al. 2015;
Signorini, Zlotnik, and Diez 2017), elastic metamaterials, coupled magneto-mechanical problems
(Sibileau et al. 2018; Barroso et al. 2020) and dynamic problems (Quesada et al. 2014; Gonzilez,
Cueto, and Chinesta 2014; Germoso et al. 2016; Malik et al. 2018; Quaranta et al. 2019).

Having in mind the big potential that the PGD method could exhibit in the context of a NVH
study, the authors recently developed an extended version of the standard PGD to perform the static
(Cavaliere et al. 2021) and dynamic (Cavaliere et al. 2022) stiffness analysis of a 3D structure charac-
terized by material and geometric design variables. In the static case, the PGD was coupled with the
inertia relief method (PGD-IR), which is an approach widely used by the industry to solve the static
analysis of unconstrained structures, such as BiW structures. In the dynamic case, the PGD was
coupled with the inverse power method (PGD-IPM) to develop a parametric eigensolver able to
extract the lowest natural frequencies and corresponding mode shapes. In addition, the authors tried
to overcome a typical drawback of the standard PGD, that is its challenging application to geomet-
rically parametrized models. This is due to the fact that one essential requirement of the PGD
method is that the input quantities of the problem (such as the stiffness and mass matrix) are to be
expressed with an explicit and separated dependence on the parameters. This is clearly not an easy
task, especially when complex shape parametrisations, like the one which are typical in the automo-
tive context, are considered. Moreover, even if an explicit expression could be found, the standard
PGD would require an intrusive modification of the FE formulation of the problem, as described in
several works (Leygue and Verron 2010; Bognet et al. 2012; Heuzé, Leygue, and Racineux 2016;
Courard et al. 2016; Chamoin and Thai 2019; Sevilla, Zlotnik, and Huerta 2020). Clearly, this would
make the method unemployable in an industrial context, where commercial software with
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inaccessible source codes are used and complex shape parametrisation are unavoidable. to overcome
these limitations, the authors developed (Cavaliere et al. 2021) a hybrid algebraic approach, which
requires a preprocess step where the input data are only sampled (assembled), without solving any
full-order problem, and then expressed in the separated format. This approach preserves the nonin-
trusivity of the methodology, as it requires an interaction with the commercial software but does not
need any modification of the FE formulation.

The goal of this work is to validate the feasibility of the proposed PGD-IR and PGD-IPM
method in an industrial context, and not only with respect to a simple academic 3D structure as
in the previous works. To achieve that, it was essential to construct a parametrized FE model of
the structure by using morphing and optimization tools, such that typical BiW topology para-
metrisations can be easily handled, keeping the method nonintrusive. Moreover, the potential of
the proposed method in the post-process phase is shown. First, a multi-objective optimization
study is presented to find a set of optimal design configurations with respect to the NVH per-
formance. Finally, the most attractive feature of the method is presented, which is the develop-
ment of graphical interface app that allows to visualize in real-time how changes in the design
variables affect the global response of the BiW. It is important to underline that this represents a
powerful instruments which empowers the designers, who can discard suboptimal solutions
already from the preliminary phase of the development process, alleviating the work load during
the subsequent phases of the development process.

The remainder of the paper is structured as follows: Sec. 2 reviews the standard FE formula-
tion for the static and dynamic global stiffness analysis of BiW structure, that is the reference
full-order problem. In Sec. 3, the problems are redefined in the corresponding parametric frame-
work and the basics of the encapsulated PGD toolbox are introduced. The core of the paper is in
Sec. 4, where the NVH study of a BiW structure with material and geometric parameters is finally
performed. In particular, three phases are described: the preprocess which concerns the paramet-
risation of the model and the preparation of the PGD input data; the offline computation, which
solves the parametric static and dynamic problem by means of the PGD-IR and PGD-IPM algo-
rithms and discusses the results; finally, the post-process is presented which consists of an opti-
mization study and the development of the graphical interface app for the real-time visualization
of the results. Section 5 gives the final conclusions.

2. Standard FE formulation of the NVH analysis

In real applications, the noise and vibration properties of a BiW structure are usually evaluated
by performing standard static and dynamic FE analyses. Differently from other disciplines of the
automotive development process, such as crashworthiness, geometric and material non-linearities
are not considered during the NVH study.

The dynamic study consists of extracting the lowest natural frequencies and corresponding
vibrational modes by means of the modal analysis. This allows to identify and optimize the first
torsional and bending modes, which are good indicators of the BiW vibrational behavior. The
ride comfort properties, instead, are related to the static torsional and bending global stiffness of
the BiW structure, which is usually considered in its free-free (unconstrained) configuration to
reproduce realistic conditions. As it is well known, if no boundary conditions are imposed, the
structure undergoes rigid body motions and the static analysis cannot be performed due to the
singularity of the stiffness matrix. A method that is widely used in industry to solve this issue is
the inertia relief (IR) technique (Wijker 2004), which uses the rigid body modes to equilibrate the
system and make it solvable.

From a mathematical point of view, the IR analysis can be seen as a limit case of the dynamic
problem for the natural frequency tending to zero, thus the vibrational modes correspond to the
rigid body modes. As a consequence, both the modal and the IR analyses are derived from the
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elastodynamic problem formulation, which in the discretized form and in absence of damping
reads

MU (t) + KU(t) = E(t). (1)

Here, K and M represent the stiffness and mass matrices, while U(t), U(t) and F(t) are,
respectively, the time-dependent displacement, acceleration and nodal vector of applied forces.

In the following, Eq. (1) is particularized to derive the standard formulation of the modal ana-
lysis and the IR method, which represent the basis of the parametric NVH study proposed in this
work. It is worthy to mention that, for the sake of simplicity, this work focuses on the evaluation
of the torsional static and dynamic properties. Nevertheless, the extension to the bending stiffness
or other quantities of interests (Qols) is straightforward.

2.1. Dynamic case: the modal analysis

The basic equation of the standard modal analysis is a reduced form of the elastodynamic prob-
lem in Eq. (1) under free vibration conditions, namely when no external loads are applied

MU(t) + KU(t) = 0. )

By following the standard procedure, the solution U(t) is assumed to have a harmonic
dependence on time through the expression

U(t) = cos (ot — )¢, 3)

where o is the angular velocity,  is the phase angle and ¢ is the deformed shape of the struc-
ture. The acceleration U(¢) is obtained by differentiation, and after carrying out the appropriate
substitutions, Eq. (2) transforms into

K¢ = 0*M¢. (4)

Equation (4) represents a generalized eigenvalue problem, which provides nq,¢ eigenmodes ¢;,

for i = 1,2, ..., n40f, being nqor the number of degrees of freedom of the structure. These eigenm-

odes are called natural mode shapes, as they represent the deformation of the structure when

vibrating in its ith mode. Each eigenmode is associated with the eigenfrequency w; through the
Rayleigh quotient

2 _ 9/ K¢,
W = —= ,
¢, Mg,

while the natural frequency f (measured in Hertz) depends of the eigenfrequency through the
expression

(5)

Wi
fi = (6)

If K and M are symmetric, M is positive definite and K is at least semi-positive definite, some
mathematical properties hold which ensure the uniqueness of the eigenmodes. First, modes asso-
ciated with different frequencies are orthogonal with respect to both M and K. That is ¢TM¢]

0 and ¢ K¢; =0 for i and j such that w; # w;. Moreover, they are normalized with respect to
the mass M such that qB M¢, = 1, and consequently d) K¢, = w?, for i =1,2,..., ngof-

To solve the eigenvalue problem of Eq. (4), a numerical elgensolver needs to be employed.
Several methods are available in the literature (Bai et al. 2000; Quarteroni, Sacco, and Saleri 2010;
Golub and Van Loan 2013). Usually, the choice depends on the mathematical structure and the
number of eigenpairs of interest. For instance, commercial software MSC-Nastran (Nastran
2004), which is used as a reference in this work, provides seven different methods for the real
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eigenvalue analysis. Among them, the Lanczos method (Lanczos 1950) is usually recommended
for this case of study.

In this work, the choice is driven by two main reasons. First, the goal is not to compute the
whole set of ng.¢ eigenmodes, but a few fundamental modes corresponding to the lowest eigenfre-
quencies, which provide the essential information needed to assess the structural dynamic
response. Moreover, the objective is the extension of the modal analysis to the parametric frame-
work, which benefits from using the algorithmically simplest eigensolver available. Among others,
the well-known inverse power method (IPM) fulfills all these requirements.

The IPM is an iterative algorithm, allows to find an approximation of the eigenvector ¢, asso-
ciated to the smallest eigenfrequency w; by iteratively solving the system

K¢, =M¢;', for v=1,2,3.. (7)

starting with an initial guess ¢).

At every iteration v, the quantity ¢] is normalized with respect to its M-norm given by
VM'¢,M, such that unicity is preserved. After a certain number of iterations, the vector is
expected to converge to the eigenmode ¢,. The corresponding eigenvalue w? can be easily com-
puted according to the Rayleigh quotient, as indicated in Eq. (5). Subsequent eigenpairs are usu-
ally computed by employing a deflation technique. In standard algorithms, this is usually done by
removing the already computed eigenvectors from the original matrix, while keeping the
others unchanged.

Here, for the sake of easing the generalization to the parametric case, an equivalent strategy
that uses Lagrange multipliers, introduced in (Cavaliere et al. 2022), is adopted. Instead of reduc-
ing the original system (7), an extended system of equations, of dimension (ngor + 1) X (ndof +

1), is solved
K Mo, | [ o7 _ [ Mg,
e "4 ®

where £ is the Lagrange multiplier. By construction, the new sought eigenvector ¢, is automatic-
ally orthogonal to the previous one.

When the first n eigenfrequencies, w, ;, ..., w,, are already computed and the corresponding
eigenvectors are collected in the ng.f X n matrix ®, = [@, ¢,,...,d,], the next eigenmode ¢, ,
is obtained by solving the (ngof + 1) X (ndof + 1) system of equations

oy -]

(M®,,) 0 A 0
where 4 is the n x 1 vector of Lagrange multipliers. An important aspect to consider in this work
is that, since the BiW structure is assumed to be in the unconstrained configuration (with no
loads and no constrains), its stiffness matrix K is singular. This means that the first six (in 3D)
eigenmodes coincide with the rigid body modes of the structure and the corresponding first six
eigenfrequencies are null. As a consequence, the strategy adopted is to first compute the rigid
body modes and collect them in the ngor x 6 matrix ®s. Then, the following eigenvectors can be
simply computed by solving Eq. (9). The rigid body modes can be constructed geometrically or
they can be computed analytically, as explained in Sec. 2.3.

2.2. Static limit case: the inertia relief method

The setup of a standard FE analysis to evaluate the global static torsional stiffness of a BiW struc-
ture is shown in Fig. 1 (left picture). The test consists of loading the BiW model with a couple of
parallel and opposite forces applied at the front and rear shock towers of the car frame, such that
the resulting torsional moment is equal to 1Nm. The Qol of this problem is the equivalent
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Figure 1. Load conditions used for the static global torsional stiffness analysis of the BiW structure (left). lllustration of the
angles used to compute the ETS in Eq. (10) (right).

torsional stiffness (ETS), which is calculated as a function of the front and back twisting rotations
of the car body when the constant torque is applied, namely

T

ETS=——— x —.
oAB + OcD 180

(10)
Here the two twisting angles oxp and ocp represented in Fig. 1 (right picture) are given by the
following relative vertical displacements
_ [u(A)] + [u=(B)| _ [u(O)] + [u=(D))|
B = %cp =

>

, (11)

L AB LCD

where u,(P) denotes the displacement in the vertical z direction at point P and Lpq denotes the
distance between the points P and Q.

The BiW is assumed to be in its free-free configuration, such that realistic results can be repro-
duced. As is well known, this causes a rigid body motion that prevents the application of the stand-
ard static analysis. The inertia relief (IR) method is usually employed to overcome this issue. The
approach is based on the idea that, due to the mass of the system, the rigid body acceleration gener-
ates an inertial load that counteracts the external forces and deforms elastically the body. If the iner-
tial load is such that the system is statically equilibrated (resultant forces and moments are zero),
then the static analysis can be performed by applying any set of isostatic constraints.

The basic equation of the IR method is derived from the elastodynamic problem (1), assuming
that the applied load F and the resulting displacement field U are constant in time, such that U
represents the steady state rigid body acceleration

KU = F — MU. (12)

To solve the system of Eq. (12), the inertial load, MU, that balances out the external forces, F,
has to be computed. To this end, the rigid body acceleration is first expressed as a linear combin-
ation of the rigid body modes

U = ®g, (13)

where @ represents the rigid body matrix (each column is a rigid body mode) and the vector a
contains the corresponding acceleration coefficients. Assuming that ® is known, the acceleration
vector & can be finally calculated by pre-multiplying Eq. (12) by ®' and imposing that the sys-
tem is equilibrated, that is

P KU=D'F— ® MPx = 0. (14)

Equation (14) leads to the final expression of the unknown acceleration vector a which pro-
vides the equilibrated forces
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2= (@ MD) '®F. (15)

With the system of equations given in Eq. (12) being equilibrated, the solution U can be found
by imposing any set of isostatic constraints and solving

U=KF-M®a). (16)

Once the displacement field is known, the sought ETS can be easily calculated according to
Egs. (10) and (11).

2.3. Rigid body modes computation

By definition, a rigid body mode is a displacement vector that does not cause any static force. As
a consequence, a simple way to analytically compute the six (in 3D) rigid body modes ® =
[@1> @y ... Pg] is to impose their definition given by the system K@ = 0. First, n, reference
degrees of freedom (n, =6 in 3D) are chosen such that, if they were constrained, no rigid body
motion would occur. Then, the total number of ng.¢ degrees of freedom is then partitioned into a
reference set, 1, and the remaining set, I, such that the matrix ® can be computed by solving the
partitioned version of K& = 0, namely

Ky Kp||® 0
= . 17
|:Kr1 K, (Dr 0, ( )
As K is symmetric and positive definite, @; set can be expressed in terms of @, :
o, = K, 'K, D, (18)

where @, is usually assumed to be the identity matrix of dimension n, x n,, such that each col-
umn of the matrix @, represents a unit translation or rotation in the direction of the correspond-
ing reference degrees of freedom.

As mentioned above, the computation of the rigid body modes is the first common step of
both the IR and IPM algorithms. Figure 2 gives a global overview of the static and dynamic ana-
lysis described above, which serves as starting point to extend the same algorithms to the para-
metric framework.

3. Reduced-order solver for the parametric NVH analysis

Let us consider a set of n, parameters, denoted by u = [,ul,,uz,...,,unp]T € M C R™, describing
the material properties (e.g., elastic modulus, density, etc.) and the geometric characterization of
the BiW shape. Each parameter j; belongs to a predefined interval M;, such that the multidi-
mensional parametric domain M is defined as the Cartesian product of the sectional intervals,
namely M := M; x My x --- x M, , with K€ M;CR forj=1,..,n,.

From a conceptual point of view, the extension of the IR and IPM algorithms from the non-
parametric to the parametric framework is as simple as rewriting all the quantities outlined in
Fig. 2 with their parametric dependency. Standard numerical methods (e.g., finite elements, finite
volumes, finite differences) would generally require to solve the problem for every possible com-
bination of the parameters, which is usually not affordable for real industrial applications.

The alternative considered here is to treat the parameters as extra-coordinates. This means
that the parametric input data, K(u) and M(u), and the generalized solutions of the IR and IPM
algorithms, U(u) and ¢,;(pu), are defined in the multidimensional domain D = Q x M, where Q
and M denote the spatial and parametric domains, respectively. If standard mesh-based methods
are adopted, the computational cost increases exponentially with the discretized parametric
meshes, leading to the curse of dimensionality phenomenon. If, for example, n, = 5 parameters
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GLOBAL STATIC AND DYNAMIC STIFFNESS ANALYSIS

=1
@:I Compute rigid body modes: ® = Ko KZT} ﬂ
T
Static analysis (IR) Dynamic analysis (IPM)
Input: K, M, &, F Input: K, M, ®,¢? (initial guess)
- Compute equilibrated forces: Iterative computation of the (next) lowest

il eigenvector:
a=(e"Me) &'F
while convergence
- Solve equilibrated problem:
K Mo

- Solve (M®)" 0

¢y | _ My
A 0

- Normalise ¢ < ¢/ (b'{TM loxs

U=K '(F - M&a)

- Update ¢! ™" « ¢

end

v

Store converged mode shape : ¢, = ¢;
Compute eigenfrequency: w; = \/(b;r Ko,

Figure 2. Overview of the NVH study in the non-parametric framework. The static analysis is performed by means of the IR
method. The IPM algorithm is shown for the computation of the lowest (next) non-zero eigenvector ¢;, assuming that the
matrix @ of already computed modes is available. Conceptually, if all the input and output are expressed with their parametric
dependency, the parametric version of the algorithm is identical.

are considered and each parametric space is discretized with m =10 nodes, the total number of
degrees of freedom would be equal to ngef X m™ = nge x 10°.

ROM techniques are usually employed to circumvent this issue by simplifying the numerical
complexity of the problem. In this work, the underlined high-dimensional NVH problem is
solved by means of the PGD method, which is introduced next.

3.1. PGD fundamentals

The PGD technique is based on the idea that the solution of a problem depending on a set of parame-
ters can be approximated as a finite sum of terms. Each of these terms is given by the product of func-
tions depending separately on the coordinates of the problem (spatial and parametric coordinates).

Let us consider the parametric solution U(u) of the IR problem. According to the PGD
assumptions, it is approximated by

N
U () = By Ui () s (1) e 1y, (11, ) (19)

i=1

where the vectors U’ represent the spatial dimension, whereas the functions u]’(,u]) represent the
dependency of the solution on each parameter. If the spatial and parametric functions are
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PGD Solver Scheme

Find: UP® () = TN, 5 Ut(@) v (1) wh(p2) -, (1, )
Greedy algorithm

computes sequentially the nth PGD term, assuming the previous i = 1,...,n — 1 terms known

Alternate direction scheme
Assume u?(u;) known: compute U™(z)

Assume U"(z) and u}(u;) known for j # k: compute uj (1)

Figure 3. Description of the PGD solver scheme.

normalized, then an amplitude By, is introduced, which indicates the relevance of the ith term of
the sum on the final solution.

The solver scheme based on the PGD method consists of two main steps, as outlined in Fig. 3.
A greedy algorithm is used to enrich the final solution by computing sequentially every term.
The number of terms needed to reach a good accuracy is unknown a priori, and the enrichment
automatically stops when a user-defined accuracy is reached.

To find the unknown spatial and parametric functions of each new term, an iterative scheme
needs to be employed due to the non-linearity introduced by the products of unknown spatial
and parametric functions in Eq. (19). The alternating direction scheme is normally employed in
PGD problems, due to its simplicity and robustness. It consists in sequentially solving the prob-
lem for each unknown function, assuming that all the others are known, until a stationary solu-
tion is reached. It is worth emphasizing that, despite the introduction of the non-linearity, the
computational cost of the problem increases linearly with the number of introduced parameters
and not exponentially as it would be with standard numerical methods.

The output UPP(u) of the PGD solver, given in Eq. (19), is often defined as a generalized
explicit solution, in the sense that it contains the solution for any combination of the parameters
in the predefined design space. The most important advantage of the method is that, once the
parametric output is available, the variation of the solution with respect to the parametric changes
can be evaluated in real-time by simply performing a linear combination of terms, thus at a negli-
gible computational cost.

3.2. PGD operations: the encapsulated PGD toolbox

The parametric IR and IPM algorithms require several parametric algebraic operations, such as
products, sums, divisions, square roots. In this work, the encapsulated PGD Toolbox (Diez et al.
2020) is utilized to perform such operations. The toolbox is a collection of PGD-based routines
able to solve basic algebraic operations between parametric objects (i.e., scalar, vectors, matrices).
The routines are implemented in an open-source Matlab environment and can be downloaded at
https://git.Jacan.upc.edu/zlotnik/algebraicPGDtools.

The most important advantage of the toolbox from the point of view of a user, is that it works
as a black box. This means that the user just needs to define the parametric input data and call
the algorithm that performs the desired operation, which automatically gives back the parametric
solution. This is an important feature for its use in an industrial context.


https://git.lacan.upc.edu/zlotnik/algebraicPGDtools

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES . 1

The essential requirement of the proposed toolbox, as for any other PGD-based methods, is to
define the input quantities in the separated format described in Eq. (19). However, being able to
find a separated analytical representation of the input data is not always possible, especially when
geometric parameters are considered in the problem. Furthermore, if an analytical expression
existed, it would require to access the source code of the FE software and modify the problem
formulation, as described in several works (Leygue and Verron 2010; Bognet et al. 2012; Heuzé,
Leygue, and Racineux 2016; Courard et al. 2016; Chamoin and Thai 2019; Sevilla, Zlotnik, and
Huerta 2020). Such an “intrusive” approach is not useful in practice in the industrial context,
where commercial software with inaccessible source codes is typically employed.

For this reason, the authors developed a nonintrusive algebraic approach described in
Cavaliere et al. (2021), which is able to find a separated expression of the input data for any
material or geometric parametrisation. The main idea is to first sample the input data (without
solving the problem) for every possible combination of the parametric values of interest and then
express them in the separated format. In the presented static and dynamic problems, the stiffness
and mass matrices are the required input data.

If each parametric dimension y; € M; for j=1,2,...,n, is discretized using m; nodal values,
then the sampling of the parametric matrices consists of evaluating K' and M’ in the set of my,,
points used to discretise the parametric domain M := M; x M, x --- X M, , where my =
H;Zl m;. This might be perceived as a computationally expensive step. However, it should be
noted that the computational cost of assembling the FE matrices is small compared to the cost of
a full-order simulation. As a result, this technique preserves efficiency, especially because the
assembly process for different parametric values can be done in parallel.

Once the matrices K' and M’ are sampled for the i =1,2,...,my; combinations, the corre-
sponding parametric functions k(1) and m(y;) are defined such that

K(w) = > KK (1) K (1) - K, (8,
pr (20)
M(p) =Y M mi () mb(115) .. 11}, (11,)-

i=1

Since my,, is usually a high number, a data compression based on the PGD rationale (Diez
et al. 2018) is employed. The compression routine, that is also included in the toolbox, is able to
accurately approximate the original quantities with a much smaller number of PGD terms, such
that the computational cost of the next operations can be substantially reduced.

3.3. Parametric version of the NVH algorithm

Based on the description of the encapsulated PGD toolbox given above, this section introduces
the proposed parametric IR and IPM algorithms. In summary, the first step consists in sampling
the input stiffness and mass matrices and expresses them in the PGD separated format. Then, the
algebraic parametric operations involved in both algorithms are performed by simply calling the
appropriate encapsulated PGD routine. The output of each operation is automatically defined in
the separated PGD format, such that it can be directly used as input of the next operation. Once
all the steps are performed, the final parametric solutions UP(u) and ¢/ () can be stored
and used in the post-process phase. Figure 4 shows a global flowchart describing the sequence of
assembled equations which need to be solved. Each algebraic operation is performed by employ-
ing the corresponding PGD function from the encapsulated PGD toolbox. For each step, the
involved parametric operations are specified such that the reader can understand the complexity
and the potential of the toolbox.
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Figure 4. Global overview of the parametric NVH algorithms.

It is worth noting that certain operations (e.g., sum, products, concatenation) are as simple as
adding, multiplying or concatenating the PGD terms defining each quantity. In contrast, opera-
tions like the square root, division or compression required the development of new algorithms
based on the PGD framework (Cavaliere et al. 2022; Diez et al. 2018). From an implementation
point of view, an overloading of the arithmetic operators allows to simply use the standard
Matlab symbols to call the algebraic operations contained in the encapsulated library, making the
method highly user-friendly.

It is important to mention that the linear solver, the division, the square root and the com-
pression PGD operations need two kind of tolerances to be set up. One tolerance for the iterative
solver scheme, and another to stop the enrichment of the PGD terms. The compression, which is
performed every time the number of PGD terms undergoes a substantial increment (e.g., after
products), usually needs stricter tolerances, such that the accuracy is not compromised.
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I Steel
M Glass

M C-pillar
- Rear member

Figure 5. Geometry and mesh properties of the BiW structure used for the static and dynamic global stiffness analysis (left). The
two car components highlighted (right) are characterized by parametric properties, that is the thickness and the cross section of
each one of the components.

Table 1. Material properties of the BiW structure.

Material Young's modulus Poisson’s coefficient Density
Steel 210GPa 0.29 7820kg/m?
Glass 90 GPa 0.14 2480 kg/m?

From Fig. 4, it can be observed that the PGD-IR algorithm has a much simpler structure than the
PGD-IPM. In fact, the IPM solver needs several iterations to be performed until the solution conver-
gences to the eigenmode. Moreover, this has to be repeated for every new eigenmode of interest.
Despite the approximations introduced by each PGD operation, the example in the next section will
show a successful application to a realistic industrial case study for both the static and dynamic anal-
yses. In particular, the study considers a simplified BiW structure characterized by four parameters,
namely the thicknesses and cross sections of the C-pillars and the rear long member.

4. Numerical application: parametric NVH study of a BiW structure

The proposed method is finally applied to perform the NVH study of a simplified BiW structure. Figure
5 shows the geometry and the FE mesh of the model, which is formed by 3, 819 nodes, each one support-
ing six degrees of freedom (three translations and three rotations). Isoparametric triangular and quadri-
lateral elements based on the Mindlin-Reissner shell formulation (CTRIA3 and CQUAD4 respectively in
MSC-Nastran) are used to discretise the model. All the car components are characterized by isotropic lin-
ear elastic materials (MAT1 in MSC-Nastran) with properties described in Table 1.

In this example, four parameters are introduced as extra-coordinates of the problem, which
are the thicknesses and the cross sections of the C-pillars and the rear long members shown in
the right picture of Fig. 5. Note that, although from a physical point of view the thickness is as a
geometric parameter, in the shell element formulation it is treated as a material property. The
cross section clearly represents a geometric design variable.

The proposed methodology consists of the following three stages:

1. Preprocess: A FE model of the BiW is constructed and parametrized such that the input
data of the multidimensional problem can be sampled and expressed in a parametric format;

2. Offline computation: The static and dynamic global stiffness analysis are performed in an
offline stage by means of one computation which uses the encapsulated PGD toolbox to
obtain the parametric results;

3. Post-process: The parametric solution can be used for several purposes, such as efficient
optimization studies and real-time evaluation of the results.
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Parametric cross section

Reference

cross section

Action [l

Transiction [l

Figure 6. Definition of the geometric design variables in Beta-Ansa. The cross section of the components changes in the action
area, the modification is smoothly absorbed through a transition area (left). The reference cross section changes its height and
width while keeping the shape (right).

Table 2. Design variables.

IDs Component Type Current value Min Max Step value
Geometry I C-pillar h, w 0 -20 20 5

U Rear long member h, w 0 -10 10 25
Material U3 C-pillar t 14 1.0 1.8 0.1

Ua Rear long member t 0.9 0.5 13 0.1

*h: section height; w: section width; t: element thickness (values are in millimetres).

These three stages are described in detail in the following sections.

4.1. Preprocess: Parametrization of the BiW model

The preprocess starts with the preparation of a parametrized FE model of the BiW structure. In
this work, this is done by means of the ANSA CAE preprocessor software, which contains a
powerful optimization task tool able to organize the set-up of an optimization study. The first
step consists of defining the design variables and their range of variation. In particular, the design
variables of the problem are denoted by u = [u;, tt,, i3, 4], Where p; and p, represent the cross
sections of the C-pillar and the rear long member, while u; and u, are the thicknesses of the
same components.

The first two geometric parameters are defined by means of a morphing tool available in
ANSA, which allows to manage the shape changes. More precisely, the position of the nodes
changes without changing the element connectivity. Each BiW component affected by the change
is selected and subdivided into an action area and a transition area as depicted in Fig. 6. The
action area is actively affected by the change in the cross section, while the transition part is used
to smooth the deformation. A reference cross section with variable height and width of the action
area can be chosen to guide the geometry variation along the whole component. In this example,
the shape of the section is preserved, which means that the width and height vary together in a
user-defined range. The reference undeformed cross section is associated to a current value of the
design variable equal to 0. The cross section of the C-pillar is assumed to vary its height and
width in a user-defined range of M; = [-20,20] mm. Analogously, the rear long member cross
section is defined such that the correspondent design variable u, varies in the range M, =
[—10,10] mm.

The material variables are parametrized by selecting the property of interest in the optimiza-
tion tool and defining the ranges of variations. In this case, the variables p; and 4, representing
the thicknesses of the two parametric BiW components, are defined in the ranges M3 = [1.4,1.8]
mm and M, = [0.5, 1.3] mm, respectively. Table 2 summarizes the design variables definition.
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Each of the four parametric spaces is discretized by means of nine equidistant nodal values,
which means that the total number of parametric combinations is given by m;, = 9* = 6,561 dif-
ferent configurations.

According to the description given in Sec. 3.2, the next step requires a sampling of the input
data (mass and stiffness matrices) for each combination. To this end, a list with all the 6,561
parametric combinations can be uploaded into the ANSA optimization tool. Then, a design of
experiments study is set up to automatically generate the input files in the format of the desired
commercial software, which in this work is MSC-Nastran.

By using a special Nastran language (DMAP), all the input files generated by the design of
experiment study are run such that the mass and stiffness matrices are just assembled and stored,
without solving any static or dynamic problem. The stored files are then uploaded into Matlab
and expressed in the PGD format introduced in Eq. (20). To finalize the preprocess phase, a data
compression is performed to reduce the number of PGD terms. In this example, after performing
the PGD compression imposing an accuracy of 107%, the number of terms needed to approxi-
mate the stiffness K*°P(u) and mass M () matrices reduces respectively to ng = 66 and ny =
20, instead of the initial 6,561 terms.

4.2. Offline computation: nonintrusive parametric NVH solver

This section shows the results of the proposed nonintrusive parametric NVH solver. The first
common step of the PGD-IR and PGD-IPM algorithms is represented by the computation of the
parametric rigid body matrix. As explained in the previous sections, the rigid body modes can be
computed as the kernel of the stiffness matrix K’°P(u). First, a set, r, of reference degrees of free-
dom that represents a set of isostatic constraints is defined.

Once the set of total ng, is partitioned into the r and the left I-set of degrees of freedom, the
encapsulated PGD toolbox is employed to solve the parametric version of Egs. (17) and (18) to
obtain the PGD rigid body matrix ®"P(u). Finally, the parametric static and dynamic solutions
can be computed.

4.2.1. Static analysis

Once the rigid body matrix ®"P(u) has been computed, the remaining steps of the PGD-IR
algorithm shown in Fig. 4 can be performed by employing the encapsulated PGD routines. The
final results are the parametric displacement vector

N
U () =D By U d () (k) s (115 (1), 1)
i=1

which contains all the solution for all the combinations of the four parameters. In this example,
N =75 terms were necessary to obtain the approximate PGD solution. In particular, the solution
was considered sufficiently accurate when the amplitude S~ of the last calculated PGD term was
four orders of magnitudes smaller than the amplitude ' associated to the first PGD term.

To better illustrate the structure of a PGD solution, Fig. 7 shows the first three terms of the
sum in Eq. (21). The amplitude factors f, which are marked with a box for each term, are a
measure of how much the ith term contributes to the final PGD solution. The spatial terms U’
show the deformation induced by each PGD term. In the final solution, each spatial term is
scaled by the parametric functions, which take a different value depending on the chosen set of
parameters [, I, i3 g -

Once the parametric solution UP°P(u) is available, it can be particularized in real-time for any
combination of the parameters and the ETS can be easily calculated according to Eq. (10).
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Figure 8. Isosurfaces showing the variation of ETS with respect to the parameters i, 1, and us. Each plot refers to one specific
value of parameter fi,.

To validate the proposed method, a comparison between the PGD solution and the standard
FE solution is performed. For this comparison, the full-order problem was solved for all the
6,561 combinations by running the linear solver of MSC-Nastran in combination with the IR
option to circumvent the singularity of the stiffness matrix. Note that, for this example it is feas-
ible to compute the FE solution at every parametric point. However, if the number of parameters
increases, computing all the FE solutions becomes unfeasible, whereas the proposed PGD
approach is still a viable option.

The accuracy of the PGD with respect to the full-order computations is measured as the rela-
tive error between the PGD and Nastran ETS solutions in the £,(M; x M, x M3 x M,) norm,
that is

1/2
IMJMZ IM3 Lm (ETS"P — ETSNuStmn)z dpy dpy dpis dpy

I Tt S I, (ETSN"")? dyy dyy dyis dpsy
and in terms of the maximum error, calculated as the £, (M; X M, x M3 x M) norm:

|ETSPGD _ ETSNastran|
< ETSNastran ) >

lleers|l, = , (22)

lersllo = max
M € Ml,}lz € M,,
My € Ms,py € My

(23)

The results obtained with the PGD method are in perfect agreement with MSC-Nastran, with
a maximum error equal to 5 x 10% and an error measured in the £,-norm equal to 8.83 x 10™*.
To better understand how changes in the defined design variables affect the static response of
the car, Fig. 8 shows the variation of the ETS with respect to the four parameters in terms of
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isosurfaces. In particular, each plot shows the variation in the parametric space defined by the
first three parameters (g, iy, 15) wWhen the forth parameter p, is fixed. The plots show a substan-
tial range of variation in the ETS, which is around 6,000 Nm/degree. Moreover, it can be observed
that the fourth parameter p, corresponding to the thickness of the rear long members, has the
biggest influence on the ETS variation. When p, increases, the isosurfaces tend to be parallel to
the (u;, u,) space, meaning that the variation due to changes in the cross sections gets reduced
with the thicknesses increment.

4.2.2. Dynamic analysis

The mode shapes associated to the three smallest non-zero frequencies are computed using the
proposed PGD-IPM eigensolver to identify the first torsional mode of the BiW structure
under analysis.

The parametric input data of the problem is represented by the stiffness and mass matrices
already sampled and expressed in the PGD format during the preprocess phase. Due to the
unconstrained configuration, the matrix of rigid body modes ®"°P () is essential for the compu-
tation of the subsequent non-rigid eigenmodes. As shown in Fig. 4, a parametric guess vector is
chosen and the IPM system of equations is iteratively solved by employing the encapsulated PGD
toolbox. At every iteration, the obtained parametric eigenvector is normalized. The iteration stops
when convergence is reached, that is when a quantity E4 is smaller than a user-defined tolerance.
Here Ey is defined as

Ngnew Mgold
Z IBI(/;"EW - ﬁ] old
i=1 =1
E¢ = Ngnew > (24)
)]
Py

where ﬂ:ﬁnew and f represent, respectively, the amplitudes of the PGD terms describing two
eigenmodes obtained by two consecutive iterations.
Once convergence is reached, the sought ith eigenvector is obtained, in separated form, as

Ny
&7 () = By & (1) $h (1) ¢ (113) P (1a)- (25)
i=1

The corresponding eigenfrequency can be calculated according to the Rayleigh quotient

of P (1) = [ (917) K1, 26

For the BiW structure considered here, the first and third non-rigid eigenvectors represent
two different kind of bending modes, independently on the combination of the parameters.
Similarly, the second non-rigid eigenvector always represents a torsional mode, which is the one
of interest. Of course, when more complex models are analyzed, the order of the modes can easily
change with the parameters, so their identification would represent an important task.

Once the sought smallest torsional eigenvalue w?P(u) is available, the corresponding torsional

t
natural frequency f°P(u) can be computed as

PSP (p
tPGD(”) _ _t ( ) . (27)
As it was done in the static case, a comparison between the PGD solution and the standard
FE solution of the modal analysis is performed. In this case, a full-order real eigenvalue analysis
was performed in MSC-Nastran for all the 6,561 parametric combinations. Once again, the results
are in perfect agreement. The relative errors are calculated as in Egs. (22) and (23) by substituting
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Figure 9. Isosurfaces showing the variation of the smallest torsional natural frequency f, with respect to the parameters 1, 1,
and y3. Each plot refers to one specific value of parameter .

ETS with the frequency, leading to a £,-norm error equal to 1.86 x 10™* and a maximum relative
error of 1.70 x 1073.

Finally, the variation of the torsional frequency is also depicted in terms of isosurfaces in Fig.
9. Each plot refers to a fixed value of y, and shows the variation in the 3D Cartesian space
defined by (g, iy, 113). Also in this case, the thickness of the rear long member (described by py)
proves to have the biggest influence on the Qol. The vertical character of the isosurfaces suggests
that, differently from the static case, the thickness of the C-pillar (corresponding to p3) represents
the less influencing parameter. The plot also shows how small variations in the material and geo-
metric parameters of the two components can lead to variations of the torsional frequency in the
range of 2-3 Hz, which can substantially change the perception of vibration for the occupants of
the vehicle.

It is worth emphasizing that the described algorithm is solved by means of just one offline
computation. The resulting eigenpairs represent the compact version of all the possible solutions
for every value of the parameters.

4.3. Post-process: optimization study and real-time visualization

One of the most interesting features of the PGD method is that, once the offline process is fin-
ished, obtaining the solution for a given value of the parameters takes 0.1 milliseconds. This
opens the possibility to perform efficient optimization studies and visualize the results in
real-time.

To show the potential of the proposed methodology, a multi-objective optimization analysis is
presented next. The goal is to find the optimal combinations of the parameters such that the ETS
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Figure 10. Multi-objective optimization showing the Pareto front as a function of the objectives.

and torsional frequency are maximized whilst the mass of the two car components is minimized.
Three objective functions are defined as

s1(w) = M(py, oy 135 1)
(1) = ETS(1y, 1, i3, 11y), (28)
&) = filys oy 135 1),

where M(;, ty, U3, 11y) represents the total mass of the C-pillars and the rear long members,
depending on their variable geometries and thicknesses. Clearly, this quantity is strictly related to
the production cost. ETS(uy, iy, 143, it4) is the parametric output obtained by means of the pro-
posed PGD-IR algorithm and f;(u, iy, 143, ft4) is parametric torsional frequency calculated by the
PGD-IPM eigensolver.

The explicit dependency of the three functions on the parameters permits to easily compute
the Pareto front of the multiple objective functions by means of a genetic algorithm. In this
work, this is done by using the global optimization toolbox released by Matlab. The obtained
Pareto points are shown in Fig. 10. According to the definition, they represent a tradeoff between
the objective functions, meaning that each point is considered optimal if no objective function
can be improved without compromising at least one other objective. The cloud of sampled points
in the plot represents the mass and ETS coordinates corresponding to each of the 6,561 paramet-
ric combinations considered initially. It is clear that the optimization study allows to drastically
reduce the number of configurations which would be considered by the designers in the final
decision-making process.

It is worth noting that, in this example, the Pareto front was computed by assigning the same
weight to both objective functions. Nevertheless, it is straightforward to obtain other fronts if the
user wants to put more emphasis on one of the objective functions.

The ultimate goal of this work is the development of a computational tool which can be
accessed by the designers to visualize the effect of the parametric changes on the global response
of the BiW in real-time. To this end, a standalone desktop app has been built by using the
Matlab App Designer software. Figure 11 shows the developed graphical user interface. An
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Figure 11. Graphical interface of the developed app for the static and dynamic analyses.

interactive version of the Pareto front depicted in Fig. 10 is shown in the app. The sliders in the
red box allow to adjust the set of parameters to one of the 6,561 combinations given by the dis-
cretized parametric space. The corresponding point is simultaneously visualized in the Pareto
Front plot, whilst the numerical values of the parameters, together with the mass and Qol coordi-
nates, appear in the tables on the bottom right.

Since the optimal solutions obtained through the multi-objective optimization do not necessar-
ily coincide with one of the 6,561 combinations represented by the cloud of points, an extra box
is added which allows to scroll through a list of all the Pareto points (red box in Fig. 11). Also in
this case, the point information is reflected in the Pareto front plot and the numerical values are
updated in the corresponding tables. If the user is interested in visualizing all the Pareto points, it
can be done by simply clicking on the “Display all optimal points” button. Finally, the static and
dynamic deformation of the BiW corresponding to the selected parametric choice is updated in
real-time in the left top plot.

To summarize the developed PGD method for the parametric NVH analysis, Fig. 12 offers an
overview of all the steps described in this section.

5. Conclusions

The goal of this work was to propose a new ROM method to speed up the design process of a
car structure. More precisely, a parametric global static and dynamic stiffness analysis was per-
formed by means of a PGD-based methodology to optimize the NVH performance of a BiW
structure characterized by material and geometric design variables. Two material and two shape
design variables were studied, which correspond to the thicknesses and cross sections of the C-
pillar and rear long member components. A coupling of the PGD with the IR method, which
allows the static analysis of the BiW in its unconstrained configuration, was used to compute the
parametric static equivalent torsional stiffness (ETS) of the BiW. The parametric lowest torsional
frequency under free vibration condition was obtained, instead, by employing a coupled PGD-
IPM (inverse power method) eigensolver.

The proposed technique makes use of the encapsulated PGD toolbox developed by Diez et al.
(2020), which enables to perform the algebraic operations between multidimensional data
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contained in the PGD-IR and PGD-IPM algorithms, as already presented by the authors in recent
works (Cavaliere et al. 2021, 2022). The main contribution of this publication was to unify the
PGD-IR and PGD-IPM in a global algorithm (also referred as PGD-NVH) and extend its applica-
tion to a realistic case of study. To this end, a parametrized detailed FE model formed by shell
elements was built in the ANSA CAE preprocessor commercial software, which allowed to deal
with complex shape changes and prepare the input data of the problem in the separated
PGD format.

Being able to deal with a detailed FE parametrized model represents an ideal solution for
industry. In this way, designers do not have to select representative design configurations or
develop equivalent simplified FE models, as it is usually needed by other methods. Moreover, the
same parametric model could be used in other disciplines of the development processes, easing
multidisciplinary design strategies. Once the parametric FE model was ready, the proposed para-
metric NVH solver was executed during an offline computation in an in-house Matlab environ-
ment, acting as a black-box, such that a nonintrusive interaction with commercial FE packages is
possible. Finally, a post-process of the obtained parametric results was presented.

The accuracy of the method was measured by comparing the two quantities of interest (ETS
and torsional frequency) with the corresponding full-order results, which resulted into a max-
imum relative error in the order of 1073. It is important to mention that the PGD results were
obtained by performing only one offline computation for the static and dynamic problems and
then particularizing the results for any parametric combination in real-time. On the contrary, a
total of 13,122 full-order simulations (6,561 for the static and 6,561 for the dynamic case) were
needed to sample the results by means of standard methods.
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Another important observation is that computational time is not particularly significant in the
PGD context, since the main goal is to provide a method which is able to explore an arbitrary
large parametric space with only one offline computation. In other words, the PGD result
describes the structural behavior for an infinite number of configurations in a predefined design
space, which is difficult to compare to a standard design optimization study where a set of con-
figurations need to be chosen. Nevertheless, in a previous work (Cavaliere et al. 2021), it was pro-
ven that PGD can save the 20% of computational time if compared to an equivalent standard
static analysis. A future outlook is to apply the proposed method to a real automotive application.
In that case, a realistic comparison of the proposed PGD-NVH efficiency with respect to standard
NVH studies can be done.

Exploiting the explicit dependency of the Qols on the parameters, a multi-objective optimiza-
tion study was performed by using a genetic algorithm. The study allowed to identify a set of
optimal Pareto points which drastically reduced the combination of design variables to take into
account in the final decision-making process. Finally, a graphical interface app was developed by
using the Matlab App Designer software, providing an interactive visualization of the results,
such that the designers can check in real-time the effects of variables on the global static and
dynamic behavior of the BiW structure. The developed app is just an example of the potential of
this method. In fact, the information contained in the app could be modified and adapted to the
needs of the specific problem, representing the kind of support that the industry urgently needs
to optimize the development process.
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