- 1 Detecting acute deterioration in older adults living in residential aged care: a scoping review. - 2 Abstract - 3 Objectives - 4 To explore models, processes or tools implemented in residential aged care (RAC) to support - 5 Registered Nurses (RNs) to identify and respond to the acute deterioration of people living in - 6 RAC (residents). - 7 Design - 8 Scoping literature review of English Language articles published in peer reviewed journals - 9 Settings and participants - 10 Interventions include in this review were conducted in RAC facilities providing long term 24 - 11 hour medical, nursing and social care for people aged 65 or older with age related disability - 12 Methods - We completed a MESH term and key word search of MEDLINE, Embase, CINAHL, PubMed - and Google Scholar. Included studies had (a) part of the intervention based in RAC (b) directly - impacted on RAC RN day to day practice and (c) contained or provided access to the intervention - 16 to identify and / or respond to acute resident deterioration. Data charting included author, date, - 17 country, study design and the components, development and efficacy of the models, processes - or tools to identify and respond to acute deterioration. - 19 Results - We found 46 studies: 12 model of care evaluations, 17 studies detailing the clinical pattern of - 21 acute resident deterioration and 17 deterioration detection tool studies. Model of care studies - 22 did not evaluate individual model components. There was a consistent clinical pattern (signs & - 23 symptoms) of illness presentation among residents experiencing acute deterioration. - 24 Deterioration detection tools were either based on vital signs or health domains. There was some - evidence that supported the use of health domains tools. Tools were not aimed at RNs. | 26 | Conclusion | and i | mplications | |----|------------|-------|-------------| |----|------------|-------|-------------| 30 - We found no early warning systems (EWS) (to identify and response to acute resident - deterioration) designed for RN use in RAC. This is an important practice gap. It implies there - 29 is a need to develop an EWS to support RNs with the distinct needs of the RAC population. #### Introduction Detecting acute deterioration in people living in Residential Aged Care (RAC) is an important clinical skill; it enables nurses to access the right treatment, at the right time, in the right place, for this frail and vulnerable population.<sup>1–3</sup> People living in RAC (residents) are aged 65 or older and they have an age related disability that requires 24 hour medical, personal and social care. As a cohort they have multiple morbidity, functional limitation and an estimated 62% dementia.<sup>4</sup>. As a result moderate to severe frailty<sup>5</sup> is common in this population.<sup>6,7</sup> Frailty is a *clinically recognisable state of increased vulnerability*<sup>8</sup> during which individuals have difficulty maintaining homeostasis and relatively small stressors can result in disproportionate clinical deterioration.<sup>9</sup> The recognition of acute deterioration in residents can be difficult as presentation of illness is often, subtle or atypical. Atypical presentations include, non-specific symptoms, unusual symptoms of the underlying disease or an absence of symptoms.<sup>10,11</sup> Atypical presentations and frailty conspire to make people living in RAC care one of the most clinically complex and vulnerable patient cohorts.<sup>12</sup> Terminology and configuration of RAC varies across jurisdictions, however, generally Registered Nurses (RNs) are the lead health professionals for the most frail and complex residents. In the United States of America (USA) RNs lead skilled nursing facilities, in the United Kingdom (UK) nursing homes are RN led while care homes are not and in Australia (AU) all RAC is overseen by RNs. In RAC (unlike acute care) there is no standard method of detecting acute deterioration. Evidence suggests that RNs use a combination of clinical judgement, <sup>13</sup> resident specific knowledge, <sup>14,15</sup> family request <sup>15,16</sup> and organisational processes <sup>17</sup> to support their decision making when resident appear unwell. Interest is growing in the transferability of hospital 'Early Warning Scores' (acute deterioration detection tools) to community settings, however there are few examples of these in RAC.<sup>13</sup> This review explored the literature related to the support of RAC RNs in their endeavours to identify and respond to the acute deterioration of residents. Scoping reviews support the exploration of literature because they maintain a systematic approach while being inclusive of all research methods. A review protocol was developed and uploaded to the Open Science Framework in March 2020 and updated 09/24/2021. No other completed reviews examining the detection of deterioration in residents were found, however a similar review protocol has been published. This review asked what models, systems, processes or tools have been tested or implemented in RAC to support RNs to identify and respond to the acute deterioration of residents. We also considered how they were developed, their components and evidence of efficacy. ### Methods ## **Search strategy** We searched MEDLINE Ovid (1946-present) Embase (1980-present), CINAHL Plus (1937 to present), PubMed (1945-present) Google Scholar and hand searched the bibliographies of selected articles and systematic reviews. A health sciences librarian was consulted on search design. This resulted in a Medical Subject Headings (MeSH) search supplemented by key word searching. The MEDLINE search strategy combined the RAC population with three board areas, nursing assessment, admission avoidance and early warning literature. Specifically MeSH terms ("skilled nursing facilities" "nursing homes" "homes for the aged") AND ("nursing assessment", "quality improvement" "decision support systems, clinical", "clinical deterioration", "health status indicators", "monitoring physiologic", "vital signs", "delirium", "sepsis", "emergency service hospital", "emergency medical services"" "patient transfer") and key words ("track and trigger", "patient deteriorat\*", early warn\* adj1 chart or scor\* or scale or system or tool\*). No date limits were specified. Studies were limited to English language only. The most recent search was completed on 30<sup>th</sup> September 2021. ## Eligibility criteria Only primary research literature published in peer review journals was included. The following definition of acute deterioration was used; "a sudden, clinically important rapid deviation from a patients' baseline cognitive, behavioural, functional or physical domains" where, clinically important, means a deviation that without intervention may result in complications or death." <sup>20</sup> This definition was considered to include undifferentiated disease, delirium, infection and sepsis. Single disease studies were excluded as older adults in RAC often have multiple morbidity and the application of multiple single disease pathways without consideration to frailty is likely to be harmful to the resident. <sup>21</sup> It was assumed that unplanned hospitalisations were the consequence of acute resident deterioration. Studies that (a) had part of the intervention based in RAC with a (b) direct impact on RAC RN day to day practice and (c) contained or provided access to the detail of the intervention used to identify and / or respond to acute deterioration were eligible for inclusion. Methodological appraisal was not applied as the aim was to explore rather than to assess the quality of available literature. ### **Study selection** The primary author completed title and abstract screening against study criteria. These were checked by the second reviewer to ensure consistency. Discrepancies were resolved by discussion and consensus. The primary author completed retrieval of full text articles, these were imported into 'Sciwheel' reference manager and graded for inclusion/exclusion the second reviewer checked the assumptions and rationale. ### **Data Extraction** A data extraction tool was constructed and independently tested. The final data extraction tool included author, date and country of publication detail, study design and purpose, relevance to this review along with intervention development, key components and available efficacy data. Data was extraction was independently checked (see Table 1). ### **Data synthesis** An iterative process was used to map the evidence into three research categories; (1) models of care that aimed at a reducing the acute hospitalisation of residents, (2) descriptive studies that presented the clinical pattern of acute resident deterioration (3) deterioration detection tools designed to support clinical decision making. ### Results Due to the broad nature of the search 3776 studies were identified. Title and abstract screening reduced this to 136 studies that were retrieved for full review, of which 46 met eligibility criteria (see figure 1 PRISMA flow diagram). More than half of the studies (n=24) were conducted in the USA, the remainder were from AU (n=8) the UK (n=6) Canada (n=6) and Sweden (n=2). Eighty-five percent (n=39) of studies were published in the last 10 years. Study methodologies included, observational (n=24), quality improvement (n=11) tool development and validation (n=6) case controlled (n=2) and one each of a survey, focus group study and randomised controlled trial (see table 1). Categorised by primary research focus, 12 studies evaluated models of care, 17 described typical clinical patterns of acute deterioration and 17 focused on deterioration detection tools. Although studies were sorted into categories there was some crossover, e.g., models of care often included tools and descriptions of resident deterioration. ### Models of care Three models of care were found in the literature; Interventions to Reduce Act Care Transfers (INTERACT), <sup>22–26</sup> Early Detection of Deterioration in the Elderly (EDDIE)<sup>27,28</sup> and the Aged Care Emergency (ACE). <sup>29–32</sup> All models were implemented in RAC facilities with a RN workforce and were aimed at reducing hospitalisation by improving the identification and response to the acute deterioration of residents. INTERACT<sup>22–26</sup> was the most widely researched model, developed in 2009, it has been implemented in hundreds of RAC facilities <sup>33,34</sup> in the USA, it was also adapted for use in AU<sup>35</sup> and the UK. <sup>36</sup> ACE <sup>29–32</sup> was piloted 4 facilities in 2015 and then rolled out to include a further 81 RAC facilities. While EDDIE<sup>27,28</sup> is the most recent with a published pilot study only. <sup>27</sup> A panel of gerontology experts lead by Dr Joseph Ouslander (Geriatric Medicine) developed the INTERACT model<sup>33</sup>. EDDIE was also developed in collaboration with RAC. Both models focused on the management of geriatric conditions. ACE<sup>29–32</sup> was developed by acute care clinicians and focused on conditions that precipitate Emergency Department presentation. Clinical condition guidelines and tools, education and additional staff<sup>22,25,26,29–32,35</sup> were the main components of the models (see table 1). All models attended to communication pathways supporting RAC RNs to access care for unwell residents. INTERACT was the only model with a tool prompting support workers (SWs) to report resident changes to the RN. Model efficacy was measured by hospitalisation rate in all cases. Quality improvement implementation studies produced large reductions in hospitalisation rate (50%<sup>23</sup>, 30% <sup>37</sup>, 20% <sup>32</sup> 19% <sup>27</sup>,16% <sup>30</sup>,11% <sup>26</sup>) while experimental research designs showed no impact on resident hospitalisation rates. <sup>22,31,35,36</sup> # Typical clinical patterns of acute resident deterioration Sixteen studies<sup>38-54</sup> described the clinical signs, symptoms and conditions observed in residents during episodes of acute deterioration that resulted in hospitalisation. Due to the use of the same data collection in a sub-set of six studies<sup>45,46,48,52-54</sup> over 16,000 episodes of acute deterioration were directly comparable (see table 2). Acute deterioration was associated with two or more clinical signs in approximately two thirds (62% <sup>46</sup> & 69% <sup>45</sup>) of residents while 40% of residents experienced three or more clinical changes. <sup>45,46</sup> The most frequently reported changes were altered mental status <sup>38,42,45,46,48,52-54</sup> abnormal vital signs <sup>45,46,48</sup> (blood pressure (BP) or respiratory rate (RR)) functional decline, <sup>45,46</sup> uncontrolled pain, <sup>46,48,52,54</sup> breathing difficulty, <sup>45,46,48,54</sup> behavioural change, <sup>45,46,48,54</sup> and a decreased food or fluid intake. <sup>45,46</sup> One further study <sup>46</sup> observed clinical changes in residents who were not hospitalised. This cohort had a similar clinical pattern of deterioration albeit with a larger proportion of residents with functional changes and a smaller proportion with abnormal vital signs compared to the hospitalised group. Table X compares the clinical pattern of acute deterioration identified in the research with the components of the general deterioration detection tools found in the literature. # **Deterioration detection tools** Of the 19 deterioration detection tools found, nine focused on general deterioration, <sup>28,29,34,35,55–59</sup> three identified delirium, <sup>60–63</sup> six sepsis <sup>64,65</sup> and two infection. <sup>66–68</sup> Four tools (ElBestawi and Kohm 2018; Barker et al. 2019; Huckfeldt et al. 2018; Ouslander 2019) included a response to resident deterioration, of those three (Stop and Watch (S&W), <sup>23</sup> Practical Routine Elder Variants Indicate Early Warning of Emergency Department (REVIEW-ED)<sup>58</sup> & National Early Warning Score (NEWS)<sup>55,56,69</sup>) prompted the SW to escalate care and the other (Change in Condition File Card(CIC))<sup>23</sup> was aimed at RNs. Tool design relied either on vital signs or changes in resident health domains to identify deterioration. The exception to that was CIC<sup>23</sup> that contained both vital signs and an A to Z of presenting signs and symptoms to identify deterioration. # Vital sign deterioration detection tools Of the vital sign tools; five<sup>23,27,28,35,55,56,6929</sup> identified general deterioration, six sepsis,<sup>64,65</sup> and one fever.<sup>66</sup> Most of the general deterioration tools were implemented and evaluated as a component of the a model of care (ACE,<sup>29</sup> EDDIE,<sup>28</sup> CIC from INTERACT<sup>23</sup> & a CIC adaptation<sup>35</sup>) NEWS was the only tool implemented as a single intervetion.<sup>55,56,69</sup> Most (ACE,<sup>29</sup> EDDIE,<sup>28</sup> & NEWS<sup>55,56,69</sup>) were adapted from hospital early warning scores and had an urgency scales associated with vital sign ranges. Whereas CIC<sup>23,35</sup> was either 'tiggered' or 'not triggered.' General deterioration tools measured RR, $^{23,27-32,35,55,56,64,66,69}$ oxygen saturation (SaO<sub>2</sub>), $^{23,27-32,55,56,64,66,69}$ systolic BP, $^{23,27-32,35,55,56,64,66,69}$ heart rate, $^{23,27-32,35,55,56,64,66,69}$ and temperature. $^{23,27-32,35,55,56,64,66,69}$ There was considerable variation between tool parameter trigger points for example hypoxia triggered at SaO<sub>2</sub> <90% and <95%, $^{28,70}$ tachypnea at $^{20,55,56,69}$ and $^{20,55,56,69}$ breaths per minute (bpm) and tachycardia at $^{20,55,56,69}$ and $^{20,55,56,69}$ are minute (see figure 2 might be supplmentary). A population study $^{69}$ provided evidence that tachypnea $^{20,55,56,69}$ and $^{20,55,56,69}$ and $^{20,55,56,69}$ were the most closely matched to resident mortality. There was no individual efficacy data for EDDIE, ACE, or CIC due to being a component of a model of care. One large study(Barker et al. 2019) evaluated the use of digital technology to implement NEWS in care homes in the UK. They found little correlation between NEWS measurements and SWs sense of concern for resident welfare. When SWs were concerned for residents 62% of scores were low risk (score 1-2) and 18% were high or critical risk (score ≥5). However interviews(Stocker et al. 2021) revealed staff appreciated the impact of NEWS on communication with acute care. A further NEWS(Hodgson et al. 2022) study measured vital signs in response to a clinical trigger (e.g. a resident fall) and statistically a link was found between hospitalisation and NEWS. In this study SWs relied on their knowledge of the resident to identify deterioration and used NEWS to aid communication; researchers concluded NEWS alone could not diagnose deterioration. Standard acute care sepsis tools, analysed in a single retrospective study<sup>64</sup> lacked efficacy in the RAC population, the most effective ('100-100-100') had a sensitivity of 28%, 13-72 hours before acute hospitalisation. Similarly three months of prospective screening in RAC with the 'Systemic Inflammatory Response Syndrome' tool found four cases of sepsis (0.2%) from 2038 completed screens. ## Health domain deterioration detection tools Seven tools (4 general deterioration, 3 delirium & 1 infection) observed cognitive, behavioural and functional changes in residents to identify deterioration. The general deterioration tools, (Illness Warning Instrument<sup>57</sup> (IWI), Stop and Watch (S&W),<sup>23</sup> PREVIEW-ED<sup>58</sup> & Significant Seven (S7)<sup>59</sup>) were aimed at SWs. All of these tools were developed in RAC and some efficacy evidence was reported The IWI<sup>57</sup> tested in a small study (n=74) had a sensitivity of 53% and a positive predictive value (PPV) of 17% for developing acute illness in the next seven days. A follow up study<sup>41</sup> found resident markers of disorientation (PPV 37%), reduced appetite (PPV 46%), lethargy (PPV 51%) and weakness (PPV 50%) were most correlated with acute deterioration. The pilot implementation of PREVIEW-ED<sup>58</sup> was associated with a 57% reduction in resident hospitalisation in a limited number of targeted conditions. A secondary analysis<sup>34</sup> of INTERACT data linked S&W use with a reduction in resident hospitalisation. Only one of the three delirium tools, Recognising Acute Delirium As part of your Routine (RADAR)<sup>63</sup> included geriatric expertise in its development, validity testing reported sensitivity of 100% (CI 3-100%), specificity 44% (CI 0-22%) and application time of seven seconds. This exceeded the reported ability of the Confusion Assessment Method<sup>61</sup> to detected the prodrome of delirium in RAC (10%) and was more efficient that the Delirium Observation Screening Scale<sup>60</sup> that was estimated to require 3 hours of staff time each day in a 40 bedded unit. ? infection # 241 Discussion Models of care <sup>22–32,35,36</sup> found were complex multimodal interventions whose efficacy was measured with a single outcome, hospitalisation rate. It was not possible to determine which model component had the greatest impact on RN decision making. Descriptive studies <sup>45,46,48</sup> highlighted the clinical pattern of acute resident deterioration and recognition of this pattern has the potential to help RNs identify deterioration. A variety of vital sign and health domain deterioration detection tools were found. The CIC reporting guideline was the only tool to use vital signs and health domains to support RNs to identify and report resident deterioration. When tools were compared with the clinical pattern of acute deterioration observed in practice there was limited correlation (see table X). Overall, specific evidence of tool efficacy with the RAC population was sparce and is an area for further study. However, research efficacy data doesn't necessarily drive practice change. Models of care identified in this study continue to be rolled out(Carter et al. 2021; Hullick et al. 2022) implying there is an appetite for pragmatic approaches to supporting RN practice. Pragmatically, the consistency of the clinical pattern of acute resident deterioration<sup>45,46,48</sup> provides evidence to argue for a frailty cohort approach. It is time to stop regarding frail older adults as 'atypical'<sup>10,11,71</sup> members of the general population and start defining deterioration that is "typical for frailty". A common understanding of acute deterioration in the frail older adult could provide the foundation of a deterioration detection tool to support RNs in RAC, not only to identify resident deterioration, but also, to initiate a response to that deterioration with a language that is understood across clinical boundaries. The evidence from NEWS suggests that it is the support with clinical communication rather than the aid to diagnoses that makes it most useful. The key challenge with vital sign early warning tool (such as NEWS) is they rely on regular monitoring. While this may be acceptable (or even the gold standard) in the hospital setting it usually does not occur (nor is necessary) when the patient goes home. People living in RAC are at home and while Baker et al<sup>55</sup> demonstrate regular vital sign measurement can be done in RAC, there is no evidence that it should be done<sup>72</sup>. Questions such as the acceptability of this practice to residents<sup>73</sup>, the cost-benefit (from a staff resource perspective)<sup>73</sup> the impact on resident outcomes<sup>73</sup> and even the specifics of normal/abnormal physiological ranges in frail older adults are all areas for further study. Health domain tools on the other hand place the work of regular monitoring onto staff and maintain the home-like experience of the resident. The health domain tools found in this study were aimed at SWs who spend the most time directly interacting with residents and would be most likely to detect changes. This leaves and an important clinical gap. Once concern about a deteriorating resident is escalated to the RN there is no clear, quick, systematic, model, processes or tool that supports the RN to; identify deterioration, determine the associated clinical risk and respond in an manner relative to that risk. It is perhaps recognition of this gap that is driving interest in the utility of tools such as NEWS in RAC. However research may be better focused on developing a tool that is sensitive to the unique physiological state of frailty. # **Strength and Limitations** This review excluded grey literature and non-English language publications so may have missed some studies. As a scoping review, critical appraisal of research methodology was not undertaken, however a broad collection of research has been included, which would not have been achieved within a systematic review methodology. We were able to categorise approaches to supporting RNs to identify the acute deterioration of residents and analyse the available deterioration detection tools. Furthermore, it was possible to observe across articles typical clinical patterns of acute deterioration in residents. ### **Conclusion and implications** This review found no well evidenced straight forward "go-to" model, system, process or tool to support RNs in RAC to identify and respond to the acute deterioration of residents. This is an important practice gap. The clinical pattern of the acute deterioration of residents is well described and provides evidence for a cohort conceptualization of acute deterioration that is 'typical for frailty'. Furthermore this pattern could be the foundation for the development of a tool to support RNs to identify and respond to acute resident deterioration. ### **Conflicts of interest** There are no known conflicts of interest | 305 | Refer | ences | |-----|-------|----------------------------------------------------------------------------------------| | 306 | | | | 307 | 1. | Laging B, Kenny A, Bauer M, Nay R. Recognition and assessment of resident' | | 308 | | deterioration in the nursing home setting: A critical ethnography. J Clin Nurs. | | 309 | | 2018;27(7-8):1452-1463. doi:10.1111/jocn.14292 | | 310 | 2. | O'Neill BJ, Reid-Searl K, Dwyer T, Parkinson L. The deteriorating resident in | | 311 | | residential aged care: A focus group study. Collegian. 2016;0(0). | | 312 | | doi:10.1016/j.colegn.2016.10.010 | | 313 | 3. | O'Neill BJ, Dwyer T, Reid-Searl K, Parkinson L. Nursing staff intentions towards | | 314 | | managing deteriorating health in nursing homes: A convergent parallel mixed-methods | | 315 | | study using the theory of planned behaviour. J Clin Nurs. 2018;27(5-6):e992-e1003. | | 316 | | doi:10.1111/jocn.14119 | | 317 | 4. | Lang L, Clifford A, Wei L, et al. Prevalence and determinants of undetected dementia | | 318 | | in the community: a systematic literature review and a meta-analysis. BMJ Open. | | 319 | | 2017;7(2):e011146. doi:10.1136/bmjopen-2016-011146 | | 320 | 5. | Rockwood K, Theou O. Using the clinical frailty scale in allocating scarce health care | | 321 | | resources. Can Geriatr J. 2020;23(3):210-215. doi:10.5770/cgj.23.463 | | 322 | 6. | Theou O, Tan ECK, Bell JS, et al. Frailty Levels in Residential Aged Care Facilities | | 323 | | Measured Using the Frailty Index and FRAIL-NH Scale. J Am Geriatr Soc. | | 324 | | 2016;64(11):e207-e212. doi:10.1111/jgs.14490 | | 325 | 7. | Burn R, Hubbard RE, Scrase RJ, et al. A frailty index derived from a standardized | | 326 | | comprehensive geriatric assessment predicts mortality and aged residential care | | 327 | | admission. BMC Geriatr. 2018;18(1):319. doi:10.1186/s12877-018-1016-8 | | 328 | 8. | Xue Q-L. The frailty syndrome: definition and natural history. Clin Geriatr Med. | | 329 | | 2011;27(1):1-15. doi:10.1016/j.cger.2010.08.009 | | 330 | 9. | Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. | | 331 | | Lancet. 2013;381(9868):752-762. doi:10.1016/S0140-6736(12)62167-9 | 332 10. Hofman MR, van den Hanenberg F, Sierevelt IN, Tulner CR. Elderly patients with an 333 atypical presentation of illness in the emergency department. Neth J Med. 334 2017;75(6):241-246. 335 Betancourt G, Betancourt G, Hames E, Rivas K. Atypical presentations of common 11. 336 conditions in geriatric patients. J Am Med Dir Assoc. 2015;16(3):B5. 337 doi:10.1016/j.jamda.2015.01.007 338 12. Wall R. Complaints to the Health and Disability Commissioner about Residential Aged 339 Care Facilities: Analysis and Report 2010 - 2014 . HDC; 2016. Accessed 340 September 10, 2020. https://www.hdc.org.nz/news-resources/search-341 resources/articles/complaints-to-hdc-about-residential-aged-care-facilities-analysis-and-342 report-2010-2014/ 343 13. Patel R, Nugawela MD, Edwards HB, et al. Can early warning scores identify 344 deteriorating patients in pre-hospital settings? A systematic review. Resuscitation. 345 2018;132:101-111. doi:10.1016/j.resuscitation.2018.08.028 346 Laging B, Ford R, Bauer M, Nay R. A meta-synthesis of factors influencing nursing 14. 347 home staff decisions to transfer residents to hospital. J Adv Nurs. 2015;71(10):2224-348 2236. doi:10.1111/jan.12652 349 15. Carusone SC, Loeb M, Lohfeld L. Pneumonia care and the nursing home: a qualitative 350 descriptive study of resident and family member perspectives. BMC geriatrics. 351 2006;6:2. 352 O'Neill B, Parkinson L, Dwyer T, Reid-Searl K. Nursing home nurses' perceptions of 16. 353 emergency transfers from nursing homes to hospital: A review of qualitative studies 354 using systematic methods. Geriatr Nurs. 2015;36(6):423-430. 355 doi:10.1016/j.gerinurse.2015.06.001 356 17. Dwyer R, Stoelwinder J, Gabbe B, Lowthian J. Unplanned transfer to emergency 357 departments for frail elderly residents of aged care facilities: A review of patient and 358 organizational factors. J Am Med Dir Assoc. 2015;16(7):551-562. 359 doi:10.1016/j.jamda.2015.03.007 - 360 18. Daltrey J. Deterioration Early Warning Systems in Residential Aged Care: a scoping - review. Open Science Framework. September 24, 2021. Accessed December 21, 2021. - 362 https://osf.io/k9yrb - 363 19. Hodge SY, Ali MR, Gordon AL. Recognizing and responding to deterioration in care - homes: a scoping review protocol. JBI Evid Synth. 2021;19(2):447-453. - 365 doi:10.11124/JBISRIR-D-19-00413 - 366 20. American Medical Directors Association. Acute Change of Condition in the Long Term - 367 *Care Setting; Clinical Practice Guideline*. 1st ed.; 2003. - 368 21. Yarnall AJ, Sayer AA, Clegg A, Rockwood K, Parker S, Hindle JV. New horizons in - multimorbidity in older adults. Age Ageing. 2017;46(6):882-888. - 370 doi:10.1093/ageing/afx150 - 371 22. Kane RL, Huckfeldt P, Tappen R, et al. Effects of an intervention to reduce - hospitalizations from nursing homes: A randomized implementation trial of the - 373 INTERACT program. *JAMA Intern Med*. 2017;177(9):1257-1264. - 374 doi:10.1001/jamainternmed.2017.2657 - 375 23. Ouslander JG, Perloe M, Givens JH, Kluge L, Rutland T, Lamb G. Reducing - potentially avoidable hospitalizations of nursing home residents: results of a pilot - quality improvement project. J Am Med Dir Assoc. 2009;10(9):644-652. - 378 doi:10.1016/j.jamda.2009.07.001 - 379 24. Ouslander JG, Lamb G, Tappen R, et al. Interventions to reduce hospitalizations from - nursing homes: evaluation of the INTERACT II collaborative quality improvement - 381 project. J Am Geriatr Soc. 2011;59(4):745-753. doi:10.1111/j.1532-5415.2011.03333.x - 382 25. Rantz MJ, Popejoy L, Vogelsmeier A, et al. Successfully reducing hospitalizations of - nursing home residents: results of the missouri quality initiative. J Am Med Dir Assoc. - 384 2017;18(11):960-966. doi:10.1016/j.jamda.2017.05.027 - 385 26. Tena-Nelson R, Santos K, Weingast E, Amrhein S, Ouslander J, Boockvar K. - Reducing potentially preventable hospital transfers: results from a thirty nursing home 387 collaborative. J Am Med Dir Assoc. 2012;13(7):651-656. 388 doi:10.1016/j.jamda.2012.06.011 389 27. Carter HE, Lee XJ, Dwyer T, et al. The effectiveness and cost effectiveness of a 390 hospital avoidance program in a residential aged care facility: a prospective cohort 391 study and modelled decision analysis. BMC Geriatr. 2020;20(1):527. 392 doi:10.1186/s12877-020-01904-1 393 28. O'Neill BJ, Dwyer T, Reid-Searl K, Parkinson L. Managing the deteriorating nursing 394 home resident after the introduction of a hospital avoidance programme: a nursing 395 perspective. Scand J Caring Sci. 2017;31(2):312-322. doi:10.1111/scs.12349 396 29. Conway J, Dilworth S, Hullick C, Hewitt J, Turner C, Higgins I. A multi-organisation 397 aged care emergency service for acute care management of older residents in aged care 398 facilities. Aust Health Rev. 2015;39(5):514-516. doi:10.1071/AH15049 399 30. Conway J, Higgins I, Hullick C, Hewitt J, Dilworth S. Nurse-led ED support for 400 residential aged care facility staff: an evaluation study. Int Emerg Nurs. 401 2015;23(2):190-196. doi:10.1016/j.ienj.2014.11.005 402 Hullick C, Conway J, Higgins I, et al. Emergency department transfers and hospital 31. 403 admissions from residential aged care facilities: a controlled pre-post design study. BMC Geriatr. 2016;16:102. doi:10.1186/s12877-016-0279-1 404 405 32. Hullick CJ, Hall AE, Conway JF, et al. Reducing Hospital Transfers from Aged Care 406 Facilities: A Large-Scale Stepped Wedge Evaluation. J Am Geriatr Soc. 407 2021;69(1):201-209. doi:10.1111/jgs.16890 408 Ouslander JG, Bonner A, Herndon L, Shutes J. The Interventions to Reduce Acute 33. 409 Care Transfers (INTERACT) quality improvement program: an overview for medical 410 directors and primary care clinicians in long term care. J Am Med Dir Assoc. 411 2014;15(3):162-170. doi:10.1016/j.jamda.2013.12.005 412 34. Huckfeldt PJ, Kane RL, Yang Z, et al. Degree of Implementation of the Interventions to Reduce Acute Care Transfers (INTERACT) Quality Improvement Program 413 - Associated with Number of Hospitalizations. *J Am Geriatr Soc.* 2018;66(9):1830-1837. - 415 doi:10.1111/jgs.15476 - 416 35. Arendts G, Deans P, O'Brien K, et al. A clinical trial of nurse practitioner care in - residential aged care facilities. *Arch Gerontol Geriatr.* 2018;77:129-132. - 418 doi:10.1016/j.archger.2018.05.001 - 419 36. Sampson EL, Feast A, Blighe A, et al. Pilot cluster randomised trial of an evidence- - based intervention to reduce avoidable hospital admissions in nursing home residents - 421 (Better Health in Residents of Care Homes with Nursing-BHiRCH-NH Study). *BMJ* - 422 *Open.* 2020;10(12):e040732. doi:10.1136/bmjopen-2020-040732 - 423 37. Rantz MJ, Popejoy L, Vogelsmeier A, et al. Reducing avoidable hospitalizations and - improving quality in nursing homes with aprns and interdisciplinary support: lessons - 425 learned. J Nurs Care Qual. 2018;33(1):5-9. doi:10.1097/NCQ.00000000000000000 - 426 38. Alessi CA, Harker JO. A prospective study of acute illness in the nursing home. *Aging* - 427 (*Milano*). 1998;10(6):479-489. doi:10.1007/BF03340162 - 428 39. Ashcraft AS, Owen DC. From nursing home to acute care: signs, symptoms, and - strategies used to prevent transfer. *Geriatr Nurs*. 2014;35(4):316-320. - 430 doi:10.1016/j.gerinurse.2014.06.007 - 431 40. Boockvar K, Lachs M. Hospitalization risk following admission to an academic - 432 nursing home. J Am Med Dir Assoc. 2002;3(3):130-135. doi:10.1016/S1525- - 433 8610(04)70454-5 - 434 41. Boockvar KS, Lachs MS. Predictive value of nonspecific symptoms for acute illness in - 435 nursing home residents. *J Am Geriatr Soc.* 2003;51(8):1111-1115. doi:10.1046/j.1532- - 436 5415.2003.51360.x - 437 42. Boockvar K, Signor D, Ramaswamy R, Hung W. Delirium during acute illness in - 438 nursing home residents. *J Am Med Dir Assoc*. 2013;14(9):656-660. - 439 doi:10.1016/j.jamda.2013.06.004 - 440 43. Cummings GG, McLane P, Reid RC, et al. Fractured care: A window into emergency - transitions in care for LTC residents with complex health needs. *J Aging Health*. - 442 2020;32(3-4):119-133. doi:10.1177/0898264318808908 - 443 44. Kuehn AF, Sendelweck S. Acute health status and its relationship to falls in the nursing - home. *Journal of gerontological nursing*. 1995;21(7):41-49. - 445 45. Ouslander JG, Naharci I, Engstrom G, et al. Root cause analyses of transfers of skilled - nursing facility patients to acute hospitals: lessons learned for reducing unnecessary - 447 hospitalizations. *J Am Med Dir Assoc*. 2016;17(3):256-262. - 448 doi:10.1016/j.jamda.2015.11.018 - 449 46. Ouslander JG, Engstrom G, Reyes B, Tappen R, Rojido C, Gray-Miceli D. - 450 Management of acute changes in condition in skilled nursing facilities. *J Am Geriatr* - 451 *Soc.* 2018;66(12):2259-2266. doi:10.1111/jgs.15632 - 452 47. Ouslander JG, Naharci I, Engstrom G, et al. Lessons learned from root cause analyses - of transfers of skilled nursing facility (SNF) patients to acute hospitals: transfers rated - as preventable versus nonpreventable by SNF staff. J Am Med Dir Assoc. - 455 2016;17(7):596-601. doi:10.1016/j.jamda.2016.02.014 - 456 48. Popejoy LL, Vogelsmeier AA, Alexander GL, et al. Analyzing Hospital Transfers - 457 Using INTERACT Acute Care Transfer Tools: Lessons from MOQI. J Am Geriatr Soc. - 458 2019;67(9):1953-1959. doi:10.1111/jgs.15996 - 459 49. Reid RC, Cummings GE, Cooper SL, et al. The Older Persons' Transitions in Care - 460 (OPTIC) study: pilot testing of the transition tracking tool. *BMC Health Serv Res*. - 461 2013;13:515. doi:10.1186/1472-6963-13-515 - 462 50. Sluggett JK, Lalic S, Hosking SM, et al. Root Cause Analysis to Identify Medication - and Non-Medication Strategies to Prevent Infection-Related Hospitalizations from - 464 Australian Residential Aged Care Services. *Int J Environ Res Public Health*. - 465 2020;17(9). doi:10.3390/ijerph17093282 - 466 51. Unroe KT, Nazir A, Holtz LR, et al. The Optimizing Patient Transfers, Impacting - Medical Quality, and Improving Symptoms: Transforming Institutional Care approach: - preliminary data from the implementation of a Centers for Medicare and Medicaid - Services nursing facility demonstration project. *J Am Geriatr Soc.* 2015;63(1):165-169. - 470 doi:10.1111/jgs.13141 - 471 52. Unroe KT, Carnahan JL, Hickman SE, Sachs GA, Hass Z, Arling G. The complexity of - determining whether a nursing home transfer is avoidable at time of transfer. J Am - 473 *Geriatr Soc.* 2018;66(5):895-901. doi:10.1111/jgs.15286 - 474 53. Unroe KT, Caterino JM, Stump TE, et al. Long-Stay Nursing Facility Resident - 475 Transfers: Who Gets Admitted to the Hospital? J Am Geriatr Soc. 2020;68(9):2082- - 476 2089. doi:10.1111/jgs.16633 - 477 54. Vogelsmeier A, Popejoy L, Kist S, Harrell R, Alexander G, Rantz M. Avoiding nursing - home to hospital transfers: rethinking avoidability. J Nurs Care Qual. 2019;34(3):189- - 479 193. doi:10.1097/NCQ.00000000000000409 - 480 55. Barker RO, Stocker R, Russell S, et al. Distribution of the National Early Warning - 481 Score (NEWS) in care home residents. *Age Ageing*. 2019;49(1):141-145. - doi:10.1093/ageing/afz130 - 483 56. Stocker R, Russell S, Liddle J, et al. Experiences of a National Early Warning Score - 484 (NEWS) intervention in care homes during the COVID-19 pandemic: a qualitative - 485 interview study. *BMJ Open*. 2021;11(7):e045469. doi:10.1136/bmjopen-2020-045469 - 486 57. Boockvar K, Brodie HD, Lachs M. Nursing assistants detect behavior changes in - nursing home residents that precede acute illness: development and validation of an - 488 illness warning instrument. *J Am Geriatr Soc.* 2000;48(9):1086-1091. - 489 doi:10.1111/j.1532-5415.2000.tb04784.x - 490 58. ElBestawi MR, Kohm C. Decreasing preventable emergency department transfers for - long-term care residents using PREVIEW-ED©. *Healthc Manage Forum*. - **492** 2018;31(4):137-141. doi:10.1177/0840470417753969 - 493 59. Little S, Rodgers G, Fitzpatrick JM. Managing deterioration in older adults in care - homes: a quality improvement project to introduce an early warning tool. Br J - 495 *Community Nurs.* 2019;24(2):58-66. doi:10.12968/bjcn.2019.24.2.58 - 496 60. Teale EA, Munyombwe T, Schuurmans M, Siddiqi N, Young J. A prospective - observational study to investigate utility of the Delirium Observational Screening Scale - 498 (DOSS) to detect delirium in care home residents. *Age Ageing*. 2018;47(1):56-61. - 499 doi:10.1093/ageing/afx155 - 500 61. Voyer P, McCusker J, Cole MG, et al. Prodrome of delirium among long-term care - residents: what clinical changes can be observed in the two weeks preceding a full- - blown episode of delirium? *Int Psychogeriatr*. 2012;24(11):1855-1864. - 503 doi:10.1017/S1041610212000920 - 504 62. Voyer P, Richard S, McCusker J, et al. Detection of delirium and its symptoms by - nurses working in a long term care facility. *J Am Med Dir Assoc*. 2012;13(3):264-271. - 506 doi:10.1016/j.jamda.2010.11.002 - 507 63. Voyer P, Champoux N, Desrosiers J, et al. Recognizing acute delirium as part of your - routine [RADAR]: a validation study. *BMC Nurs*. 2015;14(1):19. doi:10.1186/s12912- - 509 015-0070-1 - 510 64. Sloane PD, Ward K, Weber DJ, et al. Can sepsis be detected in the nursing home prior - to the need for hospital transfer? J Am Med Dir Assoc. 2018;19(6):492-496.e1. - 512 doi:10.1016/j.jamda.2018.02.001 - 513 65. Porter TK, Turner KM, McMillian-Bohler J, De Gagne JC. Improving care of skilled - nursing patients: implementation of early sepsis recognition. *J Gerontol Nurs*. - 515 2021;47(8):37-44. doi:10.3928/00989134-20210624-02 - 516 66. Sloane PD, Kistler C, Mitchell CM, et al. Role of body temperature in diagnosing - bacterial infection in nursing home residents. *J Am Geriatr Soc.* 2014;62(1):135-140. - 518 doi:10.1111/jgs.12596 - 519 67. Tingström P, Milberg A, Rodhe N, Ernerud J, Grodzinsky E, Sund-Levander M. - Nursing assistants: "he seems to be ill" a reason for nurses to take action: validation of - the Early Detection Scale of Infection (EDIS). *BMC Geriatr*. 2015;15:122. - 522 doi:10.1186/s12877-015-0114-0 | 523 | 68. | Tingström P, Milberg A, Sund-Levander M. Early nonspecific signs and symptoms of | |-----|-----|----------------------------------------------------------------------------------------------| | 524 | | infection in institutionalized elderly persons: perceptions of nursing assistants. $Scand J$ | | 525 | | Caring Sci. 2010;24(1):24-31. doi:10.1111/j.1471-6712.2008.00680.x | | 526 | 69. | Stow D, Barker RO, Matthews FE, Hanratty B. National Early Warning Scores and | | 527 | | COVID-19 deaths in care homes: an ecological time-series study. BMJ Open. | | 528 | | 2021;11(9):e045579. doi:10.1136/bmjopen-2020-045579 | | 529 | 70. | Barker M, Rushton M, Smith J. How to assess deteriorating patients. Nurs Stand. | | 530 | | 2015;30(11):34-36. doi:10.7748/ns.30.11.34.s44 | | 531 | 71. | Peters M-L. The older adult in the emergency department: aging and atypical illness | | 532 | | presentation. <i>J Emerg Nurs</i> . 2010;36(1):29-34. doi:10.1016/j.jen.2009.06.014 | | 533 | 72. | Hodgson P, Greaves J, Cook G, Fraser A, Bainbridge L. A study to introduce National | | 534 | | Early Warning Scores (NEWS) in care homes: Influence on decision-making and | | 535 | | referral processes. Nurs Open. 2022;9(1):519-526. doi:10.1002/nop2.1091 | | 536 | 73. | Hodge S, Thompson C, Gordon AL. National early warning scores in care homes: do | | 537 | | policy imperatives reflect a genuine need? Age Ageing. 2019;49(1):5-6. | | 538 | | doi:10.1093/ageing/afz149 | | 539 | 74. | Ouslander JG, Naharci I, Engstrom G, et al. Hospital transfers of skilled nursing | | 540 | | facility (SNF) patients within 48 hours and 30 days after SNF admission. J Am Med Dir | | 541 | | Assoc. 2016;17(9):839-845. doi:10.1016/j.jamda.2016.05.021 | Table 1: Research literature table: grouped by review category | Primary<br>author | Study design | Research purpose | Evi | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------| | Models of | care: | | | | | | | | | Arendts et<br>al <sup>35</sup><br>2018<br>Australia | Cluster<br>controlled<br>evaluation | controlled Practitioner (NP) evaluation support in 6 RACFs over 12 | 1. | Model of care includes<br>tools based on<br>INTERACT to identify<br>acute deterioration | presentations | RAC development<br>Modified INTERACT See<br>Ouslander 2009 | Model: non-significant<br>effect on resident<br>hospitalisation rate | Underpowered study. Intervention and control group not | | | | months. | 2. | Model includes<br>deterioration detection<br>tool to identify acute<br>deterioration | Acute deterioration trigger points - Respiratory rate >28 or <10 - Pulse >110 or <50 - SBP >210 or <90 or >20 mmHg reduction - Temperature (oral) >38.50C | | Tool: no specific efficacy data | matched | | Carter et al <sup>27</sup><br>2020<br>Australia | Prospective<br>pre-post cohort<br>study | Implement a<br>model of care:<br>Early Detection<br>of Deterioration<br>in Elderly<br>(EDDIE) to avoid<br>resident<br>hospitalisation in<br>1 RACF over 12<br>months | 1. | Model of care includes<br>systems, process and<br>tools to identify acute<br>deterioration | See 0'Neill et al 2017 (below) | Model: RAC development | Model: 19% decrease in annual hospitalisations | Single facility<br>study | | Conway et al <sup>30</sup> 2015 Australia | Pre-post<br>intervention<br>study | To evaluate ACE<br>model 4 pilot<br>RACFs over 9<br>months | 1. | Model of care includes<br>systems, process and<br>tools to identify acute<br>deterioration | Clinical guideline common emergency presentations and dedicated ED staff responding to RAC nurses (Age Care Emergency Manual) includes a deterioration detection tool Dedicated nurses in ED to receive calls and residents from RACF nurses Collaboration: meetings between teams caring for residents | Model: AC development | Model: 16% reduction<br>Emergency Department<br>(ED) presentations | No analysis of<br>individual<br>elements of<br>model | | Hullick et<br>al <sup>31</sup><br>2016<br>Australia | Pre-post<br>intervention<br>compared to<br>control group | Evaluate ACE<br>model of care in<br>4 RACFs over 9<br>months. | 1.<br>2. | Model as Conway et al<br>2015 (above)<br>Clinical conditions<br>responsible for acute<br>deterioration (triage<br>diagnosis) | Falls (20%) Respiratory illness (12%) Abdominal issue (12%) Cardiac problem (9%) Pain (7%) | Model: AC development | Model: no overall reduction in ED presentations | Assessed via<br>hospital data no<br>identifier in this<br>system for living<br>in RACF,<br>potential missing<br>data | | Hullick et<br>al <sup>32</sup><br>2021<br>Australia | Step wedge<br>cluster<br>intervention<br>trial | Evaluate model<br>of care (ACE) in<br>81 RACFs over<br>39 months | 1.<br>2. | Model as Conway et<br>al 2015 (above)<br>Clinical conditions<br>responsible for acute | Fall (24%) n=4348<br>Respiratory (10%) n=1905<br>Injury (6%) n=1099 | Model: AC development | Model: residents were 20% less likely to be transferred to ED | Clusters not<br>randomly<br>allocated, initially<br>targeted RACF | | Primary | Ctudy decien | Dagaarah mumaga | E. | don oo muorri da d | Variancements (of interest to this study) | Davidonment | Efficiency | Limitations | |-----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------| | author | Study design | Research purpose<br>(n=18,837 ED<br>presentations) | EVI | deterioration (triage<br>diagnosis) | Key components (of interest to this study) Chest pain (4%) n= 773 Confusion / disorientation (4%) n=675 Fever (4%) n=676 Abdominal pain (4%) n=647 Collapse / syncope (3%) n=491 | Development | Efficacy | Limitations with high rates of ED transfer | | Kane et al <sup>22</sup><br>2017<br>USA | Randomised<br>implementation<br>study | Evaluate<br>Interventions to<br>Reduce Acute<br>Care Transfers<br>(INTERACT)<br>model of care in<br>85 RACF over 12<br>months | 1. | Model of care includes<br>systems, process and<br>tools to identify acute<br>deterioration | See Ouslander et al 2009 (below) | Model: RAC development | Model: non statistically significant reduction in hospitalisation | RACFs reported<br>using<br>INTERACT tools<br>before study<br>began | | O'Neill et<br>al <sup>28</sup><br>2017<br>Australia | Qualitative<br>evaluation of<br>pilot model of<br>care<br>implementation | Nursing view of<br>subacute pilot<br>model of care 15<br>months after<br>implementation<br>in 1 RACF | 1. | Model of care became known as EDDIE | Clinical guidelines and skills training on urinary tract infections, chest pain, falls, delirium, dehydration, dyspnoea, constipation, palliative care Communication tool Situation Background Recommendation and Response (SBAR) Medical equipment supply Policy and procedure to embed model | Model: RAC development | Nurse appreciated decision<br>support tools and equipment.<br>Positive reports on use of<br>SBARR<br>Collaboration with experts<br>help staff feel supported | Single site study<br>purposive sample | | | | | 2. | Model includes<br>deterioration detection<br>tool to identify acute<br>deterioration | Emergency trigger points Respiratory rate >30 or <4 Oxygen saturation <89% Pulse >140 or <50 SBP >200 mmHg or <80 mmHg Temperature <350C >390C Conscious to pain or no response | Modified AC tool:<br>developed from "Between<br>the Flags" New South Wales<br>early warning tool | Tools: no specific efficacy data | | | Ouslander et al <sup>23</sup> 2009<br>USA | Quality<br>improvement<br>study | Pilot<br>implementation<br>of model of care:<br>Interventions to<br>Reduce Acute<br>Care Transfer<br>(INTERACT) in<br>3 RACFs over 6<br>months. | Mo<br>1. | del of care includes Tool: Stop and Watch to identify acute deterioration | Seems different to usual Talks or communicates less Overall needs more help Participates less in activities Ate less, difficulty swallowing medication No bowel motion > 3 days or diarrhoea Drank less Weight change Agitated or more nervous than usual Tired, weak, confused, or drowsy Change in skin colour or conditions more Help walking, transferring, toileting | RAC development: designed<br>by an expert panel process<br>Focuses on identify and<br>responding to acute<br>deterioration avoid the need<br>for acute transfer (original<br>tools have developed to<br>version 4.5) | Model: 50% reduction in<br>hospitalisation following<br>introduction of model.<br>Tools: no specific efficacy<br>data | Convenience<br>sample of RACF<br>selected for<br>inclusion in pilot<br>study<br>Preliminary study<br>no control or<br>comparison group | | | | | 2. | Tool: "Change in<br>Condition" file care<br>when to report to | Trigger points - Systolic BP >200 mmHg or < 90 mmHg - Diastolic BP > 115 mmHg | | | | | Primary<br>author | Study design | Research purpose | Evic | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |-----------------------------------|-----------------------|----------------------------------------------------|------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------| | | | | | physician includes vital<br>signs and clinical<br>condition triggers to<br>identify acute<br>deterioration | - Resting pulse > 100 or < 50<br>- Respiration >28 or < 10<br>- Oral temperature > 101.5°F (38.6°C)<br>- Oxygen saturation < 90% | | | | | | | | 3. | Care paths: clinical<br>guidelines for key<br>conditions | Acute change in mental status, Change in<br>behaviour, Dehydration, Fever, Gastrointestinal<br>symptoms, Shortness of breath, Congestive heart<br>failure, Lower respiratory track illness, Urinary<br>tract infection, Fall | | | | | | | | 4. | Quality improvement<br>tool: Review of Acute<br>Care Transfer | Tool to analyse hospital transfers, includes collecting clinical data | | | | | | | | 5. | SBAR (Situation<br>Background<br>Assessment<br>Recommendation)<br>communication tool<br>and progress note | Pre-formatted tool supports assessment of residents and clinical communication for escalation of care by nurses to physician/nurse practitioner | | | | | | | | 6. | Advance care planning tools | Communication tools, comfort care plan,<br>Resuscitation guidance, Guidance on sepsis and<br>infection | | | | | Ouslander et al <sup>24</sup> | Quality improvement | Implement<br>INTERACT II in | 1. | Model of care includes systems, process and | See Ouslander et al 2009 (above) | Model: RAC development | Model: 17% reduction in hospitalisation | Hospitalisation rates based on | | 2011<br>USA | study | 25 RACFs over 6 months | | tools to identify acute deterioration | | | Tools: no specific efficacy | self reports | | | | | | | | | data | Participating<br>RACF had higher<br>than average<br>admission rate<br>before<br>intervention | | Rantz et al <sup>25</sup><br>2017 | Quality improvement | Implement and evaluate model of | 1. | systems, process and | See Ouslander et al 2009 (above) | Model: RAC development | Model: 30% reduction hospitalisation | Targeted RACF willing to | | USA | study | care INTERACT<br>in 16 RACFs<br>over 4 years | | tools to identify acute deterioration | | | Tools: no specific efficacy data | participate had<br>base line high<br>admission rates<br>No comparison<br>group | | Sampson et al <sup>36</sup> 2020 | Cluster<br>randomised | Implement Better<br>health in<br>residents of care | 1. | Model of care includes systems, process and | Modified INTERACT: See Ouslander et al 2009 (above) | See Ouslander et al 2009 (above) | Model: none of the 14 RACFs implemented the model. | Limited data collected due to | | Primary<br>author | Study design | Research purpose | Evi | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | | |---------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|--| | UK | implementation<br>study | 1 1 | LVI | tools to identify acute<br>deterioration | rey components (of interest to this study) | And modification process<br>RAC based interviews and<br>co-design workshops | Tools: no specific efficacy data | lack of implementation | | | Tena-Nelson<br>et al <sup>26</sup> | Quality improvement | Implement<br>INTERACT | 1. | systems, process and | See Ouslander et al 2009 (above) | Model: RAC development | Model: 11% reduction in hospitalisation. | No comparison<br>groups<br>Self-reported | | | 2012<br>USA | study | model of care in<br>30 RACFs over<br>12 months | | tools to identify acute<br>deterioration | | | Tools: no specific efficacy data | hospitalization<br>data<br>Missing data 12<br>of 30 RACF were<br>excluded from<br>evaluation | | | Descriptive s | tudies: clinical pa | atterns of the acute | dete | rioration of residents | | | | | | | Alessi and<br>Harker <sup>38</sup><br>1998<br>USA | Prospective cohort | Describe 184<br>episodes of acute<br>resident<br>deterioration in 1<br>RACF over 3 | 1. | Clinical sign of acute deterioration | Fever ≥100°F (26%)<br>Urinary or faecal change (15%)<br>Mental status change (11%)<br>Respiratory status change (11%)<br>Skin breakdown (10%) | RAC study: acute illness<br>defined as "a change in the<br>individuals health associated<br>with specific signs and<br>symptoms of recent onset" | Not applicable | 98% of<br>participants were<br>male, not<br>reflective of usua<br>RACF population | | | | | years (n=140) | 2. | Clinical conditions<br>responsible for acute<br>deterioration | Infection (68%) - Pneumonia (n=37) - Complicated urinary tract infection (n=30) - Wound infection(n=9) - Other infection (n=1) Acute cardiac illness (6%) Gastrointestinal bleeding (6%) Drug toxicity (4%) Exacerbation chronic lung disease (3%) | symptoms of recombination | | Tatos population | | | | | | 3. | Risk factors of acute deterioration | Skin ulcers OR 4.9 (95% CI 1.3-18.4)<br>Mobility dependence OR 2.3 (95% CI 1.2-4.7)<br>Anaemia OR 6.0 (95% CI 1.6-22.1)<br>Faecal incontinence OR 4.9 (95% CI 1.3-18.4) | | | | | | | | | 4. | Predictors of acute deterioration. | Anaemia OR 6.1 (95% CI 1.5-21.4)<br>Mobility dependence OR 2.6 (95% CI 1.2-5.7) | | | | | | Ashcraft and<br>Owen <sup>39</sup><br>2014<br>USA | Survey | Identify signs and<br>symptoms of<br>deterioration<br>indicating need<br>for hospital<br>transfer (n=109) | 1. | Clinical signs of acute<br>deterioration with<br>importance ranked by<br>RNs | <ol> <li>Change in level of consciousness</li> <li>Chest pressure or tightness</li> <li>Shortness of breath</li> <li>Decreased oxygenation</li> <li>Muscle or bone pain</li> </ol> | AC developed study: close question survey | Not applicable | Survey contained<br>only physical<br>signs of<br>deterioration | | | Primary<br>author | Study design | Research purpose | Evi | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |----------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------| | Boockvar<br>and Lachs <sup>40</sup><br>2002<br>USA | Prospective<br>observational<br>study | Describe acute<br>deterioration in<br>65 subjects 1<br>RACF over 5<br>months (n=204) | 1. | Clinical conditions<br>responsible for acute<br>deterioration and<br>hospitalisation | Lower respiratory infection (26%) n=20<br>Urinary tract infection (21%) n=16<br>Congestive heart failure (14%) n=11<br>Dehydration (10%) n=8<br>Gastroenteritis (8%) n=6<br>Cardiac ischaemia (3%) n=2<br>Upper respiratory infection (3%) n=2 | RAC study: data collected<br>during routine clinical<br>rounds | Not applicable | Conducted in 1 RACF with onsite doctor and NP able to provide intravenous antibiotics – reducing likelihood of hospitalisation | | Boockvar<br>and Lachs <sup>41</sup><br>2003<br>USA | Prospective<br>observational<br>study | Examine the relationship between clinical signs and acute deterioration in 1 RACF over 9 months (n=202) | 1. | Predictive value of<br>clinical signs for acute<br>deterioration | <sup>1</sup> Lethargy PPV 51% <sup>1</sup> Weakness PPV 50% <sup>1</sup> Appetite decreased PPV 46% <sup>1</sup> Agitation and PPV 37% <sup>1</sup> Disorientation PPV 31% Dizziness PPV 27% <sup>1</sup> Falls PPV 23% Delusions PPV 21% Depressed mood PPV 17% Weight loss PPV 17% Aggression PPV 13% Any of the above PPV 24% <sup>1</sup> statistical association with acute deterioration in multivariate logistic regression analysis | RAC study: signs of<br>deterioration predetermined,<br>and evidence of symptoms<br>obtained from nursing<br>records | Overall PPV of any clinical<br>sign listed 24%<br>Overall NPV any non-<br>specific symptom 91% | Relied on nursing<br>notes for<br>observation of<br>signs of<br>deterioration | | Boockvar et al <sup>42</sup> 2013<br>USA | Prospective<br>observational<br>study | Describe incidence, risk factors and relationship of acute illness and delirium during 232 episodes of acute deterioration in 3 RACF over 12 months (n=136) | 1. | Clinical signs of acute<br>deterioration Clinical conditions<br>responsible for acute<br>deterioration | Activities of daily living decline (32.6%) Cognitive decline (28.6%) Falling (8.6%) Urinary tract infection (20%) Cellulitis (15%) Lower respiratory tract infection (9%) Congestive heart failure (3%) Chronic Obstructive Pulmonary Disease (3%) Dehydration (2%) Sepsis (2%) | Secondary analysis of data<br>from parent study. Clinical<br>pattern observation | Not appliable | Selected participants receiving regular opioid antidepressants or antipsychotics 65% of participants were male, not reflective of usual RACF population | | Cummings et al <sup>43</sup> 2020<br>Canada | Prospective<br>descriptive<br>study | Describe resident<br>transfers from 25<br>RACFs to<br>hospital over 12<br>months (n=637) | 3. | Correlation delirium<br>with acute<br>deterioration Clinical signs of acute<br>deterioration. | Delirium occurred in 18% (n=41) of acute events Median time from onset of acute illness to delirium was 3 days Falls (27%) n=171 Sudden change in condition (24%) n=150 Shortness of breath (20%) n=126 Nausea/vomiting/diarrhoea (7%) n=45 General malaise or weakness (6%) n=35 | AC developed data<br>collection tool: Transition<br>Tracking Tool (TTT) | Not applicable | Missing data<br>about transitions<br>First time TTT<br>has been used | | Primary<br>author | Study design | Research purpose | Evid | lence provided | Key components (of interest to this study) Cough with congestion (5%) n=32 Constipation/abdominal pain (5%) n=30 | Development | Efficacy | Limitations | |------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------| | Kuehn and<br>Sendelweck <sup>44</sup><br>1995<br>USA | Retrospective<br>data analysis<br>study | Corelate falls and acute illness by medical record review in 1 RACF over 12 months (n=121) | 1. | Support for falling as a clinical sign of acute deterioration | Significant correlation between falls and acute deterioration. 19% residents with concurrent illness had a fall compared to 7% of those without concurrent illness | RAC developed study: data collection tool developed by authors | Not applicable | Single RACF<br>study.<br>30 day time<br>frame for<br>occurrence fall<br>and acute<br>deterioration fall<br>days | | Ouslander et al <sup>74</sup> 2016<br>USA | Root cause<br>analysis study | Analyse resident<br>hospitalisations<br>from 64 RACFs<br>over 12 months<br>(n=5011)* | 1. | Risk factors for acute<br>deterioration resulting<br>in hospitalisation (long<br>stay residents) | Multiple comorbidities (51%) n=1173 Polypharmacy (21%) n=1000 CHF (19%) n=410 COPD (15%) n=348 Dementia (8%) n=251 Fracture (7%) n=149 End stage renal disease (4%) n=81 Cancer (3%) n=78 Surgical complications (3%) n=79 | RAC developed study:<br>episodes reviewed using<br>Review of Acute Care<br>Transfers tool | Not appliable | | | Ouslander et al <sup>45</sup><br>2016<br>USA | Root cause<br>analysis study | Analyse resident<br>hospitalisations<br>from 64 RACFs<br>over 12 months<br>(n=4856)*. | 1. | Clinical signs of acute deterioration | Abnormal vital signs (33%) n=1622 Altered mental status (28%) n=1356 Short of breath (23%) n=1132 Uncontrolled pain (19%) n=901 Low pulse oximetry (16%) n=792 Functional decline (16%) n=759 Behavioural symptoms (15%) n=733 Fever (12%) n=587 Decreased food and fluid intake (12%) n=567 Unresponsive (10%) n=498 Skin wound or ulcer (8%) n=407 Fall (8%) n=392 Bleeding (8%) n=380 Nausea/vomiting (7%) n=345 Urinary incontinence (3%) n=164 | RAC developed study:<br>episodes reviewed using<br>Review of Acute Care<br>Transfers tool | Not appliable | RACF<br>volunteered to<br>participate more<br>likely to be<br>motivated to<br>participate | | Ouslander et al <sup>46</sup> 2018 USA | Root cause<br>analysis study | Describe episodes<br>of acute<br>deterioration<br>managed in 133<br>RACFs over 12 | 1. | Clinical signs of acute deterioration in RACF | Functional decline (28%) n=2154 Altered mental status (27%) n=2094 Pain new or uncontrolled (24%) n=1844 Behaviour change (21%) n=1599 Decreased food or fluid (15%) n=1164 Abnormal BP or RR (14%) n=1086 | RAC developed study:<br>episodes reviewed with<br>Change in condition (CIC)<br>without Transfer tool. Note:<br>tool collects same data as | OR for transfer to acute care -Change in mental status 2.1 (CI 1.4-2.5) -Unresponsive 3.8 (CI 2.7-5.4) | Convenience<br>sample of RACF<br>motivate to<br>participate | | Primary<br>author | Study design | Dagaarah mumaga | Evidence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | | |-------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--| | autnor | Study design | months<br>(n=7689)* | Evidence provided | Cough n=1057 (14%) Shortness of breath (13%) n=986 Skin or wound change (12%) n=886 Urinary symptoms (9%) n=708 Fever (9%) n=702 Nausea/vomiting (7%) n=565 Falls (6%) n=471 Low pulse oximetry (6%) n=423 Bleeding (3%) n=201 Diarrhoea n=235 (3%) Hyperglycaemia (1%) n=111 | Review of Acute Care Transfer | -Shortness of breath 2.2 (CI 1.9-2.7) -Abnormal vital signs 2.2 (CI 1.9-2.6) -Bleeding 2.1 (CI 1.5-3.0) -New or worse confusion 2.0 (CI 1.6-2.4) | Not a random<br>sample of change<br>in condition tools | | | | | | Clinical signs of deterioration in commonly occurrent together | nost Abnormal BP or RR and functional changes | | | | | | | Descriptive study | Analyse resident<br>hospitalisations<br>from 16 RACFs<br>over 32.5 months<br>(n=3946) | Clinical signs deterioration | Abnormal vital signs (26%) n=1041 (26%) Pain (19%) n=745 Breathing difficulty (19%) n=747 Confusion worsening cognition (19%) n= 741 Falls (13%) n=532 Behaviour symptoms (13%) n=492 Fever (10%) n=378 Bleeding (9%) n=342 Nausea/vomiting (8%) n=325 Cough (5%) n= 206 Urinary symptoms/incontinence (4%) n=149 | RAC developed study:<br>episodes reviewed using<br>Review of Acute Care<br>Transfers tool | Not applicable | Full time<br>advanced practice<br>nurses in RACF<br>limits<br>generalisability | | | | | | Risk factors as with deteriorat | JI | | | | | | 2013 | Pilot tool to<br>collect<br>descriptive data | Develop and pilot<br>Older Persons<br>Transition in<br>Care (OPTIC)<br>Transition<br>Tracking tool in 2<br>RACFs and 2<br>EDs over 3<br>months (n=54) | Clinical signs deterioration | of acute Falls (31%) n=21 Change in physical condition (15%) n=10 Nausea/vomiting/diarrhoea (12%) n=8 Change in mental status (7%) n=5 SOB (4%) n=3 Chest pain (4%) n= 3 | AC developed: Transition<br>Tracking tool electronic data<br>collection tool works across<br>services | Not applicable | Small sample size | | | Primary<br>author | Study design | Research purpose | Evi | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------| | Sluggett et<br>al <sup>50</sup><br>2020<br>Australia | Root cause analysis Describe 49 incidents of infection related hospitalisations from 6 RACFs over 12 months (n=41) | 1. | Clinical signs of acute<br>deterioration related to<br>infection | New or worsening pain (35%) n=17 Feeling unwell (31%) n=15 Malaise, lethargy, drowsiness, or refusal to get out of bed (27%) n=13 Nausea or vomiting (27%) n=10 Functional decline (18%) n=9 New or increased abdominal pain or diarrhoea (17%) n=8 Altered mental status or behaviour change (14%) n=7 Fall (14%) n=7 Fever, chills, rigour (14%) n=7 | RAC developed: tool informed by Review of acute care transfers | Not applicable | Retrospective<br>data from small<br>sample limits<br>generalisability | | | | | | 2. | Type of infection resulting in transfer to hospital | Respiratory (59%) n=29<br>Urinary (59%) n=29<br>Pneumonia (25%) n=12<br>Exacerbation COPD (10%) n=5<br>Skin (6%) n=8 | | | | | Unroe et al <sup>51</sup><br>2015<br>USA | Descriptive study | Describe resident<br>hospitalisations<br>from 19 RACFs<br>over 12 months<br>n=910 | 1. | Risk factors associated with hospitalisation | Hospitalised in last 6 months (45%) n=412<br>CHF (29%) n=267<br>Dementia and behaviour issue (29%) n=261<br>COPD (26%) n=234<br>New medication or dose change in last 48 hours<br>(14%) n=126 | RAC developed modified<br>Review of Acute Care<br>Transfers | Not applicable | | | Unroe et al <sup>52</sup><br>2018<br>USA | Descriptive<br>study | Describe resident<br>hospitalisations<br>using from 19<br>RACFs over 20<br>months (n=1174) | 1. | Risk factors associated with hospitalisation | Dementia (54%) n=1035 Diabetes Mellitus (28%) n=535 Falls (27%) n=518 COPD or asthma (26%) n=510 Dementia related behaviours (25%) n=490 CHF (24%) n=457 Hospitalised in the last 30 days (23%) n=434 History of recurring UTI (16%) n=304 | RAC developed modified<br>Review of Acute Care<br>Transfers | Not applicable | Diagnoses are<br>based on RN<br>review of<br>discharge<br>summaries<br>Data loss for<br>residents who | | | | | 2. | Clinical conditions<br>resulting in<br>hospitalisation | Cognitive, behavioural, psychiatric (31%) n=600 Fall, trauma, fracture, (17%) n=349 Cardiovascular (17%) n=320 Respiratory (16%) n=312 Pain (11%) n=218 Infection (10%) n=199 (10%) Gastrointestinal (9%) n=168 | | | died in hospital | | Unroe et al <sup>53</sup><br>2020<br>USA | Descriptive study | Review of 867<br>hospitalisations<br>using from 19<br>RACFs to | 1. | Clinical conditions<br>resulting in<br>hospitalisation | Cognitive/behavioural/psychiatric (22%) n=190<br>Fall/fracture/trauma (19%) n=162<br>Respiratory (11%) n=91<br>Cardiovascular (10%) n=82 | RAC developed: modified<br>Review of Acute Care<br>Transfers | Not applicable | Sample from<br>RACF actively<br>engaged in<br>improvement | | Primary<br>author | Study design | Research purpose | Evic | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | hospital over 17<br>months (n=867) | | • | Pneumonia (10%) n=65 | • | • | process may not<br>be generalisable | | Vogelsmeier<br>et al <sup>54</sup><br>2019<br>USA | Descriptive study | Described<br>hospitalisations<br>using from 16<br>RACFs over 20 | 1. | Clinical signs of acute deterioration | Acute change in mental status (24%) n=156<br>Fall (18%) n=115<br>Pain (14%) n=95<br>High/low body temperature (12%) n=80 | RAC developed Review of<br>Acute Care Transfers | Not applicable | | | | | months (n=650) | 2. | Clinical conditions<br>resulting in<br>hospitalisation | Cellulitis or wound (4%) n=24<br>Urinary tract infection (3%) n= 22<br>Respiratory infection (3%) n=20 | | | | | Deterioration | detection tools; | also see Arendts et a | al 201 | 8, O'Neill et al 2017, Ou | slander te al 2009 (above) | | | | | Barker et al <sup>55</sup><br>2019<br>UK | Descriptive<br>analysis of tool<br>use | Review the use of<br>the National<br>Early Warning<br>Score (NEWS)<br>by HCAs in 46<br>RACF over 30<br>months (n=2424).<br>Use repeated<br>19,604 | 2. | Tool: vital signs to identify acute deterioration Correlation of NEWS urgency scores with HCA concern (n=2256) and without HCA concern (n=6277) for resident welfare | Critical risk trigger points (graduated scale) Respiration rate ≥25 or ≤ 8 Oxygen saturation ≤ 91% Pulse ≥131 or ≤40 SBP ≥220 or ≤90 mmHg Temperature ≥39.1°C or ≤35°C Any change in level of consciousness or confusion | Modified AC tool:<br>developed from UK National<br>Early Warning Score<br>(NEWS) | HCA concerned for resident 62% low NEWS (0-2) 21% intermediate NEWS (3-4) 11% high NEWS (5-6) 6% critical NEWS (9-13) HCA not concerned for resident 75% low NEWS (0-2) 18% intermediate NEWS (3-4) 5% high NEWS (5-6) 2% critical NEWS (9-13) | Missing data 11071 measurements no categorised No resident outcome data No firm conclusion could be drawn on whether NEWS triggered the most appropriate response | | Boockvar et<br>al <sup>57</sup><br>2000<br>USA | Tool<br>development<br>and validation<br>study | Develop and<br>validate the:<br>Illness Warning<br>Instrument in 1<br>RACF over 4<br>weeks (n=74) | 1. | Tool: Clinical signs to identify acute deterioration. | Resident weak Said hello or smiled at you as usual Nervous or agitated Self-reported complaint Reduced the amount of eating | RAC developed; focus<br>groups identified signs of<br>deterioration, 12 items,<br>tested for 28 days and<br>reduced to a 5-item tool. | Sensitivity 53%<br>Specificity 93%<br>PPV 17%<br>NPV 96%. | Based on 19 acute events. | | Conway et<br>al <sup>29</sup><br>2015<br>Australia | Case study description | Implement Aged<br>Care Emergency<br>(ACE) model of<br>care to identify<br>and respond to | 1. | Model of care includes<br>vital signs tool to<br>identify acute<br>deterioration | Danger trigger points (graduated scale) - Respiratory rate >30 and <5 - Oxygen saturation <90% despite oxygen - Respiratory effort obvious distress and cyanosis - Pulse >140 or <40 | Modified AC tool:<br>developed from "Between<br>the Flags" New South Wales<br>early warning tool | Not applicable case study only | Case study only | | Primary<br>author | Study design | Research purpose | Evic | lence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------| | | | acute deterioration. | | | <ul> <li>SBP &gt;200 or &lt;90 mmHg</li> <li>Temperature &gt;38.50C</li> <li>Conscious to pain or no response or sudden change to mental status</li> <li>Pain obviously distressed</li> <li>Blood glucose less than 4 mmol/L and unresponsive to oral glucose or &gt; 28 mmol/L</li> </ul> | - | | | | Elbestawi<br>and Kohm <sup>58</sup><br>2018 | Design and pilot test a tool to identify | ot test a tool pilot Practical dentify Routine Elder Variants Indicate | 1. | Tool: Clinical signs to identify and respond to acute deterioration. | Mental status Food and fluid intake Family/resident concern | RAC developed; chart<br>review and focus group<br>identified signs of | Reduced hospitalisation<br>reported in 2 pilot sites by<br>57% and 71% respectively | Pilot study short<br>duration.<br>No comparison | | Canada | acute<br>deterioration | | | | Mobility Level of consciousness Respiratory problem Change in Activities of Daily Living Urinary system problem Skin breakdown | deterioration. Signs<br>weighted to trigger<br>escalation to RN | Tool use takes 10 to 15 seconds per resident | group. Measured reduction in target conditions only (pneumonia, UTI, dehydration CHF) | | Hodgson et<br>al(Hodgson<br>et al. 2022)<br>2022<br>UK | Mixed methods<br>analyse of<br>NEWS in care | Evaluate NEWS<br>in 4 RACFs over<br>8 months with<br>276 residents | 1. | Efficacy of NEWS | See Barker et al (2019) | Modified AC tool:<br>developed from UK National<br>Early Warning Score<br>(NEWS) | Link between NEWS and hospital admission (p=0.000). Could not be used alone as a diagnostic tool | | | Huckfeldt et<br>al <sup>34</sup><br>2018<br>USA | Secondary<br>analysis of<br>Randomised<br>Controlled | Understand the relationship between model of care | 3. | Indication of<br>effectiveness of two<br>INTERACT tools<br>(Stop and Watch & | Reviewed tool use in groups:<br>Group 1: Low to moderate tool use<br>Group 2: Increased tool use<br>Group 3: Consistent moderate to high tool use | See Ouslander 2019 | High tool use was associated<br>with greater reduction in all-<br>cause hospitalisations and<br>potentially avoidable | Missing data due<br>to RACF<br>dropping out of<br>study | | | Trial | implementation<br>and acute<br>hospitalisation<br>rate in 264<br>RACFs over 12<br>months | | SBAR communication tool) | | | hospitalisations | Self-reported tool<br>implementation<br>rates | | Little et al <sup>59</sup> 2019 | Quality improvement | Implement an author developed | 1. | Tool: Clinical signs to identify acute | Confusion<br>Mood | Not described | No effectiveness data related to tool | Tested in on unit of 22 residents | | UK | study | tool "Significant<br>7" to identify<br>deterioration in 1<br>RACF over 4<br>months (n=22) | | deterioration. | Pain Hydration Skin Breathing Toilet or bowel habits | | | No acute<br>deterioration data<br>available | | Porter et al <sup>65</sup><br>2021<br>USA | Quality<br>improvement<br>study | Implement daily<br>sepsis screening<br>for all residents in<br>1 RACF for 3 | 1. | Use of tool: Systemic inflammatory response syndrome (SIRS) to | SIRS 2 or more of Temperature >380C or < 360C Heart rate >90 Respiratory rate >20 | RAC implementation of AC developed tool: | 2038 screening episodes<br>occurred identifying 4 cases<br>of sepsis | Volume of<br>screening to<br>identify cases<br>high resource | | Primary<br>author | Study design | Research purpose | Evi | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |----------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------| | author | Study design | months, 2038<br>screens | | identify sepsis in<br>RACF | PaCO2 <32 mmHg WBC >2,000 or <4000 cells / microlitre | Бечеюршеш | Efficacy | demand or<br>limited outcome | | Sloane et al <sup>66</sup><br>2014<br>USA | Retrospective<br>data analysis<br>study | Establish<br>temperature<br>norms for RACF<br>population, data<br>from 12 RACFs | 1. | Temperature range<br>norms for RACF<br>population | Non-illness' 97.2°F to 98.2°F (36.2°C to 36.7°C)<br>Fever at 2 standard deviations from mean<br>>98.7°F (37.1°C)<br>Fever at 3 standard deviations above mean<br>>99.2°F (37.3°C) | RAC study of temperature | Not applicable | Method<br>temperature<br>measurement not<br>recorded<br>Sample limited to | | | | over 3 months<br>(n=1007) | 2. | Fever definition for individual resident | >1.0°F above usual temperature fever likely<br>>1.5°F above usual temperature fever very likely | | | those treated with<br>antibiotic<br>Single<br>measurement in<br>one day | | 2018 | Retrospective<br>data analysis<br>study | Analyse the efficacy of standard sepsis tools in the RACF population via review of medical records from 31 RACFs over 18 months n=236 | 1. | The relevance of standard sepsis tools in the RACF population | SIRS – see porter et al (above) | Study of AC developed tools using RAC data | SIRS sensitivity 13-72 hours before hospitalisation 10% and $36\% \le 12$ hours before. | Data assessed<br>was discharge<br>summaries in<br>RACF, so data | | | | | | | Quick Sepsis related Organ Failure Assessment<br>(qSOFA) infection and 2 or more of<br>— Respiratory rate >22<br>— Altered level of consciousness<br>— Systolic BP < 100 mmHg | | qSOFA sensitivity 13-72 hours before hospitalisation 7% and $27\% \le 12$ hours before | gaps, 20%<br>residents not<br>returned to RACF<br>so no data,<br>missing<br>parameters to<br>measure qSOFA | | | | | | | 100-100-100: 2 or more of - Temperature > 1000F - Heart rate > 100 bpm - Systolic BP < 100 mmHg | | 100-100-100 sensitivity 13-72 hours before hospitalisation 28% and $79\% \le 12$ hours before. | | | | | | | | Measured temperature ≥99°F (37.2°C) | | $\geq$ 99.0°F sensitivity at 13-72 hours before hospitalisation 22% and at $\leq$ 12 hours before 51% | | | | | | | | Measured temperature ≥100.2°F (37.9°C) | | ≥100.2°F sensitivity at 13-72 hours before hospitalisation 9% and at 12 hours before 40% | | | Stocker et<br>al <sup>56</sup><br>2021<br>UK | Semi structured interviews | Interviews 10<br>RACF staff &<br>senior national<br>health service<br>staff (n=17) | 1. | Explore experience of<br>using NEWS in RACF<br>during the COVID -19<br>pandemic | See Barker et al 2019 (above) | RAC acceptability of AC developed tool | Shared clinical language of<br>NEWS was valued and<br>resulted in better response<br>from acute care. RACF staff<br>felt empowered | Under<br>representation of<br>non-senior HCAs<br>Unable to<br>interview general<br>practitioner | | Primary author | Study design | Research purpose | Evic | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |----------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------| | Stow et al <sup>69</sup><br>2021<br>UK | Ecological time<br>series data<br>study | Correlate scores<br>from the NEWS<br>with death in 460<br>RACFs over 3<br>months (n=6464) | 1. | Correlation between vital signs and death in RACF population | See Barker et al 2019 (above) | AC developed tool | High respiratory rates (≥22) and low oxygen saturation (≤92%) most closely follow pattern of population all-cause mortality in RACF | Method means<br>data correlation<br>could be<br>erroneous | | | | | | | | | Two-week time lag between change in temperature ( $\geq$ 36.9°C), respiratory rate ( $\geq$ 22) oxygenation ( $\leq$ 92%) and death | | | Teale et al <sup>60</sup> UK 2018 | Prospective<br>observational<br>study | Test a delirium<br>screening tool:<br>Delirium<br>Observation<br>Screening Scale | 1. | Tool: Delirium<br>Observation Screening<br>Scale (DOSS) to<br>identify delirium: 25<br>questions in 8 | <ol> <li>Consciousness</li> <li>Attention/concentration</li> <li>Thinking</li> <li>Memory/orientation</li> <li>Psychomotor activity</li> <li>Sleep/wake cycle</li> </ol> | AC development | 71 episodes of delirium<br>Sensitivity 61% (CI 39-<br>80%) Specificity 7% (CI70-<br>73%) PPV 1.6%, NPV<br>99.5%. | Expected 58,900 completed screens (got 51%) and 36% of screening tools | | | | (DOSS) in 9 RACFs over 16 months, produced, 30,201 screening events (n=216) | categories | 7. Mood<br>8. Perception | | Resource implication would take 3 hours of staff time per day in a 40 bed RACF | were fully<br>completed | | | Tingström et<br>al <sup>68</sup><br>2010<br>Sweden | Focus group<br>study | Explore HCA<br>observation of<br>signs and<br>symptoms of<br>acute deteriorate<br>related due to<br>infection (n=21) | 2. | Clinical signs of acute deterioration related to infection | Category; "not usual self" - Discomfort - Unrestrained behaviour - Aggressive - Restless - Confused - Tired and feeble - Decreased eating Category: "seems to be ill": - General signs of illness - Pain - Specific signs and symptoms of infection | RAC development | Not applicable | Translation from<br>Swedish to<br>English may have<br>lost meaning | | Tingström et al <sup>67</sup> 2015<br>Sweden | Prospective<br>tool testing<br>study | Valid tool: Early<br>Detection<br>Infection Scale<br>(EDIS) in 6<br>RACFs over 12<br>months (n=204) | 1. | Tool: EDIS identify<br>acute deterioration<br>related to infection.<br>Designed for HCA use<br>(binary scale) | Confusion Aggression Infirmity /apathy Unrestrained behaviour Changed appetite Pain Expression of illness in the eyes General signs and symptom of illness Urinary tract symptoms Respiratory symptoms | RAC development: used research above Tingström et al 2010 to develop tool | Signs with a strong corelation with infection were - General signs and symptoms of illness - Respiratory symptoms - Temperature 37.8°C +/-0.9°C | No gold standard<br>to measure<br>infection<br>presence<br>Missing data 44%<br>of EDIS form<br>completed when<br>HCA suspected<br>infection | | Primary<br>author | Study design | Research purpose | Evic | dence provided | Key components (of interest to this study) | Development | Efficacy | Limitations | |---------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------| | | | | | | Symptoms of wound infection<br>Elevated temperature | | | | | Voyer et al <sup>61</sup><br>2012<br>Canada | Case control tool testing | Prospective<br>weekly delirium<br>assessments of<br>residents in 7<br>RACFs over 6<br>months (n=279) | 1. | The usefulness of tool:<br>Confusion Assessment<br>Method (CAM) in<br>identifying prodrome<br>of delirium (weekly<br>screening). | CAM positive 1 and 2 plus 3 or 4 1. Acute onset and fluctuating confusion 2. Inattention | Acute care screening tool tested in RAC | Those with 3 symptoms (8% of residents) OR of delirium 2.52 (CI 1.08-5.87) | No immediate clinical implications | | | | | | | <ul><li>3. Disorganised thinking</li><li>4. Altered level of consciousness</li></ul> | | 90% of time residents with<br>perceptual symptoms did not<br>develop delirium | Screen occurred only once a week | | Voyer et al <sup>62</sup><br>2012<br>Canada | Prospective<br>observational<br>study | Determine<br>accuracy of RNs<br>identification of<br>delirium during<br>routine care in 7<br>RACFs over 6<br>months (n=202) | 1. | Nurses can identify<br>delirium during routine<br>daily care | Assessed against CAM criteria | Acute care screening tool ed in RAC | Routine observation<br>sensitivity 51%, specificity<br>89%, PPV 35%<br>NPV 95% | May have missed<br>cases of delirium<br>due to fluctuation<br>of symptoms | | Voyer et al <sup>63</sup><br>2015<br>Canada | Tool validation<br>study | Test tool: Recognising Acute Delirium As part of your Routine (RADAR) in 3 hospital and 5 RACFs units over 12 months (total residents n=51) | 1. | Tool: identify delirium | <ul> <li>RADAR positive if yes to 1 of following questions: when you gave the resident his/her medication:</li> <li>1. Was the resident drowsy?</li> <li>2. Did the resident have trouble following instructions?</li> <li>3. Were the resident's movements slowed down?</li> </ul> | AC and RAC developed tool: focus group and refinement process | Repeated tool use (3-4 times) per resident<br>Sensitivity 100% (CI 3-100),<br>Specificity 44% (28-60),<br>PPV 4 % (CI 0-22%)<br>NPV 100% (CI 81-100%)<br>Takes 7 seconds to use | Small number<br>residents in study<br>Only applied<br>when resident<br>taking medication | <sup>\*</sup> dataset from Kane et al 22 2017. CI= 95% confidence interval. PPV: positive predictive value. NPV: negative predictive value. OR odds ratio. LR likelihood ratio. RACF residential aged care facility. HCA health care assistant. RN Registered Nurse. NP Nurse Practitioner. AC: Acute Care. RAC: Residential Aged Care Table 2: Typical patterns of acute deterioration in residents | Study | Ouslander et al <sup>46</sup> | Ouslander et al <sup>45</sup> | †Popejoy<br>et al <sup>48</sup> | Vogelsmeier et<br>al <sup>54</sup> | Unroe<br>et al <sup>52</sup> | Unroe<br>et al <sup>53</sup> | |----------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | Root Cause Analysis Tool* | Change in<br>Condition<br>Without<br>Transfer | Review of<br>Acute Care<br>Transfer | | Total episodes† | 7689 (%) | 4856 (%) | 3964 (%) | 650 (%) | 1174 (%) | 867 (%) | | Signs of acute deterioration | | | | | | | | Altered mental status | 2094 (27) | 1356 (28) | 741 (19) | 156 (24) | 600 (31) | 190 (22) | | Functional decline | 2154 (28) | 759 (16) | | | | | | Reduced food and/or fluid intake | 1164 (15) | 567 (12) | | | | | | Behaviour symptoms or change | 1599 (21) | 733 (15) | 492 (13) | | | | | New or uncontrolled pain | 1844 (24) | 901 (19) | 745 (19) | 95 (15) | 218 (11) | | | Breathing difficulty | 986 (13) | 1132 (23) | 747 (19) | | 312 (16) | 91 (11) | | Cough | 1057 (14) | | | | | | | Skin or wound changes | 886 (12) | | | | | | | New urinary | 708 (9) | 164 (3) | (3) (4) | 22 (3) | | | | Nausea or vomiting | 565 (7) | 345 (7) | 325 (8) | | | | | Fall | 471 (6) | 392 (8) | 532 (14) | 115 (18) | 314 (17) | 162 (19) | | Unresponsive | | 498 (10) | 300 (8) | | | | | Abnormal BP or respiratory rate | 1086 (14) | 1622 (33) | 1041 (26) | | | | | Pulse oximetry low | 423 (5) | 792 (16) | 837 (21) | | | | | Fever | 702 (9) | 587 (12) | 378 (10) | | | | <sup>\*</sup> Acute Change in Condition and Review of Acute Care Transfer tools collect same data points. †Each episode may have more than one sign of deterioration