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Summary 

The demand for lightweight and strong alloys in the aviation industry, such as titanium 6Al-

4V, has grown with the increase in air travel. The fan blades on aero engines which are 

usually made from titanium 6Al-4V are susceptible to high strain rate deformation due to bird 

strike or other events associated with engine failure. The desire to optimise titanium alloys 

has lead to the desire for greater understanding of titanium deformation mechanics.  

In this research a hyperelastic-viscoplastic single-crystal rate-dependent material model is 

proposed. This model allows for the slip families of crystals to have their own unique 

material properties assigned to them. The crystallographic orientation is governed through the 

use of Euler angles. These Euler angles define the initial slip system configuration within the 

crystal.  

A method for generating computational microstructures known as representative volume 

elements for titanium 6Al-4V is detailed. The generated microstructures are compared to 

EBSD data and the correct volume fraction of beta phase is obtained. The average alpha grain 

size is also well matched but the beta grains are larger than found in the EBSD data set.  

The constructed microstructure is then meshed with brick elements and the model is used to 

simulate its response to macro and micro scale loadings. The model captures the general 

trends but does not give an exact match to the experimental data.   
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Chapter 1 Introduction 

This thesis is concerned with a development of a material model for use within a 

finite element frame work. The model is constructed for use with dual phase titanium 

alloys under high strain rate loadings at the micro-structural level.  

1.1 Motivation for Research 

The volume of air traffic has been increasing steadily for many years; Figure 1.1 

shows this trend on a global perspective for the years 2000 – 2010 [1].  This increase 

in the aviation sector has possibly lead to the increase in the number of reported 

strikes on aircraft per year, the majority of these strikes have involved birds. The 

increase in number of strikes and the split of birds to other animals can be seen in 

Figure 1.2 [2]. 

 

Figure 1.1: Air traffic numbers (taken from [1]).  
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Figure 1.2: Number of reported animal strikes to civil aircraft from 1990- 2012 (taken from [2]). 

 

Looking more in depth at American air travel and wildlife interaction also shows a 

trend of more bird strikes. In the four flyways of the United States the resident 

Canada goose population has risen by 3.6 fold since 1990 [3]. It should be noted that 

a typical Canada goose weighs 3.6 to 4.5 kg [4] which exceeds the bird certification 

standard for most aircraft engines [5], [6]. Canada geese also exhibit flocking 

behaviour which increases the chance of multiple strikes, with 598 of the total 1,403 

strikes reported between 1990-2012 involving multiple geese [3]. It is also important 

to note that it is not compulsory to report bird strikes to the Federal Aviation 

Administration [7].  

The rise in the goose population has come at a time in which more aircraft are using 

turbofan engines which are more susceptible to bird ingestion, [5] with their number, 

increasing from 4,148 in 1990 to 6,670 in 2008 [8]. It should also be noted that 

turbofan powered planes now tend to have two engine variants rather than three or 

four engine variants back in 1990. It is believed that Canada geese were responsible 

for the double engine failure of the A320 that was forced to land in the Hudson river 

in 2009 [9]. 

Aero engine manufacturers such as Rolls Royce are under increasing pressure to 

provide more efficient engines for future aircraft. This drive can be seen in 

documents from the European commission that quote: 
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“In 2050 technologies and procedures available allow a 75% reduction in CO2 

emissions per passenger kilometre to support the ATAG target and a 90% reduction 

in NOx emissions.” [10] This target is relative to typical new aircraft in 2000.  

Reducing the weight of the engine will also lead to lighter engine support structures, 

which in turn reduces the overall weight of the plane. This of course has a knock on 

effect on the fuel consumption of the aircraft.  

1.2 Why look at the microscale?  

Most currently available models are “descriptive” macroscale models that may 

describe the behaviour of a given alloy. Often the model parameters have been 

identified from experiments. Microscale models, on the other hand, are necessary if 

predictions of the macro behaviour of a given micro-structure are required. As such 

micro-modelling is essential in the “design” of alloys  

1.3 Modelling titanium alloys 

Other modelling techniques have been applied to titanium alloys by others in the 

past. In the next few subsections some of these models are outlined to give the reader 

some background information on the modelling of titanium. For a more in-depth 

explanation of these models the reader is referred to the relative works of A. Alankar 

et al. [11], H.W. Mayer Jr. et al. [12], H. Pourian et al. [13], and F.P. E. Dunne et al. 

[14]. 

1.3.1 Dislocation density-based crystal plasticity constitutive model for 

prismatic slip in α-titanium 

In this model the slip activity is modelled using a set of dislocation density-based 

rate equations and different constitutive laws that are used to describe the velocities 

of edge and screw dislocations [11].  

The total dislocation density is a combination of the total edge and screw type 

dislocations which is given in (1.1) [11] 

     
    

   (1.1) 

 

Where α represents prismatic slip system and e and s represent the edge and screw 

dislocation densities respectively. In this model the kinematics of shear rate on each 
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slip system is given in terms of the generalised Orowan form. The total plastic shear 

strain rate is given by: 

        
    

    
    

             (1.2) 

  

Where    
  and    

  represent the edge and screw dislocation velocities respectively. 

The screw dislocation segments are assumed to move via formation of kink pairs. 

The edge dislocation segments whose velocities are not affected by interstitials and 

impurities are pinned at the forest dislocation segments [11].    

In this model the edge dislocation velocity is governed by (1.3) [11] 

   
            

  
   

    
    

       
 

  

 

  

   
(1.3) 

 

And the screw dislocation velocity is governed by (1.4) [11] 

   
    

  

  

  
  
     

       
   

    
    

  
 

  

 

  

   
(1.4) 

 

  

Where    
  is the velocity of a straight screw dislocation segment   ,    is the critical 

length for kink pair nucleation,    is the Debye frequency,    is the Peierls stress, 

and    is the magnitude of the Burgers vector.  

Another important part to this model is the forest hardening given by (1.5) [11]. The 

slip resistance    on slip system α is given by a modified Taylor type equation.  

              
 
        

 
      

 
  

(1.5) 

Where   is the shear modulus,     is the latent hardening coefficient for slip systems 

α and β, and    is the forest dislocation density.  

The average segment length of the dislocation is given by (1.6) [11] 

   
 

        
 
        

 
       

  
(1.6) 
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This model is based on dislocation mechanics and as such needs to take into account 

the multiplication and annihilation of dislocations within the material. The edge and 

screw dislocation densities are described through the use of dislocation loops. This 

means that the edge dislocation density increases with the moving screw dislocations 

and vice versa and are governed by equations (1.7) and (1.8)  

      
  

   
    

  

  
  

(1.7) 

      
  

   
    

  

  
  

(1.8) 

When two dislocations of opposite sign get within a critical distance they will 

annihilate each other. In the model the annihilation is governed by equations (1.9) 

and (1.10) 

       
   

 

 
  
    

    
   

(1.9) 

       
   

 

 
  
    

    
   

(1.10) 

Where   
  and   

  are the critical distances for the edge and screw dislocation. These 

equations quantify how far the dislocations travel through a field of randomly 

distributed dislocations of opposite sign before they are annihilated.  

In this simulation only one finite element brick consisting of 8 integration points 

coupled with periodic boundary conditions along the x, y and z directions is used. 

The z direction is identical to the tensile direction [11]. 

1.3.2 Zerilli-Armstrong strength model  

The Zerilli-Armstrong (ZA) strength model is based on the theory of dislocation 

mechanics of which there are two forms: one that relates to face-centred cubic (fcc) 

material and one that relates to body-centred cubic (bcc). In the case of titanium the 

bcc model gives better results due to the similarities in behaviour between 

hexagonally close packed (hcp) and bcc crystal structures [12]. The ZA model 

describes the yield flow through the following equation: 

        
                  

   (1.11) 
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Where   is the absolute temperature,   is the equivalent plastic strain,    is the strain 

rate, and   ,   ,   ,   ,    and   are constants. The parameters in this model cannot 

be decoupled, therefore, a global fitting process is needed to determine the constants 

[12].  

In this bcc form of the model, the strain rate and temperature behaviour of the flow 

stress are independent of strain effects. It must also be noted that the strain rate and 

temperature dependencies are coupled in this model [12].  

1.3.3 Cellular automaton model 

The Cellular automaton (CA) method has mostly been used to model micro-

structural evolution, especially for static/dynamic recrystallisation [15][16]. The CA 

method has also been used to model the solidification process [13] and the motion of 

grain boundaries [17]. In the study by Pourian  [13] an isotropic elastic stiffness was 

allocated, calculated by Fisher and Renken to determine the isotropic Youngs 

modulus and the Poisson ratio.  Each cell’s bulk and shear modulus can be calculated 

elastically from the cell’s Youngs modulus and Poisson ratio [13]. This study only 

considers slip on the basal and prismatic slip systems, as only cold deformation was 

looked at [13]. In the study by Pourian [13] only one slip system was allowed to be 

active within each cell, therefore, only the maximum Schmid factor characterised 

each cell.  

In the study the Critical Resolved Shear Stress (CRSS) value is used to calculate the 

hardening behaviour given by  

Where   
    is the cumulative slip rate of all slip systems   , and    is the initial 

value of the CRSS [13]. Pourian points out that the CA model has to be validated by 

a more reliable approach such as Finite Element (FE) in order to test the hypotheses 

[13].  

In the FE simulations conducted by Pourian the behaviour of the central grain 

depends not only on the first degree neighbours but also on the behaviour of the other 

grains within the microstructure [13]. Due to the simple assumptions used in the 

Pourian application of the CA model it cannot capture the large field effects upon the 

aggregate when under loading conditions [13]. Pourian states that the FE simulation 

            
     (1.12) 
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results provide a good representation of mechanical behaviours at the macro and 

microscopic scales. This comes at a computational price, and prevents modelling of 

large numbers of grains or complex loading conditions [13].  

1.3.4 Lengthscale-dependent, elastically anisotropic, physically based hcp 

crystal plasticity model 

In a study by Dunne [14] on lengthscale-dependent, elastically anisotropic 

physically-based hcp crystal plasticity Ti-6Al-4V is used, as it is a near-α alloy and 

as such is mainly comprised of single hcp phase. Beta phase is, therefore, neglected 

from the simulation [14]. Another simplification for the model is that, for 

computational efficiency, slip is not permitted to occur on the pyramidal slip planes 

as well as being run as a 2D plane strain scenario [14]. In the study by Dunne the 

plane strain condition is imposed by ensuring that an equal and opposite elastic out-

of-plane strain is imposed, such that the total out-of-plane strain remains zero [14]. 

This condition leads to the model sometimes being over-constrained when coupled 

with certain crystallographic orientations. For example, when the c-axis is normal to 

both the out-of-plane direction and the loading direction. This can lead to higher 

stresses than expected. In the study Dunne simply chooses to avoid crystallographic 

orientations that cause this scenario [14].  

1.4 Layout of thesis 

Chapter 2 discusses the physical aspects of titanium alloys including their uses 

within the aero engine sector and microstructural configuration.  

Chapter 3 gives information on Phenomenological model of single crystals from the 

base principles.  

Chapter 4 outlines the finite element simulation of a multiscale model constructed for 

this research. 

Chapter 5 discusses the process used to create the microstructural Representative 

Volume Elements (RVEs) used in this project and how they are simulated.  

Chapter 6 shows results of simulations conducted in this research and what 

information this provides to titanium manufacturers.  

Chapter 7 gives the conclusions of this thesis.
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Chapter 2 Titanium alloys 

2.1 Applications 

Titanium alloys can be used in many applications from medical to aerospace. This is 

due to titanium’s high strength to weight ratio and corrosion resistance. In the 

aerospace sector titanium is used extensively within the gas turbine engines. The 

majority of the front section of the aero engine is made of titanium alloys including 

the fan blades, fan containment casing, low pressure compressor, and high pressure 

compressor [18].  Strike cases tend to happen on any leading edge of the aircraft, 

including the front of the engine. In the case of the turbofan engine the fan blades 

constitute the leading edge. Due to the location of these components impact events 

due to Foreign Object Damage (FOD) such as ingestion of birds or runway debris is 

likely to occur.   

The titanium alloys used in the leading edge components will therefore need to 

withstand impact loadings that might be seen in service. The materials deformation 

behaviour under these load cases needs to be known, this will lead safer and more 

efficient jet engine designs.  

2.2 The titanium microstructure 

2.2.1 Titanium alloys and its phases 

There are several different classes of titanium alloys: 

1. Alpha: low strength, corrosion resistant 

2. Near alpha: high strength, elevated temperature 

3. Alpha/Beta: general purpose high strength, good toughness 

4. Near beta: high strength, high toughness, good forgeability 

5. Beta: very high strengths up to 1800 MPa 

 

Each of these different classes of alloys has different amounts of the alpha or beta 

phases present within them. Ti-6Al-4V is the alloy that is commonly used for aero 

engine fan blades and blade containment casings and is alpha/beta class alloy. The 

alpha phase is a HCP crystal structure and the beta phase is a BCC crystal structure. 
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The amount of each phase present within the alloy is determined by the amount of 

alpha and beta stabilisers added.    

Aluminium is a commonly used alpha phase stabiliser; the addition of aluminium 

will strengthen the alpha phase of the titanium microstructure, and will allow for the 

formation of the alpha/beta phase. Vanadium is used as a beta stabiliser, without the 

addition of which the beta phase would not exist at room temperature. Figure 2.1 

shows the effect of Vanadium upon the beta transus temperature for a set amount of 

aluminium content. Adding an alpha stabiliser will increase the beta transus 

temperature, where as adding vanadium will decrease the beta transus temperature.   

 

Figure 2.1: Phase diagram showing the effect of Vanadium on the beta transus temperature in 

titanium alloy with 6% Al [19]. 

In Ti-6Al-4V the alpha phase is the predominant phase within the microstructure. In 

plastic deformation, slip can occur on any or all of the thirty slip systems that are 

present within the crystal. These thirty slip systems fit into five slip families as seen 

in Figure 2.2 [20]. Each of these five families has its own Critical Resolved Shear 

Stress (CRSS) which governs the point of slip.  
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Figure 2.2: HCP preferential slip planes. 

 

For the beta phase, however, there are three families of slip systems that give a total 

of forty eight slip systems. Figure 2.3 shows the configuration of the beta phase slip 

families. 

 

Figure 2.3: Beta slip system families. 

It is convenient to think of the CRSS value as the yield point for the slip system. Slip 

will occur when the shear stress on the slip system is greater than the CRSS. The 

shear stress upon the system is governed by  

Where          is the Schmidt factor of the slip system. 

 

 

            (2.1) 
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2.2.2 Effects of grain boundaries and grain size  

Ti-6Al-4V is a polycrystalline alloy which means there will be grain boundaries 

present between the different colonies of α and β phases and between different 

orientations of the same phase. These grain boundaries can have significant effect 

upon the macro properties of the alloy. The grain boundaries have high surface 

energy, and as such serve as preferential sites for phase transformations [21]. The 

grain boundaries impose conditions upon how the grains deform. A single crystal can 

deform freely upon its preferential slip plane and change its lattice orientation.  

During the deformation of a polycrystalline alloy the grain boundaries continuity 

must be maintained so that the grain boundaries between the crystals remain intact 

[21]. This means the individual grains cannot deform as they wish and causes the 

activation of several slip systems within the grain itself. These slip systems do not 

have to be the preferential ones and therefore slip can occur on the non-close packed 

planes, thus causing more slip systems to be activated near the boundary [21].  

Having these slip systems near the grain boundary causes the grain hardness near the 

edges to be higher compared to the hardness of the centre of the grain. As the grain 

size is reduced the overall hardness of the grain increases, thus giving greater strain 

hardening in fine grain metals compared to coarse grain metals [21].  

The mechanical strengthening from grain boundaries has been proven by 

experiments, which showed that the yield stress increases with increased 

misorientation across the grain boundary [22].  

It can therefore be seen that grain size can have a considerable effect on the alloys 

behaviour. One mathematical model used to determine yield stress from grain size is 

the Hall-Petch Relation given by (2.2) [23].  

        
  

   (2.2) 

   

Where    is the yield stress,    is the “friction stress” representing the overall 

resistance of the crystal lattice to dislocation movement.   is the “locking parameter” 

which measures the relative hardening contribution of the grain boundaries and   is 

the grain diameter.   
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2.2.3 Effect of heat treatment on titanium microstructure  

As with many metals, titanium’s microstructure can be affected by heat treatments. 

This allows for the titanium alloy to have different microstructures depending upon 

the processing route taken.  

The Figure 2.4 shows four different microstructure which have come from the same 

baseline material and have undergone varying heat treatments. 

  

  

Figure 2.4: Heat treated microstructures (taken from [10]). 

The microstructure a, from Figure 2.4, is the standard mill annealed product and has 

an equiaxed microstructure consisting of Primary alpha and Transformed beta. 

Microstructure b started as the standard microstructure given in a. Microstructure b 

was then heated to 1000
◦
C and held for 1 hour at this temperature. It was then water 

quenched and then held at 540
◦
C for 4 hours and then left to air cool [24]. This gives 



22 

 

microstructure b an acicular martensite (α’) in the prior beta grains. It is noted that 

microstructure b has been heated to above the beta transus temperature. 

Microstructure c has been heated to 950
◦
C for 1 hour and then water quenched and 

air cooled to the same conditions as the previous microstructure [24]. Microstructure 

d is heated to 950
◦
C and again is treated the same as the previous example [24].  

These heat treatments conducted on microstructures c and d lead to both having a 

bimodal structure with differing volume fractions of equiaxed primary alpha and 

transformed beta. Microstructure c has volume fraction of primary alpha of 21% and 

microstructure d has 40% [24].  

Other heat treatments have been used to obtain microstructures by Dong-Geun Lee et 

al. [25], [26].  

2.2.4 Deformation mechanics 

In this section the possible deformation mechanisms that can occur in Ti-6Al-4V will 

be looked into, the first mechanism being Adiabatic Shear Bands (ASB). This is an 

important deformation mode generally observed in ballistic impact [27]. It is widely 

accepted that ASBs are triggered by a local inhomogeneity, such as geometric or 

dimensional variations, and possibly the presence of voids or inclusions in the 

microstructure [27].  

During the formations of ASBs, temperatures higher than the beta transus 

temperature can be experienced in the localised area [27]. This can cause the 

transformation of the alpha phase to the beta phase and possible melting in this 

localised area [27]. When recrystallisation occurs a finer microstructure is created 

within the shear band [27] 

ASBs tend to form in narrow bands of 5 µm to 100 µm across [28]. This finer 

microstructure gives rise to a higher microhardness compared to the surrounding 

microstructure outside of the shear band itself [27].  

The formation of shear bands leads to the loss of the load carrying and energy 

dissipation capacity and, as such, ASBs are a precursor to failure in Ti-6Al-4V [28].      

This can be illustrated in Figure 2.5 with the numbers on the graph referring to the 

image numbers. The formation of the shear band can be split into three distinct 
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sections. The first of these sections is when the deformation is homogeneous 

followed by the second stage where the deformation becomes inhomogeneous. The 

final stage is when the shear band is being formed. These stages can be seen in 

Figure 2.6, where the grid lines help define the stages. In the first stage the grid lines 

are straight but inclined, the second stage the grid lines are curved, and the third 

stage the grid lines are discontinuous [27]. 

 

Figure 2.5: Adiabatic Shear Band Formation (taken from [27]). 
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Figure 2.6: Three stages of shear band formation (taken from [27]). 

Another important deformation mechanism is twinning. Twinning differs from slip in 

several ways. In slip the orientation of the crystal above and below the slip plane is 

the same after deformation as before, while in twinning there is an orientation change 

across the twin plane [21]. Generally it is considered slip occurs in discrete multiples 

of atomic spacing, whereas twinning can occur in much less than an atomic spacing. 

There are two types of twins referred to as “mechanical twins” and “annealing 

twins”, mechanical twins are produced in HCP metals through rapid rate loading 

cases such as impact [21]. Annealing twins are normally broader and have straighter 

edges compared to mechanical twins [21]. The presence of annealing twins gives an 

indication that the metal has been given mechanical deformation prior to annealing 

[21].  

Titanium can experience twinning due to only having four independent slip systems, 

where as five are needed for homogeneous deformation in a polycrystalline material 

such as Ti-6Al-4V [15]. The {10   }, {10   } and {0001} planes in HCP are the 

three most common slip planes with         as the direction. None of the 

aforementioned slip systems can support deformation in the c-direction and, as such, 

twin systems or       pyramidal slip is necessary to maintain deformation 

compatibility [29].  

The twinning process can be divided into four stages, the first of which being when 

twinning related dislocations accumulate in a location which may or may not lead to 

a successful twin [30]. In the second stage dislocations related to twinning reach a 

critical level that can lead to twin inception. This twin, during the third stage, forms 
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as a needle shape typically crossing a whole grain, which then thickens during the 

final stage [30].       

In α titanium there are four predominant twinning modes, of which the         and 

        are the planes that involve the smallest shear and simplest shuffles. The 

        is preferred due to the Burgers vector for     type slip along the         

direction, as this does not have a c-axis component [29]. 

Due to the crystal structure of the α phase the crystal is inherently isotropic, however, 

at the macroscale the effect of the elastic anisotropy seems to have little significance 

[14]. It can also be seen that the effect of anisotropic slip seems to outweigh the 

effect of elastic anisotropy [14].  

Several authors have noted that the planar glide is the dominant deformation 

mechanism, with slip on the basal and prismatic slip systems being preferential. This 

is due to the fact that the CRSS value for pyramidal slip is generally seen to be three 

times higher than the previously mentioned slip systems [13], [14]. Some authors go 

as far as to say that for α/β polycrystalline titanium alloys, single prismatic slip is the 

dominant mechanism in the majority of grains when the temperature is below 500 K 

[31], [32].  

The primary basal and prismatic slip systems are not capable of deforming along the 

c-axis. Therefore, either twinning or       modes, such as 1
st
 and 2

nd
 order 

pyramidal systems, are needed to allow for complete plastic deformation [33]. That 

being said, with Ti-6Al-4V’s high aluminium content, twinning is unlikely to occur 

due to aluminium suppressing the activation [33],[34]. Grains in a polycrystalline 

environment stress the crystal nearly parallel to the c-axis such that the resolved 

shear stress on     systems is almost 0. This can also be achieved by deforming the 

material at low temperatures or at high strain rates, where slip on       systems is 

preferential, and has been observed near the grain boundaries [34].   
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2.3 Micro mechanical testing  

Various mechanical tests need to be conducted to find the material properties at the 

grain level. In this section techniques used by other authors are explored. 

Warwick [33] machined threaded cylindrical tensile specimens, which had a gauge 

diameter of 6.8 mm and a length of 30 mm. The tensile samples were machined so 

that the tensile axis was parallel to the rolling/extruding direction as seen in Figure 

2.7 [33]. 

 

 Figure 2.7: Tensile sample [33]. 

The samples were then loaded and diffraction measurements taken in a set-up shown 

in Figure 2.8. 
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Figure 2.8: Warwick's test set-up [33]. 

The tensile specimens were tested at a strain rate of         and angled at 45
◦
 to the 

incident beam with the detector banks perpendicular to the incident beam [33]. An 

extensometer was placed on the samples to provide an accurate measure of 

engineering stress [33]. The scattering volume provided by this set-up is ~ 4 x 8 x 4 

mm
3
, with a counting time of 25 min per diffraction measurement [33]. Taking the 

gradient from the elastic graph from each grain orientation gives the diffracted elastic 

modulus for that orientation [33]. After the yield point has been reached, periodic 

unloading of the sample is conducted and measurements taken. This is due to the 

limited plastic flow that occurs when titanium alloys are kept at high homologous 

stresses [33]. So waiting for the neutron measurement would not be appropriate in 

this case [33]. 

In a study by Ledbetter electromagnetic-acoustic resonance was used. This requires 

putting the test sample into a solenoid coil which is in turn placed inside a cylindrical 

vacuum [35]. The specimen’s temperature is then increased to 1030
◦
C by the use of a 

heater next to the solenoid coil [35].  A biasing magnetic field is applied to the 

specimen through the use of two permanent magnets positioned outside the 

cylindrical vacuum. This excites and detect the free vibrations from the sample via 
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the Lorentz-force mechanism [35]. The outer magnets can be rotated about the 

vacuum cylinder central axis to excite different vibration modes [35].    

Jones conducted research into the stress-strain dependence of slip in HCP metal, 

where the starting material was a very strongly textured plate, such that the        

system was parallel to the plate surface [36]. Due to the sharpness of the texture in 

the plate it approximately resembled a single crystal and, as such, samples were cut 

out from the plate at different angles to allow for compression tests along the various 

slip systems [36]. The various samples were either compressed or tensioned to 0.5% 

proof stress and once the value was known the CRSS values could be determined for 

the slip systems [36].  

2.4 Alpha grain properties  

Nano-indentation can be a useful technique to gain information on the mechanical 

properties of single grains. Gerday did several indentation tests per grain and only 

used results that were comparable for each grain. The reason for the selective results 

was to rule out the effects of the grain boundary or inhomogeneities in the grain [20].   

Another way in which the properties can be attained is by the use of a micro-

cantilever beam and systematically changing the crystal direction along it. The 

cantilever beam is created in the grain through the use of a Focused Ion Beam (FIB) 

[37].   

J.Gong et al. used the results of these tests coupled with the finite element software 

ABAQUS. This was achieved with the use of the constitutive equation from Dunne’s 

physically based crystal plasticity model with the velocity gradient defined as [37] 

 

            
   

   
      

      
 
   

   
 

 

       
(2.3) 

 

Where   is the density of gliding dislocations,   is the magnitude of the Burgers 

vector,   is the jump attempt frequency of dislocations trying to pass energy barriers, 

   is the Boltzman constant,   is the absolute temperature,    is the Holmholtz free 

energy,    is the activation volume,    is the unit slip direction and    is the unit 
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normal to the slip plane of the j
th

 slip system, which has a CRSS of    
 
 and is under 

the shear stress of   [37]. 

The values for the CRSS are found from a reverse fitting process of the finite 

element model compared to the experimental load-displacement data from the micro-

cantilever beams.  

Table 2.1 shows the values of CRSS obtained by J. Gong et al. with target beam 

dimensions of 30 μm long and 5 μm wide with an equilateral triangle cross section 

[37]. 

 Table 2.1: CRSS values for commercially pure titanium.  

Slip 

System 

Critical resolved shear stress (MPa) Average 

(MPa) 

Standard 

Deviation 

(MPa)  

Beam 1 Beam 2 Beam 3 Beam 4 

Prismatic 

Plane 

184 188 185 168 181 8 

Pyramidal 

Plane 

483 468 474 472 474 5 

Basal 

Plane  

205 223 217 189 209 13 

It must be noted that different authors obtain different results for the CRSS values 

due to different testing techniques. Criteria that can affect the CRSS value include 

the width of the cantilever, temperature, aluminium content, or if the alpha grain is 

subjected to a tensile load or compressive load.  

The content of the aluminium within the alloy can affect the results of the CRSS 

along with the temperature. J. C. Williams et al. conducted compression tests on 

single crystal alpha grains at various temperature states. The following figures show 

the effect of aluminium and temperature on the CRSS for basal slip [38].  
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Figure 2.9: CRSS for prism planes (image taken from [38]). 

 

Figure 2.10: CRSS for basal slip for four different concentrations of aluminium (image taken from 

[38]). 

 

Figure 2.11: CRSS for parallel to the c-axis (image taken from [38]). 



31 

 

CRSS values in the alpha phase are a little varied, Han [39] quotes the Basal <a>, 

Prismatic <a>, and Pyramidal <a> CRSS values as 420MPa, 370Mpa, and 490Mpa 

respectively. These values are in agreement with Bridier who also specifies the 2
nd

 

order pyramidal CRSS value as 590MPa [40]. However, these values differ to the 

ones quoted by Warwick who specifies the Basal <a>, Prismatic <a>, Pyramidal <a>, 

Pyramidal 1
st
 order <c+a>, Pyramidal 2

nd
 order <c+a> as 330MPa, 350MPa, 

380MPa, 490MPa, and 520MPa respectively [33]. Warwick also points out that in 

single crystal experiments, <c+a> slip is found to be around 3 times higher than basal 

slip, where as he found in Ti-6Al-4V and Ti-834 that it was about 1.5 times higher 

[33].   

In compression at 300 kelvin the CRSS values are 232.91, 193.68, 710.99 MPa for 

prism, basal and parallel to the c-axis respectively. It can be seen that the CRSS 

values of the slip systems are considerably lower in compression than in tension. 

This must be taken into account when creating and running a computational model of 

the alpha grains. The fact that the CRSS values are dependent on temperature will 

also mean that the constitutive model will have to run at a set temperature and the 

correct CRSS value will have to be set due to the following criteria: Temperature, 

aluminium content, and whether it is compression or tension. 

In terms of the other Parameters, Han listed the hardening parameters of the basal, 

prismatic and pyramidal as 631.2Mpa, 436.2Mpa, and 436.2Mpa respectively [39]. 

This differs to Pourian who has a parameter H which is used in a similar way for the 

hardening variable used in a linear isotropic hardening model, for which the value 

given was 2500MPa [13].  As can be seen there is quite a bit of discrepancy between 

the two sets of values. The author believes that each slip system could in fact have its 

own hardening rate which agrees more with the values presented by Han. Bridier 

also has an inverse strain rate sensitivity parameter M which has the value of 15 [40].  

Key information needed for alpha grain simulation is the Youngs modulus of the 

grain. Figure 2.12 shows how the Youngs modulus changes with the variation of 

angle from the c-axis, with the least stiff modulus being 99 GPa in the        

direction and the maximum being 131  GPa in the        direction [41]. 
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Figure 2.12: Variation of Youngs modulus with inclination from the c-axis (image taken from [29]). 

For the material model the material properties of each phase need to be known. 

Current literature has used the following material properties in simulations. The bulk 

modulus is given as 106.43 GPa and the shear modulus is given as 43.99 GPa [35].  

As the elastic part of the model is isotropic, the values will be the same for all 

directions. 

2.5 β phase properties 

Starting with the elastic properties the bulk modulus is 87.7GPa and the shear 

modulus is 20.7Gpa [35]. As the material model to be used is elastically isotropic 

these values will be the same in all directions.  

For the BCC crystal structure the CRSS values for the {110}, {112}, and {123} 

planes according to Warwick are 290Mpa, 310MPa,  and 350MPa respectively[33]. 

Bieler provides a table of ratios relative to the basal plane as seen below[42].  

Though this table does not give the whole picture due to the fact it quotes a ratio for 

CRSS values to the <111> slip direction. This direction is common to all BCC slip 

planes but the table gives the impression that all BCC slip planes have the same 

CRSS values, which is in disagreement with Warwick.   

A.F. Gerday [43] also specifies the CRSS value for BCC slip to be 300 Mpa in Ti-

5553, again this model assumes all the slip systems have the same CRSS values.  

Gerday [43] provides a friction coefficient for μ of 0.2 and provides a hardening 

parameter for the Pan model of 13,120 Mpa and for the BW model of 7,428 MPa. It 
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can be seen that there is quite a difference between the two models for the value of 

the hardening parameter.  

Table 2.2: BCC ratio table. 

BCC: Prism: Basal: Pyramidal: Comments 

<111

>: 

<a>: <a>: <c+a>

: 

<a>  

Polycrystals and 13-16◦ off c-axis 

single crystal experiments unstable 

shear bands above 300◦c (paton et 

al., 1973) 

- : 0.8:  1 : 2.1: -    

(22◦c) 

- : 0.3: 1: - : -  

(815◦c) 

- : 0.2: 1: 1.6-3: 1 Matched 22◦c yield stress, plastic 

strain ratio, yield loci, twinning 

CRSS 3x basal <a> Taylor model 

(Fundenberger et al., 1997) 

0.33: 0.67: 1: 2: 0.67 Pyramidal <a> dominates, more 

basal than prism slip at low volume 

fractions of β VPSC (Dunst and 

Mecking, 1996) 

0.25: 1: 1:  8: - Relative amount of prism slip 

increases, beta slip decreases with 

increasing strain, VPSC (Lebensohn 

and Canova, 1997) 

-: 0.7: 1: 3: - Matched 815-955◦c yield stress, 

plastic strain ratio with rate sensitive 

Taylor-Lapp with n=4 (Semiatin and 

Bieler, 2001 a,b) 
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2.6 Physical impact testing  

Physical testing is conducted to provide an insight into how the sample will deform 

in the impact loading case. It can also be used to see how different microstructure 

affects the results from the test. B. Bhav Singh et al. created the microstructures 

shown in Figure 2.4 through the use of the heat treatments shown in Table 2.3. 

Table 2.4 shows the mechanical properties associated with the different 

microstructures.   

Table 2.3: Heat treatments used to create microstructures [24]. 

Designation  Heat treatment Microstructure 

a Mill annealed Equiaxed 

b  1000
◦
C/1 h/water quenched + 540

◦
C /4 h/air cooling Acicular 

c  950
◦
C /1 h/water quenched + 540

◦
C /4 h/air cooling Bimodal 

d  900
◦
C/1 h/water quenched + 540

◦
C/4 h/air cooling Bimodal 

Table 2.4: Mechanical properties of the microstructures [24]. 

Designation 0.2%  

Yield 

Stress YS 

(MPa) 

Ultimate 

Tensile 

Strength 

UTS 

(MPa) 

Elongation 

to failure 

(%) 

Area under 

engineering 

stress-strain 

curve 

(MJ/m
3
) 

Hardness 

Vickers 

Hardness 

Number (VHN) 

a 906 ± 5 961 ± 7 9.0 ± 1.0 92 285 

b 1036 ± 18 1112 ± 20 4.5 ± 0.3 44 376 

c 1050 ± 20 1143 ± 11 10.7 ± 0.5 120 335 

d 1018 ± 17 1123 ± 12 12.7 ± 1.0 137 332 

Dong-Geun Lee et al. also created microstructures through the use of heat treatments. 

The heat treatments used can be seen in Table 2.5 and the mechanical properties of 

these microstructures can be seen in Table 2.6. 
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Table 2.5: Heat treatments for microstructures [26]. 

Designation  Heat Treatment Microstructure  

e  Holding at 788
◦
C for 6 h followed by furnace 

cooling 

Equiaxed  

f  Holding at 774
◦
C for 6 h followed by furnace 

cooling, holding at 950
◦
C for 1 hour and aging for 

24 hours at 600
◦
C and air cooled 

Bimodal  

Table 2.6: Mechanical properties of microstructures [26]. 

Designation YS (MPa) UTS (MPa) Elongation (%) 

e 1005 ± 26 1046 ± 24 18.0 ± 1.2 

f 1048 ± 32 1095 ± 27 16.8 ± 0.9 

In microstructure e there is a 5% by volume of the β phase which appears at the triple 

points of the α grains and the α phase accounts for 95% by volume of the alloy with 

an average α grain size of 13 µm [26]. Microstructure f consists of tempered 

martensite and α, as well as residual β. The volume fractions of tempered martensite, 

α and β are 50, 40 and 10 respectively [26].  

It can be seen that the yield strength and the ultimate tensile strength are generally 

higher in the bimodal structures compared to that of the equiaxed microstructures, 

while the elongation is higher in the equiaxed microstructures.   

Dong-Geun Lee et al. also over-aged microstructures e and f to produce nanometer-

sized α2 (Ti3Al) phases which can be homogeneously precipitated inside the α phase, 

which leads to an improvement in the mechanical properties [12]. The over-aging 

process follows the same initial heat treatment as microstructures e and f except they 

are then over-aged at 540
◦
C for 200 hours.  
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Figure 2.13: Optical micrographs of over-aged equiaxed(g) and bimodal microstructures(f) (taken 

from [25]). 

The material properties for these microstructures are given in Table 2.7 

Table 2.7: Overaged microstructure’s material properties [25]. 

designation YS (MPa) UTS (MPa) Elongation (%) 

g 926 962 17.3 

h 1020 1054 15.0 

The following figures show the test set-up used by Dong-Geun Lee et al. and B. 

Bhav Singh et al.. As can be seen, these set-ups are very similar to each other, both 

having  gun velocity probes and a target. The main difference is the spacing between 

the various parts of the apparatus. B. Bhav Singh et al. also uses velocity probes after 

the target plate to record the exit velocity of the projectile [24].  

g 

h 



37 

 

 

Figure 2.14: Dong-Geun Lee et al. test set-up [25]. 

 

Figure 2.15: B. Bhav Singh et al. test set-up [24]. 

To analyse the results Dong-Geun Lee et al. compared the V50 ballistic limit ratio and 

mass efficiency value of the specimens. B.Bhav Singh et al. compared different plate 

thicknesses for the different microstructures and observed the rear face condition of 

the target.  

The V50 ballistic limit ratio refers to the velocity of the projectile having a penetration 

probability of 50%, with higher values of V50 indicating better ballistic performance 

[26].  

The mass efficiency    is the weight ratio against the Rolled Homogeneous Armour 

(RHA) having identical properties [12]. RHA is a steel based product that was 

commonly used on tanks and other armoured vehicles during World War 2 and as 

such has become a baseline test material for other armours to be compared against. 

Equation (2.4) shows the calculation for the mass efficiency [25].  

 

   
                    

                          
             

(2.4) 
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Table 2.8 gives the results of B. Bhav Singh et al. ballistic tests for different plate 

thickness and provides observations on the rear surface of the sample [24]. 

Table 2.8: B. Bhav Singh et al. ballistic test results [24]. 

Microstructure Thickness (mm) Perforation 

(yes/no) 

Rear face observation 

a 15.0 No Smooth bulge 

a 12.7 Yes Petalling 

b 15.0 No Radial cracks  

b 12.7 Yes No petalling 

c 15.0 No Smooth surface 

c 12.7 No Smooth surface 

c 10.0 Yes Petalling 

d 15.0 No Smooth surface 

d 12.7 No Smooth bulge 

d 10.0 Yes Petalling 

Figure 2.16 shows an example of the petalling on the rear surface of the test target. 

The presence of petalling indicates that plugging has occurred after bulging [24].    

 

Figure 2.16: Example of petalling on the rear surface (taken from [24]). 

 

 

Petalling 
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Figure 2.17: Results from B. Bhav Singh et al. ballistic testing (taken from [24]). 

Figure 2.17 shows the results of the impact tests. In microstructure a, adiabatic shear 

bands have been formed as well as adiabatic shear band induced cracks. 

Microstructure b has a high number of adiabatic shear bands as well as two long 

adiabatic shear band induced cracks at the edges of the creator. Microstructures c and 

Adiabatic shear bands 

Impact direction 

a 

b 

c 

d 

ASB induced crack 

 
 ASB induced crack 

White etching 

ASB 

ASB 

ASB 

ASB induced crack 
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d have less adiabatic shear bands compared to the standard product which is 

microstructure a. Microstructure c demonstrates no sign of any adiabatic shear band 

induced cracks and microstructure d has only a small number of induced cracks.  

The reduced number of ASBs and ASB induced cracks in the bimodal microstructure 

shows that these types of microstructure have a higher energy absorption compared 

to the other types of microstructure. This may be due to the fact that the bimodal 

microstructures have a finer grain size compared to the other microstructures. 

Table 2.9 gives the results to Dong-Geun Lee et al. ballistic tests in terms of V50 

ballistic limit ratio and mass efficiency [25]. 

Table 2.9: Dong-Geun Lee ballistic test results [25]. 

Microstructure  Thickness of target 

specimen (mm) 

V50 ballistic limit 

ratio 

Mass efficiency  

Unaged equiaxed 20.0 1.00 1.23 

Unaged bimodal 25.4 1.05 1.44 

Aged equiaxed 25.4 1.01 1.34 

Aged bimodal 25.4 1.06 1.46 

In the aged equiaxed microstructure serious plastic flow is observed along the 

direction of the projectile. ASBs and cracks tend to form along the plastic flow lines. 

The number of voids formed in the aged specimens is greater than the un-aged 

specimens because of the α2 precipitation. This causes the driving force behind 

adiabatic shear formation to decrease by as much as the deformation energy used for 

void formation and thus reducing the probability of adiabatic shear formation [25].    

The number of voids in the bimodal microstructures is greater than the equiaxed 

microstructures. This is most likely due to the presence of tempered martensite as 

well as the α and β phases increasing the number of void initiation sites [25]. It can 

be seen from the results that reducing the number of shear bands will increase the 

ballistic performance of the material.  
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2.7 Electron Backscatter Diffraction  

To be able to see the microstructure, Electron Backscatter Diffraction (EBSD) can be 

used. This can provide grain maps of the sample that will be tested. Using this 

technique the grain map can be imported into a finite element software where it can 

be analysed. The maps produced by the ESBD are 2D. Hamidreza Abdolvand  et al. 

[44] then used the 2D maps and extrapolated them into 3D so that 3D boundary 

conditions could be imposed upon the finite element model. In Hamidreza 

Abdolvand et al.’s paper [44] the S1 samples were made from Zircaloy-2 slab with 

14 mm gauge length, 3 mm width and 2 mm thickness. The S2 samples have the 

same starting dimensions but have been cold rolled to 10% and then heat treated at 

720
◦
C for 48 hours and provide an equiaxed grain structure with an average grain 

size of 50 µm [44].  
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Chapter 3 Phenomenological model of single crystals 

3.1 Continuum mechanics basic principles 

3.1.1 Deformation gradient  

The deformation gradient is a second order tensor denoted by   and is defined by 

 Where        can be expressed as  

with   referring to a one to one mapping of each of the material points   of a given 

body into a point        . This therefore allows it to be written in the following 

form 

With this form being expressed in Cartesian components as 

 

Figure 3.1: Deformation gradient representation. 
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The Figure 3.1 above shows how the deformation gradient governs the movement of 

particles between configurations. Let us then consider points   and      that are 

two neighbouring material points connected together by an infinitesimal fibre   . As 

the body is deformed by the deformation    the points   and      are now 

mapped to   and       in the deformed configuration. It can be seen in (3.5) that 

the deformed configuration    of the material fibre is related to the initial 

configuration of the material fibre    through the use of the deformation gradient  : 

3.1.2 Volume changes 

The calculation of volume changes within continuum mechanics can be done by 

taking the determinant of the deformation gradient. Looking at Figure 3.2 where an 

infinitesimal volume     is defined by the vectors       and   . This volume is 

then deformed by    which leads to the mapped form of the initial vectors          

and    , respectively. Therefore, the determinant of the deformation gradient is 

 

 

Figure 3.2: The determinant of the deformation gradient, governing the volume changes. 

 

          (3.5) 

       
              

          
   

(3.6) 
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If, however,     then volume has collapsed into a material particle. This is not 

feasible due to the fact that the body is not allowed to penetrate itself and, as such, 

   . This is due to the fact that at the initial configuration     and thus     

3.1.3 Isochoric / volumetric split of the deformation gradient 

Another concept that is widely used in computational plasticity is the isochoric / 

volumetric split, where the deformation gradient can be decomposed into an 

isochoric deformation followed by a pure volumetric deformation or vice versa. The 

deformation gradient can always be split multiplicatively as seen in  

Where      is the isochoric deformation gradient and    is the volumetric 

deformation gradient. Each of these components can be calculated from the total 

deformation gradient and is given by  

and 

Due to    being a purely volumetric deformation, it produces the same volumetric 

change as the total deformation gradient 

The isochoric component is the volume preserving deformation  

3.1.4 Stretches and rotation 

The deformation gradient can be split using the polar decomposition theorem and 

thus the following is obtained  

                 (3.7) 
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Where   is a proper orthogonal tensor related to the local rotation, and  and   are 

symmetric positive definite tensors that are the right and left stretch tensors 

respectively. The stretch tensors are related to each other by the rotations such that 

 and   can be expressed in terms of the right     and left   Cauchy-Green strain 

tensors as  

The strain tensors can be related back to the deformation gradient as  

3.1.5 Strain measures 

Consider Figure 3.1, where the deformation of    due to the deformation    is 

shown. The square of deformed configuration    can be written as  

Where      is the Green-Lagrange strain measure and is defined by  

The Green-Lagrange strain measure is not unique way of quantifying strain. The 

Green-Lagrange belongs to a family of Lagrangian strain tensors, which are based on 

the Lagrangian triad [45]–[47]. This family includes Biot, Hencky and Almansi 

strain [45]–[47]. 

Strain can also be specified along the principle Eulerian directions and leads to the 

Eulerian family of strain tensors, which can be related to the Lagrangian family 

strain tensors through the following: 

         (3.13) 

            (3.14) 
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3.1.6 Velocity gradient 

The velocity gradient is a spatial field   and is defined as: 

If the chain rule is applied to (3.19) then the following is obtained: 

If the velocity gradient is split into its symmetric and skew components then the rate 

of deformation tensor   and the spin tensor   can be recovered. 

For a body under the influence of a uniform motion prescribed by the velocity 

gradient, the velocity field is defined as  

If   is decomposed into the symmetric and skew parts the above equation can be 

rewritten as 

Where    and    are defined as: 

It can be seen that the velocity    is associated with the spin tensor and, as such, it 

can be identified as a rigid velocity. It then becomes clear that the only term 

contributing to straining is the    term, which is linked to the rate of deformation 

tensor.  

3.1.7 Stress measures 

The previous sections of this chapter have been concerned with the mathematics of 

the kinematics of deformation. So far no mention has been made of the forces that 
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act upon the body or how they are transferred through the material. These forces can 

be split into three groups: 

1. Boundary forces: These are forces that act upon the surface of the body. 

2. Body forces: These are forces that are acting upon the interior of the body. 

3. Internal interactions between adjacent parts of a body: Internal forces 

come from the action of one part of the body upon the adjacent part and are 

transferred through the connecting surface. 

It is seen that boundary forces and internal interactions can be considered the same 

type of force and can collectively be considered surface forces. The concept of stress 

can be introduced to describe mathematically the surface forces. Cauchy theorem is 

one of the fundamental concepts in understanding stress and is outlined in the next 

sub section.  

3.1.7.1 Cauchy stress tensor 

Cauchy’s theorem, which has been formally proved by Wang and Truesdell, Gurtin, 

Martins, Marsden, Hughes, and Ciarlet [48]–[53], states that due to the axiom of 

momentum balance, the dependence of the surface force   upon the unit normal   is 

linear, therefore, the following is true: 

Where      is a symmetric tensor due to the balance of angular momentum and is a 

second order tensor called the Cauchy stress tensor, also known as the true stress 

tensor or stress tensor.  

The Cauchy stress tensor can be split into two parts, the spherical part and the 

traceless part, this is convenient for constitutive modelling. The stress tensor is an 

additive split as seen in (3.27)   

Where the invariant, called the hydrostatic pressure, is: 

                (3.26) 
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3.1.7.2 First Piola-Kirchhoff stress 

The First Piola-Kirchhoff stress is defined through the use of the counterpart of the 

traction vector   which is denoted as   . This measures the force that acts across a 

surface whose normal is   in the deformed configuration per unit reference area. 

 

Figure 3.3: The First Piola-Kirchhoff stress tensor. 

The First Piola-Kirchhoff stress tensor is defined by:  

Unlike the Cauchy stress, the First Piola-Kirchhoff stress is generally unsymmetric. 

3.1.7.3 Second Piola-Kirchhoff stress and Kirchhoff stresses 

The Second Piola-Kirchhoff stress tensor is defined as: 

And the Kirchhoff stress tensor is:  

3.2 Continuum thermodynamics fundamental laws 

In this section the scalar fields       and   are introduced, and represent the 

temperature, specific internal energy, specific entropy and the density of heat 

production respectively. The vectors   and   represent body force and heat flux 

respectively.  

         (3.29) 

             (3.30) 

       (3.31) 
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3.2.1 Conservation of mass 

The conservation of mass is given as: 

Where   is the density and      is the spatial divergence of    .  

3.2.2 Momentum balance 

The momentum balance of a given body in the spatial or deformed configuration can 

be shown as: 

The above equations are referred to as the strong form of equilibrium; these 

equations can also be expressed in terms of the reference configuration with the use 

of the First Piola-Kirchhoff stress tensor and are given as: 

Where    is the reference body force,     is the reference density and    is the reference 

boundary traction, with   being the outward normal to boundary surface in its initial 

configuration.  

3.2.3 First and second principles 

The first principle is the conservation of energy. This states that the rate of internal 

energy per unit of deformed volume must be equal to the sum of the stress power and 

heat production per unit deformed volume minus the spatial divergence of the heat 

flux. This is written mathematically as: 

The second principle is the irreversibility of entropy production which can be written 

as: 

              (3.32) 

                         (3.33) 
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3.2.4 Clausius-Duhem inequality 

By combining the first and second principles defined above the following inequality 

can be obtained [54]: 

With the introduction of the specific free energy   as defined in (3.40) and the 

identity seen in (3.41) the Clausius-Duhem inequality can be obtained, and is seen in 

(3.42) [54]. 

The left-hand side of the inequality represents the dissipation per unit deformed 

volume. 

3.3 Constitutive principles 

The principles outlined so far are valid for any continuum body, and do not take into 

account the material that the body is made from. A constitutive model must therefore 

be created that captures the material characteristics that the body is made from. To 

create a constitutive model the following axioms are needed as the starting point. 

3.3.1   Constitutive axioms 

Before laying out the axioms it is useful to introduce the definitions of thermokinetic 

and calorodynamic processes [55]. The thermokinetic process of a body is a pair of 

fields  

And the calorodynamic process of a body is a set of fields that satisfy the balance of 

momentum and the first and second principles of thermodynamics:    
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The first of the continuum axioms is the principle of thermodynamic compatible 

determinism [55]. The principle states “The history of the thermokinetic process to 

which a neighbourhood of a point   of a body has been subjected determines a 

calorodynamic process for a body at point  ” [55]. The second axiom is the principle 

of material objectivity or frame invariance. This principle states “The material 

response is independent of the observer”. The third axiom is the material symmetry, 

where the symmetry group is defined as “The set of density preserving changes of 

reference configuration under which the material response functionals are not 

affected”. 

3.4 Phenomenological and micromechanical approaches 

Two types of continuum modelling can be considered when creating a new material 

model, the phenomenological approach or the micromechanical approach. 

Phenomenological models are used on elements of materials that are a homogeneous 

continuum, where the internal variables are directly related to the dissipative 

behaviour observed at the macroscale level of the continuum. Micromechanical 

approach on the other hand is related to variables associated at the atomic, molecular 

or crystalline levels. The variables are discrete quantities and their continuum 

quantities can be defined by means of homogenisation techniques.  

3.5 Anisotropic finite single crystal plasticity 

The isotropic hypothesis provides a good approximation for a wide range of cases. 

When a polycrystalline metal is subjected to a finite inelastic straining the 

deformation is rarely isotropic [54].  

The physics of single crystal plasticity is well established, since the discovery of 

diffraction x-rays by metallic crystals by Von Laue in 1912, which showed that 

metals were composed of atoms in specific lattices [56].  

Plastic deformation in metals usually occurs by the sliding of blocks of the crystal 

over defined crystallographic slip planes. The initiation of slip on a slip plane is due 

to the shear stress component resolved on to the slip plane and is referred to as 

Schmid’s Law [57]. 

Crystal plasticity simulations using a finite element framework were initially 

introduced by Peirce et al. [58], Asaro [59], and Needleman et al. [60]. Crystal 
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plasticity has since then become widely accepted due to the desire to simulate 

metallurgical processes. These processes include dislocation, shear band formation, 

mechanical twinning, super plastic grain boundary shear, diffusion mechanisms, 

solid state phase transformations, recrystallisation, damage, void growth and more 

[54], [61]–[66]. Computational plasticity allows for more information to be gained at 

the microscale compared to other techniques, and allows metallurgists to gain a 

microstructural design and optimisation tool to develop new and better suited alloys 

and products.  

3.5.1 General single crystal plasticity  

This model is created from the framework of the hyperelastic based multiplicative 

plasticity. This allows for the deformation gradient tensor to be split into elastic and 

plastic components. The plastic deformation gradient measures the microscopic 

sliding along the crystallographic slip planes, whereas the elastic deformation 

gradient provides the measure of the lattice distortion. The multiplicative split is 

visualised in Figure 3.4.  

The plastic component of the deformation gradient tensor is calculated by the 

following equation:  

 

Where   is the magnitude of plastic slip and where s and m are the unit vectors in the 

slip direction and the unit normal vector to the slip plane respectively.  

 

          (3.45) 
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Figure 3.4: Multiplicative decomposition of the deformation gradient [54]. 

In a single slip system scenario the evolution of the plastic deformation gradient is 

defined by the equation  

In this research slip in the crystal is likely to occur on several systems at the same 

time, therefore, the above equation can be rewritten in a general form for any number 

of active slip systems      [54] as 

Where           are the unit vectors that define the slip system   and the 

multiplier     is the plastic shear rate in system  . For accurate prediction of the 

problem it is key to know when a slip system becomes active. This is achieved 

through knowing the critical resolved shear stress of the slip system, which can be 

determined through experimentation [20], [37], [38]. In simulation the Kirchhoff 

stress tensor   can be used to define when a slip system has reached the critical stress 

state. The resolved shear stress on a slip system α is calculated with the following 

formula [54]. 
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3.6 Finite element in nonlinear solid mechanics  

In this subsection a brief outline of the finite element method is shown. For a more 

in-depth look at the finite element method the works of Belytschko et al. [67] and 

Zienkiewicz et al. [68] are recommended.  

The constitutive initial value problem is defined when the constitutive model is 

inserted into the equilibrium equations. Once this is done a numerical approximation 

method is used to solve the problem.  

To construct the finite element solution two numerical approximations are needed. 

The first of these approximations is a time discretisation of the underlying 

constitutive initial value problem. This means solving the initial value problem 

defined by the constitutive equations. The second approximation is a finite element 

discretisation. This is a finite element approximation of the virtual work statement 

where the domain of the body and associated functional sets are replaced with finite-

dimensional counterparts generated by finite element interpolation functions. 

In large strain cases the incremental boundary value problem that has to be solved 

can be expressed as [54]:   

The discrete model of the above equation relies on finding a kinematically 

admissible global displacement vector      that satisfies the standard incremental 

equation [54]  

With the external and internal force vectors being defined as: 
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Where   is the spatial discrete symmetric gradient operator and   is the interpolation 

matrix [54].  

3.7 Homogenised deformation gradient 

The homogenised deformation gradient   is defined as the starting point of the 

kinematical variation formulation of large strain multi-scale models. This 

homogenised deformation gradient is the volume average of the microscopic 

deformation gradient field,   , over the RVE [69], defined as: 

Where    denotes the reference configuration of the RVE domain and    is the 

volume of the RVE in the reference configuration. 

3.8 Minimum and actual RVE kinematical constraints 

From section 3.7 it is implicated that only microscopic displacement fields that 

satisfy the homogenised deformation fields and the homogenised deformation 

gradient can be permitted. If a displacement fluctuation is introduced into the 

microscopic domain    , the microscopic deformation gradient can be decomposed 

into [69] 

If any further constraints are to be placed upon the kinematics of the RVE, they must 

be such that the actual set of kinematically admissible displacement fluctuations [69] 

Is a subspace of 

Where      is the vector field and         
 
  is the minimally constrained vector 

space of kinematically admissible fluctuations of the RVE [69]. 
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3.9 Equilibrium of RVE 

The equilibrium of the RVE must be maintained throughout the whole history of the 

deformation gradient. This equilibrium is stated through the principle of virtual work 

which, when taken in the reference configuration, provides the variational equation 

Where    is the microscopic First Piola-Kirchhoff stress, and     ,     
 , and     

  are 

the external and internal surface tractions measured per unit reference area 

respectively [70]. It should be noted that all the above integrals are conducted over 

the reference configuration of their respective domains. When the differential form 

of the field    is sufficiently regular, the corresponding equilibrium equations are 

Where        is the material divergence of     with respect to the reference 

coordinates of the RVE [70]. 

3.10 Average of the First Piola-Kirchhoff stress 

The macroscopic First Piola-Kirchhoff stress is crucial to the formulation of large 

strain multi-scale constitutive models and is defined as equation (3.59) [69]. 

If this is then written in the spatial RVE configuration, the macroscopic stress tensor 

reads 
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Where           
  
    

 . de Souza Neto and Feijoo [70] show that macroscopic 

Cauchy stress differs from the spatial volume averaging of the microscopic Cauchy 

stress in general. 

3.11 The Hill-Mandel principle of macrohomogenity 

Another important consideration is the Hill-Mandel principle of macrohomogeneity 

[71]. This principle states that the macroscopic stress power is equal to the volume 

average of the microscopic stress power over the RVE. In a large strain setting it can 

be written such that [69] 

3.12 The choice of kinematical constraints 

So that the RVE equilibrium is well posed, a suitable space of kinematically 

admissible displacement fluctuations is needed. Different macroscopic response 

functionals are obtained through different choices [72], which include: 

i) Linear boundary displacement model  

The full prescription of the displacement of the boundary of the RVE are 

given by 

The reaction to the prescribed boundary displacements of the RVE yield the 

boundary surface traction field:  

ii) Periodic boundary fluctuations  

This assumption is usually used for a media with a periodic microstructure, 

where the macrostructure is generated by the periodic repetition of the RVE. To 

clearly represent this model imagine a square RVE. Each pair i of sides has 

equally sized subsets.  
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Of     with respective unit normals  

A one-to-one relationship exists between the equally sized subsets, such that 

each point      
  has a respective pair of      

  

 

Figure 3.5: Periodic RVE boundary displacement function. 

 

iii) Uniform boundary traction model 

The uniform boundary traction model is the minimum kinematical constraint 

for the RVE. 

The above three models have different kinematical constraint definitions. The 

different model constraints give different results which can be seen as the 

limits of the stiffness response, with      

   
 being the stiffest response and 

     

   
 being the softest.  
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3.13 Finite strain macroscopic stress tensor 

For the reference configuration of the RVE the finite strain microscopic equilibrium 

problem is [70] 

Where the large strain virtual work functional is     
 . By choosing an appropriate 

space           
 

   

 
 which poses the equilibrium problem well, the definition of the 

multi-scale model is complete.  

Once the solution to     is known the macroscopic Piola-Kirchhoff stress   is [70] 

And represents the solution to the finite element strain of the RVE equilibrium 

problem followed by volume averaging of the microscopic stress field. 

3.14 Computational homogenisation finite element discretisation  

The solution to the generally non-linear problem of the RVE equilibrium can be 

solved by the use of the Newton-Raphson scheme, with an iteration     which 

consists of solving the linearised form [72], 

For ease of notation the time station subscript has been omitted from the above 

equation. When     
   

 is known then a new guess    
   

for the displacement 

fluctuation at a time step of     is found through the use of the Newton-Raphson 

update formula 

Again the     subscript has been omitted [72]. 

In this method the finite element method used for solving the RVE equilibrium 

equation is similar to that of a conventional quasi-static boundary value problem. 
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The difference comes from the definition of the kinematical constraints acting on the 

RVE,  , which are yet to be defined.   is divided into corresponding sets of degrees 

of freedom that act upon the boundary of the RVE. For a more in-depth explanation 

of partitions of   the publication by Peric et al. [72] is advised. 

Therefore, for the uniform traction constraint, the vectors                 are split 

into free (f), independent (i) and dependent (d) degrees of freedom [72].  

For the periodic boundary displacement fluctuations model, the RVE geometry must 

comply with the imposed constraints as laid out in part (ii) of Section 3.12. For this 

model it is useful to assume that each boundary node   , with associated coordinates 

  
 , has a pair   , which has coordinates   

 . Knowing this, the nodal displacement 

fluctuation vectors housed inside the kinematically admissible discretised area can be 

defined as [72] 

Where       and    denote the vectors containing, respectively, the degrees of 

freedom of the RVE interior and the portions    and    of the boundary. As before 

the vectors                are split such that [72] 

Due to the arbitrary nature of                 in equations (3.72) and (3.74), the 

linear systems of the equation for        can be simplified. For the linear boundary 

condition, discretisation is simple. The boundary nodes are identified and the virtual 

displacements and fluctuations’ degrees of freedom are set to zero. The internal 

nodes’ degrees of freedom are, however, unconstrained. Therefore, the boundary 
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conditions are described as prescribed (P) degrees of freedom and the internal nodes 

are described as free (f) degrees of freedom such that  

   
    

     
      

     
      

   
    (3.75) 
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Chapter 4 Finite element simulation of a multiscale model 

In this thesis the following hyperelastic-viscoplastic material model is used. This 

model is adapted from a previous two dimensional model and expanded to three 

dimensions. The model is also now designed to work with HCP crystal structures 

such as titanium alpha phase, but can also simulate the BCC crystal structure found 

within the beta phase.  The model allows for slip on all families of slip systems, 

along with linear hardening. All the families of slip systems have their own material 

parameters which govern how and when they slip. The orientation of the grains is 

controlled through the use of Euler angles using the Bunge convention.      

4.1 Material model 

In this research a finite element program called HYPLAS is used. HYPLAS is an 

implicit finite element solver which is already capable of single crystal plasticity 

simulations. This provided a solid foundation from which to build this project. 

HYPLAS provides the deformation gradient to the material subroutine.  

Based on the kinematic assumption of the multiplicative split of the deformation 

gradient into the elastic deformation gradient      , and the plastic deformation 

gradient     , equation (4.1) is obtained. The plastic deformation gradient is the 

continuum measure of the slip along the crystallographic slip-systems for a given 

crystal. The elastic deformation gradient measures distortion of the crystal lattice as 

well as rigid body rotations with respect to the initial configuration of the lattice. In 

metals the distortion of the crystal lattice is typically infinitesimal [54].     

 A hyperelastic law is used within the model to govern the reversible behaviour. The 

stresses are found through the use of the hyperelastic potential      . The Kirchhoff 

stress tensor as a function of the elastic deformation gradient is given by [54]:  

 

A compressible neo-Hookean model is used to describe the elastic behaviour, which 

gives the potential seen in equation (4.3). The use of compressible neo-Hookean 

        (4.1) 
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material in single crystal plasticity leads to a simple format of the return mapping 

equations and was originally proposed by Miehe [73], [74]. 

Where G and K are shear and bulk modulus respectively and     
  is the isochoric 

component of the elastic left Cauchy-Green strain tensor   : 

Where    is the determinant of   , and     
  is the isochoric component of the elastic 

deformation gradient: 

The Kirchhoff stress can then be written from the potential seen in equation (4.3) as: 

Due to metal crystals’ lattices having small elastic distortions, use of a different 

elastic law will have little effect upon results of numerical simulations. As such, the 

use of the neo-Hookean model will result in the formulation of relatively simple 

return mapping equations. The elastic model used is for numerical convenience, 

rather than being grounded in the intricate physics of the elastic deformation of the 

crystal.  

4.1.1 Multi-surface plasticity   

To formulate a yield criterion for single crystal plasticity with a multi-surface 

definition, it is useful to split the physical slip system into two mirrored parts [54]:  

This will mean the material model will have double the number of slip systems 

compared to the physical crystal. This makes sense as, in reality, a slip system can 

slip in either direction in the physical crystal, where, in the code the slip systems are 

defined by vectors. This means two sets of vectors (one positive set and one negative 

set) are needed adequately describe the full potential movement of the slip system. 
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This leads to defining                               yield surfaces as shown in 

equation (4.8) [54]. 

Where   
  is the critical resolved shear stress (CRSS) for slip system alpha. If 

hardening is present then the CRSS value of the slip system α depends on the history 

of the deformation. In this work a linear hardening law is adopted to govern the 

evolution of the CRSS value of each slip system.    is the Schmid resolved shear 

stress in the slip system alpha [54]: 

Where    is the elastic rotations due to polar decomposition of the elastic 

deformation gradient.   
  is the slip system alpha vector and   

  is the unit normal 

vector to the slip vector. Due to using the neo-Hookean hyperelastic model, the 

Schmid resolved shear stress can be rewritten as [54]: 

Where    and    are the elastic push forward of   
  and   

 . Assuming an isotropic 

Taylor hardening law where    is a given function  

With the accumulated slip   in rate form being expressed as  

In rate form the plastic deformation gradient can be shown to be: 
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Where    , the plastic multiplier, denotes the contribution of a given slip system 

alpha to the total rate of plastic deformation.  

4.1.2 Return mapping algorithm  

Assuming a time interval of           and an initial value of   
 

, the differential 

equation seen in equation (4.13) for   can be numerically integrated in an implicit 

fashion with the use of the tensor exponential function. This implicit exponential 

approximation to the plastic flow equation yields the following discrete form [54]: 

 

Due to the multiplicative of  , the elastic deformation gradient update formula can 

be written as: 

Where  

With          being the elastic trial deformation gradient and    being the 

incremental deformation gradient for the given time interval. The internal hardening 

variable   is updated by the following formula.  

 

Where    , the incremental plastic multiplier.  

The stress update procedure requires the solution of the following non-linear system 

of      algebraic equations: 
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Where A is the set of active slip system numbers and     is defined by: 

4.1.3 Computation of the tensor exponential  

The tensor exponential function can be explicitly written in terms of its series 

representation [54]:  

 

The scalar counterpart of the above equation can be used to evaluate the tensor 

exponential function to any given degree of accuracy. In a finite element 

environment the tensor exponential can be calculated by truncating the above series 

[54]. This is achieved by setting      to the following: 

 

Where      is the prescribed tolerance.  

4.1.4 Exponential map derivative 

The Cartesian components of the derivative of the tensor exponential function at an 

argument   have the following series representation [54] 

 

The formula above was derived by de Souza Neto and was obtained by directly 

differentiating the series representation of the exponential tensor function [54]. The 

evaluation of the tensor exponential derivative is carried in a finite element 
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environment by truncating the above series to the form seen in equation (4.23). 

Where      satisfies the accuracy conditions shown in (4.21) 

4.1.5 Perić slip rate law 

As metal crystals have the ability to deform elastically and plastically, the rate of 

deformation can have significant effects upon the mechanics of the material. The 

implementation of a slip rate law with yield surfaces will therefore provide a better 

numerical framework to model high rate deformation cases, such as a bird strike on 

an aero engine fan blade. A slip rate law that is implemented into the section 4.1.2 

framework is the Perić law, which is presented below [54]: 

 

The constants   and   are the viscosity and rate-sensitivity parameter respectively. In 

the absence of hardening the critical resolved shear stress       is also a constant.  

4.1.6 Exponential map-based integration algorithm 

As the model is based on a hyperelastic law which defines   as a function of   , the 

following can be written  

 

Taking the standard backward Euler discretisation of equation (4.24), the following 

is obtained 

When equation (4.26) is substituted into equation (4.15) the following is the result: 

               
 

  

    

   

         

 

   

          
(4.23) 

     

 

 
  
    

  
 

   

                      
    

                                                    
     

        

 

(4.24) 

                             (4.25) 

              
      (4.26) 



68 

 

 

4.1.7 The local Newton-Raphson algorithm 

The exact Jacobian used in the Newton-Raphson scheme for the solution of residual 

equation (4.27) is obtained by differentiating   with respect to the equation variable 

    
 . This leads to equation (4.28) in Cartesian components. 

 

 

      
       

      
                       

  

      

 

  
    

      

(4.27) 

       
  

   
              

                
    

  
    

   

     

   

     

(4.28) 



69 

 

Chapter 5 RVE-based multiscale modelling of polycrystals 

5.1 RVE-based modelling  

In this research the principle of single crystal plasticity, as described in the previous 

chapter, is used to model the grains of the alpha and beta phases in titanium. This 

strategy is then coupled with the Representative Volume Elements (RVE) that are 

generated by the method in section 5.2.2. This means several grains of the alpha and 

beta phase are created and connected together to form a polycrystalline 

microstructure for simulation. This RVE then has a finite element discretisation 

applied to it and the individual grains have material properties assigned to them.  

As the load is applied, the deformation of the RVE is dependent upon the response of 

each of the grains through the use of the single crystal plasticity equations. At the 

grain boundaries resistance to slip may occur due to the unfavourable orientation of 

the next grain. This model does not account for grain boundary slip and the grain 

boundaries have no explicit modelling parameters.   

5.2 RVE generation  

RVEs are a simulated microstructure that can be used for finite element analysis. 

They are designed to give an accurate representation of the microstructure. This 

allows for the microstructural interaction to be studied when the RVE is subject to 

loading conditions.    

In the work of Bridier [75] the lamellar alpha and beta were not explicitly modelled 

with alternating alpha and beta laths, since this would make the integration of an FE 

model with both a large number of primary grains and fine detail of colonies 

computationally infeasible. Bridier created a statistical volume element using a finite 

element mesh composed of 30 x 30 hexagonal shaped grains in the order of 20 μm 

diameter. This lead to a computational domain of approximately 900 grains.  

In the work by Dunne [14] a model polycrystalline containing 27 grains, where the 

crystal orientations can be specified, is created. Dunne himself notes that this is 

relatively few grains to be modelling, and that the boundary effects are likely to be 

large in the grains close to the free surfaces. He does, however, go on to say that the 
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effects of the boundary on the main grain analysed are limited [14]. This supports the 

view that the number of grains needed to create a reliable RVE is quite large.  

In the Cellular Automaton (CA) work conducted by Pourian [13], an equiaxed 

hexagonal close-packed microstructure was created, and represented as cells in the 

model. The cells in the CA model morphology were assumed to be spherical [13]. 

The CA technique does not capture the geometrical dependencies of the 

microstructure due to the nature of the method compared to other methods such as 

Voronoi tessellation.   

Compared to the CA model morphology, Voronoi tessellation methods give more 

realistic microstructures of metals [75]. This is due to the 3D Voronoi producing 

complex random shapes rather than utilising idealised shapes such as the CA model 

that uses spheres [76]. The Voronoi tessellations are defined analytically. This gives 

the grains created straight edges and planar faces, whilst still giving a realistic 

microstructure that has no voids or grain overlaps [77]. The process of Voronoi 

tessellation is described below:  

1. Assuming a finite set of points N (nuclei) positioned within a Euclidian space, 

the Voronoi tessellation divides the entire space into N convex polyhedra.  

2. Each polyhedra generated from a nucleus P contains all the points closer to P 

than to any other nuclei.  

The grains are then grown in a way akin to growth of metallurgical grains in real 

microstructures: 

1. All nuclei are created simultaneously. 

2. Original nucleation points’ coordinates in the Euclidian space remain set 

throughout the growth process. 

3. The growth of the grains is isotropic and constant. 

4. Grain growth in a direction stops when it comes into contact with another 

grain in that direction, ensuring no voids or grain overlaps is present in the 

generated microstructure.  

The Hardcore method adds a sphere of influence of radius ρ emulating from the 

nucleation point N, at the stage where the nucleation points are being placed [75].  If 

another nucleus falls inside the sphere then it is moved to be outside of this sphere 



71 

 

[75]. The advantage of using the Hardcore method is it reduces the number of small 

grains and produces more regular grains [75].  Due to the nature of the method the 

grains produced are of irregular shape and, as such, tetrahedral elements have to be 

used to discretise the domain [75].  

5.2.1 NEPER 

This software is open source but is only supported on the Linux operating system. 

The Neper program is run from the Linux terminal which can be seen in Figure 5.1. 

neper –T calls the tessellation module of the Neper program. This is the first part of 

the command line to be entered. – n 1000 refers to how many grains the user wishes 

to have within the domain space, which is then followed by an id tag. – domain 

‘cube(60,60,60)’ sets the domain of the RVE to be a cube shape of size 60 x 60 x 60. 

This is then followed by the –format geo section, which means the output file is a 

.geo file. This is useful to the research as this allows for GMSH software to be used 

to visualise the RVE structure.  

 

 

Figure 5.1: Neper terminal. 

The last section of the command line, –statcell size, creates a text file with the 

statistics of the grain sizes that have been produced to create the RVE. It allows the 
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user to analyse the RVE that has been created, and relate it back to the EBSD data, to 

make sure the virtual grain structure resembles the physical grain structure seen in 

the EBSD map.     

5.2.1.1 Laguerre tessellation  

The weighting system in Neper uses the Laguerre tessellation [78], [79]. This 

tessellation system gives bigger spheres of influence to the higher weighted grains, 

but all grains grow at the same rate. In this form of tessellation the seed point for the 

grain does not need to be in the grain it generates and some seed points can produce 

no grain if they are surrounded by much higher weighted seed points. This can be 

seen in Figure 5.2 with W being the weight assigned to the seed point. 

 

Figure 5.2: Laguerre tessellation diagram [79]. 

As can be seen, the purple seed point generates the purple grain, yet it is not 

contained within the final grain shape. It can also be seen that the red seed point is 

swamped by the other seed points around it and, therefore, does not generate a grain 

in the final tessellation.  
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5.2.1.2 Voronoi tessellation  

Another method used by Neper is the Voronoi tessellation. Like the Laguerre 

tessellation the domain is populated by seed points, however, unlike the Laguerre 

tessellation, the seeds that generate the grains are contained in the grains as there is 

no weighting function. This can be seen in Figure 5.3, where the black dots represent 

the seed point for each grain.  

 

Figure 5.3: Voronoi tessellation diagram [79]. 

All the grains grow from their seed point at the same rate and stop when they come 

into contact with another grain. This means this method does not normally lend itself 

to dual phase microstructures which have two phases at different sizes.  

However, Neper allows the user to specify the location of the seed points. This 

function has been used in this research, coupled with the Voronoi tessellation 

described above.  

5.2.2 Coupled MATLAB and Neper RVE generation 

In this research a MATLAB code has been created to generate the seed points input 

for Neper. This code, however, places the seed points in such a way that allows for 

two distinct sizes of grains to be produced. This is necessary to create a realistic 

model, as in titanium the alpha phase and the beta phase are two distinct sizes, with 

the alpha phase volume on average being 260 times that of the beta phase.  

A number of alpha-beta configurations were trialled to create an RVE with a volume 

fraction close to that of the EBSD data. In the final chosen configuration a fifth of the 

total desired beta seed points are randomly distributed throughout the domain. The 
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MATLAB code then checks to see if any of the initial beta seed points are in 

violation of the distance condition set between them and redistributes any offending 

seed points. This ensures an even distribution throughout the RVE. The MATLAB 

code also checks to make sure that no seed point is placed too close to the outer 

bounds of the domain, as this could result in other seed points being placed outside 

of the domain in the next step. Once these initial beta seed point have been placed an 

additional 4 beta seeds are placed around each of the initial beta seed points. These 

new beta seeds are placed in set positions in relation to the initial beta seed. After the 

beta points have been placed, 12 alpha seed points for each of the initial beta seeds is 

placed. The placement of these seed points is such that the beta grain growth is 

constricted by the alpha seed points. As the beta grains are smaller than the alpha 

grains, they need to be constricted due to the equal growth rate of all seed points in a 

Voronoi tessellation. If they were not constricted this would lead to both alpha and 

beta grains having a similar average volume, a result that is not representative of a 

real life grain structure.  

 

Figure 5.4: MATLAB code seed points. Green and red circles represent beta and alpha seed point 

respectively. 

In Figure 5.4 the green circles are the beta seed points. These beta seed points are all 

on the same Z axis, as can be seen by the green dashed lines connecting them. The 

alpha seed points are the red circles in the diagram. Eight of the alpha seed points 

form a cube around the central initial beta seed as seen by the red lines. Four more 
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alpha seeds are then placed to form square based pyramids around the remaining beta 

seeds as shown by the blue lines. 

This method of placing the seed points allows you to track the phase type of each 

grain. Grains 1 to n are the beta grains, where n is the number of beta grains, and n+1 

to m are the alpha grains, where m is the total number of grains within the RVE. 

This seed point file is passed to Neper, which generates the Voronoi tessellation in 

three dimensions, and regularisation upon the tessellation takes place to eliminate 

any small edges.  

5.2.3 Trimming the EBSD data 

For this work EBSD maps and data have been provided by Timet UK Ltd. From the 

raw data any readings that were under two step sizes were removed, as this is 

believed to be erroneous data due to poor recognition of the Kikuchi band [80]. Once 

these data points had been trimmed from the data the average grain radiuses of the 

alpha and beta phases were calculated as 5.75 μm and 0.90 μm respectively. From 

the calculated averages the MATLAB code could be used to generate the seed points, 

such that the grain volumes would match closely to the EBSD data set.   

5.2.4 RVE generated from EBSD data 

Using EBSD data, a RVE can be generated that closely matches the volume fraction 

of Ti-6Al-4V. EBSD data showed the average volume of alpha and beta grains to be 

794 μm
3
 and 3.07 μm

3
 respectively and at room temperature the beta volume fraction 

in Ti-6Al-4V is approximately 3-4% [81]. The volume fraction of the alloy needs to 

be preserved over other considerations due to the deformation of the two phase alloy 

being dependent on the volume fraction of both phases [21]. Therefore, a volume 

fraction of 3-4% will be prioritised over matching the average grain volumes of the 

phases for this project. 
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Figure 5.5: 102 Grain RVE created in GMSH from EBSD data. 

The internal grain structure of the RVE (Figure 5.6) has no voids and has realistic 

grain geometries, demonstrating the advantage of the Voronoi technique. 

 

Figure 5.6: Cross section view of RVE in GMSH, showing realistic geometries achieved by the 

voronoi method.   
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This method of generating RVEs will allow for the study of volume fraction effect as 

well as grain distribution and texture. The RVE is meshed by Neper using hexahedral 

elements. This does affect the shape of the grains, giving them a more blocky 

appearance compared to the original Voronoi generated grains. The computational 

benefits of using the eight-noded brick elements over tetrahedral elements, however, 

far outweighs the loss in complex geometries. 
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Chapter 6 Simulations of Titanium-6AL-4V 

 

In this research improvements to the HYPLAS 3D code have been made that allow 

for the simulation of HCP crystal in a hyperelastic-viscoplastic single crystal routine. 

The ability to define different families of slip systems has been added to all crystal 

types used in HYPLAS. The user can define as many slip families as they require 

with as many slip systems in each family. This allows for full customisation of the 

material properties, allowing the user to construct what they need. Each family of 

slip systems can have its own CRSS value and hardening curve associated with it. 

This can allow for the different slip systems to yield and harden according to their 

own parameters. Each family can also have its own rate sensitivity parameters, 

allowing for different rate effects on each family.  

 

Several MATLAB codes have been written to aid in the construction of the HYPLAS 

inform files. These MATLAB files include the creation of the hardening data as 

explained in section 6.2.1 and a MATLAB code, HYPLAS INPUT to create the 

inform file necessary to provide HYPLAS with the information needed to run. 

HYPLAS INPUT reads in the nodes and elements from the mesh along with the 

hardening data from the created HARDENING code. For this research the material 

parameters for the alpha and beta phase have been hard coded into HYPLAS INPUT. 

The MATLAB code also asks the user to specify the number of beta grains and total 

number of grains, along with the desired number of increments and simulation time. 

Figure 6.1 shows the process required to go from RVE creation to simulation results.  
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Figure 6.1: Process of RVE simulation, from RVE generation through to final results.  
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6.1 EBSD data and RVE generation  

The EBSD map shown in Figure 6.2 is for an equiaxed Ti-6Al-4V microstructure. In 

addition to the image, the EBSD data also provides data on grain sizes and 

orientations in terms of Euler angles using the Bunge convention. The average grain 

size for each phase can then be calculated and used to inform the creation of the 

RVEs. The orientation data will be used to write the inform file for the simulation, 

therefore each grain will have an orientation assigned to it. 

For this project, 100 grains was deemed large enough to reduce the percentage of 

grains affected by the boundary conditions, therefore giving a more reliable model, 

whilst maintaining a reasonable simulation run time.  

 

Figure 6.2: Ti-6Al-4V EBSD map showing the variety of grain sizes and there distribution. 

The RVE for the simulations consisted of 102 grains, 30 beta grains and 72 alpha 

grains, with a volume fraction of 3.5% beta. The RVE has an average alpha grain 

volume of 753 μm
3
 and the beta grains have an average volume of 66 μm

3
. The 

average beta volume is higher than the EBSD data due to the configuration of the 

alpha and beta seed points, for which an optimal configuration could not be found 

that constrained the betas to a volume matching that of experimental data. The RVE 

was meshed with 2366 hexahedral elements   
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6.2 Macroscale modelling of RVE 

6.2.1 Rate independent case  

In this simulation the RVE is subjected to an axial tensile loading condition at a 

quasi-static rate, for which the parameters are in Appendix A. In this case a match 

between the simulation and the quasi-static uniaxial tensile experiment by M. 

Wojtaszek [82] is to be sought. Matching the experiment would prove that the model 

constructed from grain level properties could predict the macroscale response of the 

alloy. 

For the simulation the RVE is constrained, such that the nodes on the XZ plane are 

fixed in the Y direction but free to move in the X and Z directions. In addition to this 

the nodes along the axis where X equals zero are fixed so they cannot move in the Z 

direction as well as the Y direction. Lastly, the origin node is fully fixed so that no 

movement is permitted in any direction. The XZ plane at Y = 33 μm is subjected to a 

uniaxial tensile load, at a strain rate of 2e
-3

. Figure 6.3 shows the true stress-strain 

curve obtained from the experiment by Wojtaszek [82] and the curve obtained by the 

simulation of the RVEA MATLAB code is used to calculate the current cross 

sectional area of the fixed surface at any given iteration, along with summing the 

total reaction forces of the nodes upon that surface. The true stress is then calculated 

by dividing the total reaction force acting upon the surface by the current cross 

sectional area. 

 It can be seen from Figure 6.3 that the simulation captures the general trends of 

Titanium 6Al-4V, however, the exact values of true stress are not captured. This is 

most likely down to the hardening curve used for the simulation. The values for the 

CRSS for each of the families' slip systems came from the paper by Warwick [33] 

along with the equation that governs the hardening curve. These values appear to be 

close to the values for single crystals, but the experiment used a material with 

multiple grains. This may lead to a slight difference in values as slip can occur on 

multiple systems at the same time. 
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Figure 6.3: Comparison of True Stress - Strain curves for experimental and simulated Quasi-static 

rate case. 

This therefore means more localised testing of single grains is necessary to find the 

exact CRSS values for each and every slip system within the material. However, this 

was not feasible within the scope of the current project. With more specialised 

testing the hardening curve could also be improved as well, although the shape of the 

hardening is well defined by the Vocé equation from Warwick’s [33] paper. 

For use in HYPLAS the hardening curve must be in a series of data points relating 

plastic strain to expected stress. In this research a MATLAB code was used to 

calculate the expected stress for a given set of plastic strains through the use of 

equation (6.1) and output them to separate text files. Due to the formulation of the 

rate equation (4.24) setting μ or   to zero would cause a divide by zero within the 

equation. For this simulation the hardening parameters were set close to zero to 

obtain the rate independent case. 

 

     
     

    
          

   
  

  
     

(6.1) 
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The deformed configuration of the grains in the RVE (Figure 6.4) shows the new 

positions of the grain boundaries at the final time step. This is useful when compared 

to stress distributions of the RVE in Figure 6.5. 

 

Figure 6.4: Grains in the final deformed configuration showing the positions of grain boundaries. The 

colouring is based on the material ID, not the grain orientation.   

It can be seen that there is a build up of stress at the grain boundaries. This is to be 

expected as slip is inhibited by the grain boundary. This means the slipping grain is 

not free to deform as it wishes due to the different orientation of the neighbouring 

grain. The images of the stresses in the YY and ZZ direction have good examples of 

this occurring with the red and yellow areas being zones of high stress. The image of 

stress in the XZ direction also gives a good view of this, as the yellow band stretches 

from the near edge of the cube to the top edge. When the placement of this line is 

compared with the grain edge of the yellow grain that wraps round the top near edge 

of the RVE in Figure 6.4, it can be seen that it follows the grain boundary exactly. 
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Stress XX Stress YY Stress ZZ 

   

Stress XY Stress XZ Stress YZ 

   

Figure 6.5: Stress distributions on RVE for Quasi-static uniaxial tension. 

The model does not capture grain boundary sliding or other grain boundary effects as 

the grain boundaries are not explicitly modelled. The inhibition of slip across the 

grain boundaries is solely from mis-orientation of the grains and non-alignment of 

preferential slip systems.      

6.2.2 High strain rate case  

In this simulation a strain rate of 20 is used on the RVE with the same loading 

conditions as outlined in section 6.2.1. The rate sensitivity parameters have been set 

as        and        . where the value of   is calculated from Bridier’s [40] 

paper, where he specifies the inverse rate sensitivity parameter.   on the other hand 

has been set to try and match the macro curve of the high strain rate experiment of 

Wojtaszek [82].  

The rest of the material parameters are as they were for the quasi-static case in 

section 6.2.1, which are found in appendix A. The same amount of strain is applied 

to the RVE of 10% as in the quasi-static case. Figure 6.6 shows the response of the 

simulation in relation to that obtained by Wojtaszek [82] in his experiment. 
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Figure 6.6: Comparison of Experimental and simulation response to a high strain rate loading 

condition. 

From Figure 6.6 it can be seen that the height of the simulation curve gives a good 

match to that obtained by the experiment. This shows that the rate sensitivity of the 

material can be captured as a general trend. In this case though a more defined set of 

rate parameters are needed. As can be seen the curve has deviated from the elastic 

region. It is believed that the   parameter could be too high, in which case the   

parameter needs to be increased. This would therefore be in contradiction to Bridier’s 

[40] paper where the inverse of rate sensitivity parameter is given as fifteen. Again it 

is clear that more study is needed in the parameters needed to accurately model 

titanium in this way. The model is capable of capturing the rate sensitivity as long as 

the right parameters have been found. Figure 6.7 shows the grains in the final 

deformed state. Again the colouring is the material ID of the grain, not the 

orientation. Figure 6.8 shows the distribution of the stresses over the RVE for the 

high strain case. 
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Figure 6.7: Grain deformation for high strain rate loading. 

In Figure 6.8 the stresses can be seen to be highest at the grain boundaries. This is 

expected due to the inhibition of slip across grain boundaries as explained in the 

quasi-static case. The image of the stress in the YZ direction clearly shows several 

grain boundaries that are acting as slip inhibitors. It can be seen that more slip is 

trying to happen in the high strain rate case compared to the quasi static case. 

Comparing the images for stress in YZ direction in Figures 6.5 and 6.8 it can be seen 

that more boundaries have stress acting upon them. This is likely due to more non-

preferential slip systems being activated due to the higher strain rate and therefore 

having to accommodate plastic deformation in a shorter time frame. 
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Stress XX Stress YY Stress ZZ 

   

Stress XY Stress XZ Stress YZ 

   

Figure 6.8: Distribution of stresses on RVE for high strain rate. 

6.3 Microscopic modelling of RVE 

In the previous sections of this chapter the RVE has been subjected to macroscale 

loading to try and match it to macroscale true stress-strain curves. In this section the 

RVE has a deformation gradient prescribed to it and has a periodic boundary 

condition set. This closer mimics what grains would experience in the bulk material, 

with the loads coming from the surrounding metal rather than being directly applied 

as in the macroscale tests.  

The advantage of the microscale modelling is deformations that are difficult to carry 

out in reality can be imposed. When the RVE has periodic boundary conditions these 

represent what happens to the microstructure for a given macroscale deformation, 

which is applied through the use of the deformation gradient. 

In this section a deformation gradient as shown in equation (6.2) is applied to the 

same 102 grain RVE as used before in the macroscale simulations.  

   
         
         
         

   
 

(6.2) 
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The material parameters are set as before as well as the rate sensitivity parameters 

from the high strain rate case of section 6.2.2. Figure 6.9 shows the response of the 

RVE to the applied deformation gradient as shown in equation (6.2). The simulation 

is again run at a strain rate of 20. 

 

Figure 6.9: True stress -strain response of the RVE. 

Figure 6.9 shows the homogenised stress of the RVE against the true strain for the 

shear loading in the XY direction. Even at the microscale level we still see a sharp 

transition from the elastic to the plastic region.  

Figure 6.10 shows the stress distributions in the different directions upon the RVE. 

Again we see the stress concentrations around the grain boundaries from the 

resistance of slip across different orientated grains.  
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Stress XX Stress YY Stress ZZ 

   

Stress XY Stress XZ Stress YZ 

   

Figure 6.10: Stress distribution for shear loading in microscale. 

This can especially be seen in the ZZ direction when it is compared to the grain 

image in Figure 6.11. We also see significant stress concentrations in the XY 

direction. 

 

Figure 6.11: Deformed grains in microscale shear. 
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Chapter 7 Conclusions 

 

7.1 Research outcomes 

In this research a three dimensional hyperelastic-viscoplastic single crystal 

constitutive model is outlined. This model uses the perić rate law with yield surfaces. 

The model allows for each slip family to have its own unique set of governing 

variables that allows for a more customisable material.  

A process for creating RVEs with the correct volume fraction of beta phase has been 

described. This method also produces alpha grain sizes that match well with the 

EBSD data. The beta grains, however, are bigger than is found in the EBSD data and 

this is due to the seed point generation and grain growth process used in this thesis.  

Simulations show that the model can capture the trends of titanium 6Al-4V at the 

macro scale, though an exact match was not achieved with the experimental data. 

The simulations also show that an applied deformation gradient can be placed upon 

the RVE with periodic boundary conditions that mimic the surrounding metal.  

This model allows for early stage alloy development as it captures the trends of the 

alloy. This is helpful to manufacturers as they can explore the effect of different 

parameters upon the material response. This allows them to see what ideas are worth 

pursuing before committing to more expensive sample manufacture and testing.    

7.2 Looking forward 

Moving on from this research a few points of interest that the author feels would be 

useful to the advancement of this current method are: 

1. A more in-depth analysis of CRSS values and hardening curves. The values 

used in this research have given results that show the general trends of the 

material. These values, however, do not give the exact values that are 

obtained by the experiments. Obtaining more fine-tuned values would help 

provide a closer match to the experimental values and therefore give a more 

accurate representation of the materials response. 

2. A more in-depth analysis of rate sensitivity parameters. Again the more 

accurate the values the closer the simulation results will be to the 
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experiments. It will also give better predictions of the rate dependence of the 

material. 

3. Adding a thermal component so that thermal effects can be taken into 

account, allowing for more investigations. 

4. Incorporating the twinning mechanism. This mechanism is more prevalent in 

lower aluminium content titanium alloys. Adding this would allow for more 

accurate simulations of the lower aluminium content alloys.  

The current method lays down a starting point for more advanced simulations 

that capture more of the micro structural effects and how they affect the macro 

scale response. This method should allow for a bottom up approach to 

preliminary designing of new titanium alloys.    
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Appendix 

Table 1: Elastic properties and CRSS values [33]. 

Property Value (Gpa) 

Bulk modulus alpha phase 43.99  

Shear modulus alpha phase 106.43  

Bulk modulus beta phase 20.7  

Shear modulus beta phase 87.7  

B1 CRSS 0.29  

B2 CRSS 0.31  

B3 CRSS 0.35  

Basal CRSS 0.33  

Prismatic CRSS 0.35  

Pyramidal CRSS 0.38  

Pyramidal 1
st
 order 0.49  

Pyramidal 2
nd

 order 0.52  

 

Table 2: Vocé hardening parameters [33]. 

Slip system          

B1 0.3 0.1 0.5 

B2 0.3 0.1 0.5 

B3 0.3 0.1 0.5 

Basal 0.01 0.01 0.01 

Prismatic 0.15 0.4 0.01 

Pyramidal 0.01 0.01 0.01 

Pyramidal 1
st
 order 0.01 0.1 0.08 

Pyramidal 2
nd

 

order 

0.01 0.7 0.08 
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