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Abstract

In this paper, the stability of solutions of stochastic McKean-Vlasov equations
(SMVEs) via feedback control based on discrete-time state observation is studied,
which includes the H∞ stability, asymptotic stability and exponential stability in mean
square for the solution of the controlled systems. Since the distribution of solution is
difficult to be observed, the corresponding particle system which can be observed is
investigated. we show that the exponential stability of control system is equivalent to
the the exponential stability of the corresponding particle system. Finally, an example
is provided to illustrate the theory.
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1 Introduction

Stochastic differential equations (SDEs) are widely used to model stochastic systems in
different branches of science and industry. The form of SDEs reads as follows:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), t ≥ 0.
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One of the popular applications for SDEs is the feedback control of stochastic systems.
We refer the readers to [5, 14, 19, 24] and references therein. Since, some real SDEs are
often unstable, an interesting problem of the automatic control field is that for some given
unstable SDEs, how can one design an effective control function for the system to make the
corresponding system be stable? Among them, the feedback control based on a continuous-
time state observation is an efficient one, which has been used in establishing the mean-square
exponential stabilization for a class of SDEs, see e.g. [1, 4, 9] and references therein. Since
the method of continuous-time state observation is usually too expensive and not realistic in
real lives, [16] proposed a more effective state feedback control which is based on discrete-
time state observation and is now widely studied. It is obvious that the state feedback
control based on continuous-time observation requires one to observe the system all the
time, while the state feedback control based on discrete-time state observation only requires
one to observe the system in some discrete time. There are many results on this problem in
the previous literatures (e.g. [15, 21]). In particular, for an unstable stochastic system, it is
very meaningful and important to design a feedback control with the form u(b t

δ
cδ) embedded

into the drift part, where δ is the discrete-time observation gap.
On the other hand, recently, many researchers are interested in studying the following

equations, which are called stochastic Mckean-Vlasov equations (SMVEs):{
x(t) = x0 +

∫ t
0
f(x(s), µs)ds+

∫ t
0
g(x(s), µs)dB(s), t ∈ [t0,∞),

µt = L (x(t)) := the probability distribution of x(t).

Obviously, the coefficients involved depend not only on the state process but also on its
distribution. With contrast to the classical SDEs, SMVEs enjoy some essential features.
The work on SMVEs was initiated by McKean [20], who was inspired by Kac’s Programme
in Kinetic Theory [13]. Sznitman [22] investigated the existence and uniqueness of the results
under a global Lipschitz condition. Wang [23] studied the existence of invariant probability
measures for SMVEs. Govindan and Ahmed [10] studied the exponential stability of the
solutions for a semilinear SMVEs under the Lipschitz condition and linear growth condition.
Ding and Qiao [7, 8] derived the existence and uniqueness of the solution with non-Lipschitz
condition and analyzed the stability of the solutions for SMVEs, respectively. Furthermore,
in addition to the theoretical values, this kind of equations also has a lot of applied values
in social science, economics, engineering, etc. (see e.g. [3]).

To the best our knowledge, there is little study on the stabilization of SMVEs with
feedback control based on discrete-time state observation. It is clear that the controlled
Mckean-Vlasov system includes discrete-time state observations as well as its distribution
observations while feedback control systems independent of distribution only need to observe
state of the systems. In this paper, we shall study the stabilization problem by using the
feedback control with a discrete-time version: for an unstable McKean-Vlasov system, we aim
to make the Mckean-Vlasov system stable by designing a discrete-state and its distribution
feedback control on this system. Our main contributions are as follows:

• We are the first to study feedback control problem for SMVEs based on discrete-time
state observation.
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• The Lyapunov functions used in this article not only contain state of the solution but
also the distribution of the solution, while the previous Lyapunov functions used in the
state feedback control system only contain state of the solution. This is an essential
feature.

• We study the asymptotic stability and exponential stability in mean square of the
solution for SMVEs based on discrete-time state observation.

• The distribution of analytical solution x(t) is difficult to be observed while the empirical
distribution can be observed more easily. Thus, we further study the corresponding
particle system. We show that the exponential stability of control system is equivalent
to the the exponential stability of the corresponding particle system.

We close this part by giving our organization in this article. In Section 2, we introduce
some necessary notations, research objects and necessary assumptions. In Section 3, we aim
to study the stability of solutions to SMVEs via feedback control based on discrete-time
state observation. Then, an example is presented to illustrate the theories in Section 4.

2 Preliminaries

2.1 Notations

Throughout this paper, let (Ω,F ,F, P ) be a complete probability space with filtration F =
{Ft}t≥0 satisfying the usual conditions(i.e., it is increasing and right continuous, F0 contains
all P -null sets) taking along a standard m-Brownian motion B(t). If x, y ∈ Rd, we use |x| to
denote the Euclidean norm of x, and use 〈x, y〉 or xy to denote the Euclidean inner product.
If A is a matrix, AT is the transpose of A, and |A| represents

√
Tr(AAT ). Moreover, let bac

be the integer parts of a. For δ > 0, set σt = b t
δ
cδ, where δ is the discrete-time observation

gap. Let B(Rd) be the Borel σ−algebra on Rd, C(Rd) denotes all continuous functions on
Rd and Ck(Rd) denotes all continuous functions on Rd with continuous partial derivations
of order up to k. Let P(Rd) be the space of all probability measures, and Pp(Rd) denotes
the space of all probability measures defined on B(Rd) with finite pth moment:

Wp(µ) :=

(∫
Rd
|x|pµ(dx)

) 1
p

<∞.

For µ, ν ∈Pp(Rd), we define the Wasserstein distance for p ≥ 1 as follows:

Wp(µ, ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

|x− y|pπ(dx, dy)

} 1
p

,

where Π(µ, ν) is the family of all couplings for µ, ν.
Set M s

λ2(R
d) = {m : m is a signed measure on Rd satisfying ‖m‖2

λ2 =
∫
Rd(1+|x|)2|m|(dx) <

∞, where |m| is the total variation measure of m}, and Mλ2(Rd) = M s
λ2(R

d)
⋂

P(Rd). We
put on Mλ2(Rd) a topology induced by the Wasserstein distance W2(·, ·).
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2.2 Lions Derivatives

In this subsection, we will give the definition of Loins derivative for b : Mλ2(Rd) → R with
respect to a probability measure as introduced in [8].

Definition 2.1. We say that U : Mλ2(Rd)→ R is differential at µ ∈Mλ2(Rd), if there exists
some X ∈ L2(Ω,F , P ;Rd) such that µ = L (X) and the function Ũ : L2(Ω,F , P ;Rd)→ R
given by Ũ(X) := U(L (X)) is Fréchet differentiable at X.

We recall that Ũ is Fréchet differentiable at X means that there exists a continuous
mapping DŨ(X) : L2(Ω,F , P ;Rd)→ R such that for any Y ∈ L2(Ω,F , P ;Rd)

Ũ(X + Y )− Ũ(X) = DŨ(X)(Y ) + o(|Y |L2), as |Y |L2 → 0.

Due to DŨ(X) ∈ L(L2(Ω,F , P ;Rd);R), by Riesz representation theorem, there exists a
P -a.s. unique variable Z ∈ L2(Ω,F , P ;Rd) such that for any Y ∈ L2(Ω,F , P ;Rd)

DŨ(X)(Y ) = 〈Y, Z〉L2 = E[Y Z].

Cardaliaguet [2] showed that there exists a Borel measurable function h : Rd → Rd which
only depends on the distribution L (X) rather that X itself such that Z = h(X). Thus, for
X ∈ L2(Ω,F , P ;Rd),

U(L (Y ))− U(L (X)) = E[h(X)(Y −X)] + o(|Y −X|L2).

We call ∂µU(L (X))(y) := h(y), y ∈ Rd the L-derivative of U at L (X), X ∈ L2(Ω,F , P ;Rd).

Let C1(Mλ2(Rd)) denote all functions U : Mλ2(Rd)→ R such that ∂µU : Mλ2(Rd)×Rd →
Rd is continuous. Let C1;1

b (Mλ2(Rd)) be all functions U ∈ C1(Mλ2(Rd)) such that ∂µU is
bounded and Lipschitz continuous, i.e., there exists a positive constant C such that

(i) |∂µU(µ)(x)| ≤ C for any µ ∈Mλ2(Rd), x ∈ Rd.

(ii) |∂µU(µ)(x)− ∂µU(ν)(y)|2 ≤ C(W 2
2 (µ, ν) + |x− y|2), µ, ν ∈Mλ2(Rd), x, y ∈ Rd.

We need more definitions:

(1) The function U is said to be in C2(Mλ2(Rd)) if for any µ ∈Mλ2(Rd), U ∈ C1(Mλ2(Rd)),
∂µU(µ)(·) is differentiable and its derivative ∂y∂µU : Mλ2(Rd) × Rd → Rd ⊗ Rd is
continuous.

(2) The function U is said to be in C2;1
b (Mλ2(Rd)) if U ∈ C2(Mλ2(Rd))

⋂
C1;1
b (Mλ2(Rd))

and its derivative ∂y∂µU is bounded and Lipschitz continuous.

(3) The function Ψ is said to be in C2,2
b (Rd × Mλ2(Rd)) if for any x ∈ Rd, Ψ(x, ·) ∈

C2,1
b (Mλ2(Rd)) and for any µ ∈Mλ2(Rd), Ψ(·, µ) ∈ C2(Rd).
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(4) The function Ψ is said to be in C (Rd ×Mλ2(Rd)) if Ψ ∈ C2,2
b (Rd ×Mλ2(Rd)) and for

any compact set K ⊂ Rd ×Mλ2(Rd),

sup
(x,µ)∈K

∫
Rd

(|∂y∂µΨ(x, µ)(y)|2 + |∂µΨ(x, µ)(y)|2)µ(dy) <∞.

(5) Ψ ∈ C2,2;1
b (Rd ×Mλ2(Rd)) means that

(i) Ψ is bicontinuous in (x, µ).

(ii) For any x ∈ Rd, Ψ(x, ·) ∈ C2;1
b (Mλ2(Rd)) and for any µ ∈ Mλ2(Rd), Ψ(·, µ) ∈

C2(Rd).

(iii) For any µ ∈Mλ2(Rd), ∂xiΨ(·, µ) is bounded.

(6) Let C+(Rd ×Mλ2(Rd)) be the set of all functions Ψ ∈ C (Rd ×Mλ2(Rd)) such that
Ψ > 0. C2,2;1

b,+ (Rd ×Mλ2(Rd)) denotes all functions Ψ ∈ C2,2;1
b (Mλ2(Rd)) with Ψ ≥ 0.

2.3 The Itô formula

Consider the following equations:{
dy(t) = (f(y(t), ρt) + u(y(t), ρt))dt+ g(y(t), ρt)dB(t), t ∈ [0,∞),

y(0) = x0,
(2.1)

and {
dx(t) = (f(x(t), µt) + u(x(σt), µσt))dt+ g(x(t), µt)dB(t), t ∈ [0,∞),

x(0) = x0,
(2.2)

where x0 ∈ Rd, and ρt and µt are the distributions of y(t) and x(t), respectively. Moreover,
f, u : Rd ×Mλ2(Rd) → Rd, g : Rd ×Mλ2(Rd) → Rd×m. In Eq.(2.2), one can see that
the control function u(x(σt), µσt) only depends on the state at discrete times 0, δ, 2δ, · · · .
Moreover, we assume that f(0, δ0) = 0, g(0, δ0) = 0, µ(0, δ0) = 0, where 0 is a d−dimensinal
zero vector and δ0 is the Dirac measure at 0. For the existence and uniqueness of solutions
of Eq.(2.1) and Eq.(2.2), we assume that:

(H1) Suppose that f, g, u satisfy the following Lipschitz condition, i.e., there exist positive
constants Li, i = 1, 2, 3 such that

|f(x, µ)− f(y, ν)|2 ≤ L1(|x− y|2 +W 2
2 (µ, ν)),

|g(x, µ)− g(y, ν)|2 ≤ L2(|x− y|2 +W 2
2 (µ, ν)),

|u(x, µ)− u(y, ν)|2 ≤ L3(|x− y|2 +W 2
2 (µ, ν)),

for all x, y ∈ Rd, µ, ν ∈Mλ2(Rd).
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By Theorem 3.1 in [12], under the assumption (H1), Eq.(2.1) and Eq.(2.2) have unique
solutions, respectively. We now introduce the following operators.

Definition 2.2. For V ∈ C (Rd ×Mλ2(Rd)), the operator LV : Rd ×Mλ2(Rd) → R for
Eq.(2.1) is defined by

LV (x, ρ) = ∂xV (x, ρ)f(x, ρ) + ∂xV (x, ρ)u(x, ρ)

+
1

2
tr(gT (x, ρ)Vxx(x, ρ)g(x, ρ)) +

∫
Rd
∂ρV (x, ρ)(y)f(y, ρ)ρ(dy)

+

∫
Rd
∂ρV (x, ρ)(y)u(y, ρ)ρ(dy) +

1

2

∫
Rd

tr(gT (y, ρ)∂y∂ρV (x, ρ)(y)g(y, ρ))ρ(dy). (2.3)

Definition 2.3. Let ξ and η be two random variables whose distributions are µ and ν,
respectively. Let the joint distribution of (ξ, η) be Fξ,η(z, z̄). For V ∈ C (Rd ×Mλ2(Rd)), the
operator LV : Rd ×Mλ2(Rd)× Rd ×Mλ2(Rd)→ R for Eq.(2.2) is defined by

LV (x, µ, y, ν) = ∂xV (x, µ)f(x, µ) + ∂xV (x, µ)u(y, ν)

+
1

2
tr(gT (x, µ)Vxx(x, µ)g(x, µ)) +

∫
Rd
∂µV (x, µ)(z)f(z, µ)µ(dz)

+

∫
Rd

∫
Rd
∂µV (x, µ)(z)u(z̄, ν)Fξ,η(dz, dz̄)

+
1

2

∫
Rd

tr(gT (z, µ)∂z∂µV (x, µ)(z)g(z, µ))µ(dz).

The Itô formula has been established in [8, 11] for Eq. (2.1), we cite it as the following
lemma.

Lemma 2.1. Assume (H1) and V ∈ C2,2,1
b (Rd ×Mλ2(Rd)). Then it holds that

V (y(t), ρt)− V (y(0), ρ0) =

∫ t

0

LV (y(s), ρs)ds+

∫ t

0

Vx(y(s), ρs)g(y(s), ρs)dB(s).

Since the feedback control in Eq.(2.2) depends on the discrete time, we need to develop
an Itô’s formula for this equation.

We need more notations to formulate the Itô formula. Assume that (Ω̃, F̃ , F̃ = {F̃t}, P̃ )
is another probability space taking along a m−dimensional Brownian motion {B̃(t)}t≥0.
Consider the following equation:{

dx̃(t) = (f(x̃(t), µ̃t) + u(x̃(σt), µ̃σt))dt+ g̃(x̃(t), µ̃t)dB̃(t), t ∈ [0,∞),

x̃(0) = x0,
(2.4)

where x0 ∈ Rd, and µ̃t denotes the distribution of x̃(t). By the weak uniqueness, it holds
that {x(t)}t≥0 and {x̃(t)}t≥0 are identical in probability law. Furthermore, denote by Ẽ[·]
the expectation under P̃ .

We now present the Itô formula for (2.2), which is an extension of proposition 2.9 in [8].
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Lemma 2.2. Let V ∈ C (Rd ×Mλ2(Rd)) and the assumption (H1) hold. Then one has that

V (x(t), µt) = V (x(0), µ0) +

∫ t

0

LV (x(s), µs, x(σs), µσs)ds

+

∫ t

0

∂xV (x(s), µs)g(x(s), µs)dB(s). (2.5)

Proof. Let x(t) be the unique solution of (2.2). By the Hölder inequality and the BDG
inequality, it holds that for any T > 0 and 0 ≤ t ≤ T,

E sup
0≤s≤t

|x(s)|2 ≤ 3E|x0|2 + 3E sup
0≤s≤t

∣∣∣∣ ∫ s

0

f(x(r), µr) + u(x(σr), µσr)dr

∣∣∣∣2
+ 3E sup

0≤s≤t

∣∣∣∣ ∫ s

0

g(x(r), µr)dB(r)

∣∣∣∣2
≤ 3E|x0|2 + 6TE

∫ t

0

|f(x(s), µs)|2ds+ 6TE
∫ t

0

|u(x(σs), µσs)|2ds

+ 12E
∫ t

0

|g(x(s), µs)|2ds

≤ 3E|x0|2 + E
∫ t

0

[(6TL1 + 12L2)|x(s)|2 + 6TL3|x(σs)|2

+ (6TL1 + 12L2)W 2
2 (µs, δ0) + 6TL3W

2
2 (µσs , δ0)]ds.

This, together with W 2
2 (µs, δ0) ≤ E|x(s)|2, yields that

E sup
0≤s≤t

|x(s)|2 ≤ 3E|x0|2 + (12TL1 + 24L2 + 12TL3)E
∫ t

0

sup
0≤u≤s

|x(u)|2ds.

From Gronwall’s formula, we get

E sup
0≤s≤T

|x(s)|2 ≤ 3E|ξ(0)|2e6(2TL1+2TL3+4L2)T . (2.6)

Using similar method, one can derive that

E sup
0≤s≤T

|x(s)|4 ≤ C, (2.7)

where C is a constant depending on L1, L2, L3, T. By (2.6), (2.7) and (H1), we have

E
∫ T

0

(|f(x(s), µs)|2 + |u(x(σs), µσs)|2 + |g(x(s), µs)|4)ds

≤ (L1 + L3)E
∫ T

0

(|x(s)|2 + |x(σs)|2 +W 2
2 (µs, δ0) +W 2

2 (µσs , δ0))ds

+ 2L2
2E
∫ T

0

(|x(s)|4 +W 4
2 (µs, δ0))ds <∞. (2.8)
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As in [11, Proposition A.8], we introduce another probability space (Ω̃, F̃ , P̃ ), a filtration
{F̃t}t≥0, a Brownian motion B̃ on this probability space and processes B̃, x̃ on this proba-
bility space such that they have the same laws as B, x. Then, we have

dx̃(t) = (f(x̃(t), µ̃t) + u(x̃(σt), µ̃σt))dt+ g(x̃(t), µ̃t)dB̃(t).

Let
b̃t = (f(x̃(t), µ̃t) + u(x̃(σt), µ̃σt)), σ̃t = g(x̃(t), µ̃t).

Then

dx̃(t) = b̃tdt+ σ̃tdB̃(t).

Since x(t) and x̃(t) have the same distribution, from (2.8) one can see that

Ẽ
∫ t

0

[|b̃s|2 + |σ̃s|4]dt <∞.

Fix x and set h(µ) = V (x, µ). It follows from [11, Proposition A.6] that

h(µ̃t)− h(µ̃0) =

∫ t

0

Ẽ
[
b̃s∂µV (x, µ̃s)(x̃(s)) +

1

2
tr[σ̃∗s∂x∂µV (x, µ̃s))(x̃(s))σ̃s]

]
ds,

=

∫ t

0

Ẽ
[(
f(x̃(s), µ̃s) + u(x̃(σs), µ̃σs)

)
∂µV (x, µ̃s)(x̃(s))

+
1

2
tr
(
g∗(x̃(s), µ̃s)∂x∂µV (x, µ̃s))(x̃(s))g(x̃(s), µ̃s)

)]
ds

=:

∫ t

0

M(x, µ̃s)ds.

Now, set V (x, t) = V (x, µ̃t). Thus, we have

∂tV (x, t) = M(x, µ̃t).

Applying Itô’s formula [11, Proposition A.8] to V (x(t), µ̃t) and noting that µt = µ̃t, we derive
that

V (x(t), µ̃t)− V (x(0), µ̃0) = V (x(t), t)− V (x(0), 0)

=

∫ t

0

[
Vx(x(s), µs)(x(s))

[
f(x(s), µs) + u(x(σs), µσs)

]
+

1

2
trace

[
gT (x(s), µs)Vxx(x(s), µs)(z)g(x(s), µs)

]
+M(x(s), µ̃s)

]
ds

+

∫ t

0

∂xV (x(s), µs)g(x(s), µs)dB(s).

The desired assertion (2.5) holds.
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3 Asymptotic stability and exponential stability in mean

square

In order to study the asymptotic stability and the exponential stability in mean square, we
impose the following assumption:

(H2) Assume there exist V ∈ C (Rd ×Mλ2(Rd)), and four constants λ1 > 0, λ2 > 0, γ1 >
0, γ2 ≥ 0 such that∫

Rd
LV (x, µ)µ(dx) + λ1

∫
Rd
|Vx(x, µ)|2µ(dx) + λ2

∫
Rd

∫
Rd
|∂µV (x, µ)(y)|2µ(dy)µ(dx)

≤ −γ1

∫
Rd
V (x, µ)µ(dx) + γ2.

The following two results are about the asymptotic stability of the solutions for Eq. (2.2).

Lemma 3.1. Let (H1)− (H2) hold and assume further that there exists a positive constant
c1 such that c1

∫
Rd |x|

2µ(dx) ≤
∫
Rd V (x, µ)µ(dx). If δ > 0 is sufficiently small such that

γ1c1 − 8L1θδ
2 − 8L3θδ

2 − 2L2θδ > 0, δ <

√
1

8L3

,

then the control system (2.2) is H∞−stable, i.e.,

lim sup
t→∞

1

t
E
∫ t

0

|x(s)|2ds ≤ γ2, (3.1)

for any initial data x0 ∈ Rn. Moreover, if γ2 = 0, we have

E
∫ ∞

0

|x(t)|2dt <∞. (3.2)

Proof. We divide the proof into two parts.
(i) We construct the following Lyapunov functional which depends on the segment process

xt := {x(t+ r);−δ ≤ r ≤ 0} with x(r) = x0 ∈ Rd,−δ ≤ r ≤ 0. That is: Let

Ṽ (xt, µt) = V (x(t), µt) + θ

∫ t

t−δ

∫ t

r

[δ|f(x(s), µs)

+ u(x(σs), µσs)|2 + |g(x(s), µs)|2]dsdr, t ≥ 0, (3.3)

where θ is a positive constant to be determined later. Applying Itô’s formula to Ṽ (xt, µt)
and noting that

d

(
θ

∫ t

t−δ

∫ t

r

[δ|f(x(u), µu) + u(x(σu), µσu)|2 + |g(x(u), µu)|2]dudr

)
9



=

[
θδ[δ|f(x(t), µt) + u(x(σt), µσt)|2 + |g(x(t), µt)|2]

− θ
∫ t

t−δ
[δ|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2]dr

]
dt,

we get

dṼ (xt, µt) = L V (xt, µt)dt+ dM(t), (3.4)

where M(t) is a martingale and

L V (xt, µt) = LV (x(t), µt, x(σt), µσt) + θδ[δ|f(x(t), µt) + u(x(σt), µσt)|2 + |g(x(t), µt)|2]

− θ
∫ t

t−δ
[δ|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2]dr. (3.5)

(ii) We are going to prove (3.1) and (3.2). From (2.3) and (3.5), we get

L V (xt, µt) = LV (x(t), µt)− ∂xV (x(t), µt)(u(x(t), µt)− u(x(σt), µσt))

−
∫
Rd

∫
Rd
∂µV (x(t), µt)(y)(u(y, µt)− u(ȳ, µσt))Fx(t),x(σ(t))(dy, dȳ)

+ θδ[δ|f(x(t), µt) + u(x(σt), µσt)|2 + |g(x(t), µt)|2]

− θ
∫ t

t−δ
[δ|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2]dr. (3.6)

By Young’s inequality, we have

−∂xV (x(t), µt)(u(x(t), µt)− u(x(σt), µσt))

≤ λ1|∂xV (x(t), µt)|2 +
L3

4λ1

|x(t)− x(σt)|2 +
L3

4λ1

W 2
2 (µt, µσt), (3.7)

and

−
∫
Rd

∫
Rd
∂µV (x(t), µt)(y)(u(y, µt)− u(ȳ, µσt))Fx(t),x(σ(t))(dy, dȳ)

≤ λ2

∫
Rd
|∂µV (x(t), µt)(y)|2µt(dy) +

L3

4λ2

E[|x(t)− x(σt)|2] +
L3

4λ2

W 2
2 (µt, µσt). (3.8)

Since W 2
2 (µt, δ0) ≤ E|x(t)|2, it follows from (3.6), (3.7), (3.8) and (H1) that

L V (xt, µt) ≤ LV (x(t), µt) + λ1|∂xV (x(t), µt)|2 + λ2

∫
Rd
|∂µV (x(t), µt)(y)|2µt(dy)

+ (4L1θδ
2 + 4L3θδ

2 + L2θδ)|x(t)|2 + (4L1θδ
2 + 4L3θδ

2 + L2θδ)W
2
2 (µt, δ0)

+ (
L3

4λ1

+ 2L3θδ
2 +

L3

4λ2

)|x(t)− x(σt)|2 + (
L3

4λ1

+ 2C3θδ
2 +

L3

4λ2

)W 2
2 (µ(t), µ(σt))
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− θ
∫ t

t−δ
[δ|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2]dr. (3.9)

Noting that W 2
2 (µt, µσt) ≤ E|x(t)− x(σt)|2, (3.9) and (H2), we obtain

EL V (xt, µt) =

∫
Rd

L V (x, µt)µt(dx) ≤ −λ4E|x(t)|2 + γ2

+ (
L3

4λ1

+ 2L3θδ
2 +

L3

4λ2

)E|x(t)− x(σt)|2 + (
L3

4λ1

+ 2L3θδ
2 +

L3

4λ2

)E|x(t)− x(σt)|2

− θE
∫ t

t−δ
[δ|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2]dr

≤ −λ4E|x(t)|2 + γ2

+ 2(
L3

4λ1

+ 2L3θδ
2 +

L3

4λ2

)E|x(t)− x(σt)|2

− θE
∫ t

t−δ
[δ|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2]dr. (3.10)

where λ4 = γ1c1 − 8L1θδ
2 − 8L3θδ

2 − 2L2θδ. Noting that

x(t)− x(σt) =

∫ t

σt

(f(x(s), µs) + u(x(σs), µσs))ds+

∫ t

σt

g(x(s), µs)dB(s),

and using the Hölder inequality and the BDG inequality, we have

E|x(t)− x(σt)|2 ≤ 2(t− σt)E
∫ t

σt

(|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2)dr.

Since t− σt ≤ δ, we obtain

E|x(t)− x(σt)|2 ≤ 2E
∫ t

t−δ
(δ|f(x(r), µr) + u(x(σr), µσr)|2 + |g(x(r), µr)|2)dr.

Choosing θ ≥
( 1
λ1

+ 1
λ2

)L3

1−8L3δ2
, this together with (3.10) yields that

EL V (xt, µt) ≤ −λ4E|x(t)|2 + γ2. (3.11)

From (3.4), we get

0 ≤ EṼ (xt, µt) ≤ L4 − λ4E
∫ t

0

|x(s)|2ds+ γ2t.

where L4 = V (x0, µ0) + θ
∫ 0

−δ

∫ 0

r
[δ|f(x(u), µu) + u(x(σu), µσu)|2 + |g(x(u), µu)|2]dudr.

This leads to

lim sup
t→∞

1

t
E
∫ t

0

|x(s)|2ds ≤ γ2.

If γ2 = 0, the second assertion follows.
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Lemma 3.2. Assume that (H1) and (H2) hold. Let δ > 0 be sufficiently small such that

H(δ, p) := (3p−1δ22L1+ p
2 +3p−1cpδ

22L2+ p
2 +3p−1δ22L2+ p

2 )e3p−1δ2L1+
p
2 +3p−1δcp2L2+

p
2 < 1

2p
, where cp

is the constant in BDG’s inequality. Then the solution x(t) of Eq.(2.2) satisfies the following
inequality for p ≥ 2:

E|x(t)− x(σt)|p ≤
2p−1H(δ, p)

1− 2p−1H(δ, p)
E|x(t)|p. (3.12)

Proof. Fix any integer l ≥ 0. For t ∈ [lδ, (l + 1)δ), we have σt = b t
δ
cδ = lδ. From (2.2), we

obtain

|x(t)− x(σt)|p = |x(t)− x(lδ)|p

=

∣∣∣∣ ∫ t

lδ

(f(x(s), µs) + u(x(σs), µσs))ds+

∫ t

lδ

g(x(s), µs)dB(s)

∣∣∣∣p
≤ 3p−1

∣∣∣∣ ∫ t

lδ

f(x(s), µs)ds

∣∣∣∣p + 3p−1

∣∣∣∣ ∫ t

lδ

u(x(σs), µσs)ds

∣∣∣∣p
+ 3p−1

∣∣∣∣ ∫ t

lδ

g(x(s), µs)dB(s)

∣∣∣∣p.
This, together with the Lipschitz condition (H1), implies

E|x(t)− x(σt)|p

≤ 3p−1E
∣∣∣∣ ∫ t

lδ

f(x(s), µs)ds

∣∣∣∣p + 3p−1E
∣∣∣∣ ∫ t

lδ

u(x(σs), µσs)ds

∣∣∣∣p
+ 3p−1E

∣∣∣∣ ∫ t

lδ

g(x(s), µs)dB(s)

∣∣∣∣p
≤ (3p−1δ2L1+ p

2 + 3p−1cpδ2
L2+ p

2 )E
∫ t

lδ

|x(s)− x(lδ)|2ds

+ (3p−1δ22L1+ p
2 + 3p−1δ22L2+ p

2 + 3p−1cpδ
22L2+ p

2 )E|x(lδ)|p.

It follows from Gronwall’s inequality that

E|x(t)− x(σt)|p ≤ H(δ, p)E|x(σt)|p.

Hence, the required assertion follows from 2p−1H(δ, p) < 1 and

E|x(t)− x(σt)|p ≤ 2p−1H(δ, p)(E|x(t)|p + E|x(t)− x(σt)|p).

The following theorem states the asymptotic stability in mean square of the solution of
Eq. (2.2).
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Theorem 3.3. Assume (H1) and (H2) hold with γ2 = 0. If δ > 0 is sufficiently small
such that H(δ) := (12δ2L1 + 6δ2L3 + 12δL2)e(12δL1+12L2)δ < 1

2
, then the solution of controlled

system (2.2) is stable in mean square, i.e.,

lim
t→∞

E|x(t)|2 = 0.

Proof. For 0 ≤ t1 < t2 <∞, we have

E|x(t2)− x(t1)|2

≤ 2|t2 − t1|E
∫ t2

t1

|f(x(s), µs) + u(x(σs), µσs)|2ds+ 2E
∫ t2

t1

|g(x(s), µs)|2ds

≤ 4|t2 − t1|E
∫ t2

t1

(|f(x(s), µs)|2 + |u(x(σs), µσs)|2)ds+ 2E
∫ t2

t1

|g(x(s), µs)|2ds

≤ 16(L1 + 2L3)|t2 − t1|
∫ t2

t1

E|x(s)|2ds+ 8L2

∫ t2

t1

E|x(s)|2ds

+ 32L3|t2 − t1|
∫ t2

t1

E|x(s)− x(σs)|2ds

≤ 16

(
L1 + 2L3 + 2L3

H(δ)

1− 2H(δ)

)
|t2 − t1|

∫ t2

t1

E|x(s)|2ds+ 8L2

∫ t2

t1

E|x(s)|2ds.

By (3.2), one can see that
∫ t

0
E|x(s)|2ds is uniformly continuous in t on R+. Therefore,

E|x(t)|2 is uniformly continuous in t. This together with (3.2) implies the assertion.

Next, we will present the exponential stability in mean square.

Theorem 3.4. Assume that (H1) and (H2) hold with γ2 = 0. Let δ be sufficiently small
such that λ4 = γ1c1 − 8L1θδ

2 − 8L3θδ
2 − 2L2θδ > 0. If there exist two positive constants c1

and c2 such that

c1

∫
Rd
|x|2µ(dx) ≤

∫
Rd
V (x, µ)µ(dx) ≤ c2

∫
Rd
|x|2µ(dx), (3.13)

then the solution x(t) of Eq. (2.2) is exponentially stable in mean square, i.e.,

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −α,

where α > 0 is a constant satisfying αKδeαδ + αc2 − λ4 < 0 with K = 8θδ2L3H(δ)
1−2H(δ)

+ 4θδ2L1 +

8θδ2L3 + 2θδL2.

Proof. Let Ṽ (xt, µt) be defined by (3.3). Applying Itô’s formula to eαtṼ (xt, µt) and using
(3.4), we get

EeαtṼ (xt, µt) = EṼ (x0, δx0) + E
∫ t

0

eαs[αṼ (xs, µs) + L V (xs, µs)]ds.
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By (3.11), we obtain

EeαtṼ (xt, µt) ≤ EṼ (x0, δx0) +

∫ t

0

eαs[αEṼ (xs, µs)− λ4E|x(s)|2]ds. (3.14)

Due to (3.3) and (3.13), one can see that

EṼ (xt, µt) ≤ c2E|x(t)|2 + E(Γ(xt, µt)),

where Γ(xt, µt) = θ
∫ t
t−δ

∫ t
r
[δ|f(x(u), µu) + u(x(σu), µσu)|2 + |g(x(u), µu)|2]dudr. It follows

from (H1) that

EΓ(xt, µt) ≤ 4θδ2L3E
∫ t

t−δ
|x(s)− x(σs)|2ds

+ 4θδ2L3E
∫ t

t−δ
W 2

2 (µs, µσs)ds

+ (2θδ2L1 + 4θδ2L3 + θδL2)E
∫ t

t−δ
|x(s)|2ds

+ (2θδ2L1 + 4θδ2L3 + θδL2)E
∫ t

t−δ
W 2

2 (µs, δ0)ds

≤ 8θδ2L3E
∫ t

t−δ
|x(s)− x(σs)|2ds

+ (4θδ2L1 + 8θδ2L3 + 2θδL2)E
∫ t

t−δ
|x(s)|2ds.

By Lemma 3.3, we have

EΓ(xt, µt) ≤
8θδ2L3H(δ, 2)

1− 2H(δ, 2)
E
∫ t

t−δ
|x(s)|2ds

+ (4θδ2L1 + 8θδ2L3 + 2θδL2)E
∫ t

t−δ
|x(s)|2ds

≤ KE
∫ t

t−δ
|x(s)|2ds.

From (3.13) and (3.14), we derive that

c1e
αtE|x(t)|2 ≤ Ṽ (x0, δx0) + (αKδeαδ + αc2 − λ4)

∫ t

0

E|x(s)|2ds.

This together with αKδeαδ + αc2 − λ4 < 0 yields

c1e
αtE|x(t)|2 ≤ Ṽ (x0, δx0), t > δ.

The required assertion follows.
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4 Interacting particle systems

Assume that {B1(t)}, {B2(t)}, · · · , are independent m−dimensional Brownian motions. We
now consider the following equations, for i = 1, 2, · · ·

{
dxi(t) = (f(xi(t), µxit ) + u(xi(σt), µ

xi
σt))dt+ g(xi(t), µxit )dBi(t), t ∈ [0,∞),

x(0) = x0,
(4.1)

where µxit represents the law of xi(t). Let {xi(t), i = 1, 2, · · · } be the unique solution of the
above equations. We now write the corresponding interacting particle systems as follows:

{
dxi,N(t) = (f(xi,N(t), µx,Nt ) + u(xi,N(σt), µ

x,N
σt ))dt+ g(xi,N(t), µx,Nt )dBi(t), t ∈ [0,∞),

x(0) = x0,

(4.2)
where µx,Nt (·) := 1

N

∑N
i=1 δxi,N (t)(·).Obviously, in real world, the distribution of x(t) is difficult

to be observed. However, the corresponding one of the particle system can be observed. We
will prove that the exponential stability of system (2.2) is equivalent to the exponential
stability of corresponding particle system (4.2).

First of all, we make the following assumption:

(H3) (i) Let ξ and η be two random variables whose distributions are µ and ν, respectively,
and the joint distribution of (ξ, η) be Fξ,η(z, z̄). Assume that there exists a Lyapunov
function U ∈ C (Rd ×Mλ2(Rd)) such that∫

Rd

∫
Rd

LU(x, µ, y, ν)Fξ,η(x, y)

≤ −α1

∫
Rd
|x|pµ(dx) + α2W

p
2 (µ, ν) + α3

∫
Rd

∫
Rd
|x− y|pFξ,η(x, y) + β

for p ≥ 2, where α1, α2, α3, β are four constants satisfying α1 > 0, α2 ≥ 0, α3 ≥ 0, β ≥ 0.
(ii) There exist two positive constants c1 and c2 such that

c̄1

∫
Rd
|x|pµ(dx) ≤

∫
Rd
U(x, µ)µ(dx) ≤ c̄2

∫
Rd
|x|pµ(dx),

For the future use, we cite [3, Theorem 5.8, pp.362] as the following lemma.

Lemma 4.1. Assume that {xn}n≥1 is a sequence of independent identically distributed (i.i.d.
for short) random variables in Rd with common distribution µ ∈P(Rd). For any N ∈ N, we
define the empirical measure µN = 1

N

∑N
i=1 δxi . If µ ∈ Pq(Rd) with q > 4, then there exists

a constant C = C(d, q,Wq(µ)) such that for any N ≥ 2,

E[W 2
2 (µN , µ)] ≤ τ(N) = C


N−

1
2 , 1 ≤ d < 4,

N−
1
2 ln(N), d = 4,

N−
2
d , 4 < d.
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The constant C in the lemma above depends on the qth moment Wq(µ) of i.i.d. random
variables. In order to apply this result to the solution x(t) of Eq. (2.2), we give the following
moment estimate of x(t).

Lemma 4.2. Assume (H1) and (H3). Then it holds that

sup
t≥0

E|x(t)|p ≤ Cx0,p, p ≥ 2.

where Cx0,p only depends on x0, p.

Proof. Let α, δ be two positive constants sufficiently small such that

H(δ, p) <
1

2
and αc̄2 − α1 + α2

H(δ, p)

1− 2H(δ, p)
+ α3

H(δ, p)

1− 2H(δ, p)
< 0.

From Itô’s formula, (H3) and (3.12), we have

E[eαtU(x(t), µt)] = U(x0, µ0) + E
∫ t

0

eαs(αU(x(s), µs) + LU(x(s), µs, x(σs), µσs))ds

≤ U(x0, µ0) + E
∫ t

0

eαs(αc̄2|x(s)|p − α1|x(s)|p + α2W
p
p (µs, µσs) + α3|x(s)− x(σs)|p + β)ds

≤ U(x0, µ0) + E
∫ t

0

eαs
[(
αc̄2 − α1 + α2

H(δ, p)

1− 2H(δ, p)
+ α3

H(δ, p)

1− 2H(δ, p)

)
|x(s)|p + β)

]
ds.

Due to the assumption in the theorem, we have

E[|x(t)|p] ≤ e−αtU(x0, µ0) +
β

α
(1− e−αt).

We obtain the required results from the above inequality.

From the above lemma, set Wq(µt) = Wq(µt, δ0), one can see that supt≥0Wq(µt, δ0) ≤ Cq.
Thus we have the following theorem.

Theorem 4.3. Assume (H1)− (H3), and p > 4. Then, we have the following two results:

(1)

lim
N→∞

E[|xi(t)− xi,N(t)|2] = 0.

(2) The solution of Eq.(2.2) is exponentially stable in mean square, i.e., there exists a
positive constant `1 such that

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −`1, (4.3)

if and only if the solution of (4.2) is exponentially stable in mean square, i.e., there
exists a positive constant `2 and for any i such that

lim sup
t→∞

lim
N→∞

1

t
log(E|xi,N(t)|2) ≤ −`2. (4.4)
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Proof. Firstly, we prove the first result. By Itô’s formula and Assumption (H1), we derive

E|xi(t)− xi,N(t)|2 ≤ E
{∫ t

0

[
2〈xi(s)− xi,N(s), f(xi(s), µx

i

s )− f(xi,N(s), µx,Ns )〉

+ 2〈xi(s)− xi,N(s), u(xi(σs), µ
xi

σs)− u(xi,N(σs), µ
x,N
σs )〉

+ |g(xi(s), µx
i

s )− g(xi,N(s), µx,Ns )|2
]
ds

}
≤ L

∫ t

0

E|xi(s)− xi,N(s)|2ds+ L

∫ t

0

E[W 2
2 (µx

i

s , µ
x,N
s )]ds

+ L

∫ t

0

E|xi(σs)− xi,N(σs)|2ds+ L

∫ t

0

E[W 2
2 (µx

i

σs , µ
x,N
σs )]ds,

where L is a constant independent of t, whose value may vary from one place to another.
From the above inequality, we derive

sup
0≤s≤t

E|xi(s)− xi,N(s)|2 ≤ L

∫ t

0

sup
0≤s≤r

E|xi(s)− xi,N(s)|2dr + L

∫ t

0

E[W 2
2 (µx

i

s , µ
x,N
s )]ds

+ L

∫ t

0

E[W 2
2 (µx

i

σs , µ
x,N
σs )]ds, (4.5)

We construct another empirical measure which comes from (4.1) as follows:

µNs (dx) =
1

N

N∑
j=1

δxj(s)(dx).

Note that

W 2
2 (µx

i

s , µ
x,N
s ) ≤ 2(W 2

2 (µx
i

s , µ
N
s ) +W 2

2 (µNs , µ
x,N
s ))

= 2W 2
2 (µx

i

s , µ
N
s ) +

2

N

N∑
j=1

|xj(s)− xj,N(s)|2,

and

1

N

N∑
j=1

E|xj(s)− xj,N(s)|2 = E|xj(s)− xj,N(s)|2.

Similarly,

W 2
2 (µx

i

σs , µ
x,N
σs ) ≤ 2(W 2

2 (µx
i

σs , µ
N
σs) +W 2

2 (µNσs , µ
x,N
σs ))

= 2W 2
2 (µx

i

σs , µ
N
σs) +

2

N

N∑
j=1

|xj(σs)− xj,N(σs)|2,
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and

1

N

N∑
j=1

E|xj(σs)− xj,N(σs)|2 = E|xj(σs)− xj,N(σs)|2.

Thus, we have∫ t

0

E[W 2
2 (µx

i

s , µ
x,N
s )]ds ≤ 2

∫ t

0

E[W 2
2 (µx

i

s , µ
N
s )]ds+ 2

∫ t

0

E|xj(s)− xj,N(s)|2ds,

and ∫ t

0

E[W 2
2 (µx

i

σs , µ
x,N
σs )]ds ≤ 2

∫ t

0

E[W 2
2 (µx

i

σs , µ
N
σs)]ds+ 2

∫ t

0

E|xj(σs)− xj,N(σs)|2ds.

These together with (4.5) imply

sup
0≤s≤t

E|xi(s)− xi,N(s)|2 ≤ L

∫ t

0

sup
0≤s≤r

E|xi(s)− xi,N(s)|2dr + L

∫ t

0

E[W 2
2 (µx

i

s , µ
N
s )]ds

+ L

∫ t

0

E[W 2
2 (µx

i

σs , µ
N
σs)]ds (4.6)

By Lemma 4.1, one has

E[W 2
2 (µx

i

s , µ
N
s )] + E[W 2

2 (µx
i

σs , µ
N
σs)] ≤ sup

s≥0
C(d, q,Wq(µ

i
s))


N−

1
2 , 1 ≤ d < 4,

N−
1
2 ln(N), d = 4,

N−
2
d , 4 < d.

Additionally, Lemma 4.2 implies that

sup
s≥0

C(d, q,Wq(µ
i
s)) <∞.

Therefore, the first result holds by Gronwall’s inequality and (4.6).
Now, we prove the second result. One may complete the proof by the following two

inequalities:

E|xi,N(t)|2 ≤ 2E|xi(t)− xi,N(t)|2 + 2E|xi(t)|2,
E|xi(t)|2 ≤ 2E|xi(t)− xi,N(t)|2 + 2E|xi,N(t)|2.

4.1 Example

In this section, we give an example to illustrate the theory.
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Example 4.4. Consider the following equation: dy(t) =

(
2y(t) +

∫
R zµt(dz)

)
dt+ y(t)dB(t),

y(0) = y0,
(4.7)

where y0 is a positive constant. Set

V (x, µ) = |x|2 +

∫
R
|z|2µ(dz).

By the fact of ∂µ

(∫
R |z|

2µ(dz)

)
(y) = 2y, computing the operator LV (x, µ) of Eq.(4.7)

acting on V (x, µ), we have

LV (x, µ) = (2x+

∫
R
zµ(dz))2x+ |x|2 +

∫
R

(
2y +

∫
R
zµ(dz)

)
2yµ(dy) +

∫
R
y2µ(dy)

≥ 4|x|2 + 5

∫
R
|z|2µ(dz) +

∣∣∣∣ ∫
R
zµ(dz)

∣∣∣∣2,
Thus, from Itô’s formula, we can know that the solution of Eq.(4.7) is unstable in the sense
of mean square expectation.

We now consider the following equation with discrete time feedback control:

dx(t) = [2x(t) +

∫
R
zµt(dz)− k1x(σt)− k2

∫
R
zµσt(dz)]dt+ x(t)dB(t), (4.8)

where k1 and k2 are constants. The corresponding equation of (4.8) without delay (discrete
time feedback control) is as follows:

dx̄(t) = [2x̄(t) +

∫
R
zρt(dz)− k1x̄(t)− k2

∫
R
zρt(dz)]dt+ x̄(t)dB(t), (4.9)

where ρt is the distribution of x̄(t). Computing the operator LV (x, µ) of Eq.(4.9) acting on
V (x, µ), one can see that

LV (x, µ) =

(
2x+

∫
R
zµ(dz)− k1x− k2

∫
R
zµ(dz)

)
2x+ |x|2

+

∫
R

(
2y +

∫
R
zµ(dz)− k1y − k2

∫
R
zµ(dz)

)
2yµ(dy) +

∫
R
y2µ(dy)

≤ (6− 2k1 + k2)|x|2 + (5− 2k1)

∫
R
|z|2µ(dz) + (3− k2)

(∫
R
zµ(dz)

)2

.

and

λ1

∫
R
|Vx(x, µ)|2µ(dx) = 4λ1

∫
R
|x|2µ(dx), λ2

∫
R
|∂µVx(x, µ)|2µ(dx) ≤ 4λ2

∫
R
|x|2µ(dx).
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Choosing λ1 = 1
2
, λ2 = 1

2
, k1 = 8, k2 = 3, we have∫

R
LV (x, µ)µ(dx) + λ1

∫
R
|Vx(x, µ)|2µ(dx) + λ2

∫
R
|∂µVx(x, µ)|2µ(dx)

≤ −5

∫
R
x2µ(dx). (4.10)

Obviously, (H1) holds, and (H2) holds with γ1 = −5, γ2 = 0. Moreover,
∫
R |x|

2µ(dx) ≤∫
R V (x, µ)µ(dx) ≤ 2

∫
R |x|

2µ(dx). This means that the conditions of Theorem 3.5 hold.
Therefore, we conclude that the solution of Eq.(4.8) is exponentially stable in mean square.
Set U(x, µ) = |x|6 +

∫
R |z|

6µ(dz). Furthermore, from (3.6) and Lemma 3.2, we know that

E[LU(x(t), µt, x(σt), µσt)]

= E[LU(x(t), µt)− ∂xU(x(t), µt)(u(x(t), µt)− u(x(σt), µσt))]

−
∫
Rd

∫
Rd
∂µU(x(t), µt)(y)(u(y, µt)− u(ȳ, µσt))Fx(t),x(σ(t))(dy, dȳ)

≤ (52− 12k1 + 12k2 +
5

3
)E[|x(t)|6] + 652L3

3E[|x(t)− x(σt)|6]

≤ (52− 12k1 + 12k2 +
5

3
)E[|x(t)|6] + 652L3

3

32H(δ, 6)

1− 32H(δ, 6)
E[|x(t)|6]

≤ −13

3
E[|x(t)|6] + 652L3

3

32H(δ, 6)

1− 32H(δ, 6)
E[|x(t)|6]. (4.11)

Letting δ be small enough such that 652L3
3

32H(δ,6)
1−32H(δ,6)

< 1, we infer that the conditions of
Lemma 4.2 hold. Thus, the corresponding interacting particle system is exponentially stable
in mean square.
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