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by Giacomo Piccinini

This thesis investigates aspects of duality and integrable deformations in String Theory.

In the first two chapters we review standard material in Mathematics and Physics, laying

the ground to the novel contributions later reported. In Chapter 4 we introduce gener-

alised cosets, on which we are able to provide a canonical construction for a generalised

frame field and spin connection that together furnish an algebra under the generalised

Lie derivative. In Chapter 5 we study the geometric properties of the Yang-Baxter defor-

mation of CPn, showing that it constitutes an exemplar of Generalised Kähler Geometry.

For CP2 we compute the generalised Kähler potential. Tangentially, we furnish a closed

form for the metric and B-field of the Yang-Baxter deformed sphere Sn, for every n.

In Chapter 7 we address the problem of two-loop renormalisation of the Tseytlin dou-

bled string for cosmological spacetimes. Whilst the results do satisfy a number of key

consistency criteria, we find however that the two-loop counter-terms are incompatible

with O(n, n) symmetry, pointing perhaps to the presence of scheme changes. In Chapter

8 we build on this work and set the stage for a two-loop calculation for a Poisson-Lie

T-duality covariant theory.
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Chapter 1

Introduction

Physics and Art have evolved in radically opposite ways throughout the centuries. With

scientists trying to organise a vast, scattered body of notions under a few guiding prin-

ciples, painters systematically and deliberately carved rationality out of the original Re-

naissance order. If a progressive abandonment of the concept of harmony took over the

aesthetics of the XX century, in 1972 the Physics Nobel laureate P.W. Anderson wrote

“It is only slightly overstating the case to say that Physics is the study of symmetry” [6].

In either subjects, symmetry is usually regarded as some invariance property of a model,

be it the facade of a church or a Quantum Field Theory, that simplifies its description.

As one might expect, the more symmetric a model, the more constrained is the dynamics,

sometimes to the point where it is possible to solve it exactly. Solvable systems are called

integrable, and are incredibly hard to come by: they represent the opposite of chaos, a

lush oasis of kósmos.

As rare gems, integrable theories need to be handled with care, wisely cutting their

facets to maximise brilliance. In String Theory, the goldsmith toolkit consists of two

essential utensils: on the one hand, a number of rigorous mathematical methods proper

to integrability, developed to extract otherwise inaccessible information; on the other

hand, smooth modifications of a model − called integrable deformations − that while

preserving integrability furnish new highly non-trivial examples.

Integrable deformations, and in fact String Theory, are hardly discussed without a men-

tion of dualities. If making an appropriate artistic parallelism would certainly be a

stretch, we could nevertheless extend the fairly intuitive idea of symmetry so as to incor-

porate that of duality. By that, we mean a relation between two a priori distinct theories

that turn out to describe the same physics. Qualitatively, this is extremely surprising

as it draws unforeseen connections among theories with completely different degrees of

1



Introduction 2

freedom. If this were the end of the story, though, we would have certainly gained a

gratification of our aesthetic sense, but not much in terms of quantitative results and

predictions (that supposedly represent the ultimate goal of Science).

Even though duality per se does not imply any kind of formal solvability− e.g. there is no

arsenal of dedicated techniques and methods as we had for integrability − it nevertheless

bears a more subtle and perhaps effective form of simplification. Credits go to its simple

proposal: if the description of a phenomenon is too convoluted in theory A, it might

well be simple enough in the dual theory B. The prototype is when A is too strongly

coupled to be tackled with perturbation theory, but standard Quantum Field Theory

techniques readily apply to B. In truth, dualities do not require String Theory at all to

be formulated (think, for example, of Seiberg duality in supersymmetric gauge theories

[7]) but there is a huge body of evidence indicating their role as primary actors whenever

strings are involved.

Rather than concentrating on the weak/strong duality mentioned above (also called

S-duality), we shall focus on a more geometric (and thus stringy) type of implementation

known as T-duality. It was first observed in [8], but only later formalised by Buscher in

[9, 10] and its whole program is easily stated: String Theory does not quite agree with

Riemann as to what we mean by “geometry”. After all, that XIX century differential

geometry was not really satisfactory in describing string backgrounds was already pretty

clear: the metric alone is not the sole focus any longer, and needs to be supplemented

at least with fluxes (differential forms) and dilaton (scalar). But T-duality goes way

beyond that: T-dual geometries, i.e. the different backgrounds giving rise to the same

physics, are not related by ordinary diffeomorphisms but through a completely new

type of transformation, the eponymous T-duality. What’s even more astonishing (or

perhaps exciting?) is that in some cases the whole concept of differentiable manifolds

collapses and one needs to resort to generalisations, such as T-folds [11], to address the

non-geometric aspects entailed by T-duality.

Even when restricting our interest to T-duality, ruefully accepting the inadequacy of

some of the lessons painstakingly learnt and brought to us by Einstein, the situation

remains involved. Buscher’s duality, most often called “Abelian”, does not certainly

encompass all relevant cases, as it only strictly applies to tori, arguably the simplest

(compact) manifolds strings are allowed to propagate on. Whilst the importance of toric

compactifications for our comprehension of String Theory can not be overstated, the

need for more challenging, and yet dualisable, manifolds has become clear.

Conceptually, Abelian T-duality is based on the presence of Abelian isometries for the

target space, thereby justifying the relevance of tori in this context. Evidently, more

complicated manifolds shall come at least with non-Abelian isometries or, even more
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likely, no isometries at all. In these cases, the hypothesis of the Buscher’s derivation go

astray, and one is required to cook up some generalisation. In the light of Ockham’s

razor, we could try and upgrade Abelian to non-Abelian isometries, replicating the steps

that lead to the discovery of Abelian T-duality. This works, and, as one might guess,

the result is known as non-Abelian T-duality [12]. Still, it is not quite satisfactory, as

the case with no isometries is completely missing from the picture. Here there is no

philosophical tool to our rescue: we simply can not give up on isometries and retain

the Buscher’s procedure. The resolution of the conundrum, called Poisson-Lie T-duality,

was put forward by Klimčík and Ševera in [13, 14]: while admitting that dualisable

manifolds can have no isometries, they need to obey an additional constraint, known as

the Poisson-Lie condition. This last form of duality, that comprises of both Abelian and

non-Abelian as special cases, will represent a central topic for this thesis.

At this point it is perfectly legitimate to ask how duality and deformations relate to

one another. We have so far remained purposefully vague on explicit implementations

of either concepts, but we shall now partially remedy that. Our starting point is the

Principal Chiral Model (PCM), the two-dimensional non-linear σ-model describing the

motion of a Bosonic string on a group manifold G1. Albeit perhaps not very realistic,

the PCM is extremely relevant, for it is arguably the simplest non-trivial example of

integrable system in this context. Other than that, it displays many of the features

typical of QCD, such as a dynamically generated mass-gap, asymptotic freedom and

confinement.

Since the 1990’s, many integrable deformations of the Principal Chiral Model have been

found2; in essence, they all rely on modifying and/or extending its action through the

introduction of some parameters and operators, so that the PCM is eventually recovered

in a certain limit. Of paramount importance for this thesis are Yang-Baxter (or η-) de-

formations, first conjectured by Klimčík in [16]. They are based upon the introduction of

a deformation operator based on the so-called Yang-Baxter matrix (whose relevance for

the model is controlled by a real parameter η), and were only proven integrable in [17].

A few years later, Sfetsos [18] proposed a new integrable deformation of the Wess-Zumi-

no-Witten (WZW) model (a conformal extension of the PCM [19]), the λ-deformation.

Crucially for us, η- and λ-deformations are related by Poisson-Lie T-duality [20, 21]3.

Up to now we have only mentioned group manifolds and we should really plead guilty

to oversimplification for that: even in the theoretician’s spirit of easing the description

of the universe, Lie groups are too narrow of a subclass of manifolds to consider. At the
1Even though String Theory admittedly constrains the number of spacetime dimensions, we will

mostly neglect this aspect and free G of any imposition so as to broaden the discussion.
2It is possible to consider integrable deformations that do not require the PCM as a starting point,

for instance TT -deformations [15]. However, they will not be part of this thesis.
3Plus, in fact, an analytic continuation.
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very least we should be able include spheres, (anti-) de Sitter and projective spaces if

we want to have a shot at putting forward integrable deformations as a topic worth of

explaining some of the features of String Theory. Actually, all of these manifolds have a

common denominator: they are symmetric spaces, i.e. quotients of a Lie group G by a

subgroup H ⊂ G with particular properties. Starting from the PCM on G, we can tweak

it so as to describe the dynamics of a Bosonic string on G/H by opportunely removing

the degrees of freedom associated to H: the lesson previously learnt is not to discard

after all! Furthermore, this model is easily proven integrable4 and, up to some detail,

allows for integrable deformations, too.

Despite this progress, many problems both at the classical and quantum level remain open.

We have already mentioned that Riemannian geometry has some serious shortcomings

when it comes to describing string backgrounds. For instance, Abelian T-duality for the

NS-NS sector is characterised by some non-linear transformation involving metric and

B-field that makes T-duality hard to detect. To draw a parallelism, the formulation

of Electromagnetism with electric and magnetic fields overshadowed the underpinning

Lorentz covariance for decades. Building on previous experience, it would be advanta-

geous to have a re-formulation of String Theory with T-duality made explicit. In fact, this

exists and consists, roughly speaking, in embedding the two T-dual manifolds in a new

fictitious space of doubled dimensions. In the same spirit, space and time were reunited

in a single four-dimensional entity in Special Relativity. The mathematical framework

into which this formulation fits is that of Generalised Geometry as introduced by Hitchin

and Gualtieri [24, 25].

The first task we shall embark upon is precisely the description of coset models in Gen-

eralised Geometry. We shall not be concerned with the dynamics but rather with their

(generalised-) geometric properties. In practice, this point will be addressed through a

detailed and canonical construction of generalised frame fields, the analogues of the vier-

bein lying at the heart of the tetrad formalism so widely employed in General Relativity.

The purpose is twofold: on the one hand, we achieve a great deal of simplification, for

arbitrarily complicated objects will be traded for constant quantities which are much

easier to handle. On the other, generalised cosets lend themselves to Supergravity and

consistent truncations, and we shall provide the necessary backbone to those useful ap-

plications. This will be the subject of Chapter 4.

Building on that, we will consider Yang-Baxter deformations of complex projective spaces

in Chapter 5. Even though originally motivated by the investigation of some extensions of
4Here we are really making statements only about classical integrability; one should anticipate that

quantum integrability necessitates modifications, e.g. the inclusion of appropriate fermionic content for
CPn [22, 23].
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the AdS/CFT correspondence [26]5, e.g. the deformation of the AdS4×CP3 background,

we shall unravel a beautiful geometrical structure, Generalised Kähler Geometry, under-

pinning CPnη . This legitimates an outright interest, even devoid of possible holographic

applications, repaid with the explicit construction of a generalised Kähler potential for

CP2
η, an extremely rare object. Furthermore, the same technology will be applied − with

minor modifications − to the study of η-deformed spheres and AdS spaces, for which we

conjecture closed form for metric and B-field in every dimension. The expressions are

simple and can be used straight out of the box, without resorting any longer to a lengthy

and somewhat involved algebraic construction. Finally, in passing, we shall resolve a

puzzle that dates back to [20] and concerns the possibility of a double Yang-Baxter

deformation of CPn.

We will then start exploring the quantum properties of the doubled formalism from the

worldsheet point of view. To this end, in Chapter 7 we study the two-loop renormalisa-

tion of the “doubled string” (i.e. an explicit Abelian T-duality covariant formulation of

String Theory compactified on an n-torus) in a simplified setting known as cosmological

spacetime. Notwithstanding the apparent reduced complexity, we will face a large num-

ber of technical challenges which we will try to address. In doing so, we will develop and

discuss novel techniques for evaluating loop integrals and create a Mathematica notebook

for automatising the entire calculation. In Chapter 8 we will report on a conceptually

similar computation, this time adapted to Poisson-Lie T-duality on a Drinfel’d double

(a specific type of Lie group we will introduce soon). We will be able to infer a number

of constraints on the shape of the final result − also providing a graphical interpretation

to it −, as well as to furnish an all-loop expansion of the interacting Lagrangian. We

anticipate that the treatment of this chapter will not be complete, for the project is still

under investigation at the time of writing.

Finally, we will draw conclusions on this work and, more broadly speaking, on the whole

field. We will indicate a few interesting avenues for feature research that we hope might

materialise in useful results and outline the main technical and conceptual challenges one

is expected to face. We complement the entire thesis with a number of appendices.

5The AdS/CFT correspondence, a particular materialisation of the holographic principle proposed by
Susskind [27], conjectures the equivalence of String Theory on anti-de Sitter spaces and a dual Conformal
Field Theory living on the boundary of said space.



Chapter 2

Mathematical Preliminaries

In this introductory chapter we shall review the main mathematical concepts that will

be used on a number of occasions as the thesis unfolds. Rather than letting them comple-

ment the Physics review of Chapter 3, we have preferred to furnish here a more cohesive

presentation that can be consulted quickly whenever needed. Given the wide breadth

of the topics touched here, we will not attempt to deliver an exhaustive treatment, but

only report results that are pertinent to our goals. In this sense, proofs will be omitted

but the interested reader will nevertheless be referred to various resources where they

can be easily found.

2.1 Drinfel’d Double

The algebraic structure known as Drinfel’d double, which we shall introduce shortly, is

key to the understanding of Poisson-Lie T-duality.

Given a Lie algebra g with Lie product [·, ·] : g ⊗ g → g, if it is possible to further

endow it with a coproduct1 which is also a cocycle, then we call (g, [·, ·],∆) a bialgebra.

Remarkably, we can immediately declare the dual vector space g∗ a bialgebra if we equip

it with the transposed products ∆t and [·, ·]t [28].

We now take one step further and consider the vector space d = g⊕g∗. On d we have the

notion of natural scalar product 〈〈·, ·〉〉: for x, y ∈ g and ξ, η ∈ g∗ it is given by 〈〈x, y〉〉 = 0,

〈〈ξ, η〉〉 = 0 and 〈〈ξ, x〉〉 = 〈x, ξ〉, where 〈·, ·〉 denotes the natural pairing between a vector

space and its dual. As it is, however, d is not (yet) a Lie algebra. It turns out [28] that

every Lie bracket on d = g ⊕ g∗ preserving the natural scalar product 〈〈·, ·〉〉 and such
1That is, an anticommutative map ∆ : g→ g⊗g that obeys co-Jacobi identity (∆⊗id)◦∆+cyclic = 0.

6
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that both g and g∗ are subalgebrae is given by
[x, y]d = [x, y] ∀x, y ∈ g

[ξ, η]d = [ξ, η]g∗ ∀ξ, η ∈ g∗

[x, ξ]d = ad∗xξ − ad∗ξx ∀x ∈ g, ∀ξ ∈ g∗

(2.1)

where ad∗ denotes the co-adjoint action2. The Lie algebra (d = g⊕g∗, [·, ·]d) is called the

Drinfel’d double of the Lie bialgebra (g, [·, ·],∆) [28]. Equivalently, (d, g, g∗) is known as

a Manin triple [29, 30], and will appear often when treating integrable deformations. To

complete the picture, one can prove that in fact g is a Lie bialgebra if and only if the

Jacobi identity holds for all triples α ∈ g∗, x, y ∈ g, i.e.

[α, [x, y]]d + [x, [y, α]]d + [y, [α, x]]d = 0 . (2.2)

Let us make an example to clarify the notation. Take generators Ta and T a to span g and

g∗, respectively (conventions for indices are reported in Appendix A). These will induce

different types of structure constants, namely [Ta, Tb] = fab
cTc and [T a, Tb] = f̃abcT

c.

For the mixed commutator [Ta, T
b], a straightforward calculation using (2.1) yields

[Ta, T
b] = −facbT c + f̃bcaTc . (2.3)

Given (2.3), the Jacobi identity (2.2) will comprise two parts, one directed along g and

one along g∗. The latter automatically vanishes: it corresponds to the Jacobi identity

for g. The other part, instead, results in the non-trivial constraint

fab
cf̃dec = fac

df̃ceb + fac
ef̃dcb + fcb

df̃cea + fcb
ef̃dca . (2.4)

For a semi-simple Lie algebra g − the case we will always be interested in − because

of Whitehead’s lemma the bialgebra structure is necessarily specified by an R-matrix

[28], i.e. an endomorphism R of g obeying the modified Classical Yang-Baxter Equation

(mCYBE)

[R(x), R(y)]−R([R(x), y] + [x,R(y)]) + c2[x, y] = 0 , (2.5)

for some c ∈ C and for all x, y ∈ g. Upon picking a basis {Ta} for g, the explicit

action of R is determined by R(xaTa) = xaRa
bTb. Thanks to g being semi-simple

and thus equipped with a non degenerate pairing κab, it is possible to raise (or lower)
2Recall that, given a Lie algebra g 3 x, y and a dual vector space g∗ 3 ξ, the co-adjoint action is

defined as the map ad∗x = −adtx satisfying 〈ξ, adx(y)〉 = −〈ad∗x(ξ), y〉. The adjoint action on the algebra
is simply adx(y) = [x, y].
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g is a Lie
bialgebra

g∗ is a Lie
bialgebra

d = g ⊕ g∗

is a Lie
algebra

(d, g, g∗) is a
Manin triple

Figure 2.1: The relation between a bialgebra and a Manin triple.

the indices of R, resulting in a skew-symmetric tensor3 Rab = κacRc
b = −Rba. One

consequence of the presence of R is that we can introduce a second Lie-bracket on g given

by [x, y]R := [R(x), y] + [x,R(y)]: anti-symmetry is manifest and the Jacobi identity is

automatically implied by the mCYBE. We will indicate with gR the vector space g

endowed with the Lie bracket [·, ·]R.

Naively, the mCYBE for c2 = −1 is identical in form to the vanishing of the Nijenhuis

tensor for an almost complex structure. Guided by this observation, one could try and

turn a Lie algebra g of even real dimension into a complex Lie algebra. As expected, R will

be required to obey R2 = −1 but this alone is not sufficient: the additional requirement

R([x, y]) = [R(x), y] for all x, y ∈ g is necessary [32]. On coset spaces the situation is

slightly more delicate. Consider a real Lie group G and a subgroup H = exp(h) ⊂ G,

giving rise to the (reductive) homogeneous space M = G/H. Indicate with m the linear

space such that g = h⊕m. If R is an R-matrix on g with the aforementioned properties,

it would be tempting to first restrict it to m and then uplift it, through the action of a

vielbein, to a complex structure onM . However, as proved by Koszul [33–35], additional

requirements are needed.

Theorem 2.1.1 (Koszul theorem). Let G be a real connected Lie group with Lie algebra g

and H ⊂ G, a closed subgroup of G with Lie algebra h. Suppose that g has a decomposition

such that g = h ⊕ m, with [h,m] ⊂ m. The coset space G/H has a G-invariant complex

structure if and only if there is a linear operator R on g (the Koszul operator) such that

1. R|h= 0 and R|m2 = −1;

2. ad(x) ◦R = R ◦ ad(x) ,∀x ∈ h;

3. [R(x), R(y)]−R([R(x), y] + [x,R(y)])− [x, y] = 0 (mod h) , ∀x, y ∈ g.
3An R-matrix is more formally defined [31] as an element of g⊗g that comprises of a skew-symmetric

and a symmetric part. For our purposes, we will restrict to purely anti-symmetric R-matrices and most
often view them as endomorphisms thanks to the canonical isomorphism provided by κ.
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2.1.1 Example: Symmetric Space and Coisotropic Subalgebra

Let us conclude this section with an example aiming at encompassing some of the con-

cepts encountered thus far. Let g = Lie(G) be a semi-simple Lie algebra. As such, g

is endowed with a non-degenerate pairing κ, the Killing form. Non-degeneracy implies

that κ induces an isomorphism φ : g→ g∗ explicitly given by

φ(x) = κ(x, ·) ∈ g∗ ∀x ∈ g . (2.6)

Let R : g → g be an R-matrix obeying the mCYBE. Upon rescaling R, we can always

set c2 to either +1, −1 or 0. Here, we shall fix c2 = −1. If we choose {Ta} as a basis for

g, we can raise the indices of R through the action of the Killing form,

Rab = κacRc
b = −Rba . (2.7)

Indicating with fabc the structure constants on g induced by the canonical Lie bracket

[·, ·], the algebra gR with Lie bracket [·, ·]R will have structure constants f̃abc,

f̃ab
c = −2R[a

dfb]d
c . (2.8)

Take M = exp(m) to be the coset M = G/H and further require it to be a symmetric

space [36], so that g = m ⊕ h and κ(m, h) = 0, where h and m are, respectively, the +1

and −1 eigenspace of the Z2 involution. We shall further impose that h is a coisotropic

subalgebra. Recall that a subalgebra h of a Lie bialgebra g is called coisotropic if its

annihilator h⊥, i.e. the space of functionals ξ ∈ g∗ such that 〈ξ, x〉 = 0 ∀x ∈ h, is

a Lie subalgebra in g∗ [37]. Defining m∗ = φ(m) and h∗ = φ(h) (so that g∗ = m∗ ⊕
h∗), orthogonality implies 0 = κ(m, h) = 〈m∗, h〉. There can be no ξ ∈ h∗ obeying

〈ξ, h〉 = 0, or otherwise the restriction of κ to h would be degenerate, hence h⊥ =

m∗. Without further constraints, m∗ is not a subalgebra of g∗, as needed for h to be

coisotropic. Requiring [m∗,m∗]g∗ ⊂ m∗ is equivalent to imposing [m,m]R|h= 0. We

obtain the coisotropy condition

([Rx, y] + [x,Ry])|h= 0 ∀x, y ∈ m . (2.9)

If h is coisotropic and the coset G/H is a symmetric space, H∗ = exp(h∗) is a subgroup

of G∗ = exp(g∗) and the coset M∗ = G∗/H∗ is a symmetric space, provided we endow

g∗ with the Lie bracket [·, ·]g∗ induced by the Drinfel’d-Jimbo R-matrix4 [38], obtained
4In general, the Drinfel’d-Jimbo procedure is not the unique possibility for constructing an R-matrix.

However, it is most useful when building Poisson bi-vectors out of Yang-Baxter matrices, as in our case.
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by taking the wedge product of (properly normalised) positive and negative roots5

R =
1

2

∑
λ∈∆+

Xλ ∧X−λ ∈ g ∧ g. (2.10)

This is most easily seen using the dual bracket [·, ·]R. More precisely, grading g into

±1-eigenspaces, it follows from the definition of the Cartan-Chevalley basis that, for

a fixed root λ, the ladder operators Xλ and X−λ belong to the same subspace, while

the Cartan subalgebra belongs to the +1 eigenspace. The Drinfel’d-Jimbo construction

then implies that the Yang-Baxter matrix has no mixed components, R(h)|m= 0 and

R(m)|h= 0. This fact, together with coisotropy and symmetric space decomposition,

yields

[m,m]R = 0 , [m, h]R ⊂ m , [h, h]R ⊂ h . (2.11)

Lifting these conditions to the dual algebra g∗ we get [h∗, h∗]g∗ ⊂ h∗, [h∗,m∗]g∗ ⊂ m∗

and [m∗,m∗]g∗ = 0, the defining relations for a (particular type of) symmetric space M∗.

It can be checked for G/H = SU(2)/U(1): assuming m = Span(σ1, σ2), where σi are

the Pauli matrices, the Drinfel’d-Jimbo R-matrix acts as R(σ1) = σ2, R(σ2) = −σ1 and

R(σ3) = 0; the relations (2.11) follow.

2.2 Poisson Manifolds

Together with Drinfel’d doubles, Poisson manifolds represent the mathematical back-

bone of integrable deformations of bosonic String Theory. Whilst the reader is certainly

familiar with the concept of Poisson brackets, we shall nevertheless recapitulate some

less-known facts building in particular on the interplay between Poisson and group struc-

ture.

A Poisson manifold M is a Riemannian manifold endowed with a Poisson structure, i.e.

an R-linear map called Poisson bracket {·, ·} : C∞(M) × C∞(M) → C∞(M) satisfying

the properties of anti-symmetry, Jacobi identity and Leibniz rule [39]. We call Poisson

bi-vector the skew-symmetric two-tensor π ∈ TM ⊗ TM that implements the Poisson

structure

{f, g} = 〈df ⊗ dg, π〉 , (2.12)

where f, g ∈ C∞(M), d is the exterior derivative and 〈·, ·〉 the natural pairing between

dual vector spaces. Notice that the Jacobi identity for the Poisson bracket is equivalent
5We adopt a Cartan-Chevalley basis {Hλ, Xλ, X−λ}, where λ ∈ ∆+ is a positive root, Hλ span the

Cartan subalgebra and X±λ are ladder operators. We choose the normalisation with respect to the
Killing form κ(Xλ, X−λ) = 2

〈λ,λ〉 .
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to the vanishing of the Schouten bracket for π, reading in local coordinates xi

π[i|l|∂lπ
jk] = 0 . (2.13)

Every Poisson manifold admits a trivial Poisson structure, {f, g} = 0 ∀f, g ∈ C∞(M)

or, equivalently, a maximally degenerate π. On the opposite side of the spectrum, if

the bi-vector is everywhere non-degenerate, it can be inverted yielding a non-degenerate

symplectic two-form ω,

ω = π−1 . (2.14)

The vanishing of the Schouten bracket for π translates to ω being closed. In this situation,

M is called a symplectic manifold. Hence, all symplectic manifolds are Poisson but the

converse is, in general, false. Nevertheless, any (not necessarily symplectic) Poisson

manifold can be foliated with symplectic submanifolds called symplectic leaves.

Poisson-Lie groups are particular instances of Lie groups where the multiplication map

is required to preserve the Poisson bracket [31]6. In broad strokes, Poisson structures on

a Poisson-Lie group G come in two flavours − multiplicative and affine − depending on

whether they obey π(gh) = λgπ(h) + ρhπ(g) or π(gh) = λgπ(h) + ρhπ(g)− λgrhπ(e) for

every g, h ∈ G [30]. Here and henceforth, λg and ρg represent the differential of left and

right translations, respectively7.

Theorem 2.2.1. Every multiplicative Poisson structure π on a connected semi-simple

Lie group G is of the form

π(g) = ρg(R)− λg(R), g ∈ G (2.15)

where R ∈
∧2 g is a bivector at the identity e ∈ G.

Factorising a left-action out, the multiplicative Poisson structure above becomes π(g) =

λg(Adg−1∗R − R), where Adg−1∗ indicates the differential of the adjoint action8. In a

basis {Ta} for g = Lie(G), the term inside bracket is

Adg−1∗R−R = (Adg)
a
cR

cd(Adg−1)d
b Ta ⊗ Tb −RabTa ⊗ Tb , (2.16)

6A map ϕ : M → N between Poisson manifolds respects the Poisson brackets (i.e. it is a Poisson
map) if {f, g}N (ϕ(x)) = {f ◦ ϕ, g ◦ ϕ}M (x) for every x ∈M and f, g ∈ C∞(N).

7If x ∈ g, then λgx = gx and ρgx = xg. Notice that, with abuse of notation, when x = x1⊗x2 ∈ g⊗g
we will still use the same symbols to denote e.g. λg(x1 ⊗ x2) = λgx1 ⊗ λgx2.

8We define Adg1g2 = g1g2g
−1
1 .
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where we have used Ad-invariance of the Killing form to replace Adg−1 = Adtg. It is

common to rewrite Adg−1∗R−R = Rg −R introducing the notation9

Rg = Adg−1 ·R ·Adg . (2.17)

Given a Poisson-Lie group G with Poisson structure π, a subgroup H ⊂ G is not neces-

sarily Poisson-Lie as it is not granted that, for f, g ∈ C∞(H), the bracket {f, g} is closed
in C∞(H). Hence, a Lie subgroup H of a Poisson-Lie group G is called a Poisson-Lie

subgroup if it has its own Poisson-Lie structure and the inclusion ι : H ↪→ G is a Poisson

map [31]. A Poisson-Lie subgroup H can be characterised more explicitly using proper-

ties of its algebra h. Recall that a subalgebra h ⊂ g is called coisotropic if its annihilator

h⊥ is a Lie subalgebra of g∗. However, it can be proven that H is a Poisson-Lie subgroup

of G if the annihilator h⊥ is an ideal in g∗. Given that any ideal is also a subalgebra,

a Poisson-Lie subgroup H is necessarily a coisotropic subgroup. Quotient spaces G/H

with Poisson structures will be our main focus in Chapter 5; these are called Poisson

homogeneous spaces, provided the projection map ρ : G→ G/H is Poisson [31]. Whilst

H being a Poisson-Lie subgroup of G guarantees that G/H is Poisson homogeneous, it

is possible to relax this condition and require that H be only coisotropic.

Proposition 2.2.2. Given a Poisson-Lie group G and a subgroup H ⊂ G, a sufficient

condition for the coset space G/H to be a Poisson homogenous space is for H to be a

coisotropic subgroup of G. Moreover, there exists a unique Poisson structure, known as

Poisson-Bruhat, on the coset

πB = (dρ∗ ⊗ dρ∗)π (2.18)

such that the projection map ρ : G→ G/F is Poisson.

Coadjoint orbits serve useful examples of Poisson homogeneous spaces. Given a compact

semi-simple Poisson-Lie group G, its coadjoint orbits are: i) obtained as the quotient by

a Poisson-Lie subgroup; ii) homogeneous Kähler manifolds [40, 41]. The first condition

tell us that the orbit O inherits from G a unique Poisson-Bruhat structure. The second

condition implies the presence of a second Poisson structure ω−1 obtained from inverting

the Kähler form. Contrary to the Poisson-Bruhat structure πB, ω−1 is not multiplicative

but rather affine. We now have two different, and equally valid, Poisson structures on an

orbit. We might wonder whether the two can be combined into a “larger” object, given

by a linear combination πτ = πB − τω−1, with τ ∈ R. In general, this object need not

be a Poisson structure itself, for πB and ω−1 might not be compatible, i.e. the Schouten

bracket [πB, ω
−1] might not vanish. When this is the case we call πτ Poisson pencil.

9Here · denotes composition of operators. The actual matrix product is reversed in order, cf. (2.16).
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As we will eventually restrict to CPn, which is both a codajoint orbit and a Hermitian

symmetric space, it is important to recall that the following theorem holds [42].

Theorem 2.2.3. For any hermitian symmetric space, the Poisson structures ω−1 and

πB are compatible.

2.3 Generalised Geometry

Riemannian geometry is not completely satisfactory when it comes to the description

of (bosonic) String Theory. Certainly Riemannian metrics, symplectic forms, complex

structures and diffeomorphisms (just to name a few) remain key players; however, the

inclusion of the B-field with its associated gauge transformations, the dilaton and the RR

fluxes all point to some sort of extension of conventional Riemannian geometry able to

put these objects on the same footing. Also, a genuinely stringy feature such as T-duality

(to be discussed in the next chapter) relates manifolds through transformations that are

simply not ascribable to diffeomorphisms. Generalised Geometry has emerged as the

mathematical framework more suited to addressing these issues, resulting in a clearer

understanding of the theory as a whole [43–48]. Reviewing its main aspects we will lay

out the foundations for several concepts (Double Field Theory, the geometry of integrable

deformations etc.) that will constitute the core of the thesis. The main mathematical

corpus of Generalised Geometry was developed by Hitchin, Gualtieri and Cavalcanti in

an impressive series of papers [24, 25, 49–53] but, in exposing it, we shall also make use

of the useful physical review provided by Koerber [54].

2.3.1 The Generalised Tangent Bundle

Conceptually, Generalised Geometry moves from a shift of focus, from the tangent

bundle to the generalised tangent bundle. Given a Riemannian manifold M of di-

mension dimM = d with tangent bundle T , the generalised tangent bundle E is the

2d-dimensional direct sum bundle E = T ⊕T ∗. An element X of the section Γ(E), called

generalised vector, is the formal sum of a vector v and a one-form ξ, X = v + ξ. The

natural pairing between T and its dual T ∗ can be used to introduce an inner product on

E via

(v + ξ, w + ζ) =
1

2
(ιvζ + ιwξ) , (2.19)

where ι indicates contraction10. Using a matrix representation for the generalised vectors

X = (v, ξ) and Y = (w, ζ), the inner product is realised through a pairing η of signature
10We will sometimes use the alternative notations ιvξ = ξ(v) = 〈ξ, v〉.
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(d, d)

η =

(
0 1

1 0

)
, such that (X,Y ) = η(X,Y ) , (2.20)

where 0 and 1 are understood to be (d× d)-dimensional matrices.

The extension of the Lie bracket between vector fields to the generalised tangent bundle

is known as the Courant bracket. For two sections v+ξ and w+ζ of T ⊕T ∗ the Courant
bracket is

[v + ξ, w + ζ] = [v, w] + Lvζ − Lwξ −
1

2
d(ιvζ − ιwξ) , (2.21)

where L is the ordinary Lie derivative. Sometimes it is useful to consider instead the

H-twisted bracket [·, ·]H , consisting in a modification of the Courant bracket so as to

include the contribution from a closed three-form H,

[v + ξ, w + ζ]H = [v + ξ, w + ζ] + ιvιwH . (2.22)

Partially related to this, we shall sometimes make use of the generalised Lie derivative

L which is described by

LXY = [v, w] + (Lvζ − ιwdξ) . (2.23)

2.3.2 O(d, d) Elements and Generalised Diffeomorphisms

Consider the pairing η. Given its signature, it defines an element g of the Lie group

O(d, d) through ηgtη = g−1. If g = exp(x), then x is constrained:

x =

(
A 0

0 −At

)
xA

+

(
0 β

0 0

)
xβ

+

(
0 0

B 0

)
xB

, (2.24)

for A ∈ gl(d) and skew-symmetric β, B. Notice that exponentiating xA and xB and

letting them act on a generalised vector results in

exA ·

(
v

ξ

)
=

(
eAv

e−A
t
ξ

)
, exB ·

(
v

ξ

)
=

(
v

ξ + ιvB

)
. (2.25)

As eA ∈ GL(d), the first transformation implements diffeomorphisms on vectors and

one-forms. Conversely, the second operation (sometimes known as B-action) does not

affect vectors but shifts one-forms, just as gauge transformations do. In this sense,

Generalised Geometry is seen to treat diffeomorphisms and gauge transformations on a

similar footing. In fact, the B-action leaves the inner product (2.19) invariant and is
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an automorphism of the Courant bracket (2.21) provided B is a closed two-form. The

global symmetry of the theory is given by the semi-direct product of closed two-forms

and diffeomorphisms

Ω2(M)cl o Diff(M) , (2.26)

sometimes known as generalised diffeomorphisms.

2.3.3 Generalised Complex Geometry

Drawing inspiration from the complexification of Riemannian manifolds, Generalised

Geometry can be complefixied with the introduction of a (generalised) complex structure

[25]. As a first step, the generalised bundle itself needs complexification, obtaining

(T ⊕ T ∗)C ≡ (T ⊕ T ∗) ⊗ C. Then, a generalised almost complex structure is defined

as an endomorphism J of T ⊕ T ∗, with J 2 = −1, that defines a maximally isotropic

sub-bundle11 L of (T ⊕ T ∗)C with L ∩ L̄ = 012. Hence

(T ⊕ T ∗)C = L⊕ L̄ . (2.27)

To obtain a full-fledged generalised complex structure, an integrability condition is nec-

essary. In Riemannian geometry, the latter is encoded in the vanishing of the Nijenhuis

tensor for the complex structure J , expressed in terms of Lie brackets of vector fields.

On a generalised tangent bundle, we can impose an identical condition upon replacing

the Lie bracket with the Courant bracket and vector fields with generalised vector fields,

[JX,J Y ]− J ([JX,Y ] + [X,J Y ]) = [X,Y ] . (2.28)

Alternatively, and equivalently, J is said to be integrable if it +i-eigenspace L is closed

with respect to the Courant bracket.

2.3.3.1 Form of Generalised Complex Structures

A generalised complex structure has to satisfy three type of constraints. Two are al-

gebraic, namely J 2 = −1 and J ηJ t = η, and one differential, i.e. the integrability

condition. Assume J has the form

J =

(
I P

L K

)
, (2.29)

11A subspace L of E = T ⊕T ∗ is called isotropic if, for any X,Y ∈ Γ(L), (X,Y ) = 0. If the dimension
of L is maximal, i.e. dim(L) = dim(T ), L is called maximally isotropic or Lagrangian.

12L is the +i-eigenspace in (T ⊕ T ∗)C and L̄ the −i-eigenspace.
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where no conditions are placed on the blocks. The algebraic constraints, together with

a few simple manipulations, lead to P t = −P , I = −Kt and Lt = −L. Additional

information is contained in the differential constraint. One can try and plug the generic

form for J into the integrability condition (2.28) and workout the requirements for the

blocks. Crucially, the one for P reads [P, P ] = 0 where [·, ·] is the Schouten bracket.

Hence P ≡ π is a Poisson structure [55]. The conclusion is that the generic form of an

integrable generalised complex structure is

J =

(
It π

L −I

)
with Lπ = −1− I2 , (2.30)

plus the left-over differential constraints. Notice that two possibilities stand out. Namely,

if J and ω are respectively a complex structure and a symplectic form,

JJ =

(
J t 0

0 −J

)
, Jω =

(
0 ω−1

ω 0

)
. (2.31)

Generalised Complex Geometry thus encompasses symplectic and complex geometry.

2.3.3.2 Pure Spinors

Generalised complex structures can be rephrased in terms of polyforms. Given a manifold

M , take a polyform13 φ ∈ Ω•(M); the natural action (indicated with ·) of a generalised

vector X = v + ξ on it is

X · φ = ιvφ+ ξ ∧ φ . (2.32)

Letting {X,Y } · • ≡ (X · Y + Y ·X) · •, we have

{Y,X} · φ = 2η(Y,X)φ , (2.33)

so that the · action is in fact a Clifford action. The presence of a Clifford algebra sug-

gests that polyforms transform in the spin representation of Spin(d, d) and are identified

with (generalised) spinors. Actually, the precise statement [54] is that the positive and

negative chirality spin bundles S± are isomorphic to

S± ∼=
even/odd∧

T ∗ ⊗ |detT ∗|−1/2 . (2.34)

That is, a spin representation of positive (negative) chirality corresponds to a polyform

of all even (odd) forms, up to a volume form ε ∈ Γ(detT ∗M) entering as φ = ε1/2ψ,

where ψ represents the spinor. Preference of one form over the other is just a matter of
13A polyform is the formal sum of differential forms of different degree.
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convenience. For instance, it is somewhat useful to introduce the Mukai pairing between

two polyforms

〈φ1, φ2〉 = (φ1 ∧ σ(φ2))|top , (2.35)

where σ is a reversing operator defined by

σ :
1

p!
ωi1...ipdx

i1 ∧ . . . ∧ dxip 7→ 1

p!
ωi1...ipdx

ip ∧ . . . ∧ dxi1 , (2.36)

and “top” is used to select the top-form (i.e. the form with degree d = dimM).

To reconnect with generalised complex structures we shall start by considering pure

spinors, i.e. spinors for which the null space Lφ = {X ∈ T ⊕ T ∗|X · φ = 0} as a

sub-bundle is maximally isotropic. The type of φ, i.e. the integer k corresponding to the

lowest degree of the forms it is made up of, is useful to constrain its form: as proved by

Gualtieri [25], the general form of a non-degenerate (complex) pure spinor is φ = Ξ ∧ ρ,
where ρ is a complex two-form, Ξ a decomposable k-form and k its type.

Now, a generalised almost complex structure J comes with a natural maximally isotropic

sub-bundle, the +i eigenspace L. A spinor φ can be constructed and associated to J
requiring that L ∼= Lφ. For all polyforms φ ∈ Ω•(M) and sections X,Y of the generalised

tangent bundle the identity

[X,Y ] · φ = [{X,d}, Y ] · φ− d(η(X,Y )) ∧ φ (2.37)

holds. If X,Y are restricted to be sections of the null space Lφ, the last term vanishes.

On top of that, sections of Lφ annihilate φ by definition and the identity boils down to

[X,Y ] · φ = X · Y · dφ . (2.38)

Integrability of J requires L ∼= Lφ to be Courant involutive, thereby imposing via (2.38)

that dφ = Z · φ for some Z ∈ Γ(E ⊗ C). The converse is also true.

Theorem 2.3.1. A pure spinor ψ defines a generalised complex structure if and only if,

for some X ∈ Γ(E ⊗ C),

dψ = X · ψ . (2.39)

2.3.3.3 Generalised Kähler Geometry

One of the perks of having a Kähler structure in Riemannian geometry is the ability to

deduce the metric g from the complex structure J and Kähler form ω via g = −Jω. As
seen, Generalised Complex Geometry already puts ω and J on the same footing as they

can be associated to two generalised complex structure Jω and JJ . In particular, we can
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observe that H = diag(g−1, g) = JJJωη, i.e. the generalised metric of a Kähler manifold,

is completely determined by the two generalised complex structures. Clearly this is an

extremely special case, but one can nevertheless try and generalise this construction: the

result is known as Generalised Kähler Geometry [52] in which the generalised metric can

be decomposed in terms of two commuting integrable generalised complex structures,

H = J1J2η.

Even more surprisingly, Gualtieri was able to show that Generalised Kähler geometry is

in fact equivalent to bi-Hermitian geometry. The latter was theorised much earlier as the

target space of a two-dimensional non-linear σ-model with N = (2, 2) supersymmetry

is required to be bi-Hermitian [56–58]: that is, the metric g should be Hermitian with

respect to two complex structures J± each of which is covariantly constant with respect

to the torsionful connections 0 = ∇(±)J± = (∂+ Γ±H)J± with H = db. More precisely

the map between Generalised Kähler and bi-Hermitian geometry is14

J1,2 =
1

2

(
1 0

t−1b 1

)(
(J t+ ± J t−) −t(ω−1

+ ∓ ω−1
− )

t−1(ω+ ∓ ω−) −(J+ ± J−)

)(
1 0

−t−1b 1

)
, (2.40)

with ω± = J±g.

14We have added here a dependence on the (inverse) string tension t for later convenience.



Chapter 3

Physical Preliminaries

The purpose of the mathematical technology introduced thus far was to lay the ground

for several concepts in Theoretical Physics. String Theory is an enormously vast and rich

subject, modelled in many facets that most often do overlap or interact with one another.

Amongst these many aspects, the present thesis will concentrate on the intersection of

two − duality and integrability − and will revolve mostly around Poisson-Lie T-duality

and integrable deformations. Even so, the amount of literature is somewhat extended

but we will try and sharpen our focus on a handful of concepts. As they are mostly built

on one another, we will try and follow this logic in the presentation. In doing so, it is

perhaps worth remarking that we are really only scratching the surface of these topics:

only vital tools are discussed, refraining from furnishing a more thorough overview.

3.1 Classical Integrability

Albeit integrability is a building block of our work, it is most certainly not limited

to String Theory by any means. It was first developed in Classical Mechanics and,

remarkably, a number of famous models turn out to be integrable, e.g. the Kepler

problem or the harmonic oscillator.

Perhaps with a misnomer, integrable models are sometimes called “solvable”. Even

though integrability and solvability do appear together very often, this is far from being

a general rule: integrability per se refers to a number of properties a system might have

that usually make it the opposite of a chaotic system. When this is the case, one has

many different tools to extract information, possibly leading to the exact solution. On

the other hand, solvability merely refers to one’s ability (and, perhaps, technology) to

retrieve some sort of solution, regardless of the intrinsic properties of the system.

19



Physical Preliminaries 20

As we will see shortly, the formalism employed to prove the integrability of classical

problems does not quite translate to field theories: passing from a finite to an infinite

number of degrees of freedom is tricky, and will prompt us to rethink the way we assess

integrability. The introduction of quantum mechanics, leading to the concept of quantum

integrability, is yet another thing requiring different and advanced mathematics. As we

shall not make use of it anywhere in the thesis, we will simply restrict to its classical

counterpart. A standard book on the subject, to which the interested reader is referred

to for a thorough discussion, is [59].

3.1.1 Liouville Integrability in Classical Mechanics

Integrability in the realm of Classical Mechanics is mostly known as Liouville (or Li-

ouville-Arnold) theory [60, 61]. Classically, dynamics is encoded in the Hamiltonian

function H and coordinates on the phase-space are given by positions xi and momenta

pi with canonical Poisson brackets {xi, pj} = δij . A system describing the motion of a

particle on a D-dimensional manifold M is said Liouville integrable if there are exactly

D independent conserved charges Qi in involution, that is, obeying

{Qi, Qj} = 0 , ∀i, j = 1, . . . , D . (3.1)

For a Liouville-integrable theory, it is always possible to solve the equations of motion

by quadrature, i.e. through a finite number of algebraic manipulations and integrations.

In practice, however, these steps are difficult to perform.

An equivalent way for assessing Liouville integrability of a classical system is through

Lax pairs. A Lax pair (L,M) consists of two matrices such that the evolution equation

L̇ = [L,M ] (3.2)

encodes the equations of motion of the entire dynamical system1. If we define a set of

charges as Qj = Tr(Lj), these are conserved thanks to (3.2),

Q̇j = j Tr(Lj−1[L,M ]) = 0 . (3.3)

However, these need not be independent nor in involution. Independence can be either

checked explicitly (when possible, e.g. lower-dimensional systems) or just assumed true

based on group-theoretical arguments.
1We will indicate with a dot the time-derivative, L̇ ≡ d

dt
L.
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Involution is instead assessed exploiting R-matrices. Let us introduce some notation

which will be used throughout the thesis. Given a g-valued object L (g being a Lie

algebra), we denote with L1 and L2 the tensor products L1 = L ⊗ 1 and L2 = 1 ⊗ L.
Similarly, an element R = u ⊗ v ∈ g ⊗ g can be extended to g ⊗ g ⊗ g in a number of

ways, e.g. R12 = R ⊗ 1, R13 = u⊗ 1⊗ v etc. As it turns out [59], a sufficient condition

for the charges to be in involution is that the Poisson bracket for the Lax matrix L can

be written in the form

{L1, L2} = [R12, L1]− [R21, L2] , (3.4)

where r satisfies the classical Yang-Baxter equation which, in tensor notation, reads

[R12, R13] + [R12, R23] + [R32, R13] = 0.

3.1.2 Classical Integrability in Two-Dimensional Field Theories

Replicating the Liouvillian construction of classical mechanics in two-dimensional field

theories (and, in particular, non-linear σ-models [62]) is a delicate matter. In fact,

the infinite amount of degrees of freedom of field theory would somehow suggest the

presence of an infinite amount of conserved charges (in involution) for an integrable

theory. However, this notion of infinity clashes with the limited tools currently at our

disposal.

To remedy that, we shall take the notion of Lax pair and upgrade it introducing a spectral

parameter z, that is, a C-valued scalar the Lax pair is required to (smoothly) depend

on. In doing so, we dodge the counting issue and condense the infinity in the continuous

parameter z. In fact, for the purposes of field theory, it is better to first consider the

Lax connection L, a g-valued one-form obeying the flatness condition2

∂+L− − ∂−L+ + [L+,L−] = 0 . (3.5)

To reconnect with the canonical Lax formalism, we can identify the temporal and spatial

components of the Lax connection with the Lax matrices, Lσ = L and Lτ = M . Equation

(3.5) then implies

∂τL− ∂σM + [M,L] = 0 . (3.6)

Any system admitting a Lax connection whose flatness implies the equations of motion

is called weakly integrable, i.e. admits an infinite number of charges. As in Classical

Mechanics, these need not be in involution and further requirements have to be placed.
2Recall the conventions for worldsheet coordinates: σ± = τ ± σ, ∂± = 1

2
(∂τ ± ∂σ).
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3.1.3 Maillet Algebra

A sufficient condition for addressing the problem of the involutive conserved charges in

two-dimensional field theories was put forward by Maillet in a number of papers [63, 64].

His proposal is reminiscent of that encountered in the previous section: it states that a

sufficient condition for the infinite charges obtained from the Lax connection to be in

involution is that the equal time Poisson brackets are, in tensor notation, given by

{L1(σ, z), L2(σ′, w)} = [R12(z, w), L1(σ, z)]δ(σ − σ′)− [R21(w, z), L2(σ′, w)]δ(σ − σ′)

−(R12(z, w) +R21(w, z))δ′(σ − σ′) .
(3.7)

Some comments are in order. Whenever derivatives of the Dirac delta appear, the theory

is said to be non-ultra local : this is the case we shall be interested in. Conversely, if the

theory is ultra-local (i.e. it only contains the Dirac delta), a sufficient condition was

already suggested by Sklyanin [65]. Notice that, in this sense, the g ⊗ g-valued matrix

R need not be skew-symmetric, i.e. R12(z, w) 6= R21(w, z). If so, the non-ultra local

term would drop out. Hence, we shall assume that R has a symmetric part s and a

skew-symmetric part r,

r12(z, w) =
1

2
(R12(z, w)−R21(w, z)) , s12(z, w) =

1

2
(R12(z, w) +R21(w, z)) . (3.8)

Therefore, we can rephrase the Maillet condition as the following

{L1(σ, z), L2(σ′, w)} =[r12(z, w), L1(σ, z) + L2(σ,w)]δ(σ − σ′) (3.9)

+[s12(z, w), L1(σ, z)− L2(σ,w)]δ(σ − σ′)− 2s12(z, w)δ′(σ − σ′) .

Observe that the Poisson bracket on the left-hand side should obey the Jacobi identity;

this requires R to satisfy the classical Yang-Baxter equation, making it an R-matrix.

3.1.4 Application to NLSM on Group Manifolds

As long as integrability is concerned, this thesis will revolve around (integrable) non-lin-

ear σ-models with (deformations of) group manifolds or cosets as target spaces. In such

cases the general discussion from the preceding section can be made more specific as we

shall now explain3. If the target space is a Lie group G with semi-simple Lie algebra g,

we have at our disposal a canonical construction for the r and s matrices (provided the

model is weakly integrable, of course). More precisely, we can consider the split Casimir
3Even though integrable deformations do affect the geometry to a great extent, most of the general

results here carry on unaltered, as they only rely on having an underlying group/coset structure.
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element of g,

C12 = κabTa ⊗ Tb , (3.10)

where κ is the non-degenerate Killing form, and {Ta} a basis of generators for g. It is

possible to show (see [66] for a review) that the quantity

R0
12(z, w) =

1

w − z
C12 (3.11)

obeys the CYBE. This solution for R is called the standard non-twisted R-matrix on the

loop algebra of g. In particular, R0
12 is skew-symmetric as swapping w and z produces

a minus sign. Furthermore, given any function ϕ : C → C the matrix R12(z, w) =

R0
12(z, w)ϕ−1(w) satisfies the CYBE. This new R is called a twisted R-matrix and ϕ the

twist function. The r and s matrices are affected by ϕ according to

r12(z, w) = −1

2

ϕ−1(w) + ϕ−1(z)

z − w
C12 , s12(z, w) = −1

2

ϕ−1(w)− ϕ−1(z)

z − w
C12 . (3.12)

The twist function encodes crucial details for the theory at the hand and its computation

should just represent our primary concern4. Ideally, we would start from a set of Poisson

brackets, compute the left-hand side of (3.9), infer r and s and finally extrapolate the

twist function. Actually, the matter is slightly more delicate. Suppose we decompose the

Lax matrix according to

L(z) =
∑
Q∈O

AQ(z)Q , (3.13)

where Q are the operators/fields in our theory and AQ coefficients possibly depending

on the spectral parameter. On the right-hand side of (3.9), we can separate ultra-local

terms (named collectively PUL
12 ) from non-ultra-local terms (called PNUL

12 ) so that

{L1(σ, z), L2(σ′, w)} = PUL
12 (z, w, σ)δ(σ − σ′) + PNUL

12 (z, w)δ′(σ − σ′) . (3.14)

Given the form for s as in (3.12), it is evident that PNUL
12 (z, w) = −ϕ−1(z)−ϕ−1(w)

z−w C12. As

for the ultra-local part we observe that [C12, Q1 + Q2] = 0, for structure constants are

completely antisymmetric objects. Making use of this fact when plugging the expansion

(3.13) for L into (3.9) we arrive at

PUL
12 (z, w, σ) =

∑
Q

AQ(z)ϕ−1(w)−AQ(w)ϕ−1(z)

z − w
[C12, Q2(σ)] . (3.15)

This step does not determine r or s at all, but it is nevertheless useful as it singles out

the dependence on the twist function.
4It has been recently proven in [67] that it is possible to extract one-loop β-functions out of the twist

function (see also [68]).
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3.1.5 Example 1: Principal Chiral Model

It is now time to apply the technology developed so far to some actual examples. Given

its centrality for the remainder of this thesis, we shall start from the Principal Chiral

Model on a Lie group G. We will use this example as an excuse to introduce the model

and study its main features.

The principal chiral model (PCM) with “radius” k and tension t is expressed by the

action

S =
k2

πt

∫
Σ

d2σ 〈g−1∂+g, g
−1∂−g〉 , (3.16)

where g : Σ→ G are maps from the worldsheet Σ to the target space G, a (semi-simple)

Lie group. As in Chapter 2, the pairing 〈·, ·〉 denotes the Killing form on the Lie algebra

g = Lie(G). Famously, this action shows a global GL × GR symmetry, corresponding

to multiplication of g by a constant group element either on the left or on the right.

Introducing the currents (left-invariant forms) j± = g−1∂±g, the equations of motion

and Bianchi identity are

∂τ jτ − ∂σjσ = 0 , (3.17)

∂τ jσ − ∂σjτ + [jτ , jσ] = 0 . (3.18)

It is easy to check that the flatness of the Lax connection

L±(z) =
j±

1∓ z
(3.19)

implies both equations of motion and Bianchi identity, thereby making the model weakly

integrable.

Proving strong integrability requires knowing the Poisson brackets involving jτ and jσ.

If we place coordinates xi on G, dual to a set of momenta pi, their (equal time) Poisson

brackets are canonical {xi(σ), pj(σ
′)} = δijδ(σ−σ′). Letting e = g−1dg be a frame field,

the momentum is pi = 1
2πeaij

a
τ , making X = eaipiTa = 1

2π jτ a convenient object to intro-

duce5. In the same spirit, it is sensible to introduce Y = 1
2π jσ. Since {g1(σ), g2(σ′)} = 0,

{Y1(σ), Y2(σ′)} = 0 . (3.20)
5In the case of PCM, some of these definitions are redundant. For instance, the frame field coincides

with the current, eai = jai and X is just a multiple of jτ . However, in view of more complicated cases,
we shall keep these objects separate.
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Recalling that vector fields dual to left-invariant one-forms va = eia∂i generate the Lie

algebra of G, [va, vb] = fab
cvc, we also have

{X1(σ), X2(σ′)} = −[C12, X2(σ)]δ(σ − σ′) . (3.21)

The algebra is completed with

{X1(σ), Y2(σ′)} = −[C12, Y2(σ)]δ(σ − σ′)− 1

2π
C12∂σδ(σ − σ′) . (3.22)

Now, the Lax matrix is

L = L+ − L− =
2π

1− z2
(zX + Y ) ≡ AX(z)X +AY (z)Y , (3.23)

where, following the notation outlined above, we have identified AX(z) = 2πz
1−z2 and

AY (z) = 2π
1−z2 . Computing {L1(σ, z), L2(σ′, w)} making use of the brackets given above

and exploiting e.g. (3.15), we find the twist function for the PCM:

ϕ(z) =
1

2π

z2

1− z2
. (3.24)

3.1.6 Example 2: Principal Chiral Model on Symmetric Spaces

The construction of the PCM action can be modified so as to accommodate the case

of cosets. There are a number of additional intricacies entailed in this scenario (mostly

when including deformations), but for the Principal Chiral Model they do in fact remain

easily under control. We will concentrate on a specific type of cosets − symmetric spaces

− to which will return on multiple occasions in what follows.

Consider a semi-simple Lie groupG and a subgroupH ⊂ G such thatG/H is a symmetric

space. That is, there exists an automorphism of g = Lie(G) realizing a Z2-gradation of

the algebra,

g ∼= g(0) ⊕ g(1) . (3.25)

The subalgebra h = Lie(H) ∼= g(0) and the linear space m ∼= g(1) correspond to the +1

and −1 eigenspace, respectively. The Z2-gradation enforces the (schematic) commutation

relations [h, h] ⊂ h, [h,m] ⊂ m, and [m,m] ⊂ h. The projection of x ∈ g onto g(i) is

obtained via projectors Pi and denoted with x(i).

If j± = g−1∂±g with g ∈ G, the action for the Principal Chiral Model on the G/H

symmetric space is

S =
1

π

∫
d2σ〈j(1)

+ , j
(1)
− 〉 . (3.26)
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The PCM on a group manifold had a global symmetry GL×GR, corresponding to left and
right multiplication by a constant element ofG. Now, considering the right-multiplication

by a non constant element h ∈ H,

j± → h−1j±h+ h−1∂±h . (3.27)

The second term on the right-hand side is h-valued and drops out upon applying the

projector P1. Ad-invariance of the inner product 〈·, ·〉 then ensures that HR is a gauge

symmetry for the action (3.26). The left global symmetry GL is left untouched.

The equations of motion and Bianchi identity for the system are given by

0 = ∂±j
(1)
∓ + [j

(0)
± , j

(1)
∓ ] , (3.28)

0 = ∂+j
(0)
− − ∂−j

(0)
+ + [j

(0)
+ , j

(0)
− ] + [j

(1)
+ , j

(1)
− ] , (3.29)

and can be encoded in the Lax connection

L± = j
(0)
± + z±1j

(1)
± . (3.30)

Having assessed weak integrability, we can try and ascertain strong integrability of the

model. This poses a challenge, for the HR local symmetry makes the theory constrained :

different solutions of the equations of motion are related to one another via gauge trans-

formations. This subtle point is overshadowed in the Lagrangian formalism (weak inte-

grability) but most certainly kicks in when the Hamiltonian formalism is involved (strong

integrability).

The theory of constrained Hamiltonian systems is a vast topic in the Mathematical

Physics literature and we will not aim at providing a complete treatment of the subject

which can be found in the standard references [69, 70]. Rather, we shall focus on aspects

pertinent to our case. A Lagrangian with a gauge invariance group becomes a constrained

Hamiltonian system. Gauge symmetry implies the existence of first class constraints,

i.e. quantities having weakly vanishing Poisson brackets with all other constraints6.

The model might also require second class constraints, that is having some non-weakly

vanishing Poisson bracket. We will label the set of N constraints generically by Φk,

k = 1, . . . , N . Accordingly, the Lax matrix as well as the Hamiltonian can, and as we

will see should, be extended by adding terms proportional to these constraints.

As in the group case, the algebra-valued momentum X takes the form

X(1) =
1

2π
j(1)
τ . (3.31)

6A function F of the phase space variables is said to vanish weakly if it does when the constraints
are applied. In Dirac’s notation, this situation is indicated with F ≈ 0.
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As a consequence of the HR-invariance, its subgroup-directed counterpart X(0) implies

the primary constraint7 Φ1 : X(0) ≈ 0, which as expected is first class. Replicating

the construction of the previous section, we shall complete the picture with the spatial

component of the current, Y (1) = 1
2π j

(1)
σ . The Legendre transformation of the Lagrangian

leads to the Hamiltonian

Ham =
π

2

∫
dσ
(
〈X(1), X(1)〉+ 〈Y (1), Y (1)〉

)
. (3.32)

As argued above, in a constrained Hamiltonian system, the correct object to consider is

instead the extended Hamiltonian

HamE = Ham +

∫
dσ 〈χ,X(0)〉 , (3.33)

where χ is an algebra-valued Lagrange multiplier. Using the extended Hamiltonian one

can check that no secondary constraints arise from the stability under time evolution of

the constraint, {HamE , X
(0)} = 0.

Replicating the reasoning above, one ought to consider a suitably extended Lax matrix

LE(z) = L(z)+f(z)Φ obeying the usual Maillet algebra. The function f(z) can be fixed

by requiring the closure of the Maillet algebra. In the coset case, the untwisted R-matrix

R0 also assumes a new form [66],

R0
12(z, w) =

w

w2 − z2
C(00)

12 +
z

w2 − z2
C(11)

12 , (3.34)

where now C(ii)
12 are the graded components of the Casimir operator. The explicit calcu-

lation reveals that, for the PCM on a symmetric space, the twist function and f(z) are

given by

ϕ(z) = − 1

π

z

(1− z2)2
and f(z) = π(1− z2) . (3.35)

3.2 T-duality

Dualities relate two seemingly unrelated (string) theories by ensuring that they describe

the same physics only, so to speak, from different viewpoints. They come in a number of

flavours [71–73], but we shall restrict to the so-called target space duality or, for short,

T-duality.
7Primary constraints are relations between dynamical variables that do not require the equations of

motion to hold. However these need to be preserved over time. If this is not immediately the case,
one has to provide additional constraints, known as secondary, that depend on the application of the
equations of motion.



Physical Preliminaries 28

Its first formalisation was to due to Buscher [9, 10], and was then extensively studied

and extended in various directions. At the core it states that, provided some criteria are

met, two string backgrounds with different geometries, dilaton and fluxes are physically

equivalent, and the choice of one over the other is just a matter of convenience. Most

importantly, the explicit relation between the two is known, making us able to move with

relative ease between the two descriptions.

As a matter of fact, T-duality itself comes in a number of flavours depending on the geo-

metric features of the background we are trying to T-dualise. The easiest (and original)

incarnation is Abelian T-duality: in this case the target space should display Abelian

symmetries in the form of isometries and the relationships with its dual go down in the

literature as “Buscher rules”. Growing in complexity we encounter non-Abelian T-duality

[74–76] where isometries are now required to furnish a representation of a non-Abelian

group. Even more general, we find Poisson-Lie T-duality [14, 77, 78], where one tries to

relax the notion of symmetry (and, in particular, isometry) in favour of what it is called

a Poisson-Lie condition.

We shall begin with an introduction to Abelian T-duality via the Buscher procedure,

i.e. the series of steps which ultimately lead to the Buscher rules. We will show how

this set-up might benefit from a doubled formulation (in a sense akin to that of Gener-

alised Geometry), following a recent review [79]. We will then explain how Poisson-Lie

T-duality generalises this construction whilst retaining both Abelian and non-Abelian

T-dualities as particular cases.

3.2.1 The Buscher Procedure

Take an n-dimensional manifoldM . Consider the bosonic Polyakov σ-model Lagrangian

having M as target space (hence neglect the overall tension, as well as factors of π); in

particular, gauge-fix the worldsheet metric to the constant two-dimensional Minkowski

metric and neglect dilation contributions in the form of a Fradkin-Tseytlin term [80–82].

This reads

L = ∂+x
µ(gµν + bµν)∂−x

ν ≡ ∂+x
µEµν∂−x

ν , (3.36)

with Greek indices running from 1 to n and light-cone coordinates σ± = τ±σ. We require

M to have D < n Abelian isometries realised as D commuting vector fields ki = kµi ∂µ,

i = 1, . . . , D. Even though the generalisation is straightforward, we shall take n = D+1,

i.e. a one-dimensional base. These vectors are Killing and, furthermore, shall preserve

fluxes, LkiH = 0, for H = db. In practice, on M we can choose adapted coordinates

xµ = (xi, y) so that neither g nor b depend on x-coordinates, thus realising the symmetry

explicitly. The xi- and y-coordinates are called “isometries” and “spectators”, respectively.



Physical Preliminaries 29

Adopting matrix notation and shorthand

Eij ≡ E , Enj ≡ N , Ein ≡M , Enn = K , (3.37)

the Lagrangian expanded according to the coordinate-split reads8

L = ∂+x
tE∂−x+ ∂+x

tM∂−y + ∂+y
tN∂−x+ ∂+y

tK∂−y . (3.38)

Notice that M and N serve as “connection terms” between the base manifold and the

torus (identified with the xi-coordinates) fibred above it. This observation can be made

more precise introducing two connections B and B̃ that obey

M∂y = EB + B̃ , ∂ytN = BtE − B̃t . (3.39)

Upon inserting (3.39) into (3.38), the Lagrangian with covariant derivative ∇x = ∂x+B

L = ∇+x
tE∇−x+ ∂+x

tB̃− − ∂−xtB̃+ −Bt
+EB− + ∂+y

tK∂−y (3.40)

is obtained. Now, the U(1)D global isometries, which correspond to the constant shifts

xi → xi + ζi, can be gauged by making ζ a local parameter. Whilst L enjoys no such

local symmetry, gauge invariance is restored inserting 2×D gauge fields A± transforming

as

A± → A′± = A± − ∂±ζ , (3.41)

and promoting ∂± → ∂±+A±. In the Buscher procedure we shall require the connection

A to be flat, i.e. of vanishing field strength F = ∂+A− − ∂−A+ = 0. The easiest way to

accomodate this constraint is through the use of a Lagrange multiplier x̃i,

LGauged = (∇+x+A+)tE(∇−x+A−) + (∂+x+A+)tB̃− − (∂−x+A−)tB̃+

−Bt
+EB− + ∂+y

tK∂−y + x̃t(∂+A− − ∂−A+) .
(3.42)

If we integrate over x̃, the gauge field A becomes pure gauge and can be consistently

set to zero, thereby recovering the original model (3.40). Conversely, we could try and

integrate by parts the term containing the Lagrange multiplier. In this case, A comes

with no kinetic term and can thus be integrated out via its equations of motion

A− = −∇−x− E−1∇−x̃ , (3.43)

A+ = −∇+x+ E−t∇+x̃ , (3.44)

8From now on, x without indices is understood to represent the isometries xi. Also, despite having
a single y-coordinate, we persist on using transposition for a better comparison with xi.
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where the covariant derivative has been changed to ∇x̃ = ∂x̃ + B̃. What we obtain is

the “dual” Lagrangian

LDual = ∇+x̃
tẼ∇−x̃− ∂−x̃tB+ + ∂+x̃

tB− − B̃t
+ẼB̃− + ∂+y

tK̃∂−y , (3.45)

where we have identified the combinations

Ẽ = E−1 , K̃ = K −NE−1M , M̃ = E−1M , Ñ = −NE−1 . (3.46)

The form of (3.45) is identical to that of (3.40), upon using the so-called “Buscher rules”

(3.46): they relate metric and B-field of two seemingly different models that, however,

describe the same physics i.e. are T-dual.

3.2.2 A Generalised Geometry Perspective

The procedure outlined above provides us with a mechanical way to obtain the La-

grangians (3.38) and (3.45) in the two duality frames. However, T-duality is not really

manifest. Our starting point to remedy that is the gauged Lagrangian (3.42): albeit

not explicitly, LGauged already hints at a “doubled” torus, for it contains both xi and x̃i.

For a single scalar field f (with ∂±f 6= 0 everywhere), we impose on A the gauge-fixing

condition

∂+fA− = ∂−fA+ . (3.47)

A possible parametrisation is to take A± = A∂±f , with A a D×1 matrix of scalar fields.

The equations of motion (3.43) can be in fact used to solve for A: operating a symmetric

choice we find that

A = − 1

2∂−f
g−1(E∇−x+∇−x̃)− 1

2∂+f
g−1(Et∇+x−∇+x̃) . (3.48)

We shall now plug this choice for A± back into the gauged action (applying integration by

parts on the term containing x̃). Once the dust settles, a number of O(D,D)-covariant

quantities can be introduced,

X =

(
x̃

x

)
, B =

(
B̃

B

)
, H =

(
g−1 g−1b

−bg−1 g − bg−1b

)
, ω =

(
0 −1

+1 0

)
,

η =

(
0 1

1 0

)
, P± =

1

2
(η ±H) ,

(3.49)

as well as an O(D,D)-invariant metric

K̂ = K − 1

2
Ng−1M − 1

4
M tg−1M − 1

4
Ng−1N t , (3.50)
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so as to rewrite the gauged Lagrangian in a doubled fashion,

LDoubled =
1

2
∇+XtH∇−X−

1

2
∂+Xtω∂−X

−1

2

∂−f

∂+f
∇+XtHP−∇+X−

1

2

∂+f

∂−f
∇−XtHP+∇−X

+
1

2
∂+XtηB− −

1

2
∂−XtηB+

+∂+y
tK̂∂−y .

(3.51)

One of the novelties with respect to the treatment of Generalised Geometry as provided

in Chapter 2 is the presence of ω. The coordinates x and x̃ span the 2D-dimensional

torus T 2D, a Kähler manifold. As T 2D ∼= CD/Λ for some lattice Λ, we can assume that

locally its Kähler form is precisely ω. Hence, the contribution of the new term to the

action is simply the pull-back of the Kähler to the worldsheet

Sω = −1

2

∫
Σ

d2σ ∂+Xtω∂−X = −1

2

∫
Σ
X∗(ω) = −1

2

∫
X(Σ)

ω . (3.52)

By definition, ω is a closed two-form and its integral will only depend on the homology

class of X(Σ). For a fixed homology class β of X(Σ), Sω contributes with a pre-factor

to the path-integral. In particular, it is insensitive to the worldsheet metric and is thus

topological. Nevertheless, it is important not to discard this term, as it is vital in the

path integral approach [83, 84].

Now, a particularly simple gauge-fixing for the doubled Lagrangian is ∂+f = ∂−f . Using

HP± = 1
2(H ± η) and trading the light-cone coordinates for the ordinary τ and σ, an

explicit calculation reveals that

LDoubled = −1

4
∂1XtH∂1X +

1

4
∂1Xtη∂0X +

1

2
∂1XtηB0 −

1

2
∂1XtHB1

+
1

4
Bt1ηB0 −

1

4
Bt1HB1 +

1

4
∂µy

tK̂t∂µy +
1

4
∂0Xtω∂1X .

(3.53)

This is the Hull-Tseytlin action [11, 85]. Its minimal formulation − the one we shall use

in Chapter 7 − is recovered for B = 09. Interestingly, for vanishing connection the dual

metric on the base boils down to K,

LMinimal = −1

4
∂1XtH∂1X +

1

4
∂1Xtη∂0X +

1

4
∂µy

tKt∂µy . (3.54)
9We will also neglect the topological term for it only contributes an overall factor, as discussed.
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3.2.3 Abelian T-Duality in Generalised Geometry

Abelian T-duality and the Buscher rules are better understood in a generalised-geometric

formalism [43]. For simplicity, we shall restrict to the case of a U(1) isometry group, even

though a generalisation is straightforward. Recall that the Buscher rules hold provided

we have an Abelian isometry in our background, meaning that there is a vector v such

that

Lvg = 0 , LvH = 0 , (3.55)

for a Riemannian metric g and an H-flux H = db. In general, LvH = 0 does not

imply that Lvb = 0. A simple counterexample is when v = ∂θ, H = dθ ∧ dx ∧ dy and

b = θdx ∧ dy. Still, the invariance of H has implications for the invariance of b. Given

that H is exact, we have LvH = dιvH, meaning that we can rewrite, at least locally,

ιvH = dα, for some two-form α. In a similar fashion, we have that

Lvb = dιvb+ ιvH = d(ιvb+ α) . (3.56)

The B-field is defined up to gauge transformations, though. Hence, we could define a

new field b′ = b+dξ′ such that now Lvb
′ = d(ιvb+α+ ιvdξ

′). In practice, we can tune ξ′

so as to make the former expression vanish. Or, in terms of b, we can equivalently write

Lvb = d(ιvdξ
′ + df) ≡ dξ , (3.57)

where we have introduced yet another scalar function f thanks to properties of the

exterior derivative. So, to sum up, Abelian T-duality is possible whenever

Lvg = 0 , Lvb = dξ . (3.58)

As we can notice, these conditions rely on a vector field v and on a one-form ξ. It is

natural to gather them together in a unified object − a generalised vector V = v + ξ.

As one can check, our conditions can be rephrased as the invariance of the generalised

metric under the generalised Lie derivative LVH = 0.

Now, recall that the vector ξ is not completely fixed, for we have the gauge redundancy

ξ → ξ + df leaving the conditions for T-duality unaltered. We could gauge fix this

freedom by requiring that the generalised vector be of unit norm, η(V, V ) = 1. This

goes as follows. First, we can always find adapted coordinates such that v = ∂θ for some

direction θ (the isometry). Then, by construction, it follows that V = ∂θ + ιθdξ
′ + df .

Finally, by definition η(V, V ) = ιθdf . If we choose df = dθ then the norm is one.
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Therefore, after gauge fixing, our generalised vector looks like

V = ∂θ + dθ − ιθdξ′ . (3.59)

Notice that, in most cases, the last term is not really necessary for we already have a

B-field not depending at all on the isometric direction. The T-duality transformation

corresponding to the Buscher rules is then implemented via an O(D,D) matrix

T = 1− 2V ⊗ (V tη) (3.60)

acting on the generalised metric H as THT t. The form with indices is somewhat more

explicit, TIJ = δI
J−2VIV

J. It is simple to check that T 2 = 1, meaning that the application

of two T-dualities along the same direction brings us back to the background we started

from.

3.2.4 Poisson-Lie T-Duality

We can now try and upgrade the concept of T-duality to backgrounds other than those

admitting Abelian isometries. In fact, we would like to completely give up on the re-

quirement of isometries as a whole.

To this end, consider a D-dimensional target manifold M and take the two-dimensional

non-linear σ-model with action

S =
1

πt

∫
d2σ ∂+x

µEµν∂−x
ν , (3.61)

where E is a shorthand for the generalised metric E = G + B. Again, we have fixed

the worldsheet metric to the flat Minkowski metric and neglected the Fradkin-Tseytlin

term. Given a Lie group G acting freely on M , let va = vµa∂µ, a = 1, . . . ,dimG be the

left-invariant vector fields corresponding to the right G-action. For a set of worldsheet

coordinates-dependent parameters εa = εa(σ+, σ−), the variation of the action entailed

by the diffeomorphism xµ → xµ + εava
µ reads

δS =
1

πt

∫
d2σ εa∂+x

µ(LvaE)µν∂−x
ν +

1

πt

∫
dεa ∧ Ja , (3.62)

where we have introduced the convenient one-form

Ja = −∂+x
νEνµva

µdσ+ + va
µEµν∂−x

νdσ− . (3.63)
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In case of the G-action being an isometry, Lva(E) = 0, the first term in δS vanishes

and ?Ja is in fact a conserved current thanks to dJa = 010. This is just plain Noether

theorem at work. However, we would like to give up on the presence of isometries in

favour of a milder condition.

In [77], Klimčík and Ševera put forward the idea of requiring the current Ja not to be

conserved but to instead obey a Maurer-Cartan type of equation, namely

dJa +
1

2
f̃bcaJb ∧ Jc = 0 . (3.64)

The f̃bca are just some constants that will be given proper justification in a moment.

Judging from δS, this condition imposes a constraint on the Lie derivative of the gener-

alised metric,

LvaEµν = EµρEσν v
ρ
bv

σ
c f̃

bc
a . (3.65)

This equation is known as the Poisson-Lie condition. Actually, the identity L[va,vb] =

[Lva , Lvb ] for the Lie derivative enforces a relation between the structure constants fabc

of g = Lie(G) and the f̃bca,

fab
cf̃dec = fac

df̃ceb + fac
ef̃dcb + fcb

df̃cea + fcb
ef̃dca . (3.66)

We have already encountered this equation in (2.4): it expresses the necessary consistency

condition between the structure constants f of a Lie bialgebra g, and those f̃ of the dual

bialgebra g∗. At this point, it is clear that we would like our f̃ ’s to precisely be structure

constants of a bialgebra g∗ generated by T a, so that J = JaT
a ∈ g∗.

As explained in Chapter 2, the two bialgebrae g and g∗ ≡ g̃ are in one-to-one correspon-

dence with a Drinfel’d double d = g⊕ g̃. Duality is expressed in the ability to swap roles

for g and g̃, obtaining a dual model with currents J̃a and generalised metric Ẽµν obeying

dJ̃a +
1

2
fbc

a J̃b ∧ J̃c = 0 , LṽaẼµν = ẼµρẼσν ṽ
ρbṽσc fbc

a . (3.67)

3.2.5 Poisson-Lie Models

For our purposes, we shall focus on the case where M is the group manifold G, meaning

that, as a group, G will act on itself. In particular, we shall choose g = Lie(G) =

span(Ta) semi-simple, thereby having a coboundary Lie bialgebra structure specified by

an R-matrix R. Convention-wise, we will adopt coordinates xi on G, reserving xµ for

more general contexts (e.g. M being aG-fibration). Given g ∈ G, define the left-invariant
10The symbol ? denotes the Hodge dual.



Physical Preliminaries 35

one-forms g−1dg = eaTa and their dual vector fields va11. Let πij be the Poisson bi-vector

of the group G, with πab = eaiπ
ijej

b = (Rg−R)ab its flattened version. Also, let (E0)ij

be a dimG×dimG matrix obtained from dressing an invertible, constant matrix (E0)ab

with the frame fields ea. In the light of the above, it is straightforward to check that

Lvcπ
ab = f̃abc + fdc

aπdb + πadfdc
b . (3.68)

Now, consider a string model on G described by the generalised metric

Eij = −eja(E−1
0 + π)−1

abe
b
j . (3.69)

Exploiting (3.68) we find

LvcEij = EikEljv
k
av

l
bf̃

ab
c , (3.70)

that is, the Poisson-Lie condition. Therefore, any model on G whose generalised metric

can be expressed in the form (3.69) for some choice of E0 is amenable to Poisson-Lie

T-duality. Accordingly, we will call Poisson-Lie model [14, 77, 78, 86, 87] with tension

t′12 a bosonic non-linear σ-model on G with action

S = − 1

πt′

∫
d2σ ea+(E−1

0 + π)−1
abe

b
− . (3.71)

To find the dual model, we can just swap the roles of g and g̃; the bialgebra g̃ exponen-

tiates to a Lie group G̃ with Poisson bi-vector π̃ which in turns defines a new action

S̃ = − 1

πt′

∫
d2σ ẽa+(E0 + π̃)−1abẽb− . (3.72)

Depending on the properties of G and G̃, Abelian and non-Abelian T-duality can be

recovered. For the sake of simplicity, let us discuss the Principal Chiral Model on G.

Recall that its action is given by

S =
k2

πt

∫
d2σ 〈g−1∂+g, g

−1∂−g〉 . (3.73)

(Non-)Abelian T-duality is based on having a (non-)Abelian group of isometries. In

virtue of (3.64), this requires the current Ja to be closed, i.e. the dual structure constants

to vanish. Hence, the dual group should be Abelian, G̃ = U(1)D with D = dimG. For

Abelian T-duality, we fix G = U(1)D; because of (3.67), the dual currents J̃a are closed

(that is, G̃ = U(1)D generates the D isometries of the dual background). In this case,
11That is, they obey ιvae

b = δa
b, where ι indicates contraction.

12We adopt a different tension t′ as this might not necessarily coincide with that of the ordinary
non-linear σ-model, t.
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E0 = k2κ for κ the Killing form on g and, since π̃ = 0, we recover the Buscher rule

k → k−1. For non-Abelian T-duality, we need G to be non-Abelian, but G̃ = U(1)D

again. The Poisson structure π still vanishes, but π̃ does not and coincides with the

Kirillov-Kostant-Souriau form [88].

3.2.6 E-Models

In the same spirit of Section 3.2.2, the two dual Poisson-Lie models can be conveniently

uplifted to a single action on a Drinfel’d double D = exp(d), dimD = 2D, that comprises

of both G and G̃. The result is called an E-model.

The E-model [14, 21, 89] is a theory of currents J = TAJ A(σ) = g−1∂σg valued in

the loop algebra of d which originate from the embedding map g : Σ→ D of the string

worldsheet into the Drinfel’d double. The dynamics is generated by the Hamiltonian

HamE =
1

4π

∮
dσ⟪J , EJ ⟫ , (3.74)

in which the eponymous operator E : d→ d is an involution, E2 = 1, that is self-adjoint

with respect to the inner product on d, ⟪·, E·⟫ = ⟪E·, ·⟫. This involution can be specified

by D2 parameters which are associated to those of the Poisson-Lie σ-model. If we split

E0 into a symmetric and skew-symmetric part, E0 = g0 + b0, the mapping is

EAB = (Hη−1)A
B , HAB =

(
g−1

0 g−1
0 b0

−b0g−1
0 g0 − b0g−1

0 b0

)
AB

, ηAB =

(
0 1

1 0

)
AB

,

(3.75)

with HAB the associated generalised metric. The Poisson structure of the theory is

defined to be a current algebra

{JA(σ),JB(σ′)} = 2πFAB
CJC(σ)δ(σ − σ′) + 2πηABδ

′(σ − σ′) , (3.76)

in which FAB
C are the structure constants on d and {·, ·} denotes the equal time Poisson

brackets. Accordingly, we find the equations of motion

∂τJ = {J ,HamE} = ∂σEJ + [EJ ,J ] . (3.77)

Taking into account that E is an involution, we could also decompose the currents into

chiral and anti-chiral parts

J± =
1

2
(1± E)J , (3.78)
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and rewrite (3.77) as

∂−J+ + ∂+J− + [J−,J+] = 0 . (3.79)

Since EJ± = ±J±, only half of the components of J+ and J− are independent.

Therefore, although the E-model apparently depends on 2D degrees of freedom contained

in g , the first order equations of motion allow half of them (those associated to the

subalgebra g̃) to be eliminated on-shell to yield second order equations for the rest (those

associated to g). In this way, the dynamics of the theory specified by the σ-model (3.71)

on the target space M = D/G̃ is recovered.

The Hamiltonian for a non-linear σ-model can be expressed in terms of a generalised

metric HIJ as

HamH =
1

4π

∮
dσ
(

2πp ∂σx
)I
HIJ

(
2πp

∂σx

)J

with HIJ =

(
tg−1 g−1b

−bg−1 t−1(g − bg−1b)

)
IJ

(3.80)

in which the canonical momentum is given by pi = (gij∂τx
j − bij∂σxj)/2πt and where

(gij, bij) is the geometric data entering the σ-model. Here the indices I denote that the

fields act on the generalised tangent space of M and one has the usual canonical Poisson

brackets {xi(σ), pj(σ
′)} = δijδ(σ − σ′). Given the structure of HamH, it is natural to

introduce some generalised currents JI =
(
∂σx

i, 2πpi
)
taking values in the generalised

tangent space of the target space M . By virtue of the canonical Poisson brackets for

(x, p), they can be shown to obey

{JI(σ),JJ(σ
′)} = 2πηIJδ

′(σ − σ′) , (3.81)

where η is again the O(D,D)-invariant metric. The same choice of letter for these cur-

rents is not accidental as they can be related to the E-model currents JA by introducing

generalised frame fields EA
I such that

JA = EA
IJI , EA

IηIJEB
J = ηAB , EA

IHIJEB
J = HAB . (3.82)

The generalised frame field EA
I is the Generalised Geometry analogous of the left in-

variant Maurer-Cartan form eai on the target space group manifold M = G. For each

value of the algebra index A, EA
I defines a generalised vector comprising of a vector field

and a one-form (whose components in a coordinate basis are EA
i and EAi, respectively).

Armed with such a generalised frame field, the elegant results of Alekseev and Strobl

[90] show that one can indeed, starting from the canonical Poisson-brackets for pi and

xi appearing in (3.80), derive the Poisson brackets for the currents JA as

{JA(σ),JB(σ′)} = 2πLEAEB
IEC

IJCδ(σ − σ′) + 2πηABδ
′(σ − σ′) . (3.83)
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Evidently, these are coherent with (3.76) provided LEAEB
I = FAB

DED
I. We will discuss

this constraint at length in Chapter 4.

3.3 Integrable Deformations

The name “integrable deformation” is used to refer to a two-dimensional integrable

σ-model obtained as a smooth deformation of another integrable system. Whilst this

definition is quite broad, we shall restrict to deformations of the PCM, either on group

manifolds or coset spaces. Depending on the precise implementation, they acquire differ-

ent names and enjoy different physical as well as mathematical properties.

First off, the relevance of the PCM is to be attributed to it being a solvable toy-model that

nevertheless encompasses a number of non-trivial features of QCD, such as confinement,

dynamically generated mass gap and asymptotic freedom. In this sense, it is tempting

to try and retain as much simplicity as possible, while extending its capabilities to more

complicated scenarios.

A first attempt in this direction can be found in the work of Cherednik [91], where a

PCM on SU(2) ∼= S3 is deformed away from the round three-sphere. In detail, the action

with radius k

S =
k2

πt

∫
d2σ

(
Tr(J+J−) + CJ3

+J
3
−

)
(3.84)

was considered. The currents J appearing here are the left-invariant one-forms J = g−1dg

with, in particular, J3 = Tr(T3J) being T3 the third su(2) generator. C is a real,

constant, parameter. The original SU(2)L×SU(2)R symmetry of the PCM is apparently

broken down to SU(2)L × U(1)R in the deformed case. Despite this loss, the model is

still classically integrable. A more sophisticated analysis [92] reveals that this naive

symmetry-breaking pattern is not quite right: the Lie algebra su(2)R becomes in fact a

quantum enveloping algebra Uq(su(2)), with parameter q13 given by

q = exp

( √
C

1 + C

)
. (3.85)

The fact that the initial symmetry is modified to a quantum group is not an accident

of the squashed sphere, but rather a generic feature of integrable deformations (see e.g.

[93]).

Reconnecting with more general aspects of String Theory, integrable deformations might

provide new insights into the AdS/CFT correspondence. It just so happens that, possibly
13The parameter q describes, in general, the deviation from the canonical su(2) commutation relations

of the Hopf algebra Uq(su(2)).
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in some limit, superstrings moving on a AdSn ×M10−n background (for some choice of

n ∈ N and (10−n)-dimensional manifold M10−n) are classically integrable; on the other

side of the duality, we find a (classically) integrable CFT. The most famous example is

the classical limit of type IIB superstring on AdS5×S5 dual to the planar limit of N = 4

super Yang-Mills theory [26]. Whereas the interpretation of a deformation on the gravity

side is clear (superstring moving on a deformed geometry perhaps with non-vanishing

fluxes), less so is its field-theoretical counterpart: the possibility of a deformed gauge

theory is still under current investigation [94].

In this thesis, we shall restrict to two types of integrable deformations, named Yang-Bax-

ter model and λ-deformation. They furnish instances of Poisson-Lie T-dual pairs and

have been successfully applied as part of the study of the Green-Schwarz superstring on

deformed backgrounds [95–100].

3.3.1 (Bi-)Yang-Baxter Model

The Yang-Baxter model, or η-deformation, [16] on a group manifold G owes its name to

the parameter η governing the depth of the deformation as per the action

Sη =
1

πt

∫
d2σ 〈g−1∂+g,

1

1− ηRg
g−1∂−g〉

=
1

πt

∫
d2σ 〈∂+gg

−1,
1

1− ηR
∂−gg

−1〉 . (3.86)

If g ∈ G, the operator Rg is defined by Rg = Ad−1
g ·R ·Adg, being R an R-matrix obeying

the mCYBE. The prefactor t indicates the string tension. Note that we indeed have a

smooth η → 0 limit, whence we recover the PCM. The Yang-Baxter model has been

proved weakly and strongly integrable in a number of works [93, 101], mostly stemming

from the original paper [17]. Technicalities about the actual proof are omitted, but a

much more involved set-up (double Yang-Baxter-like deformation of coset spaces) will

be studied in great detail in a later chapter. Let us just mention here that R obeying

the mCYBE is a fundamental ingredient of the proof.

From an algebraic point of view, the most striking consequence of the deformation is that

the original global GL ×GR symmetry of the PCM is broken down to GR only. This is

immediately evident from the second expression of Sη in (3.86), formulated in terms of

right-invariant forms14. In terms of geometry, recall that the PCM action can be recast in

the form of a Polyakov action with metric only. The identification of the dressed Killing

form κ with the metric G of the Lie group, Gij = ei
aκabe

b
j, where g−1dg = eaidx

iTa,
14In fact, the story is much richer: the relation between conserved changes (coming from the integrable

structure) and quantum groups unveils more subtle patterns in the symmetry-breaking process. However,
this aspect will not be part of this thesis.
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provides the map. The modified action (3.86) entails a different geometric structure: the

metric G of the original PCM gets η-deformed to some new g and a (usually) non-trivial

B-field b is turned on, H = db 6= 0.

The Yang-Baxter model can be tweaked so as to include a second deformation parameter,

ζ. This new type of deformation, called bi-Yang-Baxter model [17], is encoded in the

action

S =
1

πt

∫
d2σ 〈g−1∂+g,

1

1− ηRg − ζR
g−1∂−g〉 . (3.87)

Its weak and strong integrability were only proved quite recently, in [102] and [103],

respectively. The additional deformation makes it impossible to preserve any global

symmetry for generic values of η and ζ.

3.3.2 λ-Deformation

The λ-deformation is a second type of integrable model obtained from a modification

of the PCM. It was first introduced by Sfetsos [18] and later proven Poisson-Lie T-dual

(modulo an analytic continuation of generators) to the Yang-Baxter model [21]. The

construction of the action is somewhat involved and we shall briefly review it. Starting

from a PCM at level k̃ on a Lie group G 3 g̃,

SPCM[g̃] = − k̃
2

π

∫
d2σ〈g̃−1∂+g̃, g̃

−1∂−g̃〉 , (3.88)

we gauge the GL global symmetry, acting as g̃ → h−1g̃, by promoting partial to covariant

derivatives ∂± → D± ≡ ∂±+A± for a g-valued connection one-form A. We indicate the

resulting action as SgPCM[g̃, A]. Additionally, the diagonal symmetry Gdiag : g → h−1gh

of the Wess-Zumino-Witten action15 at level k for a new element g ∈ G,

SWZW[g] = − k

2π

∫
Σ

d2σ〈g−1∂+g, g
−1∂−g〉 −

k

24π

∫
M3

〈g−1dg, [g−1dg, g−1dg]〉 , (3.89)

can be gauged to obtain a gauged WZW action

SgWZW[g,A] = SWZW[g] +
k

π

∫
d2σ

(
〈A−, ∂+gg

−1〉 − 〈A+, g
−1∂−g〉

+ 〈A−, gA+g
−1〉 − 〈A−, A+〉

)
. (3.90)

15The Wess-Zumino-Witten (WZW) model, which we have not formally introduced so far, is an
extension of the PCM that includes a three-dimensional Wess-Zumino term, see (3.89). It was first
considered in the context of non-Abelian bosonization by Witten [19]. It is a prime example of conformal
field theory with symmetry described by an affine Lie algebra and where standard CFT techniques (e.g.
the Sugawara construction) find powerful application. For an extensive treatment the reader is referred
to the classic book [104].
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The combination of the two actions, Sλ[g, g̃, A] = SgWZW[g,A] + SgPCM[g̃, A], can be

gauge-fixed to g̃ = 1; besides, the connection A behaves as a Lagrange multiplier and is

integrated out. As a consequence, we realise that Sλ[g] is a deformation of the WZW

model at level k given by

Sλ = SWZW[g]− kλ

π

∫
d2σ〈Og−1g−1∂−g, ∂+gg

−1〉 , (3.91)

where Og = (1 − λAdg)
−1. The effective parameter λ, whence the name of the model,

amounts to a combination of the two original levels,

λ =
k

k + k̃2
. (3.92)

The λ-deformation has been rigorously proven integrable, in both weak and strong sense,

in [18, 105–107]. Since then, a number of papers have addressed its properties. In

particular, much like in the bi-Yang-Baxter case and even more so, multi-parameter

integrable deformations are allowed [108].

3.3.3 Yang-Baxter Deformation as an E-Model

To reconcile the presentation of Poisson-Lie T-duality with that of integrable deforma-

tions, we will show how the Yang-Baxter deformation is an instance of E-model. This

fact will be used throughout the thesis a number of times.

The construction of the E-model starts from a comparison of the Poisson-Lie and Yang-Bax-

ter actions, which we recall are16

SPL =
1

π

∫
d2σ ea+(E−1

0 + π)−1
abe

b
− , Sη =

1

πt

∫
d2σ ea+(κ−1 + ηRg)

−1
abe

b
− . (3.93)

Owing to the fact that, on the semi-simple group G, π = ηκ−1(Rg−R)17 we immediately

identify E−1
0 = tκ−1(1 + ηR). The latter needs to be inverted and split into symmetric

and antisymmetric parts so as to build the generalised metric in (3.75). Performing the

inversion, with E0 = g0 + b0, we find

g0 = t−1 1

1− η2R2
κ , and b0 = t−1 1

1− η2R2
Rκ , (3.94)

from which

HAB =

(
tκ−1(1− η2R2) ηRκ

−ηκRκ−1 t−1κ

)
AB

. (3.95)

16Notice that, when using a notation with explicit indices, Sη acquires a slightly different form: in
particular the Killing form κ enters explicitly and an additional minus sign due to the transposition of
Rg appears.

17The presence of η in the definition of the Poisson structure is a useful convention we shall adopt.
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3.4 Double Field Theory

The final ingredient of this brief review is Double Field Theory (DFT)18. It is well known

that the low-energy limit (i.e. α′ → 0) of Superstring Theory is Supegravity. In fact,

type II superstrings of different chirality (type IIA or IIB) will reduce to supergravities

with different field content. Nevertheless, at the SUGRA level they share a common

Bosonic action in string frame

S =

∫
dDx
√
ge−2φ

[
R+ 4(∂φ)2 − 1

12
H2

]
, (3.96)

where xµ with µ = 1, . . . , D are local coordinates, R is the Ricci scalar of the metric g,

H = db the flux and φ the dilaton. As written, however, this shows no sign of T-duality

whatsoever. The idea lying at the core of DFT is precisely to make the O(D,D) T-duality

group of String Theory manifest at the Supergravity level.

From a conceptual point of view, an O(D,D) formulation of String Theory compactified

on TD makes perfect sense: the fundamental representation of the group is 2D-dimensional

and we identify D components with momenta and other D components with windings

modes of the string on TD. However, Supergravity is, by definition, the point particle

limit of String Theory, and no such thing as winding exists for zero-dimensional ob-

jects. For example, coordinates would need to sit in some O(D,D) representation, but

we clearly only have D of those, xµ. Hence, we shall introduce some dual x̃µ so that

XI = (x̃µ, x
µ) does transform as an O(D,D) vector. We might then wonder what the new

D degrees of freedom are. These are just a mere artefact of our description, introduced

to ease the appearance of a manifest T-duality. Of course, such an extension results

in an unwanted redundancy. Therefore, a constraint to eliminate those extra fictitious

elements is most definitely needed. This is known as the section condition for DFT and

reads19

∂I∂I(. . . ) = 0 , (3.97)

where the dots indicate any field transforming in some O(D,D) representation. The

section condition is then equivalent to ∂̃µ∂µ which can be solved by imposing ∂̃µ(. . . ) = 0,

i.e. removing dependence on the extraneous degrees of freedom. This choice is sometimes

called the supergravity frame.
18Here we shall only provide a streamlined introduction to DFT so as to keep digressions at a minimum.

Amongst the many good references, we single out [109] for a more comprehensive review of standard
material on the subject.

19An equivalent formulation [110] is Y IMJ
N ∂I∂J(. . . ) = 0 with tensor Y IMJ

N = ηIJηMN . This is
to be preferred when generalising the present discussion to Exceptional Field Theory. The latter is not
part of the thesis and we shall not comment on it further.
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With this premise, we can start to repackage the objects in (3.96) in O(D,D) multi-

plets. The lesson of Generalised Geometry suggests to reunite metric and B-field in a

generalised metric H to be accompanied with an O(D,D) pairing η defined as

HIJ =

(
g−1 g−1b

−bg−1 g − bg−1b

)
, ηIJ =

(
0 1

1 0

)
. (3.98)

The dilaton requires some further manipulation, though, as φ alone is not T-duality

invariant. Actually, the combination √ge−2φ is indeed invariant and, accordingly, we

shall call generalised dilaton d the expression

d = φ− 1

4
log det g . (3.99)

In a similar fashion, diffeomorphisms and gauge transformations parametrised respec-

tively by a vector λµ and a one-form λ̃µ do combine in generalised diffeomorphisms.

They are described by the generalised Lie derivative L with respect to ξI = (λ̃µ, λ
µ)

acting on a tensorial density V I of weight ω as

LξV
I = ξJ∂JV

I + (∂IξJ − ∂JξI)V J + ω∂Jξ
JV I . (3.100)

With these ingredients it is possible [46] to formulate an action for DFT which reads (up

to total derivatives)

S =

∫
dX e−2d

(
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂NHKL∂LHMK + 2HMN∂M∂Nd

)
,

(3.101)

where dX ≡ dDx dDx̃. To reconnect with the Einstein-Hilbert action, it is possible to

introduce a generalised Ricci scalar R defined by

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL , (3.102)

so that (3.101) becomes S =
∫

dXe−2dR. Upon imposing the section condition and

parametrising H, η and d according to (3.98) and (3.99) it is possible to recover (3.96).

3.4.1 Flux Formulation of DFT

In the same spirit of the tetrad approach to General Relativity, we could shift our focus

from the (generalised) metric to the frame fields to convey a transition between (doubled)

curved and flat indices. The result is known as the flux formulation of DFT [111–114].

Pivotal are generalised frame fields EAI which are required to turn the generalised metric
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HIJ into a constant object HAB via HIJ = EI
AHABEBJ and preserve the O(D,D)

pairing ηIJ = EI
AηABE

B
J . A canonical choice is to adopt the parametrisation

EAI =

(
ea
µ ea

νbνµ

0 eaµ

)
, HAB =

(
gab 0

0 gab

)
, (3.103)

where b is the B-field and gab is the Riemannian metric in flat indices, gµν = eµ
agabe

b
ν .

Assuming Euclidean signature, gab exhibits invariance under local Lorentz group O(D),

and the same holds true for its inverse gab. Hence, HAB will display a local double Lorentz

invariance under the group O(D) × O(D), which coincides with the maximal compact

subgroup of O(D,D). Therefore, the generalised metric H is really an element of the

coset space O(D,D)/(O(D)×O(D)).

Now, the degrees of freedom can be encapsulated either in H or in E plus, in both cases,

the generalised dilaton d. When opting for the frame field formulation, it is somewhat

useful to introduce additional objects known as generalised fluxes, indicated with FABC
and FA, defined in terms of the generalised dilaton and frame field as

FABC = ECILEAEB
I = 3Ω[ABC] , (3.104)

FA = −e−2dLEAe
−2d = ΩB

BA + 2EA
I∂Id . (3.105)

The object Ω appearing here is called the Weitzenböck connection and reads

ΩABC = EA
I∂IEB

JEJC = −ΩACB . (3.106)

The generalised fluxes are by construction O(D,D) covariant and so will be any com-

bination thereof. They entail another neat “Einstein-Hilbert” formulation of (3.96) in a

doubled formalism

S =

∫
dX e−2dR , (3.107)

where, with P = 1
2(η+H) and P = 1

2(η−H), the generalised Ricci scalar R is given by

R = −PADPBE
(
PCF +

1

3
P
CF
)
FABCFDEF + 2P

ABFAFB . (3.108)



Chapter 4

Generalised Cosets

Abstract

Recent work has shown that two-dimensional non-linear σ-models on group manifolds

with Poisson-Lie symmetry can be understood within Generalised Geometry as exemplars

of generalised parallelisable spaces. Here we review and extend this idea to target spaces

constructed as double cosets M = G̃\D/H. Mirroring conventional coset geometries, we

show that on M one can construct a generalised frame field and a H-valued generalised

spin connection that together furnish an algebra under the generalised Lie derivative.

4.1 Introduction

The ability to construct generalised frame fields has different advantages depending on

the preferred point of view and final objective.

When interested in Supergravity, one often starts from a maximal 10- or 11-dimensional

theory and retains a “consistent truncation”. By that we mean a lower-dimensional

theory whose solutions to the equations of motion also solve the higher-dimensional

ones. A consistent truncation is not always feasible, though, let alone easy to find. A

possible constructive approach is the Scherk-Schwarz reduction [115]: in a nutshell, if

the compactification manifold M is a unimodular Lie group G1 it is possible to truncate

the parent theory. The proof essentially relies on G being parallelisable, i.e. endowed

with a set of globally defined vector fields ka dual to the left-invariant Maurer-Cartan

one-forms and obeying Lkakb = fab
ckc. Now, this approach has a major shortcoming in

1This condition can be slightly relaxed to M being the quotient of G by a discrete subgroup Γ acting
on the left [116]. Also, recall that a Lie group is unimodular if the structure constants of its Lie algebra
obey fabb = 0. This is the case for compact and/or semi-simple groups [117].

45
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that one is often interested in “coset reductions” − where M is indeed assumed to be a

coset space [117] − a scenario that escapes the Scherk-Schwarz construction. To remedy

that, it was first observed in [116] and later refined in [118] that it is possible to extend

the core principles of the Scherk-Schwarz reduction to Generalised Geometry requiring

the presence of a global generalised frame EA that obeys

LEAEB = FAB
CEC (4.1)

for some constants F . Then,M (which is necessarily a coset [43]) is said to be generalised

parallelisable and gives rise to consistent truncations provided some conditions are met

[118]. The remaining challenge is to find at least one tuple (M,EA) such that (4.1) holds

for a given constant generalised torsion FAB
C.

When focussing on the geometric properties of a non-linear σ-model, instead, generalised

frame fields have a somewhat different appeal. Let us take, for instance, the case of

Poisson-Lie models introduced in the previous chapter, our main sources of interest.

As they are deeply intertwined with Poisson-Lie T-duality, it is convenient to adopt a

doubled formalism − the E-model − to facilitate the analysis. If we had a canonical

construction for EA at our disposal, we could immediately retrieve the associated metric

and B-field by dressing (3.75) with the generalised frame fields. Moreover, as a rule of

thumb, models having a group-theoretic origin are more conveniently described with the

aid of algebraic objects. In other words, it is much preferable to stick to tensors having

flat generalised indices for as long as possible, reverting to curved ones only when strictly

necessary. Once again, the mapping is provided by the frames, and will prove invaluable

in many calculations carried out in the thesis. As an analogy, consider the Riemannian

geometry of a semi-simple Lie group G: while the metric and Riemann tensor could

be arbitrarily complicated when using explicit coordinate expressions, their form in flat

indices is completely fixed by the structure constants and Killing form.

Although a few examples were known [116, 119, 120], the systematics for EA were missing

until recently. In Generalised Geometry, a complete construction of generalised parallelis-

able spaces was worked out in a series of papers [121, 122] in which the right coset G̃\D
is identified with the internal manifold M , and D is a Lie group that admits a non-de-

generate, invariant pairing of split signature for which the subgroup G̃ ⊂ D is maximally

isotropic. The constant generalised torsion is given by the structure coefficients of d, the

Lie algebra of D. In the first section of this chapter we shall revisit this construction is

a more mathematically oriented way with respect to the presentation in [121].

However, this is rather a special case of the dressing coset construction [123] with M =

G̃\D/H for a trivialH. Hence, motivated by the interplay between Generalised Geometry

and Poisson-Lie T-duality, we will show that dressing cosets give rise to a class of new
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generalised geometries which are relevant for the construction of consistent truncations.

They are named generalised cosets in force of the analogy with conventional coset spaces.

We shall detail them in a second section.

4.2 The Descent From D

Let us begin with some general reasoning as to the form of the generalised frame fields

before moving to their actual construction.

Consider a 2D-dimensional Lie group D. At the level of the algebra, d = Lie(D) is

generated by a set of TA’s, A = 1, . . . , D, that give rise to the commutation relation

[TA, TB] = FAB
CTC. Also, d is equipped with an ad-invariant, non-degenerate, bi-linear,

symmetric pairing of split signature 〈〈·, ·〉〉 from which we define

〈〈TA, TB〉〉 = ηAB . (4.2)

Take a subgroup G̃ ⊂ D, dim G̃ = D, maximally isotropic with respect to 〈〈·, ·〉〉. The Lie
algebra g̃ = Lie(G̃) is generated by T a, a = 1, . . . , D, obeying [T a, Tb] = F ab

cT
c. In

geometric terms, D can be thought of as the principal bundle G̃ ↪→ D→ G̃\D, making G̃

the fibre over the base manifold M = G̃\D. Other than a projection map p : D→ G̃\D
that comes along with this construction, we shall eventually consider a section σ, i.e. a

map from the base onto the total space, σ : G̃\D→ D. Generalised parallelisable spaces

are those for which we can construct on M a set of O(D,D)-valued generalised frame

fields EA for which the generalised torsion is constant and identified with the structure

constants of d, i.e.

LEAEB = FAB
CEC and 〈EA, EB〉 = 〈〈TA, TB〉〉 = ηAB, (4.3)

where we recall that for two generalised vectors U = u + µ and V = v + ν the pairing

is 〈U, V 〉 = ιuν + ιvµ. As a generalised vector, EA will be split in a vector kA and a

one-form ϕA, EA = kA + ϕA. Assuming the presence of a closed three-form flux H, the

requirements (4.3) imply that the vector part obeys

[kA, kB] = FAB
CkC , (4.4)

and the one-form part should satisfy LkAϕB − ιkB(dϕA − ιkAH) = FAB
CϕC. While it

is tempting to impose the vanishing of the expression in brackets, this cannot be done

consistently. Indeed, we have not placed any demand of D-invariance on the H-flux,

whereas this would imply LkAH = 0. The best we can do is assume that a set of
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two-forms ϑA encode the failure of D-invariance, that is LkAH = −dϑA. With this

choice, the one-form part of the frame algebra is satisfied provided

dϕA = ιkAH + ϑA , LkAϕB = FAB
CϕC + ιkBϑA . (4.5)

Having clarified the general approach, let us now dig deeper into its actual implementa-

tion. In simple terms, the construction of a generalised frame field onM can be achieved

through some appropriate reduction of objects defined on D. Indeed, being a group

manifold, the latter has canonical frame fields given by either the left- or right-invari-

ant Maurer-Cartan one-forms. Out of these (and their dual vector fields) we should try

and carve a generalised frame field EA which does not depend on G̃ data. To this end,

choose local coordinates x̃i on G̃ and xi on M and let m(xi) be a representative of the

coset space M = G̃\D such that, for g̃(x̃i) ∈ G̃, the element g ∈ D is parametrised by

g(x̃i, x
i) = g̃(x̃i)m(xi). Introduce the natural right-invariant form on G̃, namely

A = dg̃g̃−1 . (4.6)

The structure equation dA − 1
2 [A,A] = 0 implies that A is, in fact, a flat g̃-valued

connection on the bundle. As such, it splits the tangent bundle of D into a vertical and

a horizontal part, locally TgD = VgD⊕HgD for any g ∈ D. In particular, the horizontal

bundle is the kernel of the connection one-form. As a group manifold, D is equipped

with two natural sets of vector fields, k̂A and v̂A, corresponding to the dual of the left-

and right-invariant Maurer-Cartan one-forms, respectively. That is, for a group element

g ∈ D,
ι
k̂A
g−1dg = TA , ιv̂Adgg−1 = TA . (4.7)

These vectors separately furnish two representations of the Lie algebra d,

[k̂A, k̂B] = FAB
C k̂C , [v̂A, v̂B] = −FAB

C v̂C , [k̂A, v̂B] = 0 . (4.8)

Even though k̂A’s do reproduce the algebra (4.4), they can not be identified with kA’s for

two reasons: first, they contain a non-trivial vertical part, i.e. they retain information

about G̃; second, they are still defined on D, as opposed to M . Addressing these issues

is relatively straightforward: we restrict k̂ to its horizontal part k2 and then push it

forward to M via the projection map. That is, we identify kA = p∗kA. The only thing to

be checked is that k’s obey the correct algebra. By definition, the horizontal component

is obtained via

kA = k̂A − ιk̂AAbv̂
b . (4.9)

2Here and henceforth, an overbar will always indicate horizontal quantities.
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From dgg−1 = A + Adg̃dmm
−1, it follows immediately that the vector field v̂a is dual

to the connection one-form, ιv̂aAb = δb
a, and that ιv̂aAb = 0. The flatness of A implies

Lv̂aAb = AcF
ac

b which in turn can be used to reach the desired result

[kA, kB] = FAB
CkC . (4.10)

As the vector part is settled, let us move on to the one-form part. As a group manifold,

D naturally comes with a bi-invariant three-form

Ĥ = −1

6
〈〈dgg−1, dgg−1 ∧ dgg−1〉〉

= −1

6
〈〈dmm−1,dmm−1 ∧ dmm−1〉〉+

1

2
d〈〈g̃−1dg̃,dmm−1〉〉 , (4.11)

which is closed thanks to the Jacobi identity. Since dmm−1 is horizontal with respect

to v̂a, i.e. ιv̂admm−1 = 0, the first term on the second line, dubbed H, is horizontal.

Accordingly, we let an overbar denote it. The second term is exact, and the closure of

Ĥ implies the closure of H. On d we can introduce an endomorphism K : d → d which

is an involution, K2 = 1, compatible with the pairing, 〈〈TA,KTB〉〉 = −〈〈KTA, TB〉〉, and
such that its +1 eigenspace is identified with g̃. This places a para-Hermitian structure

on d [122]. Explicitly, K can be constructed as follows: suppose the d generators are split

according to TA = (T a, Ta), where, as before, T a generate g̃ and Ta indicate collectively

the rest3. A matrix representation for K that obeys all the requirements is

KA
B =

(
δa

b −〈〈Ta, Tb〉〉
0 −δab

)
. (4.12)

For d a Drinfel’d double, the north-east block would vanish making the g algebra coincide

with the −1 K-eigenspace, obtaining the para-Hermitian structure associated to a Manin

triple, see e.g. [124]. Thanks to K, we can define a two-form

ω̂ =
1

2
〈〈dgg−1,K dgg−1〉〉 = −〈〈g̃−1dg̃,dmm−1〉〉+ 2$ , (4.13)

where we have singled out a particular horizontal quantity $ = 1
4〈〈dmm

−1,Kdmm−1〉〉.
Notice that, by construction, ω̂ is a right-invariant two-form, i.e. it obeys L

k̂A
ω̂ = 0.

Looking back at (4.11), it is possible to employ ω̂ and $ to write

Ĥ = H + d$ − 1

2
dω̂ . (4.14)

These two-forms are useful as they allow us to eventually retrieve the desired properties

of the one-form part of the frame field (which we have not discussed yet). To see how, we
3In the particular case of d being a Drinfel’d (which we don’t necessarily assume to be true here), Ta

would generate the dual group G.
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first use the definition g−1dg = g−1Ag+m−1dm together with (4.7), to arrive, through

a chain of equalities, to the identity

1

2
〈〈TA,g−1dg〉〉 =

1

2
ι
k̂A

(ω̂ − 2$) + 〈〈TA,m−1dm〉〉 − 1

2
〈〈ι
k̂A
m−1dm,m−1dm〉〉 . (4.15)

Now, one of the requirements for the one-form part ϕA is that it reproduces the pairing

constraint in (4.3) which, when expressed in terms of k and ϕ, reads ηAB = ιkAϕB+ιkBϕA.

If we contract (4.15) with k̂B we recover on the left-hand side the pairing ηAB up to a

constant. It is then sensible to define the horizontal one-form ϕA as4

ϕA = 〈〈TA,m−1dm〉〉 − 1

2
〈〈ιkAdmm−1, dmm−1〉〉 , (4.16)

ιkAϕB =
1

2
〈〈TA, TB〉〉 −

1

2
ι
k̂A
ι
k̂B

(ω̂ − 2$) . (4.17)

Notice how the symmetrisation of (4.17) precisely returns the desired pairing (up to a

push-forward/pull-back). To corroborate our finding for the one-form we shall check that

the constraints in (4.5) are actually satisfied. Taking the exterior derivative of (4.15),

using the fact that LkAω̂ = 0, and finally comparing with (4.14) we obtain

dϕA = ιkAH + LkA$ , (4.18)

prompting for the identification ϑA = LkA$. As for the Lie derivative, a direct calculation

following from (4.18) and (4.17) leads to

LkAϕB = FAB
CϕC + ιkBLkA$ . (4.19)

It is actually possible to simplify this expression a little further. Owing to the fact that,

for two vectors v, w, the general property [Lv, ιw] = ι[v,w] holds, we can choose to recast

the last term so as to obtain

LkAϕ
′
B = FAB

Cϕ′C , (4.20)

where we have re-defined ϕ′A = ϕA − ιkA$. Similarly to what happened to the vectorial

part of the frame field, we shall project ϕA (and all the other differential forms involved

in the construction) down to M = G̃\D. To this end, consider the section σ : G̃\D→ D:
its pull-back is the required map, from which we can define

ϕA = σ∗ϕA , H = σ∗H , $ = σ∗$ . (4.21)
4Since ιk̂Am

−1dm = ιkAm
−1dm, we have changed the definition accordingly.
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4.2.1 Application: Drinfel’d Double

As an application of this construction, let us consider the case where d is a Drinfel’d

double. This will provide us with the frame field for a number of models, including the

η-deformation on a group manifold G.

Let us assume D is a Drinfel’d double, thereby assuring that the coset space is in fact the

group G dual to G̃, M = G̃\D ∼= G. As a consequence, the coset representative m is just

an element of G. By construction, the algebrae of the two groups are both maximally

isotropic. Indicating the generators according to g = span(Ta), g̃ = span(T a), we then

have that 〈〈T a, Tb〉〉 = 〈〈Ta, Tb〉〉 = 0 and 〈〈Ta, Tb〉〉 = δa
b.

Let us choose coordinates xi on G and x̃i on G̃, so that the Drinfel’d double element

g(xi, x̃i) is split as g(xi, x̃i) = g̃(x̃i)g(xi), for g, g̃ ∈ G, G̃. The d-valued left-invariant

form is accordingly divided as

g−1dg = eaidx
iTa + ẽb

idx̃i(Adg−1)bATA , (4.22)

where e and ẽ are frame fields on G and G̃, respectively. It is now easy to find the dual

vector

k̂a = ea , k̂a = ẽb(Ad−1
g )b

a + πabeb . (4.23)

Here we have adopted a shorthand for displaying purposes: the fundamental vector fields

onG and G̃ have been indicated with ea = eia
∂
∂xi

and ẽb = ẽi
b ∂
∂x̃i

, respectively, while the

Poisson structure is obtained from the product of adjoint actions πab = (Adg)
ac(Adg)

b
c.

As a consequence, ι
k̂a
Ab = 0 and ι

k̂a
Ab = (Ad−1

g )c
a(Adg̃)

c
b. Using the adjoint action

to derive v̂ from k̂, we can obtain the vertical part of k̂, namely ι
k̂a
Abv̂

b = ẽb(Ad−1
g )b

a.

This is actually the first term in the second equation of (4.23): correctly, the vertical

part is directed along the fibre, i.e. along the directions identified by the x̃i coordinates.

The final expression for kA is then easily gathered as

ka = ea , ka = πabeb . (4.24)

The one-form part is even easier: isotropy of g and g̃ guarantees H = $ = 0 and the

definition of ϕA (4.16) boils down to

ϕa = ea , ϕa = 0 , (4.25)

where ea is simply the vielbein for G, ea = eaidx
i.
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4.3 Dressing Cosets

We shall now consider a dressing coset M = G̃\D/H, where a second isotropic subgroup

H is to be modded out. We start with an inspection of the geometric properties of

generalised cosets with the aim of working out the appropriate frame algebra. In essence,

the latter is found by requiring that both the torsion and curvature associated to a natural

connection we will introduce are specified by the structure constants of d. Once this is

achieved, we will move to the determination of an algorithm for the construction of frame

fields similar to the one we detailed for G̃\D.

4.3.1 Geometry of Generalised Cosets

Let us briefly review conventions. Generators of d are, as before, TA with indices A =

1, . . . , 2D. The Lie algebra h = Lie(H) is spanned by Tα, α = 1, . . . ,dim h. As for the

remainder, it is more convenient to consider k such that d = h + k in place of g̃. In

particular, k is further split in two parts, k = p + q such that the pairing 〈〈·, ·〉〉 is non-

degenerate on q. At the level of the generators, we take p = Span(Tα), α = 1, . . . ,dim h,

and q = Span(TA), A = 1, . . . , 2N for some integer N . Notice, 2D = 2N + 2 dim h. The

requirements on the pairing can be made more explicit in the form

〈〈TA, TB〉〉 = ηAB , 〈〈Tα, Tβ〉〉 = 0 , 〈〈Tα, T β〉〉 = δβα ,

〈〈Tα, TB〉〉 = 0 , 〈〈Tα, TB〉〉 = 0 .
(4.26)

We shall place further requests on the coset. Not only we want it to be reductive, in

the sense that [h, k] ⊂ k, but also we want p and q to form independent representations,

meaning that

[h, p] ⊂ p , [h, q] ⊂ q . (4.27)

We shall call a generalised coset having these properties generalised reductive.

Consider now a generalised frame field EA on the generalised coset M , dimM = 2N . As

we are quotienting byH, there should also exist a non-vanishing h-valued spin connection

Ω = ΩαTα. Out of it, we define two additional objects, namely Ωα
B = 〈Ωα, EB〉 and

ΩABC = Ωα
AFαBC . As before, we impose that EA preserves the pairing

〈EA, EB〉 = ηAB ≡ 〈〈TA, TB〉〉 , (4.28)

ensuring that the frames are indeed O(N,N) elements. Concerning the connection, we

can try and mimic the structure of this latter requirement but we are necessarily forced
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to introduce a non-constant Ωαβ ,

〈Ωα,Ωβ〉 = 〈〈Tα, T β〉〉+ 2Ω(αβ) , (4.29)

for, a priori, we can’t guarantee the pairing to be constant as we did for EA.

In a given patch pick coordinates xi, i = 1, . . . , N , and decompose EA accordingly, i.e.

EA = EAidx
i+EA

i∂i. It is useful to give the frame a matrix form via EAI = (EAi, EA
i),

where indices I, J, . . . will be interpreted as curved indices on the generalised bundle of

M . In a similar fashion, we incorporate the section condition in the “doubled” derivative

∂I = (0, ∂i). We can use the latter to introduce a covariant derivative ∇I acting on a

frame according to

∇IEAJ = ∂IEA
J − ΩIA

BEB
J + ΓJ IKEA

K , (4.30)

where the spin connection is assumed to be ΩIA
B = EI

CΩCA
B, and ΓJ IK indicate

some generalised Christoffel symbols. These, unless the connection is torsionless, are not

symmetric in I, K. Nevertheless , if we require ∇I to be compatible with the pairing

ηIJ , i.e. ∇KηIJ = 0, Γ’s are constrained to obey

ΓKIJ + ΓJIK = 0 . (4.31)

In fact, as customary, we would like to impose the vielbein postulate ∇IEAJ = 0 which,

after some algebra, equivalently reads ΓKIJ = ΩIJK − ∂IEAKEAJ . Upon acting on the

latter with frame fields and anti-symmetrising the result we obtain

3Γ[ABC] = 3Ω[ABC] − 3E[A
I∂|I|EB

JEC]J . (4.32)

Thanks to (4.31), the left-hand side boils down to ΓABC + ΓBCA + ΓCAB and, in virtue

of the results in [47], coincides with the generalised torsion, TABC . As for the right-hand

side, the doubled derivative ∂I enables us to recast the (untwisted) generalised Lie deriva-

tive in the form LEAEB
I = EA

J∂JEB
I −EBJ∂JEAI +EB

J∂IEAJ . Acting on the latter

with ECI on both sides we obtain LEAEB
IECI = 3E[A

J∂|J |EB
IE|I|C]. Now, our goal is

to obtain a constant torsion but the spin connection in (4.32) prevents us from doing so

unless the frame algebra is tuned so as to precisely cancel off against the non-constant

contribution. Therefore, we require

LEAEB = (FABC + 3Ω[ABC])E
C ≡ FABCEC . (4.33)
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As for the curvature of ∇I , the generalised Riemann tensor [47] in curved indices is

RIJKL = 2∂[IΓ|L|J ]K + 2ΓL[I|MΓMJ ]K +
1

2
ΓJMIΓL

M
K + (IJ)↔ (KL) . (4.34)

Observe how, in the third term on the right-hand side, anti-symmetry in I and J in

ensured by (4.31). Its flat version, using (4.32) and (4.33), evaluates to

RABCD = 2∂[AΩB]CD − 2Ω[A|DEΩB]C
E − (FABE + 2Ω[AB]E)ΩE

CD

− 1

2
ΩEABΩE

CD + (AB)↔ (CD) . (4.35)

At this point it is not clear if, similarly to the torsion, this object is constant and

completely specified by the structure constants of d. We begin by observing that using

the definition of generalised Lie derivative, as well as the algebra (4.33),

EAIFαCDLΩαEB
I = 2∂[AΩB]CD −FEABΩE

CD . (4.36)

Also, thanks to the generalised coset being reductive by construction, we can use the

Jacobi identity to prove

Fδε
αFαCDΩδ

AΩε
B = −2Ω[A|DEΩB]C

E . (4.37)

Finally, the pairing (4.29) ensures that

1

2
ΩEABΩE

CD =
1

2
Ωα

IΩ
βIFβABFαCD =

1

2
〈〈Tα, T β〉〉FβABFαCD + Ω(αβ)FβABFαCD .

(4.38)

Exploiting (4.36), (4.37) and (4.38) it is possible to make the generalised Riemann tensor

(4.35) constant by adding the request

LΩαEB = ΩβαFβBCE
C + FαBCE

C + Fβγ
αΩβ

BΩγ (4.39)

to the frame algebra. Whilst the first and third term on the right-hand side serve the

purpose of cancelling against non-constant contributions (pretty much as we did for the

torsion), the second term seems unnecessary at a first glance. With this choice, in fact,

RABCD evaluates to

RABCD = −FABγFγCD − FABγF γCD − FABγFCDδ 〈〈T γ , T δ〉〉 . (4.40)

However, the generalised Riemann tensor should obey the Bianchi identities

3R[ABCD] = 4∇[ATBCD] + 3T[AB
ETCD]E , ∇ARBCDE = 0 , (4.41)
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where ∇A = EA
I∇I . For the first, we notice that ∇ATBCD = 0 since ∂AFBCD = 0

by definition and the connection term vanishes by the Jacobi identity. The first two

terms in (4.40) (i.e. the ones induced by the funny contribution in (4.39)) then precisely

guarantee that, again via the Jacobi identity, the rest of Bianchi identity is satisfied.

Once this is settled, the second Bianchi identity follows.

Hence we conclude that, with our choice of frame algebra, both the generalised torsion

and curvature of a generalised coset are completely fixed by the structure coefficients

of the underlying Lie algebra d and are, in particular, constant. This result might seem

surprising, for one crucial difference between geometry and Generalised Geometry is that,

for a torsion-free connection, the generalised Riemann tensor can not be completely fixed

using the metric, B-field and dilaton. There remain undetermined components which

however do not affect the generalised Ricci tensor and scalar. The reason for this feature

is that the metric, B-field and dilaton only fix an O(D,D) frame up to a local double

Lorentz transformation valued in O(D)×O(D). The construction we present, however,

also singles out a particular double Lorentz frame and thus determines the connection

and curvature completely.

Finally, let us mention that it is possible to include the generalised dilaton in this descrip-

tion. In the context of DFT, the generalised dilaton d is related to the ordinary String

Theory dilaton φ via d = φ−1/4 log(det g), being g the metric. In particular, recall that

the quantity e−2d is used as an invariant integration measure, cf. (3.107). In General

Relativity, an analogous role is played by
√

det g and it is such that, for some vector field

v and metric-compatible connection ∇,
∫

dDx
√

det g∇µvµ = 0. Something similar holds

in the case at hand, provided one imposes some constraints on the generalised Christoffel

symbols. For a generalised vector V I , we would like 0 =
∫

dX e−2d∇IV I . Exploiting

e−2d∇IV I = ∇I(e−2dV I)−∇I(e−2d)V I and neglecting the boundary term ∂I(e
−2dV I),

we find that our request is met provided

2∂Id = −ΓI IJ . (4.42)

This fixes the exterior derivative of the dilaton completely. Alternatively, one can encode

the dilaton in

FA = EBI∂IEB
JEAJ + 2EA

I∂Id = ΩB
BA . (4.43)

Together with FABC , they form the natural objects in the flux formulation of Double

Field Theory.
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4.3.2 Frame Field Construction

We can now proceed to a detailed account of the way such generalised frame fields are

constructed on a dressing coset. First, we shall check that we can further reduce the

frame field EA inherited from G̃\D so as to reproduce (4.33). After that, we shall ensure

that the second constraint (4.39) is met, too.

With a new subgroup to mod-out, we can interpret G̃\D as the principal bundle H ↪→
G̃\D→ G̃\D/H. As we are considering the right H-coset, we can introduce an h-valued

left-invariant one-form A = h−1dh, for h ∈ H, acting as a connection on this space.

More precisely, this would require us to be able to choose (locally perhaps) the group

element as g = g̃nh, with g̃ ∈ G̃, h ∈ H and n parametrising M . Addressing the vector

part of the generalised frame field is fairly easy and requires us to subtract the vertical

part once again. In practice, the vector field kA inherited from G̃\D can be restricted to

the dressing coset via

kA = kA − ιkAA βkβ . (4.44)

By construction ιkαA β = δα
β , so that kA is horizontal, which is to say ιkAA β = 0. This

also implies that one component of the horizontal fields vanishes, namely kα = 0. Being

a left-invariant form, A obeys the Maurer-Cartan identity dA = −A ∧A which in turn

implies immediately LkαA β = −FαγβA γ . The Lie bracket of the horizontal vector fields

evaluates, after some simple algebra, to

[kA, kB] = FAB
CkC − 2ιk[AA δFδ|B]

CkC . (4.45)

If we appropriately restrict the indices, recalling that kα vanishes and that H has an

action on the generalised coset, we get

[kA, kB] = FAB
CkC + FABγk

γ − 2ιk[A
A δFδ|B]

CkC . (4.46)

Therefore, we see that (4.46) closely resembles the algebra (4.33) we are looking for,

upon making the identifications

EA|vect= kA , Ωα
B = −ιkBA α , Ωα|vect= k

α
, Ωαβ = −ιkβA α , (4.47)

where |vect stands for restriction to the purely vectorial part.

We now need to take care of the one-form component of the frame. As before, we take

as starting point the one-forms ϕA on G̃\D. Unfortunately, their horizontal projection

is not sufficient to furnish the algebra we are looking for. Some extra modifications are
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in order. To begin with, let us introduce what we shall call a B-field, i.e. the two-form

B = A β ∧ ϕβ +
1

2
ιkβϕγ A β ∧A γ . (4.48)

Let us inspect its properties. First of all, a contraction with kα returns

ιkαB = ϕα −A βιk(α
ϕβ) = ϕα . (4.49)

The last equality follows from observing that we had (4.17), with the symmetric part

corresponding to the actual inner product. However, by coset construction, 〈〈Tα, Tβ〉〉 = 0,

hence our result. The Maurer-Cartan relation dA β = −1
2A γ ∧ A δFγδ

β can be used,

together with the isotropy condition, to check that the two-form is also invariant

LkαB = 0 . (4.50)

The purpose of the two-form B is to tweak the naive one-form ϕA into the one appropriate

for the coset construction, which we shall call φA, explicitly given by

φA = ϕA − ιkAB . (4.51)

Because of (4.49), it follows that φα = 0. Moreover, one can use (4.17) and (4.49) to

check that ιkαφA = 〈〈Tα, TA〉〉. This relation shows its importance when constructing the

horizontal part of φ; by the usual procedure, we define it to be φA = φA− ιkβφAA β but,

in fact, one immediately checks that

φα = 0 , φ
α

= φα −A α , φA = φA . (4.52)

Therefore, both kα and φα vanish. We shall now prove that φ completely specifies the

one-form part of EA and Ωα via

EA|one−form= φA , Ωα|one−form= φ
α
. (4.53)

Remarkably, with this choice we immediately obtain the correct pairings (4.28) and

(4.29). Consider now the frame algebra. The check here is more involved as, by definition

of the generalised Lie derivative, differential forms enter in a number of places. In

particular, we shall prove that LkAφ
B − ιkBdφ

A − ιkAkBH obey the same algebra as

(4.46), for some choice of three-form H . Start from the bit involving the ordinary Lie

derivative: exploiting (4.49), (4.50), LkAϕB = FAB
CϕC and ιkβφC = 0, after a lengthy

yet straightforward calculation we arrive at

LkAφB = FAB
CφC + FABγφ

γ
+ FABγA

γ + Ωγ
AFγB

CφC − ιkBLkAB . (4.54)
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As for the three-form, we surely inherit H from the G̃\D construction: assuming there

we had re-absorbed $ inside the definition of ϕ (which is always possible, as explained),

we have, thanks to (4.18), ιkAH = dϕA + Ωβ
Adϕβ . However, H can be augmented with

the exact three-form dB: properties of B then imply that ιkAdB = LkAB − dιkAB −
Ωβ

Adϕβ . Defining H = H + dB, we find

ιkAH = dφA + LkAB . (4.55)

Summing up the various contributions, and cleaning up the result with a symmetrised

version of (4.54), we recover

LkAφB− ιkBdφA− ιkAkBH = FAB
CφC +FABγφ

γ
+FABγA

γ +2Ωγ
[AF|γ|B]

CφC . (4.56)

This is almost the desired algebra, were not for the A -dependent term. Actually, we are

missing an ingredient: all of the objects here are still defined on G̃\D, but we would like to

project them down to the dressing coset. This is attained with a pull-back/push-forward

of forms/vectors via the section σ : M → G̃\D or the projection p : G̃\D→M . Since A

is a flat connection, a section such that σ∗A = 0 has to exists, at least patchwise. With

this choice, the generalised frame field and Ω

EA = p∗kA + σ∗φA , and Ωα = p∗k
α

+ σ∗φ
α (4.57)

obey the frame algebra (4.33). To complete the picture, let us check the validity of

(4.39). First, the following identity holds,

2ιk[A
dΩγ

B] = −FδεγΩδ
AΩε

B +FABδΩ
γδ−FABγ +FAB

EΩγ
E +2F[A|δ

EΩδ
B]Ω

γ
E , (4.58)

as can be proven with a simple calculation. Noticing that

LΩαEB =
(

Ωα
DFDBC − 2ιk[B

dΩα
C]

)
EC (4.59)

we arrive, after some careful rearrangement of terms, at precisely (4.39).

4.3.3 Application: Drinfel’d Double and Coisotropic Subgroups

Paving the way to some calculations which will be carried out in the next chapter, let

us study in detail the case where D is a Drinfel’d double, locally the product of two

Poisson-Lie groups G̃ and G, and H is a coisotropic subgroup of G. Recall that, when

H ⊂ G is coisotropic, the Poisson structure π on G descends to the Poisson-Bruhat
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structure πB on G/H: morally, we expect a result for the frame field akin to that of

Section 4.2.1, upon replacing π with πB and restricting the vielbein to the coset space.

As g = Lie(G) and g̃ = Lie(G̃) ∼= g∗ are dual algebrae, the generators Tα of h ⊂ g

will have corresponding generators Tα in g̃ such that 〈〈Tα, T β〉〉 = δβα. In this sense, we

identify p ∼= h∗ and q ∼= m + m∗, where expm ∼= G/H.

Even though we build on the previous example, we shall slightly change the notation so as

to accommodate the additional level of detail entailed by the dressing coset construction.

Taken an element g ∈ G, we indicate the left-invariant form with g−1dg = eai(g)dxiTa.

Suppose we split coordinates on G according to xi = (xi, xµ), where xi refer to G/H and

xµ to H alone. Accordingly, we pick a group element g such that g(xi) = m(xi)h(xµ).

With this choice, and exploiting the defining property of a reductive coset,

g−1dg ≡ e(g)aTa = (Adh−1)b
aebi(m)dxiTa + (Adh−1)β

αeβi(m)dxiTα + A α
µdxµTα .

(4.60)

To ease the notation in the following steps, we will equivalently denote the connection

one-form as A α
µ = eαµ(h), so that its inverse reads eµα(h). The vector dual to the

Maurer-Cartan one-form on G is easily found to be

ka
i = (Adh)a

beib(m) , kα
µ = eµα(h) , kα

i = 0 ,

ka
µ = −eµα(h)(Ad−1

h )β
αeβi(m)eib(m)(Adh)a

b .
(4.61)

From the previous example, we know that ka = ea(g), ka = πabeb(g); therefore, we have

ka = (Adh)a
beb(m) , kα = 0 , k

a
= πab(Adh)b

cec(m) , k
α

= παbeb(m) .

(4.62)

It is also possible to compute the explicit form for Ωα
B which, in components, reads

Ωα
b = (Ad−1

h )β
αeβi(m)eic(m)(Adh)b

c , Ωαb = πbcΩα
c − πbα . (4.63)

Also, we have

Ωαβ = παcΩβ
c − παβ , Ωα|vect= παbeb(m) . (4.64)

Let us move to the one-form part. From the construction of frame fields on G̃\D we

recover ϕa = ea and ϕa = 0. Dividing up the non-vanishing contribution into the

different components we get

ϕα = (Adh−1)β
αeβi(m)dxi + eαµ(h)dxµ , ϕa = (Adh−1)b

aebi(m)dxi . (4.65)
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Since ϕa = 0, we necessarily have no B, thereby making φ coincide with ϕ. Hence

φα = 0 , φa = 0 , φ
α

= (Adh−1)β
αeβi(m)dxi , φ

a
= (Adh−1)b

aebi(m)dxi .

(4.66)

To obtain the final result we need to push-forward/pull-back the vectors/forms via the

section/projection previously introduced. In particular, we wish to consider a section σ

such that σ∗A = 0. For the sake of simplicity, we will choose it so that it is equivalent

to gauge-fixing the group element h = e, being e the identity element of H. In doing so,

recall that the Poisson structure πab depended on the choice of g = mh; therefore, upon

adopting such section, every instance of πab(mh) will be in fact reduced to πab(m). In

particular, if R is an R-matrix, we will have πab(m) = (Rm − R)ab. Once restricted to

coset indices, this is the Poisson-Bruhat structure πabB . Hence:

Ea = ea(m) + πab(m)eb(m) , Ea = ea(m) , Ωα = παb(m)eb(m) + eα(m) ,

Ωα
b = eαi(m)eib(m) , Ωαb = πbc(m)Ωα

c − πbα(m) , Ωαβ = παc(m)Ωβ
c − παβ(m) .

(4.67)

4.4 Conclusions

Let us briefly recap the key results of this chapter. On G̃\D we have reviewed the

construction of a set of generalised frame fields EA that realise the algebra d of D via the

generalised Lie derivative. With respect to [121] we have improved the presentation with

the adoption of a more direct, mathematical oriented and index-free approach. To show

how this works in practice, the case of D being a Drinfel’d double was analysed in detail.

We have then performed a reduction to the dressing coset G̃\D/H in which a second

isotropic subgroup H was quotiented out, provided suitable generalised reductiveness

conditions apply. In this setting we have constructed a generalised frame field obeying

the vielbein postulate ∇E = 0 for some covariant derivative ∇. The generalised torsion

and curvature associated to ∇, in flat indices, were completely determined by a selection

of the structure constants of d. To complement the discussion and to furnish a cornerstone

of the chapter that will follow, we have finally worked out the generalised frame field for

a dressing coset where D is a Drinfel’d double, locally D = G̃G, and H ⊂ G.



Chapter 5

Integrable Deformation of CPn and

Generalised Kähler Geometry

Abstract

We build on the results of Chapter 4 for generalised frame fields on generalised cosets

and study integrable deformations for CPn. We elucidate how the deformed target space

can be seen as an instance of generalised Kähler, or equivalently bi-Hermitian, geometry.

In this respect, we find the generic form of the pure spinors for CPn and the explicit

expression for the generalised Kähler potential for n = 1, 2. In addition, we show how

a two-parameter deformation can be introduced in principle. The second parameter can

however be removed via a diffeomorphism, which we construct explicitly, in accordance

with the results stemming from a thorough integrability analysis we carry out. We

complete the discussion providing explicit expressions for the η-deformed metric and

B-field of Sn and AdSn.

5.1 Introduction

The generalised frame fields of Chapter 4 provide a privileged view point for the explo-

ration of the geometry underpinning the target manifoldM of a non-linear σ-model. For

integrable deformations the sole Riemannian geometry is unable to capture the entirety of

the features, as a non-vanishing B-field is most commonly part of the picture. To include

it, one has then to resort to Generalised Geometry and the frame fields, among other

things, precisely bridge the gap between the two-dimensional σ-model and its description

in Generalised Geometry.

61
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For holographic applications coset spaces are especially relevant as they include, among

others, spheres and complex projective spaces that appear in a number of backgrounds,

most notably in the original AdS/CFT formulation of type IIB on AdS5 × S5 [26],

the M-theoretic AdS4 × S7 or the type IIA AdS4 × CP3. Generalising the AdS/CFT

correspondence to spaces obtained as integrable deformations of the aforementioned cases

necessarily requires a good understanding of their geometries. With this goal in mind,

the aim of this chapter is to enlighten a few properties of deformed projective spaces

and, tangentially, of spheres. Remarkably, as AdSn can be thought of as the analytic

continuation of the sphere Sn, we will be able to extend the analysis to anti-de Sitter

spaces, thereby furnishing a more thorough description of the NS-NS sector of these

backgrounds.

At this point it is fair to remind that knowing the generalised metric alone, possibly

through the construction of frame fields, is far from being exhaustive: the NS-NS sector

of String Theory most certainly needs the dilaton to be completed, and the RR sector

has been entirely omitted thus far. Whilst algebraic approaches, based on supergroups,

are a viable option for their extraction (explored, for instance, in [125]), a path much less

travelled is that based on Generalised Geometry. Here, the program would be to recover

the dilaton and fluxes which solve the Supergravity equations from the knowledge of a

few objects that appear in Generalised Geometry such as, for instance, the pure spinors.

The major criticality of the latter approach is that, for (deformations of) String Theory

backgrounds of the form AdSn×X10−n for some (10−n)-dimensional manifold X, whilst

the overall metric andB-field are expected to factorise into those of the two manifolds, the

dilaton will usually mix up, in a completely non-trivial way, AdS and X contributions.

This has been proven for X10−n ∼= S10−n in [98], but we obviously do not anticipate

any improvement in more convoluted cases. Hence, the completion of the NS-NS sector

necessarily requires an approach where the interplay between the internal and external

manifolds is manifest. A similar story holds true for the RR sector as well. Even though

it might be possible to (geometrically) address these issues in the context of Generalised

Supergeometry [126], we shall not comment on them any further and restrict ourselves

to the generalised metric.

More specifically, we will be focusing on Yang-Baxter deformations of complex projective

spaces, where the entire machinery of generalised cosets established in Chapter 4 applies.

After proving that they constitute an example of Generalised Kähler Geometry, we shall

resolve a little puzzle that dates back to [20]: whilst in principle these spaces allow for

a double deformation − akin to a bi-Yang-Baxter model in the case of group manifolds

−, the second deformation parameter can be smuggled away through an appropriate

diffeomorphism involving the string tension, which we provide.
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5.1.1 Riemannian Geometry of CPn

To orient the reader, we will close this introductory part with a review of well-known

facts concerning the Riemannian geometry of (undeformed) CPn spaces. These will

serve as building blocks for a number of geometric results obtained in later sections. The

references [40, 42, 127, 128] can be consulted for additional details.

Complex projective spaces can be characterised in a number of ways, most commonly as

coset spaces, Kähler manifolds or flag manifolds. As a quotient space, CPn represents a

particular instance of complex Grassmannians

CPn =
SU(n+ 1)

S(U(1)× U(n))
. (5.1)

As a Kähler manifold, it is equipped with a Riemannian metric G, a complex structure

J and a Kähler form ω related by ω = JG. Being a Grassmannian, it is a compact

Hermitian symmetric space and, moreover, a generalised flag manifold − a particular

form of algebraic variety − describing a coadjoint orbit of SU(n + 1). In terms of

Poisson geometry, the Poisson structure π on SU(n + 1) descends to a Poisson-Bruhat

structure πB on CPn; also, the Kähler form can be inverted, producing a new Poisson

structure ω−1. On any compact Hermitian symmetric space the two are compatible,

[πB, ω
−1]s = 0, and can thus be linearly combined into a third object, the Poisson

pencil, πτ = πB − τω−1 for some choice of parameter τ ∈ R.

These facts may also be interpreted at the level of the algebra, mostly building on the

results of Example 2.1.1 to which we refer for details and notation. Since g = su(n+1) is

semi-simple, the Killing form κ is non-degenerate. If Ta generate g and, in the symmetric

space decomposition g = h⊕m, Tα and Ta generate h and m (respectively), the restriction

κab = κ(Ta, Tb) uplifts to the metric G of CPn. Similarly, the Drinfel’d-Jimbo R-matrix

on g respects the hypothesis of Koszul theorem, meaning that its restriction Ra
b to

m uplifts to J . Finally, lowering its index with the Killing metric, Rab = Ra
cκcb, we

obtain the flat version of the Kähler form ω. The Poisson-Bruhat structure, instead,

reads πabB = (Rm−R)ab, where m is a coset representative obtained from exponentiating

elements of m.

As a manifold, CPn can be covered with n + 1 patches. An alternative description is

as the quotient CPn ∼= (Cn+1 − {0})/∼, where the equivalence relation ∼ identifies the

(Z0, . . . , Zn) coordinates of Cn+1−{0} with their rescaling (λZ0, . . . , λZn) by a constant

parameter λ ∈ C− {0}. With the identification implemented, the coordinates indicated

with Z ≡ [Z0 : · · · : Zn] are called homogeneous. In practice we can choose n+ 1 patches

Ui = {Z|Zi 6= 0}: in the i-th patch we can introduce local coordinates zj := Zj/Zi, j 6= i.
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Following standard nomenclature, we shall call zj ’s Fubini-Study (FS) coordinates and

U0 the largest Bruhat cell.

In FS coordinates (obtained from every Ui patch), the metric of CPn has the well-known

Fubini-Study form

ds2 =
dzidz̄i

1 + |z|2
− ziz̄jdz̄idzj

(1 + |z|2)2
, (5.2)

with |z|2= ziz̄i, the corresponding Kähler potential being KFS = log(1 + |z|2). The

complex structure J is diagonalised according to Darboux theorem, J = idzi ⊗ ∂zi −
idz̄i ⊗ ∂z̄i , and ω follows accordingly. Unlike these objects, the choice of the patch Ui

determines different local forms of the Poisson-Bruhat structure. In fact, FS coordinates

do lead to a somewhat involved expression for πB which will not be shown here.

In contrast, we can opt for other types of local coordinates − built out of FS coordinates

− that result in a much simpler form for πB and, anticipating some future discussion,

for the metric after the deformation. Whilst these can be defined in every Ui patch we

shall henceforth stick to the largest Bruhat cell for simplicity. Here, the new coordinates

(xi, φi) are related to FS coordinates by

zi =

(
xi

1−X

)1/2

eiφi , with 0 ≤ xi < 1−
i−1∑
k=1

xk and 0 ≤ φi < 2π , (5.3)

where X =
∑

i xi. With this choice the Poisson-Bruhat structure has a remarkably

simple expression,

πB =
∑
i

(
−1 +

i∑
k=1

xk

)
∂xi ∧ ∂φi +

∑
i>j

xi∂xi ∧ ∂φj . (5.4)

5.2 Generalised Kähler Geometry of CPnη

Having described in some detail the geometry underpinning CPn, we are now ready to

tackle the problem of its η-deformation CPnη . We introduce projectors Pi onto g(i) in the

symmetric space decomposition and let κab = 〈Ta, Tb〉. Denoting with e± = m−1∂±m

the left-invariant form associated to a coset representative m, the corresponding σ-model

with tension t is

S =
1

πt

∫
d2σ 〈P1e+,

1

1− ηRmP1
P1e−〉 . (5.5)

Projectors P1 onto g(1) ∼= m ensure that, in the decomposition e± = ea±Ta + eα±Tα, only

the m-directed components ea± contribute to the action. Notice how convenient it is to

adopt the Poisson pencil: with obvious manipulations Rabm = (Rm − R)ab + Rab = πabτ

for τ = 1. From this observation it is clear that the deformation entailed in the action
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(5.5) is geometrically induced by the Poisson pecil. To make this more precise, one can

extract a conventional metric g and NS two-form b either from directly evaluating the

σ-model action or equivalently by dressing the generalised metric with the appropriate

generalised frame field. In fact, the latter has already been discussed in Example 4.3.3,

EA =

(
ea ηtπabB e

−t
b

0 e−ta

)
, (5.6)

where we have additionally introduced the convenient factor ηt.

To construct the generalised metric, we would need to compare (5.5) with the action for

a Poisson-Lie model, so as to extract E0 out of which HAB is built. However, so far we

have only considered Poisson-Lie σ-models on group manifolds. On the (reductive, but

not necessarily symmetric) coset G/H, a natural suggestion is to restrict the indices in

(3.71) to run over m, and so we consider

SG/H =
1

π

∫
Σ

d2σ ea+
(
E−1

0 + πg
)−1

ab
eb− . (5.7)

However, a priori, the degrees of freedom entering this action still contain those corre-

sponding to the subgroup H and thus, without imposing further constraints, (5.7) does

not provide a valid description of the coset G/H. This is remedied by demanding that

the action develops a local gauge symmetry under the action of H from the right which

serves to eliminate the unwanted degrees of freedom. A short calculation shows that

under an infinitesimal transformation this is the case provided that [129]

0 = f̃abγ + E−1 ad
0 fγd

b + fγd
aE−1 db

0 . (5.8)

This result is general, and does not require H to be coisotropic, as in the case of CPn.
Also, in a doubled fashion, it can be equivalently rewritten as1

0 = FαA
CHCB + FαB

CHCA . (5.9)

When coisotropy is imposed, f̃abγ = 0 and the expression above simplifies. Specifically,

if E−1ab
0 is any linear combination of κab and Rab, the constraint is obeyed and the coset

model well-defined. For CPnη , it results in E−1ab
0 = t(κab + ηRab), giving rise to the

generalised metric in flat indices

HAB =

(
1 + η2tκ−1 ηRt

ηR t−1κ

)
AB

. (5.10)

1We will indicate with F the structure constants of the corresponding Drinfel’d double. For η-
deformations of a Lie group G = exp(g), the double is just d ∼= gC.
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After some manipulations one finds that the deformed geometry encapsulated by g and b

can be expressed in terms of G and πτ as

g−1 = G−1 − η2πτGπτ , bg−1 = −η Gπτ . (5.11)

Let us emphasise that, despite the elegant form of (5.11), in terms of explicit coordinate

expressions these become rather intractable. We can now observe that the generalised

metric with flat indices given in (5.10) admits the decomposition E ≡ Hη−1 = J1J2 with

J1A
B =

(
Rt 0

0 −R

)
A

B and J2A
B =

(
η (1 + η2)tκ−1R

t−1Rκ −η

)
A

B , (5.12)

such that, for i = 1, 2,

J 2
i = −1 , [J1,J2] = 0 . (5.13)

Thus, upon dressing these flat space quantities with the generalised frame fields (5.6),

we see that the target space geometry is indeed generalised Kähler with

J1 =

(
J t tη(J tπB + πBJ)

0 −J

)
, J2 =

(
−ηπτω −t(ω−1 + η2πτωπτ )

t−1ω ηωπτ

)
. (5.14)

Using the parametrisation of generalised complex structures (2.30), we know that the

North-East blocks of J1,2 are Poisson structures. This can rendered explicit recalling that

Generalised Kähler Geometry is equivalent to bi-Hermitian geometry, the map between

the two being given by (2.40). It is now easy to show that, if we introduce the quantities

Q± = 1± bg−1 = 1∓ ηGπτ , the objects appearing in (2.40) are given by

J± = Q−1
± JQ± , ω−1

± = Qt±ω
−1Q± , g = Q−1

± GQ−t± . (5.15)

Out of these, one can construct three Poisson structures2 [130], namely σ = g−1[J+, J−]

and π± = ±1/2
(
ω−1

+ ± ω−1
−
)
, specifically resulting in

π+ = (1 + η2πτωπτω)ω−1 , π− = η(J tπB + πBJ) , σ = ω−1
− J+ − ω−1

+ J− . (5.16)

As we can see, π± correspond to the North-East blocks of J1,2, as anticipated. Gener-

alised Kähler Geometry is related to bi-Hermitian geometry and consequently to N =

(2, 2) supersymmetry. In this sense, the types of supersymmetric multiplets required to

furnish an N = (2, 2) action can be extracted from the three Poisson structures we have
2We choose to introduce an extra factor of ±1/2 with respect to the standard definitions so as to get

rid of some numerical factors which will not affect the subsequent analysis.
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just singled out. Chiral superfields parametrise

Ker(J+ − J−) = Kerπ− , (5.17)

whereas twisted chirals are needed to parametrise

Ker(J+ + J−) = Kerπ+ . (5.18)

The remaining directions, i.e. (Ker[J+, J−])⊥, corresponding to the symplectic leaves of

σ are to be parametrised by semi-chiral superfields [130].

Let us briefly study these superfields in our case. For π+, its kernel is isomorphic to

the kernel of 1 + (ηπτω)2 which, since (ηπτω)2 is positive definite, is trivial. Hence, no

twisted chiral multiplets are present. The kernel for π− is better studied in Fubini-Study

coordinates of the largest Bruhat cell. Here the complex structure is diagonal and the

expression (5.16) for π− amounts to selecting the diagonal blocks of πB which, in this

patch, turn out the complex conjugates of one another. Each one of these blocks is

a n × n dimensional matrix and, therefore, has vanishing determinant for odd n. In

particular, each block has a null space parametrised by one single vector so that, upon

linearly combining them, we have a total of two vectors generating the null space. In the

even case, it turns out that the determinant is non-vanishing, implying a trivial kernel.

In summary, when n is odd we have two vectors generating the kernel of π− and, thus, a

single chiral superfield. We therefore end up with (n − 1)/2 semi-chiral multiplets plus

a single chiral multiplet in the odd case and n/2 semi-chiral multiplets in the even case.

5.2.1 Pure Spinors

Having identified CPnη as an instance of generalised Kähler geometry, we can proceed

with an analysis of the associated pure spinors. These can be studied without fixing a

specific (complex) dimension. We will follow the standard procedure, namely we will

first compute a basis V j
1,2 for the +i-eigenspace of each complex structure and then we

will impose that the same basis annihilates the associated pure spinor.

Let us start from J1. It is most easily analysed in Fubini-Study coordinates: J is diagonal

and n +i-eigenvectors for J1 are immediately found to be V j
1 = ∂zj , j = 1, . . . , n. On

the other hand, π− in these coordinates reads

π− = 2η
∑
j>i

(zizj∂zi ∧ ∂zj + c.c.) , (5.19)
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making it easy to see that the remaining eigenvectors are

V n+j
1 = dz̄j + iηt z̄j

∑
i>j

z̄i∂z̄i −
∑
i<j

z̄i∂z̄i

 , j = 1, . . . , n . (5.20)

As proved by Gualtieri [25], the general form of a non-degenerate complex pure spinor

is Ψ̂ = Ξ ∧ eρ, where ρ is a complex two-form, Ξ a decomposable k-form and k the type

of the spinor. For odd n, we proved that dim Kerπ− = 2 and the spinor will be of type

1 (that is, Ξ will be a one-form). On the contrary, for even n the Poisson structure π−
has trivial kernel: the spinor will have type 0 and we can consistently set Ξ = 1 since

the spinor is defined up to an overall function.

Now, the requirement V j
1 · Ψ̂1 = 0 for j = 1, . . . , n implies that the spinor is made

up of anti-holomorphic forms only. The constraints arising from V n+j
1 · Ψ̂1 = 0 with

j = 1, . . . , n are equivalent to

0 = ξn+j
1 + ι

vn+j
1

ρ for even n , (5.21)

0 = ι
vn+j
1

Ξ− Ξ ∧ ι
vn+j
1

ρ+ ξn+j
1 ∧ Ξ for odd n , (5.22)

where vn+j
1 and ξn+j

1 are, respectively, the vector and form part of the generalised vectors

(5.20). Observe that (5.22) can be in fact split into two separate equations, corresponding

to degree zero and two. In this sense, the degree zero requirement is the same as saying

that the interior product of Ξ with vn+j
1 vanishes for all j = 1, . . . , n. As one can

explicitly check, all of the equations are satisfied with

ρ =
i

ηt

∑
k>i

(−1)i+k
dz̄i ∧ dz̄k
z̄iz̄k

and Ξ =

1 even n

iηt
∑

k(−1)k+1 dz̄k
z̄k

odd n
. (5.23)

With this normalisation we remark that for vanishing η the pure spinor is well defined

and coincides (after an appropriate rescaling) with the decomposable anti-holomorphic

form Ω = dz̄1 ∧ . . . ∧ dz̄n.

As for J2, it is sufficient to notice that its explicit form (5.14) implies that each and

every generalised eigenvector V j
2 with +i eigenvalue will be given by

V j
2 = it(ω−1 + iηπτ )ξj2 + ξj2 j = 1, . . . , 2n, (5.24)

being ξj2 a set of 2n independent one-forms. The second pure spinor then results in

Ψ̂2 = exp
[
−it−1(ω−1 + iηπτ )−1

]
. (5.25)
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In particular, notice that the η → 0 limit correctly yields the exponential of the Kähler

form, as it should for a Kähler manifold.

Finally, notice that, for every value of n, dρ = dΞ = 0; also, d(ω−1 + iηπτ )−1 = 0 follows

from the compatibility of πB and ω−1. Thus, dΨ̂1,2 = 0. Actually, this is a consequence

of our choice of normalisation for the spinors; for instance, we have set the zero-form

component of Ψ̂2 to one. Instead, we could impose a different normalisation using the

Mukai pairing ||Ψ̂i||2= Ψ̂i ∧ σ(
¯̂
Ψi)|top. Should we scale the pure spinors such that they

have equal normalisation, then they would no longer be closed. The geometry is hence

not generalised Calabi-Yau3.

5.2.2 Generalised Kähler Potential

Finding the generalised Kähler potential K for a deformation of CPn is complicated, at

least for generic n. We thus devote the present paragraph to some general reasoning.

A key challenge in establishing the generalised Kähler potential is to find appropriate

coordinates. It is a trivial matter to check that J t±σJ± = −σ, i.e. that σ splits into

σ = σ(2,0) +σ(0,2) with respect to either complex structures. Invertibility, however, is not

necessarily guaranteed. It is well known (see e.g. [39] for a comprehensive treatment) that

each Poisson structure π defines a foliation. Specifically, although π might not be globally

invertible, when restricted to one of its leaves Σ, the two-form (π|Σ)−1 is well-defined.

It has been first proven in [57] that for π = σ, the leaves have real dimension 4m, for

some m ∈ N. In the CPn case, the integer m is related to the complex dimension of the

projective space via m = [n2 ].

Suppose we now restrict to one leaf Σ, dim Σ = 4m, where σ−1 is well defined4. Because

σ is a Poisson structure dσ−1 = 0 has to hold. In general σ−1 will inherit from σ the

decomposition σ−1 = σ−1(2,0)
+ σ−1(0,2) and the holomorphic coordinates we look for

should be such that it is brought to the canonical form

σ−1 =

m∑
i=1

dqi ∧ dpi + c.c. =

m∑
i=1

dQi ∧ dPi + c.c. (5.26)

(q, p) and (Q,P ) can be thought of as the complex coordinates diagonalising, respec-

tively, J+ and J− restricted to Σ (where they do not commute, so that they cannot be

simultaneously diagonalised). In the language of supersymmetry, one can also look at

(qi, q̄i, Pi, P̄i), for a fixed value of i, as part of a semi-chiral superfield [132]. The crucial
3A generalised Kähler geometry is generalised Calabi-Yau when the pure spinors associated to the

generalised complex structures are nowhere-vanishing, closed when choosing their relative norm with
respect to the Mukai-pairing to be a constant [25, 131].

4Here and henceforth σ−1 should be understood as σ−1 ≡ (σ|Σ)−1.
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point is that the transformation between (p, p̄, Q, Q̄) and (P, P̄ , q, q̄) is canonical with a

(real) generating function K(P, P̄ , q, q̄) such that

pi =
∂K
∂qi

, Qi =
∂K
∂Pi

. (5.27)

It is this generating functional that becomes identified with the generalised Kähler po-

tential. Thus, extracting K can in general be hard and cumbersome: first one has to

obtain pi and Qi and then integrate the above equations to determine K.

The discussion above completely determines the Kähler potential when semi-chiral fields

parametrise the whole geometry, i.e. for the η-deformation of CP2m (cf. the discussion

around (5.17)). For CP2m+1 we need to augment the semi-chiral multiplets with a single

chiral multiplet. When chiral and/or twisted chiral multiplets are required, the algorithm

for determining the Kähler potential is slightly more involved but has been detailed in

the literature [132, 133]. In essence, one simply repeats the above construction on each

symplectic leaf; however, the resulting expressions are somewhat more complicated [132].

Here, however, we will content ourselves with considering explicitly the Kähler potential

for the case of CP1 and CP2.

To find the (p, q) and (P,Q) coordinates explicitly we exploit the fact that there are n

Killing vectors which leave σ−1 invariant (considering for simplicity here the case relevant

to CPeven for which σ is invertible). The coordinates (xm, φm) introduced in (5.3) are

adapted to this such that the Killing vectors are simply given by the ∂φm . We can select

the holomorphic (with respect to J±) part of σ−1 by acting with a projector

σ−1
± =

1

2i
(i+ J±)σ−1 , (5.28)

such that

dq ∧ dp+ dQ ∧ dP = σ−1
+ + σ−1

− . (5.29)

Because both σ−1
± are invariant under the action of the Killing vectors ∂φm

L∂φmσ
−1
± = 0 = d(ι∂φmσ

−1
± ) , (5.30)

we obtain the momentum maps

dµ±m = ι∂φmσ
−1
± , (5.31)

which, together with the one-forms dφm dual to the isometries, form a basis of one-forms.

A symplectic form σ−1 which satisfies (5.31) has to have the form

σ−1
± =

1

2
(a+ aba)mndφm ∧ dφn + (1 + ab)m

ndφm ∧ dµ±n +
1

2
bmndµ±m ∧ dµ±n , (5.32)
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where

amn = ι∂φmdµn with damn = 0 . (5.33)

Furthermore, σ−1 has to be closed. This implies that the only free parameter bmn has

to be constant like amn. To fix bmn, we just have to match the left and right hand side.

As result, we find that

σ−1
+ = dqm ∧ dpm and σ−1

− = dQm ∧ dPm , (5.34)

where dqm and dpm are linear combinations (with constrained coefficients) of dφm and

dµ+
m. The same holds for dQm and dPm but with respect now to the linear combination

built from dφm and dµ−m. So the procedure is simple in principle: first integrate the mo-

ment map to find the µm and take appropriate linear combinations µ and φ to define the

canonical coordinates. Then find the generating function K by integrating the canonical

transformation of (5.27).

5.2.2.1 CP1

It is a well-known fact that every two-dimensional complex manifold is Kähler [134]; as

such, the deformed CP1 geometry is completely determined by the standard (i.e. non gen-

eralised) Kähler potential. In fact, one can further notice that, given the dimensionality,

the B-field is always pure gauge and thus negligible. As for the patch, we put ourselves

in the largest Bruhat cell where the homogeneous coordinate Z0 6= 0 and introduce the

holomorphic coordinate z ≡ Z1/Z0. The Kähler potential is5

K = − 1

2η
Im Li2

(
η − i
η + i

|z|2
)
, (5.35)

where we notice that the η → 0 limit is non-singular and yields KFS, i.e. the undeformed

Fubini-Study Kähler potential for CP1, KFS = log(1 + |z|2). As CP1 is Kähler, J+ = J−,

and π− vanishes. In turn, there is a single set of complex coordinates diagonalising J±
expressed by

q = −2µ log(z) = µ

(
log

(
1− x
x

)
− 2iφ

)
= µ (log (sin(β + χ) csc(β − χ))− 2iφ)(5.36)

and its conjugate, and6

x =
1

2η
(η − tanχ) , µ =

i− 1

8
√
η t

, η = tanβ . (5.37)

5We use “Im” to indicate the imaginary part of the dilogarithm.
6Strictly speaking, for CP1 the precise form for µ is undetermined. We nevertheless choose it so as

to match the higher dimensional cases, see next section.
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5.2.2.2 CP2

CP2 is the first case where we can study a non-trivial generalised Kähler potential and

give a rather nice explicit presentation thereof.

A first step in computing it is to find the holomorphic coordinates of J±, that is, to

identify p(z, z̄), q(z, z̄), P (z, z̄), Q(z, z̄), such that

J+ = idp⊗ ∂p − idp̄⊗ ∂p̄ + idq ⊗ ∂q − idq̄ ⊗ ∂q̄ ,

J− = idP ⊗ ∂P − idP̄ ⊗ ∂P̄ + idQ⊗ ∂Q − idQ̄⊗ ∂Q̄ ,

σ−1 = dp ∧ dq + dp̄ ∧ dq̄ = dP ∧ dQ+ dP̄ ∧ dQ̄ .

(5.38)

Using the symplectic moment map associated to U(1) actions as described previously

one finds for p, q (with p̄, q̄ given by standard complex conjugation)

q =µ
(
log
(
−e−iχ2 sin (β + χ1 − χ2) csc (β − χ1)

)
− 2iφ1

)
,

p =µ
(
log
(
−ie−iχ1 sec(β) csc (χ2) sin (β + χ1 − χ2)

)
− 2iφ2

)
,

(5.39)

where the angles χ1,2 are a generalisation of the one previously introduced

x1 =
1

2
− 1

2η
tan(χ1) , x2 =

1

2η
sec(χ1) sec(χ1 − χ2) sin(χ2) , (5.40)

and µ and β follow the definition in (5.37). In particular, µ is a coefficient needed

to ensure that σ−1 has the correct form (5.38). The relations (5.39) in Fubini-Study

coordinates are

q = µ

[
−2 log

(√
z1√
z̄1

)
+ log

(
−η(1− |z1|2+|z2|2) + i(1 + |z|2)

|z1|2(η(1− |z|2) + i(1 + |z|2))

)]
, (5.41)

p = µ

[
−2 log

(√
z2√
z̄2

)
+ log

(
−η(1− |z1|2+|z2|2) + i(1 + |z|2)

|z2|2(1 + |z|2)

)]
, (5.42)

where we recall |z|2≡ |z1|2+|z2|2. Instead, one can use the angles χ1,2 to show that a

simple relation between p, q and P,Q exists, namely

p+ P = −2iµχ1 , q +Q = −2iµχ2 . (5.43)

Letting the generating function

K(P, P̄ , q, q̄) = −(Pq + P̄ q̄) +K1(P, P̄ , q, q̄) , (5.44)

we require, in accordance with (5.27) and (5.43), that

∂qK1 = −2iµχ1 , ∂PK1 = −2iµχ2 . (5.45)



Integrable Deformation of CPn 73

A closed form for the potential in terms of the angles χi can be given in terms of the

parametric integral

Iα(y) =

∫
y cot

(
y + α

2

)
dy = 2

(
y log

(
1− ei(α+y)

)
− iLi2

(
ei(y+α)

))
− iy2

2
, (5.46)

such that

K1(χ1, χ2) =
1

32tη
(I−2β(2χ1)− I2β(2χ1 − 2χ2)− I0(2χ2)) . (5.47)

To complete the specification of the potential one needs to express the χi in terms of

(P, P̄ , q, q̄) which can be done implicitly via the relations

e|p|/|µ| = sec(β) csc(χ2) sin(β + χ1 − χ2) ,

e|q|/|µ| = csc(β − χ1) sin(β + χ1 − χ2) .
(5.48)

5.2.3 T-Dual Geometry

Following the publication of [2], the authors of [135] have been able to prove that, after

applying abelian T-duality on all n angular coordinates φi of CPnη , the resulting geometry

is enhanced to Kähler (in the strictly Riemannian sense). Whilst not an original work of

ours, we nonetheless feel that this aspect ought to be reported so as to complement the

presentation. With respect to [135], however, we shall add a brief discussion on how the

dualisation is implemented on the generalised complex structures.

The η-deformed CPn preserves a U(1)n toric action from the undeformed case. This is

most easily seen in the (x, φ) coordinates, where the torus is identified with the angular

coordinates φi: the n vectors ∂φi are all Killing. This fact can be used to T-dualise the

deformed projective space a number of times between 1 and n. For our purpose, we shall

consider a duality along all angular coordinates.

Even though we could simply apply the Buscher rules, implementing T-duality in a

generalised-geometric fashion best suits our description of CPnη as a Generalised Kähler

geometry. Suppose T , with T 2 = 1 and T t = T , is the O(n, n) element implementing

T-duality on the generalised metric E = Hη−1 as Ě = TET 7. Recalling the form of the

metric in terms of generalised complex structures, it is immediate to see that in fact

Ě = J̌1J̌2, where J̌1 = TJ2T and J̌2 = TJ1T . The reason for swapping the indices

is that, as usual, T-duality interchanges “chiralities”8. It is straightforward to check

that the dualised structures commute and square to minus one, making the T-dual of a
7For any object X we shall use X̌ to denote its T-dual.
8For instance, if in the η → 0 limit J1 and J2 respectively comprised of J and ω only, the opposite

is true after the transformation, hence the relabelling.
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Generalised Kähler Geometry again Generalised Kähler. We now want to prove that, in

our case, it is simply Kähler.

To this end, we adopt the approach reviewed in Section 3.2.3. The vector fields we

consider are vi = ∂φi . Being Killing, they obviously satisfy Lvig = 0 and LviH = 0. An

explicit computation shows that in fact also Lvib = 0 holds true so that the generalised

vector can then be taken to be simply Vi = ∂φi + dφi. Finally, we compose the various

dualities into a single operation T =
∏n
i=1 Ti. We can now apply T to either E or the

generalised complex structures. In the former case, we find that b̌ = 0, so that it is

actually possible to have a legitimate Kähler manifold. On the complex structures, for

instance, we have that

J̌1 := TJ2T =

(
J̌ t 0

0 −J̌

)
(5.49)

where we can check that in fact J̌ is a complex structure for the dual metric.

The T-dual geometry can be given explicit coordinate expression as follows [135]. We

first introduce the (n+ 1)× (n+ 1) matrix R which is totally skew-symmetric and with

upper triangular block made up of +i only. We can employ R to construct two other

quantities

Njk = ixkRjk , Mj =
n+1∑
k=1

(Njkdφk −Nkjdφj) . (5.50)

In turn, these do enter the definitions of the Riemannian metric and Kähler form as

ds2 =
n+1∑
j=1

dφ2
j + (dxj − ηMj)

2

2xj
, ω =

n+1∑
j=1

dφj ∧ dxj
2xj

−
n+1∑
j,k=1

iη

2
Rjkdφj ∧dφk , (5.51)

upon further imposing the constraints xn+1 = 1 −
∑n

i xi and φn+1 = −
∑n

i φi needed

to remove the extra degrees of freedom we have introduced. Now, being the manifold

Kähler we should be able to re-express the two quantities above in terms of a single Kähler

potential. As shown in [135] this is achieved with the introduction of new coordinates

(and their complex conjugates)

zk =
i

2η
log

1 + iη

1− 2

k∑
j=1

xj

− i k∑
j=1

φj , (5.52)

to be supplemented with the constraints

z0 = i
log(1 + iη)

2η
, zn+1 = i

log(1− iη)

2η
. (5.53)
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With this choice, the Kähler potential reads

K = iη

n∑
j=2

(zj z̄j−1 − z̄jzj−1) +
1

2η

n+1∑
j=1

P(2η(zj + z̄j − zj−1 − z̄j−1)) , (5.54)

where the function P is defined by

P(t) = i

(
Li2(eit) +

t(2π − t)
4

)
. (5.55)

5.3 The Double Deformation Puzzle

When discussing gauge-invariance for Poisson-Lie coset models, the constraint (5.8) was

understood as a necessary ingredient for proving that H degrees of freedom can be

consistently removed from the picture. As we noticed, in E−1ab
0 any linear combination

of the m-restriction of the Killing form and the R-matrix, κab and Rab, would solve the

equation, as f̃abγ = 0 by coisotropy. Given this fact, one could try and mimic the way

the bi-Yang-Baxter model is defined on group manifolds, namely with the introduction

of a second deformation parameter ζ entering the action as

S =
1

πt

∫
Σ

d2σ〈P1e+,
1

1− ηRmP1 − ζRP1
P1e−〉 . (5.56)

In [20] it was shown that, for CP1 ∼= S2, the ζ parameter could be reabsorbed away via

a diffeomorphism, changing both the overall tension of the model and the η parameter.

CP1
η, however, is a dramatically simplified setting when compared to deformed higher-di-

mensional projective spaces, where explicit expressions for the NS-NS fields immediately

become intractable. One might then ask if the reabsorption of ζ is an accident − most

likely due to low dimensionality of CP1 − or if, instead, it is a genuine feature of all these

models.

Proving it in general is quite a cumbersome task, as it involves a number of non-trivial

steps. First of all, it is not necessarily granted that the redefinitions t̃, η̃ of t, η induced by

the diffeomorphism explicitly found for CP1 do generalise to higher dimensions. Ascer-

taining that this is case would require a dimension-independent approach: to this end we

shall carry out a detailed analysis of the integrability of the system described by (5.56).

Even so, albeit armed with a strong indication towards the triviality of the ζ-parameter,

we would need an explicit form for the diffeomorphism. We shall provide a putative all-n

expression for it, even though it was only possible to check its validity explicitly up to

n = 6. Nevertheless, this limitation is sufficient to encompass holographic backgrounds

relevant for either String or M-theory.
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5.3.1 Integrability

The first objective of our analysis is to prove that the model described by (5.56) is classi-

cally integrable, both in the weak and strong sense. This has a two-fold purpose: even if

the ζ parameter could not be reabsorbed, we would still put the doubly deformed model

in the very special class of integrable models on coset spaces; if ζ could be reabsorbed,

as we shall prove to be the case, a strong integrability analysis should suggest the new

“effective” parameters t̃ and η̃ we mentioned earlier. In fact, they should be deducible

from the comparison between the twist functions associated to this model and the one

with a single deformation parameter.

5.3.1.1 Weak Integrability

Proving that a model is (classically) integrable in the weak sense amounts to find a Lax

connection whose flatness implies the equations of motion and Bianchi identity. To this

end we introduce the currents9

B± =
1

1± ηRmP1 ± ζRP1
e±(m) . (5.57)

On a symmetric space, we can additionally define the projections of these currents onto

g(0) or g(1) through the appropriate projectors, B(i)
± = PiB±, with i = 0, 1. After noticing

the closed form for the operator appearing in (5.57)10, we make use of the coisotropy

condition to obtain the equations of motion in the form:(
∂−B

(1)
+ + [B

(0)
− , B

(1)
+ ]
)

+
(
∂+B

(1)
− + [B

(0)
+ , B

(1)
− ]
)

= 0 . (5.58)

The Bianchi identity for e±(m) coincides with the Maurer-Cartan equation ∂+e−−∂−e+−
[e−, e+] = 0. On symmetric spaces, however, we can employ the Pi’s we have at hand

to project the Bianchi identity down to either the g(0) or g(1) subspace. Along g(0) (or

equivalently, the subalgebra of the group we are modding out) we find

∂+B
(0)
− − ∂−B

(0)
+ + [B

(0)
+ , B

(0)
− ] + (1 + η2 − ζ2)[B

(1)
+ , B

(1)
− ]

+ζ[P1RB
(1)
+ , B

(1)
− ]− ζ[B

(1)
+ ,P1RB

(1)
− ] = 0 .

(5.59)

9To make contact with the literature we adopt the notation in [66].
10One can easily show that the inversion is given by 1

1±ηRmP1±ζRP1
= P0 + (1 ∓ ηP0Rm ∓

ζP0R) 1
1±ηP1Rm±ζP1R

. This result is an extension of the one appearing in [93].
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On g(1), the projection of the Bianchi identity can be mixed with the equation of motion

(5.58) so as to obtain the simpler equations

∂±B
(1)
∓ + [B

(0)
± , B

(1)
∓ ] = 0 . (5.60)

It is remarkable that, in order to achieve these results, we have used multiple times the

three defining hypothesis of the Koszul theorem for interpreting R as a complex structure,

as this is the case for CPn. In particular, we have exploited P0R(•) = 0, where • denotes
any operator R is acting upon. Introducing the currents

j± = kB
(1)
± ±

ζ

k
P1RB

(1)
± , (5.61)

where k is the combination of parameters

k =

(
1 + η2 − ζ2 +

√
(1 + η2 − ζ2)2 + 4ζ2

2

)1/2

, (5.62)

one can recast (5.59) and (5.60) in the canonical form

0 = ∂±j∓ + [B
(0)
± , j∓] , (5.63)

0 = ∂+B
(0)
− − ∂−B

(0)
+ + [B

(0)
+ , B

(0)
− ] + [j+, j−] , (5.64)

which is well known [136] to be equivalent to the existence of the Lax connection

L± = B
(0)
± + z±1j± . (5.65)

The doubly deformed model is thus weakly integrable. As a cross-check, we notice that

upon taking the limit ζ → 0, k correctly reduces to
√

1 + η2 and the second term in the

definition of j± vanishes, thus matching the result in [93].

5.3.1.2 Strong Integrability

Strong integrability requires us to pass to the Hamiltonian formalism of the system. It

is convenient to introduce the Lie algebra valued quantities

X = eai(g)piTa , Y =
1

2πt
eaσ(g)Ta −Xb(ηRg + ζR)b

aTa , (5.66)

where we take g = mh and p the canonical momentum. The advantage of these definitions

is that the Lax matrix can be written as a function of X and Y ,

L(z) = 2πY (0) +

(
z +

1

z

)(
πkY (1) + π

ζ

k
(RX)(1)

)
+

(
z − 1

z

)(
πkX(1) + π

ζ

k
(RY )(1)

)
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+ f(z)X(0) + g(z)(RX)(0) . (5.67)

On the second line, we have added two so far unspecified function of the spectral param-

eter, f(z) and g(z), that weigh the primary constraints X(0) ≈ 0 and (RX)(0) ≈ 0. As

previously reviewed, these are needed to ensure the closure of the Maillet algebra, once

a precise form for f, g is picked. X and Y are convenient as they can be embedded into

a generalised vector via ZA = 2π(tY a, Xa). The crucial observation is that the latter

is related to the currents JA for the E-model introduced in Section 3.2.6 by a constant

O(d, d) transformation β

ZA = βA
BJB with β =

(
1 t(η + ζ)κ−1R

0 1

)
. (5.68)

As a result, the Poisson brackets for Z , and thus the ones for L(z), can be inferred from

the ones for J already given in (3.76). Eventually, the Poisson brackets for the Lax

matrix can be used to check if the Maillet algebra is satisfied: the function g turns out

not to depend at all on the spectral parameter, g = 2πζ, whereas

f(z) = π

(
−2 + k2(1 + z2) +

ζ2(z2 − 1)

k2

)
. (5.69)

Our model fits into the class of models with twist function, where we find

ϕ(z) =
k2

tπ(k2 + ζ2)

z

(z2 − 1)2 + k2(k2−1)
k2+ζ2 (z2 + 1)2

. (5.70)

Upon identifying new deformation parameter and tension according to

η̃2 =
k2(k2 − 1)

k2 + ζ2
, t̃ = t

k2 + ζ2

k2
, (5.71)

one can see that the twist function above coincides with the one for the single Yang-Bax-

ter deformation already present in the literature [93]. It is tempting to infer, judging

from this analysis, that the second parameter ζ is not affecting the model. Nevertheless,

given the existence of transformations not affecting the twist function [137] and yet yield-

ing to a non-trivially deformed target space, a more detailed geometric check is needed.

We will explicitly construct the diffeomorphism removing ζ from the deformed metric in

the next section.

5.3.1.3 Explicit Diffeomorphism

Before providing the explicit form for the diffeomorphism removing the deformation

induced by ζ, let us briefly strengthen the indications of the previous section with a
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renormalisation group analysis. The one-loop RG flow for this model was first obtained

in [20]; building on those results, we single out two RG-invariant combinations namely

tη and 1+η2+ζ2

ηζ . The remaining non-trivial flow equation is

dη

d logµ
∝ ηt(1− ζ2 + η2) . (5.72)

Now, given the effective parameters (5.71), we notice that algebraically ηt = η̃t̃. There-

fore, it holds true that η̃t̃ is RG-invariant, too. Even more generally, it is easy to prove

that η̃ and t̃ obey the flow equation (5.72), upon setting ζ = 0. Thus, it seems that our

findings are consistent with one-loop quantum corrections.

To show the diffeomorphism, we put ourselves in the largest Bruhat cell and adopt

(xi, φi) coordinates; other than the parameters identified so far, it is particularly useful

to introduce a new combination α defined by α2 = k2 − 1 − η̃2. In terms of the latter,

while leaving the angles φi untouched, we redefine the xi-coordinates through

x̃i =
(k2 − α2)xi

[k + α(2
∑

j<i xj − 1)][k + α(2
∑

j≤i xj − 1)]
, i = 1, . . . , n . (5.73)

This is our conjectured diffeomorphism. Indeed, although we do not dispose of a general

proof, we have checked up to n = 6 that this removes the deformation induced on metric

and 3-form H = db by ζ. On dimensional grounds, this is enough for any application of

deformed projective spaces to either String or M-theory. Moreover, given the extremely

complex geometries this diffeomorphism has been successfully applied to, we believe we

can safely conjecture its correctness for all n.

5.4 Variation on a Theme: Spheres and AdS Spaces

Yang-Baxter deformations of spheres and de Sitter spaces have been extensively con-

sidered in the literature, mainly as part of of backgrounds relevant for extensions of

AdS/CFT. Oddly enough, they have only been studied on a case-by-case basis and a

more general treatment is currently missing, at least to the best of our knowledge. Aim

of this section is to address this point, building on some of the mathematical and physical

technology developed in this chapter. As the geometry of anti-de Sitter spaces can be

recovered via an appropriate analytic continuation of that of spheres, we shall mostly

concentrate on the latter. We will comment on the precise implementation of the trans-

formation in a later section. The results that follow arise from a set of unpublished

notes.
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5.4.1 Spheres

In analysing Yang-Baxter deformations of CPn, we purposefully avoided detailing the

explicit Lie algebra implementation of the deformation: for instance, we refrained from

picking an explicit basis for su(n + 1) or a coset representative. Rather, our findings

were based upon a number of well-known results for the geometry of complex projective

spaces, enabling us to overstep the algebraic viewpoint in favour of the more elegant

geometric approach we have pursued. Reversing the logic, we shall now take the Lie

algebra implementation as our starting point and construct the deformations of spheres

from scratches.

The n-dimensional sphere Sn is diffeomorphic to the homogenous space SO(n+1)/SO(n).

A convenient choice for the anti-Hermitian 1
2n(n+ 1) generators of so(n+ 1) is

(Ta,b)i
j = δaiδb

j − δajδbi , (5.74)

where a, b = 1, . . . , n+ 1 label the matrix and i, j = 1, . . . , n+ 1 indicate its components.

We choose as Killing form κ(x, y) = 1
2 Tr(xy), for two x, y ∈ g, which is of course

non-degenerate. Following [138], we define the projector P onto the coset directions

acting as

P(x) = −
n+1∑
i=2

κ(x, T1,i)T1,i , (5.75)

for any x ∈ so(n + 1). Accordingly, we identify the n matrices T1,2, . . . , T1,n+1 as the

coset generators, and the remainder as the so(n) algebra we will mod out.

As a warm-up, and to set some notation, let us compute the metric for the undeformed Sn

by algebraic means. To this end, let us pick a coset representative m which in spherical

coordinates φi reads

m =
n∏
a=1

e(φn+1−a−π2 )T1,a+1 . (5.76)

Upon dressing the matrix form of κ with the vielbein for Sn constructed through the

projection P(m−1dm), one obtains the well-known metric for the round n-sphere. Nota-

tion-wise, let us denote it with ds2 = dΩn(φ) and, more generally, indicate with dΩm(φ)

the volume element for the m-dimensional sphere in spherical coordinates. The downside

of spherical coordinates is that they make both the introduction of a deformation and the

analytic continuation to AdS cumbersome, due to the presence of trigonometric functions

in the metric. To circumvent this issue, we shall opt for a new set of coordinates.
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To get a grasp on the simplification they entail, consider the versors x̂ for an n-dimensional

sphere defined by

x̂1,n = cosϕ1 , x̂2,n = sinϕ1 cosϕ2 . . . x̂n−1,n = sinϕ1 . . . cosϕn−1 ,

x̂n,n = sinϕ1 . . . sinϕn−1 ,
(5.77)

and use them to construct new coordinates (r, ϕ, ϕ1, . . . , ϕn−1)11 according to
φi = arccos

[
r

x̂i,n−1

(1−r2
∑i−1
k=1 x̂

2
k,n−1)1/2

]
i = 1, . . . , n− 1

φn = ϕ

. (5.78)

With this choice, the metric for the n-sphere becomes

ds2 = (1− r2)dϕ2 +
dr2

1− r2
+ r2dΩn−2(ϕ) . (5.79)

Notice how here the new ϕ’s behave as spherical coordinates for a Sn−2. It should then

be clear that in performing this change we have not really avoided the issue of having

trigonometric functions, as they have been simply hidden in dΩn−2(ϕ). Nevertheless,

the same observation precisely suggests a way forward: define a transformation Gm of

order m ∈ N as the set of changes

Gm :


φi = arccos

[
r(m)

x̂i,m−1

(1−r(m)
2
∑i−1
k=1 x̂

2
k,m−1)1/2

]
, i = 1, . . . ,m− 1

φm = ϕ(m)

. (5.80)

Suppose we start with the round metric on a n-dimensional sphere dΩn(φ). A single

transformation Gn (that would correspond to (5.78)) is not sufficient for completely

removing the dependence on trigonometric functions, as we have seen. However, we

could apply Gn−2 on the coordinates appearing in dΩn−2(ϕ), thereby obtaining something

analogous to (5.79). Iterating this line of thought, the composition G2,3 ◦ . . . ◦ Gn−4 ◦
Gn−2 ◦ Gn should exactly fulfil our needs. Observe how in fact the last transformation

on the left is “ambiguous” as it depends on having an odd or even dimensional sphere

in the first place12. Following this procedure we find a simple form for the Sn metric in

(ri, ϕi) coordinates (and identifying r0 = 1)

ds2 =

[n2 ]∑
i=1

 i∏
j=1

r2
j−1

((1− r2
i )dϕ

2
i +

dr2
i

1− r2
i

)
+ δn,odd

[n2 ]∏
j=1

r2
j

dϕ2
n+1

2

. (5.81)

11Albeit somewhat confusing, in this standard notation r indicates an angle, and not the radius of the
sphere.

12In either case, G0,1 are just the identity and we neglect them.
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Now, suppose we want to η-deform this space. As a first step, it is necessary to construct

an R-matrix, and once again we resort to the Drinfel’d-Jimbo prescription for that.

Recall that this procedure requires us to single out the Cartan’s subalgebra as well as

the positive and negative roots of so(n+1). To this end, one needs to distinguish between

the even and odd case, i.e. so(2q) and so(2q+1) for integer q. In either case, the Cartan

subalgebra c has dimension q and is spanned by Hj = iT2j−1,2j . In the even case, so(2q),

we pick positive and negative roots (denoted with + and −, respectively)

E+
i,j =

1

2
√

2
(T2i−1,2j+1 + iT2i,2j+1 + i(T2i−1,2j+2 + iT2i,2j+2)) , (5.82)

Ẽ+
i,j =

1

2
√

2
(T2i−1,2j+1 + iT2i,2j+1 − i(T2i−1,2j+2 + iT2i,2j+2)) , (5.83)

E−i,j =
i

2
√

2
(T2i−1,2j+1 − iT2i,2j+1 − i(T2i−1,2j+2 − iT2i,2j+2)) , (5.84)

Ẽ−i,j =
i

2
√

2
(T2i−1,2j+1 − iT2i,2j+1 + i(T2i−1,2j+2 − iT2i,2j+2)) , (5.85)

with i = 1, . . . , q − 1 and j = i, . . . , q − 1. For so(2q + 1), we supplement this basis with

additional 2q generators

Ê+
j =

1

2
(T2j−1,2q+1 + iT2j,2q+1) , (5.86)

Ê−j =
i

2
(T2j−1,2q+1 − iT2j,2q+1) , (5.87)

with j = 1, . . . , q. Gathering together the positive and negative roots as Eλ and E−λ

for λ ∈ ∆+, we employ the usual formula R = 1
2

∑
λ∈∆+ Eλ ∧ E−λ for constructing the

R-matrix.

Now that we have at our disposal the Yang-Baxter matrix we are able to draw various

conclusions. First and foremost, we can explicitly check that the restriction of R to coset

directions, i.e. Rab, vanishes. Nonetheless, this does not imply that the η-deformation of

Sn is trivial, as the restriction of the dressed Yang-Baxter matrix, (Rm)a
b, is not zero13.

Also, one can check that the coisotropy condition (2.9) is met with our embedding of

so(n) in so(n + 1): in turn, this implies that the Poisson bracket π of SO(n + 1) will

descend to a Poisson-Bruhat bracket πB for Sn. Moreover, as Rab = 0, its expression is

simplified to πabB = Rabm . Upon dressing the latter with frame fields, we arrive at a very

neat expression for the Poisson-Bruhat structure for Sn in (ϕ, r) coordinates, namely

πB =
1

2

[n2 ]∑
i=1

ridϕi ∧ dri . (5.88)

13That is, we first dress R with adjoint actions and then project it.
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Comparing the action for the Yang-Baxter model for a sphere (which formally coincides

with (5.5), being Sn a symmetric space too) with the generic Poisson-Lie model (5.7),

we recognise immediately E0 = κ. Replicating the steps carried out in the case of CPn,
it is easy to see that the quantities Q± = 1∓ ηGπB, where G is the undeformed metric

for Sn, do in fact implement the deformed metric g as g = Q−1
± GQ−t± . As in the case of

projective spaces, this is a general result that does not rely on the chart of our choice.

However, owing to the simplicity of the objects appearing in this formula when in (ϕ, r)

coordinates, it is possible to write down the line element for Snη :

ds2 =

[n2 ]∑
i=1

 i∏
j=1

r2
j−1


(

(1− r2
i )dϕ

2
i +

dr2
i

1−r2
i

)
1 + η2r2

i

∏i
j=1 r

4
j−1

+ δn,odd

[n2 ]∏
j=1

r2
j

dϕ2
n+1

2

. (5.89)

Similarly, the explicit expression for the B-field is

b = η

[n
2

]∑
i=1

(∏i
j=1 r

4
j−1

)
1 + η2r2

i

∏i
j=1 r

4
j−1

(ridri ∧ dϕi) . (5.90)

Despite the many elements of similarity in construction with deformed projective spaces,

the spheres Snη do not seem to fit generically into any Generalised Complex, let alone

Generalised Kähler, geometry. Of course, in principle there could be specific values of n

for which they do; for instance, as n = 2 we have the famous S2 ∼= CP1.

5.4.2 Anti-de Sitter

Having detailed the construction for spheres, moving to AdS spaces is just a matter of

analytically continuing the previous results to Minkowskian signature. Time t is obtained

through the replacement ϕ1 → −it/α, where α is the AdS/S radius, and similarly we

rescale r1 → r1/α. We then multiply both the metric and B-field by a factor of α2

(neglected so far in the discussion, as we implicitly assumed the sphere to have unit

radius) and finally continue the radius, α→ iα. Having done so, we can decide to switch

back to the unitary AdS setting α = 1.

5.5 Conclusions

Using the tools of Poisson-Lie non-linear σ-models on generalised coset spaces, we have

described a specific but particularly striking class of examples in which G/H were Poisson

Hermitian spaces. Upon constructing an integrable Yang-Baxter deformation of these,

we showed that their target space is described by generalised Kähler geometry. We
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discussed in detail CPn as a prototypical example and, for the case of CP2, gave an

explicit formulation of the corresponding generalised Kähler potential. We filled a gap

in the literature by showing that a previously conjectured two-parameter deformation

for CPn is indeed integrable but coinciding with the already well-known Yang-Baxter

deformation of coset spaces.

A background motivation for this work was to investigate integrable deformations of

AdS4×CP3 with the aspiration of identifying quantum group deformations in the ABJM

model. At first sight the corresponding geometry is rather unattractive but in this work

we have elucidated many of the key features. A complete analysis would of course require

furnishing the geometry with appropriate RR fields and investigating the fermionic sector.

Whilst one might “boot-strap” an RR sector, an approach done for the case of Poisson-Lie

models on groups in [121], ultimately it would be desirable to extend the considerations

to super-cosets [97, 125, 139–141].

We only considered coset spaces for which the gauge group is coisotropic, as these nat-

urally solve the invariance constraint, leaving the construction of other holographically

relevant coset spaces open. Moreover, the explicit examples taken into account here

were based on quotients in which the Drinfel’d double was d = gC. The incorporation of

λ-models requires the more general case of d = g + g; the general tool kit of Chapter 4

accommodates this scenario and so it would be interesting to explore if there can be some

underlying generalised Kähler structures in the λ-deformations of G/H-WZW models.

Finally, we showed how it is possible, using a similar technology, to construct the

Yang-Baxter deformation for spheres and anti-de Sitter spaces in every dimension. We

furnished explicit expressions for the metric and B-field that can be readily used for any

application involving these deformed spacetimes.



Chapter 6

Intermezzo

The discussion in Chapters 4 and 5 has mostly remained classical. The inclusion of

quantum corrections, however, is essential and must certainly be addressed in String

Theory, the leading candidate for a quantum description of gravity. This is in fact an old

topic that dates back to the seminal work of Friedan [142], where the renormalisation of

a two-dimensional non-linear σ-model was first considered. When a Riemannian metric

g completely specifies the model, the famous one-loop renormalisation group equation

∂gµν
∂ logµ

= α′Rµν (6.1)

was found: at first order, g flows according to its Ricci tensor. Since then, this result

has been extended in all sorts of directions, adding for example B-field and dilaton

contributions, as well as higher order corrections and supersymmetry [138, 143–146].

In this regard there are, at the very least, two important questions worth of investigation.

The first is rather practical and is most easily formulated with an example. In Chapter

5 we have mentioned in passing that the main tensors describing the deformed geometry

of CPn do have extremely involved coordinates expressions. As usual, a clever diffeomor-

phism alleviates this issue, but even with the best coordinates we could find (the (x, φ)

patch we discussed at length) the metric for CP2
η could barely fit on a page. Hence, it

should really be no surprise that computing the RG flow for the deformation parameter η

using (6.1) and its B-field counterpart is quite a formidable task even with the help of a

computer. And this is just for the first perturbative order! On the other hand, we know

that a Yang-Baxter model has a quite simple algebraic description in terms of a constant

Yang-Baxter matrix. This observation suggests that the brute force approach of (6.1)

is just not computationally convenient at all for sufficiently complicated geometries. We

then ask:

85
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Is it possible to characterise the renormalisation group flow algebraically rather than

geometrically, at least for a restricted class of models?

The second question is more conceptual but is somehow related to the technical challenge

we just discussed. T-duality is usually made explicit through a repackaging of metric

and B-field in a single unified object, the generalised metric H. However, (6.1) and its

Kalb-Ramond partner by construction do not “see” any H. Hence, we could worry about

the survival of classical dualities at the quantum level. In general, and in particular

for more exotic types of T-duality such as non-Abelian or Poisson-Lie, this is far from

obvious and needs an explicit check. In this regard, it is possible to proceed in one of two

ways: we either compute the renormalisation group flow in terms of metric and B-field

and then ascertain that T-duality is left intact; or we use a doubled formalism that makes

T-duality covariance explicit from the outset.

At a first glance the second path seems preferable, as one is apparently dispensed from the

additional (and quite cumbersome) task of “rediscovering” duality that usually requires

quite some work, especially for higher loops calculation. Moreover, it does not seem

conceptually satisfactory to lose sight of T-duality, only to eventually recover it. But in

fact, there are at least two serious drawbacks to this approach. In terms of convenience,

the first path does not involve performing a new full-fledged quantum calculation from

scratches: even obtaining the two-loop β-functions for the NS-NS sector, as e.g. in

[145], required a remarkable effort, even leading to some initial disagreement on the

correct result. Avoiding this technical challenge is extremely helpful. Besides, a quantum

calculation in some doubled formalism usually implies additional intricacies: in essence,

adopting e.g. the Tseytlin doubled string (3.54), the price to pay for having T-duality

explicit is the breaking of Lorentz invariance: this makes many techniques canonically

employed in QFT ambiguous, if not inapplicable. Nonetheless, we ask:

Is it possible to perform a two-loop calculation in a doubled approach overcoming all the

technical intricacies?

Now, the two paths we have outlined should eventually converge on a final answer. Or,

at least, this is what we expect. It is not necessarily granted and (higher)-loop cal-

culations need to be performed in order to assess the validity of doubled formulations

beyond the leading (classical) order. Actually, one-loop calculations for the Tseytlin

string/E-model (for Abelian/Poisson-Lie T-duality, respectively) have already been car-

ried out in [147, 148]. Still, one-loop results are not such strong indications, and possible

issues at the quantum level are better probed in a two-loop approximation (at least).

Going against our own words of caution, we will devote the last two chapters to try and

address these points. We anticipate that the outcome of this investigation will not be

completely satisfactory: for the Tseytlin string we are able to finalise the calculation
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in all of its technical aspects other than possible field/coupling redefinitions that should

ideally reconcile it with the expected T-duality invariant answer. For the E-model, whilst

field redefinitions should play a minor role, there are further complications that arise and

we are still investigating in this direction at the time of writing.

As we will discuss quantum computations at great length in the remainder, let us briefly

summarise the state of the art for the first path. In the case of Abelian T-duality,

it all started with the work of Meissner. In the seminal work [149], building on the

result of [145], he was able to prove that the two-loop (or fourth-order in derivatives)

results does respect the O(n, n) symmetry. This was in fact proven in a highly simplified

scenario − called cosmological spacetime − where objects are only allowed to depend on

a single coordinate. Taking it from here, there have been significant efforts [150–155] in

developing the theory of higher derivative corrections in a T-duality covariant fashion (see

[156] for recent lecture notes on this topic). Much more recently, the case of Poisson-Lie

T-duality on group manifolds at two-loop was remarkably addressed in [157]. Together

with the author of this paper, we were trying to explore the same setting on generalised

coset spaces, exploiting the technology of Chapter 4 but the results are partial and will

not be discussed here.

Without further ado, let us move on to the actual computation.



Chapter 7

The Duality-Symmetric String at

Two-Loop

Abstract

The Tseytlin duality symmetric string makes manifest the O(n, n) T-duality symmetry

on the worldsheet at the expense of manifest Lorentz invariance. Here we consider

the two-loop renormalisation of this model in the context of “cosmological” spacetimes

consisting of an internal n-dimensional torus fibred over a one-dimensional base manifold.

The lack of manifest Lorentz symmetry introduces a range of complexities in momenta

loop integrals which we approach using different methods. Whilst the results do satisfy a

number of key consistency criteria, we find however that the two-loop counter-terms are

incompatible with O(n, n) symmetry and obstruct the renormalisability of the duality

symmetric string.

7.1 Introduction

We shall now tackle the problem of including (higher-loop) quantum corrections in a T-d-

uality covariant formalism from the worldsheet perspective. This task will be articulated

in two different chapters, the present dealing with Abelian T-duality and the following

with Poisson-Lie T-duality.

The study of the renormalisation group flow for two-dimensional non-linear σ-models

dates back to the original work of [142], and provides a linkage between the worldsheet

and spacetime points of view of String Theory. Demanding the vanishing of the Weyl

anomaly associated to a closed string propagating in a spacetime geometry requires

88
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that the target space background data (i.e. metric and NS two-form in the bosonic

sector) obey a set of equations [142, 158, 159]. These equations can be interpreted as

field equations of an appropriate target space gravitational theory1. At one-loop on

the worldsheet, this target space theory has a common bosonic sector shared with the

type II Supergravity theories. Higher loop quantum calculations [145, 161, 162] lead in

turn to modifications to the target space effective theory, organised in an expansion in

derivatives2.

This picture largely retains the conventional geometric notions associated to point parti-

cles and does not capture all the features we have come to associate with String Theory.

In particular, it is now well understood that there is a rich duality symmetry structure

that heavily constrains the form of the target space effective description. The O(n, n) T-

duality symmetry of strings on a n-dimensional torus [9, 10] indicates that fields should be

repackaged into appropriate representations of this symmetry group. The target metric

and two-form become unified into a combined object, the generalised metric H − a repre-

sentative of the coset space O(n, n)/(O(n)×O(n)). The target space formulation of the

dynamics of this generalised metric has been well expounded [46, 85, 111, 112, 163, 164]

and has become known as Double Field Theory. Starting with the seminal work of Meiss-

ner [149], there have been significant efforts [150–155] in developing the theory of higher

derivative corrections in a T-duality covariant fashion (see [156] for recent lecture notes

on this topic).

This progress poses a sharp question: can one exploit worldsheet renormalisation to

obtain higher derivative corrections of the target space theory in a way that maintains

T-duality covariance throughout?

7.1.1 The Doubled String

Key to answering this question is to adopt a reformulation of the string worldsheet

theory in which T-duality is promoted to a manifest symmetry [11, 83, 85, 163, 165–

168]. In Chapter 3 we have already introduced the action (3.53) that indeed meets our

requirement of explicit T-duality covariance. Recall that, for the target space to exhibit

O(n, n) T-duality, we impose a U(1)n isometry group, such that the target is a torus

fibration Tn ↪→M → B over a base B. On a patch, we let xi, i = 1 . . . n, be coordinates

adapted to the isometry that parametrise the fibre, and y that on the one-dimensional

base. To allow T-duality to be exhibited manifestly we consider a larger doubled space
1Though somewhat tricky to source, we found the contemporary lectures notes [158, 160] to be a

particularly useful resource.
2The full description of String Theory is richer still, since this two-dimensional quantum expansion

needs to be supplemented with a gs expansion in the worldsheet genus.
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M with fibration T 2n ↪→ M→ B in which the original coordinates xi are supplemented

with additional x̃i, i = 1, . . . , n, that can be thought of as describing the T-dual space,

T̃n, to the torus such that locally T 2n = Tn × T̃n. In fact, given the difficulties entailed

in a two-loop calculation without explicit Lorentz covariance, we shall restrict ourselves

to an even simpler version of (3.54),

S =

∫
d2σ

(
−1

2
HIJ∂1XI∂1XJ +

1

2
ηIJ∂0XI∂1XJ +

1

2
λ∂µy∂

µy

)
. (7.1)

On the base manifold, where Lorentz invariance is unbroken, we have accordingly retained

the use of a vector σµ = (σ0, σ1). A number of simplifications have been assumed: only

a single coordinate y on B is considered, such that the base geometric data is just

encoded in the coupling λ which can be thought of as a partial fixing of the target

space lapse variable. Furthermore, we have set to zero off-diagonal components of the

metric and two-form which together provide a connection in the doubled bundle. On

a general worldsheet, this action should be supplemented with a Fradkin-Tseytlin term

that induces a coupling to the duality-invariant dilaton d = φ − 1
4 ln det g in which φ

is the conventional dilaton field. In the present context, we will consider the theory on

two-dimensional Minkowski space such that this dilaton coupling is absent3. Though

this is a heavily simplified set-up, even here we will find sufficient complexities.

The one-loop quantum effective action resulting from the Lagrangian in (7.1) was first

considered in [147, 169]. This was later expanded to a more democratic approach in

which both the fibre and base space are doubled allowing direct contact to be made

with Double Field Theory [170, 171]. The doubled action of (7.1) can be generalised

to accommodate non-Abelian and Poisson-Lie generalisations of T-duality [77], and its

renormalisation was considered in [148, 172]. More recently the one-loop calculation of

[147, 169] has been revisited and refined in [173] with the inclusion of a connection in

the doubled bundle M.

Here we will push the techniques of [147, 169] further and apply them at two-loop order.

There are several critical aspects that make this calculation extremely challenging:

• The lack of manifest worldsheet Lorentz invariance. This has two consequences,

the first is that it requires treating non-covariant loop momenta integrals and the

second is that we can not disregard contributions arising from the connection Ω =

V−1dV associated to the (generalised) vielbein V that diagonalises H.
3In general, the dilaton does make a contribution to the Weyl anomaly which can be established

by calculating on a curved worldsheet. However a pragmatic approach is to determine the dilaton
contributions through consistency requirements as was done for the Tseytlin string at one-loop in [169].
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• To treat the loop integrals we consider two different methods. In Method 1 we

employ dimensional regularisation and move immediately to d = 2+ε and evaluate

the wide variety of tensor integrals encountered by reducing them in a basis of

standard scalar integrals. In Method 2 we work in d = 2 to perform the maximal

number of simplifications of loop momenta (by e.g. replacing p2
0−p2

1 = p2) express-

ing the result implicitly in terms of a set of only five independent integrals whose

regularisation and evaluation is left initially implicit. We are then able to extract

conclusions that are largely independent of the choice of regularisation method4.

For concreteness, we then complete Method 2 by employing the dimensional regu-

larisation approach of Method 1 to the few remaining loop integrals.

• The chirality nature of the theory which obstructs a straightforward regularisation

of IR divergences. Whilst this may prove challenging in general, we are able to

address this potential troublesome issue in a rather naive fashion which we find to

be satisfactory. By shifting momenta p2 → p2 − m2 in the denominator of loop

integrals one regulates the divergence, and all features (such as mixed IR and UV

divergences at two-loops) associated to the introduction of m2 are removed once

we include a “mass” term for the background fields.

• The departure from conventional Riemannian geometry invoked by the generalised

metric H prevents the use of known (target space) covariant background field meth-

ods [174, 175] to simplify the calculation. Instead, we resort to a non-covariant

background field expansion with a linear split between the classical background

and quantum fluctuation. To tackle the abundance of diagrams produced in this

expansion, we complement a pen-and-paper calculation of the counter-terms for

the generalised metric H with a Mathematica implementation to determine the

renormalisation of the coupling λ.

7.1.2 A Few Details on Renormalisation

If the renormalisation of the action (7.1) could be successfully performed, regardless of the

detailed choice of method for evaluating the diagrams, within dimensional regularisation

the bare and renormalised generalised metric and base coupling are to be related by

HB = µε

(
H+

∞∑
n=1

ε−nTn(H, λ)

)
, λB = µε

(
λ+

∞∑
n=1

ε−nT̃n(H, λ)

)
, (7.2)

4For instance one could invoke prescriptions that do not require analytic continuation of the world-
sheet dimensions (Pauli-Villars and cut-off regularisations among the others) which are potentially more
compatible with the chiral nature of the duality-symmetric string.
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with µ some mass scale and Tn(H, λ), T̃n(H, λ) the ε-independent counter-terms that ren-

der the effective action finite when phrased in terms ofH, λ. The coupling λ also provides

a loop counting parameter such that we can further express Tn(H, λ) =
∑

L T
(L)
n (H)λL

and T̃n(H, λ) =
∑

L T̃
(L)
n (H)λL−1. The O(n, n) invariant metric on the other hand will

not be renormalised ηB = µεη5.

Because at the classical level the lapse variable can be fixed to λ = 1 by rescaling y, one

anticipates it should be irrelevant to the quantum theory. However, some care is required

since the one-loop result [147] indicates that a non-constant divergent counter-term pro-

portional to ∂µy∂µy is produced even when λ = 1. Such divergences at one-loop can

be removed by the addition of a counter-term proportional to the equation of motion

for the background fields (equivalently via a field re-definition of y). The required term

depends rather implicitly on T̃ , and can be established exactly for particular models as

in [176]. Doing so will induce a modification of the fibre counter-term. We prefer to

keep λ explicit as it serves as a loop counting parameter and mirrors the way the lapse

function enters in the target space description [149]6.

As the bare couplings are independent of the scale we can take the derivative of HB, λB
to determine the β-functions in terms of the ε−1 poles7:

βH ≡ µ∂H
∂µ

+εH = −
∑
L

LT
(L)
1 (H, η)λ−L , βλ ≡ µ∂λ

∂µ
+ελ = −

∑
L

LT̃
(L)
1 (H, η)λ−L+1 .

(7.3)

The higher order poles are not independent and instead provide a set of consistency

relations known as the pole equations8. Specialising to the two-loop case we have in

particular that on the fibre9

0 = 2T
(2)
2 − T (1)

1 ◦ δ

δH
T

(1)
1 + T̃

(1)
1 T

(1)
1 . (7.4)

5We will prove this statement explicitly soon. For the time being, let us just assume it to be true.
6In Appendix D.1 we illustrate this point with an explicit example and furthermore show that such

field redefinitions do not ameliorate the difficulties encountered at two-loop order.
7The derivation of this result slightly deviates from that in the conventional non-linear σ-model, as

the counter-terms are not homogeneous in H alone but are homogeneous when viewed as a function of
both H and η. In particular T (L)

n (H, η) is of homogeneity degree 1. One must then keep track of the η
dependence, even though all its counter-terms vanish.

8As we are employing a simple linear splitting of a quantum fluctuation on top of a classical back-
ground field it is sufficient to use the pole equations as presented here rather than the more general ones
[177, 178] required of a geometric non-linear background field method.

9The symbol ◦ is used here to indicate both index contraction and integration, e.g. X ◦ δ
δY
≡∫

dyXIJ(y) δ
δYIJ (y)

.
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In addition to this we have a further consistency requirement that comes from demanding

that HB preserves ηB, which invokes not only η = Hη−1H but also

0 = Tnη
−1H+Hη−1Tn +

n−1∑
m=1

Tmη
−1Tn−m . (7.5)

Inserting the loop expansion of the counter-term one obtains the requirements relevant

for two loops:
0 =T

(1)
1 η−1H+Hη−1T

(1)
1 ,

0 =T
(2)
1 η−1H+Hη−1T

(2)
1 ,

0 =T
(2)
2 η−1H+Hη−1T

(2)
2 + T

(1)
1 η−1T

(1)
1 .

(7.6)

Our findings however show that this renormalisation programme, whilst valid at one-loop

order, is unsuccessful at two-loop order.

Certain features are valid and provide strong checks on the calculation; the ε−2 pole of

fibre obeys both the pole equation of (7.4) and the consistency relation of the last (7.6).

The ε−2-pole on the base T̃ (2)
2 reflects the unbroken Lorentz covariance of the base part

of the Lagrangian in (7.1) - this is despite that fact that the constituent diagrams that

produce ∂0y∂0y and ∂1y∂1y are vastly different. Moreover, T̃ (2)
2 is expressible only in

terms of H and η which is a deeply non-trivial fact since the individual diagrams depend,

in addition, on the connection Ω = V−1dV.

However, the simple pole on the fibre T (2)
1 does not, regardless of the method used to

evaluate momentum integrals, satisfy the O(n, n) compatibility requirement (7.6). This

alone is enough to raise serious questions as to the quantum validity of the Lagrangian

in (7.1) since it would seem to destroy the possibility of integrating out the T-dual

coordinates and hence prevent the matching of degrees of freedom with the standard

string. Moreover, this conclusion is robust and can be reached regardless of the precise

prescription for evaluating loop integrals.

The situation on the base is less pleasant still. We find that the simple poles do not

respect the unbroken Lorentz covariance of the base part of the Lagrangian in (7.1). That

is, ∂0y∂0y and ∂1y∂1y come with different counter-terms and, moreover, a counter-term

is produced for ∂0y∂1y. Furthermore, unlike the one-loop result or the two-loop ε−2 pole,

these counter-terms are not evidently expressible in terms of just η and H.

The outline of the chapter is as follows. In Section 7.2, we recall the basics of the back-

ground field method and furnish an all-order expansion of the action. In Section 7.3, we

summarise one-loop results as first obtained in [147, 169]. In Section 7.4 we first detail the

relevant Wick contractions that produce the contributing diagrams to the two-loop calcu-

lation. We consolidate these in an appendix by then summing all contributing diagrams,
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reorganised in a basis of tensors of H and its derivatives, expressing the result in terms

of un-evaluated momentum integrals10. Then, in Section 7.5 we tackle the evaluation

of the resultant loop integrals using the two alternative methodologies described above.

Multiple technical appendices detailing the calculation supplement the presentation.

7.2 Expansion

To calculate the renormalisation of the action (7.1) we adopt a background field expan-

sion method, (Taylor) expanding around some classical saddle for the fibre and base

coordinates

XI = XIcl + ξI , y = ycl + ζ . (7.7)

The fluctuations ξ and ζ are dynamical, whilst the classical background fields Xcl and

ycl are frozen (i.e. we will not integrate over them in the path-integral approach). The

quantum effective action Γ is then obtained via Wick contraction of the exponential of

the interacting Lagrangian LI

eiΓ = eiScl 〈exp

(
i

∫
d2σLI

)
〉1PI . (7.8)

Some comments are in order. On the right-hand side, only one-particle-irreducible (1PI)

diagrams need to be considered and the average is taken with respect to the quantum

fluctuations ξ, ζ. Scl denotes the classical action, i.e. the one comprising of the classical

fields Xcl and ycl only11. We choose12 the background fields to be on-shell: terms in LI

linear in the fluctuations are necessarily proportional to the equations of motion and will

be dropped. The effective action is effectively recovered taking logarithms, thus removing

disconnected diagrams.

As this is a Taylor expansion of actual coordinate values, it is evidently not geometri-

cally covariant. In the context of the conventional non-linear σ-model it is much more

preferable to maintain geometric covariance in the calculation, and this can be achieved

by means of a covariant background field expansion [175]. Here, however, the departure

from conventional Riemannian geometry entailed by the introduction of the generalised

metric H means such notion of “covariant” background field expansion is currently (at

least to our knowledge) lacking. Instead, we will proceed non-covariantly adopting (7.7).
10This provides an intermediate result that is largely independent of any details of the regularisation

procedure. It could be harnessed in further studies which might employ different regularisation schemes.
11To ease the notational burden we henceforward omit the subscript Xcl → X on the classical back-

ground and, where useful, indicate the worldsheet point with a subscript, e.g. ζ(σ) ≡ ζσ.
12This is not mandatory, and one could decide to work off-shell for the classical background.
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Our first task is to single out, for each fluctuation type, a kinetic term. While for ζ the

latter has a standard form, 1
2λ∂µζ∂

µζ, fluctuations along the fibre coordinates require

the introduction of a (generalised) vielbein VIA to remedy for the non-constant HIJ(y)

factor. The vielbein and its derivatives are defined by

HIJ = VIAHABVJB , ηIJ = VIAηABVJB , Ωµ
IJ = VIA∂µVJA , (7.9)

where Ω is known as the Weitzenböck connection. Early alphabet capital Latin indices

A,B, . . . are used to indicate the flat generalised tangent bundle. Accordingly, the fluc-

tuations on the torus can be “flattened” by defining ξI = VIAξA.

Both ξA’s and ζ’s have now a canonical kinetic term

LK = −1

2
HAB∂1ξ

A∂1ξ
B +

1

2
ηAB∂0ξ

A∂1ξ
B +

1

2
λ∂µζ∂

µζ , (7.10)

from which two-point functions are easily extracted13 as

〈ξA(σ)ξB(σ′)〉 = HAB∆(σ − σ′) + ηABθ(σ − σ′) , 〈ζ(σ)ζ(σ′)〉 = λ−1∆(σ − σ′) ,
(7.11)

where

∆(σ) =

∫
d2p

(2π)2
e−ip·σ

i

p2
, θ(σ) =

∫
d2p

(2π)2
e−ip·σ

i

p2

p0

p1
. (7.12)

Performing the Taylor series one finds the entire interaction Lagrangian, at any order, is

given by

−2LI = −ξIξJΩ1I
KΩ0JK − ξI∂1ξ

AΩ0IA − ξI∂0ξ
AΩ1IA

+
∑
n≥2

(
1

n!
H(n)
IJ ζ

n∂1XI∂1XJ +
2

(n− 1)!
H(n−1)
IA ζn−1∂1ξ

A∂1XI

− 2

(n− 1)!
H(n−1)
IJ Ω1

J
Kζ

n−1ξK∂1XI +
1

(n− 1)!
H(n−1)
AB ζn−1∂1ξ

A∂1ξ
B

− 2

(n− 2)!
H(n−2)
AJ Ω1

J
Iζ
n−2ξI∂1ξ

A +
1

(n− 2)!
H(n−2)
IJ Ω1

I
KΩ1

J
Lζ

n−2ξKξL
)
.

(7.13)

To simplify the presentation of the tensorial structure we have introduced some notation.

We indicate derivatives with respect to the base coordinate with a dot, e.g. Ḣ ≡ ∂yH,
or in general for the n-th derivative we use H(n) (so that H(0) ≡ H). Concatenations

of (matrix) products of H’s and their derivatives (assuming η is used to raise indices
13There is one subtlety if we were to consider dimensional regularisation; when computing the Green

function for ξ one ends up with an expression such as p2
0 − p2

1. It is not clear that one should directly
trade this combination for p2 in d-dimensions. However our general approach will be to remain strictly
in d = 2 where p2

0 − p2
1 ≡ p2 and only continuing to d = 2 + ε when evaluating integrals.
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whenever needed) will be indicated with ·, e.g. H(i,j,k) = H(i) · H(j) · H(k). Contractions

of H with an external torus leg ∂1X will be shown with a •, i.e. HI• ≡ HIJ∂1XJ . We

also use as shorthand H(n)
AB ≡ VAIH

(n)
IJ VBJ .

By inspection of this expansion we can immediately make two general statements that

are true to all orders perturbatively. First is that the O(n, n) pairing η does not receive

quantum corrections at any order in perturbation theory; as no ∂0XI legs appear in

(7.13)14, it is impossible to generate terms proportional to ∂0XI∂1XJ upon expanding

exp(iSI). Secondly, we cannot generate any mixed base-fibre terms of the form ∂1X∂µy
in the effective action. This follows as any such term would necessarily involve an odd

number of ξ fields, and thus vanish upon Wick contraction.

7.3 One-loop Recap

Before moving on to the two-loop calculation, let us recapitulate the situation at one-loop.

At this order it is sufficient to consider only quadratic terms in the fluctuations and the

effective action is given by (assuming only 1PI and connected diagrams are considered)

Γ = Scl + 〈SI〉+
i

2
〈S2

I 〉 , (7.14)

where SI =
∫

d2σLI. To calculate the quantum correction to HIJ∂1XI∂1XJ we can

ignore the Weitzenböck connection pieces all together, as any such contribution implicitly

contains derivatives of the base coordinates y, such that the relevant interaction term

reads

LI ⊃ −
1

4
ḦIJζ2

σ∂1XI∂1XJ − ḢAIζσ∂1ξ
A
σ ∂1XI . (7.15)

There are two contributions to consider here. The first requires only a single copy of the

worldsheet and is given by

− 1

4
ḦIJ∂1XI∂1XJ〈ζσζσ〉 = −1

4
H(2)
•• ∆(0) = − i

4
H(2)
•• I, (7.16)

in whichH(2)
•• ≡ ḦIJ∂1XI∂1XJ . We will denote this contraction as a bubble and introduce

the divergent integral

I = −i∆(0) =

∫
d2p

(2π)2

1

p2
. (7.17)

14The reason why this is the case is straightforward: any ∂0XI leg must necessarily come from the
background field expansion of ηIJ∂0XI∂1XJ ; however, η is constant and terms linear in the fluctuations
are discarded on-shell.



The Duality-Symmetric String 97

The second contribution arises from 〈S2
I 〉 and requires two copies of the worldsheet:∫

d2σ2

(
i

2
ḢAIḢBJ∂1XI∂1XJ〈ζσ1ζσ2〉〈∂1ξ

A
σ1
∂1ξ

B
σ2
〉
)

=
i

2λ
LH(1,1,0)
•• − i

2λ
L̃H(1,1)
•• .

(7.18)

We will denote such contraction as a loop and introduce the integrals

L =

∫
d2p

(2π)2

p2
1

(p2)2
, L̃ =

∫
d2p

(2π)2

p1p0

(p2)2
. (7.19)

On general grounds (e.g. integration over an odd integrand) we may assume L̃ = 0,

however the integral L is expected to result in a UV divergence.

At one-loop order we can simply regulate IR divergences by the replacement of p2 →
p2 −m2 in integrals, and UV divergences can be unambiguously regulated in d = 2 + ε.

The fundamental divergent integral I evaluates, in dimensional regularisation, to

I = P +
iγ̄

4π
, P ≡ i

2πε
, (7.20)

where O(ε) contributions have been dropped and the combination γ̄ = γE + log(m2/4π)

introduced. In d = 2 + ε we can invoke Lorentz invariance to relate∫
ddp

(2π)d
pµpν

(p2 −m2)2
=
ηµν
d

I . (7.21)

A naive prescription to compute L is to simply set the free Lorentz indices µ = ν = 1 to

give

L ∼ −1

2
I . (7.22)

This is sufficient at one-loop, and in general allows an unambiguous determination of the

leading divergence of any integral we encounter. However, strictly speaking the relation

(7.21) is only valid in d = 2 + ε and the process of specifying the component p1 of a

d = 2 + ε dimensional vector is rather ambiguous. Different prescriptions for doing so

will lead to different finite parts. At two-loop this ambiguity becomes more acute since

whilst the ε−2 pole will be well determined, a prescription needs to be given to find the

ε−1 pole.

The minimal subtraction procedure (i.e. removal of 1
ε divergences only) then gives a

counter-term to H•• of
T

(1)
1 =

1

4πλ

(
H(2) +H(1,1,0)

)
. (7.23)
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Calculating the correction to the base term is a little more complicated since there are a

number of possible diagrams involving the vielbein pieces. After some work, and invoking

identities such as

Tr(HΩ0HΩ0) = Tr(Ω0Ω0) +
1

2
Tr(H(1,1))∂0y∂0y , (7.24)

one finds a counter-term to λ of

T̃
(1)
1 = − 1

16π
Tr
(
H(1,1)

)
. (7.25)

Though far from obvious from the intermediate stages of the calculation, one finds that

the counter-term for λ(∂0y)2 matches that of λ(∂1y)2 and that no terms in the form of

∂0y∂1y are generated, as expected. According to the general results as per (7.3), the

β-functions are extracted as

βH(1) = − 1

4πλ
(H(2) +H(1,1,0)) , βλ(1) =

1

16π
Tr(H(1,1)) , (7.26)

where the subscript is used to emphasise the loop order we are working at.

In the above we regulated IR divergences in an ad-hoc fashion by replacing p2 → p2−m2.

However, the inclusion of a mass term is a delicate matter as it is in general disruptive to

the chiral nature of the fields X. Indeed, it seems hard to find a local term that precisely

recreates this prescription. We come closer by introducing

LmF = −m
2

4
HIJXIXJ , LmB = −λ

2
m2y2 , (7.27)

as mass terms on the fibre and base, respectively. For two-loop calculations both the

background field expansion of LmF mass term, and its one loop renormalisation are

important. A straightforward calculation shows that the counter-term for the mass is

Tm =
1

4πλ
H(2) . (7.28)

Together we end up with a one-loop counter-term Lagrangian

LCT = − 1

2ε

(
T

(1)
1

)
IJ
∂1XI∂1XJ +

1

2ε
T̃

(1)
1 ∂µy∂

µy − m2

4ε
(Tm)IJ X

IXJ . (7.29)

In addition, we have a freedom to add any terms that vanish as a consequence of the

classical equations of motion satisfied by the background

�y +
1

2
ḢIJ∂1XI∂1XJ = 0 . (7.30)
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Multiplying this equation by a function f(y) assumed to be first order in derivatives,

and integrating by parts allows us to consider the addition of

Lon−shell = −1

ε
ḟ(y)∂µy∂

µy +
1

2ε
f(y)ḢIJ∂1XI∂1XJ . (7.31)

Choosing ḟ(y) = 1
2 T̃ eliminates the base divergence in

LCT + Lon−shell = − 1

2ε

(
T

(1)
1 − fḢ

)
IJ
∂1XI∂1XJ −

m2

4ε
(Tm)IJ X

IXJ . (7.32)

The same result can be obtained by performing a field redefinition y → y − 1
λεf(y).

In what follows we choose not to perform this redefinition (though we will examine its

consequences for the two-loop result in Appendix D.1).

7.3.1 Renormalisation of Ω

A subtlety is the renormalisation of the Weitzenböck connection Ω. Albeit somewhat

irrelevant at one-loop − it recombines so as to return only instances of H in the final

result − it does bear a significance at two-loop, as we shall see. Notice that, since Ω is

first order in derivatives by construction, βΩ
(1) will necessarily be third order. Actually, Ω

is not quite an independent quantity as it is obtained from the generalised frame fields

that also determine H. Thus, it should be possible to extract βΩ
(1) from βH(1).

Using (7.9), and explicitly avoiding indices for the sake of simplicity, we could write

H = VH0Vt, H0 being the identity15. If t is the RG time and r = d
dt(V)V−1 we have

from this

βH = rH+Hrt . (7.33)

In particular, compatibility of V with η ensures that rt = −η−1rη. The most general

form of r that satisfies these two constraints is16

rη =
1

16πλ
(H(0,2) −H(2,0)) . (7.34)

15In general H0 coincides with a constant HAB . However, it is possible that a constant generalised
metric contains flowing parameters, cf. (3.95). Via an O(n, n) rotation it is possible to move this
dependence onto the frame fields, and we assume to have done so here.

16Actually, once all identities involving H and Ω are exploited, the most general would be rη =
1

16πλ
(H(0,2) −H(2,0)) + a{Ω(1),H(0)} + b(Ω(1) +H(0)Ω(1)H(0)), for two unspecified parameters a, b and

where {·, ·} denotes the anti-commutator. The coefficient of the first combination that does not involve
Ω is completely fixed by βH. The fact that the result is ambiguous should not be surprising, for the
generalised frames are not completely specified by H. However, as the terms involving Ω(1) are not
created at one-loop and, besides, do not contribute to the result we will omit them.
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Using the definition of Ω in terms of V we easily find βΩ = −η−1∂yr − Ωr − rtΩ, hence

βΩ
(1) =

1

16πλ

(
H(3,0) −H(0,3) +H(2,1) −H(1,2) + [H(0,2),Ω]− [H(2,0),Ω]

)
. (7.35)

As expected, this object is third order in derivatives and skew-symmetric.

7.4 Two-loop Expansion and Wick Contractions

The two-loop effective action is evaluated to

Γ = Scl + 〈SAll〉+
i

2
〈S2

All〉 −
1

6
〈S3

All〉 −
i

24
〈S4

All〉 , (7.36)

where the restriction to 1PI connected diagrams is understood. Here SAll =
∫

d2σLAll

contains the interaction Lagrangian expansion to quartic order in fluctuations and the

background field expansion of the one-loop counter-term Lagrangian to quadratic order17.

Because this is quite involved we will treat the fibre and the various contributions to

Lorentz components ∂0y∂0y, ∂1y∂1y and ∂0y∂1y separately.

7.4.1 Fibre Contributions

To renormalise the term HIJ∂1XI∂1XJ we can discard all terms in which the classical

background Ω is involved. This leaves only a few contributors

LAll ⊃
(
−1

4
H(2)ζ2 − 1

12
H(3)ζ3 − 1

48
H(4)ζ4 − 1

2
X(2)ζ2

)
IJ

∂1XI∂1XJ

+

(
−H(1)ζ − 1

2
H(2)ζ2 − 1

6
H(3)ζ3 −X(1)ζ

)
IJ

∂1ξ
I∂1XJ

+

(
−1

2
H(1)ζ − 1

4
H(2)ζ2 −X

)
AB

∂1ξ
A∂1ξ

B

+
1

2
Y ∂µζ∂

µζ . (7.37)

17This approach of expanding the counter term Lagrangian is something of a shortcut and one of
the great virtues of the background field method; however when employing covariant background field
expansions in which the quantum-classical splitting is non-linear this approach is not complete [177] and
instead one should renormalise each and every vertex in LI. Here however we are employing a linear
splitting and so anticipate that the resultant Ward identity ensures we can complete the renormalisation
by considering only diagrams with external classical background fields. For completeness we have cal-
culated the full one-loop renormalisation of LI by splitting the fluctuations into a quantum-background
(indicated with a tilde) and a dynamical part ξ → ξ + ξ̃, ζ → ζ + ζ̃ performing the path-integral over
the latter. As expected, doing so recovers the expansion of the one-loop counter-term Lagrangian to
quadratic order.
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Here XIJ = 1
ε

(
T

(1)
1

)
IJ

and Y = 1
ε T̃

(1)
1 arise from the expansion of the counter-term

Lagrangian in the MS scheme. Schematically we group the terms here in the number of

classical background fields as

LAll ⊃A
[2]
IJ∂1XI∂1XJ︸ ︷︷ ︸

A[2]

+A
[1]
A ∂1XA︸ ︷︷ ︸
A[1]

+A[0] , (7.38)

where we further denote by A[n]
i the term in A[n] that contains i derivatives of H. As

the loop expansion is organised into a derivative expansion of the generalised metric,

two-loop contributions occur with fourth order in derivatives. Since A[0] carries at least

one derivative, the expansion of Γ truncates to this order with the term 〈L4
All〉. We only

require terms with exactly two occurrences of the background field ∂1X. This will give

the following contributions to deal with

a1 = 〈A[2]〉 , a2 = i〈A[0]A[2]〉 , a3 =
i

2
〈A[1]A[1]〉 ,

a4 = −1

2
〈A[0]A[0]A[2]〉 , a5 = −1

2
〈A[0]A[1]A[1]〉 , a6 = − i

4
〈A[0]A[0]A[1]A[1]〉 .

(7.39)

The first step is to evaluate the Wick contractions to obtain expressions containing an

un-evaluated momentum integral of the form

[[T (p0, p1, k0, k1)]]i,j,k =

∫
d2k

(2π)2

d2p

(2π)2

T (p0, p1, k0, k1)

(p2)i(k2)j [(k + p)2]k
, (7.40)

where the T (p0, p1, k0, k1) will be some specific components of momenta k and p, arising

predominantly from the fibre propagator terms. TheWick contraction is standard though

tedious, here we only present a6 in detail. In a6 there are three distinct contractions to

consider. The first is

a6a = − i
4
ḢABḢCDḢ•EḢ•F 〈ζσ1ζσ3〉〈ζσ2ζσ4〉〈∂1ξ

A
σ1
∂1ξ

C
σ2
〉〈∂1ξ

B
σ1
∂1ξ

D
σ2
〉〈∂1ξ

E
σ3
∂1ξ

F
σ4
〉

= − 1

4λ2
Tr(H(1,1))H(1,1,0)

•• ×
(
[[(p1 + k1)k1p

2
1((p0 + k0)k0 − (p1 + k1)k1)]]3,1,1

)
.

(7.41)

In deriving this expression we have made use of cyclicity of trace to discard terms involv-

ing Tr(H(1,1,0)) = −Tr(H(1,1,0)). The diagram that gives rise to a [[. . . ]]3,1,1 we call square

envelope topology (see Appendix C.1 for more details). The remaining contractions here

yield

a6b =− i

4
ḢABḢCDḢ•EḢ•F 〈ζσ1ζσ2〉〈ζσ3ζσ4〉〈∂1ξ

A
σ1
∂1ξ

C
σ2
〉〈∂1ξ

B
σ1
∂1ξ

E
σ3
〉〈∂1ξ

D
σ2
∂1ξ

F
σ4
〉

=
1

2λ2
H(1,1,1,1,0)
••

(
[[k2

1p
2
0p

2
1]]3,1,1 − 2[[k0k1p0p

3
1]]3,1,1 + [[k2

1p
4
1]]3,1,1

)
, (7.42)
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which is another square envelope and

a6c = − i
4
ḢABḢCDḢ•EḢ•F 〈ζσ1ζσ3〉〈ζσ2ζσ4〉〈∂1ξ

A
σ1
∂1ξ

C
σ2
〉〈∂1ξ

B
σ1
∂1ξ

F
σ4
〉〈∂1ξ

D
σ2
∂1ξ

E
σ3
〉

=
1

2λ2
H(1,1,1,1,0)
••

(
[[(p1 + k1)2p2

1k
2
1]]2,2,1 − 2[[(p1 + k1)(p0 + k0)p1p0k

2
1]]2,2,1

+ [[(p1 + k1)2p1p0k1k0]]2,2,1

)
, (7.43)

where the [[. . . ]]2,2,1 integral arises from what we call diamond sunset topology.

The remaining contributions a1, . . . , a5 are dealt with, in an similar fashion, in Appendix

B.1. Combining these contributions results in the following tensor structures with coef-

ficients given by un-evaluated integrals:

H(4)
•• :

1

16
I2 − 1

8
IP

H(3,1,0)
•• :

1

2
(P− I)[[p2

1]]2,0,0 −
1

4
IP

H(2,0,2)
•• :

1

4
IP +

1

4
[[p2

1]]1,1,1

H(2,1,1)
•• :

1

2
IP− 1

2
P[[p2

1]]2,0,0 + [[p1k1p · k]]2,1,1

H(1,2,1)
•• :

1

8
IP− 1

2
P[[p2

1]]2,0,0 −
1

2
[[p2

1k
2
1]]2,2,0 −

1

4
(P− I)[[p2

1p
2]]3,0,0

H(1,1,1,1,0)
•• :

1

2
P[[p2

1]]2,0,0 + [[p2
1k

2
1]]2,2,0 +

1

2
I[[p4

1]]3,0,0 +
1

4
P[[p2

1p
2]]3,0,0

− [[p3
1k1k · p]]3,1,1 +

1

2
[[p2

1k
2
1p

2]]3,1,1 − [[(p2
1k

2
1 + p3

1k1)k2]]2,2,1

H(2)
•• Tr(H(1,1)) : − 1

32
P[[p2]]2,0,0 +

1

8
[[(p+ k)1k1(p · k + k2)]]2,1,1

H(1,1,0)
•• Tr(H(1,1)) :

1

16
P[[p2

1p
2]]3,0,0 −

1

4
[[(p1 + k1)p2

1k1(p · k + k2)]]3,1,1 . (7.44)

This result provides a determination of the contributions to the generalised metric

two-loop counter term for which any subsequent regularisation scheme can be employed.

Occurrences of P = i
2πε arise in these expressions from diagrams with one-loop coun-

ter-term insertions. The explicit evaluation of the remaining integrals is a delicate matter

and will be discussed at length in Section 7.5.

In addition, if IR divergences are to be regulated by including an explicit mass term as

described before, the background field expansion of the mass terms in the Lagrangian

contained in (7.27) must be included as should one-loop diagrams with the mass coun-

ter-term of (7.28) insertion. These contractions are detailed in Appendix B.1.
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7.4.2 Base Contributions

Contributions to the base manifold can be organised in terms of the type of external

legs, (∂0y)2, (∂1y)2 or ∂0y∂1y, they come with. Given the chiral nature of the action

(7.1) these are better treated separately; eventually, we shall compare our findings for

the various cases and comment on the (broken) Lorentz invariance of the final result.

Restricting ourselves to (∂0y)2, we can discard all terms in which the classical back-

grounds Ω1 and ∂1X are involved. This leaves only a few contributors

LAll ⊃−
1

2
Ω0AI∂1ξ

AξI

− 1

2

(
H(1)ζ +

1

2
H(2)ζ2 +X

)
AB

∂1ξ
A∂1ξ

B

+
1

2
Y ∂µζ∂

µζ + Y (1)ζ∂µζ∂
µy +

1

4
Y (2)ζ2∂µy∂

µy . (7.45)

Similarly to the fibre, we group terms in the number of classical background fields they

come with. Recalling that Ω0 counts as a ∂0y insertion, we have

LAll ⊃ B[0] +B[1]∂0y︸ ︷︷ ︸
B[1]

+B[2](∂0y)2︸ ︷︷ ︸
B[2]

. (7.46)

We denote by B[n]
i the term in B[n] that contains i derivatives of H or V such that

B[0] = B[0]
1 + B[0]

2 , B[1] = B[1]
1 + B[1]

3 , B[2] = B[2]
4 . (7.47)

First we consider only contractions that lead to exactly two occurrences of ∂0y and four

derivatives in H or V. These are given by

b1 =〈B[2]
4 〉 , b2 = i〈B[1]

1 B
[1]
3 〉 ,

b3 =− 1

2
〈B[0]

2 B
[1]
1 B

[1]
1 〉 , b4 = − i

4
〈B[0]

1 B
[0]
1 B

[1]
1 B

[1]
1 〉 . (7.48)

We detail the explicit evaluation of each of these in Appendix B.2, but note here that b2
vanishes outright since it contains no connected diagram.

With the classical background fields viewed as external legs to the diagrams in b1 − b4,
the divergences are extracted at zero external momenta (i.e the momenta associated to

the Fourier transform of the background field on external legs). In addition to these con-

tributions, we must take into account some diagrams for which the vertices contribute

fewer than four derivatives of background fields, but for which the loop integrals carry

divergences that are linear or quadratic in the external momenta. Fourier transforming
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these external momenta then produces a worldsheet derivative which acts on the back-

ground fields H,V,Ω. The inclusion of such contributions is vital to the cancellation of

terms involving Ω which could not otherwise be rewritten in terms of the generalised

metric H. If vertices contain no occurrences of ∂0y and two derivatives of H or V, the
relevant contribution is

b5 =
i

2
〈B[0]

1 B
[0]
1 〉 . (7.49)

If vertices contain ∂0y once and three derivatives of H or V, the relevant contributions

are

b6 = i〈B[1]
1 B

[0]
2 〉 , b7 = −1

2
〈B[1]

1 B
[0]
1 B

[0]
1 〉 . (7.50)

Note that b5,6,7 do also source (∂1y)2 and ∂1y∂0y terms, which we will carry forward

for inclusion in the relevant calculation later. The evaluation of these contractions is

detailed in the appendix.

Terms with ∂0y∂1y legs are somewhat simple to study. Adopting our by now familiar

approach, we single out in LAll the relevant terms and name them C[n;σµ]
i where [n;σµ]

denotes the number of occurrences of ∂µy and i the number of derivatives of background

fields.The relevant combinations are

c1 = − i
2
〈C[2;τ,σ]

2 C[0]
1 C

[0]
1 〉 , c2 = −〈C[2;τ,σ]

2 C[0]
2 〉 , c3 =

1

2
〈C[1;τ ]

1 C[1;σ]
1 C[0]

1 C
[0]
1 〉 , (7.51)

c4 = −i〈C[1;τ ]
1 C[1;σ]

1 C[0]
2 〉 , c5 = −i〈C[1;σ]

2 C[1;τ ]
1 C[0]

1 〉 , c6 = −〈C[1;τ ]
3 C[1;σ]

1 〉 . (7.52)

These c’s must be supplemented by some other contributions to get the full picture;

in fact, as anticipated, integrals with external momentum insertion, such as the ones

appearing in b5,6,7, can give rise to terms with ∂0y∂1y legs. We shall deal with them

explicitly in Appendix B.3.

Terms with (∂1y)2 legs are high in number and complexity when compared to those

we just analysed. To deal with them (and the others, too) more efficiently we have

created an appropriate Mathematica notebook18. We shall collect the results for all

Wick contractions, including those on the fibre, in Appendix B.4. Albeit involved, they

are obtained with minimal assumptions19 and could be employed as the starting point

for testing new methods for the evaluation of non-invariant integrals.
18We report additional details concerning the implementation in Appendix E.
19We have assumed in particular: momentum routing as per the figures in Appendix C.1, Taylor

expansion of integrals involving external momentum insertion.
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7.5 Evaluation of Integrals

We turn now to the evaluation of the momentum integrals for which we can follow two

slightly different methods. Adopting dimensional regularisation, a critical decision is

when in the calculation one assumes d = 2 + ε or d = 2, and what cancellations are made

before the evaluation of integrals:

• Method 1: We move immediately to d = 2 + ε and do not make any assump-

tion on the relation between p2
0 − p2

1 and p2 to combine integrals. Instead, we

use arguments of Lorentz invariance to evaluate the myriad of tensor integrals

[[T (p0, p1, k0, k1)]]i,j,k that are encountered.

• Method 2: We remain in d = 2 for as long as possible, and simplify combinations

of integrals by replacing p2
0 = p2 + p2

1, k2
0 = k2 + k2

1 and p0k0 = p · k + p1k1. The

invariant combination are left to cancel against the denominators. Only once all

such cancellations are made we continue to d = 2 + ε. This method dramatically

simplifies the situation as the calculation can be reduced to the evaluation of just

four loop integrals.

7.5.1 Method 1

The first strategy we consider is to use O(d) symmetry to relate the various integrals

with non-scalar numerators in terms of a basis of scalar integrals, i.e. those of form

[[f(p2, k2, p · k]]i,j,k, which can be easily evaluated in terms of the basic dimensional

regularised integrals (in Minkowski space)

In =

∫
ddp

(2π)d
1

(p2 −m2)n
. (7.53)

In particular, the integrals we shall encouter are

I1 = I =
i

2πε
+
iγ̄

4π
, m2I2 =

i

4π
, m4I3 = − i

8π
, (7.54)

where the expressions have been truncated to the relevant order. To achieve this we

operate as follows: given a non-invariant integral of the form [[pn1
0 pn2

1 kn3
0 kn4

1 ]]i,j,k for

some ni ∈ N, we consider the associated integral where momenta are given d-dimensional

Lorentz indices, [[pµ1 . . . pµn1+n2
kν1 . . . kνn3+n4

]]i,j,k. We then use O(d) invariance to argue

that the latter should equal a combination of Minkowski metrics multiplied by both a

d-dependent finite factor and a scalar integral. Finally, we set the Lorentz indices so as to
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match our initial expression and recover the desired result. All of the relevant integrals

are listed in Appendix C.1.

Albeit standard in QFT, this technique here necessarily involves explicitly the η11, η00

and η01 components of the now d-dimensional worldsheet Minkowski metric. A prescrip-

tion for these needs to be given and might in principle depend on ε. To keep track of this

possibility we consider20 η00 = −η11 = 1 + gε for some g ∈ R (with higher orders in ε

irrelevant to the two-loop calculation) and η01 = η10 = 0. A simple example encountered

is

[[pµpν ]]2,0,0 =

∫
ddp

(2π)d
pµpν

(p2 −m2)2
=
ηµν
d

(I1 +m2I2) . (7.55)

Specialising the Lorentz indices this prescription gives

[[p0p1]]2,0,0 = 0 , [[p0p0]]2,0,0 = −[[p1p1]]2,0,0 =
1 + gε

2 + ε
(I1 +m2I2) . (7.56)

One might wonder if there is some preferred value of g required by consistency. A natural

demand might be to set

[[p0p0]]2,0,0 − [[p1p1]]2,0,0 ≡ [[pµp
µ]]2,0,0 = (I1 +m2I2) , (7.57)

which is achieved for g = 1
2 . However, consider now the “triangle” integral

I4 =

∫
ddp

(2π)d
p2

1(p2
0 − p2

1)

(p2 −m2)3
= −4

(1 + gε)2

d(d+ 2)
(I1 + 2m2I2 +m4I3) . (7.58)

In deriving this, we have prevented the numerator from cancelling against the denomina-

tor, thereby computing, in schematic form, [[p2
1p

2
0]]3,0,0 − [[p4

1]]3,0,0. On the other hand,

if we now replace p2
0 − p2

1 = p2 prior to integrating we get

I4 = [[p2
1]]2,0,0 +m2[[p2

1]]3,0,0 = −1 + gε

d
(I1 + 2m2I2 +m4I3) . (7.59)

These two results agree in their leading 1
ε singularity but differ in the finite parts by

i(1−4g)
16π . This shows that there is no universal unambiguous choice for g. At one-loop this

has no material impact on the β-functions, but at two-loops this ambiguity is dangerous

because the I4 appears multiplied by a further 1
ε (coming either from a counter-term

insertion or from a factorised loop in a diagram). The prescription we follow in this

Method 1 is to not combine explicit factors of p2
0 − p2

1 into p2 prior to performing the

integral21.
20One can consider a more general choice where η00 = 1 + gε and η11 = −1− fε, however setting f 6= g

does not produce simplifications of the final result.
21With respect to the un-evaluated loop integrals reported in Appendix B.4, we should re-expand

p2 = p2
0 − p2

1 etc. and then apply the rules for Method 1.
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When evaluating the counter-term contributions on the base, one additional technical

difficulty is posed by integrals with non-invariant denominators, containing explicit com-

ponents, e.g. p1, in place of invariant combinations. These we tackle by means of a

Schwinger parametrisation
1

p1
=

∫ ∞
0

du e−up1 . (7.60)

As described in detail in Appendix C.1.4, we then proceed formally by series expansion of

this exponential to produce a sum of loop integrals with non-invariant numerators; each

term can be recast, using the same O(d) symmetry technique, as some invariant integral

multiplied by a combinatorial (and d-dependent) factor. In the integrals encountered,

we found that we could resum the series obtaining a hypergeometric function of the

invariant combinations of momenta. The Schwinger parameter can then be integrated

using standard identities for hypergeometric functions22 to produce an expression for

which the final loop momenta can then be integrated.

At two-loop order we expect divergences of the form 1
ε2

and 1
ε . The latter contribute

to the β-function whilst the former are constrained from the one-loop 1
ε contribution by

pole equations. Terms of 1
ε2

can be sourced in one of two ways; either as a two-loop

diagram giving a contribution I2
1 , or as a one-loop diagram giving a contribution I1 with

a counter-term insertion carrying a further 1
ε . Terms of 1

ε , instead, can arise in several

ways:

(i) First, expanding I2
1 and 1

ε I1 produces sub-leading 1
ε poles proportional to

γ̄
ε . These

we anticipate should cancel out, and indeed the correct counter-term Lagrangian

should make this the case.

(ii) Second, we can find in a two-loop diagram a contribution proportional to either

m2I1I2 or m4I1I3. The explicit mass that enters here as a result of the IR regu-

lator cancels the same in the finite integrals I2 and I3. We anticipate that these

divergences should also cancel as happens in the standard string β-function.

(iii) Finally we can have a pre-factor f(d)I2
1 whose expansion results in a 1

ε pole. These

are the terms responsible for the β-function.

We will now collect and present the results for our calculation using Method 1. In doing

so, let us recall that terms with a double ε-pole shall not depend on our prescription for

computing integrals and are thus unambiguous.
22For instance ∫ ∞

0

duuα−1
0F̃1(b;−u) =

Γ(α)

Γ(b− α)
. (7.61)



The Duality-Symmetric String 108

Let us start from the fibre. The ε−2 counter-term turns out to be

T
(2)
2 =

1

32π2λ2

(
H(4) + 4H(3,1,0) − 2H(2,0,2) − 6H(2,1,1) − 4H(1,2,1) + 3H(1,1,1,1,0)

)
+

1

128π2λ2
Tr(H(1,1))

(
H(2) +H(1,1,0)

)
,

(7.62)

in exact agreement with the pole equation

0 = 2T
(2)
2 − T (1)

1 ◦ δ

δH
T

(1)
1 + T̃

(1)
1 T

(1)
1 . (7.63)

Regarding the single ε-pole, γ̄’s cancel out, as they should, among different a’s (equiva-

lently: topologies). Contributions coming from IR regularisation - those involving I2,3 -

do not vanish on their own but can be removed with the addition of the appropriate mass

term (7.27) to the Lagrangian. Crucially this term has a non-trivial expansion so that

interaction vertices with mass insertions are produced at all orders. These are relevant,

as they can be used to precisely cancel off against I2,3-dependent terms produced in the

calculation. More concretely, as we explain in Appendix B.1, four different topologies

are involved: triangle envelope, square envelope, decorated loop and decorated triangle.

Their contributions respectively evaluate to

m1 =
m2I1I2

8λ2
Tr(H(1,1))H(2)

•• , m2 =
I1(m2I2 +m4I3)

8λ2
Tr(H(1,1))H(1,1,0)

•• ,

m3 = −m
2I1I2

16λ2
Tr(H(1,1))H(2)

•• , m4 = −I1(m2I2 +m4I3)

16λ2
Tr(H(1,1))H(1,1,0)

•• .

(7.64)

In summation these yield

4∑
i=1

mi = − 1

256π2ελ2
Tr(H(1,1))

(
H(1,1,0)
•• + 2H(2)

••

)
. (7.65)

Including these, which precisely cancel all m2I1I2 and m4I1I3 contributions, we find the

ε−1 counter-term

T
(2)
1 =

2g− 1

32π2λ2
H(2,0,2) +

4g− 1

16π2λ2
H(2,1,1) +

3(8g− 1)

128π2λ2
H(1,1,1,1,0)

+
1− 2g

128π2λ2
Tr(H(1,1))H(2) +

1− 4g

512π2λ2
Tr(H(1,1))H(1,1,0) . (7.66)

Let us consider the constraint that T (2)
1 be compatible with the O(n, n) structure. We

find that the consistency condition of eq. (7.6) is not obeyed and instead:

T
(2)
1 η−1H+Hη−1T

(2)
1 =

4g− 3

256π2λ2
Tr(H(1,1))H(1,1) +

13− 40g

64π2λ2
H(1,1,1,1)
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+
2g− 1

32π2λ2

(
H(2,0,2,0) +H(0,2,0,2)

)
, (7.67)

which does not vanish for any choice of g. On the base we find the ε−2 pole

T̃
(2)
2 = − 1

64π2λ

(
2 Tr(H(3,1)) + Tr(H(2,2)) + Tr(H(1,1,1,1))

)
, (7.68)

in which it is notable that we could combine all terms containing the connection Ω to give

a final answer in terms of the generalised metric alone. Moreover, we find that the ε−2

counter-term for ∂0y∂0y matches that of ∂1y∂1y (despite arising from a totally different

set of diagrams and contractions) and that no ε−2∂0y∂1y counter-term is produced.

Turning to the single ε-pole on the base, γ̄’s cancel out. Contributions coming from

IR regularisation cancel entirely. For the remaining ε−1 counter-terms, indicated with

T̃
(2)
1 |µν∂µy∂νy, we obtain

T̃
(2)
1 |01 =

1− 6g

64π2λ
Tr(H(1,1,0)ΩΩ)−

16
3 + 4g

64π2λ
Tr(H(2)ΩΩ) , (7.69)

T̃
(2)
1 |00 =

1− 8g

128π2λ
Tr(H(1,1,1,1))− 1

384π2λ
(13− 10g) Tr(H(2,2))

+
35− 8g

384π2λ
(Tr(H(1,1)ΩΩ)− Tr(H(1)ΩH(1)Ω)) +

1

384π2λ
(56 + 8g) Tr(H(2,1)Ω) ,

(7.70)

T̃
(2)
1 |11 =

−3 + 4g

128π2λ
Tr(H(1,1,1,1))− 9− 10g

384π2λ
Tr(H(2,2))

+
13 + 16g

384π2λ
Tr(H(1,1)ΩΩ)− 11− 8g

384π2λ
Tr(H(1)ΩH(1)Ω) +

5(1− g)

48π2λ
Tr(H(2,1)Ω) .

(7.71)

It is clear that not only does the result depend on the connection Ω rather than H alone,

there is no value for g for which T̃ (2)
1 |01= 0 and T̃ (2)

1 |00= T̃
(2)
1 |11.

7.5.2 Method 2

In this method we shall perform the maximal simplifications that we can before actually

evaluating any integral. We make four key assumptions:

1. Integrals are first dealt with in d = 2. In particular, we replace factors of p2
0 in the

numerator of momentum integrals with p2 + p2
1 and cancel off against factors of p2

between numerator and the denominator23.
23This step is potentially ambiguous as there can be multiple ways to implement such a simplification,

e.g. in k3
0p

3
0 we could extract either (k · p)3 or k2p2k · p. However, at least at the two-loop order we are

working to, no such possible ambiguity occurs.
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2. After these cancellations have happened we continue the integral to d = 2 + ε

dimensions and, in particular, we assume shift-symmetry in the momenta k and p.

3. IR regulating should be done at the end of such simplifications, and based on the

experience of Method 1 when done successfully will not be important for the 1
ε

pole.

4. Having done these simplifications, we will assume that the integration method is

such that any integrand whose numerator contains an odd number of temporal

components of momenta vanish24.

This methodology greatly assists in dealing with integrals that contain non-Lorentz invari-

ant denominators. For instance, consider the following expression which is encountered

in the computation

J =

∫
ddk

(2π)d
ddp

(2π)d
p1

k2p2(k1 + p1)
. (7.72)

Suppose in the numerator we sum and subtract k1:

J =

∫
ddk

(2π)d
ddp

(2π)d
k1 + p1

k2p2(k1 + p1)
−
∫

ddk

(2π)d
ddp

(2π)d
k1

k2p2(k1 + p1)

= I2 −
∫

ddk

(2π)d
ddp

(2π)d
k1

k2p2(k1 + p1)
= I2 − J ,

(7.73)

where in the last step we used the fact that the denominator is invariant under the

swapping of k and p. Hence, we see that the integral is easily solved as J = 1
2I

2.

Further simplifications follow from the momenta shift-symmetry. Consider [[(k1+p1)2]]1,1,1;

expanding the square and using the k ↔ p symmetry of the integrand gives [[(k1 +

p1)2]]1,1,1 = 2[[k2
1]]1,1,1 + 2[[k1p1]]1,1,1. On the other hand, shifting k → k− p followed by

p→ −p yields [[(k1 + p1)2]]1,1,1 = [[k2
1]]1,1,1. Hence [[k1p1]]1,1,1 = −1

2 [[k2
1]]1,1,1.

With these rules implemented the entire two-loop contributions can be remarkably ex-

pressed in terms of only five (non-invariant) integrals:

I =

∫
ddk

(2π)d
1

k2
, L =

∫
ddk

(2π)d
k2

1

(k2)2
, T =

∫
ddk

(2π)d
k4

1

(k2)3
,

S =

∫
ddk

(2π)d
ddp

(2π)d
k2

1

p2k2(k + p)2
, TE =

∫
ddk

(2π)d
ddp

(2π)d
k1p

2
1(k1 + p1)

(p2)2k2(k + p)2
, (7.74)

corresponding respectively to the fundamental integral I and then integrals in the Loop,

Triangle, Sunset and Triangle Envelope topologies. For each of these we denote by X(i)

24One could do away this restriction, however this will not effect the broad conclusions we reach as
integrands with odd and even numbers of temporal components of momenta are associated to different
tensorial combinations of the background fields. This is because a factor of p1p0 can only arise in
conjunction with an η and a factor of p1p1 comes with an H.
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the 1
εi

contribution to the integral X. The leading divergence and γ̄-dependence of the

remaining integrals is unambiguous, such that we may express

I = P +
iγ̄

4π
, L = −1

2
P− iγ̄

8π
+ iL(0) , T =

3

8
P +

3iγ̄

32π
+ iT(0) ,

S = −1

2
P2 +

γ̄

8π2ε
+

S(1)

πε
, TE =

1

8
P2 − γ̄

32π2ε
+

TE(1)

πε
, (7.75)

in which we recall P ≡ i
2πε and have introduced L(0),T(0),S(1) and TE(1) to signify the

undetermined contributions from these integrals.

In general, two-loop diagrams which can be factorised into the product of one-loop di-

agrams do not lead to simple 1
ε poles once the appropriate one-loop diagrams with

counter-term insertions are subtracted off [162]. Here we see this through contributions

of the form (I − P)L where P comes from a counter-term insertion in the MS scheme;

the simple pole part of (I−P) drops such that only a term proportional to γ̄
ε is produced

(such terms should cancel with an appropriate treatment of counter-terms). Using (7.75)

we see similarly that the combination (P + L)L has no γ̄-independent 1
ε contribution.

To expose the simplifications of this method one needs to organise the calculation by

grouping all terms with the same tensorial structure. In general these occur from differ-

ent Wick contractions and across different topologies. Let us highlight this method by

examining the term H(1,1,1,1,0) in more detail. The terms in a6 require the most work and

proceed as follows. The strategy is first remove all temporal components of momenta by

replacing e.g. k0p0 = k · p + k1p1, and then cancel numerators and denominators. For

example

a6b =
1

2λ2
H(1,1,1,1,0)
••

(
−2[[k1p

3
1k · p]]3,1,1 + [[k2

1p
2
1p

2]3,1,1
)

=
1

2λ2
H(1,1,1,1,0)
••

(
−[[k1p

3
1]]3,1,0 + [[k1p

3
1]]3,0,1 + [[k1p

3
1]]2,1,1 + [[k2

1p
2
1]2,1,1

)
=

1

2λ2
H(1,1,1,1,0)
••

(
−[[k1p

3
1]]3,1,0 + [[(k1 − p1)p3

1]]3,1,0 + [[k1p
3
1]]2,1,1 + [[k2

1p
2
1]2,1,1

)
=

1

2λ2
H(1,1,1,1,0)
•• (TE− I×T) . (7.76)

The contributions arising from the remaining Wick contractions relevant to H(1,1,1,1,0)

are summarised below.
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λ−2H(1,1,1,1,0)
••

a3c
1
2P× L

a51a L2

a51b
1
2I×T

a51e
1
4P× L

a6b
1
2 (TE− I×T)

a6c −TE

Tot. L2 − 1
2TE + 3

4P× L

Table 7.1: Method 2 two-loop contributions to H(1,1,1,1,0)
•• .

The other tensorial structures can be treated in a similar fashion, both on the fibre and

base manifold. We will refrain from detailing the discussion any further here and rather

report our findings in tabular forms. The interested reader is referred to the appendices

where the explicit steps for carrying out the calculation are shown.

Tensor Result 1
64πε2

γ̄
4πε

1
4πε

H(4)
••

1
16I

2 − 1
8IP 1 0 0

H(3,1,0)
•• −1

2IL−
1
4IP + 1

2PL −4 0 0

H(2,0,2)
••

1
4IP + 1

4S −2 0 S1

H(2,1,1)
••

1
2IP−

1
2PL + 1

2IL + 1
4S −6 0 S1

H(1,2,1)
••

1
8IP−

3
4PL− 1

2L
2 + 1

4IL −4 0 0

H(1,1,1,1,0)
•• −1

2TE + L2 + 3
4PL 3 0 −1

2(−L0 + 4TE1)

H(2)
•• Tr(H(1,1)) − 1

32IP−
1
32S

1
4 0 −1

8S1

H(1,1,0)
•• Tr(H(1,1)) 1

16PL + 1
8TE 1

4 0 1
8(−L0 + 4TE1)

Table 7.2: Two-loop contribution for each tensorial structure on the fibre.

Tensor Result 1
64πε2

γ̄
4πε

1
2πε

Tr(H(1,1,0)ΩΩ) −1
2LP−

1
2LI−

1
4PI− 2TE 0 0 L0 − 4TE1

Tr(H(2)ΩΩ) 1
4(2L− I)(I−P) + 4TI + 2S− 4TE 0 0 −1

4S1 − 2TE1

Table 7.3: Two-loop contribution for each tensorial structure on the base with external
legs ∂0y∂1y.
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Tensor Result 1
64πε2

γ̄
4πε

1
4πε

Tr(H(3,1)) 3
8L(I−P)− 1

16I(P− 2I) −1 0 0

Tr(H(2,2)) − 1
16S−

1
2TE + 1

16PI −1
2 0 −1

4S(1) − 2TE(1)

Tr(H(1,1,1,1)) 1
8PI + 1

8L(P− L) + 1
8S + 1

2TE −1
2 0 1

2(S(1) − L(0) + 4TE(1))

Tr(H(1,1)ΩΩ) 2LI + 2TI + 1
4I

2 0 0 −4L(0) − 4T(0)

Tr(H(1)ΩH(1)Ω) 1
2L

2 − 3
2LI− 2TI− 1

8I
2 0 0 4L(0) + 4T(0)

Tr(H(2,1)Ω) 5
2LI + 2TI− LP− 1

2PI + 1
2I

2 0 0 −3L(0) − 4T(0)

Table 7.4: Two-loop contribution for each tensorial structure on the base with external
legs ∂1y∂1y.

Tensor Result 1
64πε2

γ̄
4πε

1
4πε

Tr(H(3,1)) 1
8LP−

1
8LI−

1
16PI 1 0 0

Tr(H(2,2)) − 3
16S−

1
2TE− 1

16PI 1
2 0 −3

4S(1) − 2TE(1)

Tr(H(1,1,1,1)) 1
8L

2 + 1
8LP

1
2 0 0

Tr(H(1,1)ΩΩ) 1
2S + LI + 2TI 0 0 −2L(0) − 4T(0) + 2S(1)

Tr(H(1)ΩH(1)Ω) −1
2L

2 − 1
2LI− 2TI− 3

4S + 2TE 0 0 4T(0) − 3S(1) + 8TE(1)

Tr(H(2,1)Ω) 1
2LI + 2TI + S 0 0 −L(0) + 4S(1) − 4T(0)

Table 7.5: Two-loop contribution for each tensorial structure on the base with external
legs ∂0y∂0y.

In summary we find the results for the simple ε-poles of counter-terms to be given by

πλ2T
(2)
1 =− 1

2
S(1)

(
H(2,0,2) +H(2,1,1) − 1

8
Tr(H(1,1))H(2)

)
+

(
TE(1) −

1

4
L(0)

)(
H(1,1,1,1,0) − 1

4
Tr(H(1,1))H(1,1,0)

)
,

πλT̃
(2)
1 |01=− 2

(
TE(1) −

1

4
L(0)

)
Tr(H(1,1,0)ΩΩ) + 2

(
S(1) − 2TE(1) −T(0)

)
Tr(H(2)ΩΩ) ,

πλT̃
(2)
1 |11=−

(
1

8
S(1) + TE(1)

)
Tr(H(2,2)) +

(
1

4
S(1) + TE(1) −

1

4
L(0)

)
Tr(H(1,1,1,1))

− 2
(
L(0) + T(0)

) (
Tr(H(1,1)ΩΩ)− Tr(H(1)ΩH(1)Ω)

)
−
(

3

2
L(0) + 2T(0)

)
Tr(H(2,1)Ω) ,
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πλT̃
(2)
1 |00=

(
3

8
S(1) + TE(1)

)
Tr(H(2,2)) +

(
−S(1) + L(0) + 2T(0)

)
Tr(H(1,1)ΩΩ)

+

(
3

2
S(1) − 4TE(1) − 2T(0)

)
Tr(H(1)ΩH(1)Ω)

+

(
−2S(1) +

1

2
L(0) + 2T(0)

)
Tr(H(2,1)Ω) .

7.5.2.1 O(n, n) Consistency Requirement

We can now return to question of compatibility of the fibre counter-term with the O(n, n)

structure. At one-loop, it follows immediately that T (1)
1 satisfies the required condition

T
(1)
1 · η−1 · H + H · η−1 · T (1)

1 = 0. At two-loop order T (2)
2 , we recall, ought to obey

0 = T
(2)
2 η−1H +Hη−1T

(2)
2 + T

(1)
1 η−1T

(1)
1 . There are four relevant independent tensors

Xa(H, η) with four derivatives and total homogeneity one that obey H · η−1 ·Xa +Xa ·
η−1 · H = 0 given by

X1 =H(4) + 2(H(3,1,0) +H(0,1,3))− 3H(2,0,2) + 6H(1,1,0,1,1) ,

X2 =H(2,1,1) +H(1,1,2) + 2H(1,1,0,1,1) ,

X3 =H(1,2,1) −H(1,1,0,1,1) ,

X4 =
(
H(2) −H(1,0,1)

)
Tr(H(1,1)) .

(7.77)

It is useful to introduce these combinations in T (2)
2 as they just drop when checking the

compatibility condition:

T
(2)
2 =

1

128π2λ2
(4X1 − 12X2 − 16X3 +X4) +

1

32π2λ2
(H(2,0,2) −H(1,1,0,1,1)) . (7.78)

The rest of the proof is easy and only involves simple identities to recast

H · η−1 · H(2,0,2) +H(2,0,2) · η−1 · H = −2(H(2,2) +H(1,1,0,2) +H(2,0,1,1)) . (7.79)

As for T (2)
1 , the tensorH(2,0,2) enters into the result but there are no contributions ofH(4)

and H(3,1,0) that allow for its completion into X1. As a result, to ensure T (2)
1 is O(n, n)

compatible we are required to enforce S(1) = 0. This on its own is not an unexpected

conclusion, in fact is the case if we use the Lorentz invariant regularisation scheme with

g = 1
2 . However once S(1) = 0 is set, we are left with

πλ2T
(2)
1 ≈

(
TE(1) −

1

4
L(0)

)(
H(1,1,1,1,0) − 1

4
Tr(H(1,1))H(1,1,0)

)
, (7.80)
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and again this is not O(n, n) compatible unless L(0) = 4TE(1). Unlike S(1) it is impossible

to tune g within the Lorentz invariant regularisation scheme to make this combination

vanish since L(0) − 4TE(1) = 1
32π is independent of g.

The conclusion of this analysis is that the only way the counter-term T
(2)
1 is compatible

with the O(n, n)-structure (neglecting scheme changes, which we will discuss) is that the

prescription for evaluating the integrals be such that T (2)
1 ≈ 0 and hence βH receives no

contribution at two-loops.

7.5.2.2 Lorentz Consistency Requirement

Turning now to the base, we examine if restoration of Lorentz invariance is possible.

To eliminate the mixed T̃
(2)
1 |01 contribution we require again that L(0) = 4TE(1) and

additionally T(0) = S(1)−2TE(1). Notice also that Tr(H(1,1,1,1)) enters in T̃ (2)
1 |11 and not

in T̃ (2)
1 |00, so to eliminate this mismatch requires once again that S(1) = 0. Eliminating

S(1), TE(1) and T(0) in this way yields

πT̃
(2)
1 |11 = −1

4
L(0) Tr(H(2,2))− L(0)

(
Tr(H(1,1)ΩΩ)− Tr(H(1)ΩH(1)Ω)

)
− 1

2
L(0) Tr(H(2,1)Ω) , (7.81)

πT̃
(2)
1 |00 = +

1

4
L(0) Tr(H(2,2))− 1

2
L(0) Tr(H(2,1)Ω) . (7.82)

Lorentz symmetry is restored only when also L(0) = 0 and the entire counter-term

T̃
(2)
1 = 0.

7.5.2.3 Evaluation of Remaining Integrals

We can invoke the O(d) Lorentz invariant integration prescription employed throughout

Method 1 to now evaluate the remaining integrals to be:

TE(1) = −1

6
T(0) =

3− 8g

128π
, S(1) = −1

2
L(0) =

2g− 1

16π
. (7.83)

Using these values we can eliminate TE(1) and S(1) to give:

πλ2T
(2)
1 =

1

4
L(0)

(
H(2,0,2) +H(2,1,1) − 1

8
Tr(H(1,1))H(2)

)
−
(

1

6
T(0) +

1

4
L(0)

)(
H(1,1,1,1,0) − 1

4
Tr(H(1,1))H(1,1,0)

)
. (7.84)
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On the base we find

πT̃
(2)
1 |01 =

(
1

3
T(0) +

1

2
L(0)

)
Tr(H(1,1,0)ΩΩ)−

(
L(0) +

4

3
T(0)

)
Tr(H(2)ΩΩ) , (7.85)

πT̃
(2)
1 |11 =

(
1

16
L(0) +

1

6
T(0)

)
Tr(H(2,2))−

(
3

8
L(0) +

1

6
T(0)

)
Tr(H(1,1,1,1))

− 2
(
L(0) + T(0)

) (
Tr(H(1,1)ΩΩ)− Tr(H(1)ΩH(1)Ω)

)
−
(

3

2
L(0) + 2T(0)

)
Tr(H(2,1)Ω) , (7.86)

πT̃
(2)
1 |00 = −

(
3

16
L(0) +

1

6
T(0)

)
Tr(H(2,2)) +

(
3

2
L(0) + 2T(0)

)
Tr(H(1,1)ΩΩ)

−
(

3

4
L(0) +

4

3
T(0)

)
Tr(H(1)ΩH(1)Ω)

+

(
3

2
L(0) + 2T(0)

)
Tr(H(2,1)Ω) . (7.87)

The g = 1
2 prescription could now be adopted to further simplify the results by setting

L(0) = 0. As a final simplification let us assume further that the background is such that

the one-loop counter-terms all vanish, in which case

T
(2)
1 →− 1

6
T(0)H(1,1,1,1,0) , (7.88)

πT̃
(2)
1 |01→

5

3
T(0) Tr(H(1,1,0)ΩΩ) , (7.89)

π(T̃
(2)
1 |11−T̃ (2)

1 |00)→T(0)

(
1

6
Tr(H(1,1,1,1))− 4 Tr(H(1,1)ΩΩ) +

10

3
Tr(H(1)ΩH(1)Ω)

)
.

(7.90)

These final expressions demonstrate that even with such additional assumptions, the

fibre counter-term remains incompatible with O(n, n) structure and Lorentz invariance

of the base counter-terms can not be enforced without placing constraints.

7.6 Couplings Reparametrisation

We have so far neglected the possibility of scheme changes and redefinitions that could

possibly remedy the broken Lorentz-invariance and/or the O(n, n) compatibility. We

shall now expand on the discussion in the pre-print [3] and discuss this point more

thoroughly.

Suppose a theory depends on some set of couplings ϕi, i = 1, . . . , N such that the

β-function can be viewed as a vector β = βi ∂
∂ϕi

on the space with coordinates parametrised

by ϕ’s. Up to now we have worked in a minimal subtraction (MS) renormalisation scheme:
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that is, we have only removed divergent parts and ignored finite pieces when renormal-

ising the action. There are other possibilities, of course. Changing the scheme means

adding finite local counter-terms and is equivalent to a redefinition of the couplings ϕ,

sometimes called “coupling reparametrisation” (CR) [145]. For a multi-coupling theory,

the β-functions are affected by a CR starting at two loops. Under ϕi → ϕi + δϕi, the

change in the β-function βi for the i-th ϕ is given by the Lie derivative

δβi = δϕj
∂

∂ϕj
βi − βj ∂

∂ϕj
δϕi . (7.91)

Momentarily reinstating the string tension, at two-loop the reparametrisation δϕi is order

α′ so that, according to (7.91), a change δβi(2) in the two-loop β-function βi(2) for the i-th

coupling will be induced by the one-loop results βj(1).

Now, the counter-terms of the previous sections indicate that, at two-loop, the (∂0y)2

and (∂1y)2 legs do not renormalise in the same way. This clashes with the fact that they

share a common coupling λ: as a result, we see broken Lorentz invariance on the base

upon renormalisation. This observation is additionally strengthened by the appearance

of the non-vanishing T̃ (2)
1 |01 counter-term. Let us then re-start from scratches and give

up on Lorentz-covariance on the base from the outset by considering

LG = −1

2
∂1XIHIJ∂1XJ +

1

2
∂0XIηIJ∂1XJ +

λ00

2
(∂0y)2 +

λ01

2
∂0y∂1y−

λ11

2
(∂1y)2 . (7.92)

In LG, we can consider the three base-couplings as distinct objects and treat their renor-

malisations separately. If the three RG flows are eventually consistent, i.e. λ00 and λ11

receive the same quantum correction and λ01 receives none, we do take the limit λ00 → λ,

λ11 → λ, λ01 → 0. When no confusion can arise, we shall employ the shorthand

limλ ≡ lim
λ00→λ

lim
λ11→λ

lim
λ01→0

so that e.g. L = limλLG . (7.93)

With this choice we can fully leverage CR/finite counter-terms: within L we could only

add a finite counter-term for H and/or λ. Now we can re-parametrise separately H,
λ00, λ11 and λ01: that is, we have twice as many degrees of freedom! Equivalently: for

each coupling we can add different finite counter-terms that need not be related to one

another.

The price to pay for this generalisation is the re-computation of one-loop β-functions for

all couplings. For instance, the one-loop result (7.26) is really the limλ of the one we

would obtain from the use of LG. The limiting procedure indeed washes away the precise

dependence of, say, βH(1) on λ00, λ11 and λ01. However, this is crucial as we eventually
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need to calculate

δβH(2) = δH ∂

∂H
βH(1) + δλ00

∂

∂λ00
βH(1) + δλ11

∂

∂λ11
βH(1) + δλ01

∂

∂λ01
βH(1)

− βH(1)

∂

∂H
δH− βλ00

(1)

∂

∂λ00
δH− βλ11

(1)

∂

∂λ11
δH− βλ01

(1)

∂

∂λ01
δH . (7.94)

In fact, for a two-loop calculation, the use of LG (as opposed to the simpler L) can be

limited to the computation of one-loop β-functions. The reason is that, eventually, we

will be interested in

β̂i(2) = limλ

(
βi(2) + δβi(2)

)
. (7.95)

The derivatives in δβi as per (7.91) imply that we cannot exchange limit and reparametri-

sation. However, the polynomial base couplings and the particular limit we are consid-

ering imply that it is safe to directly use L to compute βi(2).

7.6.1 One-Loop, Again

Singling out the precise dependence of the one-loop β-functions on the couplings is vital

for determining the effects of scheme changes on the two-loop β-functions. Therefore, we

need to re-perform the one-loop calculation, this time with LG, though. As all λ’s are

assumed constant, the effect of trading L for LG is only to modify the propagator for the

base fluctuation ζ. As no new interaction terms are created, the one-loop computation

will be identical to the one performed with L, at the price of changing some of the loop

integrals. Most importantly, these modifications will not affect the renormalisation of the

λ’s. At one loop, the only possible source for ∂y legs of either types is the Weitzenböck

connection Ω. Exploiting this fact, it is easy to see that only fibre fluctuations ξ can

contribute to the production of two ∂y legs in the effective action. Thus, LG will only

modify the renormalisation of H (η is still protected by the general all-loop arguments

that applied to L). More concretely, we introduce a new notation for the ζ-propagator

〈ζ(σ1)ζ(σ2)〉 =
1

λ00
Ξ(σ1 − σ2) , (7.96)

Ξ(σ1 − σ2) =

∫
d2k

(2π)2
e−ik(σ1−σ2) i

k2

1

1 + ∆λ
λ00

k2
1
k2 + λ01

λ00

k0k1
k2

, (7.97)

where ∆λ = λ00−λ11 and obviously limλΞ = ∆. The λ01-dependent term in LG implies

that structures with different parity than the ones encountered thus far can appear in

the RG flow. In fact, in Fourier space, λ01 adds to Ξ an explicit dependence on k0 that

was previously absent. To guarantee that this is paired up with another odd power of

k0 (so as to produce a non-vanishing loop integral) combinations of H and η other than

the ones considered in the λ01 = 0 case have to be considered.
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Evidently, Ξ will make the evaluation of certain loop integrals much nastier, mostly due to

the presence of λ01. In fact, we can generically solve integrals coming from this propagator

by Taylor-expanding the second fraction in Ξ (that depending on λ’s), evaluating each

integral with Method 125 and then re-summing the series. As we shall see in a moment,

this is easily done when λ01 = 0. For non-vanishing λ01 we are unfortunately unable to

obtain a closed expression for the re-summation. Nevertheless, we are only interested in

the linear dependence of βH(1) on λ01: this is the only order for which the combination of

limλ and ∂/∂λ01 can produce a non-vanishing result. On top of that, when restricting

to integrals with linear dependence on λ01, we can in fact set λ00 = λ11 = λ from the

outset: possible deviations will be killed by limλ.

Upon re-performing the entire calculation, it turns out that there are just two integrals

that need evaluation. Following the guidelines of Method 1 we find

J1 =

∫
d2k

(2π)2

k2
1

(k2)2

1

1 + ∆λ
λ00

k2
1
k2

=
1− e

∆λ
2λ00

∆λ
λ00

P , (7.98)

J2 =

∫
d2k

(2π)2

1

k2

1

1 + ∆λ
λ00

k2
1
k2

= e
∆λ

2λ00 P . (7.99)

Notice that, as it should, limλJ1 = −1
2P and limλJ2 = P. We can now report the

results for the one-loop calculation using LG (where O(λ2
01) terms are being suppressed):

βH(1) = − e
∆λ

2λ00

4πλ00
H(2) +

1− e
∆λ

2λ00

2π∆λ
H(1,0,1) − λ01

16πλ2
H(1,1) +O(λ2

01) ,

βλ00

(1) =
1

16π
Tr(H(1,1)) = βλ11

(1) , βλ01

(1) = 0 . (7.100)

The RG flows of λ00 and λ11 are equal and unaffected by the more general action. This

could be anticipated from the fact that (7.26) did not depend on λ in the first place. The

new coupling λ01, in particular, does not flow, making our limλ consistent at one-loop.

However, the β-function for H depends on the different λ’s (in the case of λ01 we have

only kept the linear contribution, as explained before).

7.6.2 Scheme Choices

We are now in the position to explore the effect of CR on the two-loop β-functions. Let

us start by considering δλ00 = c00 Tr(H(1,1)) and δλ11 = c11 Tr(H(1,1)). Plugging them
25Recall that, at one-loop, Method 1 is completely unambiguous and affords us with the possibility of

using combinatorial arguments to easily evaluate complicated integrals.
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into (7.94), using (7.100) and finally taking the limit we find

limλδβ
H
(2) = 2

c00 + c11

16πλ2
Tr(H(1,1))H(2) +

3c00 + c11

16πλ2
Tr(H(1,1))H(1,0,1) . (7.101)

Recall that one of the issues with O(n, n) compatibility was that terms with traces in βH(2),

such as the ones above, did not have the same coefficient. Since in (7.101) we have two

independent parameters we can always choose c00 and c11 so that in β̂H(2) = βH(2)+δβ
H
(2) the

terms Tr(H(1,1))H(2) and Tr(H(1,1))H(1,0,1) share the same pre-factor. Notice how this is

made possible by the different finite counter-terms for λ00 and λ11: if they were equal,

(7.101) would only depend on an effective parameter c = c00 +c11 and we would not have

enough freedom to fix both tensorial structures. Similarly, consider the O(n, n)-violating

reparametrisation δH = A1(λ00, λ11, λ01)H(2) + A2(λ00, λ11, λ01)H(1,0,1), for two func-

tions A1,2 ot the λ-couplings. Given the one-loop result, these should be such that

limλA1,2 =
a1,2

λ , for some constant coefficients a1,2. we arrive at

limλδβ
H
(2) =

a1 − a2

2πλ2

(
H(2,0,2) +H(2,1,1) +H(1,1,2)

)
− 1

16π

(
limλ

∂A1

∂λ00
+ limλ

∂A1

∂λ11

)
Tr(H(1,1))H(2)

− 1

16π

(
limλ

∂A2

∂λ00
+ limλ

∂A2

∂λ11

)
Tr(H(1,1))H(1,0,1) . (7.102)

The H(2,0,2) structure was already identified as problematic for O(n, n) compatibility.

With this addition it is always possible to make its coefficient in β̂H(2) vanish. Once

again, observe how this is afforded by a reparametrisation that explicitly violates one

of the symmetries we are eventually trying to restore. Also, λ01 does not enter here, as

βλ01

(1) = 0.

A problem arises with the reparametrisation of λ01, though. Given that T̃1
(2)|01 explicitly

depends on Ω, we are forced to assume that δλ01 does too. The only term that might

satisfy our needs is δλ01 = c01 Tr(ΩH(0)Ω). Indeed, this would result in

limλδβ
λ01

(2) =
c01

2πλ

(
Tr(H(2)ΩΩ)− Tr(H(1,0,1)ΩΩ)

)
. (7.103)

Hence, if the integrals in T̃1
(2)|01, upon evaluation, were to precisely give opposite coeffi-

cient to Tr(H(2)ΩΩ) and Tr(H(1,0,1)ΩΩ), we could always make T̃1
(2)|01 vanish. However,

a nasty consequence of this form for δλ01 is that it will affect δβH(2), too. Concretely, this

would yield, because of the form of βH(1),

limλδβ
H
(2) ⊃

c01

16πλ2
Tr(ΩH(0)Ω)H(1,1) . (7.104)

Notice that i) any non-vanishing δλ01 implies a contribution to δβH(2) proportional to
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H(1,1): given the “parity” of H(1,1), it can’t be removed with other reparametrisations;

ii) if we picked a precise evaluation of the integrals, we could make T̃1
(2)|01 vanish from

the outset, sparing us from the introduction of δλ01.

7.7 Summary and Conclusions

In this chapter we have computed the two-loop effective action for the T-duality sym-

metric bosonic string.

As a first step we provided a complete calculation of all contributions to the effective

action arising from Wick contraction keeping loop integrals unevaluated. We then em-

ployed two methods to simplify and evaluate these (non-Lorentz covariant) loop integrals.

The two methods agree with each other for the ε−2 divergences, but are subtly different

when it comes to the sub-leading ε−1 divergences that contribute to the β-functions at

two-loop order.

Of the two approaches, Method 2, in which the maximal number of simplifications is

performed in d = 2, results in compelling simplifications such that the results can be

phrased in terms of a basis of just five independent integrals. We are then able to analyse

the results in a way that keeps the choice of regularisation method implicit giving general

conclusions that would hold with any choice of regularisation (dimensional or otherwise).

For concreteness, here we completed Method 2 by employing continuation to d = 2 + ε

after all simplifications have been made to evaluate the remaining integrals.

Both methods pass a number of important consistency checks:

• The ε−2 contributions are in exact accordance with the expectations from the pole

equation on the doubled fibre in which the T-duality acts.

• The ε−2 contributions on the base are consistent with Lorentz invariance. This is

to say, no ∂0y∂1y legs are produced (even though they do appear in intermediate

steps) and the counter-terms for ∂0y∂0y and ∂1y∂1y coincide (even though they

come from totally different sets of diagrams).

• For ε−2 poles, all occurrences of the Weitzenböck connection Ω combine in a fashion

to be expressible in terms of H alone.

• After regularising IR divergence as described, mixed IR/UV divergences of the

form log(m)
ε are removed in the cancellation of γ̄ terms.
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• On the doubled fibre, possible contributions to the 1
ε pole due to the IR mass

regulator giving divergences of the form m2I1I2 are cancelled with the introduction

of an appropriate mass term and its background field expansion.

Notwithstanding the dramatic simplifications afforded by Method 2 compared to Method

1, the results for the ε−1 pole that contribute to the two-loop β-function present some

puzzles:

• On the fibre, the counter-term does not have the right structure to allow the O(n, n)

constraint HηH = η to be preserved by RG flow.

• The ε−1 pole on the base manifold is not Lorentz invariant. A new interaction

vertex proportional to ∂0y∂1y is created, and the counter-terms for the legs ∂0y∂0y

and ∂1y∂1y have differences.

• The ε−1 pole on the base manifold involves the connection Ω in a way that can

not be combined into something expressible in terms of the generalised metric H
alone.

Method 2 does afford one possible avenue to resolve these puzzles. Namely the possibility

that an integration prescription can be invoked such that the entire two-loop ε−1 counter-

terms vanish. This is the case if the undetermined subleading part of the integrals

L,T,S,TE of (7.75) vanish. Such a result would be equally surprising as it would be in

contradiction to that of the conventional non-linear σ-model for the bosonic string.

More likely, appropriate finite Lorentz- and O(n, n)-violating one-loop counter-terms

could be added so as to cure the pathological behaviours. To this end, it is important

to enlarge the set of admissible finite counter-terms by considering a more general La-

grangian LG. However, their determination appears very difficult in practice and might

also involve an explicit evaluation of the integrals to be carried out successfully.

The calculation involved in arriving at these results is of considerable complexity (espe-

cially with regards to the counter-terms on the base) and so we can’t rule out that these

issues pointed out here may be resolvable. As methods other than ours might in principle

be considered, we have collected the relevant loop integrals, prior to any evaluation, in a

way which is suitable to further investigation. Even though it is possible that different

prescriptions might result in a non-vanishing β-function compatible with both O(n, n)-

and Lorentz-symmetry, it seems likely that the resolution would be highly non-trivial26

26One might contend that an anomaly in double Lorentz transformations for the duality-symmetric
string, [179], could play a role here. The Green-Schwarz mechanism required to cancel this would
doubtless be important in the most general setting, however in the present “cosmological” set-up, there
is no such anomaly to contend with, as the base manifold has only one dimension.
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and would need to give a compelling non-ambiguous proposal for regulating the loop

integrals involved.

As it stands, however, the results obtained cast some doubt as to the full validity of the

doubled action in the form of (7.1) at the quantum level. At the very least one can say

that the power of invoking manifest T-duality on the worldsheet is far outweighed by the

added complexities that the chiral nature of this formalism entails at the quantum level.



Chapter 8

Towards Poisson-Lie T-Duality at

Two-Loop

Abstract

We begin a study of the two-loop renormalisation of the action that makes Poisson-Lie

T-duality manifest. Similarly to the Tseytlin string, the breakdown of explicit Lorentz

covariance entails a number of technical difficulties which we try to address. We report

partial results, as the project is ongoing at the time of writing.

8.1 Introduction

Klimčík and Ševera proposed in [14] a (worldsheet) action that describes two Poisson-Lie

T-dual models on a Drinfel’d double D. Similarly to the doubled string, the price for

explicit T-duality covariance is the breakdown of Lorentz invariance. More concretely,

their proposal is to extend the chiral WZW action by an SH term, S = SWZW + SH,

being H the generalised metric in flat indices and

SWZW =
1

2

∫
Σ

d2σ 〈L1|L0〉+
1

12

∫
M3

〈L|[L,L]〉 , SH = −1

2

∫
Σ

d2σ 〈L1|H|L1〉 . (8.1)

Here Σ indicates the two-dimensional worldsheet with coordinates σµ = (τ, σ), andM3 a

three-dimensional manifold such that ∂M3
∼= Σ. L is used to indicate the Maurer-Cartan

left-invariant one-form L = g−1dg, for g ∈ D1. For generators TA of d = Lie(D), the

pairing 〈·|·〉 is 〈TA|TB〉 = ηAB.
1Accordingly, the right-invariant one-form is denoted with R = dgg−1.

124
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This action offers a privileged standpoint when exploring the quantum corrections to

models it encompasses. Indeed, we only have a single coupling HAB to renormalise2

and, furthermore, this is a constant object. In fact, the power of this formalism is

that, whatever the result might eventually be, it needs to be a function of only HAB,

ηAB and the structure constants FAB
C of d. The geometric intricacies due to e.g. a very

complicated metric (think of CPnη , for instance) are effectively stripped out of the picture,

and one is left with a much neater renormalisation group flow in terms of constant and

algebraic objects.

The one-loop renormalisation of (8.1) was first addressed in [148]. There it was shown

that the β-function for H was given by

βH(1) =
1

8π
(ηACηBD −HACHBD)(ηEFηGH −HEFHGH)FCEGFDFH . (8.2)

From the target space perspective, i.e. without re-performing a quantum computation

as explained in Chapter 6, this result was recovered in [157] and further extended to two

loops. Aim of this chapter is to carry out a two-loop calculation using the action in (8.1)

to obtain βH(2): ideally, that should also agree with the one found in [157].

Superficially, the computation resembles the one for the doubled string detailed in Chap-

ter 7 but in fact there are a few differences worth highlighting. Since for D we have no

fibration, we do not require to distinguish between base and fibre any more; this brings

several advantages:

1. We only have one type of fluctuation, called ξ. As a consequence, there is no need

to distinguish between base and fibre propagators.

2. There is no ambiguity on whether to treat ∂µ as a two- or d-dimensional quantity

when regularising.

3. There are no Lorentz-invariant combinations to reconstruct. Possibly the main

issue of the doubled string calculation is avoided altogether from the outset.

Despite these remarkable perks, the absence of a base/fibre split has a major drawback:

recall that, for the doubled string, the two-point function for mixed fluctuations ξ and

ζ vanished, 〈ξ ζ〉 = 0. This fact, together with the structure of the expanded action,

implied that a 10-point function3 (schematically) factorised 〈ξ8 ζ2〉 = 〈ξ8〉〈ζ2〉, resulting
in roughly order 1,500 terms. Conversely, for the E-model action (8.1) we easily find

terms of the form 〈ξ10〉, contributing some 30,000 terms each. This added extra factor
2That is, assuming that ηAB does not flow, as we expect.
3At two-loop order the 10-point function is, on dimensional grounds, the one containing maximum

number of fluctuations. The absence of e.g. 〈ξ10〉 depends on the details of the calculation.
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of 20 makes the calculation much more computationally intensive with respect to that

in Chapter 7.

8.2 Symmetries

Before delving into its details, let us take some time to discuss a few peculiarities of the

calculation as, with respect to the doubled string, we have now at our disposal a much

more rigid group structure due to the Drinfel’d double.

8.2.1 Constraints on Results

Even though (8.2) is by itself pretty elegant, its form can be made much more compelling,

as first noticed by Klimčík in [180]. To this end introduce the projectors P = 1
2(η +H)

and P = 1
2(η − H) and view them as elements of the symmetric product S2d thanks

to P = PABTA ⊗ TB and similarly for P. It is possible to introduce a double bracket

[[·, ·]] : S2d× S2d→ S2d defined through

[[TA ⊗ TB, TC ⊗ TD]] = [TA, TC]⊗ [TB, TD] , (8.3)

where [·, ·] is the usual Lie bracket on d. Using this notation, the one-loop β-function

reads

βH(1) =
1

π

(
P[[P,P]]P + P[[P,P]]P

)
. (8.4)

This rewriting makes the underlying structure much more transparent, but also advises

us against the use of η and H in formatting the final result. In fact, the adoption of

projectors enables us to draw some conclusion as to the general shape of the (all-loop)

answer.

Projectors need to obey their defining relations, namely P2 = P, P2
= P and PP = 0.

Defining for the sake of simplicity the RG time t = logµ, taking a t-derivative of the

first constraint yields
dP
dt
P + P dP

dt
=

dP
dt

. (8.5)

If we multiply the latter by P or P on the left and right, we easily arrive at respectively

P dP
dt
P = 0 , P dP

dt
P = 0 . (8.6)

Inspired by the one-loop result (8.4), it seems reasonable to assume that generically

dP
dt

= PF1P + PF2P , (8.7)
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for some unknown tensors F1,2. This would indeed guarantee that (8.6) be automatically

satisfied. An identical result holds true for the renormalisation of P, for some possibly

different tensors F3,4. However, as η = P + P should not be renormalised, these new

objects are in fact constrained by dP
dt = −dP

dt . Finally, since the projectors are symmetric,

we find F t2 = F1 and so
1

2

dH
dt

= PF1P + PF t1P . (8.8)

Now, for two objects O1,2 it is easily proven that [[O1,O2]]t = [[Ot1,Ot2]]: hence, we see

that if these two coincide with projectors (which are symmetric by construction), the

identification F1 = 1
2π [[P,P]] indeed perfectly fits the discussion.

8.2.2 Graphical Representation

The fact that the one-loop β-function is completely specified by the double bracket J·, ·K
should not be too surprising after all. At one loop, we expect the result to depend on

two structure constants4 and, given (8.8), there are four indices left to be paired: this

makes J·, ·K the unique candidate. At higher orders, things start getting more convoluted

as there are potentially more “pairings” than just J·, ·K the β-function could be made up

of. For instance, at two loops where four structure constants are needed, we could i)

concatenate two double brackets J·, ·KJ·, ·K, or ii) compose them J·, J·, ·KK or iii) create a

completely new pairing which we will denote with {·, ·, ·}.

This added complexity can be facilitated by the use of a graphic representation of the

result, mostly following that introduced in [157] with few minor changes. A word of

caution: even though these graphs look like proper Feynman diagrams, i.e. pictorial

representations of a perturbative series, they have nothing to do with an actual quantum

computation other than shedding some light into the structure of the perturbatively

computed β-function. In this sense, we will see that proper Feynman diagrams will

still be described, in our jargon, as “sunsets”, “square envelopes”, etc. Also, to further

minimise any source of confusion, we will reserve the word “graphs” to indicate this

pictorial description of the β-function.

The idea is to associate to every tensor a graphical element. For instance, we shall

adopt a solid line to represent H and a wiggly line to indicate η, treating H and η

as “propagators”, the extrema being labelled by their indices. Conversely, a structure

constant is described by a three-vertex interaction. Graphically:

FABC = A

B

C , HAB = A B , ηAB = A B . (8.9)

4In this algebraic setting, structure constants morally play the role of derivatives in the geometric
approach. That is, the n-loop result should contain 2n structure constants/derivatives.
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Even though we advocated for the usage of projectors as opposed to η and H, we found

this exceptionally convenient as a final polishing step. For example, we only used P
and P for rearranging our final expression (8.2) and not before. At higher loops there

is even more compelling evidence for adopting this approach: contractions of structure

constants through η are constrained by Jacobi identities that allow reshuffling and, pos-

sibly, simplifications. If we move too soon to projectors, we could simply overlook such

identities, being them now expressed in a more convoluted and less transparent way.

Let us warm up exploring the one-loop renormalisation. Using a placeholder M for

either η or H, we consider the double bracket JM1,M2KAB. According to our rules, its

representation is

JM1,M2KAB = FACDFBEFM
CE
1 MDF

2 = A

1

2

B . (8.10)

Since J·, ·K is symmetric under the exchange of its arguments, three graphs will exhaust

all possibilities corresponding to M1,M2 ∈ {η,H}, namely

A B , A B , A B . (8.11)

Were we to precisely reproduce βH(1), these pictures ought to be supplemented with the

appropriate projectors attached to either the A or B endpoint. As anticipated, at two

loops more possibilities have to be taken into account. The generic contribution to βH(2)

at this order is schematically given by

LCM
CA (F 4M5

)
ABM

BDLD , (8.12)

where once again M ∈ {η,H}. There are only three possible connected graphs, corre-

sponding to

A

1

2

3

4

5

B = JM1,M2KM3JM4,M5KAB , (8.13a)

A

1

2

3

4

5

B =
r
M1,M2JM3,M4KM5

z

AB
, (8.13b)
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A

1

2

3

4

5

B =
{
M1,M2;M3;M4,M5

}
AB
. (8.13c)

The tensorial expression associated to the last one reads{
M1,M2;M3;M4,M5

}
AB

= FAA2A3FBB2B3FC1C2C3FD1D2D3

×MA2C2
1 MA3D3

2 MC1D1
3 MB3C3

4 MB2D2
5 , (8.14)

where we have added subscripts on indices for displaying purposes. Actually, these graphs

are not independent as they can be related via the Jacobi identity, which is why we kept

η and H (as opposed to projectors) in the first place. Specifically, the relations are

A

1

2

3

4

B + A

2

1

3

4

B =
Jacobi

A

3

1

2

4

B , (8.15a)

A

1

2

3

4

B + A

2

1

4

3

B =
Jacobi

A

1

2

3

4

B ,

(8.15b)

A

1

2

3

4

B =
Jacobi A

4

2

3

1

B . (8.15c)

Using these identities, we can build a basis of all independent couplings of the form(
F 4M5

)
AB,

H5 :

{
A B , A B , A B

}
,



Towards Poisson-Lie T-Duality at Two-Loop 130

H4η :

{
A B , A B ,

A B , A B , A B

}
,

H3η2 :

{
A B , A B ,

A B , A B , A B ,

A B , A B , A B

}
,

H2η3 :

{
A B , A B ,

A B , A B ,

A B , A B

}
,

Hη4 :

{
A B , A B ,
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A B

}
,

η5 :

{
A B

}
.

Hence, we have a total of 26 possible contributions to βH(2). Notice, in particular, how

the third topology in (8.13) only enters once, in the H5 coupling. In fact, it is possible

to show that, although the result in [157] naively depends on this topology, the correct

application of the identities (8.15) makes βH(2) boil down to an expression involving only

(8.13a) and (8.13b), i.e. J·, ·K.

8.2.3 Diagrams with External Momentum Insertion

When renormalising the doubled string, a crucial aspect was not to miss out on Feynman

diagrams involving the insertion of external momenta. Let us briefly recapitulate this

point for the reader’s convenience and then show how it does not apply to the case at

hand.

The inverse string tension α′ is a convenient loop counting parameter around which to

organise the perturbative renormalisation of the (generalised) metric. Having dimensions

of an area, the n-th loop contribution to β should comprise of 2n derivatives on purely

dimensional grounds. For the two-loop renormalisation of the doubled string, we realised

that if the required number of derivatives (that is, four) was already saturated by the

tensorial expression associated to a particular loop integral, we could simply set the “ex-

ternal” momenta (i.e. those on which the tensors depend upon, in Fourier space) in the

integral to zero. Hence, the resulting “zero-momentum” integral was much easier to com-

pute depending only on two “internal” momenta (which we called p and k). Conversely,

if the number of derivatives was not saturated (e.g. it was three) we had to retain some

power of the external momentum in the integral (linear q, for three derivatives in the

tensorial structure) and later convert it into a derivative via a Fourier transformation.

In principle, the same reasoning applies to the Poisson-Lie case. Here, the only objects

derivatives can non-trivially act upon are left-invariant one-forms L, as the rest (HAB,

ηAB and FABC) are all constants. Now, the β-function for HAB can be extrapolated from

terms that, after the evaluation of integrals (possibly with external momentum insertion),

have two occurrences of L1. If, prior to integration, a term had no L’s in its tensorial
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part, it would definitely be impossible to create two L1’s for the derivatives would act on

constant objects. Conversely, if we had two or more left-invariant forms, integrals with

momentum insertion would play no role either. Instead, expressions involving a single

L1 could benefit from momentum insertion as the Maurer-Cartan equation would allow

for the creation of the missing L through dL − L ∧ L = 0. Nevertheless, even if this

was the case, the term would necessarily look like
∫

d2σ(∂L) × const, which is a total

derivative. We conclude that integrals with momentum insertion are irrelevant for the

renormalisation of HAB.

8.3 Expansion

Having elucidated a number of aspects that relied on the generic features of the theory

rather than on the specifics of the calculation, let us now venture into more technical de-

tails. We shall start with the background field expansion of (8.1). To better leverage the

group structure underpinning this action, we base our expansion on the decomposition

g = gcl Ξ , (8.16)

for a “classical” group element gcl, and a quantum fluctuation Ξ ≡ eξ for ξ ∈ d = Lie(D).

At the level of Maurer-Cartan forms, this amounts to

L = Ad−1
Ξ Lcl + L , with L = Ξ−1dΞ . (8.17)

A similar notation is employed for right-invariant forms, e.g. R = AdΞL . The latter can

be given an all-loop expansion in powers of the fluctuation ξ by means of an argument

that dates back to Schur [181]. Let ξ = ξ(σµ) be a differentiable curve, t ∈ R a real

parameter and Ξ(t) = etξ a one-parameter family of group elements. Defining the object

R(t) := dΞ(t) Ξ(t)−1 , with ∂tR(t) = AdΞ(t) dξ = eadtξ dξ , (8.18)

it is obvious that we can write

R = R(1) =

∫ 1

0
dt ∂tR(t) =

∫ 1

0
dt eadtξ dξ =

∫ 1

0
dt etadξ dξ . (8.19)

If we expand the exponential factor in the previous expression in t and perform the

integration we get

R =

∞∑
j=0

1

(j + 1)!
adjξ dξ =

∞∑
j=0

1

(j + 1)!
dξA(ρj)A

BTB , (8.20)
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where, in the last step, we have introduced the matrix ρAB ≡ ξCFCA
B to render the

adjoint action explicit, adξTA = ρA
CTC. A completely identical argument reveals that

the expansion for the left-invariant form is given by

L =

∞∑
j=0

(−1)j

(j + 1)!
adjξ dξ =

∞∑
j=0

(−1)j

(j + 1)!
dξA(ρj)A

BTB . (8.21)

The expansion of the WZW term is best treated recalling the Polyakov-Wiegmann iden-

tity which, in the chiral case, reads

SWZW[gcl Ξ] = SWZW[gcl] + SWZW[Ξ] +

∫
Σ

d2σ 〈Lcl1|R0〉 . (8.22)

The first term is just the classical contribution while the last is immediately dealt with

adopting (8.20). With this technique, and using the Cauchy product for series, the full

expansion gives

S =
1

2

∫
Σ

d2σ

[
Lcl

A
1Lcl0A + 2Lcl

A
1 ∂0ξ

B
∑
k≥0

(−1)k

(k + 1)!
ρkAB + 2 ∂1ξ

A∂0ξ
B
∑
k≥0

1

(2k + 2)!
ρ2k
AB

− Lcl
A
1Lcl

B
1HCD

∑
k≥0

k∑
m=0

(−1)m

m! (k −m)!
ρmAC ρ

k−m
DB

− 2Lcl
A
1 ∂1ξ

BHCD
∑
k≥0

k∑
m=0

(−1)m

m! (k + 1−m)!
ρmAC ρ

k−m
DB

− ∂1ξ
A∂1ξ

BHCD
∑
k≥0

k∑
m=0

(−1)m

(m+ 1)! (k + 1−m)!
ρmAC ρ

k−m
DB

]

+
1

12

∫
M3

[
FABC L A ∧L B ∧L C + FABC Lcl

A ∧ Lcl
B ∧ Lcl

C

]
.

(8.23)

Some comments are in order. Unlike the doubled string, there is no need for the in-

troduction of (generalised) frame fields as the kinetic term turns out to be canonical.

Specifically, we easily see that the two-point function evaluates to

〈ξA(σ)ξB(σ′)〉 = HAB∆(σ − σ′) + ηABθ(σ − σ′) (8.24)

where ∆ and θ do coincide with those introduced in (7.12). Also, the expansion (8.23) still

contains terms defined on the three-manifoldM3 but, order by order in the fluctuations

number, one can prove that Stokes theorem applies.

Notice how it is possible to conclude, in full generality, that ηAB does not flow: the

Polyakov-Wiegmann identity (8.22), together with the expansion of SH, simply forbid

the presence of Lcl0 external legs in the interacting Lagrangian.
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8.4 Current Status

Using (8.23), the one-loop β-function (8.2) is easily recovered. As in the case of the

doubled string of Chapter 7, the result is unambiguous, as we are only determining the

leading divergence of the loop integrals involved in the computation. Also, were we to

adopt Method 2, the integrals I, L and T would completely specify the outcome.

At higher order the situation worsens significantly. The explicit calculation shows that,

within Method 2, numerous new integrals are created, at least in the intermediate steps

of the calculation. Many of them eventually simplifies once all terms are taken into

account and summed, but a few seem to survive. These are:

X = − p3
1

p4k2(k1 + p1)
, X2 =

p4
1

p4k2(k1 + p1)2
,

Y = − p5
1

p6k2(k1 + p1)
, DL1 =

k2
1

p2k2(k1 + p1)2
,

TE2 =
k1p

3
1

p4k2(k + p)2
.

(8.25)

Actually, TE2 is not genuinely new as it is part of what we used to call TE. However, it

is missing its partner that would made up TE. Let us briefly sketch how to obtain the

leading ε−2 order of these.

Let us start from TE2. As it contains no spurious p1 in the denominator, it can be

immediately evaluated thanks to the rules in Appendix C. Dropping sub-leading parts

here and henceforth, we find

TE2 =
3

64π2ε2
. (8.26)

The evaluation of the other integrals is much more subtle. It is based on the Schwinger

trick
1

An
=

1

(n− 1)!

∫ ∞
0

duun−1e−uA . (8.27)

Let us explain in detail what happens in the case ofX: the others are completely identical

in spirit. First notice that, up to the (k1 +p1) term (to which we will apply the Schwinger

trick) the integral is completely factorised between k and p integrals. Now there are two

ways to proceed:

1. Newton’s binomial

1

k1 + p1
=

∫ ∞
0

du e−u(k1+p1) =

∫ ∞
0

du
∞∑
n=0

1

n!
un(k1 + p1)n

=

∫ ∞
0

du

∞∑
n=0

∞∑
m=0

1

n!
un
(
n

m

)
km1 p

n−m
1 . (8.28)
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2. Separation of k and p in the exponential

1

k1 + p1
=

∫ ∞
0

du e−u(k1+p1) =

∫ ∞
0

du e−uk1e−up1

=

∫ ∞
0

du

( ∞∑
n=0

1

n!
unkn1

)( ∞∑
m=0

1

m!
umpm1

)
. (8.29)

In general, the two options are reconciled using Cauchy product formula. However, option

1 turns out more complicated in the practical goal of resumming series. Reinserting the

integrals over momentum we see that

X =

∫
ddk

(2π)d
ddp

(2π)d

∫ ∞
0

du

(
1

k2

∞∑
n=0

u2nk2n
1

(2n)!

)(
1

p4

∞∑
m=0

u2m+1p2m+4
1

(2m+ 1)!

)
. (8.30)

We have used the fact the we only care about even powers of either k and p, and odd

powers have been dropped accordingly. Now we employ the usual trick of Method 1: for

each momentum integral we replace every combination of momenta with explicit indices

with a scalar object multiplied by a combinatorial factor. As we will only deal with a

bunch of either k1 or p1, we can simplify this approach down to

k2n
1 =

(2n− 1)! !

2n−1d
(
1 + d

2

)
n−1

(η11)n(k2)n . (8.31)

Doing so we find

X =

∫
ddk

(2π)d
ddp

(2π)d

∫ ∞
0

du

( ∞∑
n=0

(2n− 1)! ! (η11)n

(2n)! 2n−1d
(
1 + d

2

)
n−1

(k2)n−1

)

×

( ∞∑
m=0

(2m+ 3)! ! (η11)m+2

(2m+ 1)! 2m+1d
(
1 + d

2

)
m+1

(p2)m

)
. (8.32)

At this point our usual approach is to resum the series and obtain hypergeometric func-

tions. This works in this case, too.

X =
3ψ2Γ(d/2)2

22+2dπ2d

∫
ddk ddp

1

k2

∫ ∞
0

duu 0F̃1

(
; 2 +

d

2
;−1

4
p2u2ψ

)
0F̃1

(
;
d

2
;−1

4
k2u2ψ

)
+
ψ3Γ(d/2)2

23+2dπ2d

∫
ddk ddp

p2

k2

∫ ∞
0

duu3
0F̃1

(
; 3 +

d

2
;−1

4
p2u2ψ

)
0F̃1

(
;
d

2
;−1

4
k2u2ψ

)
.

(8.33)

The problem with this result is that we can’t really integrate over u now: there are

no rules, to the best of our knowledge, for performing the integral of the product of

two hypergeometric functions. Actually, there are identities for turning the product of

two into a single hypergeometric, but that requires a particular fine tuning between

the parameters and variables which we don’t have here. Hence, we adopt a different
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approach. First, as everything depends on either p2 or k2, we move to polar coordinates

ddp→ Ωddpp
d−1, where Ωd is the volume of the d-dimensional sphere. Then we redefine

the Schwinger parameter v = u2 and introduce new momentum variables

K =
1

4
k2vψ , P =

1

4
p2vψ . (8.34)

We end up with

X =
Γ(d/2)2Ω2

dψ
3−d

64π2d

∫ ∞
0

dv v1−d
∫ ∞

0
dKKd/2−2

0F̃1

(
;
d

2
;−K

)
×
[

3

2

∫ ∞
0

dP P d/2−1
0F̃1

(
; 2 +

d

2
;−P

)
−
∫ ∞

0
dP P d/20F̃1

(
; 3 +

d

2
;−P

)]
. (8.35)

With respect to the doubled string, we now want to integrate over K and P first and

over v last. Integrals are carried out with the usual identities (C.34) and

Ωd =
πd/2

Γ(1 + d/2)
, (8.36)

and we end up with

X =
(3− d)(d− 2)ψ3−d

64d2πd
Γ

(
d

2
− 1

)2 ∫ ∞
0

dv v1−d . (8.37)

Notice that the gamma function would produce a double ε pole, but it is reduced to a

single by the (d − 2) factor. The missing ε-pole sits in the v-integral. The problem is

that, if we are integrating from v = 0 we necessarily incur in an additional divergence

which can not be regulated with ε. To cope with this, suppose our integration ranges

from some small a > 0 to infinity. Then∫ ∞
a

dv v1−d =
a2−d

d− 2
=

1

ε
− log(a) +O(ε) . (8.38)

This has precisely the form of an IR regularised integral, and we shall interpret a as a

sort of mass. In any case, the leading pole is insensitive to this choice. Hence we find

X =
1

64π2ε2
. (8.39)

Replicating this construction for all cases we find the following results at leading order

X =
1

64π2ε2
, X2 = − 1

64π2ε2
,

Y = − 3

256π2ε2
, DL1 =

1

32π2ε2
,

TE2 =
3

64π2ε2
.

(8.40)
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These can be used to extract the T (2)
2 counter-term for H. From the pole equation, it is

possible to check that the expected answer is

T
(2)
2AB =

1

2π2

(
− PACPBC JP,PKPJP,PKCD + PA

CPB
C JP,PKPJP,PKCD

+ PACPB
CJP,PKPJP,PKCD − PA

CPB
CJP,PKPJP,PKCD

− PACPB
C
r
P,PJP,PKP

z

CD
− PACPB

C
r
P − P,PJP,PKP

z

CD

+ PACPB
C
r
P,PJP,PKP

z

CD
+ PACPB

C
r
P,PJP,PKP

z

CD

)
. (8.41)

We still have not managed to reproduce it but, given the complexity of the calculation,

this counter-term should represent a very strong indication towards the robustness of

our implementation.

8.5 Conclusions

In this chapter we have carried out a preliminary analysis of two-loop quantum cor-

rections to Poisson-Lie T-duality in the form of an E-model. This project is currently

under investigation together with C. Eloy and D.C. Thompson, and the results are nec-

essarily partial and inconclusive at this stage. Nevertheless, it is possible to draw some

conclusions from the experience we have gained so far.

In this scenario, the absence of a fibration similar to that of Chapter 7 is a double-edged

sword: if some theoretical issues are more easily addressed (e.g. no ambiguity in de-

ciding how to treat covariant Lorentz indices and no loop integrals with momentum

insertion), the computation is rendered much more intensive due to an abundance of

terms. Nonetheless, we should be able to overcome this additional difficulty through the

use of a sufficiently powerful computer and the optimisation of the Mathematica code

used for the doubled string.

The one-loop result can be recovered with little effort and the procedure is unambiguous

and conceptually identical to that of Chapter 7. At two-loop, however, when adopting

Method 2 we find that new integrals other than the ones previously encountered need to

be considered. Some of these, whilst appearing in intermediate steps of the calculation,

do end up summing to zero in the final result. This could be an indication that, once

again, a limited subset of integrals shall determine the two-loop contributions.



Chapter 9

Epilogue

As we are on the verge of a wrap up, it seems appropriate to loosen it up a little and adopt

first person singular here and henceforth. Conclusions should not just be a summary of

results − each chapter has a dedicated section for that − but a broader discussion as to

the current status of the field, what we have and have not achieved and which questions

I would like to know the answer to.

Nunc Fluens Facit Tempus, Nunc Stans Facit Aeternitatem

People working at the interface of Duality and Integrability have gone a long way during

the years of my Ph.D. course. It seems reasonable to start from the trilogy of Costello,

Yamazaki and Witten [182–184], offering a radically new perspective on integrable mod-

els via four-dimensional Chern-Simons theory. Building on this, Delduc, Lacroix, Magro

and Vicedo [185, 186] were able to embed many integrable σ-models − including (but not

limited to) Yang-Baxter and λ-deformations − as well as re-interpret Poisson-Lie T-du-

ality in this framework. Additionally, some of these authors, together with collaborators,

pointed out the relevance of affine Gaudin models for our comprehension of two-dimen-

sional integrability [66, 187, 188]. Broadly speaking, the twist function has emerged as

a central actor out of which new models can be easily built and quantum corrections

explored [67, 68].

In fact, (higher) loop calculations for integrable deformations have seen an impressive

surge of interest. The first project I was assigned as a Ph.D. student was what appears

here as Chapter 8. Back then only a handful of people (if any) were working on quan-

tum corrections. As years passed, numerous papers have appeared. Hoare, Levine and

Tseytlin have studied to great depth the interplay of integrability and RG flow [189–193];

Hassler and Rochais addressed the α′-corrections to Poisson-Lie T-duality from the DFT

138



Epilogue 139

perspective [157, 194]; Pulman, Ševera and Youmans explored the one-loop renormalisa-

tion of E-models using Chern-Simons theory [195], just to name a few.

On the duality side, a lot of effort has gone into finding an extension of U-duality similar

to Poisson-Lie T-duality. This line of enquiry resulted in what is now called an excep-

tional Drinfel’d algebra [196–199]. Since then, various articles have stemmed to provide

a mathematical formulation in terms of algebroids1 [202, 203] and applications in Super-

gravity [204, 205]. As this field is extremely recent, I expect many more interesting works

to appear soon, possibly merging Poisson-Lie U- and T-duality in a unified framework,

along the lines of [202].

It’s All About Geometry

Having sketched the evolution the field has gone through in the last four years, I will

now take the chance to analyse what I would hope to see achieved in the future. The

exposition will clearly suffer from my own personal bias, and should not be regarded, by

any means, as a list of topics sorted by relevance.

In Chapter 5 we made some progress towards a deeper understanding of the geometry

underpinning Yang-Baxter deformations. Poisson structure(s), as expected, do play a

pivotal role in determining the metric and B-field of the deformed manifold. And yet, I

feel like we are missing the bigger picture. Supergravity solutions for the NS-NS sector

do require additional information such as dilaton and fluxes which, to the best of our

knowledge, simply cannot be extrapolated from a Poisson structure, but demand an

algebraic (and cumbersome) approach to be flashed out. While this definitely works, I

find it unsatisfactory.

My suggestion is that it should be possible to extract the RR sector (which is somehow

related to fermions) from a Poisson superstructure Π of a projectable Poisson superman-

ifold [206]. In this case, Π would contain the “bosonic” Poisson structure π as well as

other supertensors that likely describe the missing part of the geometry. With addi-

tional effort, it would be extremely interesting to inspect how Supergeometry interacts

with Generalised Geometry, along the lines of [126]. This would have a twofold pur-

pose: first, to elucidate the general structure of SUGRA solutions involving Yang-Baxter

deformed spacetimes highlighting what the algebraic approach overshadows; second, to

provide a handle for generalisations of the AdS/CFT correspondence. Unless we have

the gravitational (i.e. geometrical) side fully under control, I find it unlikely that we will
1In fact, Poisson-Lie T-duality was given a very rigorous formulation in terms of exact Courant

algebroids since its very early days [200, 201].
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be able to probe the dual gauge theory to a great extent. Unfortunately, I did not have

the time to explore this topic adequately.

Speaking of Supersymmetry, it is intriguing to understand if CPnη can be re-obtained as

a gauged linear σ-model (GLSM). The theory of toric varieties as GSLMs has been well

expounded in [207] in the context of Mirror Symmetry. It is in general possible to recover

a NLSM with target manifold M as the low-energy limit of a GLSM with moduli space

described by M . In particular, it is possible to apply this procedure to “squashed” toric

manifolds [208, 209]: for example, even though the squashed CP1 does naively resemble

CP1
η, they are definitely not the same. Finding the right superpotential necessary for

eventually obtaining CPnη seems in general quite hard. Perhaps, it would be preferable to

attack the problem using gauged Gross-Neveu models, as recently proposed in [210, 211].

Either ways, one final goal is to exploit supersymmetric localisation techniques to obtain

exact results, e.g. the partition function of a deformed model.

To close off the discussion on possible research avenues in the geometry realm, let me also

point out the geometric quantisation of E-models, as well as the study of Poisson models.

The former shall put E-models on solid mathematical foundations, and its exploration

lead to a deeper understanding of Poisson-Lie T-duality as a whole. In the light of [212]

it should also be possible to use the power of QP manifolds and the Batalin-Vilkovisky

formalism to further address additional quantum properties. Finally, one could try and

use all of the above, together with the AKSZ construction of topological field theories (see

[213] for a recent review), to study Poisson σ-models and their interplay with Poisson-Lie

groups, as initiated in [214].

Silicon Loops

It should be clear from the discussion in Chapters 7 and 8 that the determination of high-

er-loop quantum corrections in a T-duality covariant formalism is extremely involved.

Loop integrals are in general ambiguous or, at least, there is no settled method for comput-

ing them beyond the leading ε-divergence; similarly, it is not clear which renormalisation

scheme is to be preferred. Practically speaking, these are very serious drawbacks as they

pose a particularly hard challenge for those who want to probe the quantum structure

of (generalised) T-dualities. Unless more robust procedures are found, it seems implau-

sible that three, or even higher, loop calculations can be carried out without gigantic

effort. Nonetheless, I am somewhat confident that the renormalisation group flow for

Poisson-Lie T-duality on Drinfel’d doubles can be given, at least in the form of a con-

jecture, an all-loop expression. The constraints imposed by the underlying structure are
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quite stringent, and point towards the use of the double bracket [[·, ·]] as the elementary

building block.

Irrespectively of the success of this research, I fear the power afforded by computers

is not being fully leveraged or, at least, not in a homogeneous way. If probably every

theoretician has some degree of familiarity with Mathematica, the absence of a shared

and multi-purpose toolkit − perhaps spun out of a collective project − is quite remark-

able. There are certainly various (unofficial) packages for performing General Relativity

or Standard Model calculations, but a single framework that can handle both the di-

versity of mathematical notions (tensors, differential forms, spinors, etc.) as well as the

physical theories is missing. This necessity became evident to me while developing the

notebook for the computations in Chapter 7: most of the tools were already present, but

scattered and not capable of performing quantum computations right off the bat. With

minor modifications, the notebook can correctly compute the two-loop β-function for

λφ4 theory and also deliver results for the E-model of Chapter 8. These are completely

different-looking theories, signalling that a generalisation of the code to encompass most

of the commonly studied theories should be within reach. This putative software would

then take care of most heavy-lifting duties in the common practice of Theoretical Physics

and, besides, provide a common ground where to test calculations and reproduce results.



Appendix A

Conventions

A.1 Indices

Even though we try to minimise the displaying of indices, there will still be an abundance

of those. Somewhat unconventionally, we adopt small double-stroked letters to indicate

elements of a generic Lie algebra g as well as coordinates on the corresponding group

G. This choice serves the purpose of reserving greek and latin letters for subgroups and

coset space, respectively. As long as algebraic objects are involved we will stick to the

following conventions1:

g g̃ h m d p q

Generators Ta T a Tα Ta TA Tα TA
Structure Constants fab

c f̃abc fαβ
γ fab

c FAB
C FαβC FAB

C

Exponentiation G G̃ H G/H D P Q

Table A.1: Conventions for algebraic objects.

On the (co)tangent bundle of groups and manifolds, we will employ again a similar idea,

this time with letters from the second part of the alphabet. As the local frame from a

group coincides with its algebra we opt for a notation similar to that used before:

G G̃ D E T d T̃ d B E T 2d

Coordinates xi x̃i XI xµ xi x̃i y XI XI

Local (Flat) Frame va va V A V A V A

Table A.2: Conventions for geometric objects.

1Some of the entities indicated here will be given proper meaning during the relevant chapter.
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Wick Contractions

B.1 Fibre Wick Contractions

We report here Wick contractions which are relevant for the two-loop computation on

the fibre. We use conventions as explained in the main text, namely we set

a1 = 〈A[2]〉 , a2 = i〈A[0]A[2]〉 , a3 =
i

2
〈A[1]A[1]〉 ,

a4 = −1

2
〈A[0]A[0]A[2]〉 , a5 = −1

2
〈A[0]A[1]A[1]〉 , a6 = − i

4
〈A[0]A[0]A[1]A[1]〉 ,(B.1)

with

A[0]
2 = − 1

32πε
Tr(H(1,1))∂µζ∂

µζ − 1

8πελ
(H(2)

AB −H
(1,0,1)
AB )∂1ξ

A∂1ξ
B − 1

4
H(2)
ABζ

2∂1ξ
A∂1ξ

B

(B.2)

A[0]
1 = −1

2
H(1)
ABζ∂1ξ

A∂1ξ
B , (B.3)

A[1]
1 = −H(1)

A•ζ∂1ξ
A , (B.4)

A[1]
2 = −1

2
H(2)
A•ζ

2∂1ξ
A , (B.5)

A[1]
3 =

1

4πελ

(
−H(3) +H(1,1,1) +H(1,0,2) +H(2,0,1)

)
A•
ζ∂1ξ

A − 1

6
H(3)
A•ζ

3∂1ξ
A , (B.6)

A[2]
2 = −1

4
H(2)
•• ζ

2 , (B.7)

A[2]
3 = − 1

12
H(3)
•• ζ

3 , (B.8)

A[2]
4 =

1

16πελ

(
−H(4) +H(1,2,1) + 4H(1,1,2) + 2H(2,0,2) + 2H(1,0,3)

)
••
ζ2 − 1

48
H(4)
•• ζ

4 .

(B.9)
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Owing to the fact that H is an involution, and thus Ḣ · H = −H · Ḣ, at two-loop order

a basis for the relevant independent tensors without traces is

H(4)
•• , H(3,1,0)

•• , H(2,0,2)
•• , H(2,1,1)

•• , H(1,2,1)
•• , H(1,1,1,1,0)

•• , (B.10)

which can be extended by the ones with trace

H(2)
•• Tr(H(1,1)) , H(1,1,0)

•• Tr(H(1,1)) . (B.11)

We first extract the coefficients of this basis in terms of the unevaluated tensorial integrals

[[f(p0, p1, q0, q1)]]i,j,k which can be evaluated using the Method 1 rules. We then use

Method 2 rules to present a final answer in the I,L,T,S,TE basis of integrals. When

dealing with counter-term insertions we adopt the shorthands

X =
1

8πελ
(H(2) +H(1,1,0)) , Y =

1

32πε
Tr(H(1,1)) . (B.12)

a1

The contributing diagrams are either bubbles or decorated bubbles and evaluate to

a1 = 〈A[2]
4 〉 = − 1

48
H(4)
•• 〈ζ4〉 − 1

2
X

(2)
•• 〈ζ2〉

=
1

16λ2
H(4)
•• [[1]]1,1,0 −

i

2λ
X

(2)
•• [[1]]1,0,0 =

1

16λ2
H(4)
•• I

2 − i

2λ
X

(2)
•• I . (B.13)

Expanding the derivatives of the counter-term insertion yields

a1 =
1

16λ2
I2H(4)

•• −
1

8λ2
IP
(
H(4) − 4H(2,1,1) − 2H(2,0,2) + 2H(3,1,0) −H(1,2,1)

)
••
.(B.14)

a2

After discarding non-1PI graphs we obtain

a2 = i〈A[0]
1 A

[2]
3 +A[0]

2 A
[2]
2 〉 =

i

16
H(2)
ABH

(2)
•• 〈ζ2

σ1
∂1ξ

A
σ1
∂1ξ

B
σ1
ζ2
σ2
〉+

i

4
YH(2)

•• 〈∂µζσ1∂
µζσ1ζ

2
σ2
〉

= − 1

8λ2
Tr(H(1,1))H(2)

•• [[k2
1]]2,1,0 −

i

2λ2
Y [[p2]]2,0,0 . (B.15)

The potentially linearly divergent [[k2
1]]2,1,0 term cancels with the same from a4 and can

be set to zero. In Method 2 we cancel the p2 in numerator and denominator of [[p2]]2,0,0

to yield

a2 = − IP

32λ2
Tr(H(1,1))H(2)

•• . (B.16)
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a3

There are two contributions in a3 without counter-term insertion, of which the first comes

from

a3a = i〈A[1]
1 A

[1]
3 〉 =

i

6
H(1)
•AH

(3)
•B〈ζσ1ζ

3
σ2
∂1ξ

A
σ1
∂1ξ

B
σ2
〉

= − 1

2λ2
H(3,1,0)
•• [[p2

1]]2,1,0 +
1

2λ2
H(3,1)
•• [[p1p0]]2,1,0

= − IL

2λ2
H(3,1,0)
•• . (B.17)

The second contribution arises from

a3b =
i

2
〈A[1]

2 A
[1]
2 〉 =

i

8
H(2)
•AH

(2)
•B〈ζ

2
σ1
ζ2
σ2
∂1ξ

A
σ1
∂1ξ

B
σ2
〉

=
1

4λ2
H(2,0,2)
•• [[p2

1]]1,1,1 +
1

4λ2
H(2,2)
•• [[p1p0]]1,1,1

=
S

4λ2
H(2,0,2)
•• . (B.18)

We also have a one-loop diagram with a counter-term insertion

a3c = iH(1)
•AX

(1)
B•〈ζσ1ζσ2∂1ξ

A
σ1
∂1ξ

B
σ2
〉

= −iH(1)
•AH

ABX
(1)
B• [[p

2
1]]2,0,0 − iH(1)

•Aη
ABX

(1)
B• [[p1p0]]2,0,0

=
PL

2λ2

(
H(3,1,0) +H(1,1,1,1,0) −H(1,2,1) −H(1,1,2)

)
. (B.19)

In the final steps we have invoked that [[p1p0]]2,0,0 = [[p1p0]]2,1,0 = [[p1p0]]1,1,1 = 0.

a4

This triangle envelope topology diagram evaluates to

a4 = −1

2
〈A[2]

2 A
[0]
1 A

[0]
1 〉 =

1

32
H(2)
•• H(1)

ABH
(1)
CD〈ζ

2
σ1
ζσ2ζσ3∂1ξ

A
σ2
∂1ξ

B
σ2
∂1ξ

C
σ3
∂1ξ

D
σ3
〉

=
1

8λ2
H(2)
•• Tr(H(1,1))

(
[[(p1 + k1)(p0 + k0)k1k0]]2,1,1 − [[(p1 + k1)2k2

1]]2,1,1
)
.(B.20)

Under Method 2 we proceed by replacing e.g. p2
0 = p2 + p2

1 to give

a4 =
1

8λ2
H(2)
•• trH(1,1)

(
−1

4
[[p2

1]]1,1,1 + [[k2
1]]2,1,0

)
= − S

32λ2
H(2)
•• trH(1,1) . (B.21)
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In the last line we dispensed with the potentially linearly divergent contribution [[k2
1]]2,1,0

which in a case cancels against the same from a2.

a5

First we consider the part of

a51 = −1

2
〈A[1]

1 A
[1]
1 A

[0]
2 〉 (B.22)

that does not involve the insertion of one-loop counter-term operators. There are three

topologies involved here giving contributions a51a , a51b
, a51c :

a51a =
1

2
H(1)
•AH

(2)
CDH

(1)
B•〈ζσ1ζσ3〉〈ζσ2ζσ3〉〈∂1ξ

A
σ1
∂1ξ

C
σ3
〉〈∂1ξ

B
σ2
∂1ξ

D
σ3
〉

=
1

2λ2

(
−H(1,2,1) + 2H(1,1,1,1,0)

)
••

[[p2
1k

2
1]]2,2,0 +

1

2λ2
H(1,2,1)
•• [[p1p0k1k0]]2,2,0

=
L2

2λ2

(
−H(1,2,1) + 2H(1,1,1,1,0)

)
••
. (B.23)

Here there is a small subtlety; in Method 2 one could have made a replacement such as

[[p1p0k1k0]]2,2,0 → [[p1k1p · k]]2,2,0 + [[p1p1k1k1]]2,2,0 and produced a 1
ε pole; however, as

this is factorised diagram, general arguments [162] imply that the counter-term contribu-

tion must cancel such a pole. Hence the correct procedure is to replace [[p1p0k1k0]]2,2,0 →
([[p1p0]]2,0,0)2 → 0. The second and third parts are

a51b
=

1

4
H(1)
•AH

(2)
CDH

(1)
B•〈ζσ3ζσ3〉〈ζσ1ζσ2〉〈∂1ξ

A
σ1
∂1ξ

C
σ3
〉〈∂1ξ

B
σ2
∂1ξ

D
σ3
〉

=
1

4λ2

(
2H(1,1,1,1,0)
•• [[p4

1]]3,1,0 +H(1,2,1)
•• ([[p2

1p
2
0]]3,1,0 − [[p4

1]]3,1,0)
)

=
1

4λ2

(
2ITH(1,1,1,1,0)

•• + ILH(1,2,1)
••

)
, (B.24)

a51c =
1

4
H(1)
•AH

(2)
CDH

(1)
B•〈∂1ξ

C
σ3
∂1ξ

D
σ3
〉〈ζσ1ζσ3〉〈ζσ2ζσ3〉〈∂1ξ

A
σ1
∂1ξ

B
σ2
〉

=
1

2λ2
Tr(H(1,1))H(1,1,0)

•• [[p2
1k

2
1]]3,1,0 . (B.25)

Then there are two contributions, a51d
and a51e , from one-loop triangles with coun-

ter-term insertions:

a51d
=

1

2
H(1)
•AH

(1)
B•Y 〈ζσ1∂1ξ

A
σ1
ζσ2∂1ξ

B
σ2
∂µζσ3∂

µζσ3〉

= − i

2λ2
H(1,1,0)
•• Y [[p2

1p
2]]3,0,0 +

i

λ2
H(1,1)
•• Y [[p1p0p

2]]3,0,0

=
PL

16λ2
TrH(1,1)H(1,1,0)

•• , (B.26)
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a51e =
1

2
H(1)
•AH

(1)
B•XCD〈ζσ1∂1ξ

A
σ1
ζσ2∂1ξ

B
σ2
∂1ξ

C
σ3
∂1ξ

D
σ3
〉

= − i
λ

(
(H(1,0)XH(0,1))••[[p

4
1]]3,0,0 + (H(1)XH(1))••[[p

2
1p

2
0]]3,0,0

)
= −PL

4λ2

(
H(1,2,1) −H(1,1,1,1,0)

)
••
. (B.27)

Finally we have a second contraction with three vertices given by

a52 = −〈A[1]
1 A

[1]
2 A

[0]
1 〉 =

1

4
H(1)
•AH

(1)
CDH

(2)
B•〈ζσ1ζ

2
σ2
ζσ3∂1ξ

A
σ1
∂1ξ

B
σ2
∂1ξ

C
σ3
∂1ξ

D
σ3
〉

=
1

λ2
H(1,1,2)
••

(
−[[p2

1(p+ k)2
1]]2,1,1 + [[p1p0(p+ k)1(p+ k)0]]2,1,1

)
=

S + 2IL

4λ2
H(1,1,2)
•• − 1

4λ2
tr(H(1,1))H(1,1,0)

•• [[p2
1k

2
1]]3,1,0 . (B.28)

The final [[p2
1k

2
1]]3,1,0 contribution (which we expect not to contain divergent terms in 1

ε

or 1
ε2
) cancel between a52 and a51c , and a6a.

a6

For the last contraction,

a6 = − i
4
〈A[0]

1 A
[0]
1 A

[1]
1 A

[1]
1 〉 , (B.29)

there are three different topologies of diagrams to consider:

a6a = − i
4
H(1)
ABH

(1)
CDH

(1)
•EH

(1)
•F 〈ζσ1ζσ3〉〈ζσ2ζσ4〉〈∂1ξ

A
σ1
∂1ξ

C
σ2
〉〈∂1ξ

B
σ1
∂1ξ

D
σ2
〉〈∂1ξ

E
σ3
∂1ξ

F
σ4
〉

= − 1

4λ2
tr(H(1,1))H(1,1,0)

•• ×

×
(
−[[(p+ k)2

1k
2
1p

2
1]]3,1,1 + [[(p+ k)1(p+ k)0k1k0p

2
1]]3,1,1

)
,

a6b = − i
4
H(1)
ABH

(1)
CDH

(1)
•EH

(1)
•F 〈ζσ1ζσ2〉〈ζσ3ζσ4〉〈∂1ξ

A
σ1
∂1ξ

C
σ2
〉〈∂1ξ

B
σ1
∂1ξ

E
σ3
〉〈∂1ξ

D
σ2
∂1ξ

F
σ4
〉

=
1

2λ2
H(1,1,1,1,0)
•• ×

×
(
[[(p+ k)2

1p
4
1]]3,1,1 − 2[[(p+ k)1(p+ k)0p

3
1p0]]3,1,1 + [[(p+ k)2

1p
2
1p

2
0]]3,1,1

)
,

a6c = − i
4
H(1)
ABH

(1)
CDH

(1)
•EH

(1)
•F 〈ζσ1ζσ3〉〈ζσ2ζσ4〉〈∂1ξ

A
σ1
∂1ξ

C
σ2
〉〈∂1ξ

B
σ1
∂1ξ

F
σ4
〉〈∂1ξ

D
σ2
∂1ξ

E
σ3
〉

=
1

2λ2
H(1,1,1,1,0)
•• × (B.30)

×
(

[[(p+ k)2
1p

2
1k

2
1]]2,2,1 − 2[[(p+ k)1(p+ k)0p1p0k

2
1]]2,2,1 + [[(p+ k)2

1p1p0k1k0]]2,2,1

)
.
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As detailed in the main body for the case of a6b , under Method 2 each of these can be

simplified to yield

a6a = − 1

8λ2

(
2[[p2

1q
2
1]]3,1,0 −TE

)
Tr(H(1,1))H(1,1,0)

•• , (B.31)

a6b =
1

2λ2
(TE− IT)H(1,1,1,1,0)

•• , (B.32)

a6c = − 1

λ2
TEH(1,1,1,1,0)

•• . (B.33)

B.1.1 IR Regularisation in Method 1

Let us explore here in some detail the way our IR regularisation prescription deals with

the cancellation of loop integrals proportional to I2,3 in the final result. It is fairly easy to

tackle this problem explicitly once some observations are made. First, if we are interested

in I1I2 or I1I3 contributions only, we can safely neglect the counter-term insertions, as

by definition they would not give rise to any such term at this loop order. Obviously,

we will also drop in LI any term proportional to Ω. Another important remark is that,

when considering exp(iSI), we can discard any term which is not proportional to m2, as

these do not originate from the expansion of the mass term and have thus been previously

considered. Finally, to keep things simple, we restrict ourselves to combinations that lead

eventually to the desired tensor structures, namely Tr(H(1,1))H(2) and Tr(H(1,1))H(1,1,0).

While other tensors might arise in the full calculation, they eventually cancel in the final

result. The first contribution belongs to what we call triangle envelope topology. It is

given by

m1 =
m2

32
H(2)
•• H(1)

ABH
(1)
CD〈ζ

2
σ1
ζσ2ζσ3〉〈ξAσ2

ξBσ2
∂1ξ

C
σ3
∂1ξ

D
σ3
〉

=
m2

8λ2
[[k2 + k · p]]2,1,1 Tr(H(1,1))H(2)

•• . (B.34)

The second contribution comes from the square envelope topology and evaluates to

m2 = − im
2

16
H(1)
ABH

(1)
C•H

(1)
D•H

(1)
EF 〈ζσ1ζσ2ζσ3ζσ4〉〈ξAσ4

ξBσ4
∂1ξ

C
σ1
∂1ξ

D
σ2
∂1ξ

E
σ3
∂1ξ

F
σ3
〉

=
m2

4λ2
[[p2

1(k2 + k · p)]]3,1,1 Tr(H(1,1))H(1,1,0)
•• . (B.35)

The third possibility is a decorated loop diagram, coming from

m3 =
i

32
m2H(2)

ABH
(2)
•• 〈ζ2

σ1
ζ2
σ2
〉〈ξAσ2

ξBσ2
〉 = − m2

16λ2
I[[1]]2,0,0 Tr(H(1,1))H(2)

•• . (B.36)
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Finally, we have a decorated triangle (we neglect the double loop part, as it is not relevant

for the tensor structure we are interested in)

m4 =
m2

16
H(2)
ABH

(1)
C•H

(1)
D•〈ζσ1ζσ2ζ

2
σ3
〉〈ξAσ3

ξBσ3
∂1ξ

C
1 ∂1ξ

D
2 〉 =

m2

8λ2
I1[[p2

1]]3,0,0 Tr(H(1,1))H(1,1,0)
•• .

(B.37)

B.2 Base (∂0y)2 Wick Contractions

We are now to evaluate in detail the Wick contractions associated to the base (∂0y)2

term. Completing combinations which are already fourth-order in derivatives, namely

b1 = 〈B[2]
4 〉 , b2 = i〈B[1]

1 B
[1]
3 〉 , b3 = −1

2
〈B[0]

2 B
[1]
1 B

[1]
1 〉 , b4 = − i

4
〈B[0]

1 B
[0]
1 B

[1]
1 B

[1]
1 〉 ,

we have three which are second- or third-order

b5 =
i

2
〈B[0]

1 B
[0]
1 〉 , b6 = i〈B[1]

1 B
[0]
2 〉 , b7 = −1

2
〈B[1]

1 B
[0]
1 B

[0]
1 〉 . (B.38)

We need the following identifications

B[0]
1 = −1

2
H(1)
ABζ∂1ξ

A∂1ξ
B , (B.39)

B[1]
1 =

1

2
Ω0ABξ

A∂1ξ
B , (B.40)

B[1]
3 = − 1

8πε
Tr(H(2,1))ζ∂µζ∂µy (B.41)

B[2]
0 = − 1

32πε
Tr(H(1,1))∂µζ∂

µζ − 1

8πελ

(
H(2) −H(1,0,1)

)
AB

∂1ξ
A∂1ξ

B

− 1

4
H(2)
ABζ

2∂1ξ
A∂1ξ

B , (B.42)

B[2]
4 = − 1

32πελ

(
−Tr(H(2,2)) + Tr(H(3,1))

)
ζ2∂µy∂

µy . (B.43)

The combinations b5,6,7 require us to evaluate integrals with insertion of external mo-

menta. When looking at terms on the base manifold with legs ∂0y∂0y or ∂1y∂1y, the

relevant basis of tensors turns out to be

Tr(H(3,1)) , Tr(H(2,2)) , Tr(H(1,1,1,1)) , Tr(H(2,1)Ω) ,

Tr(H(1,1)ΩΩ) , Tr(H(1)ΩH(1)Ω) . (B.44)
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b1

The first case is immediately solved as

b1 = 〈B[2]
4 〉 = −Y (2)(∂0y)2〈ζ2〉 = − IP

16λ

(
Tr(H(2,2)) + Tr(H(3,1))

)
(∂0y)2 . (B.45)

b2

This contribution consists of diagrams in which one vertex contains only ζ and the other

only ξ fields and hence upon Wick contraction no relevant 1PI graphs are produced.

b3

b3 has a simple structure

b3 = −1

2
〈B[0]

2 B
[1]
1 B

[1]
1 〉 =

1

16

(
4X +

i

2λ
IH(2)

)
EF

Ω0ABΩ0CD〈∂1ξ
E
σ1
∂1ξ

F
σ1
ξAσ2

∂1ξ
B
σ2
ξCσ3

∂1ξ
D
σ3
〉

=
1

2

(
4X +

i

2λ
IH(2)

)
EF

Ω0ABΩ0CD〈∂1ξ
E
σ−1∂1ξ

B
σ2
〉〈∂1ξ

F
σ1
∂1ξ

D
σ3
〉〈ξAσ2

ξCσ3
〉 , (B.46)

where we have already contracted 〈ζ2
σ〉 = iλ−1I for simplicity and used the symmetries of

the tensorial part to simplify the Wick contraction. We immediately recognise a triangle

diagram, possibly decorated in the case of H(2). The contractions are easily calculated

as

i

∫
dσ2dσ3〈∂1ξσ1∂1ξσ2〉 ⊗ 〈∂1ξσ1∂1ξσ3〉 ⊗ 〈ξσ2ξσ3〉

= [[(p1)4]]3,0,0H⊗H⊗H+ [[(p0)2(p1)2]]3,0,0(η ⊗ η ⊗H+ η ⊗H⊗ η +H⊗ η ⊗ η) .

(B.47)

in which we have once again omitted the vanishing [[p0(p1)3]]3,0,0. Using Method 2 we re-

place [[(p0)2(p1)2]]3,0,0 → T+L and [[(p1)4]]3,0,0 → T. This produces after simplification

of the tensors

λb3 =

(
3

4
IL + IT

)
Tr(H(1,1)ΩΩ)+

1

4
L(I−P) Tr(H(2,1)Ω)+

1

8
(2IT + LP) Tr(H(1,1,1,1)) .

(B.48)

Two remarks are in order. Assuming that integration by parts holds, we can write

L =

∫
d2k

(2π)2

k2
1

(k2)2
= −

∫
d2k

(2π)2
k1∂k1

k2
1

(k2)2
= −2L− 4T (B.49)
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which implies that the Tr(H(1,1)ΩΩ) term vanishes. However we will not enforce this

directly but allow 3L0 + 4T0 6= 0 to keep track of any ambiguity. The Tr(H(2,1)Ω)

coefficient gives rise only to a γ̄
ε that will cancel against a counter-term insertion.

b4

Within

b4 = − i
4
〈B[0]

1 B
[0]
1 B

[1]
1 B

[1]
1 〉

= − i

64
H(1)
EFH

(1)
GHΩ0ABΩ0CD〈ζσ1ζσ2〉〈ξAσ3

ξCσ4
∂1ξ

E
σ1
∂1ξ

F
σ1
∂1ξ

G
σ2
∂1ξ

H
σ2
∂1ξ

B
σ3
∂1ξ

D
σ4
〉 , (B.50)

there are two different topologies of Wick contractions to consider. First is a diamond

sunset arising from

DS =

∫
dσ2dσ3dσ4〈ζσ1ζσ2〉〈∂1ξσ1ξσ3〉 ⊗ 〈∂1ξσ3∂1ξσ2〉 ⊗ 〈∂1ξσ2∂1ξσ4〉 ⊗ 〈∂1ξσ1ξσ4〉 .

(B.51)

Setting [[. . . ]]2,2,1 integrals with odd number of timelike or spacelike components of mo-

menta to zero, we get the contribution to b4 from diamond sunset diagrams

b4|DS =
1

4λ
Tr(ΩH(1)ΩH(1))[[k1p1(k0p0 − k1p1)2]]2,2,1

− 1

2λ
Tr(ΩH(1,0)ΩH(1,0))[[(k1)2p0p1(k1p0 − k0p1)]]2,2,1 . (B.52)

Proceeding now to Method 2 we obtain

λb4|DS=

(
1

8
L2 − 1

4
TE

)
Tr(H(1,1,1,1))+

(
−1

2
L2 + TE− 1

8
S

)
Tr(H(1)ΩH(1)Ω) . (B.53)

In addition the square envelope topology is given by

SE =

∫
dσ2dσ3dσ4〈ζσ1ζσ2〉〈∂1ξσ1∂1ξσ2〉⊗〈∂1ξσ2ξσ3〉⊗〈∂1ξσ3ξσ4〉⊗〈∂1ξσ4∂1ξσ1〉 . (B.54)

Once the contractions are carried out, and basic identities applied, two tensors only

appear. The final result for the square envelopes evaluates to

λb4|SE=
1

2
Tr(H(1,1)ΩΩ)[[k1p1(3k1p1p

2
0 − 3k0p

2
1p0 + k1p

3
1 − k0p

3
0)]]3,1,1

+
1

4
Tr(H(1,1,1,1))[[k1p

2
1(k1p

2
0 + k1p

2
1 − 2k0p0p1)]]3,1,1 . (B.55)
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Proceeding with Method 2 we have

λb4|SE=

(
1

4
TE− 1

4
IT

)
Tr(H(1,1,1,1))−

(
−TE +

1

4
IL +

1

8
S + IT

)
Tr(H(1,1)ΩΩ) .

(B.56)

In summation we obtain

λb4 =

(
1

8
L2 − 1

4
IT

)
Tr(H(1,1,1,1))−

(
−TE +

1

4
IL +

1

8
S + IT

)
Tr(H(1,1)ΩΩ)

+

(
−1

2
L2 + TE− 1

8
S

)
Tr(H(1)ΩH(1)Ω) . (B.57)

b5

As it stands, b5 contains tensors which, in total, are second-order in derivatives. We are

thus prompted to extract terms quadratic in the external momentum q from the loop

integral. We have

b5 =
i

2
〈B[0]

1 B
[0]
1 〉 =

i

8

∫
d2σ2H(1)

AB(σ1)H(1)
CD(σ2)〈ζσ1ζσ2〉〈∂1ξ

A
σ1
∂1ξ

B
σ1
∂1ξ

C
σ2
∂1ξ

D
σ2
〉

=
1

4
H(1)
AB(σ1)

∫
d2q

(2π)2
H(1)
CD(q)e−iqσ1

∫
d2k

(2π)2

d2p

(2π)2

p2
1k

2
1HACHBD + p1p0k1k0η

ACηBD

p2k2[q − (k + p)]2
.

(B.58)

Now, to second order, the denominator with external momentum insertion is expanded

as
1

(q − (k + p))2
= · · ·+ 4

[(k + p) · q]2

[(k + p)2]3
− q2

[(k + p)2]2
+ . . . . (B.59)

In the previous expression, we restrict ourselves to terms involving q2
0, as we want to

concentrate on external legs (∂0y)2. In passing from momentum to position space,

we turn q2
0 into −∂2

0 acting upon H(1)
CD. However, as a second derivative would nec-

essarily produce a derivative of Ω, integration by parts is in order. Specifically we let

H(1)
AB∂

2
0(H(1)

CD) = −∂0(H(1)
AB)∂0(H(1)

CD). We eventually arrive at

b5 =− 1

2

(
Tr(H(1,1)ΩΩ)− Tr(H(1)ΩH(1)Ω) + 2 Tr(H(2,1)Ω)− 1

2
Tr(H(2,2))

)
×
(
−[[p1k1(p0k0 − p1k1)]]1,1,2 + 4[[(k0 + p0)2p1k1(p0k0 − p1k1)]]1,1,3

)
(∂0y)2 .

(B.60)

With Method 2, the above expression boils down to

b5 =

(
3

4
S + 2TE

)
×
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×
(

Tr(H(1,1)ΩΩ)− Tr(H(1)ΩH(1)Ω) + 2 Tr(H(2,1)Ω)− 1

2
Tr(H(2,2))

)
(∂0y)2 . (B.61)

b6

Although B[0]
2 = −Y ∂µζ∂µζ − 1

4H
(2)
ABζ

2∂1ξ
A∂1ξ

B − XAB∂1ξ
A∂1ξ

B we can simplify the

evaluation of b6 = i〈B[1]
1 B

[0]
2 〉 by noting the term with Y will not contribute (it is a

disconnected diagram) and the ζ loop on the term with H(2) is evaluated to iI; hence

effectively we use

B[0]
2 = AAB∂1ξ

A∂1ξ
B , AAB = − i

4
IH(2)

AB −XAB . (B.62)

The contraction gives

b6 =− i

2
Ω0AB(σ1)ACD(σ2)〈∂1ξ

A
σ1
ξBσ1

∂1ξ
C
σ2
∂1ξ

D
σ2
〉

=− Ω0AB(σ1)

∫
d2q

(2π)2
ACD(q)e−iqσ1

∫
d2p

(2π)2

1

p2(p− q)2

×
(
p1p1(q − p)1HACHBD + p0p1(q − p)0η

ACηBD

+ p1p1(q − p)0HACηBD + p0p1(q − p)1η
ACHBD

)
. (B.63)

To proceed one simply Taylor expands to extract the linear dependence on q0 (and q1,

even though we will omit that part here) from the integrands. In this case it is not even

really necessary to use the specific rules for Method 2, for no p2
0 appears once the dust

settles. Still, in the language of Method 2 we can rephrase the result as

b6 =
1

4
L(I−P) Tr(H(2,1)Ω)∂0y∂0y −

1

8
L(I−P) Tr(H(3,1))∂0y∂0y . (B.64)

Note that the final contribution from this diagram to ∂0y∂1y cancels out.

b7

This is by far the most complicated case and we shall provide the reader with additional

details. The Wick contractions are easily simplified exploiting the symmetries of the

tensorial structure

b7 = −1

2
〈B[0]

1 B
[0]
1 B

[1]
1 〉

=
1

16
H(1)
EF (σ1)

∫
dσ2dσ3H(1)

CD(σ2)Ω0AB(σ3)〈∂1ξ
A
σ3
ξBσ3

∂1ξ
C
σ2
∂1ξ

D
σ2
∂1ξ

E
σ1
∂1ξ

F
σ1
〉〈ζσ1ζσ2〉
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=
1

2
H(1)
EF (σ1)

∫
dσ2dσ3H(1)

CD(σ2)Ω0AB(σ3)∆12∂12∆CE
12 ∂23∆AD

23 ∂1∆BF
13 , (B.65)

where we have shortened the expression using ∆ij ≡ ∆(σi−σj) and ∆AB
ij ≡ HAB∆(σi−

σj) + ηABθ(σi − σj). The momentum routing is slightly subtle. First: two external

momenta, q and l (Fourier partners of σ2 and σ3), have to be introduced. Second: we

are entitled to choose the routing that will best suite our purpose.

Killing every instance of q1 and l1 (they would eventually produce some ∂1y leg) we

arrive at

b7 =− i

2
H(1)
EF (σ1)

∫
d2q

(2π)2
Ω0AB(q)e−iqσ1

∫
d2l

(2π)2
H(1)
CD(l)e−ilσ1

×
∫

d2p

(2π)2

d2k

(2π)2

p1(p1 + k1)

k2(p+ k)2(p+ l)2(p+ l + q)2

×
(
(k1 + p1)HCE + (p0 + k0)ηCE

) (
p1HAD + (p0 + l0)ηAD

)
×
(
p1HBF + (p+ l + q)0η

BF
)
. (B.66)

Judging from the tensorial structures already at our disposal, we need to extract from

the loop integral linear terms in either q0 or l0

b7 =− i

2
H(1)
EF (σ1)

∫
d2q

(2π)2
Ω0AB(q)e−iqσ1

∫
d2l

(2π)2
H(1)
CD(l)e−ilσ1

×
∫

d2p

(2π)2

d2k

(2π)2

1

(p2)3

1

k2

p1(p1 + k1)

(p+ k)2

(
(p1 + k1)HCE + (p0 + k0)ηCE

)
×
(
l0[4p0p

2
1HADHBF + 2p0(p2

0 + p2
1)ηADηBF

+
(
2p2

0p1 + p1(p2
0 + p2

1)
) (
HADηBF + ηADHBF

)
]

+ q0[2p0p
2
1HADHBF + p0(p2

0 + p2
1)ηADηBF

+ 2p2
0p1η

ADHBF + p1(p2
0 + p2

1)HADηBF ]

)
. (B.67)

We shall now pass to position space and turn l0, q0 into derivatives. While the former

would hit a generalised metric, the latter would act upon Ω. As we would like to avoid

that situation we integrate by parts. Massaging the expression we obtain a little further,

dropping terms linear in p0 or k0

b7 =
1

2
Ω0AB

(
H(1)
EF∂0H(1)

CD − ∂0H(1)
EFH

(1)
CD

)∫ d2p

(2π)2

d2k

(2π)2

1

(p2)3k2(p+ k)2

×
[
p2

1(p1 + k1)2
(
2p2

0η
ADHBF + (p2

0 + p2
1)HADηBF

)
HCE
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+ p1p0(p1 + k1)(p0 + k0)
(
2p2

1HADHBF + (p2
0 + p2

1)ηADηBF
)
ηCE

]
. (B.68)

We can now perform the tensor contractions. The crucial observation here is that, when

contracted, HAB anti-commutes with both H(1)
AB and ∂0H(1)

AB. To see this, it is important

to keep in mind that H(1)
AB ≡ VAIH

(1)
IJ VBJ . We obtain

b7 = I
(

Tr(H(1,1)ΩΩ)− Tr(H(1)ΩH(1)Ω) + Tr(H(2,1)Ω)
)
∂0y∂0y , (B.69)

where I stands for the integral we are left with, namely

I = [[p1(k1 + p1)
(
k0

(
p3

0 + 3p0p
2
1

)
− 3k1p

2
0p1 − p3

1(k1 + p1) + p4
0

)
]]3,1,1 . (B.70)

Using Method 2 the latter becomes

I =
1

4
S− 2TE +

1

2
LI + 2TI . (B.71)

B.3 Base ∂0y∂1y Wick Contractions

In order to evaluate Wick contractions associated to the ∂0y∂1y legs we single out the

following terms in the action

C[0]
1 = −1

2
H(1)
ABζ∂1ξ

A∂1ξ
B , (B.72)

C[0]
2 = −1

4
H(2)
ABζ

2∂1ξ
A∂1ξ

B − Y ∂µζ∂µζ −XAB∂1ξ
A∂1ξ

B , (B.73)

C[1;τ ]
3 = −2Y (1)ζ∂0ζ∂0y (B.74)

C[1;σ]
3 = −1

2
H(2)
BCΩ1A

Cζ2ξA∂1ξ
B + 2Y (1)ζ∂1ζ∂1y − 2XBCΩ1A

CξA∂1ξ
B , (B.75)

C[1;σ]
2 = −H(1)

BCΩ1A
CζξA∂1ξ

B , (B.76)

C[1;σ]
1 = −HBCΩ1A

CξA∂1ξ
B +

1

2
Ω1ABξ

A∂0ξ
B , (B.77)

C[1;τ ]
1 =

1

2
Ω0ABξ

A∂1ξ
B , (B.78)

C[2;τ,σ]
2 =

1

2
Ω1ACΩ0B

CξAξB , (B.79)

where C[n;σµ]
p indicates a term with p derivatives, n external legs of type σµ. They can

be used to be create the following combinations

c1 = − i
2
〈C[2;τ,σ]

2 C[0]
1 C

[0]
1 〉 , c2 = −〈C[2;τ,σ]

2 C[0]
2 〉 , c3 =

1

2
〈C[1;τ ]

1 C[1;σ]
1 C[0]

1 C
[0]
1 〉 , (B.80)

c4 = −i〈C[1;τ ]
1 C[1;σ]

1 C[0]
2 〉 , c5 = −i〈C[1;σ]

2 C[1;τ ]
1 C[0]

1 〉 , c6 = −〈C[1;τ ]
3 C[1;σ]

1 〉 . (B.81)
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These should be supplemented with additional terms coming from integral with external

momenta insertion. The relevant basis of tensors is simply

Tr(H(1,1,0)ΩΩ) , Tr(H(2)ΩΩ) . (B.82)

c1

In this case

c1 = − 1

16
H(1)
CDH

(1)
EFΩ1AIΩ0B

I〈ζσ2ζσ3〉〈ξAσ1
ξBσ1

∂1ξ
C
σ2
∂1ξ

D
σ2
∂1ξ

E
σ3
∂1ξ

F
σ3
〉

= − 1

2λ
[[k2

1(p2
0 + p2

1)− 2k1k0p1p0]]2,1,1 Tr(H(1,1,0)ΩΩ)∂0y∂1y

=
1

2λ

(
LI− 1

2
S

)
Tr(H(1,1,0)ΩΩ)∂0y∂1y . (B.83)

c2

In c2 we discard a disconnected contraction and obtain

c2 = − i
2
XCDΩ1AIΩ0B

I〈ξAσ1
ξBσ2

∂1ξ
C
σ2
∂2ξ

D
σ2
〉 − i

8
H(2)
CDΩ1AIΩ0B

I〈ζσ2ζσ2〉〈ξAσ1
ξBσ1

∂1ξ
C
σ2
∂1ξ

D
σ2
〉

= − i
2

Ω1AIΩ0B
I

(
X +

i

4
IH(2)

)
CD

〈ξA1 ξB1 ∂1ξ
C
2 ∂1ξ

D
2 〉

=
1

4λ
(I−P)[[p2

0 − p2
1]]2,0,0 Tr(H(2)ΩΩ)∂0y∂1y

− 1

2λ

(
I[[p2

1]]2,0,0 +
1

2
P[[p2

0 − p2
1]]2,0,0

)
Tr(H(1,1,0)ΩΩ)∂0∂1y

= − 1

2λ
I

(
L +

1

2
P

)
Tr(H(1,1,0)ΩΩ)∂0y∂1y +

1

4λ
I (I−P) Tr(H(2)ΩΩ)∂0y∂1y .

(B.84)

c3

This combination comprises of square envelope and diamond sunset topologies, making

it the hardest to compute. However, one can show that the diamond sunset topology

does not ultimately contribute to the final result, as the corresponding integral always

contains odd powers of 0-components.

c3 = − i

16
Ω0ABH(1)

CDH
(1)
EFHHIΩ1

I
G〈ξGσ1

∂1ξ
H
σ1
ξAσ2

∂1ξ
B
σ2
∂1ξ

C
σ3
∂1ξ

D
σ3
∂1ξ

E
σ4
∂1ξ

F
σ4
〉〈ζσ3ζσ4〉

− i

32
H(1)
CDH

(1)
EFΩ1GHΩ0AB〈ξGσ1

∂0ξ
H
σ1
ξAσ2

∂1ξ
B
σ2
∂1ξ

C
σ3
∂1ξ

D
σ3
∂1ξ

E
σ4
∂1ξ

F
σ4
〉〈ζσ3ζσ4〉
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=
1

λ
[[(k2

1(p2
0 + 2p2

1)− k0k1p0p1)(p2
0 − p2

1) + 4k1p0p
2
1(k0p1 − k1p0)]]3,1,1 Tr(H(1,1,0)Ω0Ω1)

=
1

λ

(
3

4
S− 2TE− 1

2
LI + 2TI

)
Tr(H(1,1,0)ΩΩ)∂0y∂1y . (B.85)

c4

In this case the topologies involved are triangle (with counter-term insertion) and deco-

rated triangle.

c4 =
1

2
HDIΩ1

I
CXEFΩ0AB〈ξCσ1

ξAσ2
∂1ξ

D
σ1
∂1ξ

B
σ2
∂1ξ

E
σ3
∂1ξ

F
σ3
〉

+
1

8
H(2)
EFHDIΩ1

I
CΩ0AB〈ζ2

σ3
〉〈ξCσ1

ξAσ2
∂1ξ

D
σ1
∂1ξ

B
σ2
∂1ξ

E
σ3
∂1ξ

F
σ3
〉

+
1

4
XEFΩ1CDΩ0AB〈ξCσ1

ξAσ2
∂0ξ

D
σ1
∂1ξ

B
σ2
∂1ξ

E
σ3
∂1ξ

F
σ3
〉

+
1

16
H(2)
EFΩ1CDΩ0AB〈ζ2

σ3
〉〈ξCσ1

ξAσ2
∂0ξ

D
σ1
∂1ξ

B
σ2
∂1ξ

E
σ3
∂1ξ

F
σ3
〉

=
1

λ

(
1

2
P[[(p2

0 − p2
1)2]]3,0,0 −

1

2
I[[p2

1(3p2
1 + p2

0)]]3,0,0

)
Tr(H(1,1,0)ΩΩ)∂0y∂1y

+
1

2λ
(P− I)[[(p2

0 − p2
1)2]]3,0,0 Tr(H(2)ΩΩ)∂0y∂1y

=
I

2λ
(P− L− 4T) Tr(H(1,1,0)ΩΩ)∂0y∂1y +

I

2λ
(P− I) Tr(H(2)ΩΩ)∂0y∂1y . (B.86)

c5

The only topology involved here are triangle envelopes.

c5 =
1

4
H(1)
BLH

(1)
EFΩ1

L
AΩ0CD〈ζσ1ζσ3〉〈ξAσ1

ξCσ2
∂1ξ

B
σ1
∂1ξ

F
σ2
∂1ξ

E
σ3
∂1ξ

F
σ3
〉

= − 1

λ
[[k2

1(p2
0 + p2

1)− 2k0k1p0p1]]2,1,1 Tr(H(1,1,0)ΩΩ)∂0y∂1y

=
1

λ

(
LI− 1

2
S

)
Tr(H(1,1,0)ΩΩ)∂0y∂1y . (B.87)

c6

This one contains only loop and decorated loop topologies.

c6 = iXDEΩ0ABΩE
1 C〈ξCσ1

ξAσ2
∂1ξ

D
σ1
∂1ξ

B
σ2
〉+

i

4
H(2)
DIΩ1

I
CΩ0AB〈ζσ1ζσ1〉〈ξCσ1

ξAσ2
∂1ξ

D
σ1
∂1ξ

B
σ2
〉

= − 1

2λ

(
P[[p2

0]]2,0,0 + I[[p2
1]]2,0,0

)
Tr(H(1,1,0)ΩΩ)∂0y∂1y

+
1

2λ
[[p2

0]]2,0,0(I−P) Tr(H(2)ΩΩ)∂0y∂1y
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= − 1

2λ
(IP + LI + LP) Tr(H(1,1,0)ΩΩ)∂0y∂1y +

1

2λ
(I + L)(I−P) Tr(H(2)ΩΩ)∂0y∂1y .

(B.88)

Contributions From External Momentum Insertion

There are a few contributors to ∂0y∂1y legs that c1, . . . , c6 have missed. These arise from

loop integral with non-vanishing external momentum. A careful analysis reveals that in

fact only the sunset topology with a linear insertion of external momentum is responsible

for such contributions. Also, we shall only get a correction, call it c7, to Tr(H(2)ΩΩ).

We find

c7 =
2

λ
[[k1p0(k1p0 − k0p1)]]2,1,1 Tr(H(2)ΩΩ)∂0y∂1y

=
1

λ

(
3

2
S− LI

)
Tr(H(2)ΩΩ)∂0y∂1y . (B.89)

B.4 Results of Wick Contractions

Before we evaluate the loop integrals, we collect and present in this section the results of

the standard Wick contractions. To slightly reduce the length of expressions, each time

a numerator of a loop integrand contains an even number of τ -components of momenta,

these are swapped for the invariant combination e.g. p2
0 → p2+p2

1, though at this stage no

assumption about how this holds in d = 2+ε is made and, in particular, no cancellations

of factors of p2 between numerator and denominator are employed up to this point. For

the counter-term attached to λ−2∂1XI∂1XJ we obtain

H(4)
•• :

1

16
I2 − 1

8
IP

H(3,1,0)
•• :

1

2
(P− I)[[p2

1]]2,0,0 −
1

4
IP

H(2,0,2)
•• :

1

4
IP +

1

4
[[p2

1]]1,1,1

H(2,1,1)
•• :

1

2
IP− 1

2
P[[p2

1]]2,0,0 + [[p1k1p · k]]2,1,1

H(1,2,1)
•• :

1

8
IP− 1

2
P[[p2

1]]2,0,0 −
1

2
[[p2

1k
2
1]]2,2,0 −

1

4
(P− I)[[p2

1p
2]]3,0,0

H(1,1,1,1,0)
•• :

1

2
P[[p2

1]]2,0,0 + [[p2
1k

2
1]]2,2,0 +

1

2
I[[p4

1]]3,0,0 +
1

4
P[[p2

1p
2]]3,0,0

− [[p3
1k1k · p]]3,1,1 +

1

2
[[p2

1k
2
1p

2]]3,1,1 − [[(p2
1k

2
1 + p3

1k1)k2]]2,2,1

H(2)
•• Tr(H(1,1)) : − 1

32
P[[p2]]2,0,0 +

1

8
[[(p+ k)1k1(p · k + k2)]]2,1,1

H(1,1,0)
•• Tr(H(1,1)) :

1

16
P[[p2

1p
2]]3,0,0 −

1

4
[[(p1 + k1)p2

1k1(p · k + k2)]]3,1,1 (B.90)
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For counter-term attached to ∂0y∂0y external legs we find:

Tr(H(2,2)) : [[k1(k1 + p1)(p2 + p2
1)(k2 + k · p)]]3,1,1

− 1

4
[[k1(k1 + p1)(k2 + k · p)]]2,1,1

Tr(H(3,1)) :
1

8
(P− I) [[p2

1]]2,0,0

Tr(H(1,1,1,1)) :
1

8
P[[p2

1p
2]]3,0,0 +

1

4
I[[p4

1]]3,0,0 +
1

4
[[k1p

2
1(k1p

2 − 2p1k · p)]]3,1,1

− 1

16
[[k2

1p
2 − 4p1k1k · p+ 3p2

1k
2]]2,2,1

Tr(H(1,1)ΩΩ) :
1

4
I[[p2

1(3p2 + 4p2
1)]]3,0,0 +

1

2
[[k1(k · p(k1 − p1) + k2(k1 + p1))]]2,1,1

− 1

2
[[k1(2p2k1p

2
1 + 4k2(k1 + p1)(p2 + p2

1))]]3,1,1

− 1

2
[[k1k · p(4k1p

2
1 + p2(4k1 + p1)))]]3,1,1

Tr(H(1)ΩH(1)Ω) : − 1

2
[[k1(k · p(k1 − p1) + k2(k1 + p+ 1))]]2,1,1

+ 2[[k1(k1(k · p+ k2)p2 + p1k
2p2]]3,1,1

+ 2[[k1(k1p
2
1(k · p+ k2 + p2) + p3

1(k2 − k · p))]]3,1,1

Tr(H(2,1)Ω) :
1

4
(P− I)[[p2

1]]2,0,0 −
1

4
(P− I)[[p2

1p
2]]3,0,0

+ [[k1(k2(k1 + p1) + k1k · p)]]2,1,1

− 2[[k1(k1p
2
1p

2 + 2(k1 + p1)k2(p2 + p2
1)]]3,1,1

− 2[[k1(2k1p
2
1 + 2k1p

2 + p1p
2)k · p)]]3,1,1 . (B.91)

For the counter-term attached to mixed derivatives of the background field ∂0y∂1y we

obtain:

Tr(H(1,1,0)ΩΩ) : − 1

4
P[[3p2 − 2p2

1]]2,0,0 − I[[p2
1]]2,0,0 +

1

2
I[[(p2)2]]3,0,0

− 1

2
I[[p2p2

1 − 4p4
1]]3,0,0 −

3

2
[[k2

1p
2 − 2k1p1k · p]]2,1,1

+ [[k1(k1(p2)2 + 4p3
1k · p− p1p

2(k · p+ 2k1p1))]]3,1,1

Tr(H(2)ΩΩ) : − 1

4
(P− I)[[3p2 + 2p2

1]]2,0,0 +
1

2
(P− I)[[(p2)2]]3,0,0

+ 2[[k1(k1(p2)2 − 2k1p
2
1p

2 + 4p3
1k · p)]]3,1,1 (B.92)

For the counter-term attached to ∂1y∂1y we obtain

Tr(H(2,2)) : [[k1(k1 + p1)p2
1(k2 + k · p)]]3,1,1 +

1

4
[[k1(k1 + p1)(k2 + k · p)]]2,1,1

Tr(H(3,1)) :
1

8
I2 − 1

8
P[[p2 − p2

1]]2,0,0 +
3

8
I[[p2

1]]2,0,0 −
1

2
P[[p2

1p
2]]3,0,0
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Tr(H(1,1,1,1)) :
1

8
P[[p2 + 2p2

1]]2,0,0 +
1

4
I[[p2

1]]2,0,0 −
1

8
P[[p2

1p
2 + (p2)2]]3,0,0

+
1

4
I[[p4

1]]3,0,0 +
1

4
[[k2

1 + k1p1]]1,1,1 +
1

4
[[k2

1p
2 − 2p1(p1 + 2k1)k · p]]2,1,1

− 1

4
[[k1(k1p

2 − 2p1k · p)(p2 − p2
1)]]3,1,1 +

1

16
[[k2

1p
2(k · p+ k1p1)]]2,2,1

Tr(H(1,1)ΩΩ) :
1

4
I[[p2 + 6p2

1]]2,0,0 −
1

4
I[[(p2)2 + p2

1p
2 − 4p4

1]]3,0,0

− 1

2
[[

(k1 + p1)(p2 + k · p)
p1

]]1,1,1

− 1

2
[[
k1

p1
(−2p2k · p+ k1p1(k · p+ k2 − 3p2) + 5p2

1(k2 + k · p))]]2,1,1

− 1

2
[[
k1

p1
((p2)2k · p+ 2p1k1(p2)2 + p2

1p
2k · p]]3,1,1

− [[
k1

p1
(k1p

3
1(p2 + 2k · p+ 2k2) + 2k2p4

1)]]3,1,1

Tr(H(1)ΩH(1)Ω) : − [[p2 + k · p]]1,1,1

+
1

2
[[(4p2

1 − k1p1 + k2
1 − 2p2)k · p+ k1(k2k1 + 5p1k

2 − 2p1p
2)]]2,1,1

+ 2[[k1p1(p2k · p) + k1p1(k · p+ k2 + p2) + (k2 − k · p)p2
1]]3,1,1

− 1

8
[[k1p1(−2k2p2 + k2

1p
2 + 7p2

1k
2)]]2,2,1

− 1

8
[[k · p(k2

1(3p2 − 8p2
1) + k2(−2p2 + 5p2

1))]]2,2,1

Tr(H(2,1)Ω) : − 1

4
P[[2p2 + p2

1]]2,0,0 +
1

4
I[[p2 + 5p2

1]]2,0,0

− 1

4
(P− I)[[(p2)2]]3,0,0 −

3

4
P[[p2p2

1]]3,0,0 −
1

4
I[[p2

1p
2]]3,0,0

+ [[k1(k2(k1 + p1) + k1k · p)]]2,1,1

− 2[[k1(k1p
2
1p

2 + 2(k1 + p1)k2(p2 + p2
1)]]3,1,1

− 2[[k1(2k1p
2
1 + 2k1p

2 + p1p
2)k · p)]]3,1,1 . (B.93)
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Loop Integrals

C.1 Loop Integrals via O(d)-invariance (Method 1)

For a L-loop calculation, 2L copies of the worldsheet are needed. We shall label each copy

by a number and indicate the n-th with n. Propagators stretching from n to m will be

reported schematically as n→m, where n and m are allowed to coincide. Accordingly,

a sequence with the same extrema shall indicate a closed loop.

At one-loop order, two topologies only contribute to the β-function: having two copies

of the worldsheet, propagators can either stretch from 1 to 2 or close on the same copy.

All possible loops are exhausted by 1 → 1 and (1 → 2)2. We shall name them bubble

and loop, respectively.

At two-loop order, divergences can originate from either i) one-loop integrals multiplied

by a 1/ε pole due to one-loop counter-term insertions; ii) products of one-loop integrals;

iii) genuinely new two-loop integrals. New topologies for one-loop diagrams arise in i)

and ii).

For a two-loop calculation, triangle-shaped and square-shaped loops, corresponding schemat-

ically to 1→ 2→ 3→ 1 and 1→ 2→ 3→ 4→ 1, are in fact allowed. For the sake of

simplicity, we will refer to them as triangle and square diagrams. On top of that, 1→ 1

and (1→ 2)2 can still appear, even though their finite O(ε0) parts are now to be kept1.

Graphs of type ii) can all be seen graphically as dressings of the previous diagrams (up to

the squares) with an extra loop or bubble. When a bubble is added, we call the resulting

diagram “decorated”: for example, adding a bubble to a triangle results in a decorated

triangle.
1Actually, square diagrams are only required in calculating one-loop diagrams with external quantum

fields.
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Scenario iii) is the most intricate as it allows for many different topologies. The simplest

instance of genuine two-loop diagram is the sunset diagram, corresponding to (1→ 2)3.

The only way to non-trivially extend the triangle diagram to two-loop is by adding

an internal line, resulting in (1 → 2)2 → 3 → 1. We shall call it triangle envelope

diagram. Squares allow for two extensions: we can either add a line joining two adjacent

vertices, (1 → 2)2 → 3 → 4 (square envelope), or let is stretch to the opposite vertex,

(1→ 2→ 3→ 4→ 1)(1→ 3) (diamond sunset).

1k

(a) Bubble

1 2

k

−k

(b) Loop

1 2

3

k

k−k

(c) Triangle

1 2

34

k

k

k

−k

(d) Square

Figure C.1: One-loop diagrams.

C.1.1 Combinatorics

The basic integrals in Minkowski space are given by

In =

∫
ddk

(2π)d
1

(k2 −m2)n
=

(−1)ni

(4π)
d
2

Γ(n− d
2)

Γ(n)
(m2)

d
2
−n . (C.1)

Our aim is to recast divergent 1-loop and 2-loop integrals as combinations of the basic

integrals In, postponing the evaluation of their precise dependence on the dimension-

al-regulator ε. At 2-loop order we require only I1, I2 and I3 which are given by

I1 ≈
i

2πε
+
iγ̄

4π
+
iε
(
6γ̄2 + π2

)
96π

, m2I2 ≈ +
i

4π
+
iεγ̄

8π
, m4I3 ≈ −

i

8π
− iε (γ̄ − 1)

16π
, (C.2)

where

γ̄ = γE + log

(
m2

4π

)
. (C.3)

Integrals with non-positive n can also be dropped: Γ(n) has poles for n ∈ Z−, thus

forcing In≤0 → 0.

Prior to venturing into the explicit evaluation of loop integrals, let us pause and analyse

their combinatorial structure. Fix some integer number q ∈ N and consider the one-loop

integral

Iλ1...λ2q =

∫
ddp

(2π)d
pλ1 . . . pλ2q

D
(C.4)
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for some denominator D = D(p2). Integrals of this form are usually evaluated assuming

O(d) symmetry in the final result; that is, we postulate that the right-hand side can be

recast in the form∫
ddp

(2π)d
pλ1 . . . pλ2q

D
= A(ηλ1λ2 . . . ηλ2q−1λ2q + perms.)

∫
ddp

(2π)d
(p2)q

D
, (C.5)

where the “scalar” integral is in general known, and the prefactor A is to be fixed by taking

appropriate contractions of both the left- and right-hand side with the d-dimensional

Minkowski metric.

Let us indicate by Pλ1...λ2q the rank 2q totally symmetric tensor made up of all possible

permutations of tensor products of the d-dimensional Minkowski metric

Pλ1...λ2q = ηλ1λ2 . . . ηλ2q−1λ2q + perms. (C.6)

As can be easily seen, a total number of (2q− 1)! ! terms have to be accounted for in the

permutations. Particularly important is the trace of this object, P (2q),

P (2q) ≡ ηλ1λ2 . . . ηλ2q−1λ2qPλ1...λ2q =

q−1∏
j=0

(d+ 2j) = 2q−1d

(
1 +

d

2

)
q−1

. (C.7)

To be concrete, the constant A in (C.5) would be 1/P (2q).

In the case of two-loop integrals, the situation is more involved as there are two distinct

momenta to deal with. A prototypical example is for instance∫
ddp

(2π)d
ddk

(2π)d
kµkνpλ1 . . . pλ2q

D
= Aηµν(ηλ1λ2 . . . ηλ2q−1λ2q + perms.)

+B(ηµλ1ηνλ2ηλ3λ4 . . . ηλ2q−1λ2q + perms.) ,

(C.8)

where A,B will now be combinations of scalar loop integrals and some combinatorial

factors. Contracting both sides with the tensor ηµνηλ1λ2 . . . ηλ2q−1λ2q we obtain a first

equation ∫
ddp

(2π)d
ddk

(2π)d
k2(p2)q

D
= P (2q)(dA+ 2qB) . (C.9)

A second equation is deduced in a similar manner by contracting with ηµλ1ηνλ2 . . . ηλ2q−1λ2q

∫
ddp

(2π)d
ddk

(2π)d
(k · p)2(p2)q−1

D
= P (2q) [A+ (2q + d− 1)B] . (C.10)

Solving (C.9) and (C.10) for A and B, one finds the correct rewriting of (C.8) in terms

of scalar loop integrals and combinatiorial factors.
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In a theory with non-manifest Lorentz invariance, Pλ1...λ2q is most often encountered

with explicit values assigned to its indices (either 0 or 1). As we shall make large use of

this formula, let us mention that if Pλ1...λ2q comes with 2q0 0-indices and 2q1 1-indices

(so that 2q = 2q0 + 2q1), the tensor specifically evaluates to

P01...02q011...12q1
= (2q0−1)! ! (2q1−1)! ! (η00)q0(η11)q1 = (2q0−1)! ! (2q−2q0−1)! ! (η00)q0(η11)q1 .

(C.11)

C.1.2 One-loop Integrals

Bubble Diagrams

Integrals for bubble diagrams are trivial, as they simply coincide with I1.

Loop Diagrams

Loop diagrams are only slightly more involved. In general we are interested in both

the divergent and convergent (at least O(ε0)) parts, as the latter is important for coun-

ter-terms. The divergent diagrams we shall encounter are of the form∫
ddk

(2π)d
kµkν

(k2 −m2)2
=
ηµν
d

(I1 +m2I2) . (C.12)

Diagrams with an odd number of momenta in the numerator vanish by symmetry. Fully

convergent integrals are necessary of the form∫
ddk

(2π)d
1

(k2 −m2)2
= I2 . (C.13)

Triangle Diagrams

Divergent integrals stemming from triangle diagrams are of the form∫
ddk

(2π)d
kµkνkρkσ

(k2 −m2)3
=

1

d(d+ 2)
(ηµνηρσ +ηµρηνσ +ηµσηνρ)(I1 +2m2I2 +m4I3) , (C.14)

where we have made use of O(d) symmetry to perform the integral. By the remarks

above, the right-hand side is mass independent at zero-th order in ε. Other finite results

are ∫
ddk

(2π)d
1

(k2 −m2)3
= I3 ,

∫
ddk

(2π)d
kµkν

(k2 −m2)3
=
ηµν
d

(I2 +m2I3) . (C.15)
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C.1.3 Two-loop Integrals

A two-loop integral with vanishing external momenta is of the form

[[. . . ]]ijk =

∫
ddk

(2π)d
ddp

(2π)d
(. . . )

(p2 −m2)i(k2 −m2)j [(k + p)2 −m2]k
, (C.16)

where the dots will be specified on a case-by-case basis. In performing manipulation we

discard finite terms, for instance:

[[1]]i,j,k = 0 , for i, j, k ≥ 1 . (C.17)

Typical UV divergent integrals encountered are

[[1]]1,0,1 = [[1]]1,1,0 = [[1]]0,1,1 = I2
1 , [[1]]2,0,1 = I1I2 . (C.18)
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Figure C.2: Two-loop diagrams. Momentum flows are aligned with numerical ordering
of vertices.
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Sunset Diagrams

Sunset diagrams are equivalent to [[. . . ]]1,1,1 integrals. Given the exchange symmetry

k ↔ p in the denominator, the only relevant integrals are

[[p2]]1,1,1 = I2
1 , [[(p · k)]]1,1,1 = −1

2
I2

1 . (C.19)

It immediately follows that

[[pµpν ]]1,1,1 =
1

d
ηµνI

2
1 , [[pµkν ]]1,1,1 = − 1

2d
ηµνI

2
1 . (C.20)

Diamond Sunset Diagrams

Diamond sunset diagrams correspond to [[. . . ]]2,2,1. Notice that this class is symmet-

ric under k ↔ p; hence, we will omit integrals which can be deduced from symmetry

arguments. Again, we begin with the scalar integrals

[[(p2)3]]2,2,1 = I2
1 + 4m2I1I2 , (C.21a)

[[(p2)2(p · k)]]2,2,1 = −I2
1 −m2I1I2 , (C.21b)

[[(p2)2k2]]2,2,1 = I2
1 +m2I1I2 , (C.21c)

[[p2(p · k)k2]]2,2,1 = −1

2
I2

1 , (C.21d)

[[p2(p · k)2]]2,2,1 =
3

4
I2

1 +
1

2
m2I1I2 , (C.21e)

[[(p · k)3]]2,2,1 =
2− 3d

4d
I2

1 +
2− d

2d
m2I1I2 . (C.21f)

Tensorial integrals can now be deduced

[[pµpνpρpσpκpλ]]2,2,1 = F1(ηµνηρσηκλ + 14 perms)(I2
1 + 4m2I1I2) , (C.22a)

[[pµpνpρpσpκkλ]]2,2,1 = F1(ηµνηρσηκλ + 14 perms)
(
−I2

1 −m2I1I2

)
, (C.22b)

[[pµpνpρpσkκkλ]]2,2,1 =
F1

d− 1
(ηµνηρσ + 2 perms)ηκλ(dI2

1 + (d+ 1)m2I1I2)

+
F1

4(d− 1)
(ηµκηνληρσ + 11 perms)((3d− 4)I2

1 + 2(d− 2)m2I1I2) ,

(C.22c)

[[pµpνpρkσkκkλ]]2,2,1 =
F1

4d(d− 1)
(ηµνηρσηκλ + 8 perms)

×
[
−2(d2 − 2d+ 2)I2

1 + 4(d− 2)m2I1I2

]
+

F1

8d(d− 1)
(ηµσηνκηρλ + 5 perms)
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×
[
−2(3d2 − 2d− 4)I2

1 − 4(d2 − 4)m2I1I2

]
. (C.22d)

Triangle Envelope Diagrams

This class is equivalent to [[. . . ]]2,1,1. Scalar integrals are

[[(p2)2]]2,1,1 = I2
1 , (C.23a)

[[p2k2]]2,1,1 = I2
1 +m2I1I2 , (C.23b)

[[(p · k)2]]2,1,1 =
3

4
I2

1 +
1

2
m2I1I2 , (C.23c)

[[p2(p · k)]]2,1,1 = −1

2
I2

1 , (C.23d)

[[(p · k)k2]]2,1,1 = −I2
1 −m2I1I2 , (C.23e)

[[k4]]2,1,1 = I2
1 + 3m2I1I2 . (C.23f)

Adopting the symbol F2 = 1
d(d+2) , tensorial integrals evaluate to

[[pµpνpρpσ]]2,1,1 = F2(ηµνηρσ + 2 perms)I2
1 , (C.24a)

[[pµpνpρkσ]]2,1,1 = −1

2
F2(ηµνηρσ + 2 perms)I2

1 , (C.24b)

[[pµpνkρkσ]]2,1,1 =
F2

2(d− 1)
ηµνηρσI1[(2d− 1)I1 + 2dm2I2]

+
F2

4(d− 1)
(ηµρηνσ + ηµσηνρ)I1[(3d− 4)I1 + 2(d− 2)m2I2] , (C.24c)

[[pµkνkρkσ]]2,1,1 = −F2(ηµνηρσ + 2 perms)I1(I1 +m2I2) , (C.24d)

[[kµkνkρkσ]]2,1,1 = F2(ηµνηρσ + 2 perms)(I2
1 + 3m2I1I2) . (C.24e)

Square Envelope Diagrams

Square envelope diagrams correspond to [[. . . ]]3,1,1, and the scalar integrals we shall need

for this topology are

[[(p2)3]]3,1,1 = I2
1 , (C.25a)

[[(p2)2k2]]3,1,1 = I1(I1 + 2m2I2 +m4I3) , (C.25b)

[[p2(k2)2]]3,1,1 = I1(I1 + 4m2I2 + 3m4I3) , (C.25c)

[[(p2)2(p · k)]]3,1,1 = −1

2
I2

1 , (C.25d)

[[p2(p · k)2]]3,1,1 =
3

4
I2

1 +m2I1I2 +
m4

2
I1I3 , (C.25e)

[[p2(p · k)k2]]3,1,1 = −I2
1 − 2m2I1I2 −m4I1I3 , (C.25f)
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[[(p · k)2k2]]3,1,1 = I2
1 +

7d+ 2

2d
m2I1(I2 +m2I3) , (C.25g)

[[(p · k)3]]3,1,1 = −7

8
I2

1 −
3

2
m2I1I2 −

3

4
m4I1I3 . (C.25h)

Integrals with “open” Lorentz indices can be built out of these. They all share a common

pre-factor F1 = [d(d + 2)(d + 4)]−1 coming from the contraction of indices. The results

are:

[[pµpνpρpσpκpλ]]3,1,1 = F1(ηµνηρσηκλ + 14 perms)I2
1 , (C.26a)

[[pµpνpρpσpκkλ]]3,1,1 = −1

2
F1(ηµνηρσηκλ + 14 perms)I2

1 , (C.26b)

[[pµpνpρpσkκkλ]]3,1,1 =
F1

d− 1
(ηµνηρσ + 2 perms)ηκλI1

[
dI1 +m2(d+ 1)(2I2 +m2I3)

]
+

F1

4(d− 1)
(ηµκηνληρσ + 11 perms)

× I1

[
(3d− 4) I1 + 2 (d− 2)m2(2I2 +m2I3)

]
, (C.26c)

[[pµpνpρkσkκkλ]]3,1,1 =
F1

4(d− 1)
(ηµνηρσηκλ + 8 perms)I1[(3− 4d)I1

+ 2(1− 2d)m2(2I2 +m2I3)]

+
F1

8(d− 1)
(ηµσηνκηρλ + 5 perms)I1[(10− 7d)I1

+ 6(2− d)m2(2I2 +m2I3)] , (C.26d)

[[pµpνkρkσkκkλ]]3,1,1 =
F1

d(d− 1)
(ηµνηρσηκλ + 2 perms)

[
d(d− 1)I2

1

+ (4d2 − 2d− 4)m2I1I2 + (3d2 − 5d− 4)m4I1I3

]
+

F1

2(d− 1)
(ηµρηνσηκλ + 11 perms)

[
2(d− 1)I2

1 + (7d− 6)m2I1I2

+ (7d− 4)m4I1I3

]
. (C.26e)

C.1.4 Schwinger Parametrisation

When considering the renormalisation of the (∂1y)2 component of the metric, the inte-

grals above are not sufficient since we also encounter diagrams which give rise to inte-

grands in Fourier space wit non-scalar denominators.

The first integral we shall be concerned with arises from a particular instance of the

sunset topology. Consider

J1 =

∫
ddk

(2π)d
ddp

(2π)d
k1(p0)2

p1

1

(k2 −m2)(p2 −m2)[(k + p)2 −m2]
. (C.27)
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To address the p1 momentum in the denominator we employ a Schwinger parametrisation

1

p1
=

∫ ∞
0

du e−up
1
. (C.28)

The Lorentz-scalar part of (C.27) and the momentum integrals are easily dealt with using

the above techniques so we momentarily omit them by defining a “reduced” integral

J̃1 =

∫ ∞
0

du e−up
1
k1(p0)2 . (C.29)

We now perform a series expansion of this exponential which we understand will give

a series of loop integrals we can evaluate using some combinatorics and formulas in

Appendix C.1. Even powers of u drop out since the numerator of the corresponding

momentum integral will contain an odd number of σ components of momentum - this

implies that any scalar contraction will come with a factor of η01 and hence will drop.

So we need retain only

J̃1 = −
∫ ∞

0
duu

∞∑
n=0

u2n

(2n+ 1)!
k1(p0)2(p1)2n+1 . (C.30)

Now, the precise replacement stems from the usual combinatorics in loop integrals

kµpν1 . . . pν2n+3 → 1

P (2n+4)
Pµν1...ν2n+3(k · p)(p2)n+1 . (C.31)

In a scheme where η01 = 0, there are (2n+1)! ! non vanishing contributions in Pµν1...ν2n+3

with a choice of indices as in (C.30). We then end up with

J̃1 = ϕ(ε)ψ(ε)(k · p)p2

∫ ∞
0

duu
∞∑
n=0

(2n+ 1)! !

(2n+ 1)!P (2n+4)
(−up2ψ(ε))n , (C.32)

where we have adopted the parametrisations η11 = −ψ(ε) and η00 = ϕ(ε), with ψ =

1 + gε and ϕ = 1 + gε are both positive definite. Introducing a new integration variable

z = up2ψ/4, one can prove that the series can be resummed to yield the regularised

hypergeometric function 0F̃1

J̃1 =
ϕ(ε)

2
Γ

(
d

2

)
(k · p)

∫ ∞
0

dz 0F̃1

(
2 +

d

2
,−z

)
. (C.33)

The remaining integral is part of a family of parametric integrals whose precise evaluation

is known and equals ∫ ∞
0

dz zα−1
0F̃1(b;−z) =

Γ(α)

Γ(b− α)
. (C.34)
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Adapting this formula to the case at hand we find

J̃1 =
ϕ(ε)

d
(k · p) , J1 = −ϕ(ε)

2d
I2

1 . (C.35)

Other than J1, we have a family of relevant non-invariant integrals depending on a integer

parameter α ∈ N reading

J
(α)
2 =

∫
ddk

(2π)d
ddp

(2π)d
1

p1

k0k1(p0)2α+1

(k2 −m2)(p2 −m2)α+1[(k + p)2 −m2]
. (C.36)

Using the same technique the relevant cases evaluate to

J
(0)
2 =

3d− 4

4d(d− 1)
ϕ(ε)I2

1 , (C.37)

J
(1)
2 =

3(3d− 4)

4(d− 1)d(d+ 2)
ϕ(ε)2I2

1 +
3(d− 2)ϕ(ε)2

2(d− 1)d(d+ 2)
ϕ(ε)2m2I1I2 , (C.38)

J
(2)
2 =

15(3d− 4)

4(d− 1)d(d+ 2)(d+ 4)
ϕ(ε)3I2

1 +
15(d− 2)m2

(d− 1)d(d+ 2)(d+ 4)
ϕ(ε)3m2I1

(
I2 +

m2

2
I3

)
.

(C.39)
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Example

D.1 Example

We complement the main presentation with an explicit toy example. This allows for an

independent computerised cross-check of the calculations done elsewhere in the project.

In this toy model we are also able to explicitly examine the implication of removing

the base manifold counter-term at one-loop via a field redefinition/addition of total

derivative.

We begin with a model consisting of a single S1 direction of radius r = r(y) for the fibre

with Lagrangian

L =
1

2
(∂1x∂0x̃+ ∂0x∂1x̃)− 1

2

(
r2∂1x∂1x+ r−2∂1x̃∂1x̃

)
+

1

2
∂µy∂

µy . (D.1)

The one-loop renormalisation yields

LCT =
1

4πε

rr̈ − ṙ2

r4
(∂1x̃∂1x̃− r4∂1x∂1x) +

1

4πε

ṙ2

r2
∂µy∂

µy , (D.2)

where over-dots denote, as usual, derivatives with respect to y. Using Method 2 followed

by Method 1 for final evaluation of integrals, we find the two-loop contributions

T̃
(2)
2 |11 =

1

8π2ε2
5(r(1))4 − 8r(r(1))2r(2) + r2(r(2))2 + 2r2r(1)r(3)

r4
= T̃

(2)
2 |00 , (D.3)

T̃
(2)
2 |01 = 0 , (D.4)

T
(2)
2 |xx = − 1

16π2ε2
2(r(1))4 − 6r(r(1))2r(2) + 4r2r(1)r(3) + r2((r(2))2 − r(4))

r2
, (D.5)

T
(2)
2 |x̃x̃ =

1

16π2ε2
6(r(1))4 − 14r(r(1))2r(2) + 4r2r(1)r(3) + r2(5(r(2))2 − rr(4))

r6
, (D.6)
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T̃
(2)
1 |00 =

g

8π2ε

((r(1))2 − rr(2))2

r4
, (D.7)

T̃
(2)
1 |11 =

1

8π2ε

(g− 1)(r(1))4 + 2(3g− 1)r(r(1))2r(2) − (3g− 1)r2(r(2))2

r4
, (D.8)

T̃
(2)
1 |01 = 0 , (D.9)

T
(2)
1 |xx =

1

16π2ε

2(1− g)(r(1))4 + (2g− 1)r(r(1))2r(2) + 2(2g− 1)r2(r(2))2

r2
, (D.10)

T
(2)
1 |x̃x̃ =

1

16π2ε

2(−4 + 9g)(r(1))4 − 9(2g− 1)r(r(1))2r(2) + 2(2g− 1)r2(r(2))2

r6
, (D.11)

where r(n) is an alternative notation for the n-th derivative of r with respect to y. These

agree with the results of the main text upon the substitution of the generalised metric

H = diag(r2, r−2). We remark that the vanishing of T̃ (2)|01 is due to the triviality of the

tensorial combinations within this example.

Let us note that we can amend the one-loop counter-term through the inclusion of any

piece that vanishes upon integration by parts and application of the equations of motion

Lon−shell = ḟ(y)∂µy∂
µy − 1

2
f(y)H(1)

•• ≈ 0 , (D.12)

for some function f(y). With the choice that ḟ = −1
2 T̃

(1) the base divergence of the

one-loop counter can be removed, considering instead

LCT + Lon−shell =
f(y)

4πε

(
rṙ ∂1x∂1x−

ṙ

r3
∂1x̃∂1x̃

)
+

1

4πε

rr̈ − ṙ2

r4
(∂1x̃∂1x̃− r4∂1x∂1x) .

(D.13)

We may now proceed to re-calculate the two-loop divergences using this modified one-loop

counter term. One might anticipate that this resolves some of the discrepancies between

T̃
(2)
1 |00 and T̃ (2)

1 |11 seen in the above. However, an explicit calculation yields

T̃
(2)
1 |00 =

1

16π2ε

(1− g)(r(1))4 − 2gr(r(1))2r(2) + gr2(r(2))2

r4

+
1

16π2ε

(−1 + 2g)frr(1)((r(1))2 − rr(2))

r4
+ . . . , (D.14)

T̃
(2)
1 |11 =

1

16π2ε

(5− 14g)(r(1))4 + 4(1− 3g)r(r(1))2r(2) + 2(1− 3g)r2(r(2))2

r4

+
1

8π2ε

3(−1 + 2g)frr(1)((r(1))2 − rr(2))

r4
+ . . . , (D.15)

where ellipsis indicate terms proportional to γ̄
ε (which do not now vanish). Far from

ameliorating the situation, we still have Lorentz violation from the base counter terms

and, moreover, un-cancelled γ̄ terms.



Appendix E

Mathematica Implementation

To perform the calculations in Chapter 7 and 8 we wrote a specific Mathematica note-

book, capable of expanding the action to any given order, exponentiating the interacting

Lagrangian, performing Wick contractions, computing loop integrals etc. As, to the best

of our knowledge, no available packages comprise of these features, we shall spend some

time reviewing our implementation.

E.1 Tweaking xAct

The best tool to deal with canonicalisation of tensorial expressions is the xAct suite

[215] and, in particular, the xTensor and xPerm packages. However, they are not suited

for a quantum computation out of the box, and we shall push them a little further to

achieve this. More in detail, the first issue we encounter is the Taylor expansion of the

exponentiated interacting action exp(i
∫

d2σLI). Up to a prefactor, its n-th term is in

fact the product of n SI’s, each one evaluated on a different copy of the worldsheet,

exp

(
i

∫
d2σLI

)
= 1 +

∞∑
n=1

in

n!

(∫
d2σ1 LI(σ1)

)
× . . .×

(∫
d2σn LI(σn)

)
. (E.1)

Hence, tensors appearing in LI(σn) shall accordingly retain a dependence on the world-

sheet copy even in the code. This is achieved treating the worldsheet coordinates as

parameters (in the language of xAct) and defining 4n of those (i.e. 2n τ ’s and 2n σ’s)

for an n-loop calculation. Similarly, for each copy of the worldsheet, we will define a set

of tensors (H, Ω, ξ etc.) carrying explicit dependence on the relevant set of parameters.

The result of Wick contractions1 will be products of propagators of either types (∆ and

θ) treated as tensors with zero indices.
1The Wick theorem is easily implemented with a recursive function that does not require xAct.
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E.2 Loop Counting and 1PI Feynman Diagrams

As for Feynman diagrams, we have a twofold issue. First, we want to discard diagrams

that do exceed the loop order we are working at. This problem is easily tackled observing

that all relevant graphs are planar and hence we can use Euler formula at genus g = 0,

i.e.

V − E + L = 1 , (E.2)

where V , E and L are respectively the number of vertices, edges and loops. Notice how

we are using L, as opposed to the usual F (faces): this is due to the fact that the number

of faces equals the number of loops plus one, as it also includes the outer and infinitely

large region. In practice we do not need to actually draw the graph, nor apply Wick

theorem, to ascertain the loop number: we can simply solve (E.2) for L, being E half

the number of the propagators2 and V the number of relevant copies of the worldsheet

present in the expression at hand. Second, we shall restrict ourselves to connected, 1PI

graphs. To check this property it is firstly necessary to draw the graph; Mathematica

has a dedicated function, and we suggest the adoption of Tutte embedding for displaying

purposes. Building on this, we found very useful the package IGraph, which implements

a number of functions for graph analysis currently unavailable in the Mathematica main

architecture. In mathematical jargon, a 1PI diagram is called 2-edge-connected. The

function IGEdgeConnectivity, when applied to a graph, precisely returns the number of

edges and we shall hence discard those which fail to meet our criterion. On top of that,

IGraph also provides the handy function IGGetIsomorphism able to find the relabelling

of indices between that makes two graph isomorphic. This is extremely useful, as it

enables us to vastly reduce the number of total terms by graphically implementing the

relabelling we implicitly perform when counting the symmetry factor associated to a

diagram.

2If odd, the expression is discarded from the outset, thanks to Wick theorem.

https://igraph.org/
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