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Abstract

Forecasting energy demand has been a critical process in various decision support systems
regarding consumption planning, distribution strategies, and energy policies. Traditionally,
forecasting energy consumption or demand methods included trend analyses, regression,
and auto-regression. With advancements in machine learning methods, algorithms such as
support vector machines, artificial neural networks, and random forests became prevalent. In
recent times, with an unprecedented improvement in computing capabilities, deep learning
algorithms are increasingly used to forecast energy consumption/demand. In this contribu-
tion, a relatively novel approach is employed to use long-term memory. Weather data was
used to forecast the energy consumption from three datasets, with an additional piece of
information in the deep learning architecture. This additional information carries the causal
relationships between the weather indicators and energy consumption. This architecture with
the causal information is termed as entangled long short term memory. The results show that
the entangled long short term memory outperforms the state-of-the-art deep learning archi-
tecture (bidirectional long short term memory). The theoretical and practical implications of
these results are discussed in terms of decision-making and energy management systems.
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1 Introduction

Time-series forecasting is one of the most important quantitative models in which historical
observations of the same variable are collected and analysed to develop a model that cap-
tures the underlying data generating process. Then the model is used to predict the future.
In operation research (OR), such methods are used for volatility prediction (Vidal & Krist-
janpoller, 2020), risk assessment (Du et al., 2020), supply chain management (Pacella &
Papadia, 2021), price forecasting (Demir et al., 2021), demand and supply forecasting (Chen
et al., 2020; Chen & Lu, 2021; Du et al., 2021; van Steenbergen & Mes, 2020; Zhang
et al., 2021) and so on. There are multiple methods used in time series analysis that can be
divided into three broad categories: 1) classical statistical modelling and forecasting (e.g.,
ARIMA, GARCH); 2) machine learning and deep learning; and 3) hybrid approaches. This
paper used a novel method called "Entangled Recurrent Neural Network" (E-RNNs) for time
series prediction (proposed by Yoon & van der Schaar, 2017). Thus, contributing to the deep
learning-based methods for time series prediction in OR. As an application of the method,
this paper forecasts the energy demands in the different regions.

Energy demand forecasting is becoming increasingly crucial for planning for energy con-
sumption, formulation of distribution strategies, and recommending modern energy policies
(Bhattacharyya & Timilsina, 2009). Energy is one of the most vital resources for developing
and sustaining that development in any country (Suganthi & Samuel, 2012). This is true for
all the sectors that are social, economic, and environmental. Energy is also a crucial part
of multiple industries such as production, agriculture, health, and education. Therefore, it is
important to have an efficient energy demand management system for allocating the available
resources properly and effectively. Energy demand and supply can also be seen as the macro
supply chain operations, with the energy companies and distributors as the main body. For
example, Bagchi et al. (2022) showed how energy usage could be employed to achieve a
better energy mix to, in turn, obtain the much-desired decoupling of growth and sustainable
development in developing countries. Moreover, because of the widespread impact of energy
consumption, the decision-making in this sector might involve multiple stakeholders, a mul-
titude of uncertainty, and risk inflicting sources (Dorsman et al., 2021). The decision-making
in the energy sector can also be different based on the time frame (long, medium, and short
term) and area scopes (country, region, city, buildings). Such decisions can also affect the
financial aspects of the organizations because the energy investments have capital intensive
nature. Furthermore, with the increasing world population (that is estimated at 8.5 billion by
2030; United Nations, 2015), the energy demand will also increase. This increase in demand
can only be met by using efficient energy planning and sustainable energy policies, both of
which depend on a reliable energy demand forecasting system. Energy demand and supply
can also be seen as the macro supply chain operations, with the energy companies and distrib-
utors as the main body. Therefore, accurate forecasting of the energy demand does not only
have societal impacts but also can have financial impacts. Therefore, accurate forecasting of
energy demand or consumption is the desired outcome of the applied methods. One of the
most prominent states of the art methods of forecasting the energy demand is using recurrent
neural networks.

Recurrent neural networks (RNNs) are the most used deep architectures for solving
time-series-based prediction and/or regression tasks. They have been applied in a variety
of domains. For example, speech recognition (Zhang et al., 2020), traffic forecasting (Zhang
et al., 2020), language translation (Vathsala & Holi, 2020), and risk scoring (Clements et al.,
2020). There are two main variants of RNNs used in the state-of-the-art research, such as
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standard RNNs (Rumelhart et al., 1988) and bi-directional RNNs (Schuster & Paliwal, 1997).
Standard RNNs can propagate the error in only one direction and, therefore, cannot use future
inputs for current prediction. On the other hand, using causal predictions with bi-directional
RNNs converts them into standard RNNs (Yoon & van der Schaar, 2017). Yoon and van
der Schaar (2017) addressed this limitation of Bi-directional RNNs for causal prediction by
proposing a novel RNN architecture called Entangled RNN (E-RNN). By stacking an addi-
tional forward hidden layer on top of the Bi-RNN structure, the causal prediction of E-RNN
is dependent on all the previous backward hidden states. E-RNN can be used in a plethora of
applications, ranging from medicine to finance. Importantly, E-RNN can be combined with
various state-of-the-art RNN techniques such as multilayer (Parlos et al., 1994), dropout
(Srivastava et al., 2014), LSTM (Hochreiter & Schmidhuber, 1997), and GRU (Chung et al.,
2015) and leads to performance gains, without the need for any additional assumptions.
Entangled Recurrent Neural Networks have been used in multiple domains such as face
image sequencing (Oh et al., 2021), load forecasting (Sriram et al., 2018), and other power
system applications (Sriram, 2020). However, as aforementioned, to the best of the authors’
knowledge, E-RNNs have not been used in the domain of OR, especially in energy demand
forecasting.

In this contribution, the relation between the weather conditions that are already used for
forecasting purposes in energy consumption is used (Ghalehkhondabi et al., 2017). The causal
link between energy consumption and weather conditions might improve upon the state-of-
the-art forecasting accuracies. Once the demand forecasting based on the proposed causal
relation and using E-RNNss is obtained, the E-RNNs’ performance is compared against the
other state-of-the-art RNN techniques such as multilayer multivariate bi-bidirectional LSTM
(Chung et al., 2015; Hochreiter & Schmidhuber, 1997; Parlos et al., 1994; Srivastava et al.,
2014). Specifically, this paper addresses the following research question:

How much does the causal information between the weather conditions and the
energy demand improves the energy demand forecasting using deep learning networks?

To address the aforementioned research question, the proposed method is applied to three
datasets where additional information about the causal relations is used. These causal relations
are between the weather conditions and the energy consumption in the training phase of the
algorithm to forecast the energy consumption. These results will be compared against a
multivariate bidirectional LSTM using just the weather conditions to forecast the energy
consumption. Such a comparison will establish the role of causal relations in the forecasting
of energy consumption. The current research in this field supports the use of deep learning
methods for forecasting, but there is little to no knowledge about the role played by the factors
causing the energy use in the different geopolitical landscapes such as a whole country, a
region within a country, cities, and a standalone building. The causal relation also changes
based on how wide the area has been considered for exploration. Therefore, it is necessary to
study and understand the importance of the causal relationship between weather factors and
energy consumption, especially when it comes to time-series prediction and forecasting.

The remainder of the paper is organized as follows. The second section presents an
overview of deep learning applications in OR, the role of energy demand forecasting in
OR, and deep learning applications for energy forecasting. The third section presents the
methodology, including the description of the datasets brief introduction to LSTMs, and the
proposed method. The fourth section presents the results, and the fifth section discusses the
results and presents the implications. Finally, the sixth section concludes the paper.
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2 Related work
2.1 Deep learning applications in operation research

Over the past few years, innovations in business analytics and operations management are
becoming necessary factors for the success of the ventures (Lim et al., 2013; Mortenson
et al., 2015; Ranyard et al., 2015). During these years, deep learning has been used in a
variety of operations research applications. For example, supply chain management (Kilimci
et al., 2019; Pacella & Papadia, 2021; Punia et al., 2020), understanding/predicting financial
risk behaviour (Geng et al., 2015; Kim et al., 2020a, 2020b; Xu & He, 2020) price and price
movement forecasting (Sen & Mehtab, 2021; Shahi et al., 2020), fault diagnosis (Kumar et al.,
2016), maintenance prediction (Kumar et al., 2018) and asset management for maintenance
prediction (Chen et al., 2021) and sustainability performance prediction (Rajesh, 2020). In
the following paragraphs, a brief overview is provided about each of these sub-fields and
how deep learning methods are applied within the sub-fields.

Organizations use supply chain forecasting as part of their supply chain management to
fulfil the requirements of short-term and long-run aggregate forecasting. Such forecasting
aids in the decision-making at strategic and tactical levels. In recent times applications of and
improvements upon existing deep learning networks have been frequently utilized for this
purpose. For example, Kilimci et al. (2019) used a decision integration strategy empowered
using a combination of support vector regression and a deep learning network to forecast
the demand in the Turkish market. Pacella and Papadia (2021) used LSTMs to forecast
the demand of products in the supply chain to form a better and more accurate basis for
the respective replenishment systems. Xu and He (2020) used a deep belief network to
forecast the financial credit risk, as a crucial part of the supply chain finance, to maintain the
sustainable profit growth for financial organizations. Along with demand forecasting, sales
prediction is also important in the supply chain management to make sure that the stores
do not sell overstock, avoid understocking, reduce losses and minimize waste. In this vein,
Husna et al. (2021) used LSTM and convolutional neural networks to forecast the sales of
grocery stores. Other examples of sales forecasting in the different sectors include fashion
retail (Giri et al., 2019; Loureiro et al., 2018), e-commerce (Pan & Zhou, 2020; Qi et al.,
2019), pharmaceuticals (Chang et al., 2017; Ferreira et al., 2018) to mention a few.

There are several examples where improvements upon existing deep learning methods
were proposed. For example, Punia et al. (2020) proposed a novel and improved cross-
temporal deep learning architecture to forecast all levels (e.g., individual stock units, product
groups, online and offline channels) of a retail supply chain. In another example, Kegenbekov
and Jackson (2021) used an adaptive deep reinforcement learning method to achieve synchro-
nization between the inbound and outbound flows in an organization. In all these examples
mentioned above, the models incorporating deep learning methods outperform various tradi-
tional methods. These traditional methods include basic machine learning algorithms (Husna
et al., 2021; Kilimci et al., 2019; Xu & He, 2020), statistical methods (Pacella & Papadia,
2021; Xu & He, 2020), and sometimes even pre-existing deep learning methods (Punia et al.,
2020). Another facet of deep learning applications for supply chain management is for ver-
ifying, generating, and augmenting supply chain maps. For this purpose, Wichmann et al.
(2020) used natural language processing and LSTM to automatically extract the buyer—seller
relations from texts and then use the features to generate basic supply chain maps and ver-
ify/augment existing ones. More recently, Guan and Yu (2021) used the features from the
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resource distribution allocation index and a deep learning network to inform the design of
the supply chain resource distribution allocation model.

For predicting financial risk behaviour, deep learning has been used at various stages
of an artificial intelligence pipeline. In other words, deep learning has been used not only
at the prediction stage of a process but also at earlier stages as well, such as during the
feature extraction and selection phases. For example, Kim et al., (2020a, 2020b) used deep
learning to extract features from structured data for retail traders to identify/predict risk-
related behaviour. Kim et al., (2020a, 2020b) showed that the features extracted using deep
learning methods provided better prediction outcomes than the traditional methods. Similarly,
Geng et al. (2015) used deep neural networks to extract features from the data collected about
customers to predict the bankruptcy chances of the customers. Another financial risk venture
for deep learning algorithms is in the direction of volatility. Liu (2019) showed that the LSTM-
RNN-based methods outperformed one of the most popular techniques (GARCH, Pérez-Cruz
et al., 2003) for volatility prediction. Similar results and trends were reported by Xiong et al.
(2015) in the case of volatility prediction and comparison with GARCH. Chatzis et al. (2018)
used deep learning methods to forecast the stock market crisis and showed the prevalence
of such methods over the classical methods. Along with similar trends, Moews et al. (2019)
reported better performances shown by deep learning models when compared to traditional
machine learning models. Eachempati et al. (2021) have also shown that the deep neural
networks outperform the traditional methods of predicting the accounting disclosure, another
type of financial behaviour that has gained considerable attraction from the deep learning
applications (Almagtome, 2021). Another aspect of risk behaviour that was detected using
such techniques is the detection of fraudulent reviews for online marketing websites (Kumar
et al., 2022a, 2022b). Kumar et al., (2022a, 2022b) examined the different pre-processing
and feature engineering techniques to extract both reviews and review-centric features and
showed that unifying these features in ML classifiers resulted in better detection of fraudulent
reviews than the contemporary methods. Furthermore, using deep learning techniques and
text mining Huang et al. (2022) provided a more accurate estimate of financial distress for
beneficiaries and investors than classical machine learning algorithms.

Concerning the stock market prices, deep learning has attracted a multitude of efforts
in the direction of stock price forecasting. To compare the different deep learning models
such as LSTM and GRU, Shabhi et al. (2020) showed that there was no significant difference
while using the models, but when the authors added additional sentiment data to forecast the
stock prices, the performance was significantly increased. The high predictive performance
of deep and extreme machine learning algorithms for stock price prediction was also reported
by Balaji et al. (2018), Sen and Mehtab (2021), and Liu et al. (2022). Furthermore, Wang and
Fan (2021) show that by incorporating complex non-linear relations into the architecture of
the deep learning networks, one can achieve high stock price prediction capacity. Sirignano
and Cont (2019) used a deep temporal network and trained it on all the stock data that
they obtained and showed that this model outperformed individually trained models. Li and
Pan (2022) proposed an ensemble deep learning model for predicting stock prices using the
current affairs of the companies. ) used a generative adversarial network for stock market
price movement prediction. Another set of efforts used sentiment analysis of Twitter data
for stock price prediction (Darapaneni et al., 2022; Jing et al., 2021; Mohan et al., 2019;
Rao & Srivastava, 2012; Shivaprasad and Shetty, 2017; Swathi et al., 2022; Yusof et al.,
2018). Sirignano and Cont (2019) further claim that the "general" model can also be used
for "transfer" learning purposes. A sub-application of stock price prediction is predicting the
stock price movements and price formulation. For example, Tsantekidis et al. (2017) used
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stochastic deep learning networks to forecast the price movement from the large-scale high-
frequency data. In the same vein, Zhao and Chen (2021) integrated ARIMA, convolutional
neural networks, and long-short term memory to detect non-linear temporal patterns and
predict the stock price movement. For deeper reviews on the applications of the deep learning
algorithms in the domain of finance, see the surveys done by Ozbayoglu et al. (2020) and
Sezer et al. (2020).

2.2 Energy demand/consumption forecasting

Energy demand forecasting/prediction is not a new problem. However, as mentioned in the
introduction that it has become, over the years, an important problem to solve from an
OR perspective. In the following, a few examples are described of how the past researchers
have addressed the problem of energy demand/consumption forecasting/prediction. For com-
prehensive and in-depth reviews, see, Ghalehkhondabi et al. (2017), Islam et al. (2020),
and Suganthi and Samuel (2012). The examples covered in this brief overview, methods
to forecast/predict the energy demand/consumption, are from basic time-series, regression
and econometric analysis, ARMIA and GARCH models, basic machine learning, and deep
learning methods.

Time series models are concerned with trend analysis, Markov models, and spectrum
analysis. Ediger and Tatlidil (2002) analysed the cyclic patterns in the energy consumption
data to forecast the energy demands in Turkey. Aydin (2014) used distribution analysis (t- and
F-distributions) to forecast the demand for energy from fossil fuels globally. Aydin (2015)
used a similar analysis to model the trends of coal-based energy demands in countries such
as India, the United States, Japan, South Africa, and Thailand. Farajian et al. (2018) used
the Box-Jenkins method for trend analysis to provide the agriculture energy demands in Iran
over a 24-year period. Morakinyo et al. (2019) used the trend analysis to predict the energy
consumption on the extreme weather days to delineate the effect of the extremely hot or
extremely cold days. Tian et al. (2022) conducted a similar analysis as Morakinyo et al.
(2019) with additional regional climate models to predict the energy consumption during the
extreme weather days in various regions of Canada.

Efforts from a regression analysis point of view have used different variables to predict
the energy demands of households, buildings, and regions. For example, Harold et al. (2017)
used the income elasticity of households and quantile regressions to predict the energy con-
sumption, with the aim of informing the use of constant mean elasticity for policy purposes.
Maaouane et al. (2021) used the import, export, and energy efficiency measures information
to predict the energy demands in the industrial sector. Catalina et al. (2013) used the global
heat loss coefficient of buildings, the indoor set point, the sol-air temperature difference,
and the south equivalent surface to predict the heating energy consumption. Many studies
have considered whether factors as independent variables in regression analysis to predict
the energy demands. For example, Braun et al. (2014) used humidity and temperature to pre-
dict the energy demands of supermarkets in the UK. Fumo and Biswas (2015) used indoor
and outdoor temperature and solar radiation to predict the energy consumption of residential
buildings. Tso and Guan (2014) also predicted the residential energy demands using the house
size, housing type, heating requirement, and amount of air-conditioning use and a multiple
regression model.

Econometric models use the correlations between the energy demand and the macro-
economic variables to predict/forecast the energy demands/consumption. One of the methods
for incorporating the macro-economic variables in the analysis is to use the causal analysis.
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For example, Kayhan et al. (2010) used the causality between economic growth and energy
consumption to forecast the energy demands in Romanian households. In another study,
Sentiirk and Sataf (2015) used the GDP and other socio-econometric information from the
World Economic Forum for seven countries (Turkey, Kazakhstan, Azerbaijan, Kyrgyzstan,
Uzbekistan, Turkmenistan, and Tajikistan) to predict the overall energy consumption in those
countries. Ozturk et al. (2010) used similar information to analyse the causality between the
GDP and the energy consumption for 51 countries and showed that for the low-income
counties, the GDP Granger caused the energy consumption; while for the middle-income
countries, there was a bi-directional causality. Other examples of studies using economic
growth to cointegrate/predict energy consumption at a large scale could be found in Sentiirk
and Sataf (2015).

The next category of tools used is the models with auto-regressive components, that
is, auto-regressive moving average (ARMA), auto-regressive integrated moving average
(ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). ARIMA
and/or ARMA models are used to extract the historical trends in the time-series data and use
this information for forecasting purposes (Erdogdu, 2007; Ho & Xie, 1998; Huang & Shih,
2003; Vo et al, 2021; Wang et al., 2019). The only difference between the two models is
that, unlike ARMA models, the ARIMA models can be used only with stationary time-series
(Valipour et al., 2013). On the other hand, GARCH models have similar functionality as
ARMA/ARIMA models with one key difference (Bauwens et al., 2006; Engle, 2001). While
ARMA/ARIMA models utilize the conditional mean of the time series to forecast the values,
GARCH models use the conditional variances in the time series to perform similar forecasts.
These models are especially useful when there is heterogeneity in the time series (Bauwens
et al., 2006; Engle, 2001). Examples of studies using ARMA/ARIMA models for predicting
the future energy demands include Li and Li (2017) predicting the future energy consumption
in the Shandong province in China; Ozturk and Ozturk (2018) predicting the coal, oil, natural
gas, and renewable energy consumption in Turkey. Furthermore, Eerdogdu (2007) also used
cointegratison analysis with ARIMA to predict total energy consumption in Turkey, while )
used ARIMA models to predict agricultural loads at small scales. Other similar efforts include
predicting energy consumption in Morocco (Kafazi et al., 2016), Ghana (Sarkodie, 2017),
Afghanistan (Mitkov et al., 2019), India, China, and the USA (Jiang et al., 2018), and Middle
Africa (Wang et al., 2018). In the case of using GARCH for prediction purposes in the energy
sector, the primary use cases of this method if predicting the volatility of the energy market
and load forecasting. For example, Efimova and Serletis (2014) use the extreme weather
conditions, geopolitical tensions, and de-regularised markets along with GARCH models
to forecast the volatility in the energy market; while Ergen and Rizvanoghlu (2016) used
GARCH and the historical changes due to weather and demand abnormalities to forecast the
volatility in the natural gas energy demand. Fatdziriski et al. (2020) used GARCH and SVM
to forecast the volatility in the demands of multiple energy sources (e.g., oil, gas, gasoline).
Concerning load forecasting, Hor et al. (2006) used GARCH not only for the load forecast
daily but also to estimate the maximum daily demand with high accuracy. Similarly, Iwafune
et al. (2014) used GARCH to forecast a building’s energy load in short-term usage. For a
comparison of time-series-based methods for energy demand forecasting, see Okawu et al.
(2019).

Another category of studies to forecast the energy demands is concerned with the basic
machine learning algorithms. For example, Eseye and Lehtonen (2020) used Artificial Neu-
ral Networks (ANN) and Support Vector Machines (SVM) with the weather, occupancy,
and heat requirement data, to predict the energy consumption for residential buildings in
Finland. Pelka (2021) also used SVM and ARIMA models to predict the mid-term energy
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consumption in European countries. Wu and Shen (2018) use a swarm optimization-based
SVM to predict the natural gas consumption. Johannesen et al. (2019) compared differ-
ent machine learning algorithms for different time units and concluded that random forest
regressors were the best performing for the long-term forecasting problems, while K-Nearest
neighbour based regressors were the most efficient for the short term forecasts. Ahmad and
Chen (2019) used Random Forest with non-linear auto-regression techniques to predict the
energy demands during the different seasons and with the aim of having a more accurate
grid-based distribution scheme than before. Wang et al. (2018) also used Random Forests to
predict short-term energy demands for building in Florida.) compared future energy predic-
tions using the ARIMA and Random Forest models, and the results show that Random forest
was better performing for the long-term prediction between the two models. Other examples
of using basic machine learning algorithms include Murat and Ceylan (2006) using ANN
to predict the energy demand in the transport sector; Kankal and Uzlu (2017) also using
ANN for long-term energy demand forecast in Turkey; Ferlito et al. (2015) using ANN to
forecast a building’s energy consumption; Lu et al. (2021) using SVM for forecasting the
energy consumption in the USA; Ghazal et al. (2022) using IoT data and fusion of SVM
algorithms to predict the industrial energy consumption and; Jana and Ghosh (2022) using
discrete wavelet transform and ensemble machine learning algorithms to forecast natural gas
prices and demand. Forouzandeh et al. (2022) also used ensemble machine learning algo-
rithms to predict room energy demand. For a comprehensive review of studies using artificial
neural networks and support vector machines for energy demand forecasting, see Ahmad
et al. (2014).

Finally, the most recent set of studies (as is clear from the advancement of the meth-
ods and computing power in the last decade) concern the methods related to deep learning
for forecasting the energy requirements in various sectors (e.g., household, industries), at
various time scales (e.g., short-term, mid-term, long-term), and for the different area-scope
(e.g., buildings, regions, countries). For example, Hrnjica and Mehr (2020) used the time-
series decomposition and Recurrent Neural Networks (RNN) to predict the energy demand
in Northern Nicosia, Cyprus. Real et al. (2020) used a combination of Convolutional Neural
Networks (CNN) and ANN for load forecasting in French grids. Ishaq and Kwon (2021)
used an Ensemble of deep network architectures to forecast short-term energy demands for
local Korean buildings. Somu and Ramamritham (2021) also predicted the future energy for
a local building using combinations of CNN and LSTM. Al Khafaf et al. (2019) used LSTM
to forecast energy demands in Victoria, Australia. Kim and Cho (2019a, 2019b) also used
LSTM and an auto-encounter for short-term forecasting of power demands in households.
There have been a few studies where the traditional machine learning algorithm and deep
learning algorithms were compared in terms of their forecasting accuracies. For example,
Paterakis et al. (2017) compared multiple layer perceptron against Random forest, SVM,
and other regressors; Agbulut (2022) compared deep neural networks against SVM to pre-
dict the energy demands for the transport sector; Bakay and Agbulut (2021) compared deep
neural networks against SVM and ANN to forecast electricity demands in Turkey; Shirzadi
et al. (2021) compared LSTMs against SVM and random forest to forecast long-term power
demands in Ontario, Canada. In all these examples, the deep learning algorithms outper-
formed the basic machine learning algorithms. Another example of using deep networks
in the energy sector is to perform the assets management for the electrical grid companies
(Kala et al., 2020), where the authors showed that their proposed algorithm involves the
faster regional convolutional neural networks outperformed the human-coding efforts for
asset management. For a comprehensive review of deep learning for energy systems and
building energy, please see, Forootan et al. (2022) and Ardabili et al. (2022), respectively.
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From the studies reported in this section, there is a lot of potential in using deep learning
methods to forecast energy consumption as a process in Operations Research. This contri-
bution aims to improve upon the existing deep learning algorithms to predict future energy
demands/consumption by incorporating the causal relation between the weather information
and the energy consumption over different area-scope (e.g., buildings, regions, countries).

3 Methodology
3.1 Granger causality

Granger causality (Granger, 1969) tests for the ability of one time series to predict another
one — in the present case, whether information flow provides sufficient information to predict
1) user focus size, 2) cognitive load, and 3) user attention flow. Granger causality investigates
bi-directional, simultaneous, and continuous relationships and has been employed in several
studies in OR (e.g., Ghouali et al., 2014; Mian & Liang, 2010; Tang & Chrsquo, 2011;
Zhang & Xu, 2015). The basic definition of Granger causality has two assumptions (Granger,
1969). First, it assumes that the cause occurs prior to the effect. Second, the cause contains
information about the effect that is more important than the history of the effect itself.
Although Granger causality is defined for linear and stationary time-series contexts, variations
for non-linear (Ancona et al., 2004; Chen et al., 2004) and non-stationary (Ding et al., 2000;
Hesse et al., 2003) data exist.

The main idea behind Granger’s definition of causality is that if the lag (past values) of
variable one predicts the current value of variable two in a better manner than the lags (past
values) of the variable two itself, it can be inferred that variable one causes variable two. To
arrive at such an inference, there is a simple method to be followed. Considering the case of
two variables, X and Y. To determine whether X Granger causes Y or the other way around,
two models are created. The first model predicts the current value of Y using the past values
of Y, while the second model predicts the current value of Y using the past values of X. Then,
the quality of the prediction for both models is compared; if the second model outperforms
the first model, it can be inferred that X Granger causes Y.

To conduct the data analysis, there are a number of statistical steps. First is data treatment,
which is to divide the dataset comprising of weather information and energy consumption
into 48 h windows for further analyses. Then the stationary nature of the time series is tested:
a Ljung-Box test is used to determine whether there are significant non-zero correlation
coefficients at lags 1-15. Small p-values suggest that the time series data is stationary. Further,
the optimum value for the ‘lag’ is identified as the number of previous data points considered
for modelling the causality. The value is identified based on the Akaike information criterion
(AIC) value of the model. Different models are created with different values of lag that must
be considered for the Granger causality consideration and select the model with the lowest
AIC value.

Next, Granger Causality (Granger, 1969) is tested to examine the causality between the
different variable pairs (humidity — energy consumption; information flow — energy con-
sumption; information flow — energy consumption; wind speed — energy consumption). As
aforementioned, the basic principle of Granger causality is to compare two models to test
whether x causes y. The first model predicts the value of y at time ¢ using the previous n
values of y. The second model predicts the value of y at time ¢ using the previous n values
of both x and y. The comparison of the two models can tell whether the history of x contains
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more information about y than the history of y itself. If this is the case, then it can be said
that x Granger causes y.

p
YO =D anx(t — )+ iyt — j)+eit
j=1

p
YO =) anjy(t — j)+eat
j=1

where p model order, maximum lag included in the model, o coefficients matrix, the contri-
bution of each lag value to the predicted value, € residual, prediction error.

One might argue about the choice of the method to analyse the causality between the
different pairs of measurements. This paper uses the definition of causality provided by
Granger. There are three other methods that could be used to show the causality between
different variables: 1) Structured Equation Modelling (SEM, (Edwards & Bagozzi, 2000)) 2)
Cross-convergent mapping (CCM, (Sugihara et al., 2012)) and 3) conducting an intervention
experiment where the hypothesized cause is controlled and the hypothesized ’effect’ is mea-
sured (Shadish et al., 2002). SEM does not necessarily contain the information required to
consider a causal relationship. Statistically speaking, testing an SEM is not a test for causal-
ity. There is a certain mathematical formulation under which SEM can be used for causal
inference (Steyer, 2013; Steyer et al., 2002); however, the solutions are not available com-
mercially. Bollen and Pearl (2013) provide a detailed account describing how SEM should
not be used for modelling causal relations between variables. The second method, that is,
CCM, is useful only in the cases where the time series is stationary (i.e., the mean and vari-
ance of the variable do not change over time) and non-linear (i.e., there is no autocorrelation
in the time series). Eye-tracking data is stationary (as revealed by the Ljung-Box test) but
auto-correlated (where users look at current time instances vastly depending on where they
were looking at previous instances). Therefore CCM is not an adequate method for such data.
In the case of identifying causal relations between two variables through an experimental or
pseudo-experimental setup, such setups are typically costly or require an extensive duration
to identify the cause-effect relationship between the two variables in question (Chambliss &
Schutt, 2018). Moreover, it has also been shown that for longer time-series data, the Granger
causality outperforms other contemporary methods (Zou & Feng, 2009).

In this contribution, four casualties for each dataset (and sub-datasets) are computed for a
time window of 48 h with a one-hour shift between two consecutive windows: (1) pressure
"Granger causing” demand; (2) wind speed "Granger causing" demand; (3) temperature
"Granger causing" demand, and (4) humidity "Granger causing" demand. Once the F-values
for all four causal relations are available over time, this is used as additional information for
forecasting using entangled LSTM.

3.2 Entangled LSTM
3.2.1 LSTM

A single LSTM cell is comprised of four components:

1. Forget gate (f): this is a neural network with a sigmoid activation function. This gate is
responsible for what information is propagated to the next time step and what information
is discarded. Depending on the previously hidden state h;; and the current input x;, the
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forget gate assigns a value between zero and one to every element in the previous cell state
C.1. For all the elements that are assigned a value of one, the information is retained, and
for all the elements that are assigned a value of zero are discarded. For all the elements
that are assigned a value between zero and one, the value decides how much information
is to be retained.

Input gate (I): this is also a neural network that uses a sigmoid activation function. To
make the decision about what new information is to be stored in the cell state (explained
next), there are two different operations:

a. The input gate decides which values will be updated. ~ .
b. Using a tanh activation function, a set of candidate values is created (C;). Once C;
and I; are computed, the input given to the cell state can be decided.

Cell State (Cy): this functions as the memory of the LSTM. Due to the cell states, LSTMs
usually outperform basic recurrent neural networks. For every time window, the Cy; is
combined with the forget gate, and it is determined what information is propagated to
the next time step and what information is discarded. The retained information is then
combined with I; and 51 to create the new cell state that will be the new memory of the
LSTM.

Output gate (O): this is another neural network that uses a sigmoid activation function.
The cell state computed from the previous step is passed through a hyperbolic function
(tanh), and this creates the cell values that are filtered between -1 and 1.

The schema in Fig. 1 shows the various gates and their arrangement;
For each gate, the following are the variables (set of weights and biases):

he 4 I
Ct—1 ( B < Ct-1 ( ) C
®r D > ) E >
f Ganb> Enb>
Q) X) * X)
h’f—l IJIJ:] ﬂ n I;l ht—l m tanh m ];[
" 4 T J
Ty Tt |
Forget gate Input gate
Cell State Forward
propagation A /l‘ A
l hy
@ Cr—1 @ N ¢
[ y —d >
S @b
A 4 El] P 3
) X
tanh h
hi—1 Eclylj o i i T 55 Pt
J Tt |
Tt Output gate

Fig. 1 One LSTM cell with all the components marked with red boxes. (Color figure online)
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Wr and by are the Forget gate weight and bias, respectively.

Wi and b; are the Input gate weight and bias, respectively.

W, and b, are the Candidate cell state weight and bias, respectively.

W, and b, are the Output gate weight and bias, respectively.

W, and b, are the Weight and bias associated with the Softmax layer, respectively.

fi, it, Ct, and o, are the Output of the activation functions for the forget, input, cell, and

output gates, respectively.

7. ay, aj, ac, and a, are the Input to the activation functions to the forget, input, cell, and
output gates, respectively.

8. CF is the cost function with respect to which the derivatives are calculated.

AN e

For each gate, the following equations show how the activation of each gate is calculated.

Forget gate: ay = Wyp.Z, +by f; = sigmoid(ay)
Input gate: a; = W;.Z, + b; i; = sigmoid(a;)
Input gate: a, = W..Z; + b, a = tanh(a;)

Cell state: C; = f, ® Ci—1 ® iy ® C;

Hidden state: h; = oy ® tanh(Cy)

Output Eq. 1: V; = Wy .h; + b

Output Eq. 2: y; = softmax(V;)

Output gate: ay = Wy.Z; + by f; = sigmoid(ay)

PN R WD =

The outcome of all the gates is derived in a similar manner, and here the forget gate
calculations are explained as an example. There is a fixed path from the activation of the
forget gate to the cost function that is shown as the following:

ft—>C[—>ht—>CF

The following is how the derivative is calculated for the cost function with respect to the

forget gate.
dCF dCF . dh; . dC;
df, — dh, dC;  df;

All the derivatives of the cost function with respect to the cell state and hidden state
are calculated in the same manner. Input to each LSTM is the previous cell state and the
concatenated previous hidden state and current input. For simplicity [h.1, X¢] Z¢

dCF dCF dC; dCF
= * = * ft
dCi_; dC; dC;_ dc;
dCF dCF day dCF da; dCF da, dCF dac

= * + * + * + *
dZ[ daf dZ[ dai dZ[ dﬂg dZ[ dac dZ[
day da; da, dac
wls —L 4wl wr +wl
F Rz, TN T az, T e Tz T e Yz,
The forget gate:
dCF dCF dh; dC,
=k —— % ——
dfy dh; dC, dfy
But,

dCF dCF dh
= k ——
dc; dh, dC;
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So,
dCF dCF dC,
= * PE—
dff dct df[
dCF  dCF d(ﬁ ®Crm1 @iy ®ét)
= *
dfe  dG df;
dCF dCF
=—=xC
df; dcC;
And,

dCF _dCF _df,

da; _ df,  day
dCF  dCF

T e 1—
da, dc, * Cro1 % fi( J1)

The other derivatives can be computed with respect to the inputs and outputs of the cost
function. For example, for the input gate,

dCF dCF 4
= %

di, — dc,

dCF dCF , . .

dai = TC‘t *Cl‘ *lt(l _lf)

For the Cell State:

dCF _dCF (1 - k()
= — % *x (1 —tan
dc, dh, ! !
dCF dC,
~— = —&= %
d¢, dc,
dCF dCF .
. *g*(l—cﬂ
da.  dC,

it

Output gate:

dcr = dc—F s tanh(Cy)
dO; dh;

dCF dCF
dag - dh[

and finally, the hidden state:

* tanh(C,) * 0[(1 — 0[)

dCF _ dCF . d(Wy * hy) _wl dCF
dh, — av, dh; VT ay,
The weights for all the gates.
Forget gate:
dCF dCF day
dWy " da; *de

Input gate:

dCF dCF da;
= *
dWi da,- dW,'
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Output:

dCF dCF dV;
= *
dWy dv, dWy

Output gate:

dCF dCF da,
= *
dw, da, dW,

3.2.2 Bi-directional-LSTM

Bi-directional LSTM, or Bi-LSTM, functions on a very simple principle. In Bi-LSTMs, there
are just two LSTMs put together. The first LSTM runs on the exact input sequence that is
provided by the dataset. The second LSTM runs in the reversed order of the input sequence
as the first LSTM. This improves the LSTM by using both the temporal directions: past and
future. The forward layer is responsible for the positive time (forward states or the future),
and the backward state is responsible for the negative time (backward state or the past). It has
been shown in various contexts that Bi-LSTM outperforms the simple LSTM. For example,
Sun et al. (2018) reported better prediction from using Bi-LSTM as compared to LSTM
while predicting the blood glucose levels. Shahid et al. (2020) also reported better prediction
quality from Bi-LSTM than LSTM while predicting the COVID-19 infections. In terms of
energy consumption prediction, Le et al. (2019) showed better performance of Bi-LSTM than
regular LSTM. Moreover, Kim and Cho (2019a, 2019b) also show better energy consumption
forecasting in specific regions while using Bi-LSTMS than regular LSTMs, whereas Ma et al.
(2020) showed similar results while predicting the future energy consumption of individual
buildings. Other examples where Bidirectional LSTMs outperformed LSTM in time-series
forecasting/prediction tasks include crop detection (Criséstomo et al., 2020), text mining
(Alzaidy et al., 2019), news classification (Li et al., 2002), human activity classification
(Shrestha et al., 2020) and sequence tagging (Huang et al., 2015).

The main reason for Bi-LSTM outperforming the simple LSTM can be attributed to the
fact that by using two hidden states for each time step, the information from the past and
the future is preserved, which in turn provides a better approximation of the time series and
encodes the contexts in a better manner than just a forward layer. Therefore, Bi-LSTMs
provide better forecasting performance than regular LSTMs. One of the key operations in
the Bi-LSTMs is the merging of the two layers, that is, forward and backward layers. This
operation is necessary because without merging, it will not be possible to combine the outputs
of these layers since they function independently of each other. There are four primary ways of
merging the output of these two layers. (1) Sum: The outputs are added together. (2) Multiply:
The outputs are multiplied together. (3) Concatenation: The outputs are concatenated together
(the default), providing double the number of outputs to the next layer. (4) Average: The
average of the outputs is taken. The sum and multiplication artificially increase the variance
of the outputs, while the average reduces them. At the same time, the concatenation maintains
the original variances of the outputs of the forward and backward layers. Therefore most of
the contributions use the concatenation operation to merge the outputs of the forward and
backward layers in the Bi-LSTMs.
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3.2.3 Entangled-LSTM

In the Entangled-LSTM, an additional layer containing the causal information is stacked
on top of the backward layer of Bi-LSTM. This layer is a traditional LSTM layer where
the positive direction of time (i.e., the future) is maintained. It can be seen in Fig. 2 that
the forward hidden layer that is stacked on top of the backward hidden layer is used for
propagating the backward hidden state to the current output. The following shows the update
process of the hidden and current output states:

hf; = tanh(bf + Wf « hfi_1 + Uf % x;)

Wb — tanh(bb + Wb x hb; + Ub x x;)itt =t
"7 | tanh(bb + Wb  hbyyy + Ub % x;)otherwise

hy = tanh(b+ W x hy_1 + U[hf; hb,])

0[:C+Vh[

where h, hf, and HB are the hidden states in simple, forward, and backward layers, respec-
tively; b, bf and bb are the biases in the simple, forward, and backward layers, respectively;
W, Wf, Wb, U, Uf, Ub are the weights for the respective networks.

The outcome of the output layer is dependent on the propagated hidden state, the current
forward and backward states. The propagated hidden state is dependent on the previous
propagated hidden state, which is dependent on three states: 1) the previous propagated
hidden state, 2) the previous forward hidden state, and 3) the previous backward hidden
state. This chain of dependencies shows that the output at any time t is dependent on the
entire input, forward, backward and hidden states. Whereas, in the Bi-LSTM, the output
at time t is dependent only on the entire input and forward states only. Figure 2 shows the
difference between the Bi-LSTM and entangled-LSTM schematically.

O, Oy O,
. 4 4
I Propagated hidden layer|
i
O,
1 1 t

t

0('2 Ol—l
4 4
Concatenation layer i f Concatenation layer
@ @ g : :
x x T
ry

T 1 1
Backward hidden layer| 1 | Backward hidden layer

1 Forward hidden layer ;
w0
\ \ \
Xea Xea Xe X2 Xea X,

Forward hidden layer

Fig. 2 Bidirectional LSTM (left) and entangled LSTM (right). Dash line: Independent connection to o, Thick
blue line: New connections by Entangled-LSTM. (Color figure online)
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3.3 Datasets and pre-processing

This paper used three datasets available online. Following is a brief description of the datasets
and how they have been pre-processed to be used in this paper. These three datasets cover three
different area scopes: the first dataset (Spain) is a country-wide dataset, the second dataset
(Paraguay) is a region-specific dataset, and the third dataset (France) is for a specific building.
For the convenience of expression, datasets 1, 2, and 3 are referred to as Spain, Paraguay,
and France datasets, respectively, in the rest of this paper. The three datasets contain different
amounts of data in terms of their time span. As reported next, the first dataset had 48 months
of data, and the second and the third datasets have 3 and 29 months as the total duration of the
recorded data, respectively. Therefore, for maintaining equal grounds for comparison across
the three datasets, only the first 29 months of data from the first two datasets were used.

3.3.1 Dataset1: Spain

This dataset' contains four years (a total of 48 months) of electrical consumption, generation,
pricing, and weather data for Spain. Consumption and generation data were retrieved from
ENTSOE, a public portal for Transmission Service Operator (TSO) data. Settlement prices
were obtained from the Spanish TSO Red Electric Espaiia. Weather data was purchased as
part of a personal project from the Open Weather API for the five largest cities in Spain
and made public on Kaggle. The dataset contains the following sources of energy: biomass,
coal/lignite, coal gas, natural gas, coal, oil, shale oil, peat, geothermal, hydro, sea, nuclear,
and other renewable. This detailed information was not present in all the datasets. Therefore,
these diverse data sources were aggregated to reflect the total demand for every hour across
four years. This dataset also contains hourly weather parameters from the five largest cities in
Spain that are Madrid, Barcelona, Valencia, Seville, and Bilbao. Once again, for the analysis
and consistency across the datasets, humidity, temperature, pressure, and wind speed were
used as the weather parameters. Further, there was no specific energy data for the separate
cities; therefore, for the purpose of this contribution, the granger causality was computed
(explained in the next subsection) between the weather data from all the cities separately and
virtually divided this dataset into five sub-datasets, one for each city.

3.3.2 Dataset2: Paraguay

This dataset? contains the electricity consumption and the meteorological data of the Alto
Parana region in Paraguay. Both datasets are from January 2017 to December 2020, a total
of 36 months of a time period. The weather data contains temperature (Celsius), relative
humidity (percentage), wind speed (km/h, kilometres per hour), and atmospheric pressure
(hPa, hectopascal) at the station level with a frequency of every three hours. To be consistent
with the other two datasets, the weather data was extrapolated to represent hourly data. A
simple smoothing function was used to extrapolate the weather data. The window size for
the smoothing function was 24 data points (3 days) with a shift of one data point between
two consecutive windows. The electricity consumption data was recorded from 55 feeders
in 15 substations in an hourly fashion. Once again, to maintain consistency, the data from
the 55 feeders were combined into one by aggregating the consumed amount from all the
substations. This was done because there was only one weather station form where the data

1 https://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-and-weather.
2 https://data.mendeley.com/datasets/hzfwzzsk8f/4.
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was gathered, and there was no specific location provided for the weather station. Another
way to process this dataset was similar to datasetl, where five sets of causal relations were
computed (one for each city). However, this would not have been possible here because even
computing 14 causalities would be cumbersome; and because the data is from a region and
not a country, therefore aggregating the electricity consumption is the better choice.

3.3.3 Dataset3: France

This dataset’ contains the energy consumption and weather data from one Challenger build-
ing in Guyancourt, France. The dataset has 29 months of high-frequency energy consumption
data, with the recording frequency being every 10 min. The energy consumption includes
Heating and cooling, electrical consumption (indoor and outdoor comfort units), Lighting,
plug load, blinds, sanitary consumption, air handling unit consumption, and total consump-
tion. For maintaining consistency across the three datasets, the total energy consumption was
used, which is the aggregate of all the individual energy consumptions. The data was aggre-
gated in terms of temporal frequency. The energy consumption data were recorded every
10 min; therefore, to compute the hourly consumption, the data from one hour (six or fewer
values in certain hours) was added. The weather data included daily degrees during the days,
hourly humidity, hourly temperature, and daily sunshine hours. There was no pressure or
wind speed data. However, the exact coordinates of the building were available. Therefore,
it was possible to extract the missing information (hourly pressure and hourly wind speed)
from online resources (e.g., scrapping certain web pages and some freely available data).
It was possible to extract the missing information for the whole period represented in the
dataset.

3.4 Training and testing setup

To train, validate, and test the Bi-LSTM and Entangled-LSTM, the data from the first
29 months of the three datasets were used. This was done to have an accurate compari-
son among the three datasets because 29 months was the lowest of the durations across them.
The input of the data for the Bi-LSTM contains the batch size (48 h, i.e., two days), number
of time steps (120 h, i.e., five days), and the hidden size. The input data is then fed into
three "stacked" layers of LSTM cells (of 50 lengths for the hidden size), and the LSTM
network is shown as unrolled over all the time steps. The term "unrolled" means that the
feedback loop of an LSTM cell is not shown. The loop is used for keeping the information
persisting within the recurrent network. The output from these unrolled cells is the same as
the input (batch size, number of time steps, hidden size). This output data is passed to the
time distributed layer, which is the set of inputs that the model will learn from to predict
the input data coming after. Finally, the output layer has a softmax activation applied to it.
This output is compared to the training data for each batch, and the error and gradient are
then backpropagated. The Entangled LSTM is created in the same manner as the Bi-LSTM
except for one difference. In Entangled-LSTM, there is one additional layer containing the
F-value of the causal relationship of humidity, pressure, temperature, and wind speed with
energy consumption/demand. This additional layer is also trained with backpropagation.
For training and validating both the models, 26 months of hourly data were used, and for
the testing, the remaining three months of data were used. Hyndman and Koehler (2006) and

3 https://zenodo.org/record/3445332#.Ybcjon3MJ24.
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Davydenko and Fildes (2013) have provided overviews of the metrics that could be used to
evaluate the forecasts. In this contribution, the following three error metrics are used:

Mean Absolute Error (MAE): this is the mean of the absolute difference between the
original and the predicted values.

1
MAE =~ D e

Root Mean Squared Error (RMSE): the is the square root of the mean of the squared
difference between the original and the predicted values.

1
RMSE = ./~ £)?
SE =1/~ e®

Mean Absolute Percentage Error (MAPE): this is the mean of the absolute error when the
error is reported as a ratio of the original values.

100 le(®)]
MAPE = —
n o(t)

where
e(t) =orig(t) — pred(t)

In all the above formulae, e(?) is the error for time ¢, orig(t) is the original value at time ¢,
pred(t) is the predicted value at time ¢, and n is the number of data points used in the test set.
Among the three metrics, MAE and RMSE are the two most user error metrics. But they are
scale-dependent, which indicates a requirement for an additional scale-invariant evaluation
metric. Therefore, the MAPE is used. MAPE is also good for comparing the error rates among
different datasets because of its scale-invariant nature. In this paper, only the performances
of the bidirectional-multivariate-LSTM and the causal-LSTM (which by extension is also
bidirectional and multivariate) are compared.

4 Results
4.1 Simulation results

First of all, the results with simulated data will be presented. The purpose of this set of results
is to show that if there are two-time series where one time series is perfectly causing the
other time series, which of the two LSTM architectures (Bi-LSTM or Entangled-LSTM)
would perform better. For this purpose, two time series were generated, where the time
series one is perfectly causing the time series two, and the task is to forecast the values for
the second time series. Next, both the LSTM architectures were trained and tested for the
simulated dataset. Table 1 contains the outcome of the comparison. The entangled LSTM
clearly outperforms the Bidirectional LSTM. This shows the theoretical confirmation of the
proposed method. That is, adding the causal information in perfect causal conditions will
provide better forecasting than the model without the causal information. It is clear that when
one-time series "perfectly” causes another time series, the performance of Entangled LSTM
is better than the Bi-directional LSTM.
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Table 1 The testing performance from the two LSTM architectures for the simulated data where the causality
is established

Bidirectional LSTM Entangled LSTM
Dataset MAE RMSE MAPE Dataset MAE RMSE MAPE
Simulated 0.15 0.12 0.08 Simulated 0.09 0.06 0.02

The MAE and RMSE are scale-dependent, and the MAPE is scale-independent. Therefore, for the purpose of
understandability, the time series were normalized between 0 and 1

4.2 Comparison of multivariate-bidirectional and multivariate entangled LSTMs

The two LSTM architectures (bidirectional and entangled) are compared for the three datasets
based on the different metrics (MAE, RMSE, MAPE). Figures 3, 4, and 5 show the training
and validation losses for Spain (different sub-datasets based on the cities), Paraguay, and
France datasets. It can be clearly observed from the losses that both the architectures are not
overfitting on any of the datasets. Moreover, the training losses (the blue curves in all the
figures) fluctuate in the range of 0.05 to 0.10 before eventually stabilizing. On the other hand,
the validation losses (the orange curves in all the figures) fluctuate in a smaller range (0.02
to 0.04) and stabilize. None of the plots (in Figs. 3, 4, and 5) have any alarming differences
between the training and validation losses. Therefore, it can be concluded that there was no
overfitting of the data in any of the three cases.

As shown the Table 2, the entangled LSTM outperforms the bidirectional LSTM for all
three datasets. The minimum improvement is for the Paraguay dataset (MAPE difference
is 2.07%), and the maximum improvement is for the France dataset (MAPE difference is
7.73%). The highest difference between the two architectures is for the France dataset. This
could be because of the reason that in the France dataset, the weather information is the most
accurate for the geographical location. Therefore, the causality computed between the weather
indicators (pressure, temperature, humidity, wind speed) and the energy consumption of the
building (the France dataset has the data from an individual building) captures the causal
relation that is closest to the reality among all the datasets. On the other hand, the Paraguay
dataset having the minimum improvement shows that the data from the single weather station
in the whole region does not exemplify the weather conditions that are in general covered by
the 14 substations from which the data was collected. Another reason for the Paraguay dataset
corresponding to the minimum improvement could be the original frequency of the weather
parameters. In the Paraguay dataset, the original weather parameters were recorded every
three hours, and the weather data was extrapolated to obtain the hourly frequencies for all the
four weather parameters used in the paper. This could be the reason why the variability in the
weather data in the Paraguay dataset was lower than in the other two datasets, and therefore,
the causation with the energy data was not as informative as it was in the other two cases.

Another important aspect that can be observed is the differences between the bidirectional
LSTM and entangled LSTM for the Sub-datasets of the Spain dataset. These sub-datasets
are treated as independent datasets, and indeed there is no specific trend revealed from the
presented forecasting and analysis. The order of the cities in terms of size of the population is
Madrid, Barcelona, Valencia, Seville, and Bilbao, while their respective improvements from
bidirectional to entangled LSTM are 2.86%, 2.41%, 6.91%, 4.04%, 2.65%. As a post-hoc
prediction, the energy consumption data was divided in a way that the proportion of the
energy consumed reflected the ratio of these cities’ populations to the Spanish population.
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(a) Spain (Barcelona) Bidirectional LSTM (b) spain (Barcelona) Entangled LSTM

() spain (Bilbao) Bidirectional LSTM (d) Spain (Bilbao) Entangled LSTM
(e) spain (Madrid) Bidirectional LSTM (f) spain (Madrid) Entangled LSTM

Fig. 3 The training (blue curves) and validation (orange curves) losses from the first dataset (Spain dataset and
the five sub-datasets). (Color figure online)

There was no significant difference in the results with either of the two methods. This shows
that including the causal information is even more important in cases like the Spain dataset.
In the following, an explanation is provided. Looking at the MAPE of the two methods,
Valencia has the worst forecasting performance, and Bilbao has the best MAPE, looking at
the bidirectional LSTM. This would indicate that adding the causal information plays a role
in improving the forecasts. The MAPE for Valencia with entangled LSTM was cut down to
half of what it was with bidirectional LSTM, while the MAPE for Bilbao was also reduced
by almost a quarter with entangled LSTM.

In anutshell, itis evident that adding the causal information for forecasting the energy con-
sumption/demand improves the forecasting accuracy. This is shown across all three datasets.
The range in MAPE for the entangled LSTM is 2.31% which, considering the variation in the
three datasets, is neither alarming nor significant, especially because the three datasets cover
large variations in terms of their area scope. As aforementioned, the Spain dataset covers
national consumption while Paraguay and the France dataset cover regional and individual
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(9g) Spain (Seville) Bidirectional LSTM

(i) Spain (Valencia) Bidirectional LSTM

Fig. 3 continued
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Fig. 4 The training (blue curves) and validation (orange curves) losses from the first dataset (Paraguay dataset).

(Color figure online)

Modelloss

AN,

oo

(@) France Bidirectional LSTM

Model loss

(b) France Entangled LSTM

Fig. 5 The training (blue curves) and validation (orange curves) losses from the third dataset (France dataset).

(Color figure online)
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Table 2 The testing performance from the two LSTM architectures. As it is evident that the MAE and RMSE
are scale-dependent, and the MAPE is scale-independent

Bidirectional LSTM Entangled LSTM

Dataset MAE RMSE MAPE Dataset MAE RMSE MAPE

Spain 3358.60 3929.88 12.55 Spain 2692.17 3317.99 10.14
(Barcelona) (Barcelona)

Spain 3278.86 3873.20 12.49 Spain 2462.59 2840.11 9.84
(Bilbao) (Bilbao)

Spain 3583.12 4243.87 13.31 Spain 2848.33 3252.92 10.45
(Madrid) (Madrid)

Spain 3472.90 3917.47 12.89 Spain 2283.42 2708.95 8.83
(Seville) (Seville)

Spain 3885.11 4523.322 15.05 Spain 2117.02 2473.69 8.14
(Valencia) (Valencia)

Paraguay 2651.78 3099.92 10.36 Paraguay 2101.28 2798.55 8.29

France 1962.67 2311.56 17.80 France 1066.35 1454.34 10.07

building consumption, respectively. This, combined With the proof that none of the models
have overfitted in the training and validation phases, the generalizability of this method can
be assumed.

4.3 Comparison of univariate-bidirectional and univariate entangled LSTMs

The results from the previous multivariate forecasting show that using Granger’s definition of
causality and modelling the causal relationship between the two-time series can provide better
forecasting results than simply using one or more time series to forecast another time series.
Next, the comparison of univariate forecasting using bidirectional and Entangled LSTMs, was
performed. For comparing the univariate forecasting quality, only MAPE was used because
the other two metrics (i.e., MAE and RMSE) are scale-dependent and will follow the same
trend as the MAPE. There are two key aspects that can be observed in Table 3. First, the
univariate results are underperforming when compared to the multivariate results. This depicts
the importance of considering the multiple weather features. Second, for all the univariate
results, the Entangled LSTM outperforms the Bidirectional LSTM. This is another proof that
incorporating causal relation between the weather features and the energy consumption is
beneficial for the forecasting of energy consumption. From the univariate forecasting, it is
also clear that the temperature is the most important weather feature for forecasting. Using the
temperature, in both the Entangled and Bidirectional LSTMs, the MAPE is the lowest for all
the datasets (and data-subsets). In some cases, temperature features marginally outperform
all the other features; however, it emerges as the best feature to be used in the forecasting,
nonetheless. In summary, With these univariate forecasting results, it is shown that it is
important not only to include multivariability in the LSTM but also causal relationships.
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Table 3 The univariate testing performance, MAPE, from the two LSTM architectures using temperature,
humidity, wind speed, and pressure, separately

Bidirectional LSTM Entangled LSTM

Dataset Temp Humid WS Pres Temp Humid WS Pres

Spain (Barcelona) 11.25 16.87 17.76 14.22 10.10 15.85 17.76 12.62

Spain (Bilbao) 14.07 18.70 13.46 14.28 11.45 13.63 13.46 12.37
Spain (Madrid) 15.19 18.10 15.36 16.39 13.23 14.49 15.36 14.79
Spain (Seville) 14.41 15.90 19.14 15.44 12.02 12.41 19.14 12.08
Spain (Valencia) 15.76 16.23 18.03 17.29 11.84 14.25 18.03 12.18
Paraguay 14.03 16.51 16.80 14.96 16.18 15.48 16.80 17.83
France 20.16 21.24 22.98 20.45 20.07 20.62 22.98 22.78

4.4 Comparing early predictions

While the Entangled LSTM outperforms the Bidirectional LSTM in all the comparisons, it
is also important to understand "how much data is needed to obtain reliable forecasts?” To
answer this question, less data was used to forecast than what was available in the given
datasets. For example, the results in Sect. 4.2 are based on training the algorithms using
the data from 29 months. In different experiments, the same forecasts were obtained using
half data (14.5 months), third data (9.67 months), fourth data (7.25 months), sixth data
(4.85 months), and eighth data (3.63 months). The purpose was to know at what proportion
of the data the forecasting accuracy decreases to a level, as compared to the results from
Sect. 4.2, that it ceases to be potentially useful. In all these cases, both the entangled and
bidirectional LSTMs were compared. These results were also compared using the MAPE
values of the forecasting performance. Figure 6 shows the results. In all the cases (i.e., all the
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datasets and the data subsets), it is observed that when the data is reduced from half of the
original training data length to a third of the data length, a considerable increment in the MAPE
occurs. Moreover, with subsequent reductions in the data, further increments in the MAPE
values can be seen for all the datasets. In all these experiments, there are two key takeaways.
First, as aforementioned, given these three datasets, half of the dataset (14.5 months) is
sufficient to obtain similar forecasting performance as with the full data (29 months). Second,
in early predictions, as is seen with univariate and multivariate forecasting, the entangled
LSTM outperforms the bidirectional LSTM. Another proof for the initial hypothesis is that
incorporating the causal information in the deep network for forecasting the energy demand
yields better results than simply using the weather features in a multivariate LSTM.

4.5 Comparing generalizability across datasets

Finally, the two algorithms are compared on the scale of generalizability. To perform such a
comparison, cross-training testing was used. In other words, the training of the forecasting
algorithm was carried out using one dataset, and the trained model was tested on another
dataset. For example, training on the Spain dataset (all cities combined) and testing on
France and Paraguay datasets. In this manner, both the algorithms were tested if they could
use the learned model to predict in an unseen environment. The algorithm is deemed to be
pseudo-generalizable if the testing accuracy on another dataset is comparable to the testing
accuracy on the same dataset. For example, in the case of training on Spain and testing
on Paraguay datasets, it can be observed from Table 4 that both LSTM models produce
similar MAPE as when they were tested on the Spain dataset. When Bidirectional LSTM
is trained on the Spain dataset, the testing MAPE for the Spain dataset is 13.32, while on
the Paraguay dataset, the MAPE was 16.21. On the other hand, when the entangled LSTM
is trained on the Spain dataset, the testing MAPE for the Spain dataset is 9.28, while on
the Paraguay dataset, the MAPE is 11.21. In both cases, the algorithms can be considered
generalizable. This difference is greater in the opposite case (i.e., when the training is done
on the Paraguay dataset). However, the Entangled LSTM seems to be more generalizable

Table 4 Results (MAPE values)
from cross-training testing (i.e.,
training on one dataset and
testing on another one)

Bidirectional LSTM Testing dataset

Spain Paraguay France

Training dataset

Spain 13.32 16.21 2391
Paraguay 16.32 10.36 24.53
France 26.23 26.56 17.80
Entangled LSTM Testing dataset

Spain Paraguay France

Training dataset

Spain 9.28 11.12 18.93
Paraguay 11.92 8.29 19.21
France 21.53 19.24 10.07
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than the Bidirectional LSTM. In the end, both algorithms do not seem to generalize for the
France dataset. It is shown that when the algorithms are trained using the country-wide dataset
(Spain), they generalize on the region-based dataset (Paraguay) but not on a building-specific
dataset (France). Moreover, the region-based dataset does not generalize for the building-
based dataset; also, the algorithms do not generalize or generalize to a smaller extent when
they are trained on a smaller area and tested on a larger area (i.e., trained on region or
building based data and tested on country or region based data, respectively). These results
can be explained by the fact that the larger the area in the trained dataset, the higher the
variance in the model, and therefore they generalize on specific cases, but the opposite is
not possible. Another aspect worth mentioning about the results from Table 4 is that the
MAPE differences are lower in Entangled LSTM than those for the bidirectional LSTM.
This can be explained based on the fact that the causal relationship between the weather
and the energy consumption across countries might be more generalizable than the temporal
nature of the weather conditions across different countries. This might be why the Entangle
LSTM achieves better generalizability than the Bidirectional LSTM.

5 Discussion
5.1 Implications for theory

Causal analysis has lately become one of the major and important components for improv-
ing modern processes, and a few examples include Capability Maturity Model Integration
(CMMI), Six Sigma, and Lean. Incorporating the causal analysis is also becoming more
important for the organizations than before to obtain high levels of process maturation. This
is evident because of two facts. First, CMMI has assigned the Causal Analysis and Resolution
at the Maturity Level five. Second, Six Sigma programs also often embed causal analysis in
a curriculum that is of more challenging statistical levels. Identifying causal relationships in
the data helps the systems to predict future events in a more robust manner than those done
using just the correlations and regressions (Kleinberg, 2013). One of the key goals of causal
analysis is to aid organizations in making better decisions (Zheng et al., 2020). Causal rela-
tions can provide better support in decision-making due to the following two reasons. First,
by analysing causalities in a particular data set, one can not only gain a deeper understand-
ing of the relationship between pairs of time series and provide better predictions, but one
can also analyse the effects of certain past events or decisions on the future predictions and
outcomes. Second, based on the known causal relations, one can forecast the effect before
it takes place and simulates the effects of certain decision-making activities. Encoding the
intricacies of the relationships in the given datasets using the causal analysis might be the
root cause of the results that were obtained. This contribution shows how to improve the time
series forecasting using by adding the causal information (entangled LSTM) to the basic
forecasting model (bidirectional LSTM).

Furthermore, it is also backed by a few theoretical frameworks that the causal information
should be used in the decision making. One of the most prominent ones is the Expected
Utility Theory (von Neumann & Morgenstern, 1944; Savage, 1954). This theory has two
assumptions, and incorporating the causal relation between the weather information and the
energy demands shows how these two assumptions are satisfied. Especially because the results
show an improvement in forecasting capabilities when the casual information is incorporated
into the deep learning network as compared to when the causal information is absent from the
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forecasting problem. The first assumption is that each outcome has a corresponding utility
to the decision-maker. In the presented case, this is the amount of energy consumed. The
second assumption is that each outcome is assigned a probability. That is, each outcome
is uncertain because there is always a lack of knowledge and evidence for an outcome to
take place given a particular event or action. The theory also dictates that the outcome should
maximize the expected utility. This lack of knowledge can be taken care of by using the causal
relationship between the events and the outcomes. In this case, the energy consumption is the
outcome, and the weather information creates the event. Therefore, it is intuitive to consider
the causal relationship between energy consumption and weather data to effectively predict
energy consumption. The results confirm the theory, where the entangled LSTM produces
better forecasts than the bidirectional LSTM in all the cases, by showing that the power of
causality in the predictor makes up for the lack of knowledge about the relation between
an event (weather condition) and outcome (energy consumption). The inclusion of causal
information is also supported by the causal decision theory (Joyce, 1999; Lewis, 1981; Maher,
1987; Nozick, 1993; Skyrms, 1982), which extends the Expected Utility Theory by dictating
that knowing the outcomes of one must be aware of the causal relationship between an event
and outcomes.

5.2 Implications for practice

Deep learning architectures encode the representation of the input data at multiple levels of
abstraction using their multiple processing layers (LeCun et al., 2015). These encodings then
can and are used to generate better predictions and forecasts than the other basic machine
learning and statistical methods (Husna et al., 2021; Kilimci et al., 2019; Xu & He, 2020).
It has been shown that predictive analysis brings competitive advantages to organizations
(Ransbotham et al., 2017), and by extension, using deep learning to obtain better predictions
can improve the advantageous positions for these organizations. Most of the predictions
and/or forecasts aid in the decision making for different operations such as supply chain
management (Husna et al., 2021; Pacella & Papadia, 2021; Punia et al., 2020), digital mar-
keting (Pan & Zhou, 2020; Qi et al., 2019), and financial decision making (Abu-Mostafa
& Atiya, 1996; Geng et al., 2015; Kim et al., 2020a, 2020b; Xu & He, 2020). With the
current availability of the data in huge quantities, traditional machine learning algorithms
tend to saturate their training and risk overfitting and specificity to one case. On the other
hand, because of their complex structures and multiple weights to be trained, deep learning
architectures can handle this large amount of data in a manner that is beneficial for various
operations in organizations. Another advantage of deep learning algorithms is that they do not
need extensive pre-processing and feature engineering because such algorithms are known
to function well with noisy and unstructured or semi-structured datasets. Most of the contri-
butions cited in the related work section of this paper do not use many pre-processing and/or
feature engineering schemes. This also gives an additional advantage to the organizations
in faster decision-making. Two other virtues of deep learning algorithms that help organi-
zations to invest less time in data-driven decision-making are: 1) the less requirement of
human intervention during the training phase of deep learning algorithms, and 2) the support
for parallel and distributed processing. The first one refers to the self-learning capabilities
of the deep learning algorithms using the error-backpropagation through its multiple lay-
ers and therefore requiring less human intervention as compared to the traditional machine
learning algorithms. Moreover, the second advantage is mostly due to the advancements in
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computing technology that allows the deep networks to be trained at scale and thus prov-
ing to be a big aid in fast data-driven decision support systems. With this contribution, by
improving upon the state-of-the-art bidirectional LSTM networks mainly because of the use
of causal information, the case of using deep learning architectures for operations research
is emphasized.

The terms of the presented results (MAPE from entangled-LSTM), which are in the range
of 0.08 and 0.11, stand comparable to some of the state-of-the-art contributions (Hrnjica &
Mehr, 2020 report in the range 0.06—0.11 and Al Khafaf et al., 2019 report an average MAPE
of 0.16); and better than others (Ishaq & Kwon, 2021: 0.35 and Somu & Ramamritham,
2021: 0.26); only Real et al. (2020) have reported a better MAPE range of 0.02—0.06.
Considering that the better prediction of future energy consumption might lead to improving
energy management processes and systems, this contribution also has certain implications for
energy management systems. Efficient energy management is becoming a necessary process
both at the supplier (i.e., smart grids) and consumer levels (i.e., energy management in smart
homes). A smart grid energy management system contains multiple modules, among which
the load and demand forecasting modules are also included (Chen et al., 2011). Effective
forecasting systems can also support the real-time energy management systems in creating
efficient load-balancing, operating routines, and minimizing operational costs (Luna et al.,
2017). Moreover, better energy consumption forecasting can optimize the peak shavings for
the utility grids and maximize the revenue for the grid (Shen et al., 2016). Finally, using highly
accurate forecasts, it could be possible to minimize the power peaks and fluctuations while the
grids are exchanging energy with each other or with the main grid (Arcos-Aviles et al., 2017).
In terms of the consumer side of the energy supply chain, better energy forecasts can lead to
better planning for optimizing smart home appliances (Hossen et al., 2018). Better energy
consumption forecasts can have a major impact on the home energy management systems,
which in turn can have a huge impact on the energy conservation, reliability, economics, and
efficiency of the energy usage (Zhou et al., 2016). Whenever there is an option to choose
between more than one source of energy, an efficient and individualized energy consumption
forecast can also enable smart home energy management to switch among the multiple energy
sources in a cost-effective manner (Olatomiwa et al., 2016).

5.3 Limitations and future work

Our contribution extends state the art in energy demand forecasting by incorporating the
causal relationships between the weather parameters and the energy consumption at three
different levels, that is, country, a specific region, and individual building. However, there were
certain issues that limited the extent of this work and simultaneously opened new avenues
for exploration. For example, in this paper, all the causal information that was available in
the data was added, that is, the pressure causes consumption/demand, the humidity causes
consumption/demand, the temperature causes consumption/demand, and the wind speed
causes consumption/demand. Although each of these causalities seems intuitive to be added
to the forecasting model, not all might have the same amount of mutual information with
the actual demand. Therefore, it is important to explore which ones or which combinations
would provide the most appropriate amount of information for the desired increase in the
forecasting capability. Furthermore, the datasets in Spain and Paraguay were limited by the
amount of information provided. For example, the Spain dataset had the national energy
demand, but the weather information was about the five largest cities in the country. It is
safe to assume that the five largest cities can control a big proportion of energy consumed.
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However, it is a limitation in terms of analyses performed in this paper. On the other hand,
in the Paraguay datasets, this problem was inverted. That is, local energy consumption data
was available, but the weather information was centralised. Once again, it is not a completely
valid assumption that the weather parameters would remain the same across a big region, but
itis safe to assume that feeders in the high to medium vicinity of the weather station would be
parameterised better by the causal relationship in the aggregate energy consumption data. In
the future, it should be aimed to obtain the data such that the geographical spread of the two
data streams is better matched than the two datasets. Different sources of energy (available
in the Spain dataset) and the different modalities of usage (available in the France dataset)
were not considered, where the causal relationship among each of these could have with
the weather indicators. This choice was made to have one common analysis across the three
datasets to showcase the generalizability of the proposed approach. However, exploring
the different causal relationships between various energy usages and modalities with the
weather conditions might also provide a better forecast for individual cases. Finally, for
consistency of analysis across the three datasets, only four parameters were used to indicate
weather conditions, that is, humidity, pressure, temperature, and wind speed. In the future,
rainfall, snowfall, and wind direction, among other additional weather parameters, can also
be considered.

From the current results presented in this paper, several venues emerge that could bring
novel knowledge in the field of forecasting energy demand or consumption. First, at the
forecasting level, exploring the multivariate nature of the causal relationships between the
weather conditions and the energy consumption could improve the forecasting performance;
because the interaction effects between the weather conditions would also be exploited in
such a manner. Second, on a higher level, implementing and controlling the energy production
using such methods (on a small scale) would provide an opportunity to study the effectiveness
of the forecasting algorithm in the real-life scenarios because, with the current contribution,
the practical nature of such an improved consumption forecasting could not be studied.
Third, as it is with any dep learning application, the transparency and explainability of the
algorithms are not up to the standards in some other industry sectors; therefore, after knowing
that causality plays a significant role in the forecasting processes, the explanation for "how the
forecasting works" could be provided to users at various levels, such as customers, managers,
and policymakers.

6 Conclusions

In a nutshell, this paper presents a deep learning method to forecast energy consumption using
not only the weather data but also the causal relationship between the weather indicators and
the energy consumption. For the casual modelling, the definition of causality between the
two-time series provided by Granger was used. This method was applied to three freely
available datasets and showed that in all the cases, that is, a country, a specific region, and
an individual building, augmenting the forecasting model by the causal information also
augments the forecasting performance. This contribution extends the state-of-the-art in four
ways.

1. This paper proposes the inclusion of causal relations in the deep learning frameworks for
forecasting the energy demand/consumption.

2. Extending the LSTM architecture by using the causal information about how weather con-
ditions cause the changes in the energy consumption provides better forecasting results.
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3. Using the causal relations within the LSTM framework also provides better early pre-
diction. That is, it requires less amount of data to achieve a similar level of forecasting
performance as it would have been required by a setup without the casual information.

4. By using cross-training—testing routines, this paper also shows the higher generalizability
of the proposed method than the contemporary methods.

The theoretical and practical implications of the results are also provided, both of which
indicate that including the causal information does not only confirm certain widely accepted
theoretical frameworks but also provides better energy management opportunities both at the
supplier (i.e., smart grids) and the consumer (i.e., smart homes) levels.
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