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Abstract

Within the past decade, machine learning algorithms have been proposed as a po-
tential solution to a variety of research problems which emerge within physics. As
this cross-fertilization matures, one is able to investigate if the efficiency of machine
learning algorithms can be increased by interpreting them physically and if there exist
fundamental connections that can be established between the two research fields. In
this thesis, we pursue research directions intimately related to the above questions.

First, we investigate the practical implications of interpreting machine learning
functions as statistical-mechanical observables. Through this perspective, we explore
if we can extend the classification capabilities of machine learning algorithms and if we
are able to include neural networks within Hamiltonians to induce phase transitions
in systems. A related direction concerns the use of machine learning to construct
inverse renormalization group transformations to arbitrarily increase the size of a
system. These techniques are then utilized to study the infinite volume limit of
discrete spin systems and of quantum field theories, in order to investigate if machine
learning is a powerful tool to study phase transitions.

In another research direction we explore the derivation of machine learning algo-
rithms from quantum field theories. We investigate if the φ4 scalar field theory satisfies
the Hammersley-Clifford theorem and if it can be recast as a Markov random field.
We then explore if φ4 neural networks can be derived that generalize a certain class
of standard neural network architectures, and we present relevant numerical appli-
cations. Finally, we discuss how this research direction opens up the opportunity to
investigate machine learning within quantum field theory and how it solidifies a rig-
orous connection between the research fields of machine learning, probability theory,
statistical mechanics, lattice and constructive quantum field theory.
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Chapter 1

Introduction and motivation

Lattice field theory is a branch of theoretical physics that concerns the study of
quantum field theories [1] which have been discretized on spatial or spacetime lattices.
By transitioning to Euclidean space, lattice field theories can be directly expressed
within a probabilistic setting and a direct link between lattice field theory and classical
statistical mechanics is established. In addition, the introduction of a spacetime
lattice opens up the opportunity for a mathematically rigorous treatment of quantum
field theory, which is explored in the subfield of constructive field theory [2]. Lattice
field theory is amenable to computational treatment and one is therefore able to utilize
Markov chain Monte Carlo simulations to study, for instance, the phase transitions
that emerge within lattice field theory.

Phase transitions are ubiquitous phenomena which arise in distinct research fields,
such as condensed matter physics, quantum field theory, chemistry, and computer sci-
ence. The study of phase transitions is of tremendous appeal due to the concept of
universality. In summary, systems with different microscopic descriptions can man-
ifest identical macroscopic behaviour, and their phase transitions therefore belong
in an identical universality class. Universality enables a cross-fertilization between
distinct research fields since, for instance, a phase transition in a condensed matter
system can be identical to that of a quantum field theory. Consequently, one is able
to gain insights into universal behaviour of systems across different research fields by
studying the most simple system that undergoes a phase transition within a certain
universality class.

Recently, deep learning and machine learning algorithms [3] were extended to dif-
ferent research fields. As an example, a vast amount of machine learning applications
have emerged within condensed matter, high energy and statistical physics [4]. One
might then mistakenly consider that the cross-fertilization between machine learning
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and physics was only recently established. This is far from the truth. In fact, one
can trace this cross-fertilization, for instance, to the 1980s with the introduction of
the Hopfield network [5], a result that relates spin glasses and machine learning al-
gorithms, or with the application of the replica method to obtain results pertinent
to neural networks [6, 7]. In light of the cross-fertilization between machine learning
and physics, here we establish further connections that relate machine learning with
statistical physics or with quantum field theory.

First, we demonstrate that practical implications emerge by viewing machine
learning as a concept that can be interpreted physically. An example, to be investi-
gated in this thesis, is the interpretation of machine learning functions as statistical-
mechanical observables. We will explore if this perspective opens up the opportunity
to apply the complete spectrum of statistical-mechanical techniques to functions de-
rived from machine learning algorithms. This direction then focuses on establishing
statistical-mechanical methods that can, for instance, extend the classification ca-
pabilities of machine learning algorithms, or that enable the inclusion of machine
learning functions as physical terms within Hamiltonians to induce phase transitions
in systems. As a result, we aim to explore the efficiency of machine learning, either
generally or in relation to physics, after we interpret it physically and what unique
benefits, in relation to computational methods, can be provided to physics by machine
learning algorithms.

The second part of research questions introduced in this thesis focuses on exactly
the opposite direction: it aims to emphasize fundamental connections that can be
established between machine learning and quantum field theory, while the numeri-
cal applications remain exploratory. An example concerns the derivation of machine
learning algorithms and of neural networks from quantum field theories. Specifically,
we explore if an equivalence between lattice field theories and the mathematical frame-
work of Markov random fields can be rigorously established. This research direction
therefore focuses on the direct investigation of machine learning within quantum field
theory, and aims to solidify a rigorous connection between the research fields of prob-
ability theory, statistical mechanics, machine learning, lattice and constructive field
theory. Consequently, one might be able to view machine learning as a research field
which shares similar mathematical questions with quantum field theory, and it is
therefore not as distant from mathematical physics as one might generally expect.

Besides the two distinct research directions described above, there is yet another
one that combines exploratory and precision studies: the construction of inverse renor-
malization group transformations with machine learning. In this thesis we explore
how inverse renormalization group transformations can be constructed with the use of
machine learning for quantum field theories and for systems with continuous degrees
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of freedom. We will then utilize the method to conduct a precision study for the phase
transition of a lattice field theory, and we will discuss if the inverse renormalization
group can avoid intricate computational problems, such as the critical slowing down
effect.

This thesis is structured as follows:

Chapter 2 introduces the statistical-mechanical systems and the quantum field
theory that will be studied in this thesis, and briefly describes the machine learning
architectures that will be utilized in the thesis.

Chapter 3 introduces the first novel result in this thesis, namely the interpretation
of machine learning functions as statistical-mechanical observables. These functions
are then utilized to study the thermodynamic limit for the phase transition of the
two-dimensional Ising model with the use of reweighting and of convolutional neural
networks.

Chapter 4 introduces the concept of transfer learning, namely a method utilized
to construct effective order parameters in more complicated systems by relying on
a neural network that has been trained exclusively on configurations of a simple
system. In addition, the single histogram reweighting method for machine learning
functions is extended to the multiple histogram method and the phase transition of
the two-dimensional φ4 scalar field theory is studied using neural network functions.

Chapter 5 concerns the inclusion of machine learning functions as physical terms
within Hamiltonians. This is achieved by viewing a neural network as a conjugate
variable coupled to a fictitious external field. The real-space renormalization group
approach is then introduced to extract the critical exponents pertinent to the relevant
operators and the critical point of the two-dimensional Ising model using machine
learning functions.

Chapter 6 extends the ideas pertinent to the renormalization group to the inverse
renormalization group method. Machine learning is introduced to construct inverse
renormalization group transformations. The inverse renormalization group method
is then used to extract multiple critical exponents of the φ4 scalar field theory.

Chapter 7 investigates connections between quantum field theory and machine
learning algorithms. Specifically, we demonstrate that the φ4 lattice field theory is
a Markov random field. This equivalence is then utilized to derive φ4 neural net-
works which are generalizations of standard neural network architectures. In addi-
tion, numerical results are presented for both φ4 Markov random fields and φ4 neural
networks.

Chapter 8, which is the conclusion, summarizes the previous chapters and the
novel results presented in this thesis and highlights potential future research direc-
tions.
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Appendix A provides the necessary details that enable reproducibility of the re-
sults, such as the precise machine learning architectures or sampling algorithms used
in this thesis.

Appendix B discusses the error analysis techniques used to obtain results in the
thesis.

Where appropriate, each of the chapters includes an introductory section that
discusses its scientific aim and presents the relevant literature review.
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Chapter 2

Statistical physics, lattice field
theory, and machine learning

2.1 Statistical systems

2.1.1 The Ising model

The Ising model [8] is an important system that had significant impact in statistical
physics, quantum field theory [1], computer science and machine learning. It is a
simple system described by binary degrees of freedom that can take the values of +1
or −1. Despite its simplicity, the Ising model has a rich structure. This is because
of its second-order phase transition from an ordered to a disordered phase. The
system is therefore simple but non-trivial. In addition, an analytical solution for
the two-dimensional Ising model was obtained by Onsager [9]. Consequently, the
system provides an ideal setting to benchmark the efficiency of novel computational
techniques against the analytically expected values. Moreover, this can be achieved
while having to deal with intricate computational problems that emerge in the context
of phase transitions, such as the critical slowing down effect.

We consider the Ising model on a two-dimensional square lattice, see Fig. 2.1,
described by the Hamiltonian:

E = −J
∑
〈ij〉

sisj − h
∑
i

si, (2.1)

where 〈ij〉 denotes two lattice sites i and j which are nearest-neighbor, J is a cou-
pling constant which describes the strength of the interaction between two nearest-
neighbors, and h is an external magnetic field. Unless otherwise stated we will con-

15
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Figure 2.1: The Ising model on a square lattice of size L = 4 in each dimension. The
interactions J with the nearest neighbours of a lattice site i are depicted by the red
lines. The binary degrees of freedom are shown as filled or empty points.

sider that J = 1, defining a system in which lattice sites prefer to be aligned towards
the same direction in order to minimize the energy of the system. This is called the
ferromagnetic Ising model. In addition we consider h = 0, hence removing the inter-
action with an external magnetic field. Finally, we remark that the system is invariant
under a reflection symmetry {si} → {−si} that can be spontaneously broken.

Observables of interest that can be calculated in the Ising model include the
absolute value of the normalized magnetization which will be simply called the mag-
netization:

m =
1

V

∣∣∣∑
i

si

∣∣∣. (2.2)

The statistical fluctuations of the magnetization are equivalent to the magnetic
susceptibility χ:

χ = βV (〈m2〉 − 〈m〉2), (2.3)

where V = L × L is the volume of the system and L is the lattice size in each
dimension.

The Ising model undergoes a second-order phase transition between an ordered
and a disordered phase at a critical value of the coupling denoted βc. Specifically,
at low values of the inverse temperature β � βc the spins are randomly aligned and
no correlations between spins are present. As the inverse temperature of the system
increases, but remains below βc, correlations between adjacent spins begin to emerge,
forming clusters of spins which are aligned towards an identical direction. The size
of these clusters, measured in terms of lattice units, is called the correlation length ξ
and it diverges at the value of the critical inverse temperature βc. Then as the inverse
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Figure 2.2: Configurations of the Ising model for lattice L = 128 in each dimension
and β � βc (left), β ≈ βc (center) and β � βc (right).

temperature increases above the critical point βc, the system spontaneously chooses
an ordered state, in which almost all of the spins are aligned towards one direction. In
this randomly selected ordered state the system manifests a nonzero magnetization.
This behaviour can be observed in Fig. 2.2, and an in-depth treatment of the Ising
model’s second order phase transition is available, for instance, in Ref. [10].

For the value of the coupling constant J = 1 that we will consider in this thesis
the two-dimensional Ising model on a square lattice undergoes its second-order phase
transition at the critical inverse temperature βc:

βc =
1

2
ln(1 +

√
2) ≈ 0.440687. (2.4)

We are now interested in defining a quantity which is able to measure the distance
of an arbitrary inverse temperature β in relation to the critical inverse temperature
βc. This is achieved via the definition of a reduced coupling constant t:

t =
βc − β
βc

. (2.5)

Our aim is then to study the second-order phase transition of the Ising model in the
thermodynamic limit, namely as L→∞ and then t→ 0. When t→ 0, or equivalently
β → βc, the system is in the vicinity of the phase transition and its parameter
space therefore defines a critical region. Within the critical region we observe critical
phenomena due to the increasing correlation length, as discussed above. Specifically,
clusters of spins change direction abruptly in the critical region and they therefore
give rise to large fluctuations. As an example consider how abruptly the value of the
magnetization would change when a large cluster of spins with values +1 is replaced
by an equally sized cluster with values −1. Because the correlation length diverges
at the critical point βc the magnitude of the fluctuations that arise in the system will
additionally diverge.
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We are interested in obtaining insights into how observables diverge in the critical
point, and we will achieve this by obtaining a set of critical exponents that govern
this divergence related to the correlation length [10]. This is a central aim in this
thesis: the critical exponents provide the physics that describes the phase transition
of a given systems and their accurate calculation also serves as an indication of the
efficiency and general applicability of a novel computational technique. The first
quantity of interest is the correlation length, which diverges in the thermodynamic
limit according to the relation:

ξ ∼ |t|−ν , (2.6)

where ν is the correlation length critical exponent. The behaviour of the magnetiza-
tion m of the system is described by a different critical exponent βm, when t < 0:

m ∼ |t|βm . (2.7)

While the magnetization critical exponent is commonly denoted as β, here we will
denote it as βm to avoid confusion with the inverse temperature β. The fluctuations
of the magnetization, namely the magnetic susceptibility χ, diverge in the vicinity of
the phase transition according to the critical exponent γ:

χ ∼ |t|−γ. (2.8)

In addition, the specific heat c diverges according to the critical exponent α:

c ∼ |t|−α. (2.9)

Another exponent of interest is the critical exponent δ which governs the diver-
gence of the magnetization m in relation to the external magnetic field:

m ∼ h
1
δ . (2.10)

Equivalently, one can define the critical exponent θ which governs the divergence
of the correlation length ξ in terms of the external field h:

ξ ∼ |h|−θ. (2.11)

In fact, the critical exponents ν and θ are related to the relevant operators of the
two-dimensional Ising model’s phase transition, and given their knowledge all other
exponents can be calculated via scaling relations:

α = 2− νd, (2.12)
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βm = ν
(
d− 1

θ

)
, (2.13)

γ = ν
(2

θ
− d
)
, (2.14)

δ =
1

dθ − 1
. (2.15)

where d is the dimension of a system.
An important concept that emerges in the study of phase transitions is universal-

ity, see Ref [11]. Universality implies that the critical exponents and a set of universal
measurable quantities remain independent of certain parameters in a given system,
such as the topology of the lattice, or the value of the coupling constant J . Different
systems can be governed by identical critical exponents and hence belong in a discrete
universality class. One important implication of universality is that we are able to
study the universal quantities of a complicated system, which can be experimentally
relevant, by instead studying a more simple system which belongs in the same univer-
sality class. An example of two different systems that belong in the same universality
class is the Ising model and the liquid-gas transition at the tri-critical point. The set
of critical exponents then define a certain universality class and the two-dimensional
Ising universality class is given by the exponents:

ν = 1, α = 0, βm =
1

8
, (2.16)

γ =
7

4
, δ = 15, θ =

8

15
. (2.17)

2.1.2 Potts models

The q-state Potts models [12] are a generalization of the Ising model for q > 2, where
the binary degrees of freedom are replaced by discrete values in the range 1, . . . , q,
see Fig. 2.3.

The Potts Hamiltonian is:

EPotts = −JP
∑
〈ij〉

δ(si, sj), (2.18)

where δ(si, sj) is the Kronecker delta. The value of the critical inverse temperature
βPotts
c can be obtained analytically for the two-dimensional Potts models and is given

by:
βPotts
c = ln(1 +

√
q), (2.19)
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Figure 2.3: A disordered (left) and ordered (right) configuration of the q = 7 Potts
model.

when JP = 1. The q = 2 state Potts model reduces to an Ising model by substituting
s ∈ {−1, 1}, JIsing = JP/2. We then obtain βIsing

c = βPotts
c /2.

Despite the fact that the Potts models are a generalization of the Ising model,
they manifest different critical behaviour for q ≥ 3. Specifically for the case q = 3
and q = 4 the systems have second-order phase transitions that belong in distinct
universality classes and for q ≥ 5 the phase transition is of first-order [12].

2.1.3 The φ4 scalar field theory

The final system that will be discussed in this thesis, which is described by continuous
degrees of freedom with real values, is the φ4 scalar field theory [13]. To define the
system we start from the Euclidean Lagrangian:

LE =
κ

2
(∇φ)2 +

µ2
0

2
φ2 +

λ

4
φ4. (2.20)

The system is then discretized on a square lattice with spacing α, obtaining the
Euclidean lattice action:

SE =
∑
n

[
1

2

d=2∑
ν=1

κL(φn+eν − φn)2 +
1

2
µ2
Lφ

2
n +

1

4
λLφ

4
n

]
, (2.21)

where κL, µ2
L, λL are dimensionless parameters, one of which can be absorbed by

rescaling the fields. We can expand the terms in the above equation to obtain an
expression in relation to lattice sites i and j which are nearest-neighbours 〈ij〉.

SE = −κL
∑
〈ij〉

φiφj +
(µ2

L + 4κL)

2

∑
i

φ2
i +

λL
4

∑
i

φ4
i . (2.22)
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Figure 2.4: A neural network which comprises convolutional and fully-connected lay-
ers.

An equivalence between the φ4 scalar field theory and the Ising model can be
obtained in the limit κL positive and fixed, λL → ∞ and µ2

L → −∞, where one
obtains a binary system. In addition, for κL and λL positive and fixed one discovers
a second-order phase transition for a value of a critical squared mass µ2

L < 0 which is
conjectured to be in the Ising universality class [13].

2.2 Machine learning

2.2.1 Feedforward neural networks

Deep learning architectures [3] have been extensively used in the past decade to effi-
ciently complete tasks pertinent to supervised machine learning. These architectures
comprise a set of iterative layers, where each layer consists of a number of hidden vari-
ables. By increasing the number of layers, as well as the number of hidden variables
within each layer, one obtains an architecture that can represent intricate functions.
Here, we will briefly review relevant machine learning architectures which are utilized
throughout the thesis, such as convolutional and fully-connected neural networks, see
Fig. 2.41. Another architecture that will be investigated in this thesis is the class of
neural networks called restricted Boltzmann machines, but complete derivations for
these systems are included in Chapter 7.

1The figure has been produced based on the code from PlotNeuralNet,
https://github.com/HarisIqbal88/PlotNeuralNet, v.1.0.0, MIT License.
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In the initial chapters of this thesis, we are interested in feedforward neural net-
works. A neural network is called feedforward when the iterative mappings imposed
on the input vector x at each layer do not include a feedback connection with a pre-
vious layer. The input is hence iteratively processed by independent transformations
until the output layer is reached. In other words, these architectures are used to
map an input vector x to a desired output y via the approximation of an appropriate
function f . We remark that in this section a bold symbol denotes a vector. The
neural network architecture then defines a mapping y = f(x;θ) which depends on a
set of variational parameters θ, and y is the vector of all possible outputs. Our aim
is to learn the optimal values of these parameters θ that provide the optimal solution
to the stated machine learning problem.

We remark that the layers of a neural network construct a chain structure of
functions that iteratively process the input vector. Explicitly, a number of functions
f (i) is associated to each layer i, where i = 1, 2, . . . , n. Consequently the output of
the neural network function f(x) is obtained as:

f(x) = f (n)(f (n−1)(. . . (f (1)(x)))). (2.23)

The number of layers n then defines the depth of the deep learning architecture.
We emphasize that neural networks are approximative methods and, as a result, the
output function f(x) that corresponds to the output layer, is an approximation of
the desired function that we are interested in constructing. Through the optimization
process the intermediate layers learn a set of features that provide the optimal solution
at the output. Nevertheless, explicit information about the interpretability of these
features is unavailable, thus the intermediate layers are called hidden.

To complete the definition of the aforementioned neural network architectures we
must discuss the importance of nonlinearities. If the set of functions in the chain
structure is selected as linear, then the machine learning algorithm will only be able
to discover a set of linear features. This imposes a constraint on the expressivity
of the machine learning algorithm, namely the class of functions that it is able to
represent, since linear features are incapable of extracting information pertinent to
the interaction of two distinct input variables. Consequently, in relation to applica-
tions, one is generally interested in introducing nonlinearities within a neural network
architecture to increase the expressivity of the machine learning algorithm.

The inclusion of nonlinearities in a machine learning architecture is achieved via
the introduction of nonlinear functions g which transform the output of a certain layer.
Specifically, one is interested in modelling a function y = f(x;θ,w) = g(x,θ)ᵀw. To
clarify, w map g(x;θ) to the output, where g now denotes a hidden layer. Through
the inclusion of nonlinearities in a neural network the expressivity of the algorithm
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is increased, but certain implications pertinent to the optimization process emerge,
which will be discussed in the following subsection.

2.2.2 Gradient-based methods and loss functions

Optimization techniques that are established on a gradient-based approach are com-
mon among distinct research fields. Nevertheless, in contrast to the linear case, the
optimization of a loss function for a neural network which includes nonlinearities is
often nonconvex.

From a practical perspective, nonconvexity implies that the optimization process,
which is generally established on a stochastic gradient-descent method, might be un-
able to reach a global minimum after a certain set of iterations, which are called
epochs. The global minimum corresponds to the optimal solution of the problem. In
other words, no mathematical proofs can be obtained to guarantee the convergence
of the optimization process in the nonconvex case. In addition, the process is sub-
stantially influenced by the initial values of the variational parameters in the neural
network architecture, specifically the set of weights and biases. Based on empirical ob-
servations one is therefore advised to initialize the weights randomly to small positive
and negative values, and the biases can be initialized to a value of zero. Nevertheless,
each problem might require a different approach and there exists vast literature on
the topic, for instance see Ref. [3].

A central concept in the construction of a neural network architecture is the choice
of a loss function. The loss function encodes the aim of the machine learning task.
For instance one might be interested in learning a loss function which can accurately
separate a set of examples x, which are labeled based on outputs y. This can be
achieved by defining an appropriate conditional probability distribution:

p(y|x;θ). (2.24)

The training of the machine learning algorithm is then conducted by minimizing
a distance function between the training data and the model predictions through the
gradient-based approach. For example, in Chapter 3 this can be achieved via the
minimization of the cross-entropy:

L(θ) = − 1

N

N∑
i

[
yi log ŷi(θ) + (1− yi) log(1− ŷi(θ))

]
, (2.25)

where yi is the correct label, ŷi is the predicted label which depends on the set of
parameters θ, and N is the number of samples. In other cases, the loss function might
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be more simple, for instance it could be selected as a mean squared error function
between the training data and the machine learning predictions. This is the case in
Chapter 6, where the loss function is:

MSE =
1

N

N∑
i=1

(yi − ŷi(θ))
2, (2.26)

where yi denotes the correct label and ŷi is the predicted label which depends on a
set of parameters θ. The successful minimization of a loss function can be affected
by the presence of local minima, the choice of the minimizer, the length of training,
and the quality and quantity of the training data set.

2.2.3 Convolutional neural networks

We will briefly review convolutional and fully-connected neural networks. A convolu-
tional neural network comprises an input layer in which we position the data, namely
the configurations of a system. The input layer is then followed by potentially mul-
tiple hidden layers such as convolutional, pooling, normalization, or fully-connected
layers.

A convolutional layer comprises a set of filters which are convolved on the input
via a dot product. The aim is to learn the appropriate set of filters that is able to
uncover dependencies, such as spatial structures, on the input data.

A pooling layer, which is reminiscent of a real-space transformation, aims to reduce
the number of degrees of freedom within the machine learning algorithm. Specifically,
the input is separated into blocks of size b × b. For the case of max-pooling used in
the thesis all values within each block, except the one with the largest magnitude,
are discarded. Max-pooling therefore produces an output with a reduced number of
degrees of freedom.

A fully-connected layer then associates all degrees of freedom from the input
to a neuron. This is in contrast to convolutional layers, which do not provide full
connectivity.

The output layer comprises a loss function which depends on the machine learning
task. For instance in this thesis we will consider the output loss function as a softmax
function which aims to predict a certain phase of a configuration out of all possible
phases. The softmax function is related to the Boltzmann probability distribution
and is given by:

s(xi) =
exp[xi]∑n
j=1 exp[xj]

, (2.27)
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where n is the number of x real values. The outputs of the softmax functions reside
in the range [0, 1] and sum to one, thus defining a probability distribution.

Finally, nonlinear functions, such as rectified linear units (ReLUs), which corre-
spond to the function h(x) = max(0, x), are positioned between the middle layers
of the neural network architecture. Detailed explanations of neural networks can be
found in Ref. [3].

2.2.4 Transposed convolutions

In this thesis, we additionally utilize transposed convolutions [14], so we will briefly
review the mathematical operation of a transposed convolution. Let us consider that
we have an input, represented as a 2× 2 matrix, which is:

3 1
2 0

We consider that this matrix corresponds to the degrees of freedom which are
positioned on a specific lattice or graph. Our aim is now to apply a filter of size 2×2,
given by [w11, w12, w21, w22] on this input matrix using a transposed convolution to
produce an output of increased size. Let us consider that the weights wij in the filter
are equal to:

2 3
0 1

The application of the filter on the input then produces:

6 9
0 3 +

2 3
0 1 + 4 6

0 2
+ 0 0

0 0

where the empty cells have zero values. The output is then equal to:

6 11 3
4 9 1
0 2 0

It then becomes clear that by applying a set of transposed convolutions one is
able to construct lattices of increased size. In addition, further operations can be
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applied to the output, such as nonlinear functions or another set of (transposed)
convolutions to further manipulate the size. By learning the proper weights through
the minimization of a loss function, one is able to establish an equivalence between
a model system of lattice size L in each dimension and a target original system of
identical lattice size L which is described by fixed degrees of freedom.



Chapter 3

Interpreting machine learning
functions as physical observables

3.1 Introduction

Machine learning applications pertinent to the discovery of phase transitions have
recently emerged in physics. A large amount of these applications concerns the con-
struction of a function that is able to accurately separate phases of a system. The
motivation behind these applications is that, ultimately, one might be able to con-
struct effective order parameters for phase transitions in systems where conventional
order parameters are absent or unknown. To explore this topic, a variety of machine
learning architectures, either within a supervised or unsupervised setting, have been
employed. Here, we will briefly review a selection of these contributions which is
relevant for this work.

The construction of a function to separate phases in systems such as the Ising
model, square-ice, and the Ising gauge theory was established in Ref. [15]. Simulta-
neously, an alternative approach was introduced in systems such as the Kitaev chain,
the Ising model, and disordered quantum spin chains, in which the discovery of the
phase transition is achieved based on the training of a neural network on data that
are deliberately labelled incorrectly [16]. The construction of a novel effective order
parameter based on a convolutional neural network was additionally discussed in the
context of the two-dimensional Ising model in Ref. [17], where it was utilized to locate
the critical temperature.

Further work includes the study of phase transitions with the use of machine
learning for the Heisenberg spin-1/2 chain in a random external field [18], quan-
tum many-fermion systems [19] which are affected by the sign problem [20] and the

27
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Kosterlitz-Thouless transition of the two-dimensional XY model [21]. Concerning
unsupervised learning, the phase diagrams of interacting boson and fermion models
at zero and finite temperatures were obtained, irrespective of the general topology
or the number of distinct phases, with the use of machine learning [20], and Boltz-
mann machines were additionally utilized to generate states in the critical region of
the two-dimensional Ising model [22]. Furthermore, an analysis of neural network-
based schemes with a single hidden layer was conducted in Ref. [23], and a finite-size
scaling calculation of the quantum Hall plateau transition was presented in Ref. [24].
Concerning the study of networks and complex dynamical systems, Ref. [25] explores
phase transitions in epidemic spreading dynamics. The use of recurrent neural net-
works was additionally explored in the context of phase transitions in Ref. [26], and
non-equilibrium phase transitions of many-body localized or topological phases were
studied in Ref. [27], whereas nonergodic metallic phases of quantum systems were
investigated in Ref. [28].

Other machine learning algorithms which are utilized to study phase transitions
include Gaussian process regression in the context of quantum systems [29], prin-
cipal component analysis and variational autoencoders in the context of the two-
dimensional Ising model and the three-dimensional XY model [30], a combination of
multiple algorithms including autoencoders, random trees, and t-distributed stochas-
tic neighboring ensemble for the Ising and Fermi-Hubbard models [31], and diffusion
maps for the two-dimensional XY model and the Ising gauge theory [32]. Support
vector machines are another class of machine learning algorithms which provide inter-
pretable results and have been utilized to study the ferromagnetic Ising model [33],
the conserved-order-parameter Ising model and the Ising gauge theory [34], nematic
order parameters [35], and the multiclassification of distinct phases in systems [36].

In this chapter, we will provide a different perspective on the aforementioned work
by exploring the implications of physically interpreting the function learned by a ma-
chine learning algorithm as a statistical-mechanical observable [37]. We will provide
an explanation of how a neural network function, once applied to a configuration, can
be associated with a Boltzmann weight and we will then exploit this perspective to
apply traditional statistical-mechanical techniques to functions learned from machine
learning algorithms. Consequently, through this perspective, and with the use of his-
togram reweighting, we will be able to obtain machine learning predictions in different
regions of the system’s parameter space without requiring new data. As a result, we
are able to extend the classification capabilities of machine learning algorithms. We
will then conduct a finite-size scaling analysis, based on the neural network function,
which acts as an effective order parameter, to calculate multiple critical exponents
and the critical inverse temperature for the phase transition of the two-dimensional
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Ising model.

3.2 The Boltzmann weight

Consider an arbitrary statistical system which is described by a Hamiltonian E and
a Boltzmann probability distribution p. We denote as pσi the probability that a
configuration σi appears in the equilibrium distribution. This probability is given by:

pσi =
exp[−βEσi ]∑
σ exp[−βEσ]

, (3.1)

where β is the inverse temperature and the sum is over all possible states σ of the sys-
tem. An important quantity that appears in the previous expression is the partition
function:

Z =
∑
σ

exp[−βEσ], (3.2)

which is a normalization constant. Despite being a simple normalization constant,
the partition function Z is of high importance in statistical physics, quantum field
theory, and related research fields, since it explicitly encodes all of the information
that is required to obtain complete knowledge of a statistical system: quantities of
interest for a considered system can be derived in terms of the partition function.
Knowledge of the partition function then implies knowledge of the statistical system.

Consider now that we want to obtain through Markov chain Monte Carlo simula-
tions, and based on the probability distribution of Eq. (3.1), a representative subset of
samples or configurations σ of the system. We require a subset of these configurations
because we are interested in calculating the expectation value 〈O〉 of an arbitrary ob-
servable O which could be, for instance, the magnetization m of the system, or the
internal energy E which is equal to the Hamiltonian, or any other quantity of interest.
The numerical estimator, which is equivalent to the expectation value 〈O〉 calculated
on this finite subset of configurations that we obtained through Markov chain Monte
Carlo simulations, is given by

〈O〉 =

∑N
i=1Oσi p̃

−1
σi

exp[−βEσi ]∑N
i=1 p̃

−1
σi

exp[−βEσi ]
, (3.3)

where p̃σi are the probabilities that we use to sample each configuration σi from the
equilibrium distribution and the sum i is over the number N of sampled configura-
tions.
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An efficient choice of a sampling probability is made by selecting p̃σi as the proba-
bilities given by Eq. (3.1). This choice leads to the most common and successful way
of conducting Markov chain Monte Carlo simulations, which is called importance
sampling [10]. With this choice the expectation value of an arbitrary observable in
Eq. (3.3) becomes:

〈O〉 =
1

N

N∑
i=1

Oσi . (3.4)

Indeed, we will directly sample systems at a specific inverse temperature β with
importance sampling and calculate expectation values of their observables based on
the above equation. However, in a large part of the current work we are interested in
a method of obtaining expectation values based on the original dataset, sampled at
β, but when the inverse temperature differs β′ 6= β: this method is called histogram
reweighting [38].

3.3 Single histogram reweighting

The idea of histogram reweighting can be summarized as follows. First, assume
that we have conducted a Markov chain Monte Carlo simulation for a specific value
of the inverse temperature β and we have obtained a subset of configurations that
would correspond to this inverse temperature β. Now instead of using Eq. (3.4) to
calculate expectation values of observables for the system at inverse temperature β,
we are instead interested on using the configurations sampled at inverse temperature
β to calculate, accurately, expectation values that would correspond to a different
inverse temperature β′, and we are interested in achieving this without ever sampling
configurations at inverse temperature β′.

The method is very simple, and here we will discuss the case called single histogram
reweighting. Specifically, we consider the expectation value of an observable O that
corresponds to a sufficiently adjacent inverse temperature β′ in the system’s parameter
space:

〈O〉 =

∑N
i=1 Oσi p̃

−1
σi

exp[−β′Eσi ]∑N
i=1 p̃

−1
σi

exp[−β′Eσi ]
, (3.5)

We are now interested in approximating the above expectation value based on
the sampled configurations that we have obtained at inverse temperature β. We
will therefore replace p̃σi in the above equation with the probabilities pσi that corre-
spond to inverse temperature β. The expectation values of observables at this inverse
temperature β′ are then calculated, by using configurations obtained at the original
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Figure 3.1: Histograms N(E) versus value of the energy E for two cases of inverse
temperatures β = 0.42 and β = 0.43 of a two-dimensional Ising model with lattice
size L = 128.

inverse temperature β, via the following expression:

〈O〉β′ =

∑N
i=1 Oσi exp [−(β′ − β)Eσi ]∑N
i=1 exp [−(β′ − β)Eσi ]

. (3.6)

In essence, what the method of reweighting achieves is that it provides a way to
predict the histograms of the Hamiltonian at an extrapolated inverse temperature β′

based on the histograms of the Hamiltonian at the original inverse temperature β. As
a result, there exists a permitted reweighting range for the method to be successful,
which is dependent on the overlap of histograms between the ensembles that corre-
spond to the two inverse temperatures. This is illustrated in Fig. 3.1, where a partial
overlap of the histograms of the energy can be observed for the inverse temperatures
β = 0.42 and β = 0.43. By starting from β = 0.42 one could therefore extrapolate
observables with histogram reweighting towards values of the inverse temperature
β′ → 0.43. Nevertheless, one might not be able to exactly extrapolate from β = 0.42
to β′ = 0.43 since the overlap between ensembles is not complete. For more details,
see Ref. [10].

3.4 Phase classification in the Ising model

Our aim in this chapter is to interpret machine learning functions as statistical-
mechanical observables, but to achieve this we must first construct a machine learning
function. As discussed in the introductory section, an example can be established
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based on a phase classification machine learning task related to the second-order
phase transition of the Ising model.

Consider a subset of configurations of the Ising model which have been drawn
either from the symmetric (disordered) or the broken-symmetry (ordered) phase. We
assign to each configuration σi a label yσi = 0 or yσi = 1 depending on the phase that
the configuration is associated with. Our aim is to train a machine learning algorithm
on the set of the available configurations to successfully learn an optimal function
f(σi), which is able to correctly classify the phase of an unknown configuration σi,
see Fig. 3.2. By unknown, we mean a configuration σi which has not been presented
as input to the machine learning algorithm during the training process. In the current
chapter, we will consider a convolutional neural network.

Convolutional neural networks are a class of machine learning algorithms which
comprise multiple layers and have been extensively used in computer vision tasks
and image recognition [3]. Convolutional neural networks can reduce connectivity
between the neurons by implementing the mathematical operation of convolution in
at least one of their layers and hence enable the study of systems, or images, with
large sizes in each dimension. In the current thesis, we are interested in studying the
two-dimensional Ising model of lattice size L as L → ∞ and convolutional neural
networks therefore can be utilized to implement machine learning on larger lattice
sizes compared to other architectures, such as fully-connected neural networks.

The training process of the convolutional neural network is established based on
the minimization of a loss function L. Specifically, for the discussed example, we
consider as a loss function the cross-entropy:

L(θ) = − 1

N

N∑
i

[
yi log ŷi(θ) + (1− yi) log(1− ŷi(θ))

]
, (3.7)

where yi is the correct label of the configuration σi that acts as a training example, ŷi
is the predicted label which depends on the set of parameters θ, and N is the number
of samples. Through the minimization of the loss function the machine learning
algorithm is able to learn an optimal function f that is able to accurately separate
configurations which belong in distinct phases.

3.4.1 Reweighting machine learning functions

Once the convolutional neural network is successfully trained, we can present as
input an unknown configuration σi to predict its corresponding phase based on the
function f(σi). The function f(σi) is bounded between [0, 1] and we interpret it as
the probability P (b) that the configuration σi belongs in the broken symmetry phase.
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Figure 3.2: The architecture of the convolutional neural network. A set of labeled
configurations from each distinct phase are given as input to the neural network in
order to learn the optimal function f(σi) that is able to accurately predict the phase
of a configuration σi.

We remark that one can obviously obtain the probability P (s) of a configuration being
in the symmetric phase via 1− f(σi).

The interpretation of machine learning functions as statistical-mechanical observ-
ables is then an implication of the following observation. The convolutional neural
network function f(σi), which has been calculated on a configuration drawn from an
equilibrium distribution via a series of transformations, see Fig. 3.3, is a physically
meaningful quantity: it has been learned on a set of importance-sampled configura-
tions of the Ising model and it expresses the probability that the configuration σi
is associated with the broken-symmetry phase. Furthermore, the unknown config-
uration σi is additionally drawn from an equilibrium distribution p(σi; β) and it is
therefore associated with its own corresponding Boltzmann weight of a specific in-
verse temperature β. As a result f(σi) is described by the same Boltzmann weight
as the configuration σi and is a statistical-mechanical observable. Equivalently, the
expectation value of the neural network function is:

〈f〉 =
∑
σ

fσp(σ; β). (3.8)

An important observation is that the expectation value 〈f〉 of the convolutional
neural network function f is expressed as a sum over all possible states σ of the
system, weighed by the associated Boltzmann distribution, and as as a result the
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Figure 3.3: A configuration with an unknown phase is presented as input to a trained
convolutional neural network to obtain the probability that the configuration belongs
in the broken-symmetry phase.

convolutional neural network function f has the proper dependence on the inverse
temperature β. One practical implication of this perspective is that we can therefore
reweight the neural network function f in parameter space, to predict its value at a
different inverse temperature β′. Consequently, we are able to get machine learning
predictions for data at a specific inverse temperature β′ without having to ever obtain
such a dataset. Equivalently, we are able to extend the classification capabilities of
machine learning algorithms.

For convenience we rewrite the single histogram reweighting equation for the case
of the neural network function f :

〈f〉β′ =

∑N
i=1 fσi exp [−(β′ − β)Eσi ]∑N
i=1 exp [−(β′ − β)Eσi ]

. (3.9)

We then proceed in the following manner. First, we conduct a Monte Carlo simu-
lation to obtain a set of configurations at a specific inverse temperature β. Second, we
present as input to the trained neural network each of the sampled configurations σi to
obtain the prediction fσi that configuration σi belongs in the broken-symmetry phase.
We are now able to estimate what the neural network prediction would be, specifically
the expectation value 〈f〉β′ , at a different inverse temperature β′ via Eq. (3.9). This is
achieved without having to sample configurations at that specific inverse temperature
β′. We recall that reweighting is applicable only under a certain range of extrapolated
inverse temperatures.

Let us now see a worked example of the above ideas in Fig. 3.4. Specifically, we
have conducted a Markov chain Monte Carlo simulation for a system of lattice size
L = 128 in each dimension to obtain configurations at inverse temperature β1 = 0.438
(top) and β2 = 0.44 (bottom). In both cases the output of the neural network function
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Figure 3.4: Expectation value of the neural network function f ≡ P (b) versus inverse
temperature β for a system with lattice size L = 128. The Monte Carlo datasets
used to conduct reweighting have been obtained at values of the inverse temperature
β = 0.438 (top) and β = 0.44 (bottom) and their corresponding expectation values
are depicted by the filled points. The reweighted extrapolations of the neural network
function f are depicted by the red lines. Independent calculations, obtained by pre-
senting as input to the neural network configurations from Monte Carlo simulations
at different inverse temperatures are depicted by the empty points.
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Figure 3.5: Expectation value of a neural network function f ≡ P versus inverse tem-
perature β. The neural network function has been constructed by training on config-
urations within an identical phase that have a different correlation length. The figure
is produced to demonstrate that generic neural network functions can be reweighted
in parameter space, as evident in the inset. See text for more details.

f ≡ P (b) is depicted with the filled point and the extrapolation of the neural network
function f is depicted by the red line. Calculations of the neural network function on
independent Monte Carlo datasets sampled at various inverse temperatures, which
are depicted by the empty points, are additionally included in order to allow direct
comparisons with reweighting, thus enabling the investigation of the accuracy of the
method.

We observe that there exists an overlap within statistical errors between the ex-
trapolated red line and the independent Monte Carlo calculations, therefore certifying
that the method is accurate. When comparing the two figures in the insets we addi-
tionally observe that extrapolations which are conducted further in parameter space
in comparison with the initial dataset have increased statistical errors. This be-
haviour is anticipated since the further we extrapolate in parameter space the smaller
the overlap between the histograms of the energy between the two inverse tempera-
tures β and β′ is, and therefore the accuracy of the extrapolations is anticipated to
diminish, a result that we have verified in the figure.

Now that we have established that the neural network function f can be extrapo-
lated in the system’s parameter space we can proceed to further interpret physically
the behaviour of this observable. Based on the results depicted in Fig. 3.4, we ob-
serve that the neural network function resembles an effective order parameter. Order
parameters are quantities used to characterize a phase transition and generally they
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are intimately related to the breaking of an underlying symmetry. Specifically, an
order parameter is anticipated to be zero in the symmetric phase of the system and
manifest a finite value in the broken-symmetry phase. This is exactly the behaviour
of the neural network function f as depicted in the above figure. We can therefore
investigate if this neural network function can be utilized to accurately study the
phase transition of the system. This will be the topic of the next section.

Before proceeding to the next section, we will investigate if it is possible to reweight
in parameter space general neural network functions. In the previous example, the
neural network function resembles an effective order parameter and one could there-
fore claim that the neural network has simply learned a quantity which is practically
equivalent to the magnetization, thus enabling reweighting in parameter space. Here,
we will demonstrate that more general functions learned from machine learning algo-
rithms can be reweighted in parameter space.

As an example we will construct a neural network function f that is able to
separate configurations within exclusively one phase. These could be, for instance,
configurations with different values of correlation length. We then construct this func-
tion on a training dataset which comprises configurations from inverse temperatures
β = 0.31 and β = 0.32, labeled as zero and configurations β = 0.41 and β = 0.42,
labeled as one. The results obtained by presenting as input configurations from in-
termediate inverse temperatures are depicted in Fig. 3.5. We observe in the inset,
where the data are compared with independent calculations, that the reweighting of
the neural network function is accurate within statistical errors. Consequently, the
expectation values of general functions learned with machine learning algorithms can
be extrapolated in a system’s parameter space. We remark that even though the neu-
ral network function resembles an effective order parameter in Fig. 3.5, one does not
anticipate that it will manifest the appropriate scaling behaviour since it separates
configurations within an identical phase.

We will now focus, in the next section, in studying the scaling behaviour of the
neural network function f constructed in Fig. 3.4, where it resembles the behaviour
of an effective order parameter. The aim is to explore if multiple critical exponents
as well as the critical inverse temperature can be obtained by utilizing exclusively the
function derived from the machine learning algorithm.

3.4.2 Scaling of neural network functions

In studies of phase transitions we are generally interested in the behaviour of the
system as the lattice size becomes infinite L → ∞ and as we approach the critical
point. Nevertheless, in computational studies of phase transitions we are studying
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Figure 3.6: Neural network function f ≡ P (b) versus inverse temperature β for lattice
sizes L = 128, . . . , 760 in each dimension. The reweighted extrapolations have been
truncated within accurate ranges, as determined from an overlap of histograms.

finite systems since we have to represent the statistical system on a finite lattice size.
As a result, we will not observe the anticipated divergences of the infinite-volume limit
directly, but instead we can observe that quantities of interest, such as fluctuations,
will manifest maximum values. A common way to study a phase transition is then
established based on the study of the order parameter as well as its susceptibility,
which is equivalent to the fluctuations of the order parameter.

For the case of the Ising model, the order parameter is the magnetization m,
and the susceptibility of the magnetization χm is therefore expected to manifest a
maximum value in the vicinity of the phase transition. This maximum value of
the magnetic susceptibility χmax

m will appear for a value of a pseudo-critical inverse

temperature β
χmax
m

c (L) on a finite system with lattice size L in each dimension. In
the thermodynamic limit, the values of the pseudo-critical inverse temperatures will
converge to the actual critical point βc:

lim
L→∞

βχ
max
m

c = βc. (3.10)

An important observation is that the values of the pseudo-critical inverse tem-
peratures differ for different observables O. For example the pseudo-critical inverse
temperatures obtained by the susceptibility χm of the magnetization will be different
from the ones obtained by the susceptibility of the internal energy χE. However,
both of these will converge to the correct critical point in the infinite-volume limit.
As a result the only way to truly verify the correct value of the critical point is via
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Figure 3.7: Susceptibility of the neural network function χf ≡ δP versus the inverse
temperature β for systems of lattice size L = 128, . . . , 760 in each dimension. We
observe a tentative convergence of the maxima of the susceptibility towards the critical
point βc, which is depicted by the vertical line.

extrapolations in the thermodynamic limit.

Based on the above discussion we can now investigate whether the neural net-
work function f ≡ P (b) manifests the anticipated behaviour of the conventional order
parameter. In Fig. 3.6 we depict the neural network function f for lattice sizes
L = 128, . . . , 760. We observe that as the lattice size increases the transition from
the value f = 0 to f = 1 is sharper, which is the expected behavior of the conventional
order parameter.

We will now explore if we can obtain the value of the critical point based on the
convergence of the pseudo-critical points which are obtained from the susceptibility
of the neural network function χf . The results are depicted in Fig. 3.7. For each
lattice size L we observe that the maximum values of the susceptibility are shifted
towards the vertical line which is the value of the critical inverse temperature βc
as obtained from the exact solution of the two-dimensional system. To verify that
the pseudo-critical temperatures converge to the critical inverse temperature βc and
not some other value of the inverse temperature we must conduct a calculation in
the thermodynamic limit. One widely applicable method to conduct such a study is
through a finite size scaling analysis.

To conduct a finite size scaling analysis, we recall that the relation which describes
the divergence of the correlation length is ξ ∼ |t|−ν , where t is the reduced coupling
constant and ν is the correlation length exponent. For a finite system in the vicinity
of the phase transition, where the correlation length will have become approximately
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L 128 200 256 360
βχc (L) 0.438857(33) 0.439536(24) 0.439889(18) 0.440088(13)
χmaxf 1409(6) 3308(14) 5233(24) 9910(49)

L 440 512 640 760
βχc (L) 0.440261(12) 0.440292(10) 0.440403(10) 0.440465(8)
χmaxf 13138(71) 18912(99) 25215(218) 30841(206)

Table 3.1: Pseudo-critical points βχc (L) which are obtained from the maximum value
of the neural network susceptibility χmaxf on systems of lattice size L.

equal to the system’s lattice size ξ ≈ L, we have:

|t| =

∣∣∣∣∣βc − βc(L)

βc

∣∣∣∣∣ ∼ ξ−
1
ν ∼ L−

1
ν . (3.11)

Based on the above relation we are able to simultaneously calculate the critical
inverse temperature βc and the correlation length exponent ν. In addition, based on
the values of the maxima of the susceptibility we are able to calculate the magnetic
susceptibility exponent γ/ν, via the equation:

χm ≡ δP ∼ Lγ/ν . (3.12)

The calculation of the critical inverse temperature βc and the correlation length
exponent γ/ν is then achieved by fitting the pseudo-critical points βχc (L) which were
determined by the maxima of the susceptibility χmax

f of the neural network function,
whereas the calculation of the magnetic susceptibility exponent γ/ν is achieved by
fitting directly χmax

f . Both calculations are based on the above equations. The values
of the pseudo-critical points, as well as the maxima of the susceptibility are given in
Table 3.1. Given the data we then conduct the finite-size scaling analysis, which is
depicted in Fig. 3.8.

The numerical results from the finite-size scaling analysis are presented in Table
3.2, where they are compared with the exact values from Onsager’s analytical solution
of the two-dimensional Ising model. We observe that the results obtained from the
neural network function f and its susceptibility χf are highly accurate and overlap
within statistical errors with the exact values. We emphasize that the calculation
of statistical errors has been conducted with a bootstrap technique by resampling
the dataset 1000 times. In the calculations, no systematic errors are considered from
the training of the machine learning algorithms. The results therefore indicate that
machine learning can be a powerful tool for precision studies of phase transitions
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Figure 3.8: The finite size scaling analysis for the pseudo-critical points βPc versus the
inverse lattice size 1/L (top) and the maxima of the neural network susceptibility δP
versus the lattice size L (bottom).
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βc ν γ/ν
CNN+Reweighting 0.440749(68) 0.95(9) 1.78(4)

Exact ln(1 +
√

2)/2 ≈ 0.440687 1 7/4 = 1.75

Table 3.2: Calculation of the critical exponents ν,γ/ν and the critical inverse tem-
perature βc of the Ising model via the finite-size-scaling analysis.

since it enables the extraction of multiple critical exponents and the critical inverse
temperature.

3.5 Discussion

In this chapter we demonstrated that functions derived from machine learning algo-
rithms can be interpreted as statistical-mechanical observables by being associated
with a corresponding Boltzmann weight. As a result, machine learning functions
can be extrapolated in a system’s parameter space with histogram reweighting, and
we are therefore able to extend the classification capabilities of neural networks by
obtaining machine learning predictions in cases where data are not available. In ad-
dition, we showed that a neural network function, trained to separate phases in the
two-dimensional Ising model, manifests the behaviour of an effective order parame-
ter. We utilized this neural network function to conduct a precision study of a phase
transition via the extraction of multiple critical exponents and the critical inverse
temperature in the two-dimensional Ising model.

In summary, via the interpretation of machine learning functions as statistical-
mechanical observables the complete spectrum of statistical mechanical techniques
can be applied to such functions. As a result, efficient studies of physical systems
can be achieved by enhancing machine learning with computational techniques from
statistical physics, such as histogram reweighting. Before delving deeper into the
interpretability of these functions from the perspective of physics we will first inves-
tigate further applications. Specifically, in the next chapter we aim to answer the
question: what happens if we present as input to an Ising-trained convolutional neu-
ral network configurations of a different system that undergoes a phase transition?
Will the neural network accurately separate phases in different systems? And can
we discover phase transitions if we do not know that a phase transition exists in a
different system?



Chapter 4

Discovering phase transitions with
machine learning

4.1 Introduction

In the previous chapter we demonstrated that by training a convolutional neural net-
work on a set of configurations σ of the Ising model we are able to study the system’s
phase transition. This has been achieved by using the neural network function f(σi),
which provides the probability that a configuration σi belongs in the broken-symmetry
phase. At this point, one can pose the question: what happens if we present as input
to this Ising-trained convolutional neural network a set of configurations σ′ which cor-
respond to a different system that might undergo a different type of phase transition?
The above question can be explored via the framework of transfer learning [39]. Pre-
vious research, which has focused on discrete-spin systems, has utilized the method
of transfer learning to determine quantities such as the critical inverse temperature
[15, 40, 41].

In this chapter, we will investigate if a machine learning algorithm, trained to
separate the phases of the Ising model, can be utilized to predict the phase structure
of systems that undergo phase transitions of different order or universality class [42].
This means phase transitions which are described by entirely different critical be-
haviour. For this reason we must establish a process to guarantee that the obtained
results are accurate. In addition we will explore if the Ising-trained machine learning
algorithm can provide correct phase diagrams even when applied to systems with
discrete but non-binary degrees of freedom or continuous degrees of freedom. The
aim of this chapter is to establish if simple systems, such as the Ising model, can be
used to obtain the phase diagram of more complicated systems, therefore opening up

43
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the opportunity to discover unknown phase transitions in complicated systems with
intricate phase structures by utilizing neural network functions learned on simple
ones.

4.2 Multiple histogram reweighting

Before investigating whether transfer learning is possible between distinct phase tran-
sitions we will first introduce a different type of reweighting for machine learning
functions, called the multiple histogram method [43]. This method allows us to scan
large regions of a system’s parameter space, hence making it easier to discover a phase
transition in a system in which we do not know if a phase transition exists. Multiple
histogram reweighting is an extension of the single histogram reweighting approach
that was discussed in the previous chapter. Despite the fact that the method is a
conceptual generalization of the single histogram technique it is established based on
different principles and it should therefore be viewed as a different technique. Here,
we follow the derivations and the perspective discussed in Ref. [10].

With the multiple histogram reweighting technique we aim to combine a set of
Monte Carlo simulations, conducted at inverse temperatures β1, β2, . . . , βn with β1 <
β2 <, . . . <, βn, to accurately calculate expectation values of observables within the
entire continuous parameter range between [β1, βn]. Consequently, one can interpolate
the neural network function f in the entire range defined above to locate the critical
region. In addition, since a large number of Monte Carlo simulations are optimally
combined to obtain results, the inclusion of an additional Monte Carlo dataset always
leads to a reduction of statistical errors in the calculation of expectation values.

To derive the multiple histogram reweighting equations we will first start by defin-
ing the probability p(E) of sampling a certain value of the energy E in relation to
the density of states ρ(E):

p(E) = ρ(E)
exp[−βE]

Z
. (4.1)

All quantities have been defined before, except the density of states ρ(E), which
counts the number of configurations of the system that have a specific value of energy
E. In addition, the partition function Z can be expressed in terms of the density of
states as:

Z =
∑
E

ρ(E) exp[−βE]. (4.2)

When conducting a Markov chain Monte Carlo simulation we are able to estimate
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the probability p(E) of an energy E via:

p(E) =
N(E)

n
, (4.3)

where n corresponds to the number of statistically independent measurements that we
have obtained. We remark that while the histograms of the energy N(E), which are
constructed based on a predefined bin size, appear in the derivations we will express
the final relations without the use of histograms. We can now substitute Eq. (4.3) to
Eq. (4.1) and consider that we have conducted a number of different Markov chain
Monte Carlo simulations i, . . . , j for a specific inverse temperature β. We can then
obtain an estimate for the density of states from each of these simulations, given by

ρi(E) =
Ni(E)Zi

ni exp[−βE]
. (4.4)

The question is how to optimally combine each of these different estimations ρi
to estimate the actual density of states ρ(E). We then express the density of states
ρ(E) as a weighted average in terms of all the estimations ρi(E) as follows:

ρ(E) =
∑
i

wiρi(E), (4.5)

where wi are the weights. The weights can be obtained via a minimization of the
variance related to the density of states [10], thus arriving at the expression:

ρ(E) =

∑
iNi(E)∑

j njZ
−1
j exp[−βjE]

, (4.6)

where the sums are over the number of the obtained Markov chain Monte Carlo
simulations. The partition function Zm, which corresponds to a certain inverse tem-
perature βm, is then calculated via:

Zm =
∑
E

ρ(E) exp[−βmE]. (4.7)

The partition function can then be estimated via an iterative scheme [10], or other
appropriate forms of optimization, through the relation:

Zm =
∑
i,s

1∑
j njZ

−1
j exp[(βm − βj)Eis]

, (4.8)

where s is a sum over the configurations obtained at a specific simulation i.
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Figure 4.1: Histograms N(E) versus uniquely sampled values of the energy E for a
range of inverse temperatures β = 0.41, . . . , 0.47. The overlap of histograms enables
the use of the multiple histogram reweighting technique.

Based on the above we are now able to combine multiple Markov chain Monte
Carlo simulations to estimate the partition function for the inverse temperature βm.
For instance, after the optimization approach has converged we are able to calculate
the partition function Zl for a specific inverse temperature βl which lies anywhere
between the interpolated range defined by [βi, βn] of the Markov chain Monte Carlo
datasets that we used in the method. As mentioned before, knowledge of the partition
function Z implies knowledge of any observable O, and we are therefore able to cal-
culate the expectation value of an arbitrary observable 〈O〉l at a specific interpolated
inverse temperature βl via:

〈O〉l =
1

Zl

∑
i,s

Ois∑
j njZ

−1
j exp[(βl − βj)Eis]

. (4.9)

The multiple histogram technique is arguably more complicated than the single
histogram reweighting technique presented in the previous chapter. As with any
other type of reweighting, the multiple histogram method is successful only when there
exists an overlap of the histograms of the energies between each inverse temperature of
the Markov chain Monte Carlo simulations used to establish the method. To illustrate
the concept in the case of the two-dimensional Ising model, an overlap of histograms
is depicted in Fig. 4.1. One could implement the multiple histogram method based
on the Monte Carlo datasets depicted in the figure to estimate any partition function
in the entire region of inverse temperatures defined by [0.41, 0.47] and, consequently,
any observable O of interest. In this chapter we are therefore interested in combining
multiple Markov chain Monte Carlo simulations to interpolate the neural network
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Figure 4.2: Expectation value of the neural network function f versus inverse tem-
perature β. The filled points correspond to the Monte Carlo datasets used to conduct
multiple histogram reweighting, thus enabling the interpolation of the neural network
function in the entire range β ∈ [0.41, 0.47], shown by the red line. The empty points
correspond to independent machine learning predictions, obtained on separate Monte
Carlo datasets to allow for a direct comparison with the reweighted result. Excluding
the insets, the statistical errors are comparable with the width of the lines.

function f in the parameter space of a statistical system and to obtain the phase
diagram via the Ising-trained convolutional neural network. We remark that even
when systems with continuous energy spectra are considered, one arrives at identical
equations for the multiple histogram method as in the discrete case. In addition,
the method straightforwardly extends to systems with Hamiltonians or actions that
include multiple terms.

Before proceeding we will verify that multiple histogram reweighting produces the
correct result when applied on the interpolation of the expectation value of a neural
network function f learned on the Ising model and which is applied on configurations
of the Ising model with lattice size L = 128 in each dimension. To clarify, for this
example we remain in the setting of the previous chapter. The result can be seen in
Fig. 4.2, where the set of Monte Carlo simulations that we used to conduct multiple
histogram reweighting are depicted by the filled points. The interpolation of the
neural network function f in the range β ∈ [0.41, 0.47] is depicted by the red line, and
the results are compared with independent calculations, shown as empty points. We
observe that the results overlap within statistical errors, demonstrating that multiple
histogram reweighting of neural network functions is successful. We are now interested
in obtaining analogous results in different systems than the Ising model but by still
utilizing a neural network function f that was trained exclusively on configurations
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Figure 4.3: Configurations from systems with different degrees of freedom and/or
distinct types of phase transitions are presented as input to an Ising-trained neural
network to predict their corresponding phase.

of the Ising model.

4.3 Transfer learning

There exist multiple types of transfer learning within the research field of computer
science [39]. Here, we will focus on a type of domain adaptation, where the already
trained function f(σi) will be utilized to successfully predict the phase of configu-
rations σ′i which comprise a different domain, i.e., the phase of configurations of a
different system. We remark that the method is anticipated to predict only phases of
a similar nature such as in the original system, namely order-disorder phase transi-
tions, since the function remains the same. An important difference with commonly
applied methods of transfer learning, is that in this work we will not re-train the
machine learning algorithm on a set of different configurations but we will directly
apply the function f to predict phases of distinct systems.

To investigate the accuracy of transfer learning from the Ising model, we will
predict the phases of q-state Potts models as well as the φ4 scalar field theory. The
q-state Potts models possess different critical behaviour from the Ising model when
q ≥ 3. Specifically, when q = 3 or q = 4 the phase transitions are of second-order
and of a different university class, and when q ≥ 5 the phase transition is first-
order. We recall that another difference of the q ≥ 3 Potts models from the Ising
models is that Potts models have discrete degrees of freedom in the range 1, . . . , q,
hence complicating the transfer learning procedure. Because the Potts Hamiltonian
comprises a delta function we can arbitrarily replace the degrees of freedom with
unique values in the range [−1, 1], without affecting the physics of the system.
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Figure 4.4: Expectation value of the Ising-trained neural network function f versus
value of the squared mass µ2 ≡ µ2

o for the case of the φ4 scalar field theory with L =
128. The results have been obtained with the use of multiple-histogram reweighting.
The statistical errors are comparable with the width of the lines.

Another system in which we will apply transfer learning from the Ising model
is the φ4 scalar field theory. Under an appropriate choice of coupling constants the
system undergoes a second-order phase transition which is conjectured to be in the
Ising universality class. However the difference of the φ4 theory with the Ising model is
that the degrees of freedom are continuous. We are therefore interested in observing if
a neural network function f , constructed on a system with binary degrees of freedom,
is able to provide accurate results when configurations with continuous degrees of
freedom are presented as input. No rescaling to the degrees of freedom of the φ4

theory will be conducted in the following results. We remark that, in this chapter, we
express the dimensionless squared mass as µ2 instead of µ2

L to avoid confusion with
the pseudo-critical squared masses µ2

c(L) which will be discussed below. We will now
extend the ideas discussed in the previous chapter to discover the phase transitions
of q-state Potts models and the φ4 scalar field theory. This will be achieved based
on a neural network that has been trained exclusively on configurations of the Ising
model, see Fig. 4.3 for a summary of what we aim to achieve.

We therefore present as input to the Ising-trained neural network a set of configu-
rations from the φ4 theory and implement the multiple histogram reweighting method
to interpolate f in parameter space. The results are depicted in Fig. 4.4. We observe
that the neural network function f has indicated the location of the crossing of a
phase transition, since there are certain regions of parameter space that correspond
to a broken-symmetry phase and other regions of parameter space that correspond to
a symmetric phase. We remark that, for the chosen values of the coupling constants
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Figure 4.5: Expectation value of the Ising-trained neural network function f versus
inverse temperature β for the case of the Potts models with L = 128. The results are
obtained with the use of multiple-histogram reweighting and the dashed vertical lines
correspond to the analytical value of the critical point for each q-state Potts model.
The statistical errors are comparable with the width of the lines.

µ2 < 0, λ = 0.7, κ = 1, the critical point of the phase transition is anticipated to
be µ2

c = −0.95151(25) [44], µ2
c = −0.9516(8) [45]. Transfer learning is therefore suc-

cessful in indicating the location of the critical region for the phase transition of the
system. This has been achieved despite the fact that the φ4 theory is a system with
continuous degrees of freedom and the neural network was trained exclusively on the
Ising model, a system with binary degrees of freedom.

To explore if transfer learning can additionally be applied on systems which are
described by different critical behaviour, we now extend the method to the case of
the q-state Potts models. The results, obtained with the use of multiple histogram
reweighting on the Ising-trained neural network function, are depicted in Fig. 4.5.
They are additionally compared with the analytical value of the critical inverse tem-
perature βc which is shown, for each of the q-state Potts models, as a dashed vertical
line. We observe that a phase transition is located for all of the cases of the Potts
models, even when the universality class or the order of the phase transition is dif-
ferent from the one of the Ising model. The results therefore indicate that transfer
learning is a useful tool in locating phase transitions for more complicated systems,
for instance Potts models, using simple systems such as the Ising model. As a re-
sult, the method could be useful in discovering unknown phase transitions via the
reconstruction of effective order parameters in a target system’s parameter space.
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4.3.1 Critical exponents of the φ4 theory

We remark, that even though the prior results are highly accurate, they should still be
treated as approximations in relation to the study of the thermodynamic limit. The
reason is that there exists no guarantee that the effective order parameter, constructed
from the Ising-trained neural network on a system with different critical behaviour
such as the q = 3 Potts model, will manifest the proper scaling behavior. In fact,
one generally expects that since the underlying critical behaviour is different the
reconstructed effective order parameter can only provide qualitative observations.
However, this potential problem can be evaded: after identifying the location of the
critical region, and therefore becoming aware of which regions of parameter space
correspond to the symmetric or the broken-symmetry phases, we can train a new
neural network to study the phase transition of the target system. Specifically, we
can create a dataset on a set of configurations which would be classified, based on
Figs. 4.4 and 4.5, as being in the broken-symmetry or the symmetric phase and then
study the thermodynamic limit exactly in the same manner as we did in the previous
chapter for the Ising model. Through this approach, we remove any bias or inaccuracy
introduced by an Ising-trained neural network function applied on a system described
by different critical behaviour.

We will now illustrate how to conduct a finite-size scaling analysis based on the
new neural network function f ′ to extract critical exponents for the φ4 scalar field
theory. Having obtained knowledge of the critical region for the φ4 theory via Fig. 4.4
we now train a new neural network for configurations in the range µ2 ≤ −1.0 and
µ2 ≥ −0.90. We emphasize that, to avoid misclassification, the training set comprises
configurations which are not immediately adjacent to the critical point and the train-
ing of the neural network is stopped after observing no evolution in the predicted
values of the test set for a large number of epochs. The architecture used is identical
to the one implemented for the Ising model. For the case of the φ4 theory the critical
coupling constant is the value of the squared mass and the reduced coupling constant
is therefore expressed as: ∣∣∣∣∣µ2

c(L)− µ2
c

µ2
c

∣∣∣∣∣ ∼ ξ−
1
ν ∼ L−

1
ν . (4.10)

Another difference is in the definition of the susceptibility, in which we do not
introduce the equivalent of an inverse temperature, i.e.:

χf = V (〈f 2〉 − 〈f〉2), (4.11)

where V = L× L is the size of the system.
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L µ2
c(L) χf ′

200 -0.94988(4) 8239(50)
256 -0.95037(5) 12915(56)
360 -0.95096(4) 22348(138)
440 -0.95117(3) 34710(211)

Table 4.1: The pseudo-critical points µ2
c(L) as determined from the maximum values

of the neural network susceptibility χf ′ for lattice size L.

Based on these relations we study the thermodynamic limit of the system following
the same procedure as for the Ising model. Explicitly, we associate to the maxima of
the susceptibility χf ′ of the new neural network function f ′ a pseudo-critical squared
mass, and obtain the calculations in the infinite volume limit via a finite-size scaling
analysis. The calculation of the critical exponents and the critical point is conducted
based on the results of Table 4.1 and is shown in Fig. 4.6, where scaling can be
evidently observed based on the bottom panel. The values of the critical exponents
are depicted in Table 4.2. We observe that the critical exponents agree with the
exponents of the Ising universality class, therefore providing evidence that the second-
order phase transition of the two-dimensional φ4 scalar field theory is identical to that
of the two-dimensional Ising model.

4.3.2 Searching for universal structures

The next step forward is to obtain some insights into the interpretability of the prior
results. Since the machine learning algorithm is able to discern between phases of
systems that possess, in essence, different critical behaviour, we can investigate if
there is some form of universal structure that has emerged on the dependencies that
the neural network has learned. Within the research field of computer science, it is a
well-established fact that neural networks learn a set of universally applicable features
in the first layers [46]. These features are the sets of weights and biases that have
been learned at each layer. The subsequent layers of a neural network architecture
then comprise specialized features which are tuned to be efficient for the considered

µ2
c ν γ/ν

CNN+Reweighting -0.95225(54) 0.99(34) 1.78(7)

Table 4.2: The value of the critical squared mass µ2
c and the critical exponents ν, γ/ν

of the φ4 scalar field theory.
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Figure 4.6: Finite size-scaling analysis for the value of the pseudo-critical mass µ2
c

versus the inverse lattice size 1/L (top) and the susceptibility of the Ising-trained
neural network function f versus the lattice size L.

machine learning task. Specifically, the machine learning task discussed here is the
separation of phases in the two-dimensional Ising model.

In the current chapter we observe that the neural network which has been trained
on the Ising model can accurately predict the symmetric and the broken-symmetry
phases for all of the considered systems, such as the q-state Potts models and the
φ4 theory. So we expect that within the neural network, there exist some form of
universal features that should extend further in the deeper layers, since we are able
to obtain the correct result for all of the aforementioned systems. To investigate for
the existence of universal features, we then monitor the output of intermediate layers
when the neural network is presented with configurations of distinct systems. To
clarify, consider the neural network achitecture depicted in Fig. 4.3. A set of config-
urations is presented as input to the neural network. At each of the included layers
these configurations get iteratively processed by a corresponding function. The out-
put from the function of each layer is then presented as input to the next layer, which
gets processed again by the corresponding function of the next layer. Eventually, a
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Figure 4.7: Mean activation functions g versus the 64 variables present in the fully
connected layer of the Ising-trained convolutional neural network. In the top figure
the activations are shown when configurations from the disordered (symmetric) phase
of the systems are presented as input and in the bottom figure the activations are
shown when configurations from the ordered (broken-symmetry) phase are presented
as input. The results have been rescaled to one, and stacked vertically for easier
comparison.

set of iterative mappings processes the data until we reach the output layer where we
obtain the prediction of the phase of a configuration. Here, we are interested in ex-
ploring if any consistency of results can be discovered within one of the intermediate
layers of the neural network architecture rather than the final layer.

The results, obtained by monitoring the output of the 64 variables on the first
fully connected layer, are depicted in Fig. 4.7. We observe that there is a certain set of
variables that get triggered when configurations from the ordered phase are presented
as input, and a different set of variables when configurations from the disordered
phase are given as input. This observation holds irrespective of the system, therefore
indicating that the neural network has learned some form of universal structure for the
ordered and disordered phase which remains accurate even when configurations from
different systems are given as input. This emergent universal structure throughout
the neural network is not generally anticipated since, based on empirical results in
computer science, deep neural networks tend to learn universal features only in the
initial layers, and generally require retraining in order to be successfully applied to
different problems.

4.4 Discovery of phase transitions: a summary

Here, we will summarize through a series of steps how one can employ machine
learning techniques to discover a phase transition in a complicated system by relying
on a machine learning function that was learned on a simple system.
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First, one obtains a set of configurations from Markov chain Monte Carlo sim-
ulations that belong in distinct phases of an original system to construct a labeled
training dataset. A neural network is then trained on the dataset to learn a neural
network function f that is able to accurately separate configurations from each phase
of the original system.

Second, the neural network function f of the original system is applied to config-
urations of a target system to observe if distinct phases are discovered. Large regions
of the target system’s parameter space can then be scanned with the use of multiple
histogram reweighting to locate the critical region.

Third, having obtained the knowledge of the critical region of the target system,
the original neural network with function f is not needed anymore and it is therefore
discarded. A new neural network is then trained on configurations from the discovered
phases of the target system to learn a novel neural network function f ′. We remark
that one could retrain the original neural network instead of discarding it, but this
was avoided in the current work, since there is no guarantee that the converged state
of the original neural network, namely the set of learned weights and biases, is an
optimal initial state for subsequent training of the neural network.

Finally, by relying on the new neural network function f ′ and its susceptibility
χf ′ one calculates the critical exponents and the critical point of the target system
by relying on a finite-size scaling analysis.

By following the above steps one is able to discover a phase transition while avoid-
ing potential inaccuracies that can be introduced by using identical neural network
functions on systems which might possess different critical behaviour.

4.5 Discussion

In this chapter we demonstrated that neural network functions learned on simple
systems, such as the Ising model, can be utilized to predict the phase structure
of more complicated systems, such as the q-state Potts models and the φ4 scalar
field theory. This is achieved even when the order or the universality class of the
phase transition in the target system differs from the one in the original system. In
addition, we introduced the multiple histogram reweighting method to interpolate the
neural network function and hence scan large regions of a system’s parameter space
to discover a phase transition. Finally, given the knowledge of the phase structure
of a target system, we calculated multiple critical exponents and the critical point
for the φ4 scalar field theory using machine learning functions. A related manuscript
that appeared after the current work is Ref. [47].
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In summary, the use of transfer learning enables the reconstruction of effective
order parameters in target systems and hence opens up the opportunity to discover
unknown phase transitions. So far, our discussion has focused on applications based
on the neural network function, an observable that has been calculated directly on
some configurations. In the next chapter, we will take a further step in interpreting
this neural network function by introducing it as a term within the Hamiltonian of
the system. Following the analogous approach of introducing an external field in
a system, such as the one related to the magnetization, and hence force the sys-
tem to interact with an external parameter, we will demonstrate that the same can
be achieved with a fictitious field coupled to the neural network function. Mathe-
matically, and having expressed the neural network field in relation to the system’s
partition function, this is equivalent to asking the question of what happens if one
allows a statistical-mechanical system to interact with a neural network that has been
trained to accurately separate its phases. The implications that will emerge from this
perspective is what we will investigate next.



Chapter 5

Neural networks as Hamiltonian
terms

5.1 Introduction

In the preceding chapters we explored how the physical interpretation of machine
learning functions can lead to certain practical implications. Explicitly, we demon-
strated that by interpreting a neural network function as a statistical-mechanical
observable we are able to extrapolate it in a system’s parameter space with the use
of histogram reweighting. Furthermore, we utilized an Ising-trained neural network
function f , which acts as an effective order parameter, to predict the phase struc-
ture of systems even when the degrees of freedom are non-binary and even when
the order or the universality class of the phase transition differs from the one of the
Ising model. Here, we will proceed a step further in physically interpreting machine
learning functions.

In this chapter, we will introduce a neural network as a term within the Hamil-
tonian of a system [48, 49]. To the best of knowledge, no other work besides the one
discussed in this thesis has ever explored the introduction of machine learning func-
tions as physical terms within Hamiltonians. We aim to investigate the behaviour of
a system under the constraint that it interacts with a fictitious field which is cou-
pled to a neural network function. Specifically, we will first explore if the inclusion
of the neural network function f in the Hamiltonian can induce an analogous phase
transition such as the one induced by the conventional order parameter, which is
the magnetization. We remark that we have previously established that the neural
network function f acts as an effective order parameter and we have calculated via
infinite-volume limit calculations that its susceptibility is governed by the critical ex-
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ponent of the magnetic susceptibility. As a result, we are able to investigate if the
neural network function and its fictitious field can produce analogous behaviour to
that of the magnetization and of the magnetic external field.

The second aim of this chapter is to investigate if we can obtain critical exponents
that were previously inaccessible with the use of neural network functions. Conse-
quently, we aim to explore if an exponent could ever be derived for the case of a
fictitious neural network field. Here, we will not utilize a finite-size scaling analy-
sis to extract the critical exponents but instead we will rely on the renormalization
group [50–55] and, specifically, on its computational aspects [56–65]. The use of the
real-space renormalization group provides certain benefits, such as the reduction of
finite-size effects in calculations related to the thermodynamic limit. This is due to
the fact that only two systems of identical lattice size are required to conduct calcu-
lations. The method therefore opens up the possibility to obtain critical exponents
on much smaller lattice sizes than what is generally expected.

5.2 Conjugate variables and external fields

To include the neural network function f as a physical term within a Hamiltonian,
we turn to the fundamentals of statistical physics. The partition function or, equiv-
alently, the free energy of a system encode all of the statistical information that is
required to describe the system in completeness, since every observable of interest
can be derived in terms of the partition function. To express a measurable quantity,
which is physically interpretable and can be calculated on the configurations of a
system as a statistical-mechanical observable we must therefore be able to express it
in terms of the system’s partition function. What we will discuss below is exactly the
mathematical procedure that one would follow to enable a statistical system to inter-
act with an external field, such as the magnetic field, or any other type of constraint
that we decide to impose on a statistical system.

We will now focus on exploring how the system is affected if we introduce a neural
network function as a term within the Hamiltonian. We remark that within Hamilto-
nians, only extensive quantities can be introduced. The neural network function f is
interpreted as the probability that a configuration is in the broken-symmetry phase
and it is therefore bound between [0, 1]. As a result the neural network function f is
an intensive property since it does not have the proper dependence on the size of the
system. To recast f as an extensive property is then as simple as multiplying it by
the size V of the system.

To be able to introduce the neural network function f as a term within the Hamil-
tonian we must additionally couple it to a fictitious external field Y . In statistical
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physics, parameters, constraints, or fields that interact with a system have conjugate
variables which represent the response of the system to the perturbation of the cor-
responding parameter. Examples of such conjugate variables are the magnetization
or the volume of the system and the associated external fields or constraints are the
magnetic external field or the pressure, respectively. By varying the external mag-
netic field one can then observe the implications in the conjugate variable which is
the magnetization. As a result, in our study here we are interested in investigating
the behaviour of the neural network function f as a conjugate variable, by varying
its associated fictitious field Y .

Having expressed the neural network function as an extensive property V f , and
having coupled it to a fictitious field Y , we are now able to define a modified Hamilto-
nian for the two-dimensional Ising model which introduces the neural network V fY
as a physical term:

EY = E − V fY. (5.1)

If the neural network field is zero Y = 0 we obtain the original Hamiltonian of
the Ising model. By taking the derivative of the logarithm of the partition function
ZY in relation to the external field Y we are able to obtain an expression that we
recognize as the expectation value 〈f〉 of the neural network function f :

〈f〉 =
1

βV

∂ lnZY
∂Y

=

∑
σ fσ exp[−βEσ + βV fσY ]∑
σ exp[−βEσ + βV fσY ]

. (5.2)

If the neural network field is zero then we obtain the original expression of the
expectation value for the neural network function f . A second derivative in terms of
the neural network field Y produces the following expression:

χf =
∂〈f〉
∂Y

= βV (〈f 2〉 − 〈f〉2). (5.3)

The quantity χf introduced above is the susceptibility of the neural network func-
tion which measures the response of the neural network function f to changes in the
neural network field Y . We have encountered the susceptibility of the neural network
function f in the previous chapter but here we obtained χf mathematically in terms
of the system’s partition function. A natural question that then emerges from the
above perspective is what are the effects on the system when the fictitious field has
a nonzero value Y 6= 0. Equivalently what are the effects when the system is allowed
to interact with the introduced neural network term. This is the topic of the current
chapter.
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5.3 Hamiltonian-agnostic reweighting

Before we proceed to study the effect of a nonzero external field Y 6= 0 to the two-
dimensional Ising model we will introduce another variation of the histogram reweight-
ing method. So far, we have used histogram reweighting to calculate expectation val-
ues of observables by extrapolating to different values of inverse temperatures in the
Ising model or to different values of the squared mass in the φ4 theory. Here, we are
interested in a different setting. Specifically, starting from configurations of the two-
dimensional Ising model that have been sampled at a specific inverse temperature β,
we are interested in obtaining expectation values of observables for extrapolations of
a nonzero external field while the system remains at the specific inverse temperature
β.

We remark that, in principle, one can simultaneously extrapolate on both the
inverse temperature β and a nonzero external field Y . However this is generally
discouraged, since such extrapolations are established on a trajectory within a two-
dimensional parameter space, defined simultaneously by β and Y . Consequently,
when relying on extrapolations in a high-dimensional space the results will not be
as accurate unless certain precautions are taken in relation to guaranteeing an over-
lap of histograms. For this reason in the current work we are strictly interested in
extrapolating only for nonzero values of Y while the inverse temperature β remains
fixed.

To introduce the histogram reweighting approach that allows extrapolations to
a nonzero external field Y , we consider the expectation value 〈O〉 of the arbitrary
observable that we aim to sample, in the modified system of Hamiltonian EY :

〈O〉 =

∑N
i=1 Oσi p̃

−1
σi

exp[−βEσi + βV fσiY ]∑N
i=1 p̃

−1
σi

exp[−βEσi + βV fσiY ]
. (5.4)

We will now choose p̃σi as the probability distribution of the original system which
remains at the same inverse temperature β as the modified system, thus obtaining:

〈O〉 =

∑N
i=1Oσi exp[βV fσiY ]∑N
i=1 exp[βV fσiY ]

. (5.5)

This form of reweighting enables the calculation of an expectation value 〈O〉 for
a nonzero value of the external field Y , based on some configurations which are ob-
tained via Markov chain Monte Carlo simulations on the original system at a specific
inverse temperature β and with zero Y . An important observation about the above
reweighting equation is that it is Hamiltonian-agnostic. The value, or the form, of the
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Hamiltonian does not appear in this relation. This implies that one can apply this
type of reweighting using only a set of configurations, the knowledge of the inverse
temperature β, and a trained neural network. As a result, one does not need to know
what is the Hamiltonian or the action that produced a certain set of configurations.

5.4 Neural network-induced phase transitions

We will now investigate the behaviour of the two-dimensional Ising model with L = 64
for a nonzero neural network field, where for this chapter we consider a function
learned on a fully-connected neural network. We remark that, when the neural net-
work field is nonzero, one would generally need to simulate with Markov chain Monte
Carlo simulations the system with the modified Hamiltonian to obtain a set of config-
urations. However, due to the Hamiltonian-agnostic reweighting approach introduced
in the previous section, we can evade the previous problem. We can therefore obtain
expectation values of observables for the nonzero field case Y 6= 0 using only configu-
rations sampled based on the original Hamiltonian of the system at a specific inverse
temperature β and without a neural network field Y = 0.

We will now apply Hamiltonian-agnostic reweighting to investigate the behaviour
of the system when the neural network external field is nonzero. We will conduct this
study for three different values of inverse temperature β = 0.43, 0.440687, 0.45 which
define a system below, at, and above the critical point, respectively. The results can
be seen in Fig. 5.1. We observe that, irrespective of the phase that the system is
positioned in, by varying the neural network field Y the system is able to transition
between the symmetric and the broken-symmetry phases. We recall that the neural
network function f is the probability that a configuration belongs in the broken-
symmetry phase so for values f ≈ 1 the system resides in the broken-symmetry phase
and for values f ≈ 0 it resides in the symmetric phase. As a result the neural network
field is able to induce a phase transition in the system.

We observe that the neural network-induced phase transition, which occurs based
on the neural network field Y , differs from the phase transition that is induced by
an external magnetic field h. In the case of the external magnetic field h, when
h > 0 (h < 0) the system transitions in the broken-symmetry phase and the spins
are positively (negatively) aligned. Equivalently, the external magnetic field always
induces explicit symmetry-breaking in the system. As a result, the system is always
driven to a broken-symmetry phase, irrespective of the sign of h, and it is therefore
unable to transition back to the symmetric phase by restoring the symmetry of the
system. However this is not the behaviour that is observed for the case of the neural
network field Y . We observe that one is able to transition between both the symmetric
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Figure 5.1: Expectation value of the neural network function f versus the neural
network field Y for values of inverse temperature β = 0.43, 0.440687, 0.45 below,
exactly at, and above the critical inverse temperature βc, respectively. The statistical
errors are comparable with the width of each line.

and the broken-symmetry phases by varying Y . As a result one is able to both break
and restore the symmetry of the system with a neural network field Y .

In fact, the observed behaviour is easy to explain. The neural network function f
is the probability that a configuration belongs in the broken-symmetry phase, and it
is therefore a quantity that satisfies positivity. This is in contrast with the conven-
tional order parameter, namely the magnetization, which can be both positive and
negative. The sign of the introduced neural network term within the Hamiltonian
then depends entirely on the sign of the neural network field Y . We recall that the
original Hamiltonian of the Ising model includes a term −

∑
〈ij〉 σiσj. As a result, and

based on the fact that the system favors states with smaller energy, when a positive or
negative neural network term is introduced in the system the spins will compensate
by aligning towards a ferromagnetic or a disordered state. Consequently, a phase
transition between a symmetric and a broken-symmetry phase can be induced by the
neural network field Y .

By observing that the neural network field Y is able to induce a phase transition in
the two-dimensional Ising model we can then investigate how the susceptibility χf of
the neural network function is affected. The results are shown in Fig. 5.2 for nonzero
values of the neural network field Y . We observe that, irrespective of the initial
phase of the system, there exist maxima for the susceptibility, therefore indicating
the crossing of a phase transition. We recall that we used similar arguments to study
the phase transition of the two-dimensional Ising model and the φ4 scalar field theory
in the preceding chapters. These arguments could be extended to the case discussed
here, and one could therefore proceed in studying the induced phase transition using
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Figure 5.2: Expectation value of the susceptibility χf of the neural network function
f versus the neural network field Y . The statistical errors are comparable with the
width of each line.

a finite size scaling analysis. However, in the subsequent chapters we will focus on a
different method to study phase transitions: the real-space renormalization group.

5.5 The renormalization group

5.5.1 Fundamentals and the transformation

In this section we will discuss the real-space renormalization group in the context
of phase transitions. The method relies on the application of a transformation that
iteratively eliminates degrees of freedom within a system. When applying a renormal-
ization group transformation we must devise a set of rules to produce each rescaled
degree of freedom for a system. These rules must respect certain properties.

In the Ising model the devised rule should produce degrees of freedom which
remain binary, and thus construct a rescaled system which resembles an Ising model.
Our aim is to devise a set of rules that will best preserve the large-scale information
of the system. To choose the rescaled degrees of freedom we use the majority rule, see
Fig. 5.3. Specifically, we split the system into blocks of size b× b, and we then choose
the rescaled degree of freedom based on the majority of the spins within each block.
When the degrees of freedom are equal, we choose the rescaled degree of freedom
randomly as +1 or −1. The majority rule is well-established in studies of the phase
transition of the Ising model.

We begin by observing that the application of a renormalization group transfor-
mation on a system of lattice size L in each dimension will produce a rescaled system



64

Figure 5.3: A blocking transformation with a rescaling factor of b = 2 and the majority
rule. When the number of positive +1 and negative −1 degrees of freedom within
each block is equal the rescaled degree of freedom is chosen randomly.

of lattice size

L′ =
L

b
, (5.6)

where b is the rescaling factor. We will retain b in the derivations even though in this
thesis we always consider b = 2.

Now consider that we apply a renormalization group transformation on a con-
figuration σi of the two-dimensional Ising model which has been drawn from the
equilibrium distribution of an inverse temperature β in the vicinity of the phase tran-
sition β ≈ βc. This configuration σi therefore encodes a certain correlation length
ξ. The renormalization group transformation preserves the large-scale information
of the original system and since it reduces the original lattice size by a factor of b
in each dimension it should also reduce the original correlation length by the same
factor. Consequently, the rescaled correlation length ξ′ is given by

ξ′ =
ξ

b
. (5.7)

The first crucial result follows from an observation that we discussed extensively
before, namely that the correlation length ξ is a quantity which depends on the inverse
temperature ξ(β). The correlation length increases as we approach the critical point
β ≈ βc and it diverges exactly at the critical inverse temperature βc. Since the
original and the rescaled systems have different correlation lengths ξ and ξ′ then, by
definition, they are associated to different inverse temperatures β and β′. As a result
the two systems are additionally described by different observables O and O′, where
in this chapter we will work with intensive observables.
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Figure 5.4: The fully-connected neural network architecture. A renormalization group
mapping between a rescaled system with lattice size L′ = 32 and an original system
with lattice size L = 32 is constructed via the neural network function f .

The second crucial result then follows explicitly from the observation that the
correlation length ξ diverges exactly at β = βc, and thus we are able to obtain a
self-consistent approach to locate the critical point. Specifically, the critical point is
the point in parameter space where β = β′ = βc and the correlation length becomes
infinite (or zero). As a result the intensive observables of the original and the rescaled
systems become equal O(βc) = O′(βc). In other words, to discover the critical point
one needs only search for an equality between two observables, one in the original
system and one in the rescaled system. We remark though that the method is affected
by finite-size effects and, consequently, not all observables are expected to intersect.
However, as we will discuss below the impact of finite-size effects is still minimal
compared to other traditional methods, such as finite-size scaling. Here, we will
utilize as observables the neural network function f of the original system and the
neural network function f ′ of the rescaled system. In the critical point we therefore
have:

f(βc) = f ′(βc). (5.8)

We will start from the above equation to locate the critical fixed point of the
two-dimensional Ising model.

5.5.2 Flows and the critical fixed point

In this section, we will again utilize histogram reweighting but with a major difference:
we are now interested in extrapolating observable quantities O′ of the rescaled system
by relying exclusively on the original system’s probability distribution p, and therefore
on the original system’s Hamiltonian or action E . We recall that to each original
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Figure 5.5: Expectation value of the neural network function f and f ′ for an original
and a rescaled system of lattice size L = L′ = 32 versus the inverse temperature β.

configuration σi, which has been drawn from an equilibrium distribution p(σi), is
associated via a renormalization group transformation a rescaled configuration σ′i
with a different probability distribution p′(σ′i). The two probability distributions are
different because the rescaled inverse temperature β′ and the rescaled lattice size
L′ have changed during the application of a transformation on an original system.
However, there exists a mapping between each σi and σ′i via the renormalization
group transformation and, as a result, observables O′ of the rescaled system remain,
in a probabilistic manner, as observables of the original system. They can therefore
be reweighted in parameter space using the original probability distribution p(σi).
Practically, this implies that to reweight a rescaled observable in the original system’s
parameter space one can simply replace every occurrence of Oσi with O′σ′

i
in Eq. (5.5).

Specifically:

〈O′〉 =

∑N
i=1O

′
σ′
i
exp[βV fσiY ]∑N

i=1 exp[βV fσiY ]
. (5.9)

The expectation values of the original and the rescaled neural network functions
f and f ′ at an identical lattice size L = L′ = 32, as obtained through the use
of the histogram reweighting approach, are depicted in Fig. 5.5. We observe that
there exists an intersection point in parameter space for the neural network functions
of the original and the rescaled system. Based on our previous discussion, which
led to the introduction of Eq. (5.8), this point corresponds to the critical inverse
temperature βc of the system, in which we expect a divergence of the correlation
lengths ξ and ξ′, and therefore an equivalence between intensive observables of the
original and the rescaled system. We emphasize that one generally expects to observe
an equivalence of observables only after a larger number of iterative renormalization
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group transformations. However, for the case of the Ising model, intersection of
multiple observables can be observed even after one step of the renormalization group,
see Ref. [10]. We treat this estimation of the critical fixed point as a qualitative result
and in the subsequent discussion we will instead obtain a quantitative estimation.

We previously discussed that a renormalization group transformation leads to
a reduction of the correlation length as ξ′ = ξ/b, where b = 2, and therefore the
rescaled system is described by a different inverse temperature β′. This implies that
if we start from an inverse temperature β that is below the critical point β < βc
then iterative applications of renormalization group transformations will drive the
system towards the zero inverse temperature, and therefore to the symmetric phase
(complete disorder). Conversely, if we start with configurations above the critical
inverse temperature β > βc, then consecutive applications will drive the system to-
wards the infinite inverse temperature β =∞ and therefore to the broken-symmetry
phase (complete order). This observation relates to the concept of a renormalization
group flow in a system’s parameter space, and can be observed in Fig. 5.5. We recall
that the neural network function f expresses the probability that the system resides
in the broken-symmetry phase. Consequently, we observe that for values below the
critical point f ′ < f , indicating that the rescaled system has been driven towards the
symmetric phase. Conversely, above the critical point f ′ > f , and the system has
been driven towards the broken-symmetry phase.

5.5.3 The relevant operators

Having established the concepts of the renormalization group in a qualitative manner
we can now shift focus and instead conduct a quantitative study of the phase transi-
tion. Let us first observe that in Fig. 5.5 we are able to select a value of the original
neural network function f , which corresponds to a certain inverse temperature β, and
then associate to it a rescaled neural network function so that f = f ′, while β 6= β′.
Based on this observation we can generalize Eq. (5.8) as follows:

f(β′) = f ′(β). (5.10)

The equation above hints that one might be able to derive an expression that can
directly relate the two inverse temperatures β and β′. It then follows, straightfor-
wardly, that this expression can be obtained by the inverse mapping:

β′ = f−1(f ′(β)). (5.11)

We now recall the definition of the reduced inverse temperature t which measures
the distance from the critical point βc. As we have clarified by now, the original and
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the rescaled systems are described by different inverse temperatures β and β′ and, as
a result, they have different distances t and t′ from the critical point βc. Consequently,
the correlation length of the original system diverges based on the relation

ξ ∼ |t|−ν , (5.12)

while the correlation length of the rescaled system diverges as

ξ′ ∼ |t′|−ν . (5.13)

We remark that the phase transition in both systems is identical, and therefore
described by the same set of critical exponents, since both the original and the rescaled
systems are two-dimensional Ising models. By dividing the relations for the divergence
of the two correlation lengths we obtain:(

t

t′

)−ν
= b. (5.14)

To conduct Monte Carlo renormalization group calculations, only one final step
is required, namely to linearize the renormalization group mapping in the vicinity of
the phase transition. We will achieve this, as commonly done in statistical physics,
via a Taylor expansion to leading order [66], thus obtaining:

βc − β′ = (βc − β)
dβ′

dβ

∣∣∣∣
βc

, (5.15)

where the notation |βc denotes a calculation in the vicinity of the phase transition.
We remark that, due to the linearization, calculations are accurate even when not
conducted exactly at the critical point βc. By substituting the above equation into
Eq. (5.14) and taking the natural logarithm we obtain an expression for the calculation
of the correlation length exponent ν:

ν =
ln b

ln dβ′

dβ

∣∣∣
βc

. (5.16)

We are now able to conduct our first quantitative calculation of a critical exponent
and of the critical fixed point with a Monte Carlo renormalization group method.
First, we construct the mappings given by Eq. (5.10) which are depicted in Fig. 5.6.
The critical point of the renormalization group transformation can then be obtained
at the intersection of the two lines, from which we obtain the value βc = 0.44063(21).
In addition we calculate the correlation length exponent based on the results depicted



69

Figure 5.6: Rescaled inverse temperature β′ versus inverse temperature β. The dashed
lines, parallel to the solid line, indicate the statistical errors. The intersection with
the line g(x) = x corresponds to β = β′ = βc and therefore is the obtained estimation
of the value of the critical point via the renormalization group.

in the same figure. Specifically via the use of numerical derivatives in the vicinity of
the phase transition we obtain the value ν = 1.01(2). We observe that the value of the
correlation length exponent is highly accurate even though the calculation has been
conducted on an original and rescaled system of small lattice size L = L′ = 32. In
fact, the accuracy of the results supersedes the calculations conducted with finite-size
scaling in the previous chapters, where larger lattice sizes were utilized.

We have now extracted the correlation length exponent ν, which is related to one
of the relevant operators of the renormalization group for the two-dimensional Ising
model. Obtaining the critical exponents related to the relevant operators is important
since all other critical exponents can be calculated directly based on the exponents
related to the relevant operators with the use of scaling relations. In the case of the
two-dimensional Ising model, discussed here, there exists another relevant operator,
namely the critical exponent that governs the divergence of the correlation length
for the external magnetic field h, as h → 0 and β = βc. We will now investigate
if we are able to extract this exponent using the neural network field Y , instead of
the external field h. This could be justified from our studies in the previous chapters
where we demonstrated that the neural network function f acts as an effective order
parameter. So the neural network field might manifest the same scaling behaviour as
the external field of the conventional order parameter, which is the magnetization.

We start our investigation by introducing a critical exponent θY that governs the
divergence of the correlation length ξ

ξ ∼ |Y |−θY . (5.17)
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Figure 5.7: Rescaled neural network field Y ′ versus original neural network field Y .
The original simulation was conducted exactly at the critical point βc = 0.440687.

It is now possible to pursue exactly the same discussion as we did for the inverse
temperature, and construct a mapping that relates the neural network fields Y and
Y ′ of the original and the rescaled systems, respectively, as:

Y ′ = f−1(f ′(Y )). (5.18)

We can then derive the equation that allows us to calculate numerically the neural
network field exponent θY as

θY =
ln b

ln dY ′

dY

∣∣∣
Y=0

. (5.19)

The mappings constructed for the case of the neural network fields are depicted
in Fig. 5.7. We calculate the critical exponent θY via numerical derivatives on the
data depicted in the figure and obtain the value θY = 0.534(3). We recall that the
two-dimensional Ising model is exactly solvable and the analytical values of the two
critical exponents related to the relevant operators that govern the divergence of
the correlation length are ν = 1.0 for the exponent related to the phase transition
induced by the inverse temperature and θ = 8/15 for the exponent related to the
phase transition induced by the external magnetic field, when h → 0 and β = βc.
We observe that the neural network field exponent θY overlaps within statistical
errors with the magnetic external field exponent θ, therefore indicating that the two
operators are identical.

In summary, by coupling the neural network function f to a fictitious external field
Y and introducing it within the Hamiltonian of the two-dimensional Ising model, we
were able to obtain the two critical exponents related to the relevant operators of the
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renormalization group transformation and the critical point of the two-dimensional
Ising model on systems with lattice size as small as L = L′ = 32. We remark that
the renormalization group is a powerful tool to study phase transitions and can, for
instance, provide accurate results using systems simulated on small lattice sizes. One
of the reasons for this efficiency is that the infinite-volume limit calculation is obtained
using measurements conducted on only two systems, hence limiting finite-size effects
in comparison to calculations, such as finite-size scaling, which rely on measurements
obtained on multiple systems of different lattice sizes.

5.6 Discussion

In this chapter we demonstrated that neural network functions f can be included
as physical terms within Hamiltonians by being coupled to a fictitious field Y . We
were then able to express quantities related to the machine learning function, such
as the expectation value and the susceptibility, as derivatives of the Ising model’s
partition function in terms of the neural network field Y . Using Hamiltonian-agnostic
reweighting, we observed that the neural network field Y can induce a phase transition
in the two-dimensional Ising model by breaking or restoring its symmetry. This
is in contrast with the phase transition induced by the field associated with the
system’s conventional order parameter, which breaks the symmetry explicitly. We
then introduced a renormalization group approach that enabled the calculation of
the two critical exponents related to the relevant operators of the Ising model, as well
as its critical point, by utilizing exclusively functions derived from machine learning
algorithms. Finally, we discussed the induced renormalization group flows in the
system’s parameter space.

In summary, via the inclusion of neural network functions as physical terms within
Hamiltonians, a new method to induce phase transitions in systems was introduced.
Consequently, the opportunity to induce analogous phase transitions via neural net-
work fields in systems where conventional order parameters are absent or unknown
is open to explore. Our study related to neural network functions f , which are con-
structed to separate phases in systems, ends at this point of the thesis. Our focus
will now shift to quantum field theories and the use of machine learning to generate
states in absence of the critical slowing down effect via the construction of inverse
renormalization group transformations.
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Chapter 6

Inverse renormalization group

6.1 Introduction

We will now extend the discussion pertinent to the real-space renormalization group
by exploring the construction of inverse renormalization group transformations. Only
a minimal number of studies have been conducted in relation to the implementation
of the inverse renormalization group. These have appeared exclusively within the
context of statistical physics and are established on spin systems with discrete de-
grees of freedom [56, 59, 67–69]. To the best of knowledge, no inverse Monte Carlo
renormalization group method has ever been explored in the context of quantum field
theory or to a system with continuous degrees of freedom, outside of the current work.

In this chapter, we will implement machine learning algorithms to construct in-
verse renormalization group transformations [70]. Specifically, we will investigate if
a set of inverse transformations can be learned that is able to mimic the inversion of
a standard renormalization group transformation. Our aim is to utilize these inverse
transformations to iteratively increase the size of a system in absence of the critical
slowing down effect, therefore obtaining configurations for systems with larger lattice
size without having to simulate them with Markov chain Monte Carlo simulations.
We will additionally explore if inverse renormalization group transformations give rise
to inverse flows in a system’s parameter space, therefore driving it towards its critical
point. Finally, we will investigate if the inverse renormalization group which can, in
principle, be applied for an arbitrary number of steps to increase the size of a system,
can be utilized to extract multiple critical exponents for the phase transition of the
φ4 scalar field theory.

73
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6.2 RG flows in the φ4 theory

Before learning a set of transformations that are able to invert a standard renor-
malization group transformation we must first verify that the renormalization group
method, as described in the previous chapter, is accurate when applied to the φ4

scalar field theory. The coupling constant K which induces the phase transition in
the φ4 theory is the squared mass K ≡ µ2 and the reduced coupling constant t then
measures the distance from the critical point Kc:

t =
Kc −K
Kc

. (6.1)

Following exactly the discussion related to the previous chapter, intensive observ-
able quantities O and O′ for an original and a rescaled system will then intersect
exactly at the critical point Kc:

O(Kc) = O′(Kc), (6.2)

thus providing a self-consistent method to locate Kc.
The φ4 scalar field theory is a system with continuous degrees of freedom and,

in constrast with the renormalization group study of the Ising model in the previous
chapter, we will not rely on a majority rule to define each rescaled degree of freedom.
Instead the renormalization group transformation that we will implement works as
follows. We will again separate the lattice into blocks of size b × b, and sum the
degrees of freedom within each block. If the sum is positive (negative), the rescaled
degree of freedom is chosen as the mean of the positive (negative) degrees of freedom
within the block.

We will now verify that the renormalization group transformation described above
is accurate on the φ4 scalar field theory. We consider configurations of a φ4 scalar
field theory of lattice size L = 32 that has been sampled in the vicinity of the phase
transition, specifically for values κ = 1, µ2 = −0.9515, λ = 0.7 and apply the
above transformation to obtain a system of lattice size L′ = 16. We then implement
histogram reweighting to extrapolate the expectation value of the original and the
rescaled magnetizations m and m′, for different values of the squared mass µ2.

The results are depicted in Fig. 6.1. We observe that the standard renormalization
group flows that emerged are analogous to the case of the two-dimensional Ising
model. Specifically, below the critical point µ2 < µ2

c the rescaled system has larger
values of the magnetization m′ > m since it has been driven towards the broken-
symmetry phase. Conversely, above the critical point µ2 > µ2

c the rescaled system
has smaller values of magnetization m′ < m since it has been driven towards the
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Figure 6.1: Expectation value of the magnetization |m| versus the squared mass µ2

for an original and a rescaled system of lattice size L = L′ = 16 in each dimension.

symmetric phase. In addition the original and the rescaled intensive magnetizations
intersect, therefore evidencing that a critical fixed point of the renormalization group
transformation has emerged.

We have hence verified that the standard renormalization group transformation
described above is accurate when applied to the φ4 scalar field theory. Specifically, it
produces the anticipated renormalization group flows in the system’s parameter space
and it has additionally provided a critical fixed point µ2

c . By inverting this standard
renormalization group transformation successfully with the use of machine learning
algorithms, we expect that the inverse transformation will additionally satisfy all of
the conditions mentioned above. These are the emergence of a critical fixed point and
the associated inverse renormalization group flows in the system’s parameter space.
We will now focus on the inversion of such a transformation and we will investigate
its accuracy via calculations pertinent to the continuum limit.

6.3 Inverting a transformation

We are now interested in constructing an inverse renormalization group transforma-
tion. In contrast to the standard renormalization group, which iteratively eliminates
degrees of freedom within a system and therefore reduces the system’s lattice size,
an inverse renormalization group transformation will introduce degrees of freedom
and hence produce a rescaled system that is described by an increased lattice size.
We recall that in this thesis we always consider that the rescaling factor b = 2 and
therefore an inverse renormalization group transformation will double the lattice size
of an original system in each dimension.
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Figure 6.2: Illustration of the inverse renormalization group method. Starting from
uncorrelated configurations of a minimally sized lattice L0 we apply iteratively the
inverse transformations to arbitrarily increase the size of the system.

The question is now how to construct such an inverse renormalization group trans-
formation. In fact, one is able to devise any transformation, via the application of
a function, that will increase the lattice size of the system by a rescaling factor of
b and then one can investigate if the transformation is accurate, for instance on a
prototypical system. This research direction is appealing, since it allows for complete
interpretability of the obtained results. However it is simultaneously expected to be
inefficient, based on the current knowledge of the inverse renormalization group, since
there exists no guidance as to what constitutes a successful inverse transformation.

Here, we will follow a different approach: we will treat the construction of the
inverse renormalization group transformation as an optimization problem that aims
to invert, through the mathematical operation of transposed convolution, the ap-
plication of a standard renormalization group transformation. Specifically, we start
from configurations of an original system that has lattice size L = 32 and apply a
standard renormalization group transformation to obtain a rescaled system of lattice
size L′ = 16. We then apply a set of transposed convolutions on L′ = 16, see Chap-
ter 2, to produce configurations for a model system described by lattice size Lm = 32.
Our aim is now to minimize a loss function, that is able to establish an equivalence
between the degrees of freedom of the model system with Lm = 32 and the degrees
of freedom of the original system with L = 32. If we consider a certain degree of
freedom this can be achieved via the minimization of a mean squared error function:

MSE(φi, φ
(m)
i , θ) = (φi − φ(m)

i (θ))2, (6.3)

where φi is an original degree of freedom and φ
(m)
i (θ) is the corresponding degree

of freedom of the model system that has a dependence on the set of variational
parameters θ.
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The benefit of this approach is that it instantly guarantees that the obtained
inverse transformations will be of comparable efficiency and accuracy as the standard
renormalization group transformation that was selected for inversion. The reason
is that, through this approach, one can certify that they are able to reconstruct
the original system from a rescaled one, and therefore one has confirmed that the
inverse transformation will satisfy the required conditions that make the standard
renormalization group successful, namely the encoded difference of the correlation
length between the two systems. Practically, this additionally means that one is
able to first verify that a standard renormalization group transformation is successful
before the transformation gets inverted.

6.3.1 Inverse flows

For convenience, we briefly recall that an application of a standard renormalization
group transformation on an original system of lattice size L in each dimension pro-
duces a rescaled system with lattice size L′ as:

L→ L′ =
L

b
. (6.4)

By devising a set of transformations that are able to mimic the inversion of a
standard renormalization group transformation we will be able to reconstruct the
original system of lattice size L from the rescaled system of lattice size L′ and thus
obtain

L′ → L = bL′. (6.5)

The important observation then follows from the realization that, once this set of
inverse transformations is accurately learned, one is able to apply them consecutively
to arbitrarily increase the size of the system as

Lj = b(j−i)Li, (6.6)

where j > i ≥ 0, and L0 = L. Of course, as we have discussed in the previous
chapter, if the initial configurations of the original system have been drawn from an
equilibrium probability distribution in the vicinity of the system’s phase transition
then they encode a certain correlation length ξ. As a result the increase in the lattice
size corresponds to an equal increase in the correlation length as:

ξj = b(j−i)ξi, (6.7)
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with ξ0 = ξ.

We will now investigate if the application of an inverse renormalization group
transformation produces the anticipated behaviour. We start from a set of configura-
tions of a φ4 scalar field theory with lattice size L0 = 32 that we have sampled in the
vicinity of the phase transition. The set of inverse renormalization group transforma-
tions is then applied consecutively until we obtain a system of lattice size L4 = 512,
and we implement histogram reweighting to extrapolate the value of the magnetiza-
tion mj for all of the rescaled systems with lattice sizes L1, L2, L3, L4. The results
are shown in Fig. 6.3. where we have also included extrapolations of reweighting
from original systems of the same lattice size as the rescaled ones, to enable a direct
comparison.

We observe that the application of an inverse renormalization group transforma-
tion, depicted in Fig. 6.3, has produced the anticipated behaviour. Specifically, for
values of the squared mass below the critical point µ2 < µ2

c , the rescaled magneti-
zation has smaller values than the original magnetization m′ < m since the rescaled
system has flowed towards the critical point, due to the increase of the correlation
length. Conversely, when then system resides above the critical point µ2 > µ2

c , the
rescaled magnetization has larger values than the original magnetization m′ > m as
the rescaled system has again flowed towards the critical point because its correlation
length has increased. As a result, inverse renormalization group flows have emerged
in the system’s parameter space.

In addition, we observe that the inverse renormalization group transformations
can be utilized to locate the critical fixed point via the intersection of the original
and the rescaled magnetization. This is exactly the behaviour that we expect from
an inverse renormalization group transformation. We emphasize that simulating the
original systems in Fig. 6.3 is not necessary: these results have been introduced to
establish that the inverse renormalization group approach is a viable method. In
fact, our aim is to avoid simulating the original systems, since a direct simulation of
an original system in the vicinity of the phase transition is hindered by the critical
slowing down effect.

The critical slowing down effect can be entirely avoided with the inverse renormal-
ization group in calculations pertinent to the study of phase transitions. Starting from
uncorrelated configurations the rescaled systems that we obtain with the method are
sufficient to calculate multiple critical exponents of a system. Specifically, we achieve
this by starting with configurations of a system at a small lattice size L0, for instance
L0 = 32, for which we are able to obtain uncorrelated measurements in an easy
manner. We then apply the inverse transformations on the original system of lattice
size L0 to obtain configurations of rescaled systems with larger lattice sizes, such as
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Figure 6.3: Expectation value of the magnetization m versus the value of the squared
mass µ2.

L1 = 64, L2 = 128, L3 = 256, L4 = 512. Since we never have to simulate the systems
at larger lattice sizes, we evade the critical slowing down effect, see also Ref. [59].

In addition, the current inverse renormalization group approach, discussed in this
thesis, is further enhanced by the use of histogram reweighting, which enables the
extrapolation of expectation values for observables of the rescaled systems. Specifi-
cally, starting from the original system of size L0 = 32, we are not only able to obtain
configurations of systems with larger lattice sizes Lj > L0 but we are additionally able
to obtain expectation values of observables in a large region of parameter space for all
of the rescaled systems Lj through the use of histogram reweighting. This provides
substantial computational benefits, because otherwise, one would need to conduct a
large amount of computationally demanding simulations to obtain the same results
of Fig. 6.3. Here through the inverse renormalization group method, combined with
reweighting, we were able to obtain all of this information using only one simulation
at lattice size L0 = 32, conducted at one point in parameter space µ2 = −0.9515.

We have thus explored that the inverse renormalization group approach produces
the anticipated behaviour, namely that it gives rise to inverse renormalization group
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flows in parameter space and that it drives the system towards a critical fixed point.
We are now interested in utilizing the inverse renormalization group method to cal-
culate quantities in the infinite-volume limit, specifically to obtain critical exponents.
Conceptually, we will follow the relevant discussion pertinent to the standard renor-
malization group in the previous chapter, but besides working with the inverse renor-
malization group, we are interested in obtaining a different set of critical exponents,
namely those of the magnetization and of the magnetic susceptibility.

6.3.2 Extraction of critical exponents

We recall that during the application of a renormalization group transformation, the
original and the rescaled systems have different distances ti and tj from the critical
point. As a result the critical behaviour of the magnetizations mi and mj of the
original and the rescaled system is described according to the relations:

mi ∼ |ti|βm , (6.8)

mj ∼ |tj|βm . (6.9)

The above expressions can be equivalently expressed in terms of the correlation
lengths ξi, ξj as

mi ∼ ξ
−βm/ν
i , (6.10)

mj ∼ ξ
−βm/ν
j . (6.11)

We remark that the magnetization critical exponent βm as well as the correlation
length exponent ν are the same in both relations since the original and the rescaled
systems are both φ4 scalar field theories. By dividing the two expressions and taking
the natural logarithm we obtain:

β

ν
= −

ln
mj
mi

ln
ξj
ξi

= −
ln

mj
mi

(j − i) ln b
. (6.12)

We remark that the above expression holds only for an infinite system. However,
we are interested in conducting calculations on systems of finite lattices. In line with
the Taylor expansion conducted in the previous chapter to establish a linearization,
we will now use l’Hôpital’s rule, and obtain:

β

ν
= −

ln
dmj
dmi

∣∣
Kc

ln
ξj
ξi

= −
ln

dmj
dmi

∣∣
Kc

(j − i) ln b
. (6.13)
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Using the expression above we are able to calculate the critical exponent βm/ν
via numerical derivatives in relation to the original and rescaled magnetizations.

We will now derive the expression for the calculation of the magnetic susceptibility
exponent γ using the same arguments. Specifically, the divergence of the magnetic
susceptibility is given via relations:

χi ∼ |ti|−γ, (6.14)

χj ∼ |tj|−γ, (6.15)

which are equivalently expressed in relation to the correlation lengths as

χi ∼ ξ
γ/ν
i , (6.16)

χj ∼ ξ
γ/ν
j . (6.17)

The relation for the calculation of the magnetic susceptibility exponent is then:

γ

ν
=

ln
dχj
dχi

∣∣
Kc

ln
ξj
ξi

=
ln

dχj
dχi

∣∣
Kc

(j − i) ln b
. (6.18)

To calculate the critical exponent γ/ν we require the values of the magnetic suscep-
tibility, which are depicted for the original system L0 = 32 and the rescaled systems
L1 = 64, L2 = 128, L3 = 256, L4 = 512 in Fig. 6.4. The results have been obtained
with the use of histogram reweighting. We recall that we have already calculated the
values of the magnetization for the rescaled systems in Fig. 6.3 and for the original
system in Fig. 6.1. Consequently, we are now able to proceed with the calculation of
the critical exponents.

We emphasize that one is able to calculate the critical exponents not only by
comparing an original and a rescaled system, but by comparing directly two rescaled
systems. Specifically, instead of only calculating a critical exponent between the
original system of lattice size L0 and one of the rescaled systems L1 = 64, L2 =
128, L3 = 256, L4 = 512 one can instead use, for instance, L2 and L4 to obtain
a calculation. This is possible because we have guaranteed that, by learning the
inverse of a standard renormalization group transformation, each iteration of the
transformation doubles the correlation length. Equivalently, we know by what factor
the correlation length differs between any of the aforementioned systems. As a result
Eqs. (6.13) and (6.18) are applicable to any combination of the systems described by
lattice sizes L0, L1, L2, L3, L4.

Using all possible combinations of the aforementioned systems the calculation
of critical exponents is depicted on Table 6.1. The original system with L0 = 32
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Figure 6.4: Expectation value of the magnetic susceptibility χ versus the squared
mass µ2. The width of the lines indicates the statistical errors.
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Li/Lj 32/64 32/128 32/256 32/512 64/128
γ/ν 1.735(5) 1.738(5) 1.741(5) 1.742(5) 1.742(5)
β/ν 0.132(2) 0.130(2) 0.128(2) 0.128(2) 0.128(2)

Li/Lj 64/256 64/512 128/256 128/512 256/512
γ/ν 1.744(5) 1.744(5) 1.745(5) 1.745(5) 1.746(5)
β/ν 0.127(2) 0.127(2) 0.126(2) 0.126(2) 0.126(2)

Table 6.1: The critical exponents γ/ν and β/ν. The original system is of lattice size
L0 = 32 in each dimension.

is sampled in the vicinity of the phase transition for values of coupling constants
µ2
L = −0.9515, λL = 0.7, κL = 1. We observe that there is a convergence of the

critical exponents γ/ν and βm/ν towards the values of the exponents that define the
two-dimensional Ising universality class. In addition, this convergence is observed
even for any combination of systems, either the original versus a rescaled system or
between two rescaled systems.

To cross-verify the results we additionally calculate critical exponents by starting
from a system of lattice size L0 = 8, sampled at a different point in parameter space,
specifically κL = 1, µ2

L = −1.2723 and λL = 1. We remark that the choice of coupling
constants defines a system that again resides in the vicinity of the phase transition,
see Ref. [44]. We apply to the original system with lattice size L0 = 8 the learned
inverse transformations to obtain lattices of size up to L6 = 512. The results are
shown in Table 6.2, where again a convergence towards the Ising universality class is
observed, irrespective of the choice of the initial system.

We remark that the inverse renormalization group method is anticipated to be
applicable only when the original configurations encode a finite correlation length ξ.
As a result, inconsistencies are anticipated to emerge in systems of smaller lattice
size, a result that we have verified for L0 < 8. This is due to the fact that the
correlation length ξ is not properly encoded in systems of small lattice sizes, and the
transformations can potentially produce larger systems that will not be representative
of φ4 scalar field theories.

6.4 Discussion

In this chapter we introduced the inverse renormalization group approach to quantum
field theories and to systems with continuous degrees of freedom. We established
an optimization approach to learn a set of transformations that are able to mimic
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Li/Lj 8/16 8/32 8/64 8/128 8/256 8/512 16/32
γ/ν 1.694(6) 1.708(6) 1.717(6) 1.723(6) 1.727(6) 1.730(6) 1.721(6)
β/ν 0.154(2) 0.147(2) 0.142(2) 0.139(2) 0.137(2) 0.135(2) 0.140(2)

Li/Lj 16/64 16/128 16/256 16/512 32/64 32/128 32/256
γ/ν 1.728(6) 1.732(6) 1.735(6) 1.737(6) 1.735(6) 1.738(6) 1.740(6)
β/ν 0.136(2) 0.134(2) 0.132(2) 0.131(2) 0.133(2) 0.131(2) 0.130(2)

Li/Lj 32/512 64/128 64/256 64/512 128/256 128/512 256/512
γ/ν 1.740(6) 1.741(6) 1.742(6) 1.742(7) 1.743(6) 1.743(7) 1.743(7)
β/ν 0.129(2) 0.129(2) 0.129(2) 0.128(2) 0.128(2) 0.127(2) 0.127(2)

Table 6.2: The critical exponents γ/ν and β/ν. The original system is of lattice size
L0 = 8 in each dimension.

the inversion of a standard renormalization group transformation. These inverse
transformations can then be applied iteratively to arbitrarily increase the size of the
system, in absence of the critical slowing down effect. We have further demonstrated
that the application of an inverse renormalization group transformation gives rise to
inverse flows in parameter space that drive a system closer to its critical fixed point,
irrespective of the initial phase that the system resides in. In contrast to the standard
renormalization group method, which eliminates degrees of freedom within a system
and can be applied for a finite number of steps, the inverse renormalization group
introduces degrees of freedom within a system and, in principle, can be applied for an
arbitrary number of steps. Finally, we have utilized the inverse renormalization group
method to calculate accurately multiple critical exponents for the two-dimensional φ4

scalar field theory.
In summary, the current work provides the first implementation of the inverse

Monte Carlo renormalization group, a method that is able to evade the critical slow-
ing down effect, on quantum field theories and on systems with continuous degrees
of freedom. Futher exploration of the method might provide novel insights into the
structure of the renormalization group, a method that emerges across diverse re-
search fields such as condensed matter physics, quantum field theory and statistical
mechanics. For the remainder of the thesis, we will focus on exploring fundamental
connections between machine learning and quantum field theory. In the next chapter
we will therefore explore the derivation of machine learning algorithms from quantum
field theories.



Chapter 7

Quantum field-theoretic machine
learning

7.1 Introduction

Up until this point we have emphasized applications of machine learning but here we
will shift focus and investigate instead deeper connections that relate machine learning
and physics. On that front, we will investigate probabilistic aspects of quantum field
theory. These aspects share connections with the research field of machine learning
and are directly accessible through the framework of lattice field theory.

In this chapter, we will derive machine learning algorithms from lattice field the-
ories [71–73]. Specifically, we will establish an equivalence between the φ4 scalar
field theory on a square lattice and the framework of Markov random fields. Markov
fields are a certain type of machine learning algorithms with applications in research
fields such as computer vision or biology [74, 75]. In addition, Markov fields emerge
in mathematical physics, specifically in constructive quantum field theory [2], where
one utilizes the Markov property on Euclidean fields to construct quantum fields in
Minkowski space [76]. Orthogonal work which explores connections between quantum
field theory and machine learning relates to the ADS/CFT correspondence [77, 78],
or the theory of Gaussian processes [79–81].

Here, we will demonstrate, via the Hammersley-Clifford theorem [82–86], that the
φ4 lattice field theory is, by definition, a machine learning algorithm. We will then
derive a φ4 neural network architecture that generalizes a certain class of standard
neural network architectures, namely restricted Boltzmann machines [87–90]. Finally,
we will conduct numerical applications to establish the use of φ4 machine learning
algorithms, and we will discuss the opportunity to investigate machine learning within
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lattice field theory.

7.2 Probabilistic graphical models and Markov ran-

dom fields

We will start by presenting the fundamentals related to the framework of probabilistic
graphical models. Specifically, we will focus on the case where a system can be
represented by a graph, and the degrees of freedom of the system are positioned on
the vertices of the graph. The degrees of freedom are then connected through edges.
In this thesis, we will investigate exclusively the case where the edges of the graph are
undirected, which means that the direction of the edge from a vertex i to a vertex j
or, conversely, from j to i is irrelevant. We thus discuss a special case of probabilistic
graphical models, namely undirected graphical models. Moreover, we are interested in
a special case of undirected graphical models, that is, graphs which satisfy a condition
called the Markov property. This type of undirected graph is called a Markov random
field. We will hence start by introducing the concept of a Markov random field.

As mentioned above, let us consider a finite set Λ, which we express as a graph
G(Λ, e). This graph then describes a physical system where the degrees of freedom
i, j ∈ Λ correspond to the vertices of the graph and the edges e which connect i
and j are undirected. We associate to each vertex i ∈ Λ a random variable φi. A
configuration comprises the set of random variables and is denoted as φ, and the set
of all possible configurations will be denoted as φ. We are generally interested in
studying concepts of conditional independence and locality for the random variables
within the graph G, and hence we aim to transition from mathematical expressions
in relation to all possible configurations φ of a lattice to expressions in relation to all
possible values φi of a lattice site.

We now define the concept of a neighbour of a vertex i as another vertex j ∈
Λ, j 6= i which is connected with i through an edge. We denote as ni all neighbours
of a vertex i. We will ambiguously use the notation φi when discussing either the
random variable or the corresponding vertex i. An important concept in relation to
graphs is the notion of a clique. We define a clique as a set which comprises at least
two vertices which are neighbours. We then define a maximal clique c ∈ C as the
set to which no additional vertex can be included such that all included vertices are
neighbours, i.e. such that the corresponding set remains a clique, see Fig. 7.1.

To clarify the concepts we will briefly describe what constitutes a maximal clique
in terms of commonly used graphs and lattices. On the square lattice a maximal clique
is defined based on two-nearest neighbours, for instance the vertices that correspond
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Figure 7.1: (a) A square lattice where a maximal clique is a two-site clique. (b) A
triangular lattice where the maximal clique is a triangle, i.e. a three site clique, (c)
A square lattice with both diagonals where the maximal clique is a square, i.e. a
four-site clique. See text for examples.

to the random variables {φ5, φ6}, because no additional vertex can be included that
is simultaneously a neighbor with both φ5 and φ6. The concept becomes clearer in
the case of a triangular lattice. For instance, the set {φ1, φ2} in Fig. 7.1b defines a
clique because φ1 and φ2 are neighbours, but the clique is not maximal because there
exists another vertex, specifically φ5, that is simultaneously a neighbour with both φ1

and φ2. As a result on the triangular lattice a maximal clique is {φ1, φ2, φ5}. Similar
arguments can be extended on the square lattice with both diagonals. Here, a set of
two neighbours or three neighbours defines a clique but a maximal clique is obtained
only when four neighbours are included within the set. For instance a maximal clique
is {φ5, φ6, φ8, φ9}. The final graph to be discussed is the case of the bidirected graph,
depicted in Fig. 7.2, where the structure of the cliques is analogous to the square
lattice, specifically only two-site cliques are maximal.

We remark that, since the vertices of the graph G(Λ, e) correspond to the sites
of a physical model, the probability measures on the set of subsets of Λ define a
probability distribution p which is the equilibrium distribution of a physical model.
We will now introduce the concept of a Markov random field. Specifically, we call
a Markov random field a set of random variables, described by an undirected graph
G(Λ, e), that satisfy the local Markov property with respect to the graph structure:

p(φi|(φj)j∈Λ−i) = p(φi|(φj)j∈ni). (7.1)

In simple terms the local Markov property states that what happens in a small
region of a lattice is independent with what happens in regions of the lattice that are
further away. Formally, it states that a random variable φi, i ∈ Λ is conditionally
independent of all other random variables j in the set Λ given (or excluding) its
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Figure 7.2: A bipartite graph that has identical independence structure such as the
square lattice. The maximal cliques are two-site cliques.

neighbours ni. A probability distribution which satisfies the local Markov property
is then associated with the events generated by a Markov random field.

We will prove the local Markov property through the Hammersley-Clifford theo-
rem.

Theorem 1 (Hammersley-Clifford) Any probability distribution p with a strictly
positive mass or density that is represented by an undirected graph G satisfies the local
Markov property if and only if p can be factorized, with respect to the graph structure,
in terms of strictly positive potential functions ψc over the maximal cliques c ∈ C,
i.e.:

p(φ) =
1

Z

∏
c∈C

ψc(φ), (7.2)

where the normalization constant Z =
∫
φ

∏
c∈C ψc(φ)dφ is the partition function of

the system.

The Hammersley-Clifford theorem establishes an equivalence between the factor-
ization of random variables on a graph and the conditional independence properties
that they satisfy. We emphasize that we discuss a simple variation of the theorem,
which is actually more generally applicable. For a mathematical treatment of prob-
abilistic graphical models see Ref. [74]. To establish that the φ4 scalar field theory
is a Markov random field we will demonstrate that the Hammersley-Clifford theorem
holds for the φ4 Boltzmann probability distribution.
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7.3 The φ4 theory as a Markov field

We repeat, for convenience, the expression of the Euclidean action of the two-dimensional
φ4 scalar field theory which is discretized on a square lattice:

SE = −κL
∑
〈ij〉

φiφj +
(µ2

L + 4κL)

2

∑
i

φ2
i +

λL
4

∑
i

φ4
i . (7.3)

We will now work with the disordered version of the above action, by substituting
w = κL, a = (µ2

L + 4κL)/2, b = λL/4, and considering w, a, b as inhomogeneous. We
then arrive to the action:

S(φ; θ) = −
∑
〈ij〉

wijφiφj +
∑
i

aiφ
2
i +

∑
i

biφ
4
i , (7.4)

where θ = {wij, ai, bi} is the set of coupling constants, which we will ambiguously call
variational parameters.

The study of disordered systems [91], is motivated by the fact that realistic sys-
tems always include some form of impurity or inconsistency in their description. For
example a realistic system might be interacting with an inhomogeneous external field
instead of a perfectly homogeneous field, and a realistic material could always include
some form of impurity via the inclusion of small particles of a different type of mate-
rial. We emphasize that even simple disordered systems, such as the inhomogeneous
case of the Ising model, namely the Ising spin glass, do exist experimentally. All of
the conditions that we will prove from now on for the disordered action, also hold for
the conventional φ4 theory of Eq. (7.3). Nevertheless we will work with the disordered
case since it is mathematically more general, namely for wij = w, ai = a, bi = b it
reduces to the traditional action.

The probability distribution p(φ; θ) of the φ4 scalar field theory is then given by:

p(φ; θ) =
exp

[
− S(φ; θ)

]∫
φ

exp[−S(φ, θ)]dφ
. (7.5)

Because of the theorems related to undirected graphical models which were de-
scribed above, it is a trivial matter to prove that the φ4 scalar field theory is equivalent
to a Markov random field. We observe that a lattice field theory is, by definition,
formulated on a graph G = (Λ, e), where each of the vertices or lattice sites belong
to the finite set Λ and the edges e correspond to the pairwise interactions. In addi-
tion, we observe that we aim to factorize the probability distribution p(φ; θ) in terms
of strictly positive potential functions ψc, so we are able to multiply with strictly
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positive functions derived from subsets of the maximal clique c [92]. Practically, this
implies that besides functions related to the terms wijφiφj which emerge from two-site
cliques, we are also able to include functions related to terms from one-site cliques,
which are subsets of two-site cliques, and hence we can include functions related to
the aiφ

2
i and biφ

4
i terms. In summary, and by recalling that we have chosen periodic

boundary conditions for the system, we arrive at the following choice of a potential
function which is able to factorize the probability distribution:

ψc = exp

[
− wijφiφj +

1

4
(aiφ

2
i + ajφ

2
j + biφ

4
i + bjφ

4
j)

]
. (7.6)

In the above expression i and j denote two nearest-neighbours. We then observe
that this choice of a potential function leads to a factorization of the probability
distribution as

p(φ; θ) =
exp

[∑
c∈C lnψc(φ)

]∫
φ

exp
[∑

c∈C lnψc(φ)
]
dφ

=
1

Z

∏
c∈C

ψc(φ). (7.7)

We have therefore proved that the probability distribution of the φ4 scalar field
theory can be factorized in terms of potential functions ψc per maximal cliques c ∈ C
and therefore the φ4 theory is a Markov random field.

To provide some further insights into the Markov property, and hence Markov
fields, we recall that the Markov property is a fundamental concept in the theory
of Markov processes, including Markov chain Monte Carlo simulations. The Markov
property in a Markov chain can be expressed as the condition that, given a certain
configuration φk, a future configuration φk+1 depends only on the current configura-
tion φk and not on configurations that preceded it, such as φk−1:

P (φk+1|φk, . . . , φ0) = P (φk+1|φk). (7.8)

The Markov property in a Markov chain is therefore a condition that can be intu-
itively understood in terms of an evolution related to time. Conversely, in a Markov
random field we generalize this condition, expressed in Eq. (7.8), to a condition of
(a high-dimensional) space, as expressed in Eq. (7.1). In other words, via Markov
random fields we are interested in Markov processes in high dimensions. Markov ran-
dom fields are widely used as machine learning algorithms, and we will now explore
relevant applications based on φ4 Markov random fields.

A central concept in the following discussion is the notion of a distance func-
tion between two probability distribution. Generally, this will always be our aim in
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probabilistic machine learning applications: we are interested in minimizing a dis-
tance function between the probability distribution p(φ; θ) of the machine learning
algorithm and a target probability distribution q(φ) that we are interested in ap-
proximating or learning. After the minimization of the distance function, which is
achieved by searching for the optimal values of the variational parameters θ, we have
constructed a representation of q(φ) within p(φ; θ). This implies that we are able to
utilize the probability distribution p(φ; θ) of the machine learning algorithm to draw
samples that correspond to the other probability distribution q(φ), a probability dis-
tribution that we might otherwise never be able to sample or whose form might be
unknown to us.

To establish an equivalence between the probability distribution p(φ; θ) of a ma-
chine learning algorithm, and a target probability distribution q(φ) we will utilize an
expression called the Kullback-Leibler divergence:

KL(p||q) =

∫ ∞
−∞

p(φ; θ) ln
p(φ; θ)

q(φ)
dφ ≥ 0. (7.9)

We emphasize that the Kullback-Leibler divergence, which is equivalent to a rela-
tive entropy, is not a proper distance. The reason is that it does not satisfy the trian-
gle inequality and it is not symmetric. Nevertheless, the Kullback-Leibler divergence
satisfies positivity, and it becomes zero only when the two probability distributions
p(φ; θ) and q(φ) become equal. For this reason we will call the Kullback-Leibler di-
vergence an asymmetric distance, as it still establishes a measure of the difference
between two probability distributions. In fact, we will observe that the asymmetry
of the function is actually beneficial in relation to applications since we will use both
KL(p||q) as well as KL(q||p) for distinct applications.

7.4 Machine learning with φ4 Markov random fields

7.4.1 Learning without predefined data

We are now interested in utilizing the probability distribution of a φ4 Markov ran-
dom field with action S(φ; θ), given by Eq. (7.4), to approximate a target probability
distribution q(φ) whose form we know. Specifically, we consider that q(φ) is a Boltz-
mann probability distribution that describes a statistical system or a quantum field
theory with Hamiltonian or action A and is given by

q(φ) =
exp[−A(φ)]

ZA
. (7.10)



92

We now expand the Kullback-Leibler divergence to obtain:

〈ln p(φ; θ)〉p(φ;θ) − 〈ln q(φ)〉p(φ;θ) ≥ 0, (7.11)

where we recall that the notation 〈〉p(φ;θ) denotes the calculation of an expectation
value under the probability distribution p(φ; θ). We now substitute the two probabil-
ity distributions p(φ; θ) and q(φ) in the expression to obtain:

−〈lnZA〉p(φ;θ) ≤ 〈A − S〉p(φ;θ) − 〈lnZ〉p(φ;θ), (7.12)

where we observe that expectation values in relation to partition functions are con-
stant, hence the above equation is equal to:

− lnZA ≤ 〈A − S〉p(φ;θ) − lnZ. (7.13)

In the current chapter we will consider that any parameter, such as the inverse
temperature β, is absorbed within the action. We can then consider that FA =
− lnZA and F = − lnZ, where F denotes the free energy and we obtain:

FA ≤ 〈A − S〉p(φ;θ) + F ≡ F . (7.14)

We can now establish two important observations for the above equation. The first
observation is that it sets a rigorous bound to the calculation of the free energy FA of
the target system with action A. The second observation is that this bound is entirely
dependent on calculations conducted only under the probability distribution p(φ; θ)
of the φ4 Markov random field. Practically, this means that we can use exclusively
samples drawn from p(φ; θ) with action S(φ; θ) to approximate another system with
probability distribution q(φ) and action A. To achieve this, we have to minimize the
quantity defined above, specifically the variational free energy F .

The minimization of the variational free energy F will be achieved with a gradient
descent approach. To establish a gradient-based approach we calculate the derivatives
of F in relation to one of the variational parameters θ and obtain:

∂F
∂θi

=
∂〈A〉p(φ;θ)

∂θi
−
∂〈S〉p(φ;θ)

∂θi
− ∂(− lnZ)

∂θi
, (7.15)

where each term is calculated as:

∂〈A〉p(φ;θ)

∂θi
=

∂

∂θi

[∫
φ
A(φ) exp[−S(φ; θ)]dφ∫
φ

exp[−S(φ; θ)]dφ

]
(7.16)

= −
〈
A∂S
∂θi

〉
p(φ;θ)

+ 〈A〉p(φ;θ)

〈∂S
∂θi

〉
p(φ;θ)

, (7.17)
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∂〈S〉p(φ;θ)

∂θi
=

∂

∂θi

[∫
φ
S(φ; θ) exp[−S(φ; θ)]dφ∫
φ

exp[−S(φ; θ)]dφ

]
(7.18)

=
〈∂S
∂θi

〉
p(φ;θ)

−
〈
S
∂S

∂θi

〉
p(φ;θ)

+ 〈S〉p(φ;θ)

〈∂S
∂θi

〉
p(φ;θ)

, (7.19)

∂(− lnZ)

∂θi
= −

∫
φ

∂
∂θi

(−S(φ; θ)) exp[−S(φ; θ)]dφ∫
φ

exp[−S(φ; θ)]dφ
=
〈∂S
∂θi

〉
p(φ;θ)

. (7.20)

By substituting the above expressions to Eq. (7.15) we obtain:

∂F
∂θi

= −
〈
A∂S
∂θi

〉
+ 〈A〉

〈∂S
∂θi

〉
−

�
�

��
〈∂S
∂θi

〉
+
〈
S
∂S

∂θi

〉
− 〈S〉

〈∂S
∂θi

〉
+

�
�
��

〈∂S
∂θi

〉
. (7.21)

The derivative of the variational free energy F in terms of a variational parameter
θi is then:

∂F
∂θi

= 〈A〉
〈∂S
∂θi

〉
−
〈
A∂S
∂θi

〉
+
〈
S
∂S

∂θi

〉
− 〈S〉

〈∂S
∂θi

〉
. (7.22)

We will now update the parameters θi at each step of the optimization process
until the variational free energy is minimized and the two probability distributions
have therefore become equal. This is achieved via the following update rule:

θ(t+1) = θ(t) − η ∗ L, (7.23)

where the quantity η denotes the learning rate and the loss function L is replaced by
the derivative of each of the variational parameters ∂F/∂θ(t). Here, t denotes each
step or, equivalently, epoch of the optimization process.

We will explore applications of the previously discussed approach by introducing
a general φ4 action that we will utilize to investigate different applications between
various probability distributions:

A =
5∑

k=1

gkA(k) = g1

∑
〈ij〉nn

φiφj + g2

∑
i

φ2
i (7.24)

+g3

∑
i

φ4
i + g4

∑
〈ij〉nnn

φiφj + ig5

∑
i

φ2
i . (7.25)

We observe that this action A includes a term with a next-nearest-neighbor in-
teraction nnn and another term with an imaginary coupling constant ig5, where i
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Figure 7.3: The evolution of the variational parameters θ in relation to the number
of epochs t. The x-axis is logarithmic.

outside the sums denotes the imaginary unit. We have chosen the couplings con-
stants as g1 = g4 = −1, g2 = 1.52425, g3 = 0.175, g5 = 0.15, where the choice of g1,
g2, g3 defines a φ4 theory in the vicinity of the second-order phase transition when
g4 = g5 = 0.

Our first application is a proof-of-principle demonstration to explore if the min-
imization of the variational free energy via a gradient-descent method is successful.
For this reason we consider the following target action:

A{3} =
3∑

k=1

gkA(k) = g1

∑
〈ij〉nn

φiφj + g2

∑
i

φ2
i + g3

∑
i

φ4
i . (7.26)

Our aim is to approximate the probability distribution q(φ) which is defined by
the above action A{3}(φ) using instead the probability distribution p(φ; θ) of the φ4

Markov random field with action S(φ; θ). The discussed problem is easy to solve.
The inhomogeneous coupling constants of the action in Eq. (7.4), which are ran-
domly drawn from a Gaussian distribution, must converge to their homogeneous
values g1 = −1, g2 = 1.52425, g3 = 0.175 after the minimization of the variational
free energy is achieved. The evolution of the variational parameters θ in terms of
the epochs is depicted in Fig. 7.3. We observe that, given sufficient training time,
the inhomogeneous variational parameters converge towards the anticipated values
g1 = −1, g2 = 1.52425, g3 = 0.175. In fact, after 105 epochs the precision with which
the inhomogeneous coupling constants approximate the target values is of order of
magnitude 10−8, therefore verifying that the minimization of the Kullback-Leibler
divergence, or equivalently the variational free energy, via a gradient-based method
is successful.
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We will now focus on a more intricate example by defining as a target probability
distribution q(φ) one that is described by an action A{4} which includes longer-range
interactions:

A{4} =
4∑

k=1

gkA(k) = g1

∑
〈ij〉nn

φiφj + g2

∑
i

φ2
i + g3

∑
i

φ4
i + g4

∑
〈ij〉nnn

φiφj. (7.27)

Our aim here is again to utilize the probability distribution p(φ; θ) of the inhomo-
geneous action S(φ; θ) to approximate the probability distribution q(φ) of the above
actionA{4}. However, the current problem is more challenging since the action S(φ; θ)
does not include a term that is able to learn the next-nearest-neighbour interactions
that exist within the action A{4}. Nevertheless, the action S(φ; θ) is inhomogeneous,
and we will explore if this inhomogeneity in the coupling constants enables the repre-
sentation of systems with longer-range interactions. In other words, we aim to explore
if the inhomogeneity in the coupling constants of the system, is able to increase the
representational capacity of the probability distribution of a φ4 theory, in terms of
classes of probability distributions that the inhomogeneous system can model.

For this example we will estimate the KL divergence between the probability distri-
bution p(φ; θ) and the probability distribution q(φ) to observe if training is successful.
To allow for a comparison, we will additionally estimate the KL divergence between
the probability distribution of the action A{3} and the probability distribution q(φ).
The actions S(φ; θ) and A{3} have identical terms but the former has inhomogeneous
coupling constants. We are therefore interested in investigating if the inhomogeneous
action can lead to smaller values of the Kullback-Leibler divergence and, as a result,
if p(φ; θ) can approximate q(φ) better.

The values of the Kullback-Leibler divergence are depicted in Fig. 7.4. We ap-
proximate the results for the two probability distributions and their corresponding
actions S(φ; θ) and A{3} based on a finite sample of configurations, which is of the
same sample size, to allow for a direct comparison of the statistical fluctuations. We
observe that as the training time increases the Kullback-Leibler divergence converges
towards a zero value for the probability distribution of the inhomogeneous action
S(φ; θ), therefore indicating that the two probability distributions p(φ; θ) and q(φ)
become approximately equal. Since inhomogeneous actions are able to absorb terms
with longer-range interactions we anticipate that they are capable of representing
intricate target actions. This is further verified by the observation in Fig. 7.4 that
the probability distribution of the action S(φ; θ) approximates the target probability
distribution of action A{4} better than the probability distribution of action A{3}.
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Figure 7.4: Estimation of the Kullback-Leibler divergence versus epoch t for the
probability distribution of the φ4 Markov random field with the inhomogeneous action
S(φ; θ). Results are additionally included for the probability distribution of action
A{3}, see text for details.

Since inhomogeneous actions have increased representational capacity in approx-
imating target probability distributions, compared to homogeneous actions, we will
investigate if they can be utilized to reweight in regions of parameter space that are
otherwise inaccessible, for instance due to an insufficient overlap of statistical ensem-
bles. In addition, reweighting will now emerge as a different tool: specifically as a
means to correct approximating probability distributions. To clarify, consider that
after the minimization of the Kullback-Leibler divergence we might obtain a value of
KL(p||q) ≈ 0. This means that the two probability distributions p(φ; θ) and q(φ) are
approximately equal. Through a reweighting step we might be able to make them
exactly equal and hence guarantee that KL(p||q) = 0.

We will now discuss the above statements of approximation and exactness from a
different perspective. Specifically, consider the expectation value 〈O〉 of an arbitrary
observable as calculated under the probability distribution that corresponds to action
A{4}:

〈O〉q(φ) =

∑N
l=1 p̃

−1
l Ol exp[−

∑4
k=1 gkA

(k)
l ]∑N

l=1 p̃
−1
l exp[−

∑4
k=1 gkA

(k)
l ]

. (7.28)

There are two different ways to calculate the expectation value of an arbitrary
observable based on the above equation, and both of them depend on the choice of
the sampling probability distribution p̃.

The first choice is to draw samples from the probability distribution p(φ; θ), and
conjecture that the Kullback-Leibler divergence has become exactly zero, which im-
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plies that p(φ; θ) = q(φ). However, the problem with this direction is that a system-
atic error will be introduced into the calculation of the expectation value, because
KL(p||q) ≈ 0, and hence the two probability distribution p(φ; θ) and q(φ) are not
exactly equal. We will not pursue this research direction.

The second direction, which involves the use of reweighting, is to again draw
samples from p(φ; θ) but this time consider that the samples have been drawn from
the actual probability distribution p(φ; θ) of the inhomogeneous action S(φ; θ). This
automatically acts as a reweighting step to correct the difference between the two
probability distributions. The remaining question is whether this reweighting step
is anticipated to be successful or, equivalently, if there exists a sufficient overlap
of statistical ensembles between the two probability distributions p(φ; θ) and q(φ).
The answer is that we anticipate the reweighting step to be successful because of the
training procedure: we have minimized the Kullback-Leibler divergenceKL(p||q) ≈ 0,
so the two probability distributions are almost equal, and hence we anticipate that a
sufficient overlap of statistical ensembles exists.

We will now combine the reweighting process, established in Eq. (7.28), with the
reweighted extrapolations that we discussed in the preceding chapters. Our aim is
to benchmark the accuracy with which the probability distribution p(φ; θ) of the
inhomogeneous action S(φ; θ) has approximated the target distribution q(φ) with
action A{4}. For this reason, instead of only introducing reweighting as a correction
step between the probability distributions p(φ; θ) and q(φ), we will also investigate if
it is possible to extrapolate expectation values in the parameter space of A{4} along
the trajectory of a selected coupling constant, using S(φ; θ). Specifically, we are now
interested in the following reweighting relation:

〈O〉 =

∑N
l=1Ol exp[Sl − g′jA

(j)
l −

∑5
k=1,k 6=j gkA

(k)
l ]∑N

l=1 exp[Sl − g′jA
(j)
l −

∑5
k=1,k 6=j gkA

(k)
l ]

. (7.29)

Based on our prior discussion, this reweighting expression includes the correction
step between the probability distributions p(φ; θ) and q(φ), an extrapolation along
the parameter space of a coupling constant g′j, and another extrapolation via the
inclusion of an imaginary term. We recall that the action A{5} ≡ A is complex-valued,
see Eq. (7.24). For the following results we consider j = 4 and hence extrapolate in
parameter space along the trajectory of the coupling constant g′4, which is related
to the longer-range interaction term. Specifically, we conduct this extrapolation for
values g′4 ∈ [−0.85,−1.15] while simultaneously including the imaginary valued term.
We recall that p(φ; θ) was trained to approximate the action A{4} with coupling
constant g4 = −1.



98

Figure 7.5: Real part of the action A (top) and real part of the magnetization m
(bottom) versus the coupling constant g4.

The results for the expectation values of the real part of the action A and the
magnetization m, which are obtained through reweighting, are depicted in Fig. 7.5.
We observe that the results agree within statistical errors with calculations obtained
through the use of reweighting from the phase-quenched theory to the complex ac-
tion, depicted as empty points. Consequently, the probability distribution p(φ; θ)
has approximated q(φ) with sufficiently high accuracy that it is possible not just to
obtain expectation values for the specific coupling constants in the target action A,
but in addition to obtain accurate expectation values even under extrapolations to
other coupling constants of A.

We are now interested in answering the question of how to define the range in
which we are able to conduct histogram reweighting extrapolations. For this reason
we consider as an observable in Eq. (7.29) the value of the inhomogeneous action
S(φ; θ). We then construct histograms for the inhomogeneous action S(φ; θ) based
on unique values of the action within the Markov chain Monte Carlo dataset that we
have obtained. We then reexpress the expectation value in terms of weight functions
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W(S) and uniquely sampled values of the action S(φ; θ) as:

〈S〉 =
∑
S

SW(S). (7.30)

The weight functions for each uniquely sampled value of the action S are then
given by:

W(S) =

∑
<[A′],=[A′] h(S,<[A′],=[A′]) exp[S −<[A′]− i=[A′]]∑
S,<[A′],=[A′] h(S,<[A′],=[A′]) exp[S −<[A′]− i=[A′]]

, (7.31)

where h(S,<[A′],=[A′]) is a multi-dimensional histogram, constructed based on the
value of the action S and each term that we are interested in extrapolating to. The
quantity A′ corresponds to:

A′ = g′jA(j) +
5∑

k=1,k 6=j

gkA(k). (7.32)

We recall that in the preceding chapters, where histogram reweighting was first dis-
cussed in relation to inverse temperatures β and β′, we emphasized that, for reweight-
ing to be successful, a sufficient overlap of the histograms of the energies related to
the inverse temperatures β and β′ was required. In the current example, which is
admittedly conceptually more complicated, the essence remains the same: we will
investigate the permitted reweighting range via the weight functions, and hence the
histograms of the action S(φ; θ) , by observing at what part of parameter space incon-
sistencies will emerge. When we locate these inconsistencies we can guarantee that
we can’t extrapolate to coupling constants that reside beyond that range.

To demonstrate the above ideas numerically, we calculate the weight functions
W(S) for different values of coupling constants g′4 and depict the results in Fig. 7.6.
We additionally include the quantityW ′(S), which corresponds to the weight function
proportional to the histograms without any extrapolation in parameter space. We
recall that the action S(φ; θ) was trained to approximate an action A{4} with g4 = −1.
We then observe that when g′4 = −0.95 or g′4 = −1.05 the weight functions have been
successfully predicted. In contrast, when g′4 = −0.8 a noticeable inconsistency has
emerged. We have therefore demonstrated that we anticipate histogram reweighting
to be inaccurate at g′4 = −0.8, as well as for g′4 < −0.8. This behaviour is additionally
evident from the figure of the magnetization, see Fig. 7.5, where we observe that the
statistical errors begin to increase near the range g4 = −0.85.

We can now evidence more directly what has been achieved, in relation to the
representational capacity of probability distributions described by inhomogeneous
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Figure 7.6: Real part of the weight function W (S) versus the action S of the φ4

Markov random field.

actions. Assume that we have already obtained samples from the probability distri-
bution of the following action

A{3} =
3∑

k=1

gkA(k) = g1

∑
〈ij〉nn

φiφj + g2

∑
i

φ2
i + g3

∑
i

φ4
i , (7.33)

which is locally defined on the graph, i.e. it includes interactions of lattice sites
with adjacent neighbours, and we are now interested in reweighting from A{3} to the
action A{4} with g4 = −1 which includes longer-range interactions. We will demon-
strate that this is not possible, due to an insufficient overlap of statistical ensembles.
However, reweighting from the probability distribution of the inhomogeneous action
S(φ; θ) to A{4} was possible, even though S(φ; θ) is additionally locally defined on the
graph. The difference between S(φ; θ) and A{3} is the inhomogeneity in the coupling
constants.

The weight functions, constructed from the probability distribution of action A{3},
are depicted in Fig. 7.7. In comparison with Fig. 7.6 we observe that the values
of the action lie at an entirely different scale, a first indication that reweighting is
impossible. The second observation is that inconsistencies begin to emerge for the
value of g′4 = −0.2, indicating that we cannot extrapolate further in parameter space
for g′4 < −0.2. However, to extrapolate from action A{3} to the action A{4} we would
require a permitted reweighting range that would include the value of g′4 = −1.0. We
hence conclude that reweighting from the locally defined action A{3} to the longer
range actionA{4} is impossible, even though we were able to achieve this with a locally
defined inhomogeneous action S(φ; θ). Consequently, we have provided evidence to
establish that the probability distributions of inhomogeneous actions possess increased
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Figure 7.7: Real part of the weight function W (A3) versus the action A3.

representational capacity compared to the probability distributions of homogeneous
actions which include identical terms, and they can therefore be utilized to model a
richer class of target probability distributions.

7.4.2 Learning with predefined data

Previously, we demonstrated that the probability distribution p(φ; θ) of a φ4 Markov
random field can be utilized to approximate a target probability distribution q(φ)
whose form was known: it was a Boltzmann probability distribution and we had
knowledge of its corresponding action A. Here, we will shift focus on a different type
of machine learning. Specifically we will consider that we have already obtained a
set of samples from an unknown probability distribution q(φ), but we do not know
what the form of the probability distribution is. Our aim is then to approximate this
unknown probability distribution q(φ) by utilizing again the probability distribution
p(φ; θ) of the φ4 Markov random field.

This type of machine learning problem, which establishes an equivalence between
an empirical probability distribution q(φ) and a model probability distribution p(φ; θ),
is general and appears frequently. In fact, most relevant machine learning applications
in computer science, outside of the research field of physics, deal with this problem.
For instance, consider that one has available experimental data that correspond to
an unknown empirical probability distribution q(φ) and one is interested in learning
a probability distribution p(φ; θ) that is able to represent these data and reproduce
them. Another example is, as simple as, the inclusion of some images within a dataset
which then construct an empirical probability distribution q(φ) to be learned by a
machine learning algorithm. Any type of available data which encode an empirical
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probability distribution can then be mapped to a model probability distribution.
To introduce this type of machine learning, we will again utilize the Kullback-

Leibler divergence, but this time we will work with the opposite divergence:

KL(q||p) =

∫ ∞
−∞

q(φ) ln
q(φ)

p(φ; θ)
dφ. (7.34)

In the above expression of the Kullback-Leibler divergence (compare with Eq. 7.9),
the probability distribution q(φ) is unknown. We can still expand the expression to
obtain:

KL(q||p) = 〈ln q(φ)〉q(φ) − 〈ln p(φ; θ)〉q(φ). (7.35)

An important observation is that the term 〈ln q(φ)〉q(φ) is constant, as it has no
dependence on the variational parameters θ, and the minimization of the Kullback-
Leibler divergence is then equivalent to maximizing the second right-hand term, under
the training data:

〈ln p(φ; θ)〉q(φ) =
1

N

∑
x

ln p(φ(x); θ), (7.36)

where N denotes the number of training data x. The quantity ln p(φ; θ) can be
recognized as a log-likelihood and its derivative in terms of a variational parameter θ
is then equal to:

∂ ln p(φ; θ)

∂θ
=

∂

∂θ

[
ln

exp[−S(φ; θ)]∫
φ

exp[−S(φ; θ)]dφ

]
(7.37)

=
∂

∂θ

[
ln exp[−S(φ; θ)]− ln

∫
φ

exp[−S(φ; θ)]dφ

]
(7.38)

=
∂

∂θ
(−S(φ; θ))−

∫
φ

∂
∂θ

(−S(φ; θ)) exp[−S(φ; θ)]dφ∫
φ

exp[−S(φ; θ)]dφ
(7.39)

=
∂

∂θ
(−S(φ; θ))−

∫
φ

p(φ; θ)
∂(−S(φ; θ))

∂θ
dφ (7.40)

=
∂

∂θ
(−S(φ; θ))−

〈 ∂
∂θ

(−S(φ; θ))
〉
p(φ;θ)

. (7.41)

To solve this optimization problem pertinent to the log-likelihood or, equivalently,
the minimization of the Kullback-Leibler divergence of Eq. (7.34), we will utilize again
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a gradient-based approach, see Eq. (7.23), where now the loss function L is replaced
by:

L = −∂ ln p(φ; θ(t))

∂θ(t)
. (7.42)

To verify that the minimization of the Kullback-Leibler divergence enables the
learning of an empirical probability distribution q(φ) by utilizing the probability dis-
tribution p(φ; θ) we will conduct a proof-of-principle demonstration by considering
as q(φ) a Gaussian distribution with µ = −0.5 and σ = 0.05. Specifically, we first
sample data from a Gaussian distribution to construct q(φ) and our aim is now to
reproduce this data based on p(φ; θ), without introducing any information about q(φ)
within the expressions.

Practically, the method works as follows: we position the obtained data on the
lattice, by replacing the degrees of freedom with the data, and calculate the quantity
∂
∂θ

(−S(φ; θ)). We then randomly initialize the degrees of freedom of the system
and conduct a Markov chain Monte Carlo simulation to obtain a set of samples
from which we calculate the second term

〈
∂
∂θ

(−S(φ; θ))
〉
p(φ;θ)

. We then subtract the

terms to update the parameters θ. Eventually we learn the optimal values of the
parameters θ in the φ4 action that are able to reproduce the data as configurations in
the equilibrium distribution. We remark that one does not need to initiate a Markov
chain at each step of the training process but one can retain the last state from
the previous Markov chain as the initial state of the next step, and then arrive at
equilibrium on a small number of sampling steps.

We recall that the action of the φ4 scalar field theory is Z2 invariant so we antici-
pate that the empirical data, which have a negative mean µ = −0.5, are equiprobable
in being reproduced with the equivalent data of a positive mean µ = +0.5. The
results, as obtained from the probability distribution of the φ4 Markov random field
after the training is completed, are depicted in Fig. 7.8. We observe the anticipated
behaviour, namely that the symmetric data can be reproduced. One way to remove
this feature is via the introduction of a term

∑
i riφi which breaks the symmetry of

the system explicitly. By including this term in an action

Sb = S +
∑
i

riφi, (7.43)

the system favors states that are either positive or negative, and the machine learning
algorithm is therefore always able to reproduce the correct probability distribution
with a negative mean. This is additionally depicted in Fig. 7.8.

We remark that Markov random fields are machine learning algorithms that have
been used extensively in image analysis, image segmentation and computer vision.
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Figure 7.8: Probability density function versus the lattice value φi for the action
S(φ; θ) and an action Sb(φ; θ) that includes a symmetry-breaking term.

Here, we will investigate if we can map an image to a φ4 action that will emerge as a
configuration in the equilibrium distribution p(φ; θ) of the φ4 Markov random field.

We consider an image from the CIFAR-10 dataset [93], and we aim to learn the
optimal values of the coupling constants θ in the inhomogeneous action of the φ4

theory that are able to reproduce the image in the equilibrium distribution. Fol-
lowing exactly the same procedure as in the case of the Gaussian distribution, the
original image and the equilibration of the trained Markov random field are depicted
in Fig. 7.9. We observe that the image emerges as a configuration in the equilibrium
distribution. Consequently, it is now possible to explore conventional applications of
Markov random fields in the research field of computer science using the φ4 scalar
field theory.

7.5 φ4 neural networks

An important factor which contributes to the success of machine learning is the
conception of deep architectures. Generally, one is interested in constructing an
architecture that iteratively maps input data into consecutive layers which comprise
a set of hidden variables. Here, we will demonstrate that neural network architectures
with hidden variables can be derived from the φ4 scalar field theory.

Our aim is to establish a connection between the φ4 machine learning algorithms
and neural network architectures that have been extensively used in computer sci-
ence. We now consider that part of the degrees of freedom of a φ4 scalar field theory
correspond to visible variables φi and the remaining degrees of freedom correspond
to hidden variables hj. We then utilize a bipartite graph, see Fig. 7.10, and remove
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Figure 7.9: Original image (left) and equilibration of the trained φ4 Markov random
field (right).

intralayer interactions, both between the visible variables as well as between the hid-
den variables. The remaining interactions are then exclusively between the visible φ
and the hidden h variables. We have therefore arrived at a machine learning archi-
tecture that it is able to model continuous-valued data and which can be recognized
as a variant of a restricted Boltzmann machine. The system is described by a joint
probability distribution p(φ, h; θ) and the resulting action S(φ, h; θ) is:

S(φ, h; θ) = −
∑
i,j

wijφihj +
∑
i

riφi +
∑
i

aiφ
2
i (7.44)

+
∑
i

biφ
4
i +

∑
j

sjhj +
∑
j

mjh
2
j +

∑
j

njh
4
j . (7.45)

We remark that the φ4 neural network which is defined by the action S(φ, h; θ) is
not only a variant of a restricted Boltzmann machine but it can additionally be viewed
as a generalization of standard restricted Boltzmann machine architectures [94, 87, 95,
96]. If we select the parameters bi = nj = 0 we obtain a Gaussian-Gaussian restricted
Boltzmann machine. Another architecture, specifically the Gaussian-Bernoulli re-
stricted Boltzmann machine, is obtained if bi = nj = mj = 0 and hj ∈ {−1, 1}.
Finally, the Bernoulli-Bernoulli restricted Boltzmann machine is obtained by setting
ai = bi = mj = nj = 0 and φi, hj ∈ {−1, 1}. However, in this thesis we will focus
solely on the φ4 neural network of action S(φ, h; θ).

We will now highlight certain properties that the φ4 neural network satisfies in
relation to its joint probability distribution which is given by

p(φ, h; θ) =
exp[−S(φ, h; θ)]∫

φ,h
exp[−S(φ,h; θ)]dφdh

. (7.46)

The joint probability distribution p(φ, h; θ) can be marginalized over either the
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Figure 7.10: A bipartite graph used to represent a φ4 neural network, where φ and h
are the visible and hidden variables, respectively.

hidden h or the visible φ variables to obtain two marginal probability distributions
p(φ; θ) and p(h; θ), respectively, as:

p(φ; θ) =

∫
h

p(φ,h; θ)dh =

∫
h

exp[−S(φ,h; θ)]dh∫
φ,h

exp[−S(φ,h; θ)]dφdh
, (7.47)

p(h; θ) =

∫
φ

p(φ, h; θ)dφ =

∫
φ

exp[−S(φ, h; θ)]dφ∫
φ,h

exp[−S(φ,h; θ)]dφdh
. (7.48)

In addition we can directly define conditional probability distributions, for in-
stance the conditional probability distribution of the visible variables φ given the
hidden variables h

p(φ|h; θ) =
p(φ, h; θ)

p(h; θ)
=

exp[−S(φ, h; θ)]dh∫
φ

exp[−S(φ, h; θ)]dφ
(7.49)

=
exp[

∑
i,j wijφihj −

∑
i riφi −

∑
i aiφ

2
i −

∑
i biφ

4
i −�����∑

j sjhj −�����
∑

jmjh
2
j −�����∑

j njh
4
j ]∫

φ
exp[

∑
i,j wijφihj −

∑
i riφi −

∑
i aiφ

2
i −

∑
i biφ

4
i −�����∑

j sjhj −�����
∑

jmjh
2
j −�����∑

j njh
4
j ]dφ

(7.50)

=

∏
i exp[φi

∑
j wijhj − riφi − aiφ2

i − biφ4
i ]∫

φ

∏
i exp[φi

∑
j wijhj − riφi − aiφ2

i − biφ4
i ]dφ

(7.51)

=
∏
i

exp[φi
∑

j wijhj − riφi − aiφ2
i − biφ4

i ]∫
φi

exp[φi
∑

j wijhj − riφi − aiφ2
i − biφ4

i ]dφi
(7.52)

=
∏
i

p(φi|h; θ). (7.53)
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Equivalently, one obtains the conditional probability distribution of the hidden
variables as:

p(h|φ; θ) =
p(φ, h; θ)

p(φ; θ)
=

exp[−S(φ, h; θ)]∫
h

exp[−S(φ,h; θ)]dh
=
∏
j

p(hj|φ; θ). (7.54)

Having obtained the above expressions we can now discuss how the φ4 neural net-
work can be utilized to complete machine learning tasks and how the implementations
differ in comparison with the φ4 Markov random field.

7.5.1 Learning with predefined data

The setting that we are interested in is analogous to the setting that we explored
for the φ4 Markov random field in relation to learning with predefined data. We
consider again that we have a set of data which correspond to an empirical probability
distribution q(φ) and define again the analogous Kullback-Leibler divergence which
is repeated here for convenience:

KL(q||p) =

∫ ∞
−∞

q(φ) ln
q(φ)

p(φ; θ)
dφ. (7.55)

Nevertheless, when working with φ4 neural networks that are described by a joint
probability distribution p(φ, h; θ) there exists a major difference in comparison to the
φ4 Markov random field. The difference is, that now, we are interested in minimizing
the Kullback-Leibler divergence between the empirical probability distribution q(φ)
and the marginal probability distribution of the φ4 neural network p(φ; θ), as given
by Eq. (7.47). The reason is that we are interested in mapping the input data to the
degrees of freedom within the visible layer of the φ4 neural network and, additionally,
in obtaining the data in the sampling process exclusively from the visible layer of the
φ4 neural network. As a result, the hidden layer will then extract dependencies on
the input data during the training process.

What we aim to achieve, from a practical perspective, is conceptually analogous
to what we discussed before in the case of the φ4 Markov random field, and we will
once again rely on a gradient-based approach to optimize the variational parameters
in relation to the log-likelihood. Since the marginal probability distribution p(φ; θ)
of the φ4 neural network differs from the probability distribution of the φ4 Markov
random field we arrive at a different expression for the case of the φ4 neural network:
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∂ ln p(φ; θ)

∂θ
=

∂

∂θ

[
ln

∫
h

exp[−S(φ,h; θ)]dh∫
φ,h

exp[−S(φ,h; θ)]dφdh

]
(7.56)

=
∂

∂θ

[
ln

∫
h

exp[−S(φ,h; θ)]dh− ln

∫
φ,h

exp[−S(φ,h; θ)]dφdh

]
(7.57)

=

∫
h

∂
∂θ

(−S(φ,h; θ)) exp[−S(φ,h; θ)]dh∫
h

exp[−S(φ,h; θ)]dh
−
∫
φ,h

∂
∂θ

(−S(φ,h; θ)) exp[−S(φ,h; θ)]dφdh∫
φ,h

exp[−S(φ,h; θ)]dφdh

(7.58)

=

∫
h

p(h|φ; θ)
∂

∂θ
(−S(φ,h; θ))dh−

∫
φ,h

p(φ,h; θ)
∂

∂θ
(−S(φ,h; θ))dφdh (7.59)

=
〈 ∂
∂θ

(−S(φ, h; θ))
〉
p(h|φ;θ)

−
〈 ∂
∂θ

(−S(φ, h; θ))
〉
p(φ,h;θ)

. (7.60)

For completeness, we clarify that in standard implementations of restricted Boltz-
mann machines approximations are introduced to calculate the final expression. Specif-
ically, a commonly used approximation is that of contrastive divergence [97, 98]. The
visible units are set equal to the value of a training example φ(x) and then hidden
units h(x) are sampled based on p(h|φ(x)). Based on the values of the hidden units
one then would sample φ(x+1) and repeat the process for k iterations:

CDk =
〈 ∂
∂θ

(−S(φ(0), h; θ))
〉
p(h|φ(0);θ)

−
〈 ∂
∂θ

(−S(φ(k), h; θ))
〉
p(h|φ(k),;θ)

. (7.61)

We remark that even though constrative divergence is an approximation it yields
accurate results even when the number of steps is taken equal to k = 1.

We will now conduct a proof-of-principle demonstration to verify that the φ4

neural network with action S(φ, h; θ), given by Eq. (7.44), is able to accurately learn
data. Specifically, we consider the first forty examples from the Olivetti faces dataset1

that we present as input to the visible layer of the φ4 neural network. We then train
the machine learning algorithm by optimizing the variational parameters based on
the derivatives of the log-likelihood in Eq. (7.56).

Our aim is to now discover if the neural network has learned some form of mean-
ingful features in the hidden layer. One way to achieve this is by observing the values
of the weights wij for a fixed j, which connect a hidden variable with each of the

1This data set contains a set of face images taken between April 1992 and April 1994 at AT&T
Laboratories Cambridge.
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Figure 7.11: Example weights wij for a fixed j. See text for more details.

visible variables, and which are depicted in Fig. 7.11. We observe that the machine
learning algorithm has learned features which resemble abstract face shapes and char-
acteristics, therefore demonstrating that the φ4 neural network is able to accurately
extract meaningful dependencies on a set of input data.

7.6 Discussion

In this chapter we derived machine learning algorithms from quantum field theories.
Specifically, we established, via the Hammersley-Clifford theorem, that the φ4 scalar
field theory on a square lattice is equivalent to a Markov random field. Markov ran-
dom fields are a special case of probabilistic graphical models, specifically undirected
graphical models that satisfy the local Markov property. Based on this equivalence,
we then derived φ4 neural networks that generalize a certain class of neural network
architectures, namely restricted Boltzmann machines. By utilizing the φ4 machine
learning algorithms, we then presented applications related to physics and computer
science for two cases of learning, specifically with or without a set of predefined data.

In summary, the derivation of machine learning algorithms from quantum field
theories opens up the opportunity to investigate machine learning directly within
lattice field theory. This equivalence is established via the Markov property, a mathe-
matical condition that additionally emerges within constructive quantum field theory,
specifically in relation to the construction of quantum fields in Minkowski space based
on Markov fields in Euclidean space. As a result, the current work solidifies a rig-
orous connection between the research fields of machine learning, statistical physics,
probability theory, lattice and constructive quantum field theory, and opens up the
opportunity to directly investigate machine learning within physics.
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Chapter 8

Conclusions

In this thesis we investigated the practical implications of interpreting physically
functions derived from neural networks and we additionally established a connection
between the research fields of machine learning and of quantum field theory. We will
briefly review the contributions before concluding by highlighting potential future
research directions.

In Chapter 3 we demonstrated that neural network functions can be interpreted
as statistical-mechanical observables by being associated to a Boltzmann weight. We
utilized this perspective to obtain machine learning predictions in extended regions
of a system’s parameter space. This was achieved with the use of single histogram
reweighting and therefore without requiring additional data. Furthermore, we demon-
strated that neural network functions act as effective order parameters, and we ex-
tracted multiple critical exponents as well as the critical inverse temperature of the
two-dimensional Ising model by relying exclusively on quantities derived from the
neural network implementation.

In Chapter 4 we established, based on the use of transfer learning, that functions
learned from machine learning algorithms on simple systems, such as the Ising model,
can be utilized to predict the phase diagram of more complicated systems, such as
the Potts models or the φ4 scalar field theory. This is achieved even under a change
of the universality class or the order of the phase transition, as well as when the
degrees of freedom are non-binary or continuous. In addition we extended single
histogram reweighting for neural network functions to the multiple histogram method,
thus enabling the scanning of a larger region of parameter space in order to discover
unknown phase transitions. We then utilized a neural network to calculate critical
exponents and the critical squared mass of the two-dimensional φ4 scalar field theory.

In Chapter 5 we introduced machine learning algorithms as physical terms within
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Hamiltonians, by coupling them to a fictitious field and expressing them in relation
to the system’s partition function. We observed that the neural network field is
able to induce an order-disorder phase transition in the Ising model, in constrast to
the magnetic field of the conventional order parameter which always induces explicit
symmetry breaking. Furthermore we were able to establish a Hamiltonian-agnostic
reweighting approach, via the inclusion of neural network functions as terms within
Hamiltonians, that we utilized to study the system’s phase transition. Specifically, we
implemented the real-space renormalization group to extract the two critical expo-
nents related to the relevant operators and the critical point for the phase transition
of the two-dimensional Ising model.

In Chapter 6 we utilized machine learning to construct inverse renormalization
group transformations that can be applied iteratively to arbitrarily increase the size
of the system. Starting from lattice sizes as small as 82 for the case of the two-
dimensional φ4 scalar field theory, we applied the transformations to produce systems
with lattice size up to 5122 in absence of the critical slowing down effect. We showed
that the inverse transformations induce inverse renormalization group flows in the pa-
rameter space of the φ4 scalar field theory that drive the system closer to its critical
point. In addition, we utilized the inverse transformations to extract the critical expo-
nents of the magnetization and of the magnetic susceptibility for the two-dimensional
φ4 scalar field theory.

In Chapter 7 we derived machine learning algorithms and neural networks from
quantum field theories. Specifically, we demonstrated via the Hammersley-Clifford
theorem that the φ4 scalar field theory is mathematically equivalent to a Markov
random field. We then derived φ4 neural networks that generalize a certain class
of neural network architectures, namely restricted Boltzmann machines. Finally, we
explored proof-of-principle numerical applications pertinent to physics or computer
science by utilizing the φ4 Markov random fields and φ4 neural networks.

Potential future research directions, related to the physical interpretation of ma-
chine learning algorithms, can explore the construction of effective order parameters
with the use of machine learning in systems where conventional order parameters are
absent or unknown. Examples of such systems include topological superconductivity
or the finite-temperature phase transition at finite quark mass in quantum chromody-
namics. The inclusion of neural network functions within Hamiltonians additionally
enables a certain control over a system by breaking or restoring its symmetry and
inducing a phase transition. As a result, further exploration of this research direction
might alter our understanding of how machine learning algorithms can affect systems
when they are allowed to interact with them.

On the contributions pertinent to the inverse renormalization group, one can in-



113

stantly explore the inversion of standard renormalization group transformations with
the use of machine learning in physically relevant quantum field theories. As a re-
sult, one might be able to study quantum field theories, which are computationally
demanding to simulate, in absence of the critical slowing down effect. In addition, it
will be of interest to explore the construction of inverse renormalization group trans-
formations that do not utilize machine learning. Such implementations, which would
be completely interpretable, could provide insights pertinent to the structure of the
inverse renormalization group.

Through the derivation of machine learning algorithms from quantum field theo-
ries one is able to map the solution of a machine learning problem to the action of
a quantum field theory. This instantly suggests that insights into machine learning
cam be obtained by using exclusively tools available within theoretical physics. In
addition, the proof of the Markov property for the φ4 scalar field theory solidifies a
rigorous connection between the research fields of machine learning, probability the-
ory, statistical mechanics, lattice and constructive quantum field theory. As a result,
cross-fertilization between these research fields can be envisaged. For instance, the
theorems pertinent to Markov random fields are now directly extendable to the φ4

scalar field theory. Finally, one can investigate quantum field-theoretic machine learn-
ing algorithms within the theory of disordered systems, where substantial advances
towards understanding machine learning have been established in the recent years.

In conclusion, machine learning implementations can undeniably offer tremendous
benefits to enhance our insights into physical theories that we utilize to further our
understanding of the world that we live in. Nevertheless, the opposite direction,
which becomes accessible by posing the question of how can physics further enhance
our understanding of machine learning, definitely constitutes an exciting prospect.
One can then envisage a multitude of research advances at the intersection of physics
and machine learning, to be discovered in the upcoming years.



114



Appendix A

Architectures and simulation
details

For Chapter 3 the training dataset used to create the neural network function f
comprises 103 configurations per inverse temperature, where 102 configurations are
used in a cross-validation set. The range of inverse temperatures is 0.32, . . . , 0.41
in the symmetric phase and 0.47, . . . , 0.56 in the broken-symmetry phase with step
0.01. Consequently the training dataset does not comprise configurations close to the
critical point βc = 0.440687. The configurations have been sampled with the Wolff
algorithm [99]. The architecture of the convolutional neural network consists of a two-
dimensional convolutional layer with 64 with size 2 × 2 and stride 2, followed by a
rectified linear unit (ReLU) nonlinear function. The subsequent layers then comprise
a 2 × 2 max-pooling function followed by a fully-connected layer with 64 ReLUs
and the output layer which includes two units and a softmax activation function.
The convolutional neural network is trained for lattice sizes L = 128, . . . , 760 using
Tensorflow and the Keras library [100]. The training is conducted with the Adam
algorithm [101], a learning rate of 10−4 for L ≤ 256 that is reduced by a factor of 10
for L ≥ 256, and a mini-batch size of 12.

For Chapter 4 the Ising-trained convolutional neural network architecture is iden-
tical to the one described above. The new neural architecture was trained on the
two-dimensional φ4 scalar field theory on values of the squared mass −1.09, . . . ,−1.00
and −0.90, . . . ,−0.81 with step size 0.01. The configurations have been sampled by
a combination of the Metropolis and the Wolff algorithms [102, 44, 45, 99].

For Chapter 5 the fully-connected architecture comprises a fully-connected layer
with 32 neurons and a ReLU function, followed by another fully-connected layers
with 2 neurons and a softmax function. The training was conducted with the Adam

115



116

algorithm, a learning rate of 10−4, and batch size 8. The 103 configurations per
each inverse temperature are sampled with the Wolff algorithm. The training range
is 0.27, . . . , 0.36 in the symmetric phase and 0.52, . . . , 0.61 in the broken-symmetry
phase, with step size 0.01.

For Chapter 6 we applied a standard renormalization group transformation on a
system of lattice size L = 32 to obtain a rescaled system of size L′ = 16. We then
applied 128 transposed convolutions with stride 2 and filter size 2 × 2, followed by
a final convolution of stride 1 and filter size 2 × 2 on the rescaled configurations of
L′ = 16. These produced a set of model configurations with size Lm = 32. We
then minimized the mean squared error function between the configurations of the
model system Lm and the configurations of the original system L. The optimization
is completed with the Adam algorithm, a learning rate of 3× 10−4, and a batch size
of 8. The original configurations were sampled with a combination of the Metropolis
and Wolff algorithms.

For Chapter 7, during training of the φ4 machine learning algorithms configu-
rations were sampled with the Metropolis algorithm. When empirical data were
modelled, proposed degrees of freedom for the φ4 algorithm weere chosen uniformly
in the range that the data reside, thus guaranteeing that every state is reachable
under an arbitrary number of sampling steps. We emphasize that for the training of
the φ4 machine learning algorithms one does not need to initiate a new Markov chain
at each step or epoch t but one can retain one Markov chain for the entire training
process. In Figs. 7.3 and 7.4 the chosen learning rate is 10−3 and 10−2, respectively.
The update of the parameters θ is conducted based on 50 samples. The size of the
original image in Fig. 7.9 is 32 × 32, where each site has values in the range [−1, 1].
The learning rate is 0.1, and the number of epochs is 4 × 104. In Fig. 7.8 the pa-
rameters are a learning rate of 0.1, a batch size of 4, and the training was conducted
for 400 epochs. The φ4 neural network used to produce Fig. 7.11 was trained for 104

epochs. It comprises 4096 visible variables and 32 hidden variables, and the training
parameters are a learning rate of 0.1 and a batch size of 5.



Appendix B

Error Analysis

In this thesis two types of error analysis techniques are used, namely a bootstrap and
a binning approach [10]. For the bootstrap method, each dataset is resampled 103

times and the error σ for an observable O is obtained by:

σ =

√
O2 −O2

, (B.1)

where the quantities are calculated on the resampled datasets.
For the binning error analysis technique, we separate the dataset into nb = 10

bins and obtain the error of an observable O as:

σ =

√
1

nb − 1
(O2 −O2

). (B.2)

In this thesis most of the datasets used to produce results comprise 105 uncorre-
lated configurations.

We emphasize that calculations of the critical point and the critical exponents
based on the finite size scaling analyses of Chapters 3 and 4 are conducted with the
use of gnuplot which treats errors as relative weights, rescaling the uncertainties on
the fit results to report what they would be if χ2/dof = 1 exactly. As a result, the true
uncertainties of quantities such as the critical squared mass µ2

c and the correlation
length exponent ν are approximately 15% larger.
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