1	Assessing carbon greenhouse gas emissions from aquaculture in
2	China based on aquaculture system types, species, environmental
3	conditions and management practices
4	Yifei Zhang ^{a,b,c,d} , Kam W. Tang ^e , Ping Yang ^{a,b*} , Hong Yang ^{f,g} , Chuan Tong ^{a,b} ,
5	Changchun Song ^{c,h*} , Lishan Tan ⁱ , Guanghui Zhao ⁱ , Xudong Zhou ^j , Dongyao Sun ^k
6	^a School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
7	^b Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of
8	Education, Fujian Normal University, Fuzhou 350007, China
9	^c Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography
10	and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
11	^d University of Chinese Academy of Sciences, Beijing 100049, China
12	^e Department of Biosciences, Swansea University, Swansea SA2 8PP, U.K.
13	^f College of Environmental Science and Engineering, Fujian Normal University, Fuzhou,
14	350007, China
15	^g Department of Geography and Environmental Science, University of Reading, Reading,
16	<i>U.K.</i>
17	^h School of Hydraulic Engineering, Dalian University of Technology, Dalian 116023,
18	China
19	ⁱ State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming,
20	East China Normal University, Shanghai 201199, China
21	^j School of Hydrology and Water Resources, Nanjing University of Information Science
22	and Technology, Nanjing 210044, China
23	^k School of Geography Science and Geomatics Engineering, Suzhou University of Science
24	and Technology, Suzhou 215009, China
25	*Corresponding authors:

26 Ping Yang (yangping528@sina.cn); Changchun Song (songcc@neigae.ac.cn)

27 **ABSTRACT**

Aquaculture is one of the fastest growing food production sectors in China, but many of 28 the small-hold operations are poorly assessed for their climate impact. We analyzed the 29 literature data on CO₂ and CH₄ fluxes from various aquaculture systems in China. The 30 mean fluxes varied from -382.45 to 551.88 g CO_2 -C m⁻² yr⁻¹ and -0.03 to 565.09 g CH₄-31 C m⁻² yr⁻¹. Aquaculture system reclaimed from mudflat had the highest CH₄ emission 32 $(54.92 \pm 21.00 \text{ g C m}^{-2} \text{ yr}^{-1})$ but lowest CO₂ emission. Shrimp aquaculture and semi-33 intensive farming tended to yield higher CH4 emission. Small and shallow systems had 34 significantly higher CO₂ and CH₄ emissions, with chlorophyll *a* and dissolved oxygen 35 concentrations among the main environmental drivers. Management practice such as 36 drainage, exposure and desilting during the non-farming period significantly decreased 37 CH₄ emission. We estimated that aquaculture systems in China emitted 181.66 Tg CO₂-38 eq yr⁻¹, enough to offset $\sim 7\%$ of the national terrestrial carbon sink, with most of the 39 emission concentrated in coastal provinces and along the major rivers in the southeastern 40 quadrant. This study highlights the need to account for carbon greenhouse gas emissions 41 from aquaculture to improve the accuracy of the regional and national carbon budgets. 42 *Keywords:* Carbon dioxide (CO₂); Methane (CH₄); Aquaculture systems; management 43

44 practices; Global warming potential (GWP); Global climate change

1. Introduction

Increasing level of atmospheric greenhouse gases (GHGs) is a global climate challenge (Fang et al., 2018; IPCC, 2021). Carbon dioxide (CO₂) and methane (CH₄) are two important GHGs, accounting for approximately 60% and 20% of the atmospheric radiative forcing, respectively (World Meteorological Organization, 2021). CO₂ and CH₄ emissions from terrestrial aquatic systems such as rivers, lakes, reservoirs and wetlands are estimated at 1.2 - 2.1 Pg C yr⁻¹ (Raymond et al., 2013) and 0.65 Pg C yr⁻¹ (CO₂-eq) (Bastviken et al., 2011), respectively, enough to offset the majority of the terrestrial carbon sink (Aufdenkampe et al., 2011; Langeveld et al., 2019).

There is increasing evidence that the climate importance of aquatic systems may have been underestimated because the existing GHG budget largely ignores the contribution from small and shallow water bodies (Peacock et al., 2021; Yang et al., 2020a; Zhang et al., 2021), and large variability in GHG emissions due to human disturbances remains poorly resolved (Yuan et al., 2019; Van Bergen et al., 2019). There are estimated 3.2×10^9 small shallow ponds globally, both natural and man-made, covering a total area of approximately 8.0×10^7 ha (Downing, 2010; Holgerson and Raymond, 2016). Assessment of GHG fluxes in shallow ponds, especially aquaculture systems, has attracted much attention in recent years (IPCC, 2021; Liu et al., 2016; Xiao et al., 2017; Yuan et al., 2021) due to their role as potential hotspots for CO₂ and CH₄ emissions (Laurion et al., 2010; Peacock et al., 2019). Compared with natural water bodies, aquaculture systems have much higher biological density and productivity (Tong et al., 2021) and enrichment from fertilizer and feeds (Kosten et al., 2020; Naskar et al., 2020; Ye et al., 2022). These conditions tend to favor high respiration and methanogenic rates, leading to high CO₂ and CH₄ emissions (Chanda et al., 2019; Kosten et al., 2020; Rutegwa et al., 2019; Yang et al., 2021).

China has the largest land-based aquaculture industry in the world in terms of areal coverage, reaching $\sim 2.57 \times 10^6$ ha (Chen et al., 2016; FAO, 2018), equivalent to 7.2% of China's terrestrial water area. Driven by the declining natural fishery resources and strong demand for aquatic products, aquaculture in coastal and inland areas has grown (China Fisheries Yearbook, 2019). China's land-based aquaculture systems can be classified into coastal wetland reclamation system (CWRS), inland pond system (IPS), lake/reservoir system (LRS) and rice-field system (RFS) (Liu et al., 2016; Pu et al., 2022; Yang et al., 2018), with water salinity ranging from fresh to brackish. The primary farmed organisms include fish, shrimp, crab and mixed culture (Hu et al., 2020; Wu et al., 2018; Chen et al., 2016). The aquaculture intensity level ranges from ecological stocking to extensive, semi-intensive and intensive (Ding et al., 2020). Management practices also vary in terms of aeration, frequency of water change, drainage and other aspects (Kauffman et al., 2018; Liu et al., 2016; Maher et al., 2019). These variations will likely affect the biogeochemical conditions that determine CO₂ and CH₄ emissions, but detailed comparisons are limited (Bhattacharyya et al., 2013; Sun et al., 2019).

To fill this knowledge gap, we conducted a comprehensive analysis of data from 132 aquaculture sites in China. The specific objectives of this study were: 1) to quantify the differences in CO_2 and CH_4 emissions across the different land-based aquaculture

systems and species; 2) to explore the impact of management methods and key environmental variables in controlling CO₂ and CH₄ emissions; and 3) to assess the combined global warming effect of CO₂ and CH₄ emissions from aquaculture systems in China.

2. Materials and Methods

2.1. Data sources and selection criteria

Data of CO₂ and CH₄ fluxes were collected from peer-reviewed journal articles and dissertations in Web of Science (<u>http://www.webofknowledge.com/</u>), Google Scholar (<u>http://scholar.google.com</u>) and China Knowledge Infrastructure (CNKI, <u>http://www.cnki.net</u>). "GHGs or CO₂ or CH₄ flux", "aquaculture ecosystem or small pond or shallow lake / reservoir or rice field" and "fish or shrimp or crab or mixed aquaculture" were used as search words for the period of 2008 – 2022.

Initial data were filtered according to five criteria: 1) Data were collected in China, including at least one aquaculture system classified as CWRS, IPS, LRS or RFS; 2) Data were from land-based aquaculture systems, excluding marine aquaculture systems such as cage, ranch and bottom seeding; 3) Data covered at least one production cycle, namely the farming period, to minimize short-term noise; 4) Data covered at least one GHG, CO₂ or CH₄; 5) Gas fluxes were either derived from laboratory measurements of water samples (e.g. intensive systems) or directly measured *in situ* (all systems).

2.2. Data extraction

A total of 132 aquaculture sites were identified based on 62 published papers and

dissertations for the comprehensive analysis (full list in Supplementary Material Table S1–S4), including 32 CWRS, 53 IPS, 23 LRS and 24 RFS, spanning from tropical to temperate latitudes (Fig. 1). We divided the sites into four farming intensity levels according to Yuan et al. (2019): ecological stocking, extensive, semi-intensive and intensive. CO_2 and CH_4 emission fluxes were measured by floating chamber (*in situ*) or derived from headspace equilibrium and thin boundary layer model, both common methods for determining GHG fluxes across the water-air interface. Numerical values were obtained from the papers or dissertations directly where available; otherwise, they were extracted from digitized graphs using the Image Digitization Tool in OriginPRO 2021.

In addition to CO₂ and CH₄ emission fluxes, we also recorded the geographical coordinates (longitudes and latitudes), aquaculture species, management information and environmental data (Table S5–S8). Management information included the use of aeration, system treatment during non-farming period, plant planting, water salinity and micro topography (water depth and area). Environmental data included mean annual air temperature, mean annual precipitation, water temperature, water pH, dissolved oxygen (DO), Chlorophyll-*a* (Chl-*a*), dissolved organic carbon (DOC), total dissolved nitrogen (TDN), ammonium nitrogen (NH₄⁺-N), and nitrate nitrogen concentrations (NO₃⁻-N). When necessary, missing values for air temperature and precipitation were filled in with data from WorldClim (http://www.worldclim.org/) for the corresponding locations.

Since CH₄ has a stronger warming effect (~45 times of CO₂ over a 100-year time horizon; Neubauer and Megonigal, 2015) than CO₂, we calculated the combined annual

 CO_2 -equivalent emission (t CO_2 -eq ha⁻¹ yr⁻¹) from the aquaculture systems with the following equation:

CO₂-equivalent emission =
$$\frac{1}{100} \times (\frac{44}{12}FCO_2 + 45 \times \frac{16}{12}FCH_4)$$
 (1)

where FCO_2 and FCH_4 are the carbon fluxes for the respective gases (g C m⁻² yr⁻¹; positive values for emission); 44/12 and 16/12 are coefficients to convert carbon masses of CO_2 and CH_4 to the respective gas masses; 45 is the factor to covert CH_4 to CO_2 -equivalent emission (100-year time horizon); and 1/100 is the unit conversion factor.

2.3. Calculation of aquaculture-GHG flux in China

Based on the mean fluxes of CO₂ and CH₄ during the farming period for the different aquaculture system types (CWRS, IPS, LRS and RFS), we multiplied them by the system-specific areal coverage in each province (China Fisheries Yearbook, 2019; Tan et al., 2019; Yuan et al., 2019) to calculate the spatial distributions and magnitudes of aquaculture-GHG fluxes across China. Species information was not included in the calculation because it was not always available. Estimates from river-ditch and other aquaculture waters were excluded due to their relatively small area (~3.55% of the national land aquaculture area) and the absence of relevant data for GHG fluxes. In addition, the investigation sites used in this study were basically located in eastern China, the traditionally hot spots for aquaculture, while the data of arid and semi-arid areas in the west were scarce.

2.4. Statistical analysis

All statistics were performed in SPSS 25.0 (Chicago, IL, USA). Data were checked

for normality and homogeneity of variance, and Tukey transformation was applied when necessary. Non-parametric test (Kruskal-Wallis) was used for data that failed to meet the requirements after conversion. Effects of aquaculture systems, species and management methods on CO₂ and CH₄ fluxes were examined by analysis of variance (ANOVA). Linear and logarithmic regression analysis were conducted to explore the relationship between CO₂ and CH₄ fluxes and environmental variable. Statistical significance was tested at the level of 0.05. Boosted regression tree model (BRT) was used to evaluate the relative importance of different variables in determining CO₂ and CH₄ fluxes, using the package "gbm" in the Rstudio version 1.0.143 (http://www.rstudio.com/). More details of BRT model operation and prediction are included in the Supplementary Material. Aquaculture site map was generated using ArcGIS 10.2 (ESRI, Redlands, CA). The statistical results were plotted using Origin 2022 (Origin Lab Corporation, Northampton, MA, USA). Data are presented as mean ± SE.

3. Results

3.1. Variations in GHGs fluxes among aquaculture systems and species

 CO_2 flux value ranged from -382.45 to 551.88 g C m⁻² yr⁻¹, with 23% of the sites showing a net uptake, whereas CH₄ flux value ranged from -0.03 to 565.09 g C m⁻² yr⁻¹.

There were significant variations in CO₂ flux among the different aquaculture systems (P < 0.01; Table S9), being highest in RFS (509.13 g C m⁻² yr⁻¹), followed by

IPS (107.14 \pm 23.67) and LRS (107.67 \pm 28.75) (Fig. 2a–d). CO₂ flux in CWRS was relatively low, ranging from -119.59 to 167.96 g C m⁻² yr⁻¹, with over 40% of the data showing a net CO₂ uptake especially for mixed species culture. Nevertheless, there was no overall significance difference among farmed species (*P* > 0.05; Table S9).

Large variations in CH₄ fluxes were observed among the different aquaculture systems (P < 0.001) and species (P = 0.003; Table S9). Mean CH₄ flux (g C m⁻² yr⁻¹) was 57.92 ± 21.00 in CWRS, 40.48 ± 14.47 in IPS and 29.60 ± 4.45 in RFS (Fig. 2e–h), and it was much lower in LRS (6.32 ± 3.55). Among the different farmed species, CH₄ flux (g C m⁻² yr⁻¹) was highest for shrimp (80.43 ± 25.23), followed by fish (30.75 ± 8.63), crab (22.05 ± 6.24) and mixed species (6.98 ± 2.71).

The combined GHG emissions of CWRS, IPS, and RFS differed slightly, averaging 35.26, 28.21 and 36.43 t CO₂-eq ha⁻¹ yr⁻¹, respectively, with CH₄ as a substantial or the dominant component (Fig 2i, j, l). In comparison, LRS emitted less than 8 t CO₂-eq ha⁻¹ yr⁻¹ (Fig 2k).

3.2. Influence of aquaculture management on GHG emissions

Farming intensity. CO₂ flux (g C m⁻² yr⁻¹) decreased in the order of intensive $(294.37 \pm 110.08) > \text{ecological stocking} (105.33 \pm 80.74) > \text{extensive} (96.96 \pm 20.44) > \text{semi-intensive} (45.68 \pm 19.24)$ (Fig. 3). CH₄ flux (g C m⁻² yr⁻¹) decreased in the order of semi-intensive (57.28 ± 15.33) > extensive (24.78 ± 6.53) > intensive (3.47 ± 1.65) > ecological stocking (2.25 ± 0.73) (Fig. 3). Overall, intensive aquaculture had a significantly higher CO₂ emission flux but lower CH₄ emission flux than semi-intensive and extensive aquaculture (*P* < 0.05).

Aeration. The average CH₄ flux was 15.80 ± 5.02 g C m⁻² yr⁻¹ in systems with aeration, and significantly higher in systems without aeration, at 60.78 ± 12.35 g C m⁻² yr⁻¹ (P < 0.05; Table 1). In contrast, CO₂ flux showed negligible difference between aerated systems (44.36 ± 24.49 g C m⁻² yr⁻¹) and non-aerated systems (45.91 ± 19.02 g C m⁻² yr⁻¹) (P > 0.05; Table 1).

Aquatic plants. Although the effects were not statistically significant, the presence of aquatic plants tended to result in 42.7% lower CO₂ and 28.5% lower CH₄ emissions on average (Table 1).

Area and depth. Systems smaller than 1 hectare in size had significantly higher CO_2 flux (78.19 ± 43.73 g C m⁻² yr⁻¹) and CH₄ flux (87.65 ± 28.86 g C m⁻² yr⁻¹) than those of larger size (33.62 ± 19.53 g C m⁻² yr⁻¹ as CO_2 and 26.91 ± 7.98 g C m⁻² yr⁻¹ as CH₄) (P < 0.05; Table 1). Shallower system (< 1.2 m) had significantly higher CH₄ flux (57.40 ± 13.93 g C m⁻² yr⁻¹) than deeper system (> 2.0 m; 16.41 ± 14.52 g C m⁻² yr⁻¹) (P < 0.05; Table 1). CO₂ flux also tended to increase with shallower depth, although the difference was not significant (P > 0.05; Table 1).

Water salinity. Significant differences in CO₂ and CH₄ fluxes were observed across the salinity spectrum (Table 1). CH₄ flux in high-salt systems (> 5‰) was only 9.17 \pm 5.87 g C m⁻² yr⁻¹, equivalent to 8.6% and 23.1% of that in low-salt and freshwater systems, respectively (*P* < 0.05). CO₂ flux decreased with increasing salinity and became negative in high-salt systems, indicating a net CO₂ uptake (Table 1).

Management practice in non-farming period. The different ways farmers treated their aquaculture systems during the non-farming period significantly affected CH₄ flux

but not CO₂ flux (Table 1). In particularly, draining, exposing and desilting the systems (practice III) led to ~97% less CH₄ emission (P < 0.05).

3.3. Relationship between GHGs and environmental factors

Linear and logarithmic regressions between CO₂ or CH₄ fluxes and environmental variables are shown in Fig. 4. CO₂ flux was positively correlated with inorganic nitrogen concentrations (NH₄⁺-N and NO₃⁻-N), and negatively with pH and Chl-*a* concentration (P < 0.001, Fig. 4a–d). CH₄ flux was positively correlated with water temperature, Chl-*a* and DOC concentrations, and negatively with DO ($P \le 0.001$, Fig. 4e–h).

BRT model was used to rank the environmental variables in influencing GHG fluxes. Chl-*a* had the largest influence (54%) on CO₂ flux, followed by pH (19.9%), DO (10.7%) and inorganic nitrogen (NH₄⁺ and NO₃⁻ combined 13.1%) (Fig. 5a). For CH₄ flux, Chl-*a* (38.9%), DOC (22.8%) and DO (18.5%) were the most important factors (Fig. 5b).

3.4. Spatial distribution of aquaculture-GHG emissions in China

Based on government statistics on the areas of CWRS, IPS, LRS, and RFS across China, the total annual CO₂ and CH₄ emissions from land-based aquaculture were estimated to be 14.98 and 2.20 Tg C yr⁻¹, respectively (Fig. 6a and 6b). This is equivalent to 0.94% and 5.50% of the national anthropogenic CO₂ and CH₄ emissions, respectively. The combined emission was 181.66 Tg CO₂-eq yr⁻¹ (Fig. 6c). Among the different types of aquaculture systems, IPS and RFS made the largest contributions based on their geographical coverage, at 74.61 and 69.35 Tg CO₂-eq yr⁻¹, respectively.

4. Discussion

4.1. CO₂ flux in different aquaculture systems

Our study showed that the biogeochemical conditions within the aquaculture systems had significant effects on CO₂ flux (Fig. 4). In addition to the farmed animals, many of the systems contained high abundances of algae. Photosynthesis by algae would draw down CO₂, resulting in a negative correction between CO₂ flux and Chl-a concentration (Fig. 4b). Indeed, photosynthetic draw-down due to the high Chl-a concentration in CWRS (Fig. S1d) was strong enough to cause a negative CO₂ flux (net absorption) (Fig. 2a). Water pH can influence CO₂ flux by shifting the chemical equilibrium within the carbonate system (Soumis et al., 2004). Higher pH favors the conversion of CO₂ and HCO₃⁻ to CO₃²⁻, thereby decreases pCO₂ and promotes the dissolution of atmospheric CO₂ into the water (Aimé et al., 2018; Olsson et al., 2015; Pacheco et al., 2015; Zhang et al., 2019), which is consistent with the significant negative correlation between CO₂ flux and pH we observed (Fig. 4a). Interestingly, RFS had a high pH (Fig. S1b) and the highest CO₂ emission among all systems (Fig. 2d). Compared to other aquaculture systems, the usually higher biomass (rice and aquatic animals) in RFS would lead to higher respiration rate and CO₂ emission flux. CO₂ flux was positively related to inorganic nitrogen (NH₄⁺-N and NO₃⁻-N; Fig. 4d), reflecting the results of microbial remineralization of organic nitrogen in the system.

Farmed animals are an important source of CO₂ emission (Ma et al., 2018; Mermillod-Blondin and Rosenberg, 2006; Sejr et al., 2014; Liu et al., 2016) based on their respiration capacity and trophic characteristics (Scofield et al., 2016; Sidik and Lovelock, 2013). Larger animals tend to have a greater contribution to CO₂ emission per individual (Chanda et al., 2019; Yang et al., 2018; Zhang et al., 2019), while filter feeders such as *Hypophthalmichthys molitrix* and *Aristichthys nobilis*, both popular farmed fish species in China, consume microalgae in the water and decrease photosynthetic draw-down of CO₂ (Chen et al., 2016). Nevertheless, we found no significant differences in CO₂ flux among fish, crab, shrimp and mixed species cultures (Table S9). While shrimp is considerably smaller in size than fish and crab, shrimp and mixed aquaculture often has a higher stocking density that results in an overall high respiratory CO₂ emission from the system.

4.2. CH₄ flux in different aquaculture systems

All of the aquaculture systems we examined were a stronger source of atmospheric CH₄ than lakes, reservoirs and rivers (Chen et al., 2021; Delsontro et al., 2016; Ding et al., 2005; Li et al., 2018). Aquaculture systems have high organic loading from feeds and animal wastes that would fuel methanogenesis (Tong et al., 2021; Yuan et al., 2021), as evidenced by the positive correlation between CH₄ flux and DOC (Fig. 4h). Also, the high respiration rates from microbes and farmed animals would create a low-oxygen environment that favors CH₄ production and transport (Sun et al., 2019; Yang et al., 2019), consistent with the observed negative correlation between CH₄ flux and DO (Fig. 4f). There was also a significant difference in CH₄ flux among the different aquaculture systems (Table S9). LRS located in the open water of lakes and reservoirs would have more water movement leading to a higher DO (Fig. S1c). In contrast, the more enclosed

and stagnant nature of CWRS, IPS, and FRS would allow the accumulation of DOC and nutrients (Fig. S1e–i) and depletion of DO (Fig. S1c), which would favor methanogenesis (Fang et al., 2022; Holgerson et al., 2016; Zhu et al., 2016). Consequently, CH₄ fluxes in CWRS, IPS and FRS were all an order of magnitude higher than LRS (Fig. 2e–h).

Across all data, CH₄ flux was positively correlated with water temperature over a 17 °C range (Fig. 4e). Higher temperature would not only increase microbial activity in CH₄ production, but also decrease gas solubility and increase its transport through ebullition and diffusion across the water-air interface. Nevertheless, the low r-square value (0.13) of the regression means that water temperature was a minor factor. Another interesting observation was the positive correlation between CH₄ flux and Chl-*a* (Fig. 4g). In addition to contributing organic substrates for anaerobic methanogenesis, recent research has shown that some phytoplankton may produce CH₄ directly (Bižić et al., 2020; Günthel et al., 2020; Klintzsch et al., 2019), a phenomenon known as 'oxic methane production' that is widespread in aquatic habitats (Bogard et al., 2014; Günthel et al., 2016). It is worth noting that some of the high CH₄ flux values were observed in well-oxygenated water (>6 mg DO L⁻¹) and that clearly deviated from the main trend (Fig. 4f), suggesting a possible role of oxic methane production in the systems (Tang et al., 2014).

In terms of farmed species, shrimp aquaculture had a much higher CH₄ flux than fish and crab aquaculture (Fig. 2e–h; Table S9). The higher stocking density and larger amounts of feeds used in shrimp aquaculture compared to the other species would deplete DO (Holgerson, 2015; Van Bergen et al., 2019) and increase CH₄ production (Chen et al., 2016; Chatvijitkul et al., 2017; Yang et al., 2015). Consistent with others' observations (Fang et al., 2022; Yang et al., 2015), mixed species aquaculture had lower CH₄ flux than monoculture (Fig. 2e, f), likely because of the higher efficiency for mixed species to utilize organic matters within the water column and decrease organic input into the sediment for methanogenesis (Hu et al., 2016; Zhang et al., 2022). For example, large fish use feed directly, while their feces and detritus can be utilized by filter-feeders, omnivorous shrimp or crabs.

4.3. Effects of aquaculture management on GHG fluxes

Our results showed that CO_2 and CH_4 fluxes were affected by management measures (Table 1). While high farming intensity increased CO_2 flux due to the higher biological activities, it decreased CH_4 flux likely because of the use of aeration and more precise feeding and water quality regulation (Fig. 3).

Aeration had no significant effect on CO₂ flux, but it decreased CH₄ flux by 75% (Table 1). Most of the aerating devices used by farmers were impeller machines. Aeration would not only increase the DO level to inhibit anaerobic methanogenesis, but the physical mechanism of the impellers would break CH₄ bubbles, thereby decreasing the effectiveness of ebullition as the main CH₄ emission pathway (Tong et al., 2021; Yang et al., 2020b). Other type of aerator, such as bottom micropore oxygenation equipment, have even stronger oxygenation effect near the sediments (Ding et al., 2020; Hu et al., 2016) and may further decrease CH₄ production in the systems.

Planting aquatic plants was necessary to provide habitat and natural feed for some

aquaculture species like *Eriocheir sinensis* and *Ctenopharyngodon idella*. Several scholars have observed that aquatic vegetation increased CH₄ emissions by 14 to 128 % (Ding et al., 2020; Liu et al., 2016; Ma et al., 2018), while others found a reduction in GHG emissions (Lin et al., 2013). Our data showed that the presence of aquatic plants decreased CO₂ and CH₄ emissions, albeit not significantly (Table 1). The effects of aquatic vegetation on GHG dynamics can be variable: Aquatic plants not only provide organic substrates for CO₂ / CH₄ production and vascular tissues for transport (Sorrell and Boon, 1994; van der Nat and Middelburg, 1998), but they photosynthetically absorb CO₂ and release O₂ into the rhizosphere to promote oxidation (Calhoun and King, 1997; Fritz et al., 2011; Laanbroek et al., 2010). The effects of aquatic plants can be complex and variable, which may depend on the plant species and their positions in the systems.

GHG emissions varied significantly based on the size (depth and area) of the aquaculture system (Table 1). Smaller systems meant higher concentrations of organic and nutrients (Holgerson and Raymond, 2016; Natchimuthu et al., 2017) and higher biological density, leading to higher respiratory CO₂ output per unit area. Furthermore, a smaller surface area also limited oxygen dissolution from air. At the same time, a shallower depth helps to reduce the oxidation probability as sedimentary CH₄ travels through the water column, thereby increasing its emission to air (Herbeck et al., 2013; Natchimuthu et al., 2014). Under the combined effect of these factors, high levels of CO₂ and CH₄ emissions were observed in small-scale aquaculture systems (Table 1).

Aquaculture systems from reclaimed coastal marshes and mudflats tend to have higher salinity than inland systems. Our data showed that higher salinity significantly decreased CH₄ flux (Table 1) because the presence of SO₄²⁻ from seawater would allow sulfate reducers to outcompete methanogens (Wilson et al., 2015 Poffenbarger et al., 2011; Yang et al., 2018). Another interesting observation is the much lower CO₂ flux (including negative values) at the higher salinity (Table 1). Reclaimed coastal aquaculture systems are usually filled with saltwater drawn from nearby estuaries, which exposes terrestrial microbes to salinity stress and decreases their metabolism (Pivničková et al., 2010). Estuarine water also may contain higher background abundance of algae that could drawdown CO₂ via photosynthesis. As a management strategy to decrease GHG emission, water salinity can be raised artificially for aquatic products (e.g., *Litopenaeus Vannamei*) with a wide salinity tolerance.

Management method during the non-farming period varied among the farmers, from having minimal treatment (practice I), to drainage and exposure (II), to drainage, exposure and dredging (III). Most of the unconsumed feeds and organic wastes tend to accumulate in the sediment (Yang et al., 2022) which, if left untreated, could lead to high CH₄ production in the subsequent farming period. Exposure and desilting after drainage removes the organic deposition, disrupts the sediment methanogen community and reoxygenates the sediment, all leading to a much lower CH₄ emission (Tong et al., 2021), as supported by our findings (Table 1).

4.4. GHG emissions from aquaculture systems in China

The rapid increase in global aquaculture has raised concerns about its GHG emissions (MacLeod et al., 2020). The total aquaculture area in China has doubled while aquaculture production has increased by 41 times in the past four decades (Wang

et al., 2019), showing the rapid expansion and intensification of the sector. However, China's aquaculture sector is dominated by small-hold operations in rural areas without proper monitoring, creating a glaring data gap in assessing their environmental impacts. A very recent paper used conversion factors to estimate China's aquaculture GHG emissions from the operation (e.g., use of feeds, fertilizer and energy) and biomass harvest (Xu et al., 2022). Such an approach relies on questionable conversion factors and ignores the in situ biogeochemical conditions that regulate the conversion of excess carbon to CO₂ vs. CH₄ (Yang et al., 2020a). More importantly, that approach will not reveal negative CO₂ flux (indicating net absorption), such as what we found in CWRS (Fig. 2a) but which is important for proper auditing of the climate impact of aquaculture. In our study, we compiled GHG emission data that were measured directly or derived from empirical measurements, which showed large differences across the different aquaculture systems (Fig. 2; Table S9). The 25-fold variation in mean CO₂ flux and 9fold variation in mean CH₄ flux highlight the importance to consider system-specific differences when assessing aquaculture-related GHG emissions.

Our calculations showed that aquaculture systems contributed a non-trivial portion of China's CH₄ emission. The combined emission, 181.66 Tg CO₂-eq yr⁻¹, was equivalent to approximately 7.51% of the 2010-2016 national terrestrial biosphere carbon sink (-2418.78 \pm 1906.67 Tg CO₂-eq yr⁻¹) (Wang et al., 2020). Based on our estimation, while aquaculture systems in China accounted for only 0.22–0.56 % of the area of global terrestrial aquatic ecosystems (12.81 \times 10⁶–32.91 \times 10⁶ km²) (e.g., lakes, reservoirs, rivers, ponds and wetlands) (Deemer et al., 2016; Holgerson and Raymond 2016; Melton et al. 2013; Raymond et al. 2013), they contributed 2.84% of the total CH₄ emission (Bastviken et al., 2011). This highlights the disproportionate significance of China's growing aquaculture sector in driving climate warming.

We also found large geographical variations in aquaculture-GHG emissions across China. Perhaps not surprisingly the most intense emissions came from provinces in the middle and lower reaches along the Yangtze River (Fig. 6). The spatial distribution of combined emission we obtained largely agreed with the finding by Xu et al. (2022), in that GHG emissions were concentrated in the coastal provinces and southeastern region, whereas the far north and northwestern regions had negligible emissions because the local climate was not favorable for aquaculture, with the caveat that data for those regions remain very scarce. There are also subtle differences between the two studies. For example, GHG contributions of the land-locked provinces of Sichuan and Hunan ranked more highly in our estimates than in their study. This difference can be partly attributed to the different approach we used to estimate the emissions (empirical, in situ measurements) and our considering system-specific differences in emissions (cf. Xu et al., 2022).

5. Conclusions

By analyzing the literature data, we showed that aquaculture systems in China were a net source of CO_2 and CH_4 . There were substantial variations in GHG emissions based on aquaculture system type, environmental conditions, farmed species and management practices. The combined carbon emission was enough to offset ~7% of the

national terrestrial carbon burial, and the aquaculture systems had disproportionate significance in terms of CH₄ emission. We further estimated that across China, most of the aquaculture-GHG emissions were concentrated along the major rivers and the coastal region, although data for the north and northwestern regions remain very limited. With the continuous expansion and increasing intensification of the aquaculture sector in China, the study highlights its potential climate impact and the need for more rigorous monitoring and mitigation strategy for the sector.

Declaration of interest

None

Acknowledgment

This research was financially supported by the National Natural Science Foundation of China (Grant No. 41801070, 41671088, and 41730643), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01136, and 2018J01737), and Minjiang Scholar Programme.

References

- Aimé, J., Allenbach M., Bourgeois C., Léopold, A., Jacotot, A., Vinh, T.V., Nho, N.T., Patrona, L.D., Marchand, C., 2018. Variability of CO₂ emissions during the rearing cycle of a semi-intensive shrimp farm in a mangrove coastal zone (New Caledonia). Mar. Polluti. Bull. 129, 194. https://doi.org/10.1016/j.marpolbul.2018.02.025.
- Aufdenkampe, A.K., Mayorga, E., Raymond, P.A., Melack, J.M., Doney, S.C., Alin, S.R., Aalto, R.E., Yoo, K., 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60.

https://doi.org/10.1890/100014.

- Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A., 2011. Freshwater methane emissions offset the continental carbon sink. Science 331, 50. https://doi.org/10.1126/science.1196808.
- Bhattacharyya, P., Sinhababu, D.P., Roy, K.S., Dash, P.K., Sahu, P.K., Dandapat, R., Neogi, S., Mohanty, S., 2013. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system. Agr. Ecosyst. Environ. 176, 53–62. http://dx.doi.org/10.1016/j.agee.2013.05.015.
- Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Günthel, M., Muro-Pastor, A.M., Eckert, W., Urich, T., Keppler, F., Grossart, H-P., 2020. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6, eaax5343. https://doi.org/ 10.1126/sciadv.aax5343.
- Bogard, M.J., del Giorgio, P.A., Boutet, L., Chaves, M.C.G., Prairie, Y.T., Merante, A., Derry, A.M., 2014. Oxic water column methanogenesis as a major component of aquatic CH₄ fluxes. Nat. Commun. 5, 5350. https://doi.org/10.1038/ncomms6350.
- Calhoun, A., King, G.M., 1997. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes. Appl. Environ. Microb. 63, 3051–3058. https://doi.org/10.1089/oli.1.1997.7.439.
- Chanda, A., Das, S., Bhattacharyya, S., Das, I., Giri, S., Mukhopadhyay, A., Samanta, S., Dutta, D., Akhand, A., Choudhury, S.B., Hazra, S., 2019. CO₂ fluxes from aquaculture ponds of a tropical wetland: Potential of multiple lime treatment in reduction of CO₂ emission. Sci. Total Environ. 655, 1321–1333. https://doi.org/10.1016/j.scitotenv.2018.11.332.
- Chatvijitkul, S., Boyd, C.E., Davis, D.A., McNevin, A.A., 2017. Pollution potential indicators for feed-based fish and shrimp culture. Aquaculture 477, 43–49. https://doi.org/10.1016/j.aquaculture.2017.04.034.

China Fisheries Yearbook 2019 (Chinese Agriculture Press, 2020).

Chen, Y., Dong, S.L., Wang, F., Gao, Q.F., Tian, X.L., 2016. Carbon dioxide and

methane fluxes from feeding and no-feeding mariculture ponds. Environ. Pollut. 212, 489–497. https://doi.org/10.1016/j.envpol.2016.02.039.

- Chen, S., Wang, D. Q., Ding, Y., Yu, Z. J., Chen, Z. L., 2021. Ebullition controls on CH₄ emissions in an urban, eutrophic river: a potential time-scale bias in determining the aquatic CH₄ flux. Environ. Sci. Technol. 55, 7287–7298. https://doi.org/10.1021/acs.est.1c00114.
- Deemer, B.R., Harrison, J.A., Li, S.Y., Beaulieu, J.J., Delsontro, T., Barros, N., Bezerraneto, J.F., Powers, S.M., Santos, M.A.D., Vonk, J.A., 2016. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66, 949–964. http://dx.doi.org/10.1093/biosci/biw117.
- Delsontro, T., Boutet, L., St-Pierre, A., del Giorgio, P.A., Prairie, Y.T., 2016. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol. Oceanogr. 61, S62–S77. https://doi.org/10.1002/lno.10335.
- Ding, W.X., Cai, Z.C., Tsurata, H., 2005. Plant species effects on methane emissions from freshwater marshes. Atmos. Environ. 39, 3199–3207. https://doi.org/ 10.1016/j.atmosenv.2005.02.022.
- Ding, W.X., Yuan, J.J., Liu, D.Y., Chen, Z.M., 2020. CH₄ and N₂O emissions from freshwater aquaculture. J. Agro-Environ. Sci. 2020, 39, 749–761 (in Chinese). https://doi.org/10.11654/jaes.2019-1388.
- Downing, J.A., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29, 9–23. https://doi.org/10.1899/09-028.1.
- FAO. 2018. The State of World Fisheries and Aquaculture. Food and Agricultural Organization of the United Nations, Rome, Italy.
- Fang, J.Y., Yu, G.R., Liu, L.L., Hu, S.J., Chapin, F.S., 2018. Climate change, human impacts, and carbon sequestration in China INTRODUCTION. P. Natl. Acad. Sci. USA. 115, 4015–4020. https://doi.org/10.1073/pnas.1700304115.
- Fang, X.T., Wu, C., Zhang, T.R., Zheng, F.W., Zhao, J.T., Wu, S., Barthel, M., Six, J., Zou, J.W., Liu, S.W., 2022. Ebullitive CH₄ flux and its mitigation potential by

aeration in freshwater aquaculture: Measurements and global data synthesis. Agr. Ecosyst. Environ. 335, 108016. https://doi.org/10.1016/j.agee.2022.108016.

- Fritz, C., Pancotto, V.A., Elzenga, J.T.M., Visser, E.J.W., Grootjans, A.P., Pol, A., Iturraspe, R., Roelofs, J.G.M., Smolders, A.J.P., 2011. Zero methane emission bogs: Extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytol. 190, 398–408. https://doi.org/10.1111/j.1469 - 8137.2010.03604.x.
- Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis, D.F., Grossart, H.-P., Tang, K.W., 2019. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat. commun. 10, 1–10. https://doi.org/ 10.1038/s41467-019-13320-0.
- Günthel, M., Klawonn, I., Woodhouse, J., Bižić, M., Ionescu, D., Ganzert, L., Kümmel, S., Nijenhuis, I., Zoccarato, L., Grossart, H.-P., Tang, K.W., 2020. Photosynthesis-driven methane production in oxic lake water as an important contributor to methane emission. Limnol. Oceanogr. 65, 2853–2865. https://doi.org/10.1002/lno.11557.
- Herbeck, L.S., Unger, D., Wu, Y., Jennerjahn, T.C., 2013. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Cont. Shelf Res. 57, 92–104. https://doi.org/10.1016/j.csr.2012.05.006.
- Holgerson, M.A., 2015. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry 124, 305–318. https://doi.org/ 10.1007/s10533-015-0099-y.
- Holgerson, M.A., Raymond, P.A., 2016. Large contribution to inland water CO₂ and CH₄ emissions from very small ponds. Nat. Geosci. 9, 222–U150. https://doi.org/10.1038/ngeo2654.
- Hu, B.B., Xu, X.F., Zhang, J.F., Wang, T.L., Meng, W.Q., Wang, D.Q., 2020. Diurnal variations of greenhouse gases emissions from reclamation mariculture ponds. Estuar. Coast. Shelf S. 237, 106677. https://doi.org/10.1016/j.ecss.2020.106677.

Hu, Z.Q., Wu, S., Ji, C., Zou, J.W., Zhou, Q.S., Liu, S.W., 2016. A comparison of

methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environ. Sci. Pollut. Res. 23, 1505–1515. https://doi.org/10.1007/s11356-015-5383-9.

- IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
- Kauffman, J.B., Bernardino, A.F., Ferreira, T.O., Bolton, N.W., Gomes, L.E.D., Nobrega, G.N., 2018. Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecol. Evol. 8, 5530–5540. https://doi.org/10.1002/ece3.4079.
- Kosten, S., Almeida, R.M., Barbosa, I., Mendona, R., Barros, N., 2020. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Sci. Total Environ. 748, 141247. https://doi.org/10.1016/j.scitotenv.2020.141247.
- Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K., Keppler, F., 2019. Methane production by three widespread marine phytoplankton species: Release rates, precursor compounds, and relevance for the environment. Biogeosciences. 16, 4129–4144. https://doi.org/10.5194/bg-16-4129-2019-245.
- Laanbroek, H.J., 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105, 141–153. https://doi.org/10.1093/aob/mcp2010.
- Langeveld, J., Bouwman, A.F., Van Hoek, W.J., Vilmin, L., Beusen, A.H., Mogollón, J.M., Middelburg, J. J., 2019. Global data-base and model on dissolved carbon in soil solution. Biogeosci. Discuss. 1–35. https://doi.org/10.5194/bg-2019-238.

Laurion, I., Vincent, W.F., MacIntyre, S., Retamal, L., Dupont, C., Francus, P., Pienitz,

R., 2010. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol. Oceanogr. 55, 115–133. https://doi.org/10.4319/lo.2010.55.1.0115.

- Li, S., Bush, R.T., Santos, I.R., Zhang, Q.F., Song, K.S., Mao, R., Wen, Z.D., Lu, X.X., 2018. Large greenhouse gases emissions from China's lakes and reservoirs. Water Res. 147, 13–24. https://doi.org/10.1016/j.watres.2018.09.053.
- Lin, H., Zhou, G., Li, X.G., Zhou, J., Zhang, T.Q., Wang, G.M., 2013. Greenhouse gases emissions from pond culture ecosystem of Chinese mitten crab and their comprehensive global warming potentials in summer. Journal of Fisheries of China, 37, 417–424. (in Chinese) https://doi.org/10.3724/SP.J.1231.2013.38282.
- Liu, S.W., Hu, Z.Q., Wu, S., Li, S.Q., Li, Z.F., Zou, J.W., 2016. Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab-fish aquaculture in Southeast China. Environ. Sci. Technol. 50, 633–642. https://doi.org/10.1021/acs.est.5b04343.
- Ma, Y.C., Sun, L.Y., Liu, C.Y., Yang, X.Y., Zhou, W., Yang, B, Schwenke, G., Liu, D.L., 2018. A comparison of methane and nitrous oxide emissions from inland mixedfish and crab aquaculture ponds. Sci. Total Environ. 637–638, 517–523. https://doi.org/10.1016/j.scitotenv.2018.05.040.
- MacLeod, M.J., Hasan, M.R., Robb, D.H.F., Mamun-Ur-Rashid, M., 2020. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 10, 11679. https://doi.org/10.1038/s41598-020-68231-8.
- Maher, D.T., Drexl, M., Tait, D.R., Johnston, S.G., Jeffrey, L.C., 2019. IAMES: an inexpensive, automated methane ebullition sensor. Environ. Sci. Technol 53, 6420 6426. https://doi.org/10.1021/acs.est.9b01881.
- Mermillod-Blondin, F., Rosenberg, R., 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat. Sci. 68, 434 – 442. https://doi.org/10.1007/s00027-006-0858-x.
- Melton, J.R., Wania, R., Hodson, E.L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C.A., Beerling, D.J., Chen, G., 2013. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison

project (WETCHIMP). Biogeosciences 10, 753–788. https://doi.org/10.5194/bg-10-753-2013.

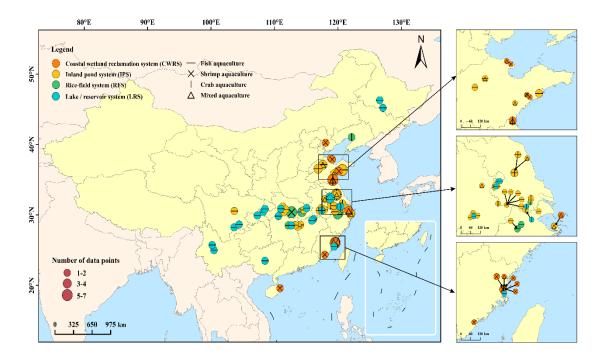
- Naskar, S., Pailan, G.H., Datta, S., Sawant, P.B., Bharti, V.S., 2020. Effect of different organic manures and salinity levels on greenhouse gas emission and growth of common carp in aquaculture systems. Aquac. Res. 52, 1–10. http://dx.doi.org/10.1111/are.15041.
- Natchimuthu, S., Sundgren, I., Gålfalk, M., Klemedtsson, L., Bastviken, D., 2017. Spatiotem-poral variability of lake pCO₂ and CO₂ fluxes in a hemiboreal catchment. J. Geophys. Res. Biogeosci. 122, 30–49. https://doi.org/ 10.1002/2016JG003449.
- Natchimuthu, S., Selvam, B.P., Bastviken, D., 2014. Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119, 403– 413. https://doi.org/10.1007/s10533-014-9976-z.
- Neubauer, S. C., Megonigal, J. P., 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18 1000–1013. https://doi.org/10.1007/s10021-015-9879-4.
- Olsson, L., Ye, S., Yu, X., Wei, M., Krauss, K.W., Brix, H., 2015. Factors influencing CO₂ and CH₄ emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences 12, 4965–4977. https://doi.org/10.5194/bg-12-4965-2015.
- Pacheco, F.S., Soares, M.C.S., Assireu, A.T., Curtarelli, M.P., Roland, F., Abril, G., 2015. The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water-air CO₂ fluxes in a tropical hydropower reservoir. Biogeosciences 12, 147–162. https://doi.org/10.5194/bg-12-147-2015.
- Peacock, M., Audet, J., Bastviken, D., Cook, S., Futter, M.N., 2021. Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide. Glob. Change Biol. 27, 5109–5123. https://doi.org/10.1111/gcb.15762.
- Peacock, M., Audet, J., Jordan, S., Smeds, J., Wallin, M.B., 2019. Greenhouse gas emissions from urban ponds are driven by nutrient status and hydrology. Ecosphere 10, e02643. https://doi.org/10.1002/ecs2.2643.

- Pivničková, B., Rejmánková, E., Snyder, J. M., Šantrůčková, H., 2010. Heterotrophic microbial activities and nutritional status of microbial communities in tropical marsh sediments of different salinities: the effects of phosphorus addition and plant species. Plant Soil 336, 49–63. https://doi.org/10.1007/s11104-010-0439-6.
- Poffenbarger, H.J., Needelman, B.A., Megonigal, J.P., 2011. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842. https://doi.org/10.1007/s13157-011-0197-0.
- Pu, Y.N., Zhang, M., Jia, L., Zhang, Z., Xiao, W., Liu, S.D., Zhao, J.Y., Xie, Y.H., Lee, X.H., 2022. Methane emission of a lake aquaculture farm and its response to ecological restoration. Agr. Ecosyst. Environ. 330, 107883. https://doi.org/10.1016/j.agee.2022.107883.
- Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., Guth, P., 2013. Global carbon dioxide emissions from inland waters. Nature 503, 355–359. https://doi.org/10.1038/nature12760.
- Rutegwa, M., Gebauer, R., Veselý, L., Regenda, J., Strunecký, O., Hejzlar, J., Drozd,
 B., 2019. Diffusive methane emissions from temperate semi-intensive carp ponds.
 Aquacult. Env. Interac. 11, 19–30. https://doi.org/10.3354/aei00296.
- Scofield, V., Melack, J.M., Barbosa, P.M., Amaral, J.H.F., Forsberg, B.R., Farjalla, V.F., 2016. Carbon dioxide outgassing from amazonian aquatic ecosystems in the negro river basin. Biogeochemistry 129, 77–91. https://doi.org/10.1007/s10533-016-0220-x.
- Sejr, M.K., Krause-Jensen, D., Dalsgaard, T., Ruiz-Halpern, S., Duarte, C.M., Middelboe, M., Rysgaard, S., 2014. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and pCO₂ in a subarctic Greenland fjord. Limnol. Oceanogr. 59, 1764–1778. https://doi.org/10.4319/lo.2014.59.5.1764.
- Sidik, F., Lovelock, C.E., 2013. CO₂ Efflux from Shrimp Ponds in Indonesia. Plos One 8, e66329. https://doi.org/10.1371/journal.pone.0066329.
- Sorrell, B.K., Boon P.I., 1994. Convective gas flow in Eleocharis sphacelata R. Br.:

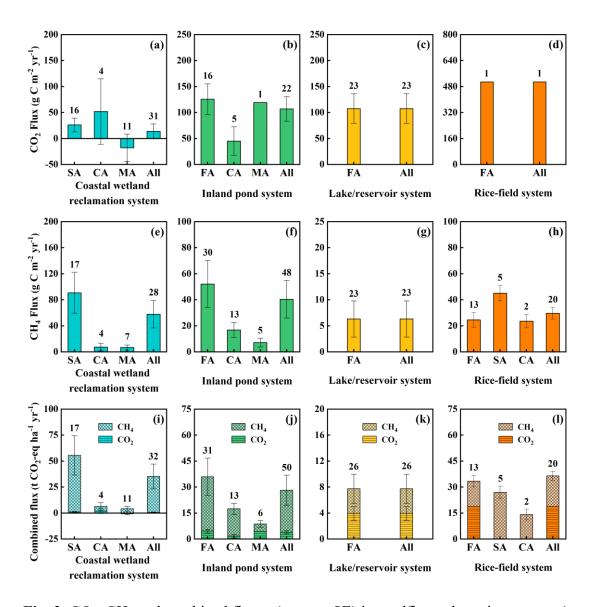
Methane transport and release from wetlands. Aquat. Bot. 47, 197–212. https://doi.org/10.1016/0304-3770(94)90053-1.

- Soumis, N., Duchemin, E., Canuel, R., Lucotte, M., 2004. Greenhouse gas emissions from reservoirs of the western United States. Glob. Biogeochem. Cycles 18, 1–11. https://doi.org/10.1029/2003GB002197.
- Sun, Z.C., Guo, Y., Li, C.F., Cao, C.G., Yuan, P.L., Zou, F.L., Wang, J.H., Jia, P.G., Wang, J.P., 2019. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. R. 26, 11710–11718. https://doi.org/10.1007/s11356-019-04572-w.
- Tan, L.S., Ge, Z.M., Zhou, X.H., Li, S.H., Li, X.Z., Tang, J.W., 2019. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis. Glob. Change Biol. 26, 1638–1653. https://doi.org/10.1111/gcb.14933.
- Tang, K.W., McGinnis, D.F., Frindte, K., Bruchert, V., Grossart, H.P., 2014. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters. Limnol. Oceanogr. 59, 275–284. https://doi.org/10.4319/lo.2014.59.1.0275.
- Tang, K.W., McGinnis, D.F., Ionescu, D., Grossart, H.P., 2016. Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ. Sci. Tech. Let. 3, 227–233. https://doi.org/10.1021/acs.estlett.6b00150.
- Tong, C., Bastviken, D., Tang, K.W., Yang, P., Yang, H., Zhang, Y.F., Guo, Q.Q., Lai, D.Y.F., 2021. Annual CO₂ and CH₄ fluxes in coastal earthen ponds with *Litopenaeus vannamei* in southeastern China. Aquaculture 545, 737229. https://doi.org/10.1016/j.aquaculture.2021.737229.
- Van Bergen, T., Barros, N., Mendonca, R., Aben, R., 2019. Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers. Limnol. Oceanogr. 64, 2129–2139. https://doi.org/10.1002/lno.11173.
- van der Nat, F.J.W.A., Middelburg, J.J., 1998. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat. Bot. 61, 95–110. https://doi.org/10.1016/S0304-3770(98)00072-2.

- Wang, J., Feng, L., Palmer, P.I., Liu, Y., Fang, S., Bsch, H., O'Dell, C.W., Tang, X.P., Yang, D.X., Liu, L.X., Xia, C.Z., 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 586, 720–723. https://doi.org/ 10.1038/s41586-020-2849-9.
- Wang, P.P., Ji, J.Y., Zhang, Y., 2019. Aquaculture extension system in China: Development, challenges, and prospects. Aquacult. Rep. 17, 100339. https://doi.org/10.1016/j.aqrep.2020.100339.
- Wilson, B.J., Mortazavi, B., Kiene, R.P., 2015. Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry 123, 329–347. https://doi.org/10.1007/s10533-015-0085-4.
- World Meteorlogical Organization, 2021. WMO Greenhouse Gas Bulletin No.17: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020. https://library.wmo.int/doc_num.php?explnum_id=10931.pdf.
- Wu, S., Hu, Z.Q., Hu, T., Chen, J., Yu, K., Zou, J.W., Liu, S.W., 2018. Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China. Atmos. Environ. 175, 135–144. https://doi.org/ 10.1016/j.atmosenv.2017.12.008.
- Xiao, Q.T., Zhang, M., Hu, Z.H., Gao, Y.Q., Hu, C., Liu, C., Zhang, Z., Zhao, J., Xiao, W., 2017. Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. J. Geophys. Res.-Biogeo. 122, 1597–1614. https://doi.org/10.1002/2017JG003805.
- Xu, X.Y., Zhang, M.M., Peng, C.L., Si, G.H., Zhou, J.X., Xie, Y.Y., Yuan, J.F., 2017. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields. Chinese Journal of Eco-Agriculture 25, 1591–1603 (In Chinese). https://doi.org/10.13930/j.cnki.cjea.170280.
- Xu, G.J., Su, G.H., Zhao, K.H., Xu, X.Q., Li, X.Q., H, Q., Xue, Y., Xu, J., 2022. Current status of greenhouse gas emissions from aquaculture in China. Water Biol. Secur. 10, 100041. https://doi.org/10.1016/j.watbs.2022.100041.


- Yang, H., Andersen, T., Dörsch, P., Tominaga, K., Thrane, J.E., Hessen, D.O. 2015, Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry 126, 211– 225. https://doi.org/10.1007/s10533-015-0154-8.
- Yang, P., Zhang, Y.F., Lai, D.Y.F., Tan, L.S., Jin, B.S., Tong, C., 2018. Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: the effect of temperature, substrate, salinity and nitrate. Sci. Total Environ. 635, 1025–1035. https://doi.org/10.1016/j.scitotenv. 2018.04.102.
- Yang, P., Zhang, Y.F., Yang, H., Guo, Q.Q., Lai, D.Y.F., Zhao, G.H., Li, L., Tong, C., 2020a. Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China. Water Res. 184, 116176. https://doi.org/ 10.1016/j.watres.2020.116176.
- Yang, P., Yang, H., Lai, D. Y. F., Guo, Q.Q., Zhang, Y.F., Tong, C., Xu, C.B., Li, X.F., 2020b. Large contribution of non-aquaculture period fluxes to the annual N₂O emissions from aquaculture ponds in Southeast China. J. Hydrol. 582, 124550. https://doi.org/10.1016/j.jhydrol.2020.124550.
- Yang, P., Zhang, Y., Yang, H., Zhang, Y.F., Xu, J., Tan, L.S., Tong, C., Lai, D.Y.F., 2019. Large fine-scale spatiotemporal variations of CH₄ diffusive fluxes from shrimp aquaculture ponds affected by organic matter supply and aeration in Southeast China. J. Geophys. Res. - Biogeo. 124, 1290–1307. https://doi.org/10.1029/2019JG005025.
- Yang, P., Zhao, G.H., Tong, C., Tang, K.W., Lai, D.Y.F., Li, L., Tang, C., 2021. Assessing nutrient budgets and environmental impacts of coastal land-based aquaculture system in southeastern China. Agr. Ecosyst. Environ. 322, 107662. https://doi.org/10.1016/j.agee.2021.107662.
- Yang, P., Tang, K.W., Yang, H., Tong, C., Yang, N., Lai, D.Y.F., Hong, Y., Ruan, M.J., Tan, Y.Y., Zhao, G.H., Li, L., Tang, C., 2022. Insights into the farming-season carbon budget of coastal earthen aquaculture ponds in southeastern China. Agr. Ecosyst. Environ. 335, 107995. https://doi.org/10.1016/j.agee.2022.107995.

- Ye, W., Sun, H., Li, Y., Zhang, J., Zhang, M., Gao, Z., Yan, J., Liu, J., Wen, J., Yang, H., Shi, J., Zhao, S., Wu, M., Xu, S., Xu, C., Zhan, L., 2022. Greenhouse gas emissions from fed mollusk mariculture: A case study of a *Sinonovacula constricta* farming system. Agr. Ecosyst. Environ. 336, 108029. https://doi.org/10.1016/j.agee.2022.108029.
- Yuan, J.J., Xiang, J., Liu, D.Y., Kang, H.J., He, T.H., Kim, S.H., Lin, Y.X., Freeman, C., Ding, W.X., 2019. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change 9, 318–322. https://doi.org/ 10.1038/s41558-019-0425-9.
- Yuan, J.J., Liu, D.Y., Xiang, J., He, T.H., Kang, H.J., Ding, W.X., 2021. Methane and nitrous oxide have separated production zones and distinct emission pathways in freshwater aquaculture ponds. Water Res. 190, 116739. https://doi.org/ 10.1016/j.watres.2020.116739.
- Zhang, D.X., Xu, W.J., Wang, F., He, J., Cai, X.R., 2022. Carbon dioxide fluxes from mariculture ponds with swimming crabs and shrimps in eastern China: The effect of adding razor clams. Aquacult. Rep. 22, 100917. https://doi.org/ 10.1016/j.aqrep.2021.100917.
- Zhang, Y.F., Lyu, M., Yang, P., Lai, D.Y.F., Tong, C., Zhao, G.H., Li, L., Zhang, Y.H., Yang, H., 2021. Spatial variations in CO₂ fluxes in a subtropical coastal reservoir of Southeast China were related to urbanization and land-use types. J. Environ. Sci. 109, 206–218. https://doi.org/10.1016/j.jes.2021.04.003.
- Zhang, Y.F., Yang, P., Yang, H., Tan, L.S., Guo, Q.Q., Zhao, G.H., Li, L., Gao, Y., Tong, C., 2019. Plot-scale spatiotemporal variations of CO₂ concentration and flux across water-air interfaces at aquaculture shrimp ponds in a subtropical estuary. Environ. Sci. Pollut. R. 26, 5623–5637. https://doi.org/10.1007/s11356-018-3929-3.
- Zhu, D., Wu, Y., Chen, H., He, Y., Wu, N., 2016. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau. Sci. Total Environ. 542, 57–64. https://doi.org/10.1016/j.scitotenv.2015.10.087.


Table 1

 CO_2 , CH_4 and combined fluxes (mean \pm SE) in aquaculture systems under different management conditions. Management practice in non-farming period: I = almost no drainage; II = drainage + exposure; III = drainage + exposure + desilting. Different superscripts indicate significant differences between management conditions in each of the categories (P < 0.05). ND means no data.

Management conditions	GHG flux (g C m ⁻² yr ⁻¹)		Combined flux	Sample size	
	CO ₂	CH ₄	$(t CO_2$ -eq ha ⁻¹ yr ⁻¹)		
Aeration					
With	$44.36\pm24.49^{\text{a}}$	$15.80\pm5.02^{\text{b}}$	11.11 ± 3.91	<i>n</i> = 44	
Without	$45.91\pm19.02^{\mathrm{a}}$	$60.78\pm12.35^{\mathrm{a}}$	38.15 ± 8.11	<i>n</i> = 36	
Hydrophyte					
With	$29.23\pm11.05^{\text{a}}$	$30.56\pm4.57^{\rm a}$	19.41 ± 3.15	<i>n</i> = 34	
Without	51.53 ± 16.95^a	$42.76\pm10.16^{\rm a}$	27.55 ± 6.72	<i>n</i> = 59	
Water depth					
< 1.2 m	48.35 ± 24.87^{a}	$57.40 \pm 13.93^{\rm a}$	36.21 ± 9.27	<i>n</i> = 33	
1.2 m - 2.0 m	34.73 ± 26.66^a	41.93 ± 16.96^{ab}	26.43 ± 11.15	<i>n</i> = 27	
> 2.0 m	23.24 ± 51.36^a	16.41 ± 14.52^{b}	10.70 ± 10.60	<i>n</i> = 7	
Area					
< 1 hectare	78.19 ± 43.73^{a}	$87.65\pm28.86^{\mathrm{a}}$	55.46 ± 18.92	<i>n</i> = 25	
> 1 hectare	$33.62\pm19.53^{\text{b}}$	26.91 ± 7.98^{b}	17.38 ± 5.50	<i>n</i> = 28	
Water salinity					
Freshwater (< 0.5‰)	111.48 ± 25.42^{a}	$39.76\pm8.19^{\rm a}$	27.94 ± 5.85	<i>n</i> = 75	
Low-salt (0.5–5‰)	37.45 ± 19.66^{ab}	$106.34 \pm 52.71^{\rm a}$	65.18 ± 32.35	<i>n</i> = 10	
High-salt (> 5‰)	-26.56 ± 22.33^{b}	9.17 ± 5.87^{b}	4.53 ± 4.34	<i>n</i> = 15	
Management practice in non-farming period					
Ι	42.24 ± 30.37^{a}	$90.84\pm28.38^{\rm a}$	56.05 ± 18.14	<i>n</i> = 14	
II	37.57 ± 22.31^{a}	$114.16\pm36.98^{\mathrm{a}}$	69.87 ± 23.01	<i>n</i> = 16	
III	ND	2.52 ± 0.67^{b}	1.51 ± 0.40	<i>n</i> = 12	

Fig. 1. Distribution of the study sites in China. Coastal wetland reclamation system (CWRS) is created by leveling, embankment and reclamation of the intertidal mudflat along the coast. Inland pond system (IPS) is artificially excavated ponds or natural ponds for extensive or semi-intensive aquaculture. Lake/reservoir system (LRS) is aquaculture operation that includes cage, fence or ecological stocking. Rice-field system (RFS) is artificial ditches in rice paddies. The symbols for aquaculture system are further marked for fish, shrimp, crab or mixed species farming. Details of data source are given in Table S1–S4.

Fig. 2. CO_2 , CH_4 and combined fluxes (mean \pm SE) in mudflat reclamation system (a, e, i), inland pond system (b, f, j), lake/reservoir system (c, g, k) and rice-field system (d, h, l). Negative values indicate absorption. Numbers above the bars represent sample sizes. SA = shrimp aquaculture; FA = fish aquaculture; CA = crab aquaculture; MA = mixed aquaculture.

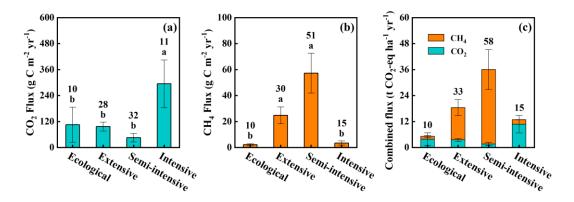


Fig. 3. CO₂, CH₄ and combined fluxes for the different farming intensity levels. Numbers above the bars represent sample sizes. Different letters above the bars indicate significance difference at P < 0.05.

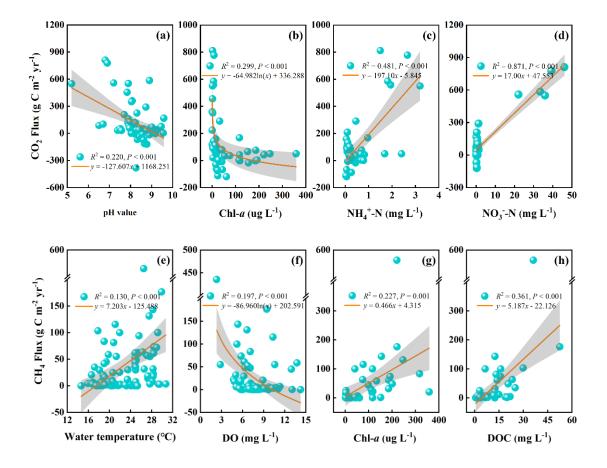
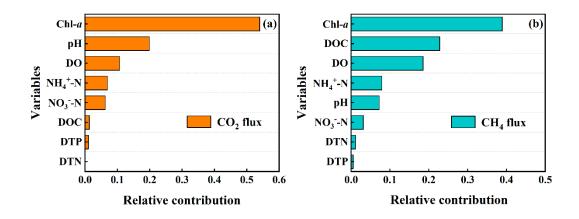
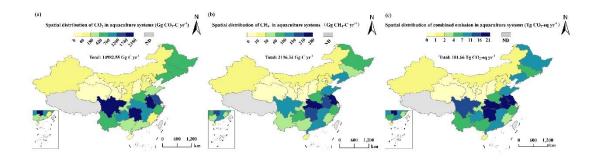




Fig. 4. Relationships between CO_2 (a-d) or CH_4 flux (e-h) and environmental variables. Red lines represent regressions fitted to the data; gray areas represent 95% confidence intervals.

Fig. 5. Relative contributions of environmental variables to variations in (a) CO_2 and (b) CH_4 fluxes in BRT model. Chl-a = chlorophyll-a; DOC = dissolved organic carbon; DO = dissolved oxygen; $NO_3^--N = nitrate nitrogen$; $NH_4^+-N = ammonium nitrogen$; DTP = dissolved total phosphorus; DTN = dissolved total nitrogen.

Fig. 6. Spatial distribution of (a) CO₂ emission, (b) CH₄ emission and (c) combined emission in different aquaculture systems across China. ND indicates no data.

Supplementary Material

Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices

Yifei Zhang^{a,b,c,d}, Kam W. Tang^e, Ping Yang^{a,b*}, Hong Yang^{f,g}, Chuan Tong^{a,b}, Changchun Song^{c,h*}, Lishan Tanⁱ, Guanghui Zhaoⁱ, Xudong Zhou^j, Dongyao Sun^k

^aSchool of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

^bKey Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China

Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

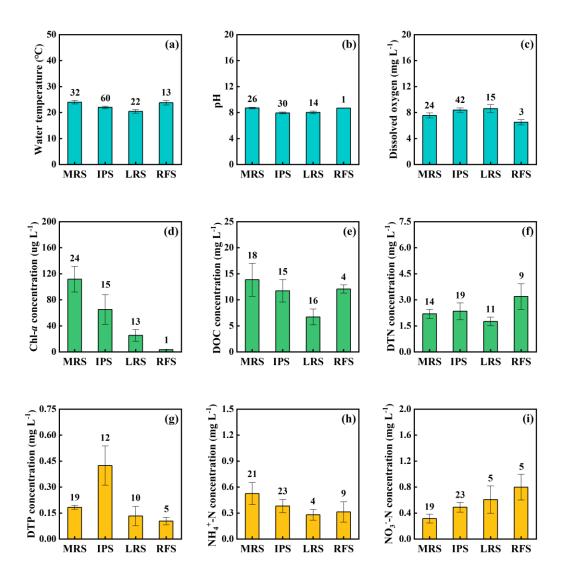
^dUniversity of Chinese Academy of Sciences, Beijing 100049, China

^eDepartment of Biosciences, Swansea University, Swansea SA2 8PP, U.K.

^fCollege of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China

^gDepartment of Geography and Environmental Science, University of Reading, Reading, U.K. ^hSchool of Hydraulic Engineering, Dalian University of Technology, Dalian 116023, China ⁱState Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai 201199, China

ⁱSchool of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China


^kSchool of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

*Corresponding authors:

Ping Yang (yangping528@sina.cn); Changchun Song (songcc@neigae.ac.cn)

Supporting text

The environmental parameters of aquaculture waters were used in the boosted regression tree model (BRT) of CO₂ and CH₄ flux. In this BRT model, learning rate (*lr*) = 0.05, tree complexity (*tc*) = 5, and bag fraction = 0.5 with a Gaussian distribution were set (Elith et al., 2008; Tan et al., 2021). All BRT models were evaluated using percent (%) predictive deviance, where % predictive deviance = (mean total deviance – cross-validated (CV) deviance) / mean total deviance (Kuechle et al., 2019; Wintle et al., 2005).

Fig. S1. Environmental variables (mean \pm SE) including water temperature, pH, dissolved oxygen, Chlorophyll a (Chl-*a*), dissolved organic carbon (DOC), dissolved total nitrogen (DTN), dissolved total phosphorus (DTP), ammonia nitrogen (NH₄⁺-N), and nitrate nitrogen (NO₃⁻-N) concentrations among the different aquaculture systems: coastal wetland reclamation system (CWRS), inland pond system (IPS), lake/reservoir system (LRS) and rice-field system (RFS). Numbers above the bars are sample sizes.

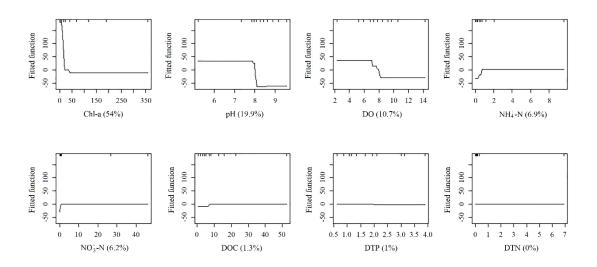


Fig. S2. Fitted functions of BRT model between CO₂ flux and environmental variables.

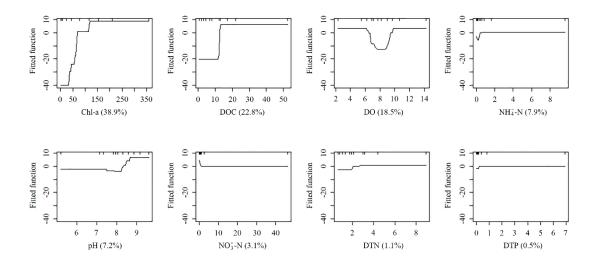


Fig. S3. Fitted functions of BRT model between CH4 flux and environmental variables.

Table S1

Summary of literature information on CO₂ and CH₄ fluxes (g C m⁻² yr⁻¹) and characteristics of coastal wetland reclamation system (CWRS). Negative flux values indicate absorption. Y = yes; N = no; salinity level is classified into high salt (> 5‰), low salt (0.5–5‰) and freshwater (< 0.5‰).

CWRS Location	Species	Longitude	Latitude	CO_2	CH_4	Aeration	Aquatic	Salinity	Water	Area (ha)	Intensity level	Management practice in	Observation	Referen	ce
							plant	level	depth (n	n)		non-farming period	year		
30 km north of the Yellow	shrimp	119.10	37.85	-87.29	0.04		N	High salt			Semi		2013-2014	Song,	H.L.,
River Estuary											-intensive				X.T.,
														Wen,	B.L.,
														2017	•
														Gree	nhous
														e	gases
														fluxe	s at
														water	r-air
														interf	face of
														aqua	culture
														pond	s in
														the S	Yellow
														River	r

												Estuary.
												Eco.
												Environ.
												Sci. 26,
												1554–1561
												(in
												Chinese). et al., 2017
Min River Estuary, Fujian shrimp	119.57	26.04	-16.99	143.29	Y	Ν	Low salt	1.15	Semi	Drainage,	2017	Tong, C.,
Province									-intensive	sun exposure		Bastviken,
												D., Tang,
												K.W.,
												Yang, P., et
												al., 2021.
												Annual
												CO ₂ and
												CH ₄ fluxes
												in coastal
												earthen
												ponds with

											Litopenaeu
											s vannamei
											in
											Southeaster
											n China.
											Aquacultur
											e 545.et al., 2021
Dongying City, Shandong	Mixed	118.87	38.00	-97.54	0.02	Ν	High salt	1.75	Semi	2013	Song, H.L.,
Province									-intensive		Liu, X.T.,
											2016.
											Anthropog
											enic effects
											on fluxes
											of
											ecosystem
											respiration
											and
											methane in
											the Yellow

													River
													Estuary,
													China.
													Wetlands
													36, S113–
													S123. et al., 2016
Ganyu County, Jiangsu	Mixed	119.20	34.97	-67.20	0.43	Y	Ν	High salt	2.30	1.02	Intensive	Drainage, desilting, 2014	Zhang, D.X.,
Province				159.05	0.45							sun exposure, frequent	Tian, X.L.,
												water change	Dong, S.L.,
													Chen, Y.,
													Feng, J., et
													al., 2020.
													Carbon
													budgets of
													two typical
													polyculture
													pond
													systems in
													coastal

										China and
										their
										potential
										roles in the
										global
										carbon
										cycle.
										Aquacult.
										Env.
										Interac. 12,
										105–115. et
										al., 2020
Qingdao, Shandong Province	Shrimp 120.00	36.30	-9.53	99.84	Ν		Semi	Spring water change	2014	Chen, Y.,
Province	Crab		20.18	25.26		High salt	-intensiv	/e		Dong, S.L.,
										Wang, F.,
										Gao, Q.F.,
										Tian, X.L.,
										2016.
										Carbon
										dioxide and

													methane
													fluxes from
													feeding and
													no-feeding
													mariculture
													ponds.
													Environ.
													Pollut. 212,
													489-497.et
													al., 2016
Ganyu County, Jiangsu Province	Mixed	119.20	34.97	-119.58	0.44	Y	Ν	High salt	2.30	1.02	Intensive	Drainage, desilting, 2014	Zhang, D.X.,
Province				94.23	0.45							sun exposure, frequent	Tian, X.L.,
												water changes	Dong, S.L.,
													Chen, Y.,
													Feng, J., et
													al., 2020.
													Carbon
													dioxide
													fluxes from
													two typical

												mariculture
												polyculture
												systems in
												coastal
												China.
												Aquacultur
												e 521. et al., 2020
Min River Estuary, Fujian Shrimp	119.68	26.03	-2.10	22.40	Y	Ν	Low salt	1.30	1.40	Semi	Drainage, sun exposure 2018	Zhao, G.H.,
Province			-2.27	31.80					1.30	-intensive		2020.
			3.23	17.87					1.25			Carbon,
												nitrogen
												and
												phosphorus
												budgets in
												reclaimed
												shrimp
												ponds of
												the Min
												River

													Estuary.
													Master
													thesis,
													Fujian
													Normal
													Univ. (in
													Chinese). et
													al., 2020
Ganyu County, Jiangsu Province	Crab	119.20	34.97	-112.43	0.41	Y	Ν	High salt	1.50	1.02	Intensive	Drainage, desilting, 2013	Zhang, D.X.,
												sun exposure, frequent water changes	2015.
												water changes	Studies on
													CH ₄ and
													CO ₂ fluxes
													at water-air
													interface
													and carbon
													budgets of
													different
													culture
													systems

												with
												portunus
												tritubercula
												tus,
												marsupena
												eus
												japonicas
												and
												ruditapes
												philippinar
												um. Master
												thesis,
												Ocean
												Univ.
												China (in
												Chinese).et
												al., 2015
Min River Estuary, Fujian Province	Mixed	119.62	26.02	50.27	20.70	Ν	Ν	0.90	0.65	Semi	Drainage, sun exposure 2011	Yang, P., He,
Province	Shrimp	119.63	26.02	49.65	131.07			1.00		-intensive		Q.H.,
												Huang,

										J.F., Tong,
										C., 2015.
										Fluxes of
										greenhouse
										gases at
										two
										different
										aquaculture
										ponds in
										the coastal
										zone of
										southeaster
										n China.
										Atmos.
										Environ.
										115, 269-
										277. et al., 2015
Min River Estuary, Fujian Shrimp	119.57	26.05	41.74	565.09	Ν	Low salt	0.70	Semi	Drainage, sun exposure 2015	Yang, P.
Province								-intensive		Zhang,

Jiulong Estuary, Fujian	Shrimp	117.93	24.37	36.79	63.33	Ν	High salt	0.70	Semi	Drainage, sun exposure 2015	Y.F., Lai,
Province									-intensive		D.Y.F.,
											Tan, L.S.,
											Jin, B.S.,
											Tong, C.,
											2018.
											Fluxes of
											carbon
											dioxide and
											methane
											across the
											water-
											atmosphere
											interface of
											aquaculture
											shrimp
											ponds in
											two
											subtropical
											estuaries:

									the effect
									of
									temperatur
									e, substrate,
									salinity and
									nitrate. Sci.
									Total.
									Environ.
									635, 1025–
									1035. et al.,
									2018
Binhai New Area, Tianjin Shrimp City	118.07 4	0.25 65.81		Y N	High salt	1.20	Semi	2019	ни, В.В.,
		35.68	2.53			1.30	-intensive		Xu, X.F.,
									Zhang, J.F.,
									Wang,
									T.L.,
									Meng,
									W.Q.,
									Wang,
									D.Q., 2020.

S56

		Diurnal
		variations
		of
		greenhouse
		gases
		emissions
		from
		reclamatio
		n
		mariculture
		ponds.
		Estuar.
		Coast.
		Shelf Sci.
		237. et al., 2020
Min River Estuary, Fujian Shrimp 119.67 26.01 42.96 176.40 N N 0.95 2.14	Semi Drainage, sun exposure 2017	Tan, L.S.,
Province	-intensive	Yang, P.,
		Xu. K.,
		Chen. K.L.,

Huang.
J.F., Tong,
C., 2018.
Compariso
n of CH4
emissions
following
brackish
Cyperus
malaccensi
s marsh
conversion
to shrimp
pond in the
Min River
estuary.
Acta Sci.
Circumstan
t. 38, 1214–
1223 (in

													Chinese). et al., 2018
Min River Estuary, Fujian	Shrimp	119.57	26.04	167.96	99.86	Y	Ν	Low salt	0.80	2.14	Semi	Drainage, sun exposure 2017	Yang, P.,
Province				76.51	60.97				1.80	1.84	-intensive		Zhang, Y.,
				3.17	73.58				1.40	1.91			Yang, H.,
													Zhang,
													Y.F., Xu,
													J., Tan,
													L.S., et al.,
													2019.
													Large fine-
													scale
													spatiotemp
													oral
													variations
													of CH4
													diffusive
													fluxes from
													shrimp
													aquaculture

ponds
affected by
organic
matter
supply and
aeration in
Southeast
China. J.
Geophys.
Res-
Biogeo.
124, 1290–
1307. et al.,
2019
Zhang, Y.F.,
Yang, P.,
Yang, H.,
Tan, L.S.,
Guo, Q.Q.,
Zhao, G.H.,

et al., 2	2019.
Plot-sc	
spatiot	
oral	Jub
variatio	ons
of	CO2
concen	trati
on and	flux
across	
water-	air
interfac	ces
at	
aquacu	lture
shrimp	
ponds	in a
subtrop	oical
estuary	·
Enviro	n.
Sci. Po	ollut.
Res.	26,

										5623-
										5637. et al.,
										2019
Min River Estuary, Fujian	Shrimp	119.57	26.04		48.55	Ν	Low salt 1.10	Semi	Drainage, sun exposure 2020	Tang et al., 2021
Province								-intensive		
Dagu river, Qingdao city	Shrimp	120.12	36.21	15.50		Ν	Freshwater	Extensive	Little management 2013	Dong, R.C.,
										2015.
										Study on
										CO ₂ flux
										and
										source/sink
										function in
										Jiaozhou
										Bay coastal
										wetland.
										Master
										thesis,
										Qingdao
										Univ. (in

								Chinese).et al., 2015
Min River Estuary, Fujian Crab	119.57	26.04	186.35	2.30		Extensive	2017	Chen, X.X
Province			155.29	1.91				Wiesmeier
								М.,
								Sardans, J.
								Van
								Zwieten,
								L., Fang
								Y.Y.,
								Gargallo-
								Garriga,
								A., et al.
								2021.
								Effects o
								crabs of
								greenhouse
								gas
								emissions,
								soil

							. • .	
							nutrient	ts,
							and	
							stoichio	omet
							ry in	a
							subtrop	ical
							estuarin	ıe
							wetland	1.
							Biol. Fe	ertil.
							Soils	57,
							131–14	4.et
							al., 2021	
Bamen Bay, Hainan	Shrimp 110.87	19.60	7.48	Ν	High salt	2008	Han,	Y.,
Province							Zhang,	
							G.L., Z	hao,
							Y.C., 20	012.
							Distribu	utio
							n	and
							fluxes	of
							methan	e in
							tropical	l

								rivers and
								lagoons of
								eastern
								Hainan.
								Journal of
								Tropical
								Oceanogra
								phy 31, 87–
								95 (in
								Chinese). et
								al., 2012
Changbai Island, Zhejiang Mixed	122.02	30.17	-61.29	Ν	High salt	Semi-intensive	2020	Zhang, D.X.,
Province			-73.71					Xu, W.J.,
			-68.91					Wang, F.,
			-29.84					Не, Ј.,
								Chai, X.R.,
								2022.
								Carbon
								dioxide

fluxes from
mariculture
ponds with
swimming
crabs and
shrimps in
eastern
China: the
effect of
adding
razor
clams.
Aquacult.
Rep. 22. et
al., 2022

Table S2

Summary of literature information on CO_2 and CH_4 fluxes (g C m⁻² yr⁻¹) and characteristics of inland pond system (IPS). See Table S1 caption for explanation.

IPS Location	Species	Longitude	Latitude	CO ₂	CH_4	Aeration	Aquatic	Water depth (n) Intensity level	Management practice in non-farming period	Observation year	Reference	
							plant	deptii (ii	,		non-tarining period	year		
Chongzhou City,	Fish	103.67	30.56	243.83	4.41	Y	N			Extensive		2014-2015	Wu,	М.,
Sichuan Province													2016.	The
													charac	terist
													ics	and
													influer	ncing
													factors	of
													green	gas
													emissi	ons
													in dif	ferent
													water	bodys
													in	
													Chong	zhou.
													Master	ſ
													thesis,	

											Sichuan
											Agric.
											Univ. (in
											Chinese). et
											al., 2016
Changshu City, Jiangsu Province	Fish	120.71	31.55	6.39	Ν	Ν	2.10	0.70	Semi-intensive	2016	ма, Ү.С.,
Province	Crab			5.34	Ν	Y	1.40	0.50			Sun, L.Y.,
	Crab			4.73	Ν	Ν	1.40	0.50			Liu, C.Y.,
											Yang, X.Y.,
											Zhou, W.,
											Yang, B.,
											Schwenke,
											G., Liu,
											D.L., 2018.
											А
											comparison
											of methane
											and nitrous
											oxide
											emissions

										from inlan	ıd
										mixed-fish	1
										and cra	ıb
										aquacultur	e
										ponds. Sc	:i.
										Total.	
										Environ.	
										637, 517	1
										523.et al., 201	8
Chinese Academy of Fishery Fish	121.16	30.95	308.08	72.18	Ν	2.00	0.50	Semi-intensive	2014	Zhu, L., Ch	e,
Sciences Research Center, Shanghai City										X., Liu, H	ſ.,
										Liu, X.G	j.,
										Liu, C	Ţ.,
										Chen, X.L	<i></i> ,
										Shi, X	Κ.,
										2016.	
										Greenhous	se
										gas	

and
comprehens
ive
greenhouse
effect
potential of
Megalobra
ma
amblycepha
<i>la</i> culture
pond
ecosystems
in a 3-
month
growing
season.
Aquacult.
Int. 24,
893–902.et
al., 2016

Xinghua City, Jiangsu	Mixed	119.33	35.86	3.57	Y	Y	1.00	0.20	Semi-intensive	Drainage, desilting, sun	2013-2014	Liu,	S.W.,
province				1.57	Y	Ν				exposure			
				1.57	1	11						Hu,	
												Wu,	S., Li,
												S.Q.	, Li,
												Z.F.,	, Zou,
												J.W.	, 2016.
												Metl	nane
												and	nitrous
												oxid	e
												emis	sions
												redu	ced
												follo	wing
												conv	version
												of	rice
												pado	lies to
												inlar	nd crab
												fish	
												aqua	culture
												in so	outheast
												Chir	ıa.

Environ.									
Sci.									
Technol.									
50, 633-									
642.et al., 2016									
Chen, X.X.	2013	Semi-intensive	Ν	Y	223.69	37.06	117.55	Fish	Gaoqing Country,
Wiesmeier,			Ν	Y	119.16			Mixed	Shandong Province
М.,			Ν	Y	360.46			Fish	
Sardans, J.									
Van									
Zwieten, L.									
Fang, Y.Y.									
Gargallo-									
Garriga, A.									
et al., 2021									
Effects of									
crabs or									
greenhouse									
gas									

												emissions,
												soil
												nutrients,
												and
												stoichiomet
												ry in a
												subtropical
												estuarine
												wetland.
												Biol. Fertil.
												Soils 57,
												131–144.et
												al., 2015
Wuhan City,	Fish	114.33	30.50	0.81	2.73×10 ⁻³	Y	Ν	2.00	1.13	Intensive	2014	Lan. J., 2015.
Hubei Province												Greenhouse
												gases
												concentrati
												on,
												emission
												and

												influen	ice
												factors	in
												farmin	g
												waters.	
												Master	
												thesis,	
												Huazh	ong
												Agri.	Univ.
												(in	
												Chines	e). et
												al., 2015	
Yichang City,	Fish	111.33	30.76	29.53	Ν	Ν	0.60	0.05	Extensive	Rarely change water	2014-2015	Zhang,	С.,
Hubei Province		111.34	30.75	83.45	Ν	Ν	1.00	0.02	Extensive	little management		2018.	On
		111.34	30.75	44.85	Ν	Ν	1.10	0.08	Extensive	Rarely change water		the pr	ocess
		111.35	30.75	58.60	Ν	Ν	1.60	0.03	Semi-intensive	little management		and	
		111.34	30.74	115.37	Ν	Ν	1.20	0.04	Extensive	little management		mechai	mism
												of me	thane
												emissio	on
												from	
												eutropl	nic

												ponds.	
												Doctor	ral
												thesis,	
												China	Univ.
												Geosci	i. (in
												Chines al., 2018	Se). et
Chizhou City,	Fish	117.50	30.66	51.91	34.97	Ν	Y	1.50	1.80	Semi-intensive	2015-2016	Yue,	Q.,
Anhui Province		117.58	30.73	33.57	4.79	Ν	Y	1.00	2.00	Extensive	2015-2017	2018.	
		117.46	30.64	49.71	103.35	Ν	Y	3.00	53	Semi-intensive	2015-2018	Quanti	ifying
												greenh	ouse
												gas	
												emissi	ons
												and	the
												mitiga	tion
												potenti	ial in
												agricul	lture
												with	
												literatu	ıre
												statisti	cs

											method and
											case study.
											Doctoral
											thesis,
											Nanjing
											Agri. Univ.
											(in
											Chinese).et
											al., 2018
Suzhou City,	Crab	120.71	31.44	3.24	Y	Y	1.50	0.01	Semi-intensive	2018	Liu, Y.M.,
liangsu Province				13.74							Fu, W.G.,
											Jin, M.J.,
											Shi, L.L.,
											Shen, M.X.,
											Zhang, J.Q.,
											2020.
											Effects of
											different
											aquatic
											plants on

											water	
											purificatio	on
											and	
											greenhous	se
											gas	
											emission	in
											crab pond	l in
											high	
											temperatu	ıre
											season.	J.
											Eco. Ru	ral
											Environ.	
											36, 107	'2-
											1079	(in
											Chinese).	.et
											al., 2020	
Chuzhou City,	Fish	118.25	31.97	10.42	Ν	Ν	0.72	Semi-intensive	Drainage,	2017	Wang,	J.,
Anhui Province				41.90			0.75		sun exposure	2018	Xiao, V	W.,
											Zhang,	
											X.F.,	

Zhang, M.,
Zhang,
W.Q., Liu,
Q., et al.,
2019.
Methane
emission
characterist
ics and its
influencing
factors over
aquaculture
ponds.
Environ.
Sci. 40,
5503-5514
(in
Chinese).et
al., 2019

Chuzhou City,	Fish	118.69	32.24	347.68	Ν	1.80	0.77	Semi-intensive	Drainage,	2019	Jia.	L.,
Anhui Province									sun exposure		Zhang	, M.,
											Pu,	Y.N.,
											Zhao,	J.Y.,
											Wang	, J.,
											Xie,	Y.H.,
											et al.,	2021.
											Temp	oral
											and s	spatial
											charac	eterist
											ics	of
											metha	ne
											flux a	nd its
											influe	ncing
											factors	s in a
											typica	1
											aquac	ulture
											pond.	China
											Enviro	on.
											Sci.	41,

													2910-	-2922
													(in	
													Chine	ese).et
													al., 2021	
Changsha County,	Fish	113.36	28.52	-113.83	54.77	Ν	Ν	0.40	0.07	Semi-intensive	Little management	2019-2021	Shen,	Y.L.,
Hunan Province		113.33	28.55	190.05	435.37			1.40	0.23				Zhou,	, J.G.,
		113.35	28.56	62.79	54.96			1.00	0.07				Peng,	, P.Q.,
													Wu,	J.S.,
													2020.	
													Spatio	0-
													tempo	oral
													variat	tion of
													nitrog	gen
													and	
													phosp	phorus
													conte	ents in
													casca	de
													ponds	s in
													subtro	opical
													heads	stream

										watershed
										and its
										influencing
										factors. J.
										Agro-
										Environ.
										Sci. 39,
										2420-2428
										(in
										Chinese).et
										al., 2020
Xinghua City,	Crab	119.83	32.86	3.29	Y	Y	0.70~ 0.67	Semi-intensive	Drainage, desilting, sun 2017 exposure	ни, Т., 2019.
Jiangsu Province							1.20		exposure	Measureme
	Fish			5.50	Y	Ν	1.50~2.501.33			nts of
										mathane
										and nitrous
										oxide fluxes
										from
										freshwater
										crab/fish

											farmin	g
											wetlan	ds.
											Master	ſ
											thesis,	
											Nanjin	ıg
											Agri.	Univ.
											(in	
											Chines	se).et
											al., 2019	
Chuzhou City,	Mixed	118.25	31.96	20.10	Y	0.90	0.70	Semi-intensive	Drainage,	2017-2018	Zhao.	J.Y.,
Anhui Province									sun exposure		2020.	
											Dynam	nic of
											methar	ne
											emissi	on
											from v	vater-
											atmosp	ohere
											interfa	ce in
											freshw	ater
											aquacu	ılture
											ponds	in the

													Yangtze
													River Delta.
													Doctoral
													thesis,
													Nanjing
													Univ.
													Inform. Sci.
													Technol. (in
													Chinese). et
													al., 2020
Gaochun City,	Crab	118.85	31.33	69.40	31.54	Ν	Y	2.00	2.01	Extensive	Little management	2012	Lin, H. ,
Jiangsu Province				156.22	57.09		Ν						Zhou, G.,
													Li, X.G.,
													Zhou, J.,
													Zhang,
													T.Q.,
													Wang,
													G.M., 2013.
													Greenhouse
													gases

											emissions
											from pond
											culture
											ecosystem
											of Chinese
											mitten crab
											and their
											comprehens
											ive global
											warming
											potentials in
											summer. J.
											Fish. China
											37, 417–
											424 (in
											Chinese).et
											al., 2013
Xinghua City,	Mixed	119.83	32.86	7.54	Y	Y	1.20	1.95	Semi-intensive	Drainage, desilting, sun 2013	Hu, Z.Q.,
Jiangsu Province				3.29		Ν				exposure	Wu, S., Ji,
											C., Zou,

J.W., Zhou,
Q.S., Liu,
S.W., 2015.
А
comparison
of methane
emissions
following
rice paddies
conversion
to crab-fish
farming
wetlands in
southeast
China.
Environ.
Sci. Pollut.
Res. 23,
1505–
1515.et al.,

Jangsa Provine Z, Q, T, Che Yu, Yu, Zou, Liu, S 2017. Annual methan and ni oxide emission from paddies inland aquacu wethan												2015
Jangau hwine Z,Q, T, Che Yu, Zou, J Liu, S 2017. Annual methan and ni oxide emissio from paddies inland aquacu wetlano souther	Xinghua City,	Fish	119.83	32.86	3.35	Y	Ν	2.10	3.42	Semi-intensive		wu, S., Hu,
Yu, Zou, Liu, S 2017. Annual methan and ni oxide emissio from paddies inland aquacu wetano souther	Jiangsu Province										exposure	Z.Q., Hu,
Zou, . Liu, S 2017. Annual methan and ni oxide emissio from paddies inland aquacu wetlano souther												T., Chen, J.,
Liu, S 2017. Annual methan and ni oxide emissio from paddies inland aquacu wetland souther												Yu, K.,
2017. Annual methan and ni oxide emissio from paddies inland aquacu wetland souther												Zou, J.W.,
Annual methan and ni oxide emissio from paddies inland aquacu wetland southea												Liu, S.W.,
methan and ni oxide emissio from paddies inland aquacu wetland southea												2017.
and ni oxide emissio from paddies inland aquacu wetland southea												Annual
oxide emissio from paddies inland aquacu wetland southea												methane
emissio from paddies inland aquacu wetland southea												and nitrous
from paddies inland aquacu wetland southea												oxide
paddies inland aquacu wetland southea												emissions
inland aquacu wetland southea												from rice
aquacu wetland southea												paddies and
wetland southea												inland fish
southea												aquaculture
												wetlands in
China.												southeast
												China.

											Atmo	os.
											Envir	on.
											175,	135–
											144.e	al., 2017
Nanjing City,	Fish	119.03	32.25	65.42	1.60	Y	Ν	1.10	Semi-intensive	2020-2021	Chen,	Y.B.,
Jiangsu Province											2021	Study
											on va	riation
											law	and
											influe	encing
											factor	rs of
											green	house
											gas	
											emiss	sion
											flux	in
											differ	ent
											water	
											bodie	s.
											Mast	er
											thesis	,

									Nanjing
									Univ.
									Inform. Sci.
									Technol. (in
									Chinese). et
									al., 2021
Tianshe River Basin	Fish	119.39	31.22	208.78	7.04	Ν	Extensive	2018-2020	Wu, W. X.,
		119.38	31.21	-5.09	2.16				2020.
		119.38	31.20	117.77	4.26				Characterist
		119.38	31.20	83.23	3.03				ics and
		119.38	31.20		10.30				influencing
		119.38	31.19	131.89	3.05				factors of
									greenhouse
									gas
									emission
									from water
									in
									Zhongtians
									he River
									Basin in

											Tianmu
											Lake area
											Master
											thesis,
											Nanjing
											Normal
											Univ. (i
											Chinese).et
											al., 2020
Xinghua City,	Fish	119.83	32.86	1.44	Y	Ν	1.75	2.7	Semi-intensive	2017-2019	Fang, X.T
Jiangsu Province				2.79			1.75	2.7			Zhao, J.T
				5.17			1.75	2.7			Wu, S., Yı
				2.15			0.95	1.26			K., Huang
				2.51			0.95	1.26			J., Ding, Y
				3.02			0.95	1.26			Hu, T., e
											al., 2021. A
											two-year
											measureme
											nt c
											methane

												<u> </u>
												and nitrous
												oxide
												emissions
												from
												freshwater
												aquaculture
												ponds:
												affected by
												aquaculture
												species,
												stocking
												and water
												managemen
												t. Sci. Total.
												Environ.
												813.et al., 2021
Tai Lake basin, East China	Crab	120.41	31.03	-3.02	59.26	Ν	Y	1.60	Extensive	Little management	2013-2014	Yuan, J.J.,
				6.71				1.33		C		
					93.95							Xiang, J.,
				4.14	62.15			1.18				Liu, D.Y.,

Kang, H.,
He, T.H., et
al., 2019.
Rapid
growth in
greenhouse
gas
emissions
from the
adoption of
industrial-
scale
aquaculture
. Nat. Clim.
Change 9
318-322.et
al., 2019

Table S3

Summary of literature information on CO_2 and CH_4 fluxes (g C m⁻² yr⁻¹) and characteristics of lake/reservoir system (LRS). See Table S1 caption for explanation.

LRS Location	Species	Longitude	Latitude	CO ₂	CH_4	Aquatic plant	Salinity level	Water depth (m)	Intensity level	Observation year	Reference	
Nanjing City,	Fish	118.84	32.45	42.60	0.83		Freshwater	1.20	Extensive	2020-2021	Chen, Y.B	; .,
Jiangsu Province											2021. Study o	m
											variation lav	W
											and influencin	ıg
											factors c	of
											greenhouse ga	as
											emission flu	IX
											in differer	nt
											water bodies	s.
											Master thesis	s,
											Nanjing Univ	v.
											Inform. Sc	:i.
											Technol. (i	in
											Chinese).et a	al.,

-										2021
Wuhan City,	Fish	114.38	30.55	33.69	6.98	Freshwater	2.50	Extensive	2003-2004	Xing, Y.P., Xie,
Hubei Province										P., Yang, H.,
										Ni, L.Y.,
										Wang, Y.S.,
										Rong, K.W.,
										2005. Methane
										and carbon
										dioxide fluxes
										from a shallow
										hypereutrophic
										subtropical
										Lake in China.
										Atmos.
										Environ. 39,
										5532-5540. et al.,
										2005
Duchang County, Jiangxi Province	Fish	116.05	29.34	87.04	1.67	Freshwater	1.90	Extensive	2010	Liu, L.X., Xu, M., Lin, M., Zhang, X., 2013.
										Spatial variability of greenhouse gas effluxes

										and their controlling factors in the Poyang Lake in China. Pol. J. Environ. Stud. 22, 749–
										758.et al., 2013
Xingzi County, Jiangxi Province	Fish	116.12	29.44	102.18	0.98	Freshwater	1.90	Extensive	2010	Liu, L.X., Xu, M., Lin, M., Zhang, X., 2013.
Harbin City, Heilongjiang Province	Fish	126.60	46.28	48.18		Freshwater	1.73	Extensive	2008	Spatial variability of greenhouse gas effluxes and their controlling factors in the Poyang Lake in China.
										Pol. J. Environ.
										Stud. 22, 749–
										758.et al., 2013
										Lv, D.K., 2013.
										Study on CO ₂
										fluxes across
										water-air
										interface
										peatland

										reservoirs
										around Harbin.
										Doctoral thesis,
										Northeast
										Forestry Univ.
										(in Chinese).et al., 2013
arbin City, Heilongjiang rovince	Fish	127.10	45.20	68.73					2008	Lv, D.K., 2013.
Thizhou City,	Fish	117.52	30.67	32.39	3.09	Freshwater	5.00	Extensive	2016	Study on CO_2
	FISH	117.52	30.07	32.39	3.09	Fleshwater	3.00	Extensive	2010	fluxes across
Anhui Province										water-air
										interface
										peatland
										reservoirs
										around Harbin.
										Doctoral thesis,
										Northeast
										Forestry Univ.
										(in Chinese).et
										al., 2013

									Yue, Q., 2018.
									Quantifying
									greenhouse gas
									emissions and
									the mitigation
									potential in
									agriculture
									with literature
									statistics
									method and
									case study.
									Doctoral thesis,
									Nanjing Agri.
									Univ. (in
									Chinese).et al.,
									2018
Dali City, Yunnan Province	Fish	100.15	25.86	-1.65	0.30	Freshwater	Ecological stocking	2016	li, D., 2017.
							stocking		Study on
									greenhouse gas
									fluxes at the

											water-air
											interface in
											Erhai Lake.
											Master thesis,
											Yunnan Univ.
											(in Chinese).et al., 2017
ali City, Yunnan Province	Fish	100.16	25.73	-382.45	0.15	Y	Freshwater		Ecological	2016	Li, D. , 2017.
uzhou City,	Fish	119.63	25.82	291.18	1.64		Low salt	1.50	stocking	2018-2019	Study on
ujian Province									Extensive		greenhouse gas
											fluxes at the
											water-air
											interface in
											Erhai Lake.
											Master thesis,
											Yunnan Univ.
											(in Chinese).et
											al., 2017
											Zhang, Y.F., Lyu, M.,
											Yang, P., Lai, D.Y.F., Tong, C., Zhao, G.H., et

										al., 2021 variations i	
										fluxes	in a
										subtropi	cal
										coastal	
										reservoi	r of
										Southea	st
										China	were
										related	to
										urbaniza	ation
										and la	and-use
										types.	J.
										Environ	. Sci.
										109, 206	5—218.et
										al., 2021	
Changsha County, Hunan Province	Fish	113.32	28.52	111.18	2.82	Freshwater	10.00	Extensive	2019-2020	Shen,	Y.L.,
Flovince										Zhou,	J.G.,
										Peng,	P.Q.,
										Wu, J.S	., 2020.
										Spatio-	

									temporal
									variation of
									nitrogen and
									phosphorus
									contents in
									cascade ponds
									in subtropical
									headstream
									watershed and
									its influencing
									factors. J.
									Agro-Environ.
									Sci. 39, 2420-
									2428 (in
									Chinese). et al.,
									2020
Nanjing City,	Fish	118.97	32.47	4.28	0.39	Freshwater	Ecological	2012-2013	Han, Y., 2013.
Jiangsu Province							stocking		Greenhouse
									gases emission
									characteristics

										of rivers in
										Nanjing and
										influencing
										factors. Master
										thesis, Nanjing
										Univ. Infor.
										Sci.Technol.
										(in Chinese). et
										al., 2013
Nanjing City,	Fish	118.73	32.20	58.46	16.36	Freshwater		Extensive	2012-2014	Han, Y., 2013.
Jiangsu Province										Greenhouse
Suzhou City,	Crab	120.42	31.03	96.84	81.08	Freshwater	1.20	Extensive	2013-2014	gases emission
Jiangsu Province										characteristics
										of rivers in
										Nanjing and
										influencing
										factors. Master
										thesis, Nanjing
										Univ. Infor.
										Sci.Technol.

										(in Chinese). et al., 2013
										Xiang, J. , 2015.
										Greenhouse
										gases
										emissions from
										the lakeside
										wetland and
										crab pond in
										Riparian zone
										of Taihu lake.
										Doctoral thesis,
										Univ. Chinese
										Academy Sci.
										(in Chinese).et
										al., 2015
Suzhou City,	Crab	120.45	31.1	1.61	5.23	Freshwater	1.62	Extensive	2013-2014	Xiang, J., 2015.
Jiangsu Province										Greenhouse
Yongshan County, Yunnan	Fish	103.61	28.24	98.25	1.64			Extensive	2019	gases
Province										emissions from

 the lakeside
wetland and
crab pond in
Riparian zone
of Taihu lake.
Doctoral thesis,
Univ. Chinese
Academy Sci.
(in Chinese).et
al., 2015
Tan, W., 2020. A
comparative
study of carbon
flux changes at
the water-air
interface of
typical
reservoirs in
the Yangtze
River Basin.

									Master thesis, Chongqing Jiaotong Univ. (in Chinese). et al., 2020
Zhaotong City, Yunnan Province	Fish	104.41	28.63	89.38	1.83		Ecological stocking	2019 2014	Tan, W., 2020. A comparative
Yichang City, Hubei Province	Fish	108.18	30.41	144.22	7.48		Ecological stocking		study of carbon flux changes at
Changshou Lake, Chongqing City	Fish	107.29	29.93	78.50	3.35		Ecological stocking		the water-air interface of
Nanning City, Guangxi Autonomous Region	Fish	108.50	23.50	350.84	3.29		Ecological stocking		typical reservoirs in
									the Yangtze
									RiverBasin.Masterthesis,
									Chongqing Jiaotong Univ.
									(in Chinese). et al., 2020

Li J.H., Pu, J.B. ,
Sun, P.A.,
Yuan, D.X.,
Liu, W.,
Zhang, T., Mo,
X., 2015.
Summer
greenhouse
gases exchange
flux across
water-air
interface in
three water
reservoirs
located in
different
geologic
setting in
Guangxi,
China.

						Environ. Sci.
						36, 4032–4042
						(in Chinese).et
						al., 2015
Xiangxi River, Hubei Province Fish	110.77	30.97	113.60	2.50	Ecological 2010 stocking	Zhao, Y., Wu,
					stocking	B.F., Zeng, Y.,
						2013. Spatial
						and temporal
						patterns of
						greenhouse gas
						emissions from
						Three Gorges
						Reservoir of
						China.
						Biogeosciences
						10, 1219–
						1230.et al., 2013
Zigui City, Hubei Province Fish	10.98	30.87	551.88	1.01	Ecological 2010 stocking	Zhao, Y., Wu,

Wanzhou City, Chongqing City Fish	108.49	30.84	455.52	1.84		Extensive	B.F., Z	Zeng, Y.,
							2013.	Spatial
							and	temporal
							pattern	s of
							greenh	ouse gas
							emissi	ons from
							Three	Gorges
							Reserv	oir of
							China.	
							Biogeo	osciences
							10,	1219–
							1230.et	al., 2013

Table S4

Summary of literature information on CO₂ and CH₄ fluxes (g C m⁻² yr⁻¹) and characteristics of rice-field system (RFS). See Table S1 caption for explanation.

FRS Location	Species	Longitude	Latitude	CO ₂	CH_4	Aeration	Aquatic	Salinity	Water depth	Intensity level	Observation	Referen	ce
							plant	level	(m)		year		
Qianjiang City, Hubei Province	Shrimp	112.70	30.38		53.43	N	Y	Freshwater	0.10	Intensive	2016-2017	Sun,	Z.C.,
												Guo,	Y., Li,
												C.F.,	Cao,
												C.G.,	Yuan,
												P.L.,	Zou,
												F.L.,	Wang,
												J.H.,	Jia,
												P.A.,	Wang,
												J.P.,	2019.
												Effec	ts of
												straw	,
												returi	ning
												and t	feeding
												on	

											greei	nhouse
											gas	
											emis	sions
											from	l
											integ	grated
											rice-	
											cray	fish
											farm	ing in
											Jiang	ghan
											Plair	1,
											Chin	a.
											Envi	ron.
											Sci.	Pollut.
											Res.	26,
											1171	.0-
											1171	8. et al.,
											2019	
Qianjiang City, Hubei Province	Shrimp	112.70	30.38	35.86	Ν	Y	Freshwater	0.10	Intensive	2016-2017	Sun,	Z.C.,
Wuhan City, Hubei Province	Fish	114.36	30.48	61.95	Ν	Y	Freshwater	0.80		2006-2007	Guo,	, Y., Li,

C.F.,	44.14
C.G., Y	47.70
P.L.,	
F.L., W	
J.H.,	
P.A., W	
J.P., 2	
Effects	
straw	
returnin	
and fee	
on	
greenho	
gas	
emissio	
from	
integrat	
rice-	
crayfisl	
farming	

Jianghan
Plain,
China.
Environ.
Sci. Pollut
Res. 26
11710–
11718. et al
2019
Yuan, W.L.
Cao, C.G.
Li, C.F.
Zhan, M.
Cai, M.L.
Wang, J.P.
2009.
Methane
and nitrou
oxide
emissions

from rice- duck and rice-fish complex ecosystems
rice-fish complex
complex
ecosystems
and the
evaluation
of their
economic
significance
. Agri. Sci
China 8
1246–
1255.et al.
2009
Wuhan City, Hubei ProvinceFish114.3630.4852.49NYFreshwater0.802006-2007Yuan,W.L.
China National Rice Research Fish 120.16 30.27 3.42 Y Freshwater 2017 Cao, C.G.
Institute, Hangzhou, Zhejiang Province Li, C.F.
Zhan, M.
Cai, M.L.

g, J.P.,	Wang, J	
•	2009.	
iane	Methane	
nitrous	and nitr	
e	oxide	
sions	emission	
rice-	from r	
and	duck	
fish	rice-fish	
olex	complex	
ystems	ecosystem	
the	and	
ation	evaluatio	
their	of th	
omic	economi	
ficance	signification	
ri. Sci.	. Agri. S	
a 8,	China	
	1246-	
.et al.,	1255.et	

2009	
Feng,	J.F.,
Liu,	Y.B.,
Li,	F.B.,
Zhou	, X.Y.,
Xu,	C.C.,
Fang,	F.P.,
2021.	Effect
of	
phosp	ohorus
and	
potas	sium
additi	on on
green	house
gas	
emiss	ions
and n	utrient
utiliza	ation
of a	rice-
fish	co-

									culture
									system.
									Environ.
									Sci. Pollut.
									Res. 28,
									38034-
									38042. et al.,
									2021
	Fish	120.16	30.27	4.27		Y	Freshwater	2017	Feng, J.F.,
	e Crab	120.71	31.44	8.08		Y	Freshwater	2018	Liu, Y.B.,
Suzhou City, Jiangsu Province				24.70					Li, F.B.,
				18.43	Ν				Zhou, X.Y.,
									Xu, C.C.,
									Fang, F.P.,
									2021. Effect
									of
									phosphorus
									and
									potassium
									addition on

greenhouse
gas
emissions
and nutrient
utilization
of a rice-
fish co-
culture
system.
Environ.
Sci. Pollut.
Res. 28
38034-
38042. et al.
2021
Liu, Y.M.
Fu, W.G.,
Jin, M.J.,
Shi, L.L.

Zhang, J.Q.,
2020.
Effects of
different
aquatic
plants on
water
purification
and
greenhouse
gas
emission in
crab pond in
high
temperature
season. J.
Eco. Rural
Environ. 36,
1072–1079
(in

										Chinese al., 2020	e). et
Qianjiang City, Hubei Province	Shrimp	112.70	30.38	29.89	Ν	Y	Freshwater	0.50-1.00	2015-2016	xu, X	X.Y.,
										Zhang,	
										M.M.,	
										Peng, (C.L.,
										Si, G.H	I., et
										al., 2	2017.
										Effect	of
										rice-	
										crayfish	n co-
										culture	on
										greenho	ouse
										gases	
										emissio	n in
										straw-	
										puddled	1
										paddy	
										fields.	
										Chinese	e J.

									Eco-Agri.
									25, 1591–
									1603 (in
									Chinese). et
									al., 2017
Taojiang County, Hunan Province	Fish	112.17	28.51	29.76	Ν	Y	Freshwater 0.80	2005	Liu, X.Y.,
									Huang, H.,
									Yang, Z.P.,
									Yu, J.B.,
									Dai, Z.Y.,
									Wang, D.J.,
									Tan, S.Q.,
									2006.
									Methane
									emission
									from rice-
									duck-fish
									complex
									ecosystem.
									Eco.

											Envi	on. 02,
											265-	269 (in
											Chine	ese).et
											al., 2006	5
Taojiang County, Hunan Province	Fish	112.17	28.51		35.94	Ν	Y	Freshwater	0.80	2005	Liu,	X.Y.,
Wuhan City, Hubei Province	Fish	114.36	30.48	509.13	63.39		Y	Freshwater	0.30	2006	Huan	g, H.,
											Yang	, Z.P.,
											Yu,	J.B.,
											Dai,	Z.Y.,
											Wang	g, D.J.,
											Tan,	S.Q.,
											2006	
											Meth	ane
											emiss	sion
											from	rice-
											duck	-fish
											comp	olex
											ecosy	vstem.
											Eco.	
											Envi	on. 02,

265–269 (in
Chinese).et
al., 2006
Zhan, M.,
Cao, C.G.,
Wang, J.P.,
Cai, M.L.,
Yuan, W.L.,
2008.
Greenhouse
gases
exchange of
integrated
paddy field
and their
comprehens
ive global
warming
potentials.
Acta

									Ecologica
									Sin. 11,
									5461-5468
									(in
									Chinese). et al., 2008
Hangzhou City,	Fish	119.95	30.05	12.11	Y	Y	Freshwater	2019	References
Zhejiang Province									et al., 2021
Hangzhou City,	Fish	119.95	30.05	21.86				2019	References
Zhejiang Province	Crab	122.16	41.03	6.87					et al., 2021
Liaohe estuary, Panjin City,				9.04					Zhang, Y.B.,
Liaoning Province				28.71	Ν	Y	Freshwater		Xu, Y.,
									Wang,
									Н.Ү.,
									Wang, S.P.,
									Zhai, L.M.,
									Liu, H.B.,
									2022.
									Greenhouse

gas
emission
characteristi
cs and
influencing
factors of
rice-crab
symbiosis
system. J.
Agric. Res.
Environ. 1–
11 (in
Chinese). et
al., 2021

Table S5

Summary of literature information on environment variables in coastal wetland reclamation system (CWRS). DO = dissolved oxygen; DOC = dissolved organic carbon; DTN = dissolved total nitrogen; DTP = dissolved total phosphorus; NH_4^+ -N = ammonia nitrogen; NO_3^- -N = nitrate nitrogen.

CWRS Location	Air temperature	Precipitation	Water	pН	DO	Chl-a	DOC	DTN	DTP	NH4 ⁺ -N	NO3 ⁻ -N	Reference	
	(°C)	(mm)	temperature (°C	C)	(mg L ⁻¹)	(µg L ⁻¹)	(mg L ⁻¹)						
30 km north of the Yellow River	12.10	551.60	14.61							0.26		Song, H.	L., Liu,
Estuary												X.T.,	Wen,
												B.L.,	2017.
												Greenh	ouse
												gases f	luxes at
												water-a	ur
												interfac	ce of
												aquacu	lture
												ponds	in the
												Yellow	River
												Estuary	. Eco.
												Enviro	n. Sci.

											26,	1554–
											1561	(in
											Chines	Se). et al.,
											2017	
in River Estuary, Fujian Province	19.60	1350	28.26	8.88	5.33	155.01	12.56	1.15	0.16	0.44	Tong,	С.,
											Bastvi	ken, D.,
											Tang,	K.W.,
											Yang,	P., et
											al.,	2021.
											Annua	l CO ₂
											and	CH ₄
											fluxes	in
											coasta	1
											earthe	n ponds
											with	
											Litope	naeus
											vanna	mei in
											Southe	eastern
											China.	
											Aquac	ulture

												545.et al.	, 2021
Dongying City, Shandong Province	12.10	551.60	17.65									Song, H.I	, Liu,
												X.T., 20	016.
												Anthrop	pogeni
												c effects	s on
												fluxes o	of
												ecosyste	em
												respirat	ion
												and met	thane
												in the Y	ellow
												River E	stuary,
												China.	
												Wetland	ds 36,
												S113–S	123.et
												al., 2016	
Ganyu County, Jiangsu Province	13.80	976.40	21.70	8.32	8.42	44.11	3.38	3.66	0.22	0.06	0.21	Zhang,	D.X.,
			21.60	7.90	7.35	15.61	1.76	3.13	0.14	0.05	0.47	Tian,	X.L.,
												Dong,	S.L.,
												Chen,	Y.,

									Feng, J., et al.,
									2020. Carbon
									budgets of two
									typical
									polyculture
									pond systems
									in coastal
									China and
									their potential
									roles in the
									global carbon
									cycle.
									Aquacult.
									Env. Interac.
									12, 105–115. et al., 2020
Qingdao, Shandong Province	12.30	662.10	21.95	8.30	41.7	6.47	3.89	0.31	Chen, Y., Dong,
				8.05	3.88	3.13	3.03	0.19	S.L., Wang,
									F., Gao, Q.F.,
									Tian, X.L.,

												2016.	Carbon
												dioxide	e and
												methar	ie
												fluxes	from
												feeding	g and
												no-feed	ling
												maricu	lture
												ponds.	
												Enviro	n.
												Pollut.	212,
												489-49	97.et al.,
												2016	
Ganyu County, Jiangsu Province	19.60	1350	24.20	8.77	7.66	60.8	3.26	3.13	0.21	0.06	0.31	Zhang,	D.X.,
				8.10	5.75	17.60	0.61	1.95	0.10	0.06	0.48	Tian,	X.L.,
												Dong,	S.L.,
												Chen,	Y.,
												Feng, J	., et al.,
												2020.	Carbon
												dioxide	e fluxes
												from	two

												typical
												mariculture
												polyculture
												systems in
												coastal China.
												Aquaculture
												521. et al., 2020
Min River Estuary, Fujian Province	19.60	1350	28.32	9.19	4.71	118.60	11.94	1.06	0.20	0.37	0.07	Zhao, G.H.,
				9.18	5.03	185.29	12.53	1.05	0.23	0.35	0.17	2020. Carbon,
				9.17	4.84	114.81	11.15	1.31	0.20	0.25	0.08	nitrogen and
												phosphorus
												budgets in
												reclaimed
												shrimp ponds
												of the Min
												River Estuary.
												Master thesis,
												Fujian Normal
												Univ. (in

												Chinese). et al., 2020
Ganyu County, Jiangsu Province	13.80	976.40	24.60	8.66	7.13	24.25	1.06	1.97	0.10	0.033	0.33	Zhang, D.X.,
												2015. Studies
												on CH ₄ and
												CO ₂ fluxes at
												water-air
												interface and
												carbon
												budgets of
												different
												culture
												systems with
												portunus
												trituberculatus
												,
												marsupenaeus
												japonicas and
												ruditapes
												philippinarum

									. Master
									thesis, Ocean
									Univ. China
									(in Chinese).et
									al., 2015
Min River Estuary, Fujian Province, China	19.60	1350	16.60	8.62	8.89	359.02	1.69	0.43	Yang, P., He,
China			27.53	8.52	6.64	246.73	2.41	0.15	Q.H., Huang,
									J.F., Tong, C.,
									2015. Fluxes
									of greenhouse
									gases at two
									different
									aquaculture
									ponds in the
									coastal zone
									of
									southeastern
									China. Atmos.
									Environ. 115,
									269–277. et al.,

												2015
Min River Estuary,	19.90	1346	26.50	9.24	10.5	220.71	36.16	1.71	0.14	0.44	0.06	Yang, P., He,
Fujian Province												Q.H., Huang,
												J.F., Tong, C.,
												2015. Fluxes
												of greenhouse
												gases at two
												different
												aquaculture
												ponds in the
												coastal zone
												of
												southeastern
												China. Atmos.
												Environ. 115,
												269-277. et al.,
												2015
Jiulong Estuary,	21.00	1371	28.37	9.16	9.3	75.16	23.18	1.78	0.13	0.76	0.13	Yang, P., Zhang,
Fujian Province												Y.F., Lai,
												D.Y.F., Tan,

L.S., Jin, B.S.	
Tong, C.	
2018. Fluxes	
of carbor	
dioxide and	
methane	
across the	
water-	
atmosphere	
interface of	
aquaculture	
shrimp ponds	
in two	
subtropical	
estuaries: the	
effect of	
temperature,	
substrate,	
salinity and	
nitrate. Sci	

									Total.
									Environ. 635,
									1025–1035. et
									al., 2018
Binhai New Area, Tianjin City	13.68	550.31	20.61	8.97	9.68		0.08	0.78	ни, В.В., Хи,
			22.12	8.76	8.76		0.17	0.70	X.F., Zhang,
									J.F., Wang,
									T.L., Meng,
									W.Q., Wang,
									D.Q., 2020.
									Diurnal
									variations of
									greenhouse
									gases
									emissions
									from
									reclamation
									mariculture
									ponds. Estuar.
									Coast. Shelf

											Sci. 237. et al., 2020
Min River Estuary, Fujian Province	19.90	1342	29.90	8.42	9.44	221.60	52.46	0.18	0.82	0.24	Tan, L.S.,
											Yang, P., Xu.
											K., Chen.
											K.L., Huang.
											J.F., Tong, C.,
											2018.
											Comparison
											of CH4
											emissions
											following
											brackish
											Cyperus
											malaccensis
											marsh
											conversion to
											shrimp pond
											in the Min
											River estuary.

										Acta	Sci.
										Circun	nstant.
										38,	1214-
										1223	(in
										Chines	se). et al.,
										2018	
Min River Estuary, Fujian Province	19.90	1342	29.17	9.58	5.20	116.44	16.08	0.96	0.13	Yang, P.	, Zhang,
			28.39	9.45	6.25	186.19	13.89	0.70	0.05	Y., Ya	ang, H.,
			28.41	9.55	5.80	191.95	15.95	0.69	0.06	Zhang	, Y.F.,
										Xu, J	., Tan,
										L.S.,	et al.,
										2019.	Large
										fine-sc	ale
										spatiot	empora
										l varia	tions of
										CH4 d	liffusive
										fluxes	from
										shrimp)
										aquacu	ılture
										ponds	affected

by organic
matter supply
and aeration in
Southeast
China. J.
Geophys. Res-
Biogeo. 124,
1290–1307. et
al., 2019
Zhang, Y.F.,
Yang, P.,
Yang, H., Tan,
L.S., Guo,
Q.Q., Zhao,
G.H., et al.,
2019. Plot-
scale
spatiotempora
l variations of
CO2

												concentration
												and flux
												across water-
												air interfaces
												at aquaculture
												shrimp ponds
												in a
												subtropical
												estuary.
												Environ. Sci.
												Pollut. Res.
												26, 5623–
												5637. et al., 2019
Min River Estuary, Fujian Province	19.9	1342	25.10	7.26	6.34	201.22	20.68	1.88	0.19	0.34	1.15	Tang et al., 2021
Dagu river, Qingdao city, Shandong	12.00	900	20.30									Dong, R.C.,
Province												2015. Study
												on CO ₂ flux
												and
												source/sink

	function in
	Jiaozhou Bay
	coastal
	wetland.
	Master thesis,
	Qingdao
	Univ. (in
	Chinese).et al.,
	2015
Min River Estuary, Fujian Province 19.90 1341 22.00	Chen, X.X.,
	Wiesmeier,
	M., Sardans,
	J., Van
	Zwieten, L.,
	Fang, Y.Y.,
	Gargallo-
	Garriga, A., et
	al., 2021.
	Effects of
	crabs on
	crabs on

				greenho	ouse
				gas emi	
				soil nu	ıtrients,
				and	
				stoichic	ometry
				in	a
				subtrop	vical
				estuarin	ne
				wetland	l. Biol.
				Fertil.	Soils
				57, 131	1-144.et
				al., 2021	
Bamen Bay, Hainan Province	24.10	2062	25.00	Han, Y.,	Zhang,
				G.L.,	Zhao,
				Y.C.,	2012.
				Distribu	ution
				and flu	axes of
				methan	e in
				tropical	l rivers
				and lag	oons of

								eastern	
								Hainan.	
								Journal	of
								Tropical	
								Oceanograp	ohy
								31, 87–95	(in
								Chinese). et	al.,
								2012	
Changbai Island, Zhejiang Province 16.00	1360	22.70	8.57	9.48	18.86	0.2	1	Zhang, D.2	Х.,
			8.62	9.68	22.39	0.2	0	Xu, W.	'.J.,
			8.60	9.69	22.74	0.1	9	Wang, F., H	He,
			8.38	9.59	15.70	0.1	7	J., Chai, X.I	R.,
								2022. Carb	on
								dioxide flux	xes
								from	
								mariculture	
								ponds w	ith
								swimming	
								crabs a	and
								shrimps	in

eastern China:
the effect of
adding razor
clams.
Aquacult.
Rep. 22. et al.,
2022

Table S6

IPS Location	Air temperature	Precipitation	Water	pН	DO	Chl-a	DOC	DTN	DTP	NH4 ⁺ -N	NO ₃ ⁻ -N	Reference
	(°C)	(mm)	temperature (°C)		(mg L-1)	(µg L ⁻¹)	(mg L ⁻¹)	(mg L-1)	(mg L-1)	(mg L ⁻¹)	(mg L ⁻¹)	
Chongzhou City, Sichuan Province	15.90	1012.40	15.90									Wu, M., 2016.
												The
												characteristic
												s and
												influencing
												factors of
												green gas
												emissions in
												different
												water bodys
												in
												Chongzhou.
												Master thesis,
												Sichuan
												Agric. Univ.

Summary of literature information on environment variables in inland pond system (IPS). See Table S5 caption for explanation.

					(in Chinese). et
					al., 2016
Changshu City, Jiangsu Province	16.90	1135.60	16.90	5.10	ма, Y.C. , Sun,
				6.20	L.Y., Liu,
				6.90	C.Y., Yang,
					X.Y., Zhou,
					W., Yang, B.,
					Schwenke,
					G., Liu, D.L.,
					2018. A
					comparison of
					methane and
					nitrous oxide
					emissions
					from inland
					mixed-fish
					and crab
					aquaculture
					ponds. Sci.

				Total.
				Environ. 637,
				517–523.et al.,
				2018
Chinese Academy of Fishery Sciences Research Center, Shanghai City	17.60	1173.40	28.95	Zhu, L., Che,
Research Center, Shanghai City				X., Liu, H.,
				Liu, X.G.,
				Liu, C., Chen,
				X.L., Shi, X.,
				2016.
				Greenhouse
				gas emissions
				and
				comprehensiv
				e greenhouse
				effect
				potential of
				Megalobrama
				amblycephala

						culture pond
						ecosystems in
						a 3-month
						growing
						season.
						Aquacult. Int.
						24, 893–902.et al., 2016
Xinghua City, Jiangsu province	17.80	1090	17.90	8.80	0.16 0.12	Liu, S.W., Hu,
	17.90	1090	17.60	8.66		Z.Q., Wu, S.,
						Li, S.Q., Li,
						Z.F., Zou,
						J.W., 2016.
						Methane and
						nitrous oxide
						emissions
						reduced
						following
						conversion of

							rice paddies
							to inland crab
							fish
							aquaculture in
							southeast
							China.
							Environ. Sci.
							Technol. 50,
							633–642.et al.,
							2016
Gaoqing Country,	13.10	539.40	26.50	8.30	0.34	7.94	Chen, X.X.,
Shandong Province			26.10	8.20	0.30	6.48	Wiesmeier,
			26.90	8.08	0.16	9.37	M., Sardans,
							J., Van
							Zwieten, L.,
							Fang, Y.Y.,
							Gargallo-
							Garriga, A., et
							al., 2021.
							Effects of

										crabs	on
										greenho	use
										gas	
										emission	ns,
										soil nut	rients,
										and	
										stoichio	metry
										in	a
										subtropi	cal
										estuarin	e
										wetland	. Biol.
										Fertil.	Soils
										57, 131-	-144.et
										al., 2015	
Wuhan City, Hubei Province	16.20	1207	20.29	8.03	8.13	12.42	3.46	0.78	0.71	Lan. J.,	2015.
										Greenho	ouse
										gases	
										concent	ration
										, emissio	on and
										influenc	e

											factors in
											farming
											waters.
											Master thesis,
											Huazhong
											Agri. Univ.
											(in Chinese). et al., 2015
Tichang City,	16.90	1215.60	18.10	7.14	6.19	110.80	3.68	0.60	0.39	1.54	Zhang, C., 2018.
lubei Province			19.00		7.10	317.60	8.96	1.07	0.36	3.52	On the
			19.40		12.95	99.00	3.02	0.74	0.61	1.29	process and
			19.80		13.75	133.70	6.00	1.19	0.85	2.02	mechamism
			21.10		10.32	77.10	2.93	0.46	0.29	1.29	of methane
											emission from
											eutrophic
											ponds.
											Doctoral
											thesis, China
											Univ. Geosci.
											(in Chinese). et

									al., 2018.
Chizhou City,	16.50	1800	17.20	7.52	24.99	1.93	0.60	0.57	Yue, Q., 2018.
Anhui Province			16.50	7.39	21.83	1.30	0.46	0.36	Quantifying
			17.80	7.50	29.93	2.07	0.66	1.36	greenhouse
									gas emissions
									and the
									mitigation
									potential in
									agriculture
									with literature
									statistics
									method and
									case study.
									Doctoral
									thesis,
									Nanjing Agri.
									Univ. (in
									Chinese).et al.,
									2018

Suzhou City,	15.70	1100	29.30	9.62	10.68	4.56	0.80	0.05	0.10	0.05	Liu, Y.M., Fu,
Jiangsu Province			27.30	9.27	7.11	2.49	0.66	0.04	0.07	0.04	W.G., Jin,
											M.J., Shi,
											L.L., Shen,
											M.X., Zhang,
											J.Q., 2020.
											Effects of
											different
											aquatic plants
											on water
											purification
											and
											greenhouse
											gas emission
											in crab pond
											in high
											temperature
											season. J.
											Eco. Rural
											Environ. 36,

				1072–1079
				(in Chinese).et
				al., 2020
Chuzhou City,	15.40	1090	18.68	Wang, J., Xiao,
Anhui Province			19.00	W., Zhang,
				X.F., Zhang,
				M., Zhang,
				W.Q., Liu, Q.,
				et al., 2019.
				Methane
				emission
				characteristic
				s and its
				influencing
				factors over
				aquaculture
				ponds.
				Environ. Sci.
				40, 5503–
				5514 (in

				Chinese).	et al.,
				2019	
Chuzhou City, Anhui Province	15.40	1090	26.69	Jia. L., Zh	iang,
				M., Pu, Y	Y.N.,
				Zhao, Zhao,	J.Y.,
				Wang, J.,	Xie,
				Y.H., et	al.,
				2021.	
				Temporal	and
				spatial	
				characteri	istic
				s of meth	hane
				flux and	its
				influencin	ıg
				factors in	n a
				typical	
				aquacultu	re
				pond. C	China
				Environ.	Sci.
				41, 29	910–

					2922 (in
					Chinese).et al., 2021
Changsha County, Hunan Province	17.20	1442	27.70	2.84	Shen, Y.L.,
			29.30	2.30	Zhou, J.G.,
			21.30	10.58	Peng, P.Q.,
					Wu, J.S.,
					2020. Spatio-
					temporal
					variation of
					nitrogen and
					phosphorus
					contents in
					cascade ponds
					in subtropical
					headstream
					watershed and
					its influencing
					factors. J.
					Agro-

							Environ. Sci.
							39, 2420–
							2428 (in
							Chinese).et al.
							2020
Xinghua City, Jiangsu Province	15.00	1024.80	23.80	8.40	8.15		ни, Т., 2019
			20.30	8.20	9.74		Measurement
							s of mathane
							and nitrous
							oxide fluxes
							from
							freshwater
							crab/fish
							farming
							wetlands.
							Master thesis
							Nanjing Agri
							Univ. (in
							Chinese).et al
							2019

Chuzhou City, Anhui Province	15.40	1090	18.80	Zhao. J.Y.,
				2020.
				Dynamic of
				methane
				emission from
				water-
				atmosphere
				interface in
				freshwater
				aquaculture
				ponds in the
				Yangtze
				River Delta.
				Doctoral
				thesis,
				Nanjing Univ.
				Inform. Sci.
				Technol. (in
				Chinese). et al.,
				2020

Gaochun City, Jiangsu Province	15.90	1157	26.60	Lin, H., Zhou,
			27.10	G., Li, X.G.,
				Zhou, J.,
				Zhang, T.Q.,
				Wang, G.M.,
				2013.
				Greenhouse
				gases
				emissions
				from pond
				culture
				ecosystem of
				Chinese
				mitten crab
				and their
				comprehensiv
				e global
				warming
				potentials in
				summer. J.

						Fish. China
						37, 417–424
						(in Chinese).et
						al., 2013
Xinghua City, Jiangsu Province	15.00	1024.80	28.11	7.58	1.22 0.94	Hu, Z.Q., Wu,
			27.65	8.15		S., Ji, C., Zou,
						J.W., Zhou,
						Q.S., Liu,
						S.W., 2015. A
						comparison of
						methane
						emissions
						following rice
						paddies
						conversion to
						crab-fish
						farming
						wetlands in
						southeast
						China.

							Environ. Sci.
							Pollut. Res.
							23, 1505–
							1515.et al., 2015
Xinghua City, Jiangsu Province	15.00	1024.80	16.76	10.51	18.89	0.16 0.11	wu, S., Hu,
							Z.Q., Hu, T.,
							Chen, J., Yu,
							K., Zou, J.W.,
							Liu, S.W.,
							2017. Annual
							methane and
							nitrous oxide
							emissions
							from rice
							paddies and
							inland fish
							aquaculture
							wetlands in
							southeast

									China.
									Atmos.
									Environ. 175,
									135–144.et al.,
									2017
Nanjing City, Jiangsu Province	15.40	1106.50	19.60	7.97	6.69	151.67	0.62	0.18	Chen, Y.B.,
									2021. Study
									on variation
									law and
									influencing
									factors of
									greenhouse
									gas emission
									flux in
									different
									water bodies.
									Master thesis,
									Nanjing Univ.
									Inform. Sci.
									Technol. (in

										Chinese). et al., 2019
Tianshe River Basin, Jiangsu Province	16.00	1146.60	20.52	7.70	11.32	5.21	0.80	0.09	0.33	Wu, W. X.,
			20.78	8.55	11.11	7.17	1.15	0.11	0.40	2020.
			20.01	7.88	10.69	6.24	1.03	0.10	0.59	Characteristic
			21.12	7.93	9.22	5.21	1.54	0.09	0.92	s and
			20.48	7.33	6.88	2.76	1.04	0.10	0.52	influencing
			19.89	7.97	9.26	5.09	1.15	0.12	0.60	factors of
										greenhouse
										gas emission
										from water in
										Zhongtianshe
										River Basin in
										Tianmu Lake
										area. Master
										thesis,
										Nanjing
										Normal Univ.
										(in Chinese).et al., 2020

Fang, X.T.,	9.6	20.03	1024.80	15.00	Xinghua City, Jiangsu Province
Zhao, J.T.,	9.1	20.19			
Wu, S., Yu,	8.1	20.53			
K., Huang, J.,	8.0	20.14			
Ding, Y., Hu,	7.8	20.40			
T., et al.,	7.4	20.50			
2021. A two-					
year					
measurement					
of methane					
and nitrous					
oxide					
emissions					
from					
freshwater					
aquaculture					
ponds:					
affected by					
aquaculture					
species,					

				stocking and
				water
				management.
				Sci. Total.
				Environ.
				813.et al., 2021
Tai Lake basin, East China	16.5	1176	25.3	Yuan, J.J.,
			25.6	Xiang, J., Liu,
			25.4	D.Y., Kang,
				Н., Не, Т.Н.,
				et al., 2019.
				Rapid growth
				in greenhouse
				gas emissions
				from the
				adoption of
				industrial-
				scale
				aquaculture.

Nat.	Clim.
Change	9,
318-32	2.et al.,
2019	

Table S7

LRS Location	Air temperature	Precipitation	Water	pH	DO	Chl-a	DOC	DTN	DTP	NH4 ⁺ -N	NO ₃ ⁻ -N	Reference	
	(°C)	(mm)	temperature	e (°C)	(mg L ⁻¹)	$(\mu g L^{-1})$	(mg L ⁻¹)						
Nanjing City,	15.40	1106.50	20.93	8.41	8.10	117.03		1.09	0.07			Chen,	Y.B.,
Jiangsu Province												2021.	Study
												on va	ariation
												law	and
												influence	cing
												factors	of
												greenho	ouse
												gas ei	mission
												flux	in
												differen	t water
												bodies.	Master
												thesis, I	Nanjing
												Univ.	Inform.
												Sci. T	echnol.
												(in Chi	inese).et

Summary of literature information on environment variables in lake/reservoir system (LRS). See Table S5 caption for explanation.

									al., 2021
Wuhan City,	16.90	1320	18.40		52.72	7.33			Xing, Y.P., Xie,
Hubei Province									P., Yang, H.,
									Ni, L.Y.,
									Wang, Y.S.,
									Rong, K.W.,
									2005. Methane
									and carbon
									dioxide fluxes
									from a shallow
									hypereutrophi
									c subtropical
									Lake in China.
									Atmos.
									Environ. 39,
									5532-5540. et
									al., 2005
Duchang County, Jiangxi Province	17.10	1500	20.40	6.50		4.10	0.22	0.60	Liu, L.X., Xu, M., Lin,
Xingzi County, Jiangxi Province	17.10	1500	20.30	6.70		3.80	0.19	0.90	M., Zhang, X., 2013. Spatial variability of greenhouse gas effluxes

										and their controlling factors in the Poyang Lake in China. Pol. J. Environ. Stud. 22, 749–758. et al., 2013
Harbin City, Heilongjiang Province	3.30	531.20	17.45	9.09	7.81	18.09	3.26	1.50	0.12	Lv, D.K., 2013.
Harbin City, Heilongjiang Province	3.40	563.00	19.73	9.02	7.11	12.55	1.73	1.09	0.10	Study on CO ₂
										fluxes across
										water-air
										interface
										peatland
										reservoirs
										around
										Harbin.
										Doctoral
										thesis,
										Northeast
										Forestry Univ.

							(in Chinese).et al., 2013
Chizhou City,	16.50	1800	7.57	20.01	0.66	0.25 0.28	Yue, Q., 2018.
Anhui Province							Quantifying
							greenhouse
							gas emissions
							and the
							mitigation
							potential in
							agriculture
							with literature
							statistics
							method and
							case study.
							Doctoral
							thesis, Nanjing
							Agri. Univ. (in
							Chinese).et al.,
							2018

Dali City, Yunnan Province	15.10	1000	17.46	8.18	13.05							li, D., 2017.
			18.21	8.26	14.25							Study on
												greenhouse
												gas fluxes at
												the water-air
												interface in
												Erhai Lake.
												Master thesis,
												Yunnan Univ.
												(in Chinese).et
												al., 2017
Fuzhou City,	19.60	1350	23.02	8.73	7.71	31.81	20.00	1.62	0.17	0.46	1.22	Zhang, Y.F., Lyu, M.,
Fujian Province												Yang, P., Lai, D.Y.F., Tong, C., Zhao, G.H., et
												al., 2021. Spatial
												variations in CO2
												fluxes in a
												subtropical
												coastal
												reservoir of
												Southeast

					China were
					related to
					urbanization
					and land-use
					types. J.
					Environ. Sci.
					109, 206–
					218. et al., 2021
Changsha County, Hunan Province	17.20	1442	29.50	5.54	Shen, Y.L.,
					Zhou, J.G.,
					Peng, P.Q.,
					Wu, J.S.,
					2020. Spatio-
					temporal
					variation of
					nitrogen and
					phosphorus
					contents in
					cascade ponds

										in subtropical
										headstream
										watershed and
										its influencing
										factors. J.
										Agro-Environ.
										Sci. 39, 2420-
										2428 (in
										Chinese). et al.,
										2020
Nanjing City,	15.87	1106.50	18.66	8.05	26.41	2.05	0.04		0.04	Han, Y., 2013.
Jiangsu Province										Greenhouse
Nanjing City,	15.19	1106.50	19.10	7.95			0.62	9.6		gases emission
Jiangsu Province										characteristics
										of rivers in
										Nanjing and
										influencing
										factors. Master
										thesis, Nanjing
										Univ. Infor.

					Sci.Technol	
					(in Chinese al., 2013). et
Suzhou City,	17.00	1120	20.80	13.28	Xiang, J. , 20	15.
Jiangsu Province					Greenhouse	;
Suzhou City,	17.00	1120	18.53	3.05	gases	
Jiangsu Province					emissions	
					from	the
					lakeside	
					wetland a	and
					crab pond	in
					Riparian zo	one
					of Taihu la	ke.
					Doctoral	
					thesis, Ur	niv.
					Chinese	
					Academy S	Sci.
					(in Chinese al., 2015	?).et

Yongshan County, Yunnan Province	17.60	750	19.40		8.39	2.37	1.20	2.48	0.04	Tan, W., 2020.
Zhaotong City, Yunnan Province	19.40	1077.70	19.20		9.09	3.39	1.11	2.63	0.03	A comparative
Yichang City,	18.00	1493.20	19.90		6.89	6.53	1.75	3.09	0.08	study of
Hubei Province										carbon flux
Changshou Lake,	17.70	1120	20.04		8.02	42.28	4.24	2.97	0.06	changes at the
Chongqing City										water-air
										interface of
										typical
										reservoirs in
										the Yangtze
										River Basin.
										Master thesis,
										Chongqing
										Jiaotong Univ.
										(in Chinese).
										et al., 2020
Nanning City,	20.90	1680	30.70	8.05	10.21	3.12	3.17	0.74		li J.H., Pu,
Guangxi Autonomous Region										J.B., Sun,
										P.A., Yuan,
										D.X., Liu, W.,

Zhang, T., Mo,	
X., 2015.	
Summer	
greenhouse	
gases	
exchange flux	
across water-	
air interface in	
three water	
reservoirs	
located in	
different	
geologic	
setting in	
Guangxi,	
China.	
Environ. Sci.	
36, 4032–4042	
(in Chinese).et	
al., 2015	

Xiangxi River, Hubei Province	15.30	1082	20.36	8.23	9.08	14.34	7.54	Zhao, Y., Wu,
Zigui City, Hubei Province	16.90	1215.60	18.82	7.90	6.99	1.20	6.92	B.F., Zeng, Y.,
Wanzhou City, Chongqing City	17.70	1243	19.17	7.84	6.97	1.88	8.02	2013. Spatial
								and temporal
								patterns of
								greenhouse
								gas emissions
								from Three
								Gorges
								Reservoir of
								China.
								Biogeoscience
								s 10, 1219–
								1230. et al., 2013

Table S8

FRS Location	Air temperature (°C)	Precipitation	Water	pН	DO	Chl-a	DOC	DTN	DTP	NH4 ⁺ -N	NO3 ⁻ -N	Reference
		(mm)	temperature	(°C)	(mg L ⁻¹)	(µg L ⁻¹)	(mg L ⁻¹)					
Qianjiang City, Hubei Province	16.10	1100	24.86									Sun, Z.C.
												Guo, Y., Li
												C.F., Cao
												C.G., Yuan
												P.L., Zou
												F.L., Wang
												J.H., Jia
												P.A., Wang
												J.P., 2019
												Effects o
												straw
												returning
												and feeding
												on
												greenhouse

Summary of literature information on environment variables in rice-field system (FRS). See Table S5 caption for explanation.

				gas
				emissions
				from
				integrated
				rice-crayfish
				farming in
				Jianghan
				Plain, China.
				Environ. Sci.
				Pollut. Res.
				26, 11710–
				11718. et al.,
				2019
Wuhan City, Hubei Province	16.80	1150	7.09	Yuan, W.L.,
	16.80	1150	6.73	Cao, C.G.,
				Li, C.F.,
				Zhan, M.,
				Cai, M.L.,
				Wang, J.P.,
				2009.

					Metha	ne and
						s oxide
					emissi	ons
					from	rice-
					duck	and
					rice-fi	sh
					compl	ex
					ecosys	stems
					and	the
					evalua	tion of
					their	
					econo	mic
					signifi	cance.
					Agri.	Sci.
					China	8,
					1246-	
					1255.e	et al., 2009
China National Rice Research Institute,	20.65	7.13	0.09	0.45	Feng,	J.F.,
Hangzhou City, Zhejiang Province	20.65	4.39	0.13	0.37	Liu,	Y.B.,

1.14	0.10	5.19	20.65	
0.42	0.16	4.63	20.65	

											28, 38034– 38042. et al., 2021
Suzhou City, Jiangsu Province	16.00	1100	27.30	8.68	5.73	3.56	0.65	0.04	0.03	0.04	Liu, Y.M., Fu,
											W.G., Jin,
											M.J., Shi,
											L.L., Shen,
											M.X.,
											Zhang, J.Q.,
											2020.
											Effects of
											different
											aquatic
											plants on
											water
											purification
											and
											greenhouse
											gas emission
											in crab pond

					in high
					temperature
					season. J.
					Eco. Rural
					Environ. 36,
					1072-1079
					(in Chinese).
					et al., 2020
Qianjiang City, Hubei Province	16.10	1100	23.50		Xu, X.Y.,
					Zhang,
					M.M., Peng,
					C.L., Si,
					G.H., et al.,
					2017. Effect
					of rice-
					crayfish co-
					culture on
					greenhouse
					gases
					emission in
					gases

				straw-	
				puddle	ed
				paddy	fields.
				Chine	se J.
				Eco-A	Agri.
				25,	1591–
				1603	(in
				Chine	ese). et
				al., 2017	
Taojiang County, Hunan Province	16.60	1566	24.97	Liu,	X.Y.,
				Huang	g, H.,
				Yang,	Z.P.,
				Yu,	J.B.,
				Dai,	Z.Y.,
				Wang	, D.J.,
				Tan,	S.Q.,
				2006.	
				Metha	ine
				emissi	ion
				from	rice-

				duck-f	ïsh
				comple	ex
				ecosys	stem.
				Eco.	
				Enviro	on. 02,
				265-2	69 (in
				Chine	Se). et al.,
				2006	
Wuhan City, Hubei Province	16.80	1150	26.30	Zhan, M	., Cao,
				C.G.,	Wang,
				J.P.,	Cai,
				M.L.,	Yuan,
				W.L.,	2008.
				Greenl	house
				gases	
				exchar	nge of
				integra	ated
				paddy	field
				and	their
				compr	ehensi

									ve	global
									warn	ning
									potei	ntials.
									Acta	
									Ecol	ogica
									Sin.	11,
									5461	-5468
									(in C et al., 20	Chinese).
Hangzhou City,					14.82	1.71	0.13	1.07	Referen	ices
Zhejiang Province					12.44	1.77	0.09	1.15	et al., 2	2021
					11.72	1.71	0.10	0.90		
					11.64	1.54	0.07	0.83		
Panjin City, Liaoning Province	8.30	645	16.20	7.93					Zhang,	Y.B.,
									Xu,	Y.,
									Wan	g, H.Y.,
									Wan	g, S.P.,
									Zhai	, L.M.,
									Liu,	Н.В.,

2022.
Greenhouse
gas emission
characteristi
cs and
influencing
factors of
rice-crab
symbiosis
system. J.
Agric. Res.
Environ. 1–
11 (in
Chinese). et
al., 2021

Table S9

	CO ₂ flux					CH4 flux				
	Sum of square	df	Mean square	F value	P value	Sum of square	df	Mean square	F value	<i>P</i> value
Intercept	4.129	1	4.129	5.570	0.021	0.584	1	0.584	0.803	> 0.05
Species	0.346	3	0.115	0.156	> 0.05	10.950	3	3.650	5.017	0.003
Aquaculture system	10.225	3	3.408	4.598	< 0.01	19.581	3	6.527	8.972	< 0.001
Species × Aquaculture system	1.650	2	0.825	1.113	> 0.05	1.125	3	0.375	0.515	> 0.05
Residuals	51.149	69	0.741			78.295	109	0.727		

Summary of two-way ANOVA tests for the effects of farmed species, aquaculture system and their interactions on CO₂ and CH₄ fluxes.

1 References

- Bao, T., 2021. Impacts of different crop-fish co-culture systems on greenhouse gas
 emissions from freshwater aquaculture system. Master thesis, Chinese Academy
 of Agric. Sci. (in Chinese). https://doi.org/10.11654/jaes.2020-1367.
- Chen, X.X., Wiesmeier, M., Sardans, J., Van Zwieten, L., Fang, Y.Y., Gargallo-Garriga,
 A., et al., 2021. Effects of crabs on greenhouse gas emissions, soil nutrients, and
 stoichiometry in a subtropical estuarine wetland. Biol. Fertil. Soils 57, 131–144.
 https://doi.org/10.1007/s00374-020-01512-6.
- 9 Chen, Y.B., 2021. Study on variation law and influencing factors of greenhouse gas
 10 emission flux in different water bodies. Master thesis, Nanjing Univ. Inform. Sci.
 11 Technol. (in Chinese). https://doi.org/10.27248/d.cnki.gnjqc.2021.000746.
- Chen, Y., Dong, S.L., Wang, F., Gao, Q.F., Tian, X.L., 2016. Carbon dioxide and
 methane fluxes from feeding and no-feeding mariculture ponds. Environ. Pollut.
 212, 489–497. https://doi.org/10.1016/j.envpol.2016.02.039.
- Chen, Y., Dong, S.L., Wang, Z.A., Wang, F., Gao, Q.F., Tian, X.L., Xiong, Y.H., 2016.
 Variations in CO₂ fluxes from grass carp Ctenopharyngodon idella aquaculture
 polyculture ponds. Aquacult. Env. Interac. 8, 31–40.
 https://doi.org/10.3354/aei00149.
- Dong, R.C., 2015. Study on CO₂ flux and source/sink function in Jiaozhou Bay coastal
 wetland. Master thesis, Qingdao Univ. (in Chinese).
- 21 Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees.
- 22 J. Anim. Ecol. 77, 802–813. https://doi.org/10.1111/j.1365-2656. 2008.01390.x.

23	Fang, X.T., Zhao, J.T., Wu, S., Yu, K., Huang, J., Ding, Y., Hu, T., et al., 2021. A two-
24	year measurement of methane and nitrous oxide emissions from freshwater
25	aquaculture ponds: affected by aquaculture species, stocking and water
26	management. Sci. Total. Environ. 813. https://doi.org/10.1016/j.scitotenv.
27	2021.151863.

- Feng, J.F., Liu, Y.B., Li, F.B., Zhou, X.Y., Xu, C.C., Fang, F.P., 2021. Effect of
 phosphorus and potassium addition on greenhouse gas emissions and nutrient
 utilization of a rice-fish co-culture system. Environ. Sci. Pollut. Res. 28, 38034–
 38042. https://doi.org/10.1007/s11356-020-12064-5.
- Gao, H., 2020. Enhanced performance of algal-bacterial-based aquaponics based on
 optimization of its carbon and nitrogen cycles. Master thesis, Shandong Univ. (in
 Chinese). https://doi.org/10.27272/d.cnki.gshdu.2020.004570.
- Han, Y., 2013. Greenhouse gases emission characteristics of rivers in Nanjing and
 influencing factors. Master thesis, Nanjing Univ. Infor. Sci.Technol. (in Chinese).
- Han, Y., Zhang, G.L., Zhao, Y.C., 2012. Distribution and fluxes of methane in tropical
 rivers and lagoons of eastern Hainan. Journal of Tropical Oceanography 31, 87–
 95 (in Chinese). https://doi.org/10.3969/j.issn.1009-5470.2012. 02.012.
- Hu, B.B., Xu, X.F., Zhang, J.F., Wang, T.L., Meng, W.Q., Wang, D.Q., 2020. Diurnal
 variations of greenhouse gases emissions from reclamation mariculture ponds.
 Estuar. Coast. Shelf Sci. 237. https://doi.org/10.1016/j.ecss.2020.106677.
- Hu, Z.Q., Wu, S., Ji, C., Zou, J.W., Zhou, Q.S., Liu, S.W., 2015. A comparison of
 methane emissions following rice paddies conversion to crab-fish farming
 wetlands in southeast China. Environ. Sci. Pollut. Res. 23, 1505–1515.
 https://doi.org/10.1007/s11356-015-5383-9.

S187

- Hu, T., 2019. Measurements of mathane and nitrous oxide fluxes from freshwater
 crab/fish farming wetlands. Master thesis, Nanjing Agri. Univ. (in Chinese).
 https://doi.org/10.27244/d.cnki.gnjnu.2019.000637.
- Jia. L., Zhang, M., Pu, Y.N., Zhao, J.Y., Wang, J., Xie, Y.H., et al., 2021. Temporal
 and spatial characteristics of methane flux and its influencing factors in a typical
 aquaculture pond. China Environ. Sci. 41, 2910–2922 (in Chinese).
 https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0295.
- Kuechle, K.J., Webb, E.B., Mengel, Doreen, Main, A.R., 2019. Factors influencing
 neonicotinoid insecticide concentrations in flood plain wetland sediments across
 Missouri. Environ. Sci. Technol. 53, 10591–10600. https://doi.org/
 10.1021/acs.est.9b01799.
- Lan. J., 2015. Greenhouse gases concentration, emission and influence factors in
 farming waters. Master thesis, Huazhong Agri. Univ. (in Chinese).
 https://doi.org/10.7666/d.Y2803380.
- Li J.H., Pu, J.B., Sun, P.A., Yuan, D.X., Liu, W., Zhang, T., Mo, X., 2015. Summer
 greenhouse gases exchange flux across water-air interface in three water reservoirs
 located in different geologic setting in Guangxi, China. Environ. Sci. 36, 4032–
 4042 (in Chinese). https://doi.org/10.13227/j.hjkx.2015.11.012.
- Li, D., 2017. Study on greenhouse gas fluxes at the water-air interface in Erhai Lake.
 Master thesis, Yunnan Univ. (in Chinese).
- Lin, H., Zhou, G., Li, X.G., Zhou, J., Zhang, T.Q., Wang, G.M., 2013. Greenhouse
 gases emissions from pond culture ecosystem of Chinese mitten crab and their
 comprehensive global warming potentials in summer. J. Fish. China 37, 417–424
 (in Chinese). https://doi.org/10.3724/SP.J.1231.2013.38282.

71	Liu, L.X., Xu, M., Lin, M., Zhang, X., 2013. Spatial variability of greenhouse gas
72	effluxes and their controlling factors in the Poyang Lake in China. Pol. J. Environ.
73	Stud. 22, 749–758.

- Liu, S.W., Hu, Z.Q., Wu, S., Li, S.Q., Li, Z.F., Zou, J.W., 2016. Methane and nitrous
 oxide emissions reduced following conversion of rice paddies to inland crab fish
 aquaculture in southeast China. Environ. Sci. Technol. 50, 633–642.
 https://doi.org/10.1021/acs.est.5b04343.
- Liu, X.Y., Huang, H., Yang, Z.P., Yu, J.B., Dai, Z.Y., Wang, D.J., Tan, S.Q., 2006.
 Methane emission from rice-duck-fish complex ecosystem. Eco. Environ. 02,
 265–269 (in Chinese). https://doi.org/10.16258/j.cnki.1674-5906.2006.02.014.
- Liu, Y.M., Fu, W.G., Jin, M.J., Shi, L.L., Shen, M.X., Zhang, J.Q., 2020. Effects of
 different aquatic plants on water purification and greenhouse gas emission in crab
 pond in high temperature season. J. Eco. Rural Environ. 36, 1072–1079 (in
 Chinese). https://doi.org/10.19741/j.issn.1673-4831.2019.0613.
- Lv, D.K., 2013. Study on CO₂ fluxes across water-air interface peatland reservoirs
 around Harbin. Doctoral thesis, Northeast Forestry Univ. (in Chinese).
- Ma, Y.C., Sun, L.Y., Liu, C.Y., Yang, X.Y., Zhou, W., Yang, B., Schwenke, G., Liu,
 D.L., 2018. A comparison of methane and nitrous oxide emissions from inland
 mixed-fish and crab aquaculture ponds. Sci. Total. Environ. 637, 517–523.
 https://doi.org/10.1016/j.scitotenv.2018.05.040.
- Shen, Y.L., Zhou, J.G., Peng, P.Q., Wu, J.S., 2020. Spatio-temporal variation of
 nitrogen and phosphorus contents in cascade ponds in subtropical headstream
 watershed and its influencing factors. J. Agro-Environ. Sci. 39, 2420–2428 (in
 Chinese). https://doi.org/10.11654/jaes.2019-1257.

- Song, H.L., Liu, X.T., 2016. Anthropogenic effects on fluxes of ecosystem respiration
 and methane in the Yellow River Estuary, China. Wetlands 36, S113–S123.
 https://doi.org/10.1007/s13157-014-0587-1.
- Song, H.L., Liu, X.T., Wen, B.L., 2017. Greenhouse gases fluxes at water-air interface
 of aquaculture ponds in the Yellow River Estuary. Eco. Environ. Sci. 26, 1554–
 100 1561 (in Chinese). https://doi.org/10.16258/j.cnki.1674-5906. 2017.09.014.
- Sun, Z.C., Guo, Y., Li, C.F., Cao, C.G., Yuan, P.L., Zou, F.L., Wang, J.H., Jia, P.A.,
 Wang, J.P., 2019. Effects of straw returning and feeding on greenhouse gas
 emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ.
 Sci. Pollut. Res. 26, 11710–11718. https://doi.org/10.1007/ s11356-019-04572-w.
- Tan, L.S., Yang, P., Xu. K., Chen. K.L., Huang. J.F., Tong, C., 2018. Comparison of
 CH4 emissions following brackish *Cyperus malaccensis* marsh conversion to
 shrimp pond in the Min River estuary. Acta Sci. Circumstant. 38, 1214–1223 (in
 Chinese). https://doi.org/10.13671/j.hjkxxb.2017.0447.
- Tan, L.S., Ge, Z.M., Li, S.H., Li, Y.L., Xie, L.N., Tang, J.W., 2021. Reclamationinduced tidal restriction increases dissolved carbon and greenhouse gases
 diffusivefluxes in salt marsh creeks. Sci. Total. Environ. 773, 1456844.
 https://doi.org/10.1016/j.scitotenv.2021.145684.
- Tan, W., 2020. A comparative study of carbon flux changes at the water-air interface
 of typical reservoirs in the Yangtze River Basin. Master thesis, Chongqing
 Jiaotong Univ. (in Chinese). https://doi.org/10.27671/d.cnki.gcjtc.2020.000089.
- Tang, C., 2021. Effects on methane fluxes of the brackish *C. malaccensis* marsh
 conversion to aquaculture pond in Min River Estuary. Fujian norm. Univ. (in
 Chinese).

- Tong, C., Bastviken, D., Tang, K.W., Yang, P., et al., 2021. Annual CO₂ and CH₄ fluxes
 in coastal earthen ponds with Litopenaeus vannamei in Southeastern China.
 Aquaculture 545. https://doi.org/10.1016/j.aquaculture.2021.737229.
- Wang, J., Xiao, W., Zhang, X.F., Zhang, M., Zhang, W.Q., Liu, Q., et al., 2019.
 Methane emission characteristics and its influencing factors over aquaculture
 ponds. Environ. Sci. 40, 5503–5514 (in Chinese). https://doi.org/10.13227/
 j.hjkx.201905149.
- Wintle, B.A., Elith, J., Potts, J.M., 2005. Fauna habitat modelling and mapping in an
 urbanising environment; A case study in the Lower Hunter Central Coast region
 of NSW. Austral Ecol. 30, 719–738. https://doi.org/10.1111/j.1442-9993.
 2005.01514.x.
- Wu, M., 2016. The characteristics and influencing factors of green gas emissions in
 different water bodys in Chongzhou. Master thesis, Sichuan Agric. Univ. (in
 Chinese).
- Wu, S., Hu, Z.Q., Hu, T., Chen, J., Yu, K., Zou, J.W., Liu, S.W., 2017. Annual methane
 and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands
 in southeast China. Atmos. Environ. 175, 135–144.
 https://doi.org/10.1016/j.atmosenv.2017.12.008.
- Wu, W. X., 2020. Characteristics and influencing factors of greenhouse gas emission
 from water in Zhongtianshe River Basin in Tianmu Lake area. Master thesis,
 Nanjing Normal Univ. (in Chinese). https://doi.org/10.27245/d.cnki.gnjsu.
 2020.001588.
- 141 Xiang, J., 2015. Greenhouse gases emissions from the lakeside wetland and crab pond
 142 in Riparian zone of Taihu lake. Doctoral thesis, Univ. Chinese Academy Sci. (in
 143 Chinese).

- Xing, Y.P., Xie, P., Yang, H., Ni, L.Y., Wang, Y.S., Rong, K.W., 2005. Methane and
 carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China.
 Atmos. Environ. 39, 5532–5540. https://doi.org/10.1016/j.atmosenv.2005.06.010.
- Xu, X.Y., Zhang, M.M., Peng, C.L., Si, G.H., et al., 2017. Effect of rice-crayfish coculture on greenhouse gases emission in straw-puddled paddy fields. Chinese J.
 Eco-Agri. 25, 1591–1603 (in Chinese). https://doi.org/10.13930/j.cnki.cjea.
 170280.
- Xu, X.F., 2020. Research on the characteristics and influencing factors of greenhouse
 gas emissions from marine aquaculture ponds in Tianjin. Master thesis, Tianjin
 Norm. Univ. (in Chinese). https://doi.org/10.27363/d.cnki.gtsfu.2020.000759.
- Yang, P., He, Q.H., Huang, J.F., Tong, C., 2015. Fluxes of greenhouse gases at two
 different aquaculture ponds in the coastal zone of southeastern China. Atmos.
 Environ. 115, 269–277. https://doi.org/10.1016/j.atmosenv.2015.05.067.
- Yang, P., Zhang, Y.F., Lai, D.Y.F., Tan, L.S., Jin, B.S., Tong, C., 2018. Fluxes of 157 158 carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: the effect of temperature, substrate, 159 Environ. Sci. 635. 160 salinity and nitrate. Total. 1025-1035. https://doi.org/10.1016/j.scitotenv.2018.04.102. 161
- Yang, P., Zhang, Y., Yang, H., Zhang, Y.F., Xu, J., Tan, L.S., et al., 2019. Large finescale spatiotemporal variations of CH4 diffusive fluxes from shrimp aquaculture
 ponds affected by organic matter supply and aeration in Southeast China. J.
 Geophys. Res-Biogeo. 124, 1290–1307. https://doi.org/10.1029/ 2019JG005025.
- Yuan, J.J., Xiang, J., Liu, D.Y., Kang, H., He, T.H., et al., 2019. Rapid growth in
 greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat.
 Clim. Change 9, 318–322. https://doi.org/10.1038/s41558-019-0425-9.

Yuan, W.L., Cao, C.G., Li, C.F., Zhan, M., Cai, M.L., Wang, J.P., 2009. Methane and
nitrous oxide emissions from rice-duck and rice-fish complex ecosystems and the
evaluation of their economic significance. Agri. Sci. China 8, 1246–1255.
https://doi.org/10.1016/S1671-2927(08)60335-1.

Yue, Q., 2018. Quantifying greenhouse gas emissions and the mitigation potential in
agriculture with literature statistics method and case study. Doctoral thesis,
Nanjing Agri. Univ. (in Chinese). https://doi.org/10.27244/d.cnki.gnjnu.
2018.000246.

Zhan, M., Cao, C.G., Wang, J.P., Cai, M.L., Yuan, W.L., 2008. Greenhouse gases
exchange of integrated paddy field and their comprehensive global warming
potentials. Acta Ecologica Sin. 11, 5461–5468 (in Chinese). https://doi.org/
10.3321/j.issn:1000-0933.2008.11.030.

- Zhang, C., 2018. On the process and mechamism of methane emission from eutrophic
 ponds. Doctoral thesis, China Univ. Geosci. (in Chinese).
- Zhang, D.X., 2015. Studies on CH₄ and CO₂ fluxes at water-air interface and carbon
 budgets of different culture systems with portunus trituberculatus, marsupenaeus
 japonicas and ruditapes philippinarum. Master thesis, Ocean Univ. China (in
 Chinese).
- Zhang, D.X., Tian, X.L., Dong, S.L., Chen, Y., Feng, J., et al., 2020. Carbon budgets
 of two typical polyculture pond systems in coastal China and their potential roles
 in the global carbon cycle. Aquacult. Env. Interac. 12, 105–115.
 https://doi.org/10.3354/aei00349.
- Zhang, D.X., Tian, X.L., Dong, S.L., Chen, Y., Feng, J., et al., 2020. Carbon dioxide
 fluxes from two typical mariculture polyculture systems in coastal China.
 Aquaculture 521. https://doi.org/10.1016/j.aquaculture.2020.735041.

194	Zhang, D	9.X., Xu, W	J., Wang	g, F., He, J.	, Chai, X.R., 2	2022. Cai	bon die	oxide fluxes from
195	mar	iculture po	nds with	swimming	crabs and shr	imps in o	eastern	China: the effect
196	of	adding	razor	clams.	Aquacult.	Rep.	22.	https://doi.org/
197	10.1	016/j.aqre	p.2021.10	0917.				

- Zhang, Y.B., Xu, Y., Wang, H.Y., Wang, S.P., Zhai, L.M., Liu, H.B., 2022. Greenhouse
 gas emission characteristics and influencing factors of rice-crab symbiosis system.
 J. Agric. Res. Environ. 1–11 (in Chinese).
- Zhang, Y.F., Lyu, M., Yang, P., Lai, D.Y.F., Tong, C., Zhao, G.H., et al., 2021. Spatial
 variations in CO2 fluxes in a subtropical coastal reservoir of Southeast China were
 related to urbanization and land-use types. J. Environ. Sci. 109, 206–218.
 https://doi.org/10.1016/j.jes.2021.04.003.
- Zhang, Y.F., Yang, P., Yang, H., Tan, L.S., Guo, Q.Q., Zhao, G.H., et al., 2019. Plotscale spatiotemporal variations of CO2 concentration and flux across water–air
 interfaces at aquaculture shrimp ponds in a subtropical estuary. Environ. Sci.
 Pollut. Res. 26, 5623–5637. https://doi.org/10.1007/s11356-018 -3929-3.
- Zhao, G.H., 2020. Carbon, nitrogen and phosphorus budgets in reclaimed shrimp ponds
 of the Min River Estuary. Master thesis, Fujian Normal Univ. (in Chinese).
 https://doi.org/10.27019/d.cnki.gfjsu.2020.002282.
- Zhao, Y., Wu, B.F., Zeng, Y., 2013. Spatial and temporal patterns of greenhouse gas
 emissions from Three Gorges Reservoir of China. Biogeosciences 10, 1219–1230.
 https://doi.org/10.5194/bg-10-1219-2013.
- Zhao. J.Y., 2020. Dynamic of methane emission from water-atmosphere interface in
 freshwater aquaculture ponds in the Yangtze River Delta. Doctoral thesis, Nanjing
 Univ. Inform. Sci. Technol. (in Chinese). https://doi.org/
 10.27248/d.cnki.gnjqc.2020.000860.

- 219 Zhu, L., Che, X., Liu, H., Liu, X.G., Liu, C., Chen, X.L., Shi, X., 2016. Greenhouse gas
- emissions and comprehensive greenhouse effect potential of *Megalobrama amblycephala* culture pond ecosystems in a 3-month growing season. Aquacult.
- 222 Int. 24, 893–902. 10.1007/s10499-015-9959-7.
- 223
- 224