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Abstract
Temporal networks can naturally model real-world complex phenomena such as contact networks, information dissemination
and physical proximity. However, nodes and edges bear real-time coordinates, making it difficult to organize them into discrete
timeslices, without a loss of temporal information due to projection. Event-based dynamic graph drawing rejects the notion of
a timeslice and allows each node and edge to retain its own real-valued time coordinate. While existing work has demonstrated
clear advantages for this approach, they come at a running time cost. We investigate the problem of accelerating event-based
layout to make it more competitive with existing layout techniques. In this paper, we describe the design, implementation and
experimental evaluation ofMultiDynNoS, the first multi-level event-based graph layout algorithm. We consider three operators
for coarsening and placement, inspired by Walshaw, GRIP and FM3, which we couple with an event-based graph drawing
algorithm. We also propose two extensions to the core algorithm: AutoTau and Bend Transfer. We perform two experiments:
first, we compare MultiDynNoS variants to existing state-of-the-art dynamic graph layout approaches; second, we investigate
the impact of each of the proposed algorithm extensions.MultiDynNoS proves to be competitive with existing approaches, and
the proposed extensions achieve their design goals and contribute in opening new research directions.
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1. Introduction

Typical graph drawing and network visualization algorithms
model the temporal axis of dynamic data as discrete, or times-
liced [BBDW17]. Timeslicing entails capturing snapshots (Times-
lices) of the dynamic graph, usually taken at regular intervals,
each one representing the state of the graph at a specific in-
stant. Timeslice-based dynamic graph drawing has two advan-
tages: it works well for clearly defined time intervals (e.g. yearly,
monthly, etc.) and allows for existing static layout algorithms to
be applied directly. However, many dynamic graphs do not fall
neatly into timeslices. For example, in social media analysis, mes-
sages have precise times when they were sent. In contact trac-
ing networks, a contact happened at a specific time with a spe-
cific duration. When nodes and edges have real-time time coor-
dinates, projecting onto the nearest timeslice is required to draw
such graphs, which inevitably results in a quantization error, po-
tentially reducing drawing quality (see supplemental video and
Section 3.2).

Event-based networks (known and described as temporal net-
works [HS12]) consider networks where each edge and node has its
own time coordinate and duration. Such networks have been studied
from a network analysis perspective extensively in the past, but they
have not received much attention in the visualization literature un-
til recently [SAK17, SAK20, AMA21]. Unlike timeslice-based ap-
proaches, algorithms to draw event-based networks exploit the full
temporal resolution of the data by optimizing node trajectories in
the space-time cube (2D + t), outperforming timeslice-based tech-
niques in terms of drawing quality [SAK17, SAK20] albeit with
significant costs in terms of running time and computational re-
sources. These higher running times have limited the use of event-
based graph drawing on networks to a thousand or so events, despite
the quality improvements over timeslice-based techniques.

In the past, static graph drawing methods have been significantly
improved throughmulti-level graph drawing techniques [BGKM10,
Wal03, GK00, HJ04, AMA07, ADLM18]. In a multi-level ap-
proach, the input graph is first coarsened into a hierarchy of coarse
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graphs, which are smaller than the original. Afterwards, they are
drawn in reverse order (from the coarsest to the finest) propagating
the layout information down to finer levels of the hierarchy. This
has two key advantages: first, as the coarser levels of this hierarchy
are smaller in terms of the number of nodes and edges, they can be
drawn quickly, increasing the overall speed of the layout algorithm.
Second, the drawing of each level is used to ‘place’ the subsequent
in the hierarchy: this gives an optimal initial layout, which in turn re-
sults in increased layout quality when compared to a random initial
condition. In 2D graph drawing, there have been proposed several
different nuances of this multi-level pipeline (see Section 2), some
of which inspired the approaches described later in this paper.

A multi-level approach, in fact, can be applied to event-based
graph drawing by coarsening node trajectories, instead of nodes
themselves, and embedding them in the space-time cube. As ex-
isting event-based layout algorithms [SAK20] share their base
methodology with force-directed layout (see Section 3.2), we in-
vestigate whether applying amulti-level layout pipeline to the event-
based dynamic graph drawing scenario can improve the limited scal-
ability of the existing approaches [SAK20]; we also study whether
this has any effect on the final drawing quality. Within this con-
text and motivation, we present MultiDynNoS: the first multi-level
event-based graph drawing algorithm that brings the drawing time
required for event-based networks to a level that is comparable with
timeslice-based approaches.We achieve this goal by applying coars-
ening operators to node trajectories and drawing them directly in the
space-time cube without timeslices. Similar to standard multi-level
techniques for static graphs, MultiDynNoS follows a coarsening-
refinement strategy. We adapt the coarsening and placement strate-
gies of Walshaw [Wal03], GRIP [GK00] and FM3 [HJ04] to operate
on node trajectories for drawing temporal graphs in the space-time
cube. A first, preliminary version of this research has been presented
at EuroVis 2021 in the form of a short paper [AMA21]. Our contri-
butions are as follows:

• An extended and revised description of the MultiDynNoS al-
gorithm, enriched with new figures and more technical de-
tails, including parameter optimizations over the previous de-
sign [AMA21].

• A discussion of two extensions the core algorithm, namely Au-
toTau and Bend Transfer: the first improves the usability of our
approach, while the second is designed to obtain a more efficient
and accurate layout process.

• An extended experimental study where we compare the core al-
gorithm to state-of-the-art timesliced techniques and DynNoSlice
on both small and large real graphs.

• A second experimental study where we investigate the single and
combined effects of the proposed extensions on the core algo-
rithm performance.

The paper title pays tribute to the work by Shewchuk [She94]: as
they attempt at relieving the ‘pain’ in comprehending a notoriously
hard concept (the conjugate gradient method), with this paper, we
are aiming at doing the same with event-based graph drawing, both
in understanding and utilizing it.

2. Related Work

The visualization of dynamic graphs has been studied exten-
sively [BBDW17]. A number of techniques have been proposed
that map time-to-time (animated techniques) [APP10, AP16, FQ11,
BPF14]. Other approaches map time-to-space [SA06, BVB*11,
LHS*15, AB20, LAN19, LAN21]. The perceptual effectiveness of
such techniques has been evaluated through human-centred stud-
ies [APP10, FQ11, AP16, LAN21] formally evaluating when such
techniques work well. Our contribution lies in the drawing of dy-
namic graphs without timeslices using a multi-level strategy. There-
fore, we present related work most closely related to this area.

Multi-level graph drawing. Force-directed layout algorithms
have been extensively used in different application areas, as they
are easy to implement, allow for several tuning options and provide
satisfying results in terms of drawing quality. However, they suf-
fer from high running times on larger graphs (in the order of thou-
sands of nodes and edges) and tend to converge into sub-optimal
solutions [BGKM10] (i.e. a layout where the graph does not appear
properly ‘unfolded’). In the 2000s, to address these issues, multi-
level graph drawing algorithms [Wal03, AMA07, GK00, HJ04,
BGKM10] were devised to scale graph drawing algorithms to larger
datasets. These algorithms were targeted at static graphs or net-
works, where the nodes and edges do not change and a single lay-
out is sought that best reflects network structure. Multi-level graph
drawing approaches have been adapted to an online dynamic set-
ting [CCM17, Vel07, Cra16] where streaming data comes in and
the approach has no opportunity for lookahead and to optimise the
drawing over the full time interval. Multi-layer networks, where
several node and edge layers have different meaning [MGM*19],
have also been used for visualization. Although similar, multi-layer
networks consider layers and interdependent sub-systems and not
the same network over time.

In this paper, we adapt the multi-level ‘coarsening-refinement’
scheme the offline event-based graph drawing setting, to scale up to
a larger number of events while still using the temporal information
in full when embedding the network in the space-time cube.

Temporal networks and event-based visualization. Temporal
and event-based networks [HS12, LVM18] have been studied ex-
tensively for automatic graph analysis where algorithms try to find
or count features in the network. In the field of graph drawing
and visualization, all approaches for drawing the dynamic network
required a series of timeslices projected timeslices and a way of
encouraging a stable drawing [BBDW17]—the position of nodes
and edges should change as little as possible when a change is
made to the graph [CP96] in order to help with node identifica-
tion as the graph evolves through time [AP12]. Algorithms have
been explored to optimize the simultaneous drawing of timeslices
in offline [DG02, DGK01, EHK*03, BM11] and online [MELS95,
GDBG12, FT08] scenarios. Methods for non-uniform timeslicing
of temporal networks, based on the network data, have also been
explored [WAH*19].

Recently, event-based visualization techniques [DSP*17,
MLMdO*13, MLL*13] display event sequences with real-time
coordinates for each data point. In the graph drawing and visu-
alization domain, event-based layout algorithms were devised to
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directly draw these event-based/temporal graphs in the space-time
cube [SAK17, SAK20] allowing for the visualization of them across
time. Other graph drawing techniques, such as HOTVis [PS21],
draw event-based data by exploiting the temporal ordering of
the edges (the causal paths) to shape the layout. However, this
approach focuses on 2D visualizations and does not optimize the
drawing across the space-time cube.

Contribution. The literature indicates a growing interest in
event-based visualizations of networks for visual analytics appli-
cations. Event-based dynamic graph drawings can potentially yield
improved drawing quality over timeslice-based approaches, moti-
vating our research onmore scalable techniques for embedding tem-
poral networks in the space-time cube.

3. MultiDynNoS

In this section, we describeMultiDynNoS core algorithm design and
two extensions aimed at simplifying its use and extending its flexi-
bility.We first provide a set of definitions and a short reminder of the
workings ofDynNoSlice, both necessary to ease the comprehension
of the remainder of the paper.

We show animated layouts produced by our algorithm in the sup-
plemental video, and snapshots of the network evolution of four
graphs, also included in our experimental evaluation (see Section 4),
as drawn by MultiDynNoS in Tables 1 and 2.

3.1. Definitions

Consider a temporal network D = (V,E,T ) where each node
and edge possesses a number of attributes, which are func-
tions of time. The appearance of a node v ∈ V is defined as
Av : V × T → [true, f alse] (edge appearance is defined similarly),
which maps to node/edge insertion and deletion in the event-based
graphs. Av defines a series of intervals in T (time) in which the
node/edge is present. The position of a node in the plane over time
is defined as Pv : V × T → R2. As an example, consider a node
present in the intervals [1,4) and [8,10) only. Its Av is defined as
follows:

Av =
⎧⎨
⎩
true if t ∈ [1, 4)
true if t ∈ [8, 10)
false otherwise

(1)

When defined in this way, the appearance and position of the
nodes are represented as a series of trajectories (polylines) through
time that will be embedded in the three-dimensional space-time
cube (2D + t). These trajectories present bends that define node
movement in the two dimensional plane as time passes down-
wards in the cube (e.g. Figure 1). This replaces the inter-timeslice
edges linking the same vertices across time in timeslice-based ap-
proaches [BM11]. We also define a flattened graph as the weighted
static counterpart of a temporal graph where node and edge weights
represent the cumulative duration of the time when a node or edge
is present or, more formally, the cumulative duration of intervals in
which the appearance function yields true for that node or edge. We
also define tmax = max(t ) ∈ T and tmin = min(t ) ∈ T .

3.2. DynNoSlice

DynNoSlice [SAK17, SAK20] is an offline dynamic graph drawing
algorithm that draws temporal networks without requiring times-
lices to be imposed on the space-time cube. Previous techniques
based on timeslices [BM11]would start by regularly sampling along
the time dimension, creating a series of static graphs that are drawn
together by linking the same node across time. When the data are
not neatly divided into timeslices, the quality of the resulting layouts
is reduced in timeslice-based drawings (see, e.g. the supplemental
video) as the full temporal resolution of the data set cannot be ex-
ploited for layout. The main reason why timeslicing can introduce
these problems when applied to event-based networks is that the
frequency of events may not be the same throughout the data set.
When the frequency of events is low, regular timeslicing oversam-
ples the time dimension and can introduce movement in nodes by
forcing them to reside in timeslices even though they seldom in-
teract with other nodes in that time period. When the frequency of
events is high, regular timeslicing can over-aggregate events into a
small number of timeslices incurring losses in valuable information
about the order of events and their frequency. In event-based data,
due to this variation in frequency, it is very hard to find a regular
timeslicing that satisfies both of these simultaneously. Information
loss can be avoided by sampling time (i.e. creating a new times-
lice) at the Nyquist frequency, that is, in this context, the smallest
time gap between events. This, however, would often result in a pro-
hibitively large number of timeslices. Also, selecting timeslices first
would require recomputing the drawing of all the individual times-
lices when changing time resolution, whereas in a direct drawing in
the space-time cube [BDA*17], resolution can be changed without
need for redrawing.

DynNoSlice exploits the full-time resolution of the data, drawing
it directly in the space-time cube and thus does not sample along the
time dimension before drawing. Instead, it embeds the node trajec-
tories and edge surfaces in 2D + t. At its core, it is a force-directed
drawing algorithm, iteratively improving the 3D embedding of the
node trajectories in the space time cube, minimizing the energy of
the layout by finding a state of equilibrium between the physical
forces acting on nodes and edges. The node polyline segments will
repel each other and edge surfaces will pull these closer together:
in addition, there is a gravity that pulls trajectories towards the cen-
tre (to promote compact drawings). Trajectory post processing is
made to ‘smooth’ node movements over time and the user mental
map [AP16] is preserved by limiting the maximal horizontal move-
ments of the trajectories.

The overall complexity of the algorithm is quadratic in the num-
ber of events [SAK17, SAK20]. Two parameters are required for
the algorithm to work: the trajectories ideal distance δ (used to
simplify the node repulsion forces calculation) and τ , which trans-
forms a unit in the time coordinates in τ units of space. The choice
of τ can substantially affect the performance of the algorithm:
smaller values will provide dense cubes (each time unit will span
less space units), and vice versa with larger ones. The choice of
τ depends on the original time units, the rate of events of the
dataset to draw and on the desired effect of time on the space
dimension. In DynNoSlice, such value must be provided by the
user prior to the layout generation, thus making it more difficult to
use.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 1: The complete drawing cycle ofMultiDynNoS, from left to right. Vertices are represented as bars/trajectories while edges are shown
in orange. On the extreme right side of the picture, we show two timeslices of the space-time cube of the temporal graph final layout.

3.3. Multi-level acceleration for DynNoSlice

In Sections 1 and 2, we introduced the concept of a multi-level
pipeline and shortly described its success story when applied to
static 2D layout algorithms. As DynNoSlice is, at its core, a force
directed algorithm [SAK20] (see also Section 3.2), we investigate
whether applying a multilevel pipeline can provide scalability and
potential quality improvements. The main contribution of this pa-
per is a coarsening+refinementmulti-level temporal graph drawing
algorithm,MultiDynNoS, that usesDynNoSlice as single level draw-
ing technique.MultiDynNoS coarsening operator recursively groups
trajectories into a hierarchy of coarser trajectories. Subsequently,
starting from the top level (coarsest) of the hierarchy and down to
the input network, for each level a layout is drawn with DynNoSlice
and the final positions of the trajectories are transferred to the next
level to provide a good initial placement for the subsequent drawing.
Since the single level layout algorithm is DynNoSlice, the δ and τ

values have to be provided as input toMultiDynNoS. Our approach
can be summarized in three different stages, listed in execution order
as follows (see also Figure 1).

� Coarsening:
1. Apply a coarsening operator to create a hierarchy of coarse

trajectories that will be used to draw the graph in the space-
time cube.

� First level placement:
1. Draw, using a static layout algorithm, a flattened version of

the coarsest level of the hierarchy;
2. Place the trajectories in the space-time cube using the posi-

tions of the nodes in the flattened graph, and extrude them
down through time.

� Refinement:
1. Draw the trajectories using DynNoSlice [SAK17, SAK20];
2. Place the trajectories in the space-time cube of the level be-

low by using a placement strategy, taking into account their
position at tmax.

3. Extrude the newly placed trajectories vertically down.
4. If the current is not the input graph, repeat refinement for the

lower level.

3.4. Coarsening

Coarsening takes the list of events (node and edge appear-
ances/disappearances along with their duration) and creates a hi-

erarchy of coarse node trajectories that will be used to draw the
temporal network. This hierarchy is created by recursively merg-
ing sets of trajectories together until only a small number of tra-
jectories remains or the coarsening operator makes little progress
on the input. Coarsening strategies have analogues to multi-level
static graph drawing algorithms [Wal03, GK00, HJ04], but oper-
ate on the trajectories that will be embedded inside the space-time
cube.

More formally, given an input temporal networkD, we first flatten
D to obtain Df , which is the static, flattened (see Section 3.1) ver-
sion of D. In Df , nodes and edges are weighted, representing their
cumulative appearance. We then transfer these weights from Df to
D, ultimately obtainingDw .Dw is the original temporal graphD but
with its node and edges bearing a new constant attribute representing
their cumulative duration obtained from the node and edge weights
of Df . Then, we perform the coarsening, which yields a hierarchy
of coarse event-based graphs DH = {Dw,D1, . . . ,Dk}, with a depth
k. The finest level is D1 and the coarsest is Dk.

The hierarchy is obtained by selecting recursively, starting from
Dw , representative vertices (trajectories) in the current local neigh-
bourhood to form a coarser graph one level up in the hierarchy. For
any level Di with Di = (Vi,Ei,T ), level Di+1 is created as follows.
First, sort the vertices ofVi by their weight and put them on a stack.
We pop the stack and get the heaviest vertex vi: its copy vi+1 is then
assigned to Vi+1. At this point, the coarsening operator is applied
to the neighbourhood around vi where a subset of its vertices (de-
pending on the current coarsening strategy) is selected. The weights
and appearance intervals of these selected vertices are merged with
vi+1. We refer to vi as the representative of vi+1 in Vi (which we in-
dicate as vi), and the vertices merged with it as the representative’s
neighbourhood. We refer to the set of representatives at level i as
V i. At this point, the vertices merged with vi are removed from the
stack, and a new representative can now be chosen. This process is
repeated until the stack is empty.

We generate Ei+1 as follows. First, an edge in Ei only appears
Ei+1 if its endpoints are both selected as representatives. There-
fore, for each edge ei = (vi, wi), a copy is created in Ei+1 as ei+1 =
(vi+1, wi+1). Each edge in Ei, whose endpoints both belong to the
same neighbourhood generated by zi, contributes to the cumulative
weight of zi+1 ∈ Vi+1. Finally, for each edge ei = (ti, wi) where ti
and wi belong to different neighbourhoods, its duration and weight
are merged with the edge between ti and wi representatives in
Ei+1.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 2: Three combinations of placement and coarsening methods, as seen from the top of the space time cube, applied on the same graph
(a): identity placement with Walshaw coarsening (b), barycentre with independent set coarsening (GRIP) (c) and FM3 with galaxy partitioning
trajectory placement (d). Node size represents the coarsening weight; node representatives have numbers inside showing the coarsening order.
Nodes coarsened together share the same colour. Dashed lines represent the edges between the representatives (larger nodes) at the upper
level. Solid orange lines represent the edges at the current level.

At this point, level Di+1 has been defined. Coarsening stops at
the hierarchy level Dk when the node count is ≥ 95% the size
of level Dk−1. This was introduced to avoid unnecessarily deep
hierarchies.

We implemented three different coarsening strategies. First, we
implemented the Maximal Matching, found in the multi-level ap-
proach by Walshaw [Wal03], chosen as it was the coarsening strat-
egy of the first multi-level graph drawing algorithm published. In
maximal matching, pairs of vertices connected by an edge belong-
ing to the graphmaximal matching are merged together in each level
ordered by their weights: in practice, once a vertex is selected, it
is merged only with its ‘heaviest’ neighbour (see, e.g. Figure 2b).
Second, we implemented the maximal independent set coarsening,
used by GRIP [GK00]. In this approach, once a vertex is selected to
be part of the new level, it is merged together with all of its direct
neighbours (see, e.g. Figure 3). Finally, we implemented the galaxy
partitioning operator, used by FM3 [HJ04]. Each selected vertex is
merged with its neighbours up to distance 2, creating a ‘Solar Sys-
tem’ partitioning of the graph. These last two methods were chosen
as they outperformed other coarsening algorithms both in terms of
number of levels and running times in the experimental evaluation
conducted by Bartel et al. [BGKM10].

3.5. First level placement

First level placement is responsible for placing the coarsest level
of the hierarchy, i.e. Dk. It is flattened into D′

k (see Section 3.1 for
the definition of the flattening operator) and is drawn with a force-
directed layout algorithm. As the coarsest level is usually small,
a simple single level technique (such as the drawing technique by
Fruchterman and Reingold [FR91]) can be used. The resulting node
coordinates are used to place the trajectories of level Dk. Subse-
quently, they are extruded vertically downwards in the space-time
cube along the time dimension according to the appearance of the
nodes (see Figure 4).

Figure 3: Independent set coarsening example between level i and
i+ 1. Horizontal black bars represent the nodes, while the orange
rectangles represent the edges. Each cell of the grid represents one
time unit. Function w(·) yields the coarsening weight of the node;
ti has the greatest weight, so it will be chosen as representative for
level Di and copied toDi+1. In this coarsening strategy, all the neigh-
bours of the chosen representative are merged with it at the upper
level. vi and zi remain isolated, and are therefore ‘passed’ to the
upper level. The nodes and edges merged into ti+1 contribute to its
weight with their duration.

3.6. Refinement

Given a drawing of trajectories in the space-time cube at level Di,
initial positions for all the nodes Vi−1 in Di−1 need to be assigned
based on the trajectories of Vi, that is the coarser level of the hier-
archy that has already been drawn. First, for each vi ∈ Vi, its posi-
tion at tmax becomes the initial placement for the corresponding ver-
tices in V i−1. Then, the placement operator assigns the coordinates
for all of the vertices included in each representative neighbour-
hood. Once placed, these trajectories are then extruded down across
time where their bends can be computed during the subsequent lay-
out phase (see Figure 5). A good initial placement is expected to
yield trajectories with few bends, resolving in nodes with smoother
movement.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



8 A. Arleo et al. / Multilevel Event-based Graph Drawing

Figure 4: First level placement example. The temporal graph is
flattened into D′

k, which is then drawn using a force directed lay-
out. The computed coordinates of the nodes in D′

k are used to place
the trajectories of level Dk in the space-time cube.

As we were inspired by three static graph drawing multi-level al-
gorithms to create the coarsening operators used in MultiDynNoS,
namelyWalshaw [Wal03],GRIP [GK00] and FM3 [HJ04] (see Sec-
tion 3.4), we complement themwith placement methods inspired by
the same techniques—as they were originally meant and designed
to work together. We name each of our placement techniques as
the algorithm they were inspired from for the sake of simplicity.
Walshaw [Wal03] placement uses the identity placer: the trajecto-
ries are placed in the same position as their representative (see, e.g.
Figure 2b), plus a small random perturbation to avoid being placed
on the exact same coordinates. The GRIP [GK00] placement uses
the barycentre of the coordinates (Figure 2c) of the representative’s
neighbours at level i+ 1 at tmax. The final positioning of the tra-
jectory is skewed towards its own representative by a fixed rate.
FM3 placement is similar to barycentre but changes the attraction of
the representative cluster. In the FM3 coarsening [HJ04] (see Sec-
tion 3.4), all neighbours up to distance 2 from their representative
are merged together: this guarantees that any pair of representatives
is at most at distance 5 from each other. Therefore, it is possible to
precisely reconstruct the relative position of the merged trajectories
in all the paths between theirs and other representatives and place
them accordingly (Figure 2d). For all approaches, randomness is
added to the final coordinates to avoid possible accidental coordi-
nate overlaps.

After placement, the trajectory bends and positions are refined
using DynNoSlice [SAK17, SAK20]. As coarse graphs are smaller

Figure 5: Standard (left) and new placement (right). Representa-
tives are shown with a larger width than the vertices merged with
them. In standard placement, trajectories are placed at their final
position at level Di+1 and then extruded vertically. In placement
with bend transfer, the trajectory and bends of the representative
are copied to the lower level and to the vertices merged with it.

and therefore quicker to draw, more quality-oriented (time inten-
sive) layout parameters can be used. As graph size increases with
finer levels, speed becomes a priority. We tune two parameters in
our approach: the maximum node mobility and the number of lay-
out algorithm iterations. Coarser levels of the hierarchy will benefit
from more flexible trajectories, while finer levels have fewer itera-
tions and less flexible trajectories. Maximum node mobility is set as
default as 2δ, with δ being the ideal distance between two trajecto-
ries. δ is set to 5. The coarsest level will go through 75 iterations.
Both parameters decrease linearly by 7% at each level, with a mini-
mum value of 3 and 20, respectively. This avoids them to decay too
much on deeper hierarchies, which couldmake the nodes practically
immovable after placing with detrimental effects on the final layout
quality. We got the inspiration for this simple yet effective measure
from our previous experiments [AMA21]. There, we observed how
the drawings obtained with the Walshaw coarsening and placement
(see Figure 2b), that had the deepest hierarchies due to the work-
ings of the coarsening method (see Section 3.4), consistently had
movement figures closer a static drawing than to a dynamic one.

All layout tuning values were obtained empirically when
considering the quality/running time trade-off. Time trajectory
post-processing of DynNoSlice [SAK17, SAK20], meant to adjust
the complexity of the node trajectories, runs at level Dw at the first
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and then every 30 iterations, meaning that shallow hierarchies (i.e.
less levels mean less time for parameters to decrease) will expe-
rience more post-processing rounds than deep ones. Deeper hier-
archies, however, will have more levels to improve their trajecto-
ries over time, decreasing the loss of quality due to the reduced
post-processing while maintaining competitive running times. Sim-
ilarly as with the parameter tuning described above, this strategy
was initially designed and then refined through empirical evalua-
tions to find the best trade-off between layout quality and running
times.

Once the layout for Di is computed, and Di �= Dw , the final co-
ordinates are used to place the node trajectories on level Di−1 (see
above). Otherwise, the process ends.

3.7. MultiDynNoS extensions

In this journal paper, we experimented with two different extensions
to the core algorithm, which are presented and discussed in the fol-
lowing.

3.7.1. AutoTau

We discussed in Section 3.2 that a significant barrier for users when
using DynNoSlice, and consequently MultiDynNoS (see also Sec-
tion 3.3), is the selection of the τ value, a parameter which con-
trols the conversion of time-to-space when representing graphs in
the space-time cube. Time, as measured in the data set, can be con-
verted to space (the z-axis in the space-time cube) at many differ-
ent scales. The value τ controls the scale of this conversion, with
larger values corresponding to long and ‘skinny’ space-time cubes
and smaller to short and ‘fat’ cubes. As τ decreases, the trajecto-
ries in the cube are pressed closer together increasing the strength
of forces between trajectories. In previous versions of MultiDyn-
NoS and DynNoSlice, τ was selected manually based on previous
experience, estimates from a rough formula [SAK20] and exper-
imentation. Most users would prefer an automatically computed τ

that while not perfectly tuned to obtain the best layout quality, could
be used right out-of-the-box. Moreover, it also represents an initial
indication of the event distribution, providing a starting point for
finding the best τ for the graph at hand.

We compute our AutoTau as shown in Equation (2). In its numer-
ator, we calculate the average event duration as the sum of all true
time intervals, across both nodes and edges, and divide by the total
number of events. Then, in the denominator, we separately calculate
the time difference between the latest and the first true time interval
in Av and Ae union sets, which we sum together.

τ =
(∑

t(Av )+
∑
t(Ae )∑

v |Av |+∑
e |Ae|

)

�t(
⋃

v Av )+ �t(
⋃

e Ae)
(2)

where t(·) yields the cumulative time duration of all the true inter-
vals in Av or Ae, |Av| being the cardinality of true time intervals in
a node/edge appearance function and �t(·) yields the time differ-
ence across the time intervals in its argument. We assume all time
intervals to have finite duration. In case, infinite intervals are present

(either with a left value of −∞ and/or a right value of ∞), we clip
the space-time cube to the existing finite intervals.

3.7.2. Bend transfer during placement

After placing a finer level of the hierarchy into the space-time cube,
based on the coordinates of trajectories in the coarser level (see Sec-
tion 3.6), the initial trajectories are extruded downwards along the
space-time cube time axis (Figure 5 left). All of the bend informa-
tion of coarser levels is lost and is recalculated at finer levels. The
finest level, or original graph in the space time cube, computes these
bends for the final time, defining the trajectories of the nodes across
time. With this approach, we discard some of the information about
node movement (i.e. the trajectories’ bends) at the coarser levels of
the hierarchy. Considering that the intuition behind the placement
phase of a layout multi-level strategy (see Section 3.3) is to use the
freshly computed coarse layout information to support and speed up
the drawing at the following level, we investigate whether retaining
bend information from the coarser levels may help define trajecto-
ries at finer levels.

Our new placement strategy (Figure 5 right), after extruding the
newly placed trajectories along the time axis of the space-time cube,
retains the previous level bend information. This is done in two
steps: first, the bends from the trajectories at upper (coarser) level
are copied to their corresponding representatives at the lower (finer)
level. Then, at the lower level, for all the trajectories merged with
each representative, its bends are copied whenever the merged node
trajectory has an appearance value of true, so that it ‘follows’ the
path of its representative.

4. Experimental Evaluation

We structured our evaluation as two separate experimental studies.
In the first one (Section 4.5), we aim to assess the performance of the
core algorithm ofMultiDynNoS (see Section 3.3) in terms of draw-
ing quality, using recognized quality metrics specific for temporal
graphs, and running times. We compareMultiDynNoS performance
with DynNoSlice and a state-of-the-art timeslice-based layout tech-
nique. In our second experiment (Section 4.6), we evaluate the im-
pact of MultiDynNoS extensions

On the running times and drawing quality. We first discuss the
strategies tested, the qualitymetrics and the datasets, which are com-
mon to both experiments.

4.1. Layout strategies

We test three different variants ofMultiDynNoS, based on different
combinations of coarsening and placement strategies. Specifically:

• MultiDynNoS wi_id is the Walshaw variant of MultiDynNoS
with maximal matching coarsening and identity placement.

• MultiDynNoS is_gr is the GRIP variant of MultiDynNoS with
maximal independent set coarsening and barycentre placement.

• MultiDynNoS sm_sp is the FM3 variant of MultiDynNoS with
the FM3 coarsening and placement strategy.
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We compare themwith three state-of-the-art layout strategies, de-
scribed in the following:

• Visone [BW04] is a timeslice-based dynamic graph drawing al-
gorithm, using the linking strategy. It performed the best in a pre-
vious study [BM11].

• DynNoSlice [SAK17, SAK20] is the event-based layout al-
gorithm used in MultiDynNoS as single level layout (see Sec-
tion 3.6).

• sfdp flat: flattens the entire event-based data and draws it once
as a static graph using sfdp [Hu05] drawing algorithm.

The sfdp flat is a baseline. It has zero movement, and since it
operates in two dimensions we expect it to have a major advantage
in terms of running times. However, this can come at the cost of
higher stress on some datasets where node movement is required.

4.2. Datasets

Three of the datasets used in our experiments are naturally expressed
as timeslices while the other are more naturally expressed as tem-
poral networks.

• VanDebunt shows the relationships between 32 freshmen at seven
different time points [VDBVDS99]. Timeslices and edges are se-
lected as in the paper by Brandes and Mader [BM11].

• Newcomb contains the sociometric preference of 17 mem-
bers of a fraternity in the University of Michigan in the
fall of 1956 [New61]. Timeslices are selected as in previous
work [BM11].

• InfoVis is a co-authorship network for papers published in the
InfoVis conference from 1995 to 2015 [IHK*16]. Authors on a
paper are connected in a clique at the time of publication. This
is not a cumulative network as authors can appear, disappear and
appear again. The dataset has 21 timeslices (one per year).

The temporal networks are the following.

• Rugby is a network derived from over 3000 tweets involving
teams in the ‘Guinness Pro12’ rugby competition. The tweets
were posted between 1 September 2014 and 23 October 2015.
Each tweet contains information about the involved teams and
the time of publication with a precision down to the second.

• Dialogs lists the dialogues between characters in the novel ‘Pride
and Prejudice’ in order [GWMG16]. The book has 61 chapters
with 4000 interactions between characters. When the algorithm
required timeslices as input, we divided this data into 61 of them
(one for each chapter).

• MOOC represents the actions (e.g. viewing a video, submitting
an answer, etc.) taken by users on a popular massive open online
class platform [KZL19]. The nodes represent users and course
activities (targets), and temporal edges represent the actions by
users on the targets. We pick and elaborate the first 15 thousands
events.

• RM is the data coming from The Reality Mining study [EP06]. It
followed 94 participants using mobile phones pre-installed with
several pieces of software that recorded usage data including call
logs, short messages and other information. We only consider
voice calls and take the first 28 thousand events.

Table 3: Computed and original values of τ . Graphs ordered by increasing
number of events.

Graph ManualTau AutoTau

VanDebunt 5 0.26
Newcomb 5 0.11
RAMP 0.02 0.50
InfoVis 5 0.02
Rugby 2.31 · 10−6 0.50
Dialogs 1 4.05 · 10−4

MOOC 5.56 · 10−5 1.06
MSG 2.31 · 10−5 0.40
RM 6.94 · 10−5 1.24 · 10−5

• MSG is comprised of private messages sent on an online social
network at the University of California, Irvine [POC09]. Each
message is represented as a temporal edge. We consider the first
15 thousands events.

• RAMP consists of the simulated spread of COVID-19 through
a population via the Scottish COVID-19 Response Consortium
(SCRC) contact tracing model [MMB*]. Nodes are infected in-
dividuals in the population and edges occur on the day when the
illness was transmitted having that duration. We consider the first
800 events.

When required (e.g. for calculation of the StressOn metric), tem-
poral networks were divided into 20 regularly spaced timeslices (un-
less differently indicated). We remark that all the datasets came with
manually defined τ values (see Sections 3.2 and 3.7.1), which were
shared between bothMultiDynNoS andDynNoSlice during the eval-
uation (except when AutoTau extension was tested) to ensure a fair
comparison. Manually and AutoTau defined τ values are reported
in Table 3.

4.3. Metrics

In our experiments, we quantitatively evaluate the produced layouts
on their quality, readability and running times. We selected a set of
quality metrics, specific for temporal graphs, listed in the follow-
ing. We now provide a short description of each one and a reason
for inclusion.

Movement: the average distance travelled by a node during graph
evolution [BM11, SAK20]. This metric has been presented in pre-
vious studies [BM11] and is an important factor related to drawing
stability, which helps support the cognitive map of the user [AP12,
AP16]. In general, lower movement is desirable but can come at the
cost of higher crowding and/or stress values.

Crowding: the number of times nodes pass close to each other in
the animation of the dynamic graph [SAK20]. When visually simi-
lar nodes pass close to each other, it is difficult to retain their identi-
ties [AP12, AP16]. Crowding avoidance is desirable for supporting
the cognitive map of the user.

Depth: the depth of the computed hierarchy (multi-level strate-
gies only). Previous studies [BGKM10] highlighted a corre-
lation between the running times and the number of levels
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generated by the corresponding coarsening strategy. An excessive
number of levels might slow down the computation significantly,
without any (or negligible) positive effect on the final quality of the
layout.

Stress: the stress metric evaluates how well the computed dis-
tances between nodes reflect the corresponding graph theoretic dis-
tances. Ideally, a good layout algorithm should attempt at mini-
mizing the layout stress. Average stress has been used as a met-
ric to evaluate layout quality in previous studies [BM11, SAK17,
SAK20] and we use it again here. For a fair comparison over both
timesliced and event-based graphs, we provide two definitions of
stress [SAK20]:

• StressOn: the average stress across all timeslices computed on all
the nodes and edges present on the timeslice. For temporal net-
works, which do not naturally present timeslices, these are de-
fined manually as described in Section 4.2.

• StressOff: the average stress is computed on and for all timeslices
using the exact node and edge appearances in continuous time.

StressOn is a more relevant metric for timesliced graphs, while
StressOff is to be preferred for temporal graphs.

Applying a uniform scaling to a graph drawing changes the stress
of the layout even though node positions remain the same [GHN12,
KPS14, OKB16]. To obtain a fair comparison between the different
strategies, we follow the same approach as in the paper by Simon-
etto et al. [SAK20]. We evaluate the stress of each layout on 40 can-
didate scaling values, computed as (1.1)i with −20 < i < 20, and
finally select the one which yields the minimum average stress. All
metrics are subsequently computed at that scale. For completeness,
we report the scaling factor along the results of our experiments.

4.4. Implementation details

We implemented ourMultiDynNoS approaches in the Java program-
ming language (version 14) and ran the experiments on a laptop
equipped with an i7-8750H CPU with 16GB of RAM. The static
graph drawing algorithms (fdp and sfdp) that provide the initial
placement come from the ‘GraphViz’ library [EGK*04]. To com-
pute the different metrics, we used the same software as in [SAK20].
MultiDynNoS source code with the datasets included in this exper-
iment is https://github.com/EngAAlex/MultiDynNos.

4.5. Experiment 1

As mentioned in the beginning of Section 4, in Experiment 1 we
aim to assess the performance of MultiDynNoS over DynNoSlice
and other timesliced-based techniques. For this experiment, we for-
mulated the hypotheses stated in the following.

• H1: Drawing quality. MultiDynNoS delivers comparable or bet-
ter performance, in terms of drawing quality, to existing state-of-
the-art event-based and timesliced dynamic graph drawing algo-
rithms.

• H2: Scalability. The multi-level approach allows MultiDynNoS
to scale to larger datasets than DynNoSlice [SAK20].

• H3:MultiDynNoSversus flattening.MultiDynNoS outperforms a
static drawing of the flattened network in terms of average stress.
In Simonetto et al. [SAK20], it was observed that flattening a
dynamic graph and subsequently drawing it as a static one yield
drawings of surprising quality.

• H4: Initial placement. We hypothesize that by using a multi-level
approach for first level placement (such as FM3 [HJ04]), in place
of a simpler force-directed technique (see Section 3.5), the whole
layout process would be quicker and occasionally provide better
quality metrics. Static multi-level graph drawing algorithms are
designed to overcome some intrinsic limitations of their single
level counterparts (see also Section 2), thus potentially providing
a better initial placement.

To evaluate H1, we conduct a new experiment using the same
graphs and procedures as in DynNoSlice [SAK20] and our previ-
ous paper [AMA21]. This allows us to compare MultiDynNoS to
state-of-the-art dynamic graph layout algorithms, using a known
and established procedure. We extend the experimentation with a
new small sized temporal graph (RAMP) and three other event-
based graphs with tens of thousands of events, in which we put
MultiDynNoS scalability to the test (H2). In this experiment, we
compare MultiDynNoS versus DynNoSlice and sfdp flat on
temporal graphs only. We expect a noticeable improvement in
terms of running times over DynNoSlice, while retaining (or im-
proving) its layout quality. Testing H3 justifies the inclusion of
sfdp flat among the tested layout strategies. To evaluate H4,
we selected two state-of-the-art static layout algorithms for ini-
tial placement: fdp (based on the Fruchterman and Reingold ap-
proach [FR91]) and sfdp [Hu05], which are single- and multi-level,
respectively.

Results. Results are reported in Tables 4 and 5. We begin our
discussion focusing on the data from Table 4, which comprises of
the same graphs used in DynNoSlice paper [SAK20].

As a preliminary consideration, for the two layout strategies
(Visone and DynNoSlice) tested in previous event-based graph
drawing strategies [SAK17, SAK20], the results on timeslice-
based data have been replicated. Visone has the best perfor-
mance, or is competitive, when compared to DynNoSliceon, this
data as it is a state-of-the-art algorithm for drawing timeslice-
based dynamic graphs. DynNoSlicehas similar movement and
crowding. The exception is InfoVis, where DynNoSlice per-
forms better in terms of both types of stress and crowding.
As previously discussed [SAK17], InfoVisis very similar to
an event-based data where there are drastic changes between
timeslices as authors in the visualization community rarely
publish with the exact same set of authors in consecutive years.

TheMultiDynNoS approaches on this data perform well. In terms
of running time, they are competitive with Visone and can be an
order of magnitude faster than DynNoSlice while retaining many
of its advantages. The MultiDynNoS approaches have competitive
levels of stress and crowding and consistently smaller amounts of
movement. This shows that the improvements in scalability did not
hurt the quality of the drawings when compared to the other strate-
gies. The sfdp flat approach, that is flattening and drawing the
dynamic graph with sfdp, is not able to perform very well in terms
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Table 4: Results of the experiment conducted on the same graphs as in the original DynNoSlice [SAK20] and our short paper [AMA21]. |V | and |E| columns
report the number of nodes and edges in the flattened graph. |Ev | reports the number of events. For timesliced graphs, the number of timeslices is reported by its
name in brackets. The Type column reports the tested algorithm. TheMultiDynNoS variant used is presented as the combination of the initial placement layout
(fdp or sfdp) and the coarsening/placement technique used. T column reports the algorithm running time in seconds. Sc.(aling) column reports the scaling
value. Columns On and Off show the StressOn and StressOff values. ColumnsM and C represent Movement and Crowding, respectively; D reports the depth
of the coarsened hierarchy. For every graph, we highlight the lowest values for Time, Stress, Crowding, Movement, and Depth to easily compare the different
strategies.

|V | |E| |Ev | Type T (s) Sc. On Off M C D

VanDebunt(7) 39 32 104 Visone 0.12 1 1.14 1.46 3.79 0 -
DynNoSlice 5.04 0.62 1.23 1.21 3.92 0 -
sfdp flat 0.14 1.61 2.77 2.81 - 0 -
fdp wi_id 1.10 0.68 1.23 1.26 0.94 0 5
fdp is_gr 1.11 0.68 1.04 1.07 0.91 0 3
fdp sm_sp 1.10 0.68 1.24 1.28 0.89 0 3
sfdp wi_id 1.23 0.68 1.40 1.45 0.96 0 5
sfdp is_gr 1.05 0.75 1.08 1.12 1.00 0 3
sfdp sm_sp 1.04 0.75 1.38 1.43 1.01 0 3

Newcomb(15) 17 93 602 Visone 0.10 1 14.04 14.76 16.36 8 -
DynNoSlice 7.58 0.68 16.60 16.57 13.44 1 -
sfdp flat 0.15 1.33 26.54 26.52 - 0 -
fdp wi_id 0.91 0.82 30.97 31.20 3.64 4 6
fdp is_gr 1.00 0.82 20.54 20.45 2.67 1 3
fdp sm_sp 0.95 0.82 21.11 20.94 2.62 2 3
sfdp wi_id 0.96 0.82 27.68 27.66 3.38 2 6
sfdp is_gr 0.88 0.82 21.54 21.44 2.91 3 3
sfdp sm_sp 0.89 0.82 21.20 21.03 2.73 1 3

InfoVis(21) 1136 2506 2878 Visone 77.43 0.46 51.66 52.97 2.14 36 -
DynNoSlice 224.93 0.56 30.14 30.19 2.03 2 -
sfdp flat 0.55 1.33 105.29 102.87 - 1,253 -
fdp wi_id 151.28 0.62 27.12 27.27 1.68 2 6
fdp is_gr 98.36 0.62 27.51 27.42 1.65 2 4
fdp sm_sp 116.15 0.56 29.71 29.46 1.49 3 3
sfdp wi_id 153.77 0.62 26.89 26.87 1.65 1 7
sfdp is_gr 96.40 0.62 27.72 27.54 1.62 2 4
sfdp sm_sp 110.82 0.56 27.93 27.82 1.51 3 3

Rugby 12 66 3151 Visone 0.07 0.68 3.08 2.70 25.46 6 -
DynNoSlice 2.84 0.51 1.86 1.78 6.64 0 -
sfdp flat 0.18 0.90 2.07 2.02 - 0 -
fdp wi_id 1.93 0.51 2.20 2.04 1.30 0 5
fdp is_gr 5.02 0.51 2.05 1.86 1.42 0 2
fdp sm_sp 1.23 0.56 1.82 1.82 1.13 0 2
sfdp wi_id 1.19 0.51 2.24 2.02 1.31 0 5
sfdp is_gr 1.20 0.51 2.06 1.92 1.13 0 2
sfdp sm_sp 1.18 0.56 2.05 2.01 1.67 0 2

Dialogs 118 501 4033 Visone 3.39 0.17 0.62 0.87 5.44 682 -
DynNoSlice 49.53 0.28 0.75 0.90 1.35 0 -
sfdp flat 0.21 1 0.65 0.69 - 6 -
fdp wi_id 8.56 0.31 0.69 0.88 0.74 0 15
fdp is_gr 5.63 0.35 0.68 0.95 0.73 1 4
fdp sm_sp 6.00 0.35 0.67 0.86 0.68 0 3
sfdp wi_id 6.69 0.31 0.73 0.93 0.73 0 15
sfdp is_gr 5.14 0.35 0.66 0.95 0.73 1 4
sfdp sm_sp 5.94 0.35 0.74 0.97 0.72 0 3

of stress on these smaller datasets. However, it is a multi-level al-
gorithm and its strengths are in terms of scalability. In static graph
drawing, standard force-directed methods can be used on smaller
graphs and the benefits of more scalable approaches are only real-
ized with increased dataset size.

This behaviour can be also observed on the event-based data
(Rugby and Dialogs). On Dialogs especially, running times have
been vastly reduced and are now quite comparable to those of
Visone, with competitive levels of stress. When comparing the
three MultiDynNoS strategies, as expected, MultiDynNoS wi_id
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Table 5: Results of the experiment with four new graphs on the coreMultiDynNoS algorithm. |V | and |E| columns report the number of nodes and edges in the
flattened graph. |Ev | reports the number of events. The Type column reports the tested algorithm. TheMultiDynNoS variant used is presented as the combination
of the initial placement layout (fdp or sfdp) and the coarsening/placement technique used. T column reports the algorithm running time in seconds. Sc.(aling)
column reports the scaling value. Column Off shows the StressOff values. Columns M and C represent Movement and Crowding, respectively; D reports the
depth of the coarsened hierarchy. For every graph, we highlight the lowest values for Time, Stress, Crowding, Movement, and Depth to easily compare the
different strategies.

|V | |E| |Ev | Type T (s) Sc. Off M C D

RAMP 874 802 802 DynNoSlice 53.51 0.16 1.62 0.08 904 -
sfdp flat 0.44 1.94 2.81 - 3 -
fdp is_gr 15.56 0.38 1.81 0.11 0 5
fdp sm_sp 17.11 0.35 1.70 0.12 0 4
sfdp is_gr 20.55 0.38 1.79 0.11 0 5
sfdp sm_sp 26.84 0.31 1.71 0.10 0 4

MOOC 1166 8641 15k DynNoSlice 497.04 0.29 1,604.23 0.99 4,266 -
sfdp flat 0.93 1.46 1,514.62 - 4,028 -
fdp is_gr 609.46 0.28 1,606.66 1.04 4,558 2
fdp sm_sp 605.33 0.28 1,603.86 1.04 4,606 2
sfdp is_gr 587.55 0.28 1,580.71 1.02 4,418 2
sfdp sm_sp 494.56 0.31 1,545.25 1.14 3,759 2

MSG 882 4188 15k DynNoSlice 2,350.19 0.21 82,42 1.50 2,143 -
sfdp flat 0.47 1.77 83.27 - 1,124 -
fdp is_gr 196.84 0.23 82.71 1.11 1,778 4
fdp sm_sp 161,69 0.23 82.66 1.16 1,907 4
sfdp is_gr 152.24 0.23 82.48 1.12 1,751 4
sfdp sm_sp 154.95 0.21 84.91 1.05 2,314 4

RM 3822 4413 28k DynNoSlice - - - - - -
sfdp flat 1.58 4.17 0.34 - 9,666 -
fdp is_gr 1,259.12 0.35 3.51 3.07 17,533 6
fdp sm_sp 1,323.47 0.38 1.66 3.72 19,735 5
sfdp is_gr 1,193.13 0.31 4.18 2.62 18,364 6
sfdp sm_sp 1,313.38 0.28 0.66 2.80 31,532 5

(Walshaw) produces much deeper hierarchies compared to the
others, with occasionally longer running times. In the previous
version of the algorithm [AMA21], this strategy faced higher stress
and crowding due to the lack of lower bounds for the layout
parameters decay (see Section 3.6). With this issue solved in this
version of the algorithm, this strategy proves to be much more com-
petitive than before, while usually outperformed by the other vari-
ants (with the notable exception of InfoVis- at least on stress lev-
els). The MultiDynNoS is_gr (GRIP) and MultiDynNoS sm_sp

(FM3) strategies perform similarly.

This experimental evidence supports our H1 hypothesis: Multi-
DynNoS demonstrates comparable or better quality figures when
compared to DynNoSlice and much more competitive run-
ning times, almost in par with Visone also on timesliced
graphs.

We now move our discussion to Table 5. Here we test three new
graphs (with up to 28 thousand events) and one small temporal
graph. This last one was added since the other graphs of similar
size included in the previous experiment [SAK20, AMA21] were
only timesliced. Here we decided not to include Visone since, as
we saw in Table 4, it does not perform well when drawing event-
based graphs. For these graphs, computing stress metrics is a very
time-consuming task, therefore, we only focused on StressOff (see

Section 4.3), since all graphs are event-based, and excluded Multi-
DynNoS wi_id variant since it showed inferior performance overall
on the initial set of graphs. We set a 2.5 h time limit for each algo-
rithm to compute a drawing.

The data in Table 5 suggest that MultiDynNoS can be up to an
order of magnitude faster than DynNoSlice also on these data sets
with similar stress, movement and crowding. As expected, Multi-
DynNoS could always complete a drawing well ahead of the im-
posed time limit, while DynNoSlice failed to do so on one instance.
On MOOC, MultiDynNoS and DynNoSlice provided very similar
layouts in terms of stress, movement and crowding, as well as com-
parable running times: this is mostly due to the very shallow hierar-
chy produced by the coarsening (only two levels), greatly limiting
the benefits of a multi-level strategy. On MSG and RAMP graphs,
while the two drawings still present similar stress, MultiDynNoS
proved to be faster than DynNoSlice by an order of magnitude on
the former and by about 70% on the latter, presenting similar stress
with better movement and crowding. Based on the available data,
we can conclude that H2 is confirmed.

When it comes to comparing MultiDynNoS to sfdp flat, the
results in terms of average stress are less clear. sfdp flat has two
advantages: its running times, due to the fact that the drawing is
purely 2D, and therefore, not optimized in the space-time cube, and

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



14 A. Arleo et al. / Multilevel Event-based Graph Drawing

that it does not incur any movement. While it seems that flattening
is a good approach in some circumstances, it provided worse stress
performance than MultiDynNoS in all instances in Table 4 and on
two out of four in Table 5. Concerning the former, we acknowl-
edge that sfdp flat is a multi-level algorithm, and therefore, its
strengths are in terms of scalability. In the latter, compared to Mul-
tiDynNoS, flattening provided better stress on MOOC and RM and
better crowding in all instances except for RAMP. This suggests
that to achieve less stress on RAMP and MSGnodes ‘need’ to move
(which can lead to incidental overlapping) ultimately providing less
stressed layouts. On MOOC, however, the least stress between the
MultiDynNoS variants (sfdp sm_sp) was achieved with the highest
movement, which may suggest that this layout as well might ben-
efit from additional node motion. This behaviour is also visible on
InfoVisgraph: since it is a time-dependant co-authorship network,
it is a sequence of cliques representing the groups of authors that
co-authored one or more papers each year. These cliques, however,
change in size and composition at each timeslice, making the graph
behave more like a temporal network. Therefore, we can conjec-
ture that when node movement is expected, i.e. frequent change of
neighbourhoods, temporal layout techniques might be preferable to
flattening. OnRMMultiDynNoS could achieve comparable amounts
of stress, but with significantly higher crowding. Based on the avail-
able data, we can partially accept H3: MultiDynNoS can outper-
form flattening, but it strongly depends on the intrinsic properties
of the graph.

Finally, we discuss the effect of the algorithm for first level place-
ment. Our results do not suggest a strong correlation between the
choice of the first level algorithm and the final quality of the draw-
ing. However, in general sfdp- variants tend to be slightly quicker
than the fdp-based ones, especially on the larger graphs in Ta-
ble 5. Our conjecture is that when the coarsest level is so large or
dense that the multi-level layout can accelerate the drawing pro-
cess over a force-directed approach, then the overall running times
are reduced by a significant amount, with also potential benefits
on the final layout quality. Otherwise, since multi-level algorithms
have their power in scalability, they do not make much difference
when the coarsest graph is small, leading to having little to no im-
pact on the final running times or potentially making the process
slower compared to using fdp. Therefore, H4 can only be partially
accepted.

4.6. Experiment 2: Algorithm extensions

In this experiment, we investigate the effects of the proposed core
algorithm extensions (see Section 3.7) on the same graphs and using
the same quality metrics as in Experiment 1 (see Section 4.5).

We experiment with three different experimental setups: AutoTau
versus ManualTau (setup 1), ManualTau versus ManualTau with
bend transfer (setup 2) and AutoTau versus AutoTau with bend
transfer (setup 3). ManualTau represents MultiDynNoS core algo-
rithm, as described in Section 3, using the pre-determined τ values
also used in Experiment 1. AutoTau is for MultiDynNoS core al-
gorithm but using the methodology described in Section 3.7.1 for
computing the τ value to use during layout. In Setups 2 and 3, Man-
ualTau and AutoTau are complemented with our bend transfer ex-

tension, which extends the trajectories placement as described in
Section 3.7.2.

For the same reasons as in Experiment 1, we only focus on the
is_gr and sm_sp variants, especially to speed up the calculation of
the quality metrics for the larger graphs. For the same reason, only
StressOn is computed for the timesliced graphs and only StressOff
for the event-based ones (see Section 4.3).

In order to simplify the results discussion, for each of the afore-
mentioned setups, we gather the best results for each of the qual-
ity metrics across all MultiDynNoS variants (e.g. best time, lowest
stress, lowest crowding, etc.). Results for setups 1, 2 and 3 are re-
ported in Tables 6–8, respectively. Full results are available as sup-
plemental material. In Table 3, we report the ManualTau and Auto-
Tau values used throughout the experiment.

Setup 1. In this setup, we compare ManualTau (M —the same
version used in Experiment 1) versus AutoTau (A) (see Sec-
tion 3.7.1), whose results are shown in Table 6 with the following
hypothesis:

• AutoTau will be competitive in terms of drawing quality and run-
ning times over a specifically and experimentally calculated τ

value (ManualTau).

When applying AutoTau, we observe a growing trend on run-
ning times, with the exception of Dialogs and Rugby. This is vis-
ible especially on MOOC. On this last graph, the value of AutoTau
when compared to the selected ManualTau is 5 orders of magnitude
greater (see Table 3), which leads to a much more stretched cube:
this makes optimizing trajectories a more time intensive operation.
Since the coarse hierarchy of that graph is very shallow, because of
the layout tuning more trajectory optimization rounds will be per-
formed, noticeably increasing the final running times. However, this
value of AutoTau better encapsulates the nature of the graph, in fact
stress values on this graph are substantially lower thanM, at the ex-
pense of increased movement and crowding. In general, we observe
that A provides low movement layouts on the smaller graphs, that
tend to benefit from a more stable layout – in this, the exception
of InfoVis is clearly visible. On RM, the smaller AutoTau also pro-
duces a layout with reduced movement, stress and crowding than
M. On MSG, RAMP, and Rugby, movement is higher, but A still
achieves better stress on last two.

Overall, the available data suggest the validity of our hypothe-
sis for this setup: the AutoTau succeeds in providing layouts with
competitive quality and can be used as a starting point for the search
of a specific Tau value for the graphs. This comes at the expense of
potentially longer running times.

Setup 2. We now evaluate the impact of ManualTau with bend
transfer (MB) (see Section 3.7.2) over ManualTau without bend
transfer (M) with the following hypothesis:

• We expect that MB will provide graphs with more movement,
since bends are transferred from one level to the other, but with
improved stress—especially on networks that require high move-
ment (e.g. InfoVis).

In Table 7, we observe that running times are slightly increased:
outliers are InfoVis, where there is the largest increase (around 30%
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more), andMOOC, whereMB is faster thanM by 50 s (10% of total
running time).

A first partial confirmation to our hypothesis comes by the move-
ment values on the smaller graphs, where MB also outperforms M
in terms of stress on four instances out of six. On larger graphs the
effect on movement is mitigated, this is visible especially on RM
and possibly caused by the deeper hierarchies that slow down ver-
tices max movement as layout gets to the finer levels. There are also
benefits on drawing quality, slightly better stress on two instances
out of three, and much better crowding on RM. We conclude that
we can partially accept our hypotheses: bend placement increases
movement and quality in some instances, but its effect is mitigated
with deeper hierarchies due to the layout tuning.

Setup 3. In this setup, we evaluate the impact of AutoTau with
bend transfer (AB) over AutoTau without (A) with the following
hypothesis:

• As AutoTau tends to reduce movement, we expect bend place-
ment will partially counteract this effect and improving stress.

In contrast to the results in Setup 2, the bend transfer effect is mostly
negligible (Table 8). Running times are comparable or slightly
lower, with exception of InfoVis. In terms of stress, movement and
crowding, all results of AB overlap closely with A with the excep-
tion of the crowding on RMgraph. This last result, however, comes
with very high stress and movement (12.70 and 3.10, respectively—
full results available in supplemental material). Therefore, we reject
the hypothesis for this setup: the effect of AutoTau seems to greatly
reduce the efficacy of bend placement, but slightly reduces running
times on the larger instances.

Discussion. Our experiments tested the improvements brought by
τ , the time to space conversion parameter, which maps time to the
depth of the space-time cube, and bend transfer to lower levels of
the hierarchy.

Our first setup tested automatically computed τ against a manu-
ally tuned value. AutoTau was introduced to increase the accessi-
bility of our approach to wider audiences. In DynNoSlice [SAK17,
SAK20], in fact, the user would need to estimate a τ value using a
‘rule-of-thumb’ and then experiment with that value to get a good
layout. The purpose of AutoTau is to compute and assign a reason-
able value for τ that allow users to simply use our implementation
without having to manually tune this parameter, and/or to provide
a starting point to engineer their own ManualTau for that specific
dataset. In general, our experiments suggest that our computed Au-
toTau is ‘stiff’, meaning that provides layouts with low movement,
for small data sets and, on the other hand, more flexible, i.e. for
larger data sets.

In our second setup, we compared ManualTau against Manual-
Tau with bend transfer. Bend transfer would normally increase the
mobility of vertices in the dynamic graph by allowing higher lev-
els of the hierarchy to influence node movement at lower levels. We
observe that, generally, bend transfer improves stress at the expense
of movement.

In our third setup, we compared automatically computed τ

against automatically computed τ with bend transfer. Given that Ta
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Auto Tau is stiff on small data sets, we thought that bend transfer
would help improve this situation. Our experiment did not see this
result. Therefore, we conclude that bend transfer would help im-
proving the quality of the layout in combination with a manually
defined τ rather than with AutoTau, as the latter mitigates the bend
transfer effects to lower levels of the hierarchy.

Finally, it remains to be seen if these results generalise to other
temporal network data sets.

5. Conclusion and Future Work

In this paper, we present MultiDynNoS, the first multi-level event-
based graph layout algorithm. We expand on our previous prelimi-
nary work [AMA21] by providing a much more detailed algorithm
description and an extended experimental evaluation with new and
larger graphs. We also describe, implement and evaluate two exten-
sions (AutoTau and Bend Transfer) to the core algorithm, which also
uncover new potential research questions. Our experiments show
that MultiDynNoS meets its design requirement of making event-
based graph layout more competitive compared to existing times-
liced [BW04] and event-based techniques [SAK20], while retaining
its advantages in terms of drawing quality especially on temporal
graphs. Overall, MultiDynNoS can be up to an order of magnitude
faster than DynNoSlice, with the scalability improvements particu-
larly visible on our experiments on large graphs, where DynNoSlice
could not complete all layouts or was considerably slower with little
to no differences in drawing quality.

Of our tested algorithm extensions, our new automatic Tau selec-
tion makes MultiDynNoS much more accessible. One of the most
relevant obstacles when using DynNoSlice in fact, was the neces-
sity of choosing an appropriate τ value when drawing a graph. Our
experiments show that our AutoTau provides a reliable and reason-
able compromise between drawing quality and running times, and
also represent a good starting point for power users that would like
to find an optimized τ value to enhance the final layout. Transferring
bends from one level to the other also increased the influence that
the coarse hierarchy has on the final layout. It increases the move-
ment figures as we expected, and improves the quality figures on
some graphs with a small cost in terms of running times.

This paper also provides some more evidence on the research
question about when is more convenient to stick to timeslicing (or
flattening) and when using event-based layout strategies would pro-
vide a significant advantage. We believe that graphs which share
the same properties (i.e. rapidly changing neighbourhoods, see Sec-
tion 4.5) of InfoVis to be of significant interest when investigating
the graph properties that impact the final quality of the different al-
gorithms, since that is a timesliced graph that performs better when
drawn with event-based techniques.

Finally, we believe that this paper opens, amongst others, two in-
teresting research directions for future work. First, the improved
scalability and ease of use of MultiDynNoS over previous event-
based layout methods might open the way to user studies aimed
at uncovering the impact of the use these continuous time graph
drawing techniques on user perception and performance when deal-
ing with typical dynamic network visualization tasks. Second, in-
tegrating graph simplification and filtering techniques would allow

MultiDynNoS and generally event-based layouts to scale even more
by removing unnecessary noise and clutter. This would naturally
pave the way of event-based layouts into visual analytics systems
for decisionmaking: temporal networks, in fact, can naturallymodel
complex phenomena including contact-to-contact interaction, infor-
mation dissemination over social networks, and physical proxim-
ity [HS12].
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