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Abstract

Oxygenation of tumors and the effect of hypoxia on cancer cell metabolism
is a widely studied subject. Hypoxia-inducible factor (HIF), the main actor in
the cell response to hypoxia, represents a potential target in cancer therapy.
HIF is involved in many biological processes such as cell proliferation, survival,
apoptosis, angiogenesis, iron metabolism, and glucose metabolism. This protein
regulates the expressions of lactate dehydrogenase (LDH) and pyruvate dehydro-
genase (PDH), both essential for the conversion of pyruvate to be used in aerobic
and anaerobic pathways. HIF upregulates LDH, increasing the conversion of
pyruvate into lactate which leads to higher secretion of lactic acid by the cell
and reduced pH in the microenvironment. HIF indirectly downregulates PDH,
decreasing the conversion of pyruvate into acetyl coenzyme A, which leads to
reduced usage of the tricarboxylic acid (TCA) cycle in aerobic pathways. Upreg-
ulation of HIF may promote the use of anaerobic pathways for energy production
even in normal extracellular oxygen conditions. Higher use of glycolysis even in
normal oxygen conditions is called the Warburg effect. In this paper, we focus on
HIF variations during tumor growth and study, through a mathematical model,
its impact on the two metabolic key genes PDH and LDH, to investigate its role
in the emergence of the Warburg effect. Mathematical equations describing the
enzyme regulation pathways were solved for each cell of the tumor represented
in an agent-based model to best capture the spatio-temporal oxygen variations
during tumor development caused by cell consumption and reduced diffusion
inside the tumor. Simulation results show that reduced HIF degradation in nor-
moxia can induce higher lactic acid production. The emergence of the Warburg
effect appears after the first period of hypoxia before oxygen conditions return to
anormal level. The results also show that targeting the upregulation of LDH and
the downregulation of PDH could be relevant in therapy.
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1 | INTRODUCTION

Cells rely on two main processes to produce ATP: oxidative
phosphorylation (OXPHOS) by using oxygen and glycol-
ysis by using glucose. Glycolysis is a pathway generating
both ATP and pyruvate using glucose as input [3, 16,
37]. Pyruvate produced by glycolysis can then be used to
fuel the tricarboxylic acid (TCA) cycle and produce the
compounds involved in OXPHOS, the aerobic pathway.
If oxygen is not present, pyruvate is turned into lactate,
this process is called fermentation [4]. Lactate formed dur-
ing fermentation is secreted into the microenvironment,
which causes a decrease in extracellular pH.

In 1927, Otto Warburg observed that the tumor con-
sumed more glucose and produced more lactic acid than
normal tissues [32]. At first Warburg’s observation did not
consider the presence of oxygen, yet since increased lactic
acid production was also observed when oxygen is avail-
able, it has slowly been associated with aerobic glycolysis
[14]. Nowadays, a high rate of glycolysis, even if oxygen is
available, is known as the Warburg effect [18, 26]. In this
paper, we will retain this definition. Tumors can develop
anywhere, yet harsh conditions favor tumor appearance
[8]. Most tumors have median oxygen levels falling below
2%, the threshold at which the hypoxic response is half-
maximal [23]. For this reason, a lot of interest has been
put in the effect of oxygenation on tumor metabolism and
specifically on the hypoxia-inducible factor (HIF) protein.
This protein, being the main actor in the cell response to
hypoxia, is interesting to explore as a potential target for
cancer therapy since hypoxic cells are more radioresistant
[18, 23].

1.1 | HIF structure and mechanism of

action

The HIF protein was discovered by Semenza and co-
workers during a study on the erythropoietin (EPO) gene,
a gene encoding for the erythropoietin hormone involved
in red blood cells production, in 1991 [22]. They found DNA
sequences in the gene important for its transcriptional acti-
vation in hypoxic conditions, now called hypoxia response
elements (HRE). The HIF protein is a heterodimer com-
posed of two subunits HIF-1a and HIF-13, and it acts as
a transcription factor by binding to HRE in hypoxic condi-
tions. The subunit HIF-1« is oxygen sensitive and degraded
in the presence of oxygen, compared to the constitutively
expressed HIF-13 subunit. Three isoforms of the o subunit
have been identified: HIF-1a, HIF2-a, and HIF3-. HIF-
la and HIF2-« are the most studied of the three homologs,
HIF-1a is expressed ubiquitously in the body, while HIF2-a
expression is tissue specific [22]. It has been demonstrated

that overexpression or suppression of HIF-1la or HIF2-«
influence each other in vitro and one homolog can be more
expressed than the other. Kidney lesions with early Von
Hippel-Lindau (VHL) inactivation show more activation
of HIF-1a than HIF-2a, but this balance can change [34].
Transcriptional activity of HIF-1a requires the binding of
the co-factor CBP/p300 to the C-TAD domain of HIF-1a,
then HIF will bind to HRE and activate the transcription
of its target genes [12, 17, 22].

1.2 | HIF regulation

Oxygen-dependent regulation of HIF-1a is mainly done
by prolyl hydroxylase (PHD) and FIH-1 enzymes. They
act at the posttranslational level by inducing its degra-
dation or disrupting its interaction with co-factors. PHD
proteins catalyze the hydroxylation of proline residues, tar-
geting HIF-1a for proteasomal degradation by the VHL
tumor suppressor protein. Hydroxylation of asparagine
residues by factor inhibiting HIF-1 (FIH-1) inhibits the
interaction between HIF-1a and the important co-factor
CBP/p300, preventing regulation of HIF-1a target genes.
Since PHD and FIH-1 need oxygen to hydroxylate HIF-1a
residues, they act as oxygen sensors in the cell response
to hypoxia. Hypoxia promotes HIF-1a protein stability and
transcriptional activity. reactive oxygen species (ROS) and
oncometabolites such as succinate, fumarate, and lactate
upregulate HIF-1a [12].

Oxygen-independent mechanisms regulating HIF-1x
transcription and translation include PI3K/Akt/ mTOR
and RAS/RAF/MEK/ERK pathways. Multiple growth fac-
tors, oncogenes, mutations (such as in the tumor suppres-
sor genes PTEN and p53), or ROS may increase HIF-1a
levels through PI3K and RAS signaling cascade [12, 17,
22]. A study by The Cancer Genome Atlas (TCGA) identi-
fied the most altered genes in glioblastoma, it reveals that
RTK/RAS/PI3K is among the frequently altered pathways
in this disease [24]. It suggests that HIF is a strong candi-
date for cancer therapy not only because of its role in the
cellular response to hypoxia but also of its frequent dereg-
ulation in cancer as well. HIF regulation is summarized in
Figure 1.

1.3 | Impact on cellular biological
functions

The cell response to hypoxia initiated by HIF affects
many biological processes such as cell proliferation, sur-
vival, apoptosis, angiogenesis, iron metabolism, and glu-
cose metabolism [17]. Pathway enrichment analysis of
98 HIF target genes revealed 20 pathways including
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FIGURE 1 Regulation of hypoxia-inducible factor by oxygen-dependent and oxygen-independent mechanisms. PI3K/Akt/mTOR and

RAS/RAF/ERK/MEK signaling pathways increase HIF transcription and translation in an oxygen-independent way. The oxygen-dependent

regulation relies mainly on the two enzymes: PHD and FIH-1. PHD catalyzes the oxygen-dependent hydroxylation of proline residues on the
HIF protein, which is then targeted for proteasomal degradation by the VHL. FIH-1 catalyzes the oxygen-dependent hydroxylation of
asparagine residues, which inhibits the interaction between the HIF protein and the CBP/p300 co-factor. Hydroxylation of HIF residues by
PHD and FIH-1is inhibited by hypoxia, ROS, and oncometabolites such as succinate, fumarate, and lactate

those implicated in cancer, glycolysis/gluconeogenesis and
metabolism of carbohydrates [27].

HIF can prevent G1/S transition through the regulation
of cyclin-dependent kinase inhibitors (p21, p27) and cyclin
proteins (cyclin G2, cyclin E) [10]. Cyclin E downregula-
tion is mediated through the inhibition of cyclin D by HIF
causing a slowing down or arrest of the cell cycle in the G1
phase and promoting the entry into quiescence, which can
be a mechanism to escape chemotherapy [2].

The tricarboxylic acid (TCA) cycle (also called citric
acid or Krebs cycle) is a circular process fueled by acetyl-
CoA generating NADH and FADH, for its use in the
oxidative phosphorylation (OXPHOS) pathway. Although
OXPHOS is the main pathway generating ATP, TCA pro-
duces energy in the form of GTP (the equivalent of ATP).
These processes represent the aerobic pathways used by
the cell when oxygen is present for ATP production.
Pyruvate produced by the last steps of the glycolysis is
turned into acetyl coenzyme A by pyruvate dehydroge-
nase (PDH) to fuel the TCA cycle, promoting an oxidative
metabolism [4, 36]. However, pyruvate dehydrogenase
kinase (PDK) an inhibitor of PDH is upregulated by
HIF [19].

When oxygen is not present, the lactate dehydrogenase
(LDH) enzyme catalyzes the reaction in which pyruvate
formed by the glycolysis is turned into lactate to gener-
ate NAD, . This last step allows glycolysis to continue in

anaerobic conditions since NAD, is required for pyruvate
production. In presence of oxygen, NAD, availability is
ensured by OXPHOS [4, 36].

Different isoforms of both LDH and PDH enzymes
exist. Those isoforms present several differences like kinet-
ics parameters, the tissue, or the cellular compartment
where the isoforms are expressed. For example, LDH-A is
expressed in the skeletal muscle LDH-B in the heart [21].
LDH-A is also the isoform commonly upregulated in can-
cer [11]. The differences between isoforms add a level of
complexity. However, this is out of the scope of this study.

The Warburg effect is caused by an increase in glucose
utilization by the cells, glycolysis being one of the path-
ways affected by hypoxia. HIF increases the expression
of glucose transporters GLUT1 and GLUT3 which contain
HRE in their promoters, resulting in higher glucose uptake
[13]. Furthermore, HIF induces the overexpression of spe-
cific glycolytic isoforms for each enzyme involved in all
the steps of the glycolysis [21]. Thus, HIF upregulates the
expression of LDH, resulting in higher lactate secretion
which acidifies the microenvironment. Not only hypoxia
will increase the use of glycolysis by the cell, but it will also
reduce the use of the TCA cycle.

In this paper, we want to study how genetic (or epige-
netic) regulations, between HIF and its two targets LDH
and PDH, may affect the emergence of the Warburg effect.
The Warburg effect results in an increased production of
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lactic acid by the tumor by metabolizing glucose, even in
normoxia [7, 15, 18, 26, 28].

2 | MATERIALS AND METHODS

2.1 | Genetic regulations

Here, we assume that HIF plays a major role in mediat-
ing the cellular response to hypoxia. We have selected LDH
and PDH to model the effect of hypoxia on metabolism
since (1) they are key enzymes for the conversion of
pyruvate into lactate/acetyl-CoA respectively, after the gly-
colysis, and (2) they are both regulated by HIF directly
or indirectly. PDH is downregulated by HIF through its
inhibitor PDK; therefore, PDK will be included in the
model (see Figure 2). Genetic regulations are based on the
model described by Li et al. [19]. All genetic regulations are
described by the following equations:

du

= = Au—DuxHo,ou X ey
%=AU><HM_DUXU, @)
‘i—‘f = Ay XHy_y— Dy Xw, 3)
%:Aszw_,z—szz, 4

where u, v, w, and z are HIF, LDH, PDK, and PDH lev-
els, respectively; A is a parameter for gene production
and D for gene degradation. LDH and PDK upregulations
by HIF and PDH downregulations by PDK are described
with a nonlinear function named the shifted-Hill function.
In the same way, the increased HIF protein degradation
in normoxia is described using the same function. The

)
@D

Cell metabolism and genetic regulations implemented in the model. Green arrows represent upregulation, and red arrows

shifted-Hill function has the following form:

n n

Hy.z = sirvyn Y Vv-zgoyn 5)

Here, n is the Hill coefficient. S is the gene level with a
half-threshold of production. The positive parameter y rep-
resents an activation if > 1 or an inhibition if < 1. Hy_,»
represents the effect of the regulating gene Y on the reg-
ulated gene Z, it can be an upregulation if y is > 1, or
a downregulation if y is < 1. All gene levels are dimen-
sionless, and parameters used in the equation above are
summarized in Table 1.

2.2 | Cell metabolism
Nutrient consumption rates change over time depending
on microenvironment conditions. In normoxia, glycolysis
transforms glucose into pyruvate, then pyruvate is con-
verted to acetyl-CoA by PDH enzymes to feed the TCA
cycle. The TCA cycle works in cooperation with OXPHOS
to produce ATP using oxygen, which constitutes the aer-
obic pathway [36]. Since the conversion of pyruvate to
acetyl-CoA is catalyzed by the PDH enzyme, its availabil-
ity bounds the use of TCA and should be reflected in the
consumption of oxygen. In hypoxia, glucose consumption
isincreased to produce the ATP needed using aerobic path-
ways. Pyruvate formed by glycolysis is then turned into
lactate by LDH enzymes, increasing acidity in the microen-
vironment [36]. Like PDH, increased LDH levels should
reflect an increased usage of anaerobic pathways with
higher consumption of glucose. As PDH and LDH play
an important role in the fate of pyruvate, their respective
levels should impact cell metabolism in our model.

In Equations (6) and (7), we define pg and pg, two terms
to describe the impact of LDH and PDH on glucose and
oxygen consumption using a sigmoid function based on
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TABLE 1 Parameters used in genetics regulations. The symbol “-” stands for dimensionless

Parameter Value Dimension Parameter Value Dimension

A, 0.05 1/min D, 0.005 1/min

A, 0.005 1/min D, 0.005 1/min

A, 0.005 1/min D, 0.005 1/min

A, 0.005 1/min D, 0.005 1/min

So,u 0.02085 mmol/L Suse 4.48

Suw 5.0 Swes 2.2

Y0,—u 10.0 Yusv 3.61

Vs 6.97 Ywoz 0.14

the logistic function. pp and ps will adjust the consump-
tion rates of oxygen and glucose defined in Equations (8)
and (9), by increasing or decreasing the maximal rates
according to the level of PDH and LDH.

$o0 — Yo
1+ exp(—1,(z — zp))

Po = + %o, 6)

_ $c — Yo
P6 = T exp (=g T ¥ )

Here, ¢ and ¢ are the maximal values for py and pg. P
and 15 are the minimal values for pg and pg. z and v are
the current level of PDH and LDH. z, and v, represent the
midpoint of pg and pg. I, and [, represent the steepness of
the curve for py and pg.

Cells consumption and production are described follow-
ing the functions from the model defined by Robertson-
Tessi et al. [25] (a brief description of the complete model
is available in the Supporting Information).

Oxygen consumption is determined using a Michaelis-
Menten function [25]:

Oe
= VA—. 8
fO Po Ooe KO ( )

PDH allows the pyruvate to enter the TCA cycle as acetyl
coenzyme A, and it is a limiting step in the aerobic
pathway. This is included in the model by adjusting the
maximum oxygen consumption rate V using the term
Po to represent the PDH level effect on metabolism. O,
is the extracellular oxygen concentration. K, is the extra-
cellular oxygen concentration at which the cell oxygen
consumption rate is half-maximum.

Following Robertson-Tessi et al. [25], we assume that
ATP demand drives glucose consumption. In low-oxygen
conditions, the cell will consume more glucose to pro-
duce ATP in the last step of the glycolysis, then pyruvate
is turned into lactate by the LDH enzyme. An increase
in LDH indicates an upregulation of anaerobic pathways,

which means here an increase in glucose consumption.
We use the term pg to increase glucose consumption in
Equation (9) when levels of LDH increase [25].

_(pPcAos  29fo G,
fG‘< 2 10 /G, +Kg’ ©)

where A, is the target ATP production. G, is the extra-
cellular glucose concentration. K; is the extracellular
glucose concentration at which the glucose consumption
rate is half-maximal.

In this paper, we are studying how HIF can impact the
interplay between aerobic (TCA + OXPHOS) and anaer-
obic (glycolysis + lactate secretion) pathways to generate
ATP, due to its PDH and LDH enzymes important for
the conversion of pyruvate. Therefore, we do not directly
model aerobic and anaerobic pathways but rather we
compute the theoretical level of ATP generated by both
processes (Equation 12). We take the same stoichiometric
coefficients as in [25]: glycolysis uses 1 mol of glucose to
produce 2 mol of ATP; the aerobic pathway uses 1 mol of
glucose and 5 mol of oxygen to produce 29 mol of ATP. We
can compute the ATP produced from the nutrients con-
sumed using the yield from glycolysis and aerobic pathway
[25]:

29fo

5 (10)

fa=2fc+

Glycolysis produces 2 mol of pyruvate with 1 mol of glu-
cose. If oxygen is absent, pyruvate is turned into lactate,
giving a total of 2 mol of lactate [4]. Lactic acid production
is given by the glucose consumed:

Sfu+ =ku2fg, 11)

where ky is a fixed parameter for proton buffering (dimen-
sionless).

The quantity of ATP produced by the cell is mod-
eled by an ODE, and extracellular quantities of the three
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molecules oxygen (O), glucose (G), and protons (H") are
described by PDEs in the following equations:

dA
o = (12)
N.
30 l
5 =DoV?0 - X f5. 13)
k=1
N.
3G ‘
5= DgV2G - ) f, (14)
k=1
N.
H*t ’
9 = Dy« VAHY + ) fie (15)
k=1

where Dy, Dg, and Dy+ are the diffusion coefficient for
each molecule. N; is the number of cells in the voxel i.
Initial values for oxygen in Equation (13) are O(x,y,0) =
0.056 mmol/L in normoxia and 0.012 mmol/L in hypoxia.
The initial value for glucose in Equation (14) is G(x, y,0) =
5.0 mmol/L. The initial value for protons in Equation (15)
is H*(x,y,0) = 3.98 x 107> mmol/L (pH 7.4). Let x,, and
Yo be the lower boundary of the domain in x and y and
x; and y; be the upper boundary in x and y. Bound-
ary values for oxygen in Equation (13) are O(xy,y,t) =
O(x,y,1) = O(x,yp,t) = O(x,yr,t) = 0.056 mmol/L in
normoxia and 0.012 mmol/L in hypoxia. Boundary values
for glucose in Equation (14) are G(xy,y,t) = G(xr,y,t) =
G(x,y0,t) = G(x,yr,t) = 5.0 mmol/L. Boundary values
for H* in Equation 15 are H (xy,y,t) = H*(x;,y,t) =
H*(x,y0,t) = H'(x,y;,t) = 3.98 x 10~ mmol/L (pH
7.4). Parameters used in these functions are summarized
in Table 2. The schematic in Figure 2 shows the cellular
metabolism and the genetic regulation implemented in the
model.

2.3 | Numerical implementation

The tumor microenvironment plays a vital role in the
growth and progression of tumor cells. As the tumor grows,
intracellular and intercellular interactions influence the
changes in its microenvironment, which can further result
in cells dynamic. Here, we aim to develop a modeling
framework to simulate the growth of a large population
of cells cultured in vitro, each cell having its metabolism
influenced by the microenvironment conditions to rep-
resent accurately the resource dynamics in the tumor.
Therefore, the numerical implementation of the model
must have sufficient performance to simulate the behavior
of thousands of cells. In this regard, we selected Physi-
Cell, an open-source C++ framework designed to run
simulations containing a large population of cells. This

TABLE 2 Parameters for metabolism. The symbol “-” stands
for dimensionless

Parameter Value Unit

Vo 0.01875 mmol/L/min
Ko 0.0075 mmol/L

Kg 0.04 mmol/L

Ky 2.5e-4

A0 0.10875 mmol/L/min
¢ 50

2

lg 4

U 2.35

¢o 1

Yo 0

s 15

2z 0.575

Dy 109,200 4« m?/min
Dg 30,000 4« m?/min
Dy 27,0000 4 m?/min

framework has good performance with a low memory foot-
print, allows the user to implement his custom code and
defines custom cell types, and runs a multiagent-based
simulation in two or three dimensions [9].

Most aspects of the model are handled by the PhysiCell
software [9], this includes cell division and progression
through the cell cycle, cell adhesion and repulsion, sub-
strate diffusion, and cell exchanges with the environment
(secretion and consumption). Cells are modeled with the
shape of a sphere that cannot deform; adhesion and repul-
sion are implemented using a potential function. The cell
division process is implemented as a cycle, where the user
can define each step and progress between them. There is
no condition in the neighborhood, a cell will divide even
if it is surrounded by other cells as long as there are suf-
ficient nutrients. As a consequence, certain regions of the
tumor will exhibit a higher cell density. We implemented
in PhysiCell a heterogeneous diffusion with respect to local
cellular density. In the model, phase durationis 5h in G1, 8
hinS,4hin G2,and1hin M, for a total of 18 h to complete
a cell cycle [6].

Here, the impact of extracellular oxygen concentration is
studied considering different boundary conditions: physi-
ological normoxia at 0.056 mmol/L (5% O,), pathological
hypoxia at 0.01112 mmol/L (1% O,), and a last where
boundary conditions are modified during the simulation
from physiological normoxia to pathological hypoxia. The
hypoxia threshold is set at 0.02085 (2% O,), the level at
which HIF has a half-maximal response [23].

The governing ODEs (Equations 1-4 and 12) and PDEs
(Equations 13-15) are run at each timestep to compute cell
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M)

5

IS

Glucose concentration (mmol/L)
Glucose concentration (mmol/L)

0.02 0.03 0.04 0

Oxygen concentration (mmol/L)

Increased HIF degration

Glucose concentration (mmol/L)
Glucose concentration (mmol/L)

0.02 0.03 0.04
Oxygen concentration (mmol/L)

FIGURE 3

Normal Conditions (B)

Reduced HIF degradation

Protons Rate (mmol/L/min)

—0.001
—— 0.0008

= 0.0008

e L oo
0!

0.01 0.02 0.03 0.04 0.05
Oxygen concentration (mmol/L) 0.0006

0.0005
Reduced LDH upregulation by HIF 2.0004
0.0003
0.0002

0.0001

0.02 0.03 0.04

Oxygen concentration (mmol/L)
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concentrations. (A) Result in no genetic deregulation (yo,_., = 10.0, ¥, = 3.61, ¥,y = 6.97, ¥,,_., = 0.14). (B) Result with inhibition of the
oxygen-dependaet degradation of HIF (yo,_,,, = 1.0, ¥,y = 3.61, ¥,y = 6.97, ¥,,_, = 0.14). (C) Result with overdegradation of HIF by
oxygen (Yo,—y = 40.0, ¥,y = 3.61, ¥y, = 6.97, ¥, = 0.14). (D) Result with loss of upregulation of LDH by HIF (y,,_.,, = 10.0, ¥,,_., = 3.0,

Yuow = 6.97, ¥, = 0.14)

nutrient consumption, energy, and acidity production for
that period. After each time step, the cell state is updated
according to the quantity of ATP generated and the extra-
cellular pH. Therefore, cells can proliferate and divide only
if they were able to generate enough ATP and if extracellu-
lar pH is higher than the acid resistance of the cell (6.1 [25]).
If the quantity of ATP generated is less than a threshold
ATPyiescences the cell enters quiescence and is then pre-
vented to complete the G1 phase. If the quantity of ATP
generated is less than a threshold ATPyg,y, or if the pH is
less than a threshold pHgea,, the cell dies and enters into
the death cycle where it is progressively removed from the
microenvironment by lysis.

To simulate the cell entry into quiescence, we created a
phase GO with a reversible link to the G1 phase of the cell
cycle. If the condition for proliferation are not met, we set
the transition rate from G1 to GO at a maximum value and
the rate from GO to G1 at 0. The cell is forced to enter the
GO phase and is prevented from transit to the G1 phase to
continue its division. Once the level of ATP rises again, we
revert the transition rate values to allow the cell to leave
the GO phase and divide anew. The cell can only transit to
the GO phase from the G1 phase, thus it will complete its
cycle once it leaves the G1 phase and will divide even if ATP
levels fall while the division process is ongoing.

3 | RESULTS

3.1 | Qualitative exploration of the model
at the cell scale

A well-known phenomenon is the Warburg effect,
increased production of lactic acid by the tumor [32]
even in normoxia [18, 26, 28]. A qualitative study of
the genetic deregulations at the cell scale would reveal
how it impacts lactic-acid production to investigate the
appearance of the Warburg effect. The primary aim of this
study is to investigate the role of genetic regulations in cell
metabolic changes.

In our mathematical model, the regulating effect of
a gene on another is mainly driven by the y parame-
ter in the shifted-Hill function. Setting this parameter
equal to 1 simulates a loss of the regulating function. An
over-sensitivity of a gene by its regulator is modeled by set-
ting the y parameter to 40, the maximum defined in the
model from [19]. Results of a few regulations are shown in
Figure 3.

When no genetic deregulations are applied to the model
(Figure 3A), protons production range from 0.0001 to
0.001 mmol/L/min with normal y parameters. Around
0.01 mmol/L oxygen (1%), the cell progressively increases
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Evolution of tumour in different conditions over the time
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FIGURE 4 Evolution of tumor growth at different times in different conditions. In oscillating conditions, the oxygen concentration is
slowly decreased from normoxia to hypoxia for 6 h, then cells are slowly put back in normoxia at the same rate. This process is repeated until

the end of the simulation

its Htsecretion rate from 0.0001 mmol/L/min to the
maximum of 0.001 mmol/L/min.

In our model, when HIF is not subjected to oxygen
degradation (Figure 3B), the rate of Htproduction is only
influenced by the glucose concentration. In this case, cell’s
lactic acid secretion rate can reach 0.001 mmol/L/min
even in normal oxygen pressure, as a result of the War-
burg effect. Increased degradation of HIF in oxygen
(Figure 3C) reduces the oxygen threshold at which the
cell has a lactic acid secretion rate of 0.001 mmol/L/min.
Lower levels of oxygen are needed to reach the maxi-
mal secretion rate compared to the normal degradation
rate of HIF. With no deregulation (Figure 3A), the lac-
tic acid secretion rate starts to increase at around 0.019
mmol/L of oxygen and reaches a maximum at around
0.08 mmol/L. With increased HIF degradation by oxygen

(Figure 3C), this span is reduced and lactic-acid secretion
increases at around 0.012 mmol/L of oxygen. Similar to our
result, a model from [15] shows that a lower degradation
rate of HIF increases the chance that cells use glycoly-
sis instead of OXPHOS, which will increase lactic acid
secretions.

Inhibiting LDH sensitivity to HIF (Figure 3D) causes
the maximum lactic acid secretion rate to fall to 0.0008
mmol/L/min. Increasing LDH sensitivity to HIF does not
permit the cell to have a higher H* production rate in nor-
moxia, while a decrease prevents a high H* production rate
in hypoxia (results not shown).

Interfering with PDK sensitivity to HIF or PDH sensitiv-
ity to PDK seems to have no effect on acid production in
the model but on oxygen consumption by the cell (results
not shown).
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3.2 | Exploration of environment and
genetic properties on the emergence of the
Warburg phenotype

3.21 | Influence of environmental oxygen
conditions

The Warburg effect is currently defined as the high produc-
tion of acidity due to the use of glycolysis even in normoxia
[7, 8, 15]. We ran several simulations with different envi-
ronmental oxygen conditions to assess whether microen-
vironmental conditions only can induce a Warburg effect
in the model.

Figure 4 shows how oxygen conditions affect tumor
growth. In oscillating conditions, the oxygen concentra-
tion varies between physiological normoxia and patholog-
ical hypoxia and reverses every 6 h until the end of the
simulation. Kinetics of HIF show a peak after 6 h and a
decrease to an equilibrium state after 24-48 h. We choose
to simulate a 6 h-period of hypoxia/normoxia to avoid the
cell reaching an equilibrium and to simulate stressful con-
ditions with a high response to a low level of oxygen.
Constant hypoxia slows down tumor growth and reduces
tumor diameter compared to normoxia. In all 3 different
conditions, the center of the tumor is composed of dead
cells surrounded by living cells at the periphery. Only in
normoxia and varying oxygen conditions, some cells in the
center of the tumor do continue to divide (only visible after
7 days of growth). This may be due to the changes in the
tumor microenvironment with the increased cell death at
the center. As the cells die, more nutrients will be avail-
able to quiescent cells to enable them to renter proliferating
phase. Moreover, spatial changes due to the shrinkage of
dead cells can influence the availability of nutrients at the
center. This might show a mechanism by which the tumor
can grow back after a period of harsh conditions, for exam-
ple, quiescence can be a mechanism to avoid drug’s effect
on the tumor cell [1]. The necrotic core has been observed
in biological experiments run in the lab (Figure 5).

It seems that varying the concentration of oxygen from
normoxia to hypoxia, and reversing this process, every 6 h
does not affect the diameter of the tumor at the end of the
simulation. However, a ring of necrotic cells in the swelling
phase appears thicker than in other conditions.

Results in Figure 6 show acid production according to
the extracellular oxygen concentration. The red line y-
axis intercept is equal to 0.02085 mmol/L (2% O,), which
corresponds to the threshold of hypoxia in physiological
conditions. It is the level at which HIF has a half-maximal
response as well [23]. Cells above this level are consid-
ered to be in normoxia, while the rest of the cells are
in hypoxia. Levels of extracellular oxygen fall below the
hypoxia threshold after 2 days of growth in normoxic

FIGURE 5

Picture of a spheroid grown for 30 days in an
experiment run in the laboratory. Cells were marked using the

fluorescent proteins Green FLuorescent Protein (GFP) and
Sulforhodamine B (SRB). Living cells are colored in green, and
dying cells appear in red. The center of the tumor is composed of
hypoxic and dead cells, both do not emit fluorescence

conditions (a necrotic core in the center of the tumor
has already formed). Due to poor oxygen concentration,
cells with higher glycolytic activity appear and reach
and H*tproduction rate of almost 5x 10~*mmol/L/min.
The maximum glycolytic activity of cells falls at 7 days
of growth because of reduced glucose availability. When
tumor growth is started in hypoxic conditions, high gly-
colytic activity is present after only 1 day of growth. In these
conditions, the way the cell produces its energy is influ-
enced only by glucose concentrations (similar to the result
shown in Figure 3). Therefore, hypoxic conditions directly
select cells with high glycolytic activity.

The fact that, in the model, hypoxia may select cells
with high glycolytic activity is supported by the levels
of LDH/PDH genes presented in Figure 7. In normoxia,
cells have a level of LDH and PDH of 1 for both; it
can be associated with an oxidative state. In hypoxia,
the LDH level reaches 3.0 and the PDH level falls to
0.25; it can be associated with a glycolytic state. At the
beginning of the simulation in normoxic conditions, cells
have 1:1 LDH/PDH levels. As the simulation goes on,
oxygen becomes less available. Thus LDH level increases
while PDH level decreases. The result in normoxic con-
ditions shows that cells migrate from an oxidative to a
glycolytic state as oxygen concentration decreases. Cells
around 2:0.5 LDH/PDH levels have a hybrid state where
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Protons production depending on oxygen concentration
at different time in different simulation
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FIGURE 6 Acid production rate following oxygen extracellular concentrations at different times in different conditions. The red line
indicates the hypoxia threshold. In oscillating conditions, the oxygen concentration is slowly decreased from normoxia to hypoxia during 6 h,
then oxygen is increased to normoxia at the same rate. This process is repeated until the end of the simulation. Only living cells are
represented on the graph. The green rectangle represents the region corresponding to a Warburg effect.

Level of PDH/LDH after 7 days in different conditions
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FIGURE 7 Plotof the level of PDH against the level of LDH colored by the extracellular oxygen concentration. The graph shows the
results after 7 days of growth for different conditions. In oscillating conditions, the oxygen concentration is slowly decreased from normoxia
to hypoxia during 6 h, then oxygen is increased to normoxia at the same rate. This process is repeated until the end of the simulation. Only
living cells are represented on the graph

they rely on both nutrients to produce ATP. Again hypoxia  moxia and hypoxia every 6 h than in constant normoxia.
selects for cells with high levels of LDH and low levels Since cells are put in hypoxia several times a day, they
of PDH, suppressing the possibility for the cell to adopta  rely more on glycolysis and consume less oxygen. Cells
hybrid state. with higher glycolytic activity (2.5 X 10~*mmol/L/min)

Interestingly, the extracellular oxygen concentration even above the threshold of hypoxia appearing at 2 days.
after 7 days is higher when oxygen varies between nor- It suggests that the Warburg Effect can be caused by
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FIGURE 8 Acid production rate following oxygen extracellular concentrations at different times with different genetic perturbations.

The red line indicates the hypoxia threshold. Only living cells are represented on the graph. Three genetic perturbations have been selected:
reduced oxygen-induced degradation of HIF (yO, — HIF = 8.0), lower use of glycolysis in hypoxic conditions (yHIF — LDH = 2.0), and
lower effect of hypoxia on oxygen consumption (yPDK — PDH = 0.7). Tumor growth was initiated in normoxia. The green rectangle

represents the region corresponding to a Warburg effect

environmental conditions with rapid variations. Com-
bined with Figure 7, genetic levels seem to indicate that
cells cannot enter a complete oxidative state and are
trapped either in a hybrid or a glycolytic state.

3.2.2 | Influence of the intrinsic genetic
properties of the cell

Here, tumor growth is initiated in normoxia (results not
shown). Extracellular oxygen concentrations only vary due
to cell consumption and reduced diffusion in the tumor.
Only genetic regulations have been modified between each
simulation to assess the impact of different genetic dereg-
ulations (mutations or epigenetic alterations) on tumor
growth and cell metabolism. Results are similar to nor-
moxic conditions with no genetic deregulations (presented
in Figure 4). When reducing inhibition of PDH by PDK,
tumor radius at 7 days of growth is lower than in normoxia
and higher than in hypoxia with no mutation.

Figure 8 shows that cells start to become hypoxic after
day 1, reaching a majority by day 2. After 7 days with a
reduced HIF degradation rate by oxygen, extracellular oxy-
gen goes back to normoxic levels yet cells have a higher
acid production rate that corresponds to a Warburg effect.
In this case, we suppose that cells slowly drain oxygen
levels in the environment to a point where hypoxia is
reached. Due to poor oxygen conditions, cells adapt their
metabolism to enter a glycolytic state that they keep even
if the oxygen supply goes back above 2% O,. Together with

the result in Figure 9, this might be caused by a delay in
the response from returning to normal conditions since
HIF regulation by O, is affected. While some cells have
levels of LDH greater than 2 and PDH lower than 0.50
(hybrid to glycolytic state), some have a ratio of LDH/PDH
almost equal to 1:1. This suggests that the Warburg Effect
is not irreversible with a reduced HIF degradation rate by
oxygen alone.

As expected, reducing the increase in LDH levels due
to HIF response does not induce a high acidification rate
in normoxia but affects the maximum acid production
rate and level of LDH. Instead of inducing a glycolytic
phenotype, it seems to repress it.

Reducing the inhibiting power of PDK on PDH allows
the cell to keep a higher PDH level, a key enzyme for oxy-
gen consumption and oxidative state in the model. Cells
exhibit an acid production rate similar to those in hypoxic
conditions after 2 and 7 days, compared to other genetics
deregulation. While in normoxia with no genetic dereg-
ulation cells seem to fluctuate around the threshold of
hypoxia, here they are all below this level. Since PDH is
not effectively regulated by HIF, the cell tends to stay in
an oxidative state and rely less on glycolysis. We can sup-
pose that cells consume oxygen even when the level fall,
creating further harder conditions. Results also show that
adaptation to hypoxia is delayed, and the cell only adopts
a glycolytic state at oxygen conditions near-pathological
hypoxia. PDH levels do not fall far below 0.75 even after
7 days of growth compared to other conditions, indicating
that cells can only adopt an oxidative or hybrid state.
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Level of PDH/LDH after 7 days in different conditions
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Plot of the level of PDH against the level of LDH colored by the extracellular oxygen concentration. The graph shows the

results after 7 days of growth with three different genetic perturbations: reduced oxygen-induced degradation of HIF (yO, — HIF = 8.0),
lower use of glycolysis in hypoxic conditions (yHIF — LDH = 2.0) and lower effect of hypoxia on the oxygen consumption

(yPDK — PDH = 0.7). Tumor growth was initiated in normoxia

4 | DISCUSSION

In this paper, we formulated a mathematical model to
study the impact of HIF on LDH and PDH, key enzymes
of glycolysis and TCA cycle and thus investigating its role
in cellular metabolism. Since its discovery, HIF has been
actively studied by the scientific community. There are
several modeling approaches to study the effects of HIF
[2, 15, 19, 25], and here we investigate its role using a
multiagent model, considering a heterogeneous environ-
ment that changes over time. Furthermore, the model is
used to investigate the impact of genes on metabolism and
the effect of different environmental conditions and differ-
ent genetic deregulations (such as mutations or epigenetic
alterations) can have on the Warburg effect, an overpro-
duction of acidity due to an increase in glycolysis even in
normoxia. Overproduction of lactate can also be caused by
reduced use of pyruvate in the mitochondria, remaining
pyruvate is then turned into lactate.

Using the level of LDH and PDH genes as markers, we
can define three different metabolic states [15, 19] such as
oxidative, glycolytic, and hybrid. The oxidative state corre-
sponds to a high level of PDH and a low level of LDH and
inversely to a glycolytic state. The hybrid state then corre-
sponds to medium levels of both enzymes, 2:0.5 for LDH
and PDH, respectively. As expected, normoxia strongly
selects for the first state while hypoxia selects for the sec-
ond one. The hybrid state is observed as the oxygen levels
change over time due to tumor growth. Thus it appears
that the cell adopts this state when adapting to chang-
ing oxygen conditions or when oxygen levels vary between

normoxia and hypoxia several times during tumor growth
(oscillating conditions in the model).

We observed some differences between our model and
the model in a recent paper from Li et al. [19]: (1) they
identified a normal state with a level of LDH at 1 and a
level of PDH at 0.1, and (2) their oxidative and glycolytic
states have different levels of genes than those present in
our model. This difference in the result can be explained by
the fact that we only include a small fraction of their gene
regulation network in our model, to only account for the
effect caused by HIF.

We have simulated tumor growth when oxygen supply
does not vary over time; hence, differences in extracellular
oxygen level can only be caused by cell consumption
or reduced diffusion owing to higher cell density. We
found that when there are rapid changes in oxygen supply
to the tumor, cells with higher glycolytic rates above
the threshold of hypoxia appear. It shows that varying
microenvironmental conditions are sufficient to induce a
Warburg phenotype for the cell. The results are in line with
the findings by Damaghi et al. [8]. However, the model
does not include sudden genetic mutation which can be
caused by harsh conditions. Therefore, in our case cell
would not be trapped into a Warburg phenotype and this
state can be reversed to a normal state if the cell is given
enough time in favorable conditions. Lactate secretion,
which decreases the extracellular pH, depends on glucose
consumption. A study by Casciari et al. [5] has shown that
a lower extracellular pH decreases dramatically glucose
consumption, and the Warburg effect could also be inhib-
ited by low pH (6.95). We may suppose that after difficult
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conditions genes may be overexpressed or inhibited which
will force the cell to adopt a Warburg phenotype.

The importance of HIF degradation in normoxia is fur-
ther highlighted by the model results. We were also able
to induce a Warburg effect by reducing the degradation
rate of HIF by oxygen-dependent enzymes. Our results
show that this effect only appears after the first period of
hypoxia. It suggests that HIF accumulation forces the cell
to adopt a glycolytic state and prevents it from returning
to an oxidative state in normoxia. HIF inhibition therapy
would prevent the appearance of Warburg cell type in can-
cer. PI3K and mTOR, two genes that increase HIF level
independently of the level of oxygen [12, 17, 22], are stud-
ied as potential targets in anticancer therapy due to their
altered expression in cancer and their role in signaling
pathways affecting many biological functions [31, 35], pos-
sibly causing HIF overexpression. AMP-activated protein
kinase (AMPK) enzyme is known to interact with HIF [15]
and inhibits its expression, and some evidence links this
gene to anti-tumor activity [20]. These interactions could
be added in further modeling work to study their impact
on the Warburg effect as they may be important players
interacting with HIF.

It has been shown that extracellular pH can (1) influ-
ence the cell metabolism (reduce glucose consumption,
increase the cells doubling time) [5]; (2) affect the ability
of tumor cells to form metastasis, invade other tissue, or
migrate [33]; and (3) could be a mechanism of invasion
[29]. Currently, therapy targeting extracellular pH in the
tumor is under development. Moreover, pH also affects
the efficiency of different drugs such as temozolomide
[30]. Reducing the increase in the LDH level by the cell
response to hypoxia lowered the rate of acid production in
our simulation. Inhibitors of LDH could be used in com-
bination with pH-targeting therapy to improve treatment
outcomes.

Reducing the downregulation of PDH by HIF in the
model forces the cell to rely as much as possible on oxy-
gen to produce its energy. Herein, changes in metabolism
toward glycolytic activity require lower levels of oxygen. A
study has shown that inhibition of HIF resulted in reduced
lactate production, an increase in oxygen consumption,
and radiotherapy sensitivity [18]. Whether increasing oxy-
gen consumption by PDH upregulation would result in
better outcomes in therapy in the model remains to
be studied.
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