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Abstract

Achieving precise control over quantum systems has groundbreaking ap-
plications, such as simulating complex quantum systems, or implementing
quantum algorithms with an improved efficiency over classical algorithms.
Quantum computing has been under development for the last decades, re-
sulting in the so-called Noisy Intermediate-Scale Quantum (NISQ) devices
with about 50 qubits. While these devices are built with the purpose of
achieving practical advantages over classical processors, they are vulnerable
to noise sources. In order to account for error sources, one needs to im-
plement Quantum Error Correction (QEC) techniques. These techniques
protect quantum information by encoding a logical qubit into several phys-
ical ones. For the implementation of NISQ devices and QEC techniques,
it is vital to keep improving the quantum operations and states involved.
Here we develop calibration protocols based on the application of Bayesian
inference. We show their advantages compared to the more traditional
frequentist approaches, such as their ability to maximise the information
gained with each measurement, or their straightforward automation. In
our first line of research, we develop a Bayesian protocol for the correction
of unwanted phases appearing in the experimental preparation of Steane
code states. This protocol requires 13 times less measurements than the
frequentist approach. In our second line of research, we develop a proto-
col for locking a laser to the qubit transition frequency in a trapped-ion
architecture. This calibration is vital, since the correct implementation of
single-qubit gates depends on it. In our final line of research, we study
the Mølmer-Sørensen entangling gate, used in trapped-ion systems. First
we introduce the calibration parameters, and derive a semianalytical model
of the effects of one of them, for which there was no previous analytical
understanding. Finally, we develop a Bayesian protocol for the calibration
of these parameters, which was successfully implemented and tested in an
experimental trapped-ion quantum processor.
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Chapter 1

Introduction

The creation and development of computers has been a milestone in the history of

humanity. Their scientific and technological applications increased extensively with the

development of more complex and powerful computer implementations. However, it was

the proposal by Alan Turing [4] of a universal computing machine capable of computing

general programmable instructions that paved the way for the current importance of

computers. The development of computers, allowing more and more individuals to

have access to one, along with the creation, development, and growth of the internet,

did not only expand the scientific and technological applications of computers but also

introduced them as a pillar of modern society. Moreover, the importance of computers

keeps increasing by either the improvement of the hardware as noted, for example, by

Moore’s law [5] related to the almost exponential growth of the computational power

of processors, or by the development of more advanced technologies implemented on

computers, such as neural networks [6].

While computers have a vast number of applications, with more yet to be discovered

and developed, they cannot efficiently solve certain problems. This is due to the limited

tools that a computer has at its disposal to manipulate the information stored in

bits. However, as noted by Feynman in 1982 [7], properties exclusive of quantum

systems, such as state superposition and entanglement, can be used as additional tools

for information processing. This is the idea behind quantum computers, which use

quantum two-level systems generalising classical bits, known as qubits, allowing for the

incorporation of these quantum properties to the set of tools available to a computer.
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1. INTRODUCTION

The field of quantum computation gained considerable attention with the pro-

posal of groundbreaking quantum algorithms such as Shor’s algorithm [8] in 1994,

and Grover’s algorithm [9] in 1996. The former can be used for integer factorisation,

a problem that, since there is no efficient classical algorithm to solve it, makes it the

core of a wide variety of cryptographic algorithms such as RSA [10], and the latter

being able to solve a database search problem with a quadratic speed-up compared to

classical computers. While these are really interesting examples of quantum algorithms

that can be performed on a quantum computer, there are other rich fields based on

quantum protocols. This is the case of quantum cryptography [11–13], which uses prop-

erties of quantum systems such as the no-cloning theorem [14] to detect the presence

of an eavesdropper during the transfer of a message, or quantum metrology [15], which

uses characteristics of quantum systems such as entanglement and squeezed states to

get access to more sensitive and precise measurements than those obtainable with a

classical approach. Moreover, quantum computers could be used to simulate quantum

systems, such as those appearing in chemistry or quantum materials [16, 17] that are

impossible to simulate efficiently in a classical computer.

While these applications have great importance, to have access to them one first

needs the ability to perform quantum information processing. This involves building

a system of qubits and a set of operations with which one can modify the quantum

information of individual qubits as well as their interaction with other qubits. These

operations are called quantum gates, and by doing an appropriate selection of these

gates one can build a discrete set, known as a universal gate set, which can then be

used to approximate, up to arbitrary precision, any quantum operation [18]. Different

physical implementations of quantum computers have been in constant development,

with examples being based on trapped ions [19–27] superconductors [28–30], quantum

dots [31, 32], photons [33], and Rydberg atoms [34–37] in optical lattices [38–40] or

tweezer arrays [41, 42]. Any physical platform to be used for building a quantum

computer must satisfy a set of conditions called Divincenzo’s criteria [43], for which we

will briefly mention trapped ions as an example. In the trapped-ion implementation,

a qubit is encoded by using two electronic states of an ion in a trap, with gates being

applied by using the interaction of laser light or microwave radiation and the Coulomb

interaction between the trapped ions. This interaction can also be used to initialise the

state of the qubits. Once the desired operations have been carried out, one can perform

2



a readout of the state of each qubit by using laser light that couples one of the binary

states to a short-lived state [19]. This drives cycles of excitation followed by decay

onto the original state while not affecting the other state of the binary basis. This

process can be used to distinguish the state of the qubit by detecting the fluorescence

and position of the qubit with a photomultiplier tube and a camera [44].

While there are several different approaches to implement a quantum computer,

it should be taken into account that qubits are quantum systems and, as such, they

are highly vulnerable to noise. This noise can result in the loss of their quantum

information. These errors can appear due to a faulty initial state preparation of the

qubits, or imperfect gates or state measurement. Additional errors might also appear

due to the decay of the qubit state or the loss of the physical system used to encode the

qubit. Moreover, the description of a complex physical system as a two-level system,

encoding the qubit, is only an approximation of an ideal qubit, which can lead to the

population of states outside of the binary states used for encoding the qubit. These

mentioned noise processes are an evident problem for quantum information processing,

which only grows larger with the number of qubits in the register. Since the application

of interesting quantum computing protocols depends on having access to big enough

qubit registers, this scalability problem supposes one of the main problems in quantum

computing. As an example, an estimate of around 6000 noiseless qubits would be needed

to break RSA keys of 2048 bits [45]. In order to overcome this scalability problem, it

is necessary to introduce techniques to correct the errors that might appear during the

computations.

Quantum Error Correction (QEC) is a field of quantum computing aimed at devel-

oping techniques to correct these errors. The idea behind QEC is to encode the informa-

tion of a logical qubit into several physical qubits. This number of physical qubits can

be increased to reduce the probability of a logical error arbitrarily, as long as the error

probability is below a certain threshold [46, 47]. Small scale implementations of QEC

protocols have been performed in the experiment [48–56] and developments in various

quantum computing platforms [57–61] have pushed the fidelities of fundamental gate

operations and the number of qubits available closer to the values needed for further

QEC implementations, such as fault-tolerant QEC codes [62–64], which are protected

against errors occurring during the QEC process itself. The implementation of fault-

tolerant QEC has seen exciting progress, by the very recent breakthrough experiments

3



1. INTRODUCTION

of Refs. [65–68]. However, the application of QEC for a useful quantum computation,

which requires several logical qubits, is not expected in the immediate future due to

the large number of physical qubits required. The aforementioned 6000 logical qubits

needed to break RSA keys of 2048 bits would require about 20 million physical qubits

considering the current noise and quantum computing platforms [45].

Since longer-term developments are needed to achieve fault-tolerant quantum com-

putation, it is interesting to look at possible applications of current and near-term quan-

tum processors. These processors, called Noisy Intermediate-Scale Quantum (NISQ)

devices [69, 70], consist of a register of roughly 50 to 100 noisy qubits. This number

is small enough to be implemented in the current experiments or in the near future,

but large enough to demonstrate basic, but interesting, applications of quantum com-

puters. In this line, Google developed its Sycamore quantum processor composed of

53 superconducting qubits and claimed its quantum supremacy [71] in 2019, and as

of November of 2021, IBM unveiled their quantum processor with 127 qubits [72].

Moreover, the important advances made by NISQ devices are not related only to im-

provements in the hardware and its applications. Access to some of these NISQ devices

has been made available for anyone online [73–75]. Hybrid algorithms [76], which con-

sist of parametrised quantum circuits that are optimised by a classical computer to

improve their efficiency for a given problem, are being developed. Examples of these

hybrid algorithms are the Variational Quantum Eigensolver (VQE) [77] or the Quantum

Approximate Optimisation Algorithm (QAOA) [78]. The open access to some NISQ

devices, combined with the efficiency advantages of hybrid algorithms, has motivated

investigations backed by experimental results [79–84] without needing to be part of the

group implementing the NISQ device itself, or having to coordinate the experiments

with them. Moreover, this open access to NISQ devices is currently motivating the cre-

ation and development of several start-ups [85] aiming at using these devices to solve

problems related to fields such as finance and industry [86–94].

Whether the interest lies on near-term NISQ devices, or longer-term quantum com-

puters with QEC, the importance of improving the fidelity of the qubits and quantum

gates implemented in the experiments is evident. For NISQ devices, a higher fidelity

of these components translates into a higher probability of achieving the correct result

in a near-term quantum computation. For QEC this means, first, reaching an error

probability below the threshold for which a given QEC code is useful, and second, once

4



the threshold has been reached, increasing these fidelities means requiring fewer phys-

ical qubits to build a logical one. Therefore, correct calibration of all the parameters

related to the experimental implementation of qubits and quantum gates is vital for

the experimental quantum information processing to have a high fidelity with respect

to the ideal case.

From a general point of view, a calibration protocol consists of obtaining information

about the parameters of a system, quantum or classical, by performing measurements.

With this information about the current parameters, one can tune them to reach a

value close enough to their ideal value. When considering the measurements that can

be performed in a system, one can distinguish between two cases: probabilistic mea-

surements, with a simple example being a coin toss, or deterministic measurements,

such as measuring the weight of that coin (up to the precision of the weighing ma-

chine). In the case of quantum systems, measurements, in general, are probabilistic

and have to be performed several times to get a picture of the statistics, which can

then be associated with the most probable value of the parameters. This last point

is where an important decision has to be made: how do we interpret the information

obtained from the measurements to estimate a value for our parameters? From the

frequentist approach, one can decide to repeat the same experiment several times to

obtain the statistics associated, where the more measurements performed results in a

better estimate. While frequentism is the most traditional approach, there is another

way to interpret the outcomes of measurements to gain information, the Bayesian ap-

proach [95–97], based on the application of Bayes’ theorem to update our knowledge

with each measurement.

Bayes’ theorem was first formulated by Thomas Bayes and published in 1763, two

years after his death [98]. It prescribes how to update the prior knowledge of a system

using an outcome of an experiment and the likelihood of that outcome in order to update

our knowledge. In this approach, the parameters to be learnt are treated as variables,

and their knowledge is modelled as a probability distribution. This will narrow down

to the true values as more information is gained. This general definition can be used to

model several cases, from simple ones such as asking an everyday question (e.g., asking

for the time) and updating our knowledge after receiving an answer, to more complex

cases such as measuring a quantum system (which can also be seen as asking a question)

to infer the values of some parameters. While Bayes’ theorem has been postulated for
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over two centuries now, its application to inference processes was restricted to simple

cases which allowed for an analytical solution. For more interesting cases, the study of

more difficult probability distributions, with as many dimensions as parameters that

one wants to learn, was not viable. However, the creation and evolution of classical

computers proved again its importance, in this case, by allowing numerical calculations

which permit the implementation of complex Bayesian inference processes.

Nowadays, it is possible to choose which kind of calibration protocol one wants to

implement. On the one hand, a frequentist approach usually has an easier and less nu-

merically intensive implementation but depends on performing the same measurements

several times, which can lead to a suboptimal information gain. Moreover, a frequentist

approach can find difficulties when performing a multi-parameter calibration, due to

possible correlations between the parameters. This complicates the calibration process,

which would consist of repeating iterations where each parameter is calibrated individ-

ually. These single parameter scans for a multi-parameter calibration can result in a

slow convergence to the optimal value of the parameters, or even fail to find them.

The Bayesian approach can avoid these problems since it works with a probability

distribution of all the parameters at the same time, which accounts for possible cor-

relations between them. Additionally, in the frequentist approach, obtaining the error

of the estimates could not have an analytical formula, which leads to a dependence

on numerical simulations for obtaining these errors. On the other hand, the Bayesian

approach has built-in error estimates, since it works with probability distributions that

have an associated variance. Finally, the Bayesian approach does not need to perform

the same measurements several times, allowing for the selection of adaptive measure-

ment settings. As a result, a Bayesian protocol can define the optimal measurements

and how to update the knowledge about the parameters, allowing for a straightforward

implementation into a computer program, therefore achieving a complete automation

of the calibration protocol.

The work of this thesis is developed in this context. We focused on the implementa-

tion of Bayesian inference protocols in order to substitute other frequentist approaches,

traditionally used for the calibration of quantum systems. In this thesis, we will present

the advantages of these protocols compared to the frequentist approaches. Some of the

protocols that we will develop have been implemented for the calibration of gates in
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trapped-ion quantum devices, although the ideas explained can be generalised to other

physical implementations.

This thesis is structured as follows: In the first part of this thesis, we introduce

the background concepts necessary to understand the contents of this thesis. These

concepts include qubit systems and quantum gates, noise processes, quantum harmonic

oscillators, trapped-ion quantum computers, quantum error correction, and Bayesian

formalism. Bayes’ theorem is the central part of this thesis and will be used to build

calibration protocols to improve the fidelities of quantum gates and QEC codes states.

After this introduction, we then explain our original research results.

In Chapter 7 we present a protocol that can be used to measure and correct un-

wanted phases appearing after the preparation of a Steane quantum error correcting

code. This Bayesian protocol is compared to another proposed frequentist protocol,

and we show that it is more efficient, since our approach allows for the selection of

adaptive measurement settings. Due to this adaptive selection, our Bayesian protocol

optimises the information gained by each measurement, allowing it to require fewer

measurements to obtain the same precision as the frequentist approach. The work

presented in this chapter is included in reference

• “Adaptive Bayesian phase estimation for quantum error correcting codes”, F.

Mart́ınez-Garćıa, D. Vodola, and M. Müller, New Journal of Physics 21 no. 12,

123027 (2019) [1].

In Chapter 8 we study the calibration of a laser to the transition frequency between

two internal levels of a trapped ion. A correct calibration of the laser frequency is

vital for the correct behaviour of trapped-ion operations. For example, the correct

application of single-qubit gates depends on having a laser tuned to the transition

frequency of the levels used to encode the qubit. We introduce a protocol based on

Bayesian Ramsey spectroscopy to, not only tune the laser frequency at a given time but

lock the laser to the transition frequency over time. This is done by estimating drifts

that this frequency might suffer due to small changes over time of the laser frequency

or in the magnetic field. This protocol shows advantages compared to the frequentist

approach to Ramsey spectroscopy such as returning the error of the obtained estimate,

having a simple rule for the selection of optimal measurements, being invulnerable to

7



1. INTRODUCTION

fringe-hopping errors appearing in the frequentist approach, and being straightforward

to automate by implementing the protocol in a computer program.

As a natural follow-up of this Bayesian calibration of single-qubit gates, we move

on to the study and calibration of an entangling gate. In Chapter 9 we present the

idea behind the Mølmer-Sørensen gate, which can be used to create entanglement in

trapped-ion systems. We focus on the effects that the miscalibration of some of the

parameters of this gate has on its performance. Particularly, we take a closer look at the

effect that an asymmetry between the two laser frequencies has on this gate. Since there

was no analytical understanding of the effects of this miscalibration, this imperfection

could only be accounted for by performing numerical calculations. We derive a semi-

analytical model based on a perturbative Magnus expansion to obtain an understanding

of the error introduced by this miscalibration, without requiring numerical calculations

or fitting procedures. We then compare the results from our model to those obtained by

simulations, and even experimental results, concluding that our semi-analytical model

manages to correctly account for the effects of that miscalibration. This model can then

be used during the experimental calibration of the gate to identify and compensate for

the effect of gate miscalibrations. The work presented in this chapter is included in

reference 1

• “Analytical and experimental study of center line miscalibrations in Mølmer-

Sørensen gates”, F. Mart́ınez-Garćıa, L. Gerster, D. Vodola, P. Hrmo, T. Monz,

P. Schindler, and M. Müller, Physical Review A 105 no. 3, 032437 (2022) [2].

After having explained the Mølmer-Sørensen gate and the experimental parameters

that we want to optimise, we develop and investigate a new Bayesian protocol to es-

timate and correct these parameters in Chapter 10. For this purpose, we make use of

a particle-filter algorithm to avoid the dimensionality problem that Bayesian inference

processes suffer when estimating several parameters at the same time. Additionally,

due to the lack of analytical likelihood functions for the possible outcomes of the exper-

iments, we introduce the concept of an interpolator. This allows us to precalculate the

values of the likelihoods for the points in a grid in parameter space. This can then be

used to interpolate the values of the likelihoods without the need to calculate them by

1This work was accepted in a journal after the PhD viva and the reference has been changed
accordingly.
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numerical integration of the Hamiltonian. Thanks to the particle-filter algorithm and

the interpolator, our Bayesian protocol manages to calibrate four different parameters,

both in the simulations and in the experimental, in a completely automated way. The

work presented in this chapter is included in reference 1

• “Experimental Bayesian calibration of trapped-ion entangling operations”, L.

Gerster, F. Mart́ınez-Garćıa, P. Hrmo, M. van Mourik, B. Wilhelm, D. Vodola,

M. Müller, R. Blatt, P. Schindler, and T. Monz, PRX Quantum 3 no. 2, 020350

(2022) [3].

Finally, in Chapter 11 we summarise the results presented in the thesis, discuss the

possible applications in the near and long term given the current status of quantum

computation, and mention how these results could be generalised to other calibration

protocols or quantum information processing architectures.

1This work was accepted in a journal after the PhD viva and the reference has been changed
accordingly.
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Chapter 2

Introduction to qubit systems

In this chapter, we define the qubit and the quantum operations that can be performed

on them. We will also elaborate on entanglement, a feature of quantum mechanics

with no counterpart in classical mechanics. Finally, we will explain how to model

noise processes and the concepts of state and process tomography used to characterise

quantum states and operations. The book in Ref. [18] can be consulted by the reader

interested in a more detailed introduction.

2.1 Qubits

A qubit is a quantum two-level system that is used as the quantum counterpart of a

classical bit. Therefore, it is the basic unit of information in a quantum computer. Since

a qubit is a quantum two-level system, its state belongs to a two-dimensional Hilbert

space, H, which is a complex vector space with an inner product. For representing

a state in this Hilbert space we use the Dirac notation, which represents every state

as a ket, |·⟩, while an element of the dual space is represented by a bra, ⟨·|, which is

the conjugate transpose (or adjoint) of a ket: ⟨·| = |·⟩†, where we use the † symbol to

represent the adjoint. We can select a basis for this two-dimensional Hilbert space. Let

us consider the basis {|ui⟩}, i = 1, 2. This basis is orthonormal if it satisfies ⟨ui|uj⟩ = δij

(Kronecker delta) and the closure relation

2∑
i=1

|ui⟩⟨ui| = 1. (2.1)
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2. INTRODUCTION TO QUBIT SYSTEMS

An example of an orthonormal basis would be the one given by

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
. (2.2)

Any general state |ψ⟩ can be written on this basis by projecting the state into its

components
α = ⟨0|ψ⟩

β = ⟨1|ψ⟩
(2.3)

from which we obtain that, in this basis, |ψ⟩ can be written as

|ψ⟩ =
(
α
β

)
= α |0⟩+ β |1⟩ . (2.4)

A physical state must be normalised, |α|2 + |β|2 = 1, and a global phase is unde-

tectable, making the state |ψ⟩ equivalent to eiϕ |ψ⟩ for any real phase ϕ. By using these

properties, we obtain that any qubit state can be written as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (2.5)

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. Due to this general form, every state of a qubit can

be parametrised by these two angles, θ and ϕ, which allows it to be represented in the

surface of the Bloch sphere (see Fig. 2.1). In our case we have selected the basis |0⟩

and |1⟩, which we will call computational basis, to be contained in the Z-axis and we

will consider them to be the eigenvectors of the Pauli operator Z, which in this basis

is represented by

Z =

(
1 0
0 −1

)
. (2.6)

As we can see from this form, the eigenvalues associated are ⟨0|Z |0⟩ = 1 for |0⟩ and

⟨1|Z |1⟩ = −1 for |1⟩. There are alsoX and Y Pauli operators, which will be represented

on the computational basis by

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
. (2.7)

Similar to the Z operator, the X and Y operators can define their own basis of H,

given by their eigenvectors, with associated eigenvalues +1 and −1: {|+⟩x , |−⟩x} for
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2.1 Qubits

Figure 2.1: Bloch sphere. A pure state of a two-level system, e.g. a qubit, can be
represented as a unit vector in the Bloch sphere, that is, a point in the surface parametrised
by the angles θ and ϕ. The states that compose the computational basis, |0⟩ and |1⟩, are
selected to be in the intersections of the Z-axis with the Bloch sphere.

X and {|+⟩y , |−⟩y} for Y

|+⟩x =
1√
2
(|0⟩+ |1⟩), |−⟩x =

1√
2
(|0⟩ − |1⟩)

|+⟩y =
1√
2
(|0⟩+ i |1⟩), |−⟩y =

1√
2
(|0⟩ − i |1⟩)

(2.8)

Due to a lack of information on the state of our qubit, it could be that the best

knowledge that we have about it is described by a probabilistic ensemble {|ψi⟩} with

probabilities pi, with i being an index running over all the possible components of the

ensemble. In this case, we have what is called a mixed state, instead of a pure state.

This means that we can no longer describe it as a ket, and we have to use the density

matrix formalism, which describes our state as a matrix defined by a statistical mixture

given by

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (2.9)

This is easily generalisable to the case of a probabilistic ensemble distributed according

to a continuous variable, x, for example. In this case, we have an ensemble {|ψ(x)⟩}
with probabilities p(x), and the density matrix would be

ρ =

∫
p(x) |ψ(x)⟩ ⟨ψ(x)| dx. (2.10)
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2. INTRODUCTION TO QUBIT SYSTEMS

For the case of a qubit, any density matrix can be written as

ρ =
1

2
(1 + n⃗ · σ⃗), (2.11)

with n⃗ being a vector describing the position of the state in the Bloch sphere with

|n⃗| ≤ 1 and σ⃗ = (X,Y, Z) being a vector composed of the Pauli matrices. One of the

extremal cases, |n⃗| = 1, corresponds to a state in the surface of the Bloch sphere, that

is, a pure state. The other extremal case, |n⃗| = 0, also called a completely mixed state,

corresponds to a state with no information, located at the center of the Bloch sphere.

In order to quantify how much a given quantum state is mixed, we can introduce

the concept of purity, defined as

χ(ρ) = Tr
(
ρ2
)
. (2.12)

The purity of a given state is a scalar that takes values between 1/d for a completely

mixed state, where d is the dimension of the Hilbert space of the quantum system

considered, and 1 for a pure state.

Finally, we also introduce the concept of fidelity [99], which can be interpreted as a

way of quantifying how close a quantum state, ρ, is to another one, ρ′. The fidelity is

defined as

F (ρ, ρ′) =

[
Tr

(√√
ρ ρ′

√
ρ

)]2
. (2.13)

This definition can be simplified for the case in which one of the states is a pure state

to obtain:

F
(
|ψ⟩ , ρ′

)
= ⟨ψ| ρ′ |ψ⟩ . (2.14)

Furthermore, for the case of both states being pure, i.e., |ψ⟩ and |ψ′⟩, the definition

can be reduced to the following

F
(
|ψ⟩ ,

∣∣ψ′〉) = ∣∣〈ψ′∣∣ψ〉∣∣2. (2.15)

The fidelity is a scalar that satisfies F (ρ, ρ′) ∈ [0, 1], which only takes the value 1 when

both states are the same.

Now that we have defined the basics of a qubit, we can move to systems that contain

more than one qubit, which will allow us to explore concepts such as entanglement.
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2.2 Multi-qubit states and entanglement

2.2 Multi-qubit states and entanglement

The state of a system of n qubits will be described by a vector in a 2n-dimensional

Hilbert space, obtained by the tensor product of n of the single-qubit Hilbert spaces,

H⊗n. A basis of this Hilbert space can be defined by all the possible combinations

of tensor products of the basis of each two-dimensional Hilbert space, for example,

{|i1⟩ ⊗ ... ⊗ |in⟩} with i1, ..., in = 0, 1. Therefore, a state in this expanded space will

have the form

|ψ⟩ =
∑

i1,...,in

ci1,...,in |i1⟩ ⊗ ...⊗ |in⟩ =
∑

i1,...,in

ci1,...,in |i1, ..., in⟩ , (2.16)

where we simplified the notation by defining |a⟩ ⊗ |b⟩ ≡ |a, b⟩, although we will also

use the notation |a b⟩ ≡ |a, b⟩. Consequently, all the possible states of this multi-

qubit system can be represented as a superposition of states of the form |i1, ..., in⟩ with
coefficients ci1,...,in .

By looking at the general form of Eq. (2.16), we can introduce a classification based

on the form of each specific state. If a state can be written as

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩ , (2.17)

it is said to be separable, when this is not the case, it is said to be entangled. There

are some important examples of entangled states such as the Bell states [100]

∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩),

∣∣Φ−〉 = 1√
2
(|00⟩ − |11⟩),∣∣Ψ+

〉
=

1√
2
(|01⟩+ |10⟩),

∣∣Ψ−〉 = 1√
2
(|01⟩ − |10⟩),

(2.18)

or the Greenberger-Horne-Zeilinger (GHZ) state [101] of n qubits

|GHZ⟩ = 1√
2
(|00 . . . 0⟩+ |11 . . . 1⟩). (2.19)

As superposition states, entangled states are a particularity of quantum mechan-

ics with no classical counterpart. This makes them an important additional resource

available for quantum information processing. Now that we have explained the basic

concepts of qubit states, we can introduce the ideas behind quantum gates.
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2.3 Quantum gates

While qubits are the basic components of a quantum computer with the purpose of

storing quantum information, we need the ability to manipulate this information. Up to

now, we have seen some examples of operators such as the X, Y , and Z, which perform

single-qubit rotations of an angle π around their respective axis. These operators are

just examples of general single-qubit rotations of arbitrary angle, ϕ, and rotation axis,

σ⃗

Rn⃗(ϕ) = ei
ϕ
2
n⃗·σ⃗ = cos

ϕ

2
· 1 + i sin

ϕ

2
(n⃗ · σ⃗). (2.20)

Unitary operators such as these, when used as basic elements of the quantum infor-

mation processing in a quantum computer, are called quantum gates. Other important

examples of single-qubit gates are the Hadamard gate H, the phase gate S, and the T

gate:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0

0 eiπ/2

)
, T =

(
1 0

0 eiπ/4

)
(2.21)

where the Hadamard gate has the effect of rotating the computational basis into the

X-basis and vice versa

H |0⟩ = |+x⟩ , H |1⟩ = |−x⟩ , H |+x⟩ = |0⟩ , H |−x⟩ = |1⟩ , (2.22)

and the S and T gates are Z rotations of angles π/2 and π/4 respectively, that is, they

introduce a phase to the state.

Although the previous gates can be used to manipulate the state of a single-qubit,

we need the ability to create entanglement between different qubits. An important

example of an entangling gate is the controlled-NOT (or CNOT) gate, which is a two-

qubit gate that takes the state of a control qubit and performs an operation on a target

qubit, defined as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =
1

2
[(1c + Zc)1t + (1c − Zc)Xt] , (2.23)

with c and t used to specify that the operators act on the control and target qubits,

respectively. Therefore, the action of this gate is to apply an X operation on the target
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qubit if the control is in the state |1⟩ and leaves the target unchanged otherwise:

CNOT |0c 0t⟩ = |0c 0t⟩ , CNOT |1c 0t⟩ = |1c 1t⟩ ,

CNOT |0c 1t⟩ = |0c 1t⟩ , CNOT |1c 1t⟩ = |1c 0t⟩ .
(2.24)

It is simple to verify that this two-qubit operation can be used to create entanglement,

where an example is shown in Fig. 2.2.

|0⟩ H •

|0⟩

Figure 2.2: Entangling circuit example. An entangled state can be obtained by
applying a Hadamard gate to a qubit, which will then be used as the control for a CNOT
gate acting on a second qubit. The state obtained at the end of the circuit is the Bell state
|Φ+⟩ = 1/

√
2(|00⟩+ |11⟩).

While these are examples of single-qubit and entangling gates, we need to be able

to process quantum information in a general manner. Because of this, one could ask

whether it is possible to perform any arbitrary operation on a set of qubits by using just

a discrete set of gates. This is the idea behind the Solovay-Kitaev theorem [18], which

proves that a universal set of quantum gates, composed of a discrete set of gates, can

be used to build any general unitary operation, up to an arbitrary error. An example

of such a universal set of quantum gates is composed of the H, T , and CNOT gates,

where one can use these first two gates to approximate any single-qubit unitary, and

the CNOT can be used to introduce the entanglement between different qubits.

2.4 Noise processes

Up to this point, we have introduced qubits and the operations that can be performed

over them to manipulate their quantum information. However, all that has been in-

troduced so far is an idealisation. A quantum computer, like any quantum system,

will be affected by noise due to unwanted effects, such as a coupling of the qubits with

the environment. In this case, we should consider on top of the state of our qubits, ρ,

the state of the environment, ρE , and the interactions between these two subsystems.

Without loss of generality, we can consider the state of the environment to be a pure

state ρE = |e0⟩ ⟨e0|, with |e0⟩ being an element of the Hilbert space of the environment,
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2. INTRODUCTION TO QUBIT SYSTEMS

spanned by {|ek⟩}. The final state after a general evolution, U , acting on this complete

system will be Uρ ⊗ |e0⟩ ⟨e0|U †. However, the only system that will be measured is

the one formed by the qubits, leaving all the information in the environment unused.

Because of this, we have to trace over the environment to obtain the state of the qubits

after the evolution, ρ′:

ρ′ =
∑
k

⟨ek|U (ρ⊗ |e0⟩ ⟨e0|)U † |ek⟩ =
∑
k

EkρE
†
k, (2.25)

where we have defined a set of Kraus operators [102], {Ek}, given by

Ek ≡ ⟨ek|U |e0⟩ , (2.26)

which satisfy ∑
k

E†
kEk = 1. (2.27)

Therefore, these effects can be modelled as quantum channels which take as input an

initial quantum state, ρ, and output the noisy state, ρ′:

E(ρ) = ρ′ =
∑
k

EkρE
†
k, (2.28)

where both ρ and ρ′ are density matrices of a subsystem, in our case the qubit system.

An interpretation of Eq. (2.28) can be obtained if we consider the quantum channel

as a process that substitutes the initial state ρ for the normalised state EkρE
†
k/Tr

(
EkρE

†
k

)
with a probability p(k) = Tr

(
EkρE

†
k

)
. This leaves us with the statistical mixture, ρ′,

as the state after applying the quantum channel. Using this interpretation, it is easy

to model some simple, yet important, single-qubit error models.

2.4.1 Bit-flip and dephasing channels

The bit-flip channel considers the possibility of having a bit-flip error, which performs

the transformation |0⟩ ↔ |1⟩, with a probability p. The operators associated with this

channel are

E0 =
√
1− p 1, E1 =

√
pX, (2.29)
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that is, the bit-flip channel is defined as

E(ρ) = (1− p) ρ+ pXρX, (2.30)

which produces a statistical mixture composed of a (1 − p) probability of leaving the

state unchanged and p of introducing a bit-flip error.

Similarly, one can define the dephasing or phase-flip channel by introducing the

possibility of having an error of the form |1⟩ ↔ − |1⟩. The operators associated to this

channel are

E0 =
√
1− p 1, E1 =

√
pZ, (2.31)

where now p is the probability of the phase-flip error happening. In this case, the

channel is

E(ρ) = (1− p) ρ+ pZρZ. (2.32)

The statistical mixture resulting from this channel accounts for a coherence loss in the

state, with the limiting case of p = 1/2. This case would transform the state into

a completely classical statistical mixture, that is, a diagonal density matrix, which

keeps the same probabilities of measuring |0⟩ or |1⟩, but has no quantum coherences.

A representation on the Bloch sphere of the effect of this channel, as well as for the

following examples of noise channels, is shown in Fig. 2.3.

2.4.2 Depolarising channel

Another important example is the depolarising channel, which can be used to model

the complete loss of quantum information with a probability p′. Such a channel can be

written as:

E(ρ) = (1− p′) ρ+
p′

2
1, (2.33)

which either keeps the state unchanged with probability 1 − p′, or substitutes it for a

completely mixed state with probability p′, which accounts for losing all the information

about the state. Using that for an arbitrary density matrix, ρ, the identity operator

can be written as:
1
2
=
ρ+XρX + Y ρY + ZρZ

4
, (2.34)
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Figure 2.3: Noise channels. Representations of how different noise channels affect an
initial state. This is shown by how all the possible initial states, represented by the Bloch
sphere in grey, are contracted to the final ones shown in red. (a) Dephasing channel: This
channel causes a decoherence of the state while leaving the populations unchanged. The
case shown is for p = 3/8, as a consequence, the final state has some coherence. (b)
Depolarising channel: This channel accounts for the loss of information of both the phase
and the population of the qubit. As a result, the Bloch sphere is contracted to the center.
The case shown is for p = 3/8. (c) Amplitude damping channel: This channel models the
decay of one state, in this case, |1⟩, into another, |0⟩, with probability p. As a consequence,
the Bloch sphere is contracted to the state |0⟩. The case shown is for p = 3/4.

and defining p ≡ 3p′/4, one can rewrite the depolarising channel as

E(ρ) = (1− p) ρ+
p

3
(XρX + Y ρY + ZρZ), (2.35)

with operators

E0 =
√
1− p 1, E1 =

√
p

3
X, E2 =

√
p

3
Y, E3 =

√
p

3
Z (2.36)

2.4.3 Amplitude damping channel

The amplitude damping channel can be used to describe an error that causes a decay of

one state to another. As such, it can be used to model energy dissipation in a quantum

system. The operators that define this model are

E0 =

(
1 0
0

√
1− p

)
,

E1 =

(
0

√
p

0 0

)
,

(2.37)
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with p being the probability of the state to decay. The action of the E0 operator is

to decrease the amplitude of the decaying state while leaving the non-decaying one

unchanged. As for E1, it changes the decaying state into the non-decaying one.

2.5 State and process characterisation

As explained, when studying a non-ideal quantum system one has to account for pos-

sible error sources that might affect the quantum state or even the performance of the

quantum gates. In order to see how damaging these effects are, we need a method for

estimating the form of our quantum states, or the true operations that our non-ideal

quantum gates are performing. To do this, one can perform quantum state tomography

(QST), quantum process tomography (QPT), and randomised benchmarking (RB).

2.5.1 Quantum state tomography

Quantum state tomography [18] is a method used to estimate the form of a state ρ. In

the following, we will consider it to be the state of a qubit, but this method can be easily

generalised for any quantum state. We know that the state ρ will be represented by a

2x2 matrix and as such, it can be expanded in, for example, the Pauli basis as we saw

in Eq. (2.11). The X component can be obtained as Tr(Xρ), and similar expressions

for the other elements. This leaves us with

ρ =
Tr(ρ) 1 +Tr(Xρ)X +Tr(Y ρ)Y +Tr(Zρ)Z

2
. (2.38)

Therefore, we can reconstruct the form of the state by obtaining the expected values

of each of these operators on the state ρ. However, since the information about an

unknown quantum state is obtained by measuring it, and this process depends on the

statistics associated with that state, we will need to have access to several copies to

obtain the expected values.

A similar process can be performed for a general quantum state with a Hilbert space

of dimension higher than two. However, it is straightforward to see that the number

of expected values to be measured increases with the dimensionality of the quantum

system and, with it, the number of measurements of the state ρ required. As a conse-

quence, if we consider a multi-qubit state, the dimensionality scales exponentially with

the number of qubits. This makes it not viable to perform quantum state tomography
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2. INTRODUCTION TO QUBIT SYSTEMS

in a system of more than a few qubits since one should measure 22n expected values,

where we denote the number of qubits as n. However, it is noteworthy to mention that

the number of expected values to be measured can be decreased if we already know

some characteristics of the state. This is the case discussed in Chapter 7, where we

aim to estimate the errors appearing in a seven-qubit state due to an imperfect state

preparation, but thanks to the error model that we consider in that chapter, we will

only need to measure seven parameters.

2.5.2 Quantum process tomography

While quantum state tomography is used to reconstruct the form of a state ρ, quantum

process tomography [103] can be used to reconstruct the form of a quantum operation,

such as a quantum gate. The basic idea behind this process is straightforward: Assum-

ing a Hilbert space of dimension d, we can use a set {|ψi⟩ ⟨ψi|}d
2

i=1 that forms a basis of

the matrices of this Hilbert space. If we want to obtain the form of a process, E, we can

apply it to each of the elements of this basis and perform quantum state tomography

over each of the final states E(|ψi⟩ ⟨ψi|), i = 1, ..., d.

In principle, obtaining how E transforms each of these states is enough to charac-

terise the process since, by linearity, we can obtain how it acts over any arbitrary state.

However, we can go further by expressing the operation in the form:

E(ρ) =
∑
k

EkρE
†
k, (2.39)

as in Sec. 2.4. While this is the diagonalised expression of the channel, it might be

convenient to obtain its form given by a set of fixed operators that are easy to measure

for a given experimental setup, {Ẽk}, which can be written as

Ẽi =
∑
m

eimEm, (2.40)

from which it can be written

E(ρ) =
∑
k

χmnẼmρẼ
†
n, (2.41)

χmn =
∑
i

eime
∗
in. (2.42)
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2.5 State and process characterisation

Therefore, the process will be characterised in this operator basis if we obtain the

matrix χ. In order to do this, we need to study the effect that this quantum channel

has on every element of a matrix basis, {ρj}d
2

j=1, which can be used to construct the

density matrices of the system. We can learn this by doing quantum state tomography,

and the results can be written as

E(ρj) =
∑
k

λjkρk. (2.43)

By using this λ matrix, defining the β matrices as

ẼmρjẼ
†
n =

∑
k

βmn
jk ρk, (2.44)

and using Eq. (2.41), one can obtain

χmn =
∑
jk

κmn
jk λjk, (2.45)

where κ is the generalised inverse of β

βmn
jk =

∑
st,xy

βstjkκ
xy
st β

mn
xy . (2.46)

Therefore, by measuring the effect of the process over the elements of the {ρj}d
2

j=1 basis,

one can obtain the coefficients of the λ matrix by using Eq. (2.43). One can use then

Eq. (2.44) to Eq. (2.46) as well as λ to obtain the values of χ. This characterises E in

terms of {Ẽk}. Examples of the final result of a quantum process tomography process

for a simple single-qubit operation are shown in Fig. 2.4.

While quantum process tomography is a complete method for obtaining the form

of an unknown quantum channel, it also has, in the same way as the quantum state to-

mography, an undesirable exponential scaling with the size of the system. This makes

this method inefficient for estimating the fidelity of quantum operations as the size

of the system increases. Additionally, this method is vulnerable to State Preparation

And Measurement (SPAM) errors. However, one can use a Randomised Benchmark-

ing process to obtain just the fidelity of the gate, with the benefit of requiring fewer

measurements while not being affected by SPAM errors.
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2. INTRODUCTION TO QUBIT SYSTEMS

Figure 2.4: Quantum process tomography example. Values of the χmatrix obtained
from quantum process tomography to characterise two processes. For this case we have
used the {Ẽk} = {X,Y, Z,1} operators. Left: The process, in this case, is the Hadamard
gate, H = 1/

√
2(X + Z), defined in Eq. (2.21). The effect of this gate is E(ρ) = HρH =

1/2(XρX + ZρX +XρZ + ZρZ), which agrees with the result obtained. Right: Similar
study for a faulty Hadamard gate with a large error, H = 1/

√
5(2X + 2Z + i1).

2.5.3 Randomised Benchmarking

As we have explained, quantum process tomography has an exponential scaling with

the size of the system, while also being vulnerable to SPAM errors. Due to this, other

techniques have been developed to estimate the quality of a quantum operation while

avoiding these problems. Randomised Benchmarking (RB) [104–106] and Gate Set

Tomography (GST) [107, 108] are examples of such techniques. For the purposes of

this thesis, we will explain how a Randomised Benchmarking process works.

Randomised Benchmarking is a technique that can be used to estimate the fidelity

of the gate implemented with respect to the ideal gate. This method has the important

advantage of having a better scaling with the size of the system than process tomogra-

phy. However, this method does not give the complete form of the operation introduced

by the gate, but rather an estimation of the error per gate.

The idea behind RB is to concatenate m repetitions of the gate that we want an

estimate of the fidelity per gate with a random Clifford operation [109] in between

each of these gates. A Clifford operation is an element of the Clifford group, which

is the group that maps the Pauli group into itself. Considering that the Pauli group

on n qubits is given by Pn = {eiθπ/2σj1,1 ⊗ ... ⊗ σjn,n | θ = 0, 1, 2, 3, jk = 0, 1, 2, 3}
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2.5 State and process characterisation

Figure 2.5: Randomised benchmarking example. Results from the simulation of
a randomised benchmarking process applied to a CNOT gate with depolarising noise. A
total of 20 different sequences of Clifford gates are applied and measured at different circuit
depths, m, for 200 measurements each. Each outcome is represented by a cross. From these
results, we can obtain an estimate of Pm and perform a fit as given by Eq. (2.48). From
the resulting estimate of α, one can evaluate the quality of the implemented CNOT gate.

and σ⃗k = (1k, Xk, Yk, Zk) then, given an element of the Pauli group P and a Clifford

operator C, they satisfy CPC ∈ Pn.

After performing the concatenation of gates explained, we can model the resulting

state by using a depolarising channel:

ρ
(m)
f = αm · ρ(m)

f,ideal +
1− αm

2n
· 1, (2.47)

with n being the number of qubits involved in the gate, α the parameter of the de-

polarising channel, and ρ
(m)
f,ideal being the ideal target state if the gate had no errors.

The effect of the random gates applied allows us to consider this depolarising channel

since their purpose is to transform the coherent error introduced by the gate into an

incoherent error. Therefore, one can perform measurements for a given m to obtain

the probability of success, i.e., that the state measured at the end is the initial state.

This probability, Pm, is given by Eq. (2.47) as

Pm = αm +
1− αm

2n
= Aαm +B (2.48)

where the A and B parameters absorb possible unwanted errors unrelated to the gate,
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2. INTRODUCTION TO QUBIT SYSTEMS

such as SPAM errors. This can be repeated for different values of m to obtain estimates

of A, B, and α. An example is shown in Fig. 2.5. After this process, one can then use

the parameter α as a measure of the quality of the gate.
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Chapter 3

Quantum harmonic oscillator

In this chapter, we introduce the quantisation of one of the most important models in

physics: the harmonic oscillator. The concept of Quantum Harmonic Oscillator (QHO)

appears in several cases during the study of quantum systems and, in our case, it will

be needed to understand how an ion is trapped in the realisation of an ion trap in

Chapter 4. We will start by explaining the basic concepts of the one-dimensional and

three-dimensional QHO. We will follow by deriving the behaviour of coupled QHOs.

Finally, we explain some important states derived from the QHO and their physical

interpretation.

3.1 1D and 3D Quantum harmonic oscillator

The quantum harmonic oscillator is obtained by quantisation of the classical harmonic

oscillator. Thus, we will begin with the derivation of the classical case. We will start

considering a one-dimensional case for simplicity.

The classical harmonic oscillator is described by a quadratic potential, V (x), cen-

tered on x0

V (x) =
k

2
(x− x0)

2. (3.1)

For a potential of this form, the motion of a particle will be given by the dynamical

equation:

m
d2x

dt2
= −dV (x)

dx
= −k(x− x0), (3.2)
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3. QUANTUM HARMONIC OSCILLATOR

with solution

x(t) = x0 +A sin(ωt+ ϕ), (3.3)

which is a sinusoidal oscillation around x0 with amplitude A and phase ϕ defined by

the initial conditions, and frequency ω defined as

ω =

√
k

m
. (3.4)

Of course, this solution is obtained assuming that the potential has the form of Eq. (3.1).

However, there are several cases in physics in which we will have a potential of this form,

especially when we consider the expansion of a confining potential around a minimum

x0 in a Taylor’s series, to obtain an approximation:

V (x) ≈ V (x0) +
1

2

(
d2V (x)

dx2

)
(x− x0)

2, (3.5)

which will be valid as long as the motion is restricted to a small interval around x0, see

Fig. 3.1.

Figure 3.1: Harmonic oscillator. Left: Ideal harmonic oscillator. The quadratic
potential, V (x), traps a particle of total energy, E, in the interval [x0 − A, x0 + A]. In
the limits of this interval, all the energy is in the form of potential energy, while at the
bottom of the potential all the energy is in the form of kinetic energy, T . Right: Any
confining potential (solid line) can be approximated by a quadratic potential (dashed line)
in the region close to a minimum x0. The motion of the particle can be treated as that of
a harmonic oscillator when this approximation is valid.
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3.1 1D and 3D Quantum harmonic oscillator

The kinetic energy, T , and the potential energy are given as

T =
p2

2m
,

V =
1

2
mω2x2,

(3.6)

where we assumed that the potential is centered around x = 0. This can be done by

a simple change of coordinates if it is not the case. Therefore, the total energy of the

harmonic oscillator is

E =
p2

2m
+

1

2
mω2x2 . (3.7)

Now we are in the position to perform the quantisation of the harmonic oscillator.

For this, we will use the position and momentum operators, X and P . Since they are

canonical conjugates, they satisfy the canonical commutation relation [110]

[X,P ] = iℏ. (3.8)

Using Eq. (3.7) and substituting x and p for X and P we obtain the Hamiltonian that

describes the quantum harmonic oscillator

H =
P 2

2m
+

1

2
mω2X2 . (3.9)

We can diagonalise this Hamiltonian by introducing the operators a and a† defined as

a =

√
mω

2ℏ

(
X +

i

mω
P

)
,

a† =

√
mω

2ℏ

(
X − i

mω
P

)
.

(3.10)

From Eq. (3.8), it follows

[a, a†] = 1 . (3.11)

By using the inverted relations

X =

√
ℏ

2mω

(
a† + a

)
,

P = i

√
ℏmω
2

(
a† − a

)
,

(3.12)
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3. QUANTUM HARMONIC OSCILLATOR

we can transform the Hamiltonian in Eq. (3.9) into

H = ℏω
(
a†a+

1

2

)
. (3.13)

Solving the Hamiltonian is equivalent to finding the eigenvalues and eigenvectors of the

operator N ≡ a†a. The eigenvectors of this operator are called Fock states, |n⟩, with

eigenvalues n, that is

N |n⟩ = n |n⟩ , n ∈ N0 . (3.14)

Thus, the energies of H are discretised with a uniform separation ℏω between adjacent

levels.

The operators a† and a are the so-called creation and destruction operators, respec-

tively. This is because they satisfy the following

a† |n⟩ =
√
n+ 1 |n+ 1⟩ ,

a |n⟩ =
√
n |n− 1⟩ ,

(3.15)

that is, their action is to increase or decrease by one the eigenstate over which they

act. Similarly, the operator N is called the number operator, since it just returns the

number n related to the eigenstate over which it acts. We can calculate the form of the

ground state in the {|x⟩} representation.

From Eq. (3.15), we know that

a |0⟩ =
√
mω

2ℏ

(
X +

i

mω
P

)
|0⟩ = 0 . (3.16)

Projecting onto |x⟩, and using the position representation of the canonical operators

X → x,

P → −iℏ d
dx
,

(3.17)

yields the differential equation(
mω

ℏ
x+

d

dx

)
Ψ0(x) = 0, (3.18)

with Ψn(x) = ⟨x|n⟩. The solution of this differential equation, when considering that
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3.1 1D and 3D Quantum harmonic oscillator

the wave function must be normalised, is:

Ψ0(x) =
(mω
πℏ

)1/4
e−

mω
2ℏ x2

, (3.19)

which is a Gaussian probability distribution centered at x = 0 with variance σ2 =

ℏ/mω. Similar differential equations can be solved for higher Fock states, which yields

the general solution for Ψn(x) (see Fig. 3.2):

Ψn(x) =
1√
2nn!

(mω
πℏ

) 1
4
Hn

(√
mω

ℏ
x

)
e−

mω
2ℏ x2

, (3.20)

with Hn(y) being the Hermite polynomials [111]

Hn(y) = (−1)ney
2 d

dy

(
e−y2

)
(3.21)

Figure 3.2: QHO wave functions. Left: Wave functions, Ψn(x), of the ground state
and first four excited states of the quantum harmonic oscillator as obtained in Eq. (3.20).
The ground state has an energy E = ℏω/2 and each increase of n involves an increase in

the energy of ℏω. Right: Equivalent plot showing the probability densities, |Ψn(x)|2.

Now that we are familiarised with the quantum harmonic oscillator in one dimen-

sion, we can generalise it for the case of a particle trapped in a three-dimensional

harmonic potential. In this case, the potential will have the form

V (r⃗ ) =
3∑

i=1

ki
2
r2i =

3∑
i=1

1

2
mω2

i r
2
i , (3.22)
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3. QUANTUM HARMONIC OSCILLATOR

where

ωi =

√
ki
m
, i = 1, 2, 3, (3.23)

and r⃗ = (x, y, z)1. For this case, the quantised Hamiltonian is given by

H = Hx +Hy +Hz, (3.24)

with

Hx =
1

2m
P 2
x +

1

2
mω2

xX
2,

Hy =
1

2m
P 2
y +

1

2
mω2

yY
2,

Hz =
1

2m
P 2
z +

1

2
mω2

zZ
2.

(3.25)

Since Hx, Hy, and Hz commute, finding the eigenvectors and eigenvalues of H reduces

to finding the eigenvectors and eigenvalues of each component, Hx, Hy, and Hz. From

Sec. 3.1 we know that these components of the Hamiltonian can be written as

Hi = ℏωi

(
a†iai +

1

2

)
, i = x, y, z, (3.26)

with ax, ay, and az being straightforward generalisations of the creation operator de-

fined in Eq. (3.10). These components of the Hamiltonian satisfy

Hi |ni⟩i = ni |ni⟩i , i = x, y, z. (3.27)

Thus, the eigenvectors and eigenvalues of the complete Hamiltonian are all the possible

combinations of the form |nx⟩x ⊗ |ny⟩y ⊗ |nz⟩z or, for simplicity, |nx, ny, nz⟩, which
satisfy

H |nx, ny, nz⟩ = ℏ
[
ωx

(
nx +

1

2

)
+ ωy

(
ny +

1

2

)
+ ωz

(
nz +

1

2

)]
|nx, ny, nz⟩ . (3.28)

Finally, since the eigenstates of the three-dimensional QHO are the tensor product

of three one-dimensional QHOs, the eigenvectors in the {|r⃗⟩ = |x, y, z⟩} representation

will be given by the product

Ψnx,ny ,nz(r⃗ ) = ⟨x, y, z|nx, ny, nz⟩ = Ψnx(x)Ψny(y)Ψnz(z), (3.29)

1We are also considering, for simplicity, that the minimum of the potential is located at the origin,
r⃗0 = (0, 0, 0).
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3.2 Coupled quantum harmonic oscillators

with Ψnx(x), Ψny(y), and Ψnz(z) defined as in Eq. (3.20).

3.2 Coupled quantum harmonic oscillators

Here we will derive the results for a system of coupled QHO. We will begin, in a

similar way as in QHO derivation, with the calculations of a classical system of coupled

harmonic oscillators. Then we will continue by quantising the results. The calculations

shown will be done, for simplicity, for the particular case of a system of two coupled

harmonic oscillators. The calculation for a bigger system of harmonic oscillators is just

a generalisation of the calculations shown below. Similarly, we will consider the motion

to be restricted to a single dimension, also for simplicity.

Let us assume a system of two particles, (1) and (2), where each particle is affected

by a similar harmonic potential, where the potential acting on the first particle is

centered at distance −d from the origin and the one acting on the second particle

is centered at +d. We will also consider that the potential has an additional term

proportional to the square of the distance between particles (1) and (2). The potential

is then

V (x1, x2) =
1

2
mω2(x1 − d)2 +

1

2
mω2(x2 + d)2 − 1

2
αmω2(x1 − x2)

2, (3.30)

where α is a coupling constant. The equations of motion obtained from this potential

are

m
d2

dt2
x1 = −mω2(x1 − d) + αmω2(x1 − x2),

m
d2

dt2
x2 = −mω2(x2 + d)− αmω2(x1 − x2).

(3.31)

From this, we can see that the effect of the coupling term is a repulsive force between

the particles when α > 0, or an attractive one when α < 0. The system in Eq. (3.31)

represents two coupled differential equations, which can be written as

m
d2

dt2
x⃗ = −mω2K x⃗−mω2d⃗, (3.32)

with x⃗ being the vector with components x1 and x2, and K and d⃗ being

K =

(
1− α α
α 1− α

)
, d⃗ =

(
−d
d

)
. (3.33)
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It is important to note that, for a general system of N coupled harmonic oscillators,

Eq. (3.32) can be generalised by using the corresponding form ofK and d⃗, which are now

an N ×N matrix and an N -dimensional vector, respectively. The system of differential

equations in Eq. (3.32) can be decoupled by diagonalising K. In the following, we show

how this is done for N = 2, which will be the relevant case for the results shown in this

thesis. For N = 2, the basis that diagonalises K is given by

xCOM =
x1 + x2

2
,

xB = x1 − x2,
(3.34)

where COM stands for center-of-mass since xCOM denotes the position of the center of

mass, and B stands for breathing since xB denotes the distance between the particles

for which the solution, as we will see below, is a sinusoidal expansion and contraction.

With this change of variables, we obtain a system of decoupled differential equations

d2

dt2
xCOM = −ω2xCOM,

d2

dt2
xB = −ω2(1− 2α)xB + 2ω2d,

(3.35)

with solution
xCOM(t) = ACOM sin(ωCOMt+ ϕCOM),

xB(t) =
2d

1− 2α
+AB sin(ωBt+ ϕB).

(3.36)

Here ACOM, AB, ϕCOM, and ϕB are constants obtained from the initial conditions and

ωCOM and ωB are given by
ωCOM = ω,

ωB = ω
√
1− 2α.

(3.37)

With this solution, obtained for the uncoupled reference system, we can predict the

motion of particles (1) and (2) by inverting Eq. (3.34). An example of the motion due

to the center of mass mode and the breathing mode can be seen in Fig. 3.3.

Now that we know the solution of this classical system, we can quantise it. We start

by writing the classical Hamiltonian

H =
p21
2m

+
p22
2m

+
1

2
mω2(x1 − d)2 +

1

2
mω2(x2 + d)2 − 1

2
αmω2(x1 − x2)

2. (3.38)
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3.2 Coupled quantum harmonic oscillators

Figure 3.3: Pair of classical coupled harmonic oscillators. Left: Motion of the
coupled particles, x1(t) and x2(t), for ω = 1, α = −1, ACOM = 1, AB = 0, ϕCOM = ϕB = 0
and d = 3. For this choice of parameters, the whole motion is due to the center of mass
mode, while there is no motion due to the breathing mode. We can see that for this case,
the two particles are always moving in the same direction, keeping the distance between
them constant and equal to 2d/(1 − 2α) = 2. Right: Similar plot but for the parameters
ω = 1, α = −1, ACOM = 0, AB = 1, ϕCOM = ϕB = 0 and d = 3. In this case, there is no
motion due to the center of mass mode and all the motion is due to the breathing mode.
The middle point between the particles is constant, but the relative distance between the
particles changes. As we can see, the frequency for this case is ωB = ω

√
1− 2α =

√
3.

By introducing
pCOM = p1 + p2,

pB =
p1 − p2

2
,

(3.39)

and
µCOM = 2m,

µB =
m

2
,

(3.40)

we obtain that — up to a constant factor, which is equivalent to a global energy offset

— the Hamiltonian can be written as

H =
p2COM

2µCOM
+

p2B
2µB

+
1

2
µCOMω

2
COMx

2
COM +

1

2
µBω

2
B

(
xB − 2d

1− 2α

)2

. (3.41)

With the change of variable

x′B = xB − 2d

1− 2α
, (3.42)

it simplifies to

H =
p2COM

2µCOM
+

p2B
2µB

+
1

2
µCOMω

2
COMx

2
COM +

1

2
µBω

2
Bx

′ 2
B . (3.43)
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Now that we have the form of the Hamiltonian, we can quantise it. For this, we

will use the operators

XCOM =
X1 +X2

2
, PCOM = P1 + P2,

X ′
B = X1 −X2 −

2d

1− 2α
, PB =

P1 + P2

2
.

(3.44)

These operators satisfy the canonical commutation relations, for which the only com-

mutators that are not 0 are [XCOM, PCOM] and [XB, PB], which are equal to iℏ. Thus,

these operators can be interpreted as position and momentum operators of two inde-

pendent particles, which we can use to quantise the Hamiltonian in Eq. (3.43) to obtain

H =
P 2
COM

2µCOM
+

P 2
B

2µB
+

1

2
µCOMω

2
COMX

2
COM +

1

2
µBω

2
BX

′ 2
B . (3.45)

In a similar way as in the previous cases, we will introduce the creation and destruction

operators, which in this case are defined as

aCOM =

√
µCOMωCOM

2ℏ

(
XCOM +

i

µCOMωCOM
PCOM

)
,

aB =

√
µBωB

2ℏ

(
X ′

B +
i

µBωB
PB

)
,

(3.46)

with which we can write the Hamiltonian as

H = ℏωCOM

(
a†COMaCOM +

1

2

)
+ ℏωB

(
a†BaB +

1

2

)
. (3.47)

Thus, this Hamiltonian is equivalent to two independent QHO. In the same way as

for the three-dimensional QHO in Sec. 3.1, the eigenstates of this Hamiltonian can

be written as the tensor product of the eigenstates of each individual QHO. There-

fore, the basis of eigenstates Eq. (3.47) will be given by all the possible combinations

|nCOM, nB⟩ ≡ |nCOM⟩ ⊗ |nB⟩ with eigenvalues of the form

H |nCOM, nB⟩ =
[
ℏωCOM

(
nCOM +

1

2

)
+ ℏωB

(
nB +

1

2

)]
|nCOM, nB⟩ (3.48)
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3.3 Coherent and thermal states

While the Fock states introduced in Sec. 3.1 are important due to their role as eigen-

states of the QHO, there are other important states that must be introduced. This is

the case of coherent states and thermal states.

3.3.1 Coherent states

Coherent states, |α⟩ with α ∈ C, can be defined as eigenstates of the destruction

operator, a, that is

a |α⟩ = α |α⟩ . (3.49)

Using this definition, one can find that they have the following form

|α⟩ = e−
|α|2
2

∑
n=0

αn

√
n!

|n⟩ . (3.50)

The physical relevance of coherent states stems from their properties in phase space.

Their mean position and momentum are given by the eigenvalue α

⟨X⟩α = ⟨α|X |α⟩ =
√

2ℏ
mω

Re(α), (3.51)

⟨P ⟩α = ⟨α|P |α⟩ =
√
2ℏmω Im(α). (3.52)

Their variances

∆X2 = ⟨α|X2 |α⟩ − ⟨α|X |α⟩2 = ℏ
2mω

, (3.53)

∆P 2 = ⟨α|P 2 |α⟩ − ⟨α|P |α⟩2 = ℏmω
2

, (3.54)

saturate the lower limit of the uncertainty principle

∆X∆P =
ℏ
2
, (3.55)

Finally, one can study the evolution of a coherent state, |α0⟩, under the QHO Hamil-

tonian, to obtain:

|α(t)⟩ =
∣∣α0e

iωt
〉
. (3.56)
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Therefore, the state at any time under this evolution is also a coherent state, where the

argument of the state differs from the initial one, α0, by a time-dependent phase. Since

the state at all times will be also a coherent state, we can use Eq. (3.51) to Eq. (3.53)

to obtain the evolution of a coherent state over time in phase space. Finally, one can

define the displacement operator, D(α), as the operator that creates the coherent state,

|α⟩, when applied to the vacuum state, |0⟩, (which is also a coherent state), that is

D(α) |0⟩ = |α⟩ , (3.57)

which has the form

D(α) = exp
(
αa† − α∗a

)
. (3.58)

After obtaining the properties and evolution of the coherent states in phase space,

one can understand their importance, since they are the closest quantum analog to a

classical harmonic oscillator. An example of a coherent state in phase space and the

application of a displacement operator can be seen in Fig. 3.4.

Figure 3.4: Coherent states in (dimensionless) phase space. Left: The displace-
ment operator, D(α) (in this case α = 3eiπ/4 = |α|eiθ), moves the initial state |0⟩ (shown
in red) in phase space to obtain the state |α⟩ (in blue). The circles represent the standard
deviations associated to these states. Right: The obtained coherent state then evolves
under the QHO Hamiltonian following the trajectory in orange.

3.3.2 Thermal states

A thermal state describes a QHO in thermodynamic equilibrium with a reservoir at

temperature T . The density operator of a single-mode QHO (as in Eq. (3.13)) is given
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by [110]

ρ =
e−H/kT

Z
, (3.59)

where k is the Boltzmann constant and Z is a normalisation coefficient given by

Z = Tr
(
e−H/kT

)
=

eℏω/2kT

eℏω/kT − 1
, (3.60)

The populations of the thermal state in Eq. (3.59) are given by

pn̄(n) = e−ℏω(n+1)/kT
(
eℏω/kT − 1

)
. (3.61)

which means that the populations decay exponentially as a function of n. The subindex

n̄ represents the mean phonon number, given by

n̄ =
1

eℏω/kT − 1
. (3.62)

The value n̄ is enough to characterise the thermal state since it is possible to write the

populations as

pn̄(n) =
n̄n

(n̄+ 1)n+1
. (3.63)

Finally, one can prove that the coherences of a thermal state are all zero. There-

fore, a thermal state is a completely statistical mixture. Thermal states are useful

when modeling an experimental preparation of a QHO, such as the one describing the

motional states of trapped ions, where imperfections on the preparation can cause the

appearance of this kind of states.
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Chapter 4

Ion traps

Up to this point, we have introduced some basic theoretical concepts of quantum me-

chanics that will be useful for the understanding of this thesis. However, we still have

to understand how a quantum computation can be achieved experimentally.

There are different architectures for implementing quantum computers that use dif-

ferent physical systems to encode qubits and perform quantum information processing.

Some of these implementations are based on superconductors [28, 29], quantum dots

[31, 32], Rydberg atoms [34–36] in optical lattices [38–40] or tweezer arrays [41, 42], or

trapped ions [19–27]. In this thesis, we will focus on the latter implementation, where

trapped ions are used to encode qubits. We do this since some of the results of the

Bayesian techniques presented in this thesis are particularised to calibrate trapped-ion

experiments. However, we note that generalisations of these techniques can be applied

to other architectures.

The application of trapped-ion systems for quantum computation was first intro-

duced by Cirac and Zoller [19]. In this implementation, trapped ions are used to

approximate qubits, with the motional state shared by these ions being used to create

entanglement. Since this initial proposal, trapped-ion technology has developed rapidly,

achieving high-fidelity single-qubit operations [112], qubit state preparation and read-

out [113], entangling operations [114], and even quantum error correction [48, 49, 51].

Additionally, the different ions and their respective internal levels provide a rich variety

of levels to encode the qubits or to use as auxiliary levels, as well as different approaches

for performing quantum gates. However, while trapped-ion systems are successful in
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this sense, they show problems such as relatively slow operations compared to other

qubit implementations.

In the following we provide an introduction to the basics of trapped-ions systems,

giving a brief overview of how the ions are trapped, how the qubits are encoded in

the energy levels of the ions, and what are the basic quantum operations that can be

applied to the ions.

4.1 Trapping the ions

To perform quantum operations on ions, one first needs to trap them. In order to

do this, one can use Penning traps [115–117], which are based on the application of

an electric and magnetic field. Another option is to use Paul traps [27, 118], which

combines oscillating and static electric fields. The latter is the case that we will study

here.

Figure 4.1: Linear Paul trap. A linear Paul trap can be obtained by using two opposing
end-cap electrodes and four blades. A DC voltage is applied to the two end-cap electrodes,
which creates a confining potential along the longitudinal axis. Additionally, a radial
confinement is obtained by applying an oscillating voltage to two of the four blades, while
setting the other two to ground. By setting the trap parameters correctly, one can obtain
an effective confining potential in which the trapped ions are positioned in the spatial
direction defined by the end-cap electrodes (see Eq. (4.7)).

In order to trap the ions, we need to create a confining potential. An initial idea

would be to use an electric potential of the form

V (x, y, z) =
1

2
(αx2 + βy2 + γz2), (4.1)
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which would be confining in the three spatial directions. However, due to Earnshaw’s

theorem, an electrostatic potential of this form cannot exist. Since it must satisfy

Laplace’s equation

∇2 V (x, y, z) = α+ β + γ = 0, (4.2)

the potential would be non-confining in at least one of the spatial directions. In order

to circumvent this problem, one can use a time-dependent potential of the form [119]

V (x, y, z, t) = V0 cos(ωT t)(x
2 − y2) + U0

(
z2 − 1

2
(x2 + y2)

)
. (4.3)

This yields the equations of motion

d2x

dt2
+

[
qV0
m

cos(ωT t) +
qU0

m

]
x = 0,

d2y

dt2
+

[
−qV0
m

cos(ωT t) +
qU0

m

]
y = 0,

d2z

dt2
+

2qU0

m
z = 0,

(4.4)

with m and q being the mass and charge of the ion, respectively. These are Mathieu

equations [120] and can be written as

d2ri
dτ2

+ (ai − 2qi cos(2τ))ri = 0, (4.5)

with r⃗ = (x, y, z) being the position vector with i = x, y, z, 2τ = ωT t, and

ax = ay = −1

2
az =

4qU0

mω2
T

qx = −qy =
4qV0
mω2

T

, qz = 0.

(4.6)

For |ai| ≪ 1 and |qi| ≪ 1, the approximate solutions of Eq. (4.5) are given by

ri(t) ≈ Ai cos(νit+ ϕi)
[
1 +

qi
2
cos(ωT t)

]
, (4.7)

where

νi =
ωT

2

√
ai +

q2i
2
. (4.8)

We have also introduced Ai, which are the amplitudes of the movement, and ϕi, which
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are the phases. Each of them is determined by the initial conditions.

There are two different terms in Eq. (4.7). The first one is the oscillation described

by νi, which is called the secular motion. The second one is the term dependent on ωT

which, since we are considering |qi| ≪ 1, is usually called micromotion. If we ignore the

micromotion, we can see that the ion is trapped in the three spatial directions by an

effective harmonic potential, which can be quantised. Additionally, if the parameters

are selected such as νx, νy ≫ νz, then the motion of the ion can be considered to be

restricted to one spatial dimension.

The previous derivation was performed for a single ion in the trap. In order to

obtain the behaviour for N ions, one must consider the potential, which accounts for

both the harmonic potential and the Coulomb interaction between ions

V =
1

2

N∑
n=1

mν2zn(t)
2 +

N∑
n,m=1,n ̸=m

q2

8πϵ0

1

|zn(t)− zm(t)|
, (4.9)

with ν ≡ νz, since we are considering that the movement is restricted to the z-direction,

ϵ0 being the vacuum permittivity and zn(t) being the position of the nth ion. Assum-

ing that the system is sufficiently cold, the motion can be approximated as a small

movement, qn(t), around an equilibrium position, z0n:

zn(t) ≈ z0n + qn(t).

With this, one can calculate the equilibrium positions by solving(
∂V

∂zn

)
zn=z0n

= 0. (4.10)

Using the length scale, l

l =

(
q2

4πϵ0mν2

)
, (4.11)

and the dimensionless equilibrium position, un = z0n/l, Eq. (4.10) can be written as

um −
m−1∑
n=1

1

(um − un)2
+

N∑
n=m+1

1

(un − um)2
= 0, m = 1, ..., N. (4.12)
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Solving this equation for N = 2 ions in the trap, one can obtain

u1 = −
(
1

2

)2/3

, u2 =

(
1

2

)2/3

. (4.13)

As for the normal modes of the coupled oscillator, to obtain them one has to write

the Hamiltonian

H =
m

2

N∑
n=1

(q̇n)
2 +

1

2

N∑
n,m=1

qnqmKnm, (4.14)

with Knm being the matrix defined by

Knm =

(
∂V

∂qn∂qm

)
qn=qm=0

=

1 + 2
∑N

k=1
k ̸=m

1
|um−uk|3

if n = m

− 2
|um−un|3

if n ̸= m
. (4.15)

As in Sec. 3.2, one can obtain the eigenvectors and eigenvalues of Knm to solve this

problem. For N = 2 one finds the center-of-mass and breathing modes

vCOM =
1√
2
(1, 1), vB =

1√
2
(−1, 1), (4.16)

with eigenvalues λCOM = 1 and λB = 3, which results in a frequency for these modes of

νCOM = νz and νB =
√
3νz. For bigger values of N , one can also calculate the normal

modes [121]. For any number of ions, the least energetic mode is always the COM

mode, with the frequency of the second most energetic state always being
√
3 times

that of the COM mode. Thanks to this energy gap between the COM mode and the

others, we will be able to consider only the COM mode.

In this thesis, we will focus on linear Paul traps like the one that we just explained.

However, it is important to mention that, for the particular case of qubits based on

trapped ions in Paul traps, as the number of qubits increases the distance between ions

is reduced. Solving Eq. (4.12) for different values of N , one can find that the minimum

distance between ions is given, approximately, by the following formula [121]

zmin(N) = l · 2.018

N0.559
, (4.17)

which can be used to estimate the ion-storing capabilities of the trap. This scaling

effect is a problem since having closer ions increases the errors appearing due to cross-

talk effects [44], which appears due to the laser fields used to manipulate the quantum
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information of some qubits, which we will explain in the next sections, affecting neigh-

bour qubits. However, this can be accounted for by using methods aimed to correct

these errors [122–124]. Another option is to use a so-called shuttling ion trap [125–129].

Within this approach, when one needs to manipulate a set of qubits, they are moved

from a storage zone to a manipulation zone. In this zone, they are subjected to the

desired operations, and then they are moved back to the storage zone. However, this

approach introduces more complicated techniques, such as moving the ions to different

zones, that are not required to understand the results obtained in this thesis since we

use at most two trapped-ions, which will not be affected by cross-talk errors.

4.2 Energy levels of the ion

The choice of the ion used to approximate a two-level system is vital, since the |0⟩
and |1⟩ states, as well as the operations performed on the system, will depend on the

energy levels of the ion, which results in different categories of trapped-ion qubits.

First, there are hyperfine qubits, which encode the qubit levels in hyperfine levels of

the ion, with a transition frequency on the order of the gigahertzs. Second, there are

Zeeman qubits that use magnetic fields to encode the qubits in the appearing Zeeman

splittings, yielding qubits with a transition frequency on the order of tens of megahertzs.

Another case is that of fine structure qubits that use fine structure levels with transition

frequencies of the order of tens of terahertzs to encode the qubit. Finally, there are

optical qubits that use states separated by optical transitions, that is, of the order of

hundreds of terahertzs, to encode the qubits.

For this thesis, we will consider optical qubits encoded in the 40Ca+ ion [44]. Using

the ground state 4S1/2 and the metastable excited state 3D5/2 with a lifetime of 1.1s.

The 4S1/2 has two Zeeman sublevels (m = ±1/2) while the 3D5/2 state has six (m =

±1/2,±3/2,±5/2). A uniform magnetic field in the position of the ion causes a Zeeman

shift of the energies of the levels given by

∆ωZ(m,B) = mgj
µBB

ℏ
(4.18)

where B is the magnetic field, µB is the Bohr magneton and gj is the Landé g-factor,

which for the state 4S1/2 is gS ≈ 2 and for the 3D5/2 state is gD ≈ 1.2. Due to this effect

of the magnetic field, the states used for the qubit are the 4S1/2(m = −1/2) ≡ |1⟩ ≡ |g⟩
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and 3D5/2(m = −1/2) ≡ |0⟩ ≡ |e⟩ states, since their transition frequency will be the

least sensitive to fluctuations in the magnetic field. In the following, we will use the

notation |e⟩ and |g⟩ over |0⟩ and |1⟩ when considering trapped-ion qubits to avoid

confusion between their internal and motional state.

Figure 4.2: Energy levels of the 40Ca+ ion. A qubit can be encoded by using the
ground state 4S1/2(mj = −1/2) ≡ |1⟩ ≡ |g⟩ and the metastable excited state 3D5/2(mj =
−1/2) ≡ |0⟩ ≡ |e⟩.

Using laser light with a frequency of 729nm we can drive resonant transitions be-

tween the |g⟩ and |e⟩ levels (see Sec. 4.3), which will be needed for performing single-

qubit gates. The measurement of the qubit state is performed by electron shelving,

which takes advantage of the 4S1/2 ↔ 4P1/2 transition, where the ion is illuminated

with a laser of frequency 397nm. This will either project the state of the qubit to the

4S1/2 or the 3D5/2 state. First, if the qubit is projected to the ground state 4S1/2, it

will go through a cycle of getting excited to the 4P1/2 state and decaying to the orig-

inal 4S1/2 state. This cycle will emit photons that can be measured and interpreted

as a measurement of the |g⟩ state. However, it is also possible for the 4P1/2 state to

decay to the 3D3/2. In order to solve this problem, an additional 866nm laser can be

used to pump this unwanted population back to the 4P1/2 level. Second, if the state is

projected to the excited state, 3D5/2, this state will not be affected by the laser, and no

photons will be measured. The energy levels of the 40Ca+ ion and the laser frequencies

involved in these operations are shown in Fig. 4.2.
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4.3 Single-qubit gates

Now that we know how to approximate a two-level system by using an ion, we need to

explain how to perform quantum operations on this system. We will begin by explaining

the single-qubit operations since they are simpler than the entangling operations.

The Hamiltonian describing an ion in the trap is given by

H0 = Hion +Htrap. (4.19)

Here Htrap represents the part of the Hamiltonian appearing due to the harmonic

potential of the trap, given by

Htrap = ℏν(a†a+ 1/2), (4.20)

where a† and a are the creation and annihilation operators related to the vibrational

state of the ion, respectively. The part appearing due to our approximated two-level

system is

Hion = ℏ
ωeg

2
σz, (4.21)

with ωeg being the energy difference between the ground and excited levels, |g⟩ and

|e⟩. The eigenstates of H0 are of the form |g, n⟩ and |e, n⟩ where n is an integer that

indicates the excitation state of the harmonic Hamiltonian.

In order to interact with this system, we will use a laser with an electric field

described by

E(x, t) = E0e
i(kx−ωt+ϕ) + E0e

−i(kx−ωt+ϕ), (4.22)

with E0 being the amplitude of the electric field, k the wavenumber, ω the frequency

of the laser, and ϕ the phase. This interaction is modelled by a new term in the

Hamiltonian, Hint(t), given by

Hint(t) = ℏ
Ω

2

(
ei(kx−ωt+ϕ) + e−i(kx−ωt+ϕ)

)
(|e⟩ ⟨g|+ |g⟩ ⟨e|) , (4.23)

where Ω is the Rabi frequency, which depends on the interaction of the laser with the

dipole moment of the ion (or the quadrupole in the case of the ground and excited

levels that we defined in Sec. 4.2 since for this case the transition is dipole-forbidden).
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Defining σ+ = |e⟩ ⟨g| and σ− = |g⟩ ⟨e| we have the complete Hamiltonian

H(t) = ℏ
ωeg

2
σz + ℏν(a†a+1/2)+ ℏ

Ω

2

(
ei(kx−ωt+ϕ) + e−i(kx−ωt+ϕ)

) (
σ+ + σ−

)
. (4.24)

Since the ion is trapped in the harmonic potential of the trap, it is convenient to

replace the position operator by the a and a† operators. By making this change we

obtain

H(t) = H0 + ℏ
Ω

2

(
ei(η(a+a†)−ωt+ϕ) + e−i(η(a+a†)−ωt+ϕ)

) (
σ+ + σ−

)
. (4.25)

We have introduced the Lamb-Dicke parameter [27]

η = k

√
ℏ

2mν
, (4.26)

which relates the recoil energy due to the ion absorbing a photon to the energy spacing

of the quantised levels of the harmonic oscillator. In the Lamb-Dicke regime, the Lamb-

Dicke parameter and the motional state of the ion, |n⟩, satisfy η
√
n ≪ 1, and we can

approximate the Hamiltonian as

H(t) ≈ H0 + ℏ
Ω

2

[
(1 + iη(a+ a†))e−i(ωt−ϕ) + (1− iη(a+ a†))ei(ωt−ϕ)

] (
σ+ + σ−

)
.

(4.27)

We can change this Hamiltonian to the interaction picture, defined as

Ĥ(t) = U(t)H(t)U †(t) + i

(
d

dt
U(t)

)
U †(t), (4.28)

with

U(t) = eiH0t. (4.29)

The interaction Hamiltonian is approximately

Ĥ(t) ≈ ℏΩ
2

(
σ+ei(ωeg−ω)te−iϕ + σ−e−i(ωeg−ω)teiϕ

)
+
iℏΩη
2

(
aσ+ei(ωeg−ω−ν)te−iϕ + a†σ−e−i(ωeg−ω−ν)teiϕ

)
+
iℏΩη
2

(
a†σ+ei(ωeg−ω+ν)te−iϕ + aσ−e−i(ωeg−ω+ν)teiϕ

)
,

(4.30)

where we have used the rotating wave approximation (RWA) to ignore the fast rotating
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terms.

We can further simplify this Hamiltonian, for example, by considering that the

frequency of the laser is resonant with the qubit transition, ω = ωeg. In this case,

the only resonant terms would be those that have a ωeg − ω in the exponential. The

resulting Hamiltonian is

Ĥ(t) ≈ ℏΩ
2

(
σ+e−iϕ + σ−eiϕ

)
=

ℏΩ
2
σϕ (4.31)

with

σϕ = σx cos(ϕ) + σy sin(ϕ). (4.32)

Using that σ2ϕ = 1, one can check that the evolution introduced by this Hamiltonian is

Û(t) = e−iHt/ℏ = 1 cos

(
Ω

2
t

)
− iσϕ sin

(
Ω

2
t

)
. (4.33)

This evolution is a rotation on the Bloch sphere around a rotating axis defined by σϕ,

while keeping the motional state of the ion unchanged. Therefore, the interaction of a

laser of this frequency introduces Rabi oscillations between |g, n⟩ and |e, n⟩, which is

also referred to as carrier transition. For a given Ω one can tune the time of the gate to

obtain the desired rotation angle, with especially important cases being the π/2-pulses

(Ω ·t = π/2), which introduce a rotation of π/2, and the π-pulses (Ω ·t = π), of rotation

angle π, effectively swapping the population of |g⟩ and |e⟩ .
A different case happens when the frequency of the laser is ωeg − ν. For this case,

the Hamiltonian is

Ĥ(t) ≈ iℏΩη
2

(
aσ+ei(ωeg−ω−ν)te−iϕ + a†σ−e−i(ωeg−ω−ν)teiϕ

)
, (4.34)

which introduces Rabi oscillations of the form |g, n⟩ ↔ |e, n− 1⟩, also called red side-

band transition. Finally, if the frequency of the laser is ωeg + ν, the Hamiltonian is

Ĥ(t) ≈ iℏΩη
2

(
a†σ+ei(ωeg−ω+ν)te−iϕ + aσ−e−i(ωeg−ω+ν)teiϕ

)
, (4.35)

which introduces Rabi oscillations of the form |g, n⟩ ↔ |e, n+ 1⟩, also called blue side-

band transition. A schematic of these processes is shown in Fig. 4.3.

From this interaction of the trapped ion with laser light of the appropriate frequency,

it is possible to use the carrier transition to perform single-qubit rotations around an
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Figure 4.3: Trapped ion transitions. Ladder energy levels of the trapped ion. We
show only the motional level |n⟩ and its neighbours. (a) Illuminating the ion with a laser
of frequency ω = ωeg introduces Rabi oscillations corresponding to the carrier transitions,
|g, n⟩ ↔ |e, n⟩. (b) When the frequency of the laser is ω = ωeg − ν, the red sideband
transitions (|g, n⟩ ↔ |e, n− 1⟩) are the resonant ones. (c) Otherwise, if the frequency is
ω = ωeg + ν the resonant transitions are the blue sideband ones, |g, n⟩ ↔ |e, n+ 1⟩.

axis located in the equator of the Bloch sphere, with this rotation axis being selected

by the phase of the laser, ϕ. Additionally, the red sideband transition can be used to

decrease the motional state of the ion by following a process called sideband cooling.

This process consists in using a laser resonant to the red sideband to couple an ion in

the |g, n⟩ state to the |e, n− 1⟩ state. The population transferred to the |e, n− 1⟩ can
in turn decay to the |g, n− 1⟩, effectively reducing the motional state. Repeating this

cycle effectively reduces the motional state of the ion. However, since an advantage

of using the state 3D5/2 for encoding the |e⟩ state was its relatively long lifetime, the

decay part would require considerable time. In order to speed up this process, one can

couple the metastable state 3D5/2 to the short-lived 4P3/2 state by using laser light of

854nm. The population transferred to this state decays to the state |g, n− 1⟩ faster,

thus reducing the time required for the sideband cooling process. A representation of

these processes is shown in Fig. 4.4.

4.4 Entangling gates

In order to perform any unitary quantum operation on a qubit register, we need what

is called a universal set of gates. Up to this point, we have explained how to perform

single-qubit operations, but to complete our universal set of gates, we need to perform

entangling operations between different qubits. In the following, we will explain the
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Figure 4.4: Sideband cooling. (a) The state |g, n⟩ can be coupled to the |e, n− 1⟩
state by using a laser resonant to the red sideband transition. The population transferred
can then decay to the |g, n− 1⟩ state, effectively decreasing the motional energy of the ion.
(b) If the state used to define the |e⟩ state of the qubit has a relatively long lifetime, an
additional laser can be used to couple the state |e, n− 1⟩ to another auxiliary level |a, n− 1⟩
different from the ion levels used for defining the qubit and with a shorter lifetime. This
state can then decay to the |g, n− 1⟩ state, achieving a decrease of the motional energy of
the ion and requiring less time than by using a decay from |e, n− 1⟩.

Cirac-Zoller gate [19], which was the initial proposal for an entangling gate on a trapped-

ion setup.

The Cirac-Zoller gate, which was first proposed in 1995 [19] and experimentally

implemented in 2003 [130], consists in the application of three laser pulses applied to

a pair of ions prepared in the ground motional state. The first one is a red sideband

π-pulse acting on one of the qubits, let us call it A. This operation, UA, has no effect if

qubit A is in the ground state, but if it is in the excited state it will change the qubit to

the ground state and the motional state from |0⟩ to |1⟩. The second pulse, UB acts on

the second qubit, B, and it is a red sideband 2π-pulse with respect to the ground state

of the qubit and an auxiliary state of the ion, |a⟩B (not necessarily the one mentioned

for sideband cooling), such that if the qubit B is in the ground state of the qubit and

the center-of-mass mode of the ions is in the |1⟩ state, it gains a −1 phase, otherwise

it is left unchanged. The final pulse is just a repetition of UA. The states after the

application of each pulse for each of the four possible initial states are

|gA, gB, 0⟩
UA−−−−−→ |gA, gB, 0⟩

UB−−−−−→ |gA, gB, 0⟩
UA−−−−−→ |gA, gB, 0⟩

|gA, eB, 0⟩
UA−−−−−→ |gA, eB, 0⟩

UB−−−−−→ |gA, eB, 0⟩
UA−−−−−→ |gA, eB, 0⟩

|eA, gB, 0⟩
UA−−−−−→ −i |gA, gB, 1⟩

UB−−−−−→ i |gA, gB, 1⟩
UA−−−−−→ |eA, gB, 0⟩

|eA, eB, 0⟩
UA−−−−−→ −i |gA, eB, 1⟩

UB−−−−−→ −i |gA, eB, 1⟩
UA−−−−−→ −|eA, eB, 0⟩ .

(4.36)
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This gate, Uc−Z ≡ UA UB UA, can be used to create entanglement. For example,

combined with the Hadamard gate it creates a Bell state

HBCc−ZHAHB |eA, eB, 0⟩ =
1√
2
(|gA, eB, 0⟩ − |eA, gB, 0⟩). (4.37)

However, even if this gate can be used to create entanglement, it shows some problems

in its experimental implementation. First, the correct behaviour of the gate depends

on preparing the motional ground state. However, in the experiment, this will not be

possible, since the ions will be in a thermal state that, even if it has a small value n̄,

will reduce the fidelity of the gate. Second, this gate can be applied only to a pair

of ions, which is inconvenient since in the experiment there are situations where it is

preferable to apply an entangling gate over more than two ions at the same time.

Thus, even though the Cirac-Zoller gate was the first proposal for an entangling

gate in trapped ions, it is desirable to find an alternative that solves these problems,

such as the Mølmer-Sørensen gate [131, 132], which is based on the application of a

bichromatic laser beam that performs correlated spin flips. It has important advantages

over the Cirac-Zoller gate, such as being able to create entanglement with more than

two qubits, or being resilient, in first-order approximation, against imperfectly cooled

ions. We will explain in detail the working principle and derivation of this gate, as well

as different miscalibration errors that can appear in the experiment, in Chapter 9.
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Chapter 5

Quantum Error Correction

Up to this point, we introduced the basic elements of a quantum computer: the qubits,

the different operations that one can perform over them to process quantum information

and perform quantum computations, and an example of a physical platform in which a

quantum computer can be implemented. However, this implementation of a quantum

computer will be subject to imperfections which introduce noise into the computation

process. Of course, the existence of noise is not a problem appearing exclusively in

quantum computation. Classical computers also suffer errors in the bits during a com-

putation which are possible to correct by applying classical error correction protocols.

However, the quantum nature of a quantum computer restricts the tools available for

error correction. First of all, while creating copies of the information of a set of bits

is an important tool for classical error correction, the no-cloning theorem [14] states

that it is not possible to create copies of an arbitrary unknown quantum state. Second,

while one can measure a set of bits without changing their state, one can not measure

a set of qubits without projecting them into the eigenbasis of the measurement. Third,

the nature of the errors appearing in a qubit is more complex than those appearing in

a bit. Similar to a bit changing from state 0 to 1 or vice versa due to an error, a qubit

can suffer a similar effect with its states |0⟩ and |1⟩, but on top of that, qubits can also

lose the information inside the phase of a quantum superposition by either errors that

change this phase, or by decoherent errors that destroy the superposition, an example

being a trapped-ion qubit in a superposition decaying to the ground state.

In order to correctly perform quantum computations, one needs specific protocols

to detect and correct quantum errors with the experimentally available tools. This is
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where the field of Quantum Error Correction (QEC) appears. The main idea behind

QEC is to encode the information of a logical qubit into a set of physical qubits. If

an error happens in the qubit system then one can perform a set of measurement that

yield no information about the logical state and, in consequence, it does not change the

logical information. The outcomes from these measurements can then be associated

with an error, which can then be corrected.

The most basic QEC code is the 3-qubit code, encoding one logical qubit into three

physical ones. With this code, one can perform parity measurements to correct either

single-qubit errors or bit-flip errors, but not both. In order to obtain a more useful

QEC code, one has to introduce more physical qubits. This is the case of the Shor or

5-qubit codes, which can also correct phase-flip errors.

While QEC codes can correct errors that have happened in the physical qubits of

the system, they are vulnerable to errors happening in the circuit that implements the

QEC process itself. Due to this, one has to design QEC codes in such a way that

they can also correct the errors that they introduce into the system. These are the

so-called fault-tolerant circuit constructions. However, their application usually comes

with an increase in the number of physical qubits needed. On top of this, the threshold

theorem [46, 47, 63] establishes the existence of a critical error probability threshold for

which, if the error probability is under the threshold, the application of QEC techniques

reduces the probability of having a logical error. Moreover, below this threshold the

probability for an error that the QEC code cannot correct can be arbitrarily decreased

by increasing the code size.

A remarkable type of QEC codes, which can be made fault-tolerant, is the family

of topological codes [133]. These codes are built in such a way that the physical qubits

and the checks used to detect errors, called stabilisers (defined in detail in the next

section), define a specific topology (e.g. a torus or a two-dimensional bounded array).

By defining a code in this way, operators acting on the logical qubit are defined as chains

of physical operations that complete a non-trivial cycle around the given topology, that

is, they cannot be deformed into a single point. Due to this, for a logical error to

happen, errors must appear on physical qubits such as they complete a non-trivial

cycle. Additionally, one can perform measurements to infer a correction to the errors.

It is important to note that, for long sequences of errors appearing in the code, this

inference process can fail, introducing more errors to the code instead of correcting the
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previously existing ones. In this case, the combination of previously existing errors and

the new ones can complete a non-trivial cycle, resulting in a logical error. However,

since in the experimental implementations the errors are usually assumed to be local

and, as such, they are assumed to appear in random qubits, the probability of a logical

error happening decreases exponentially with the size of the code.

Current important examples of topological codes are the surface code [134, 135] and

the color code [136]. This is in part due to their high error thresholds for which current

estimates are between 0.5% and 1.14% [137–139] for the surface code and 0.082% and

0.37% [140–142] for the color code, but also due to their syndrome extraction depending

on gates applied between neighbouring qubits, that is, there is no need for interaction

between qubits far apart, which otherwise would be difficult to implement on certain

physical platforms. Additionally, these examples of topological codes can also imple-

ment some transversal gates, which means that the application of logical gates can

be performed by applying single-qubit gates on all the physical qubits. However, the

implementation of a universal gate set fault-tolerantly is known to be impossible by

a no-go theorem by Eastin and Knill [143]. While first implementations of non-fault-

tolerant surface and color codes have been implemented using different physical plat-

forms [51–56], the increase in size of quantum processors along with the improvements

on gate fidelities have been pushing closer to theoretical proposals of fault-tolerant

implementations [68, 144–147], resulting in very recent and exciting breakthrough ex-

periments [65–67].

While QEC is a large and active area of research, in this section we will build a brief

and direct explanation of the basic ideas of QEC needed to understand an example of

a QEC code, the Steane code, which is the target of the calibration protocol explained

in Chapter 7. For a broader and more detailed introduction to QEC, the reader is

referred to Refs. [18, 148, 149].

5.1 Stabiliser formalism

An important class of QEC codes are the stabiliser codes [150, 151]. The idea behind

them is that, after encoding a logical qubit of possible states |0⟩L and |1⟩L into N

physical qubits, it is possible to detect whether an error has happened in any of the

physical qubits by measuring a set of operators called stabilisers. A specific result of this
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set of measurements will reveal errors in the set of physical qubits without projecting

the logical qubit into the zero or one state. Once the errors on the physical qubits are

detected, they can be corrected to recover the correct logical state.

In order to understand these QEC codes, we begin by explaining the stabiliser

formalism, which is a way to define a state using a set of operators. A state |ψ⟩ is said

to be stabilised by the operator S if it is a +1 eigenstate of S

S |ψ⟩ = |ψ⟩ . (5.1)

Using this definition, one can define an N -qubit state, |ψ⟩, by using a set of N linearly

independent commuting stabilisers, {Si}Ni=1, that is

Si |ψ⟩ = |ψ⟩ , i = 1, ..., N. (5.2)

The operators Si may be elements of the extension of the Pauli group to a system of N

qubits. To understand why this is enough to define a state, note that the Hilbert space

of N qubits has dimension 2N and each of these equations divides it by two, leaving

just one possible state that has +1 eigenvalue for all of the N stabilisers.

In a QEC code of N qubits, one can define N−1 stabilisers, leaving a 2-dimensional

Hilbert space spanned by the +1 eigenstates of these stabilisers. Of these states, one

can define one of them as the logical zero state, |0⟩L, and the other as the logical

one, |1⟩L. Finally, one can define an additional stabiliser that will be responsible for

distinguishing which of these two logical states is the logical qubit, due to this, we

call this final stabiliser the logical operator. Since all the stabilisers commute with the

logical operator, one can measure all of them to obtain information about possible

errors happening in the physical qubits without changing the logical state.

Now that we have introduced the main idea behind QEC codes, we will explain a

simple but important example: the Steane code.

5.2 Steane code

The Steane code [152] is a stabiliser code that uses seven physical qubits to encode a

logical qubit, and it is the smallest case of a color code [136]. The logical subspace of
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5.2 Steane code

Figure 5.1: Steane code. Representation of the relation between the physical qubits
and the stabilisers used for the Steane code. Seven physical qubits are used to encode

a logical qubit in the two-dimensional +1 subeigenspace of six stabilisers: S
(i)
x and S

(i)
z

with i = 1, 2, 3. An arbitrary single-qubit error can be detected by performing stabiliser
measurements which can then be corrected.

the seven-qubit Hilbert space is defined by the following six stabilisers

S(1)
x = X1X2X3X4, S(1)

z = Z1Z2Z3Z4,

S(2)
x = X2X3X5X6, S(2)

z = Z2Z3Z5Z6,

S(3)
x = X3X4X6X7, S(3)

z = Z3Z4Z6Z7,

(5.3)

which are tensor products of Pauli X or Z operators with the subindex indicating on

which qubit each Pauli operator is applied. A representation of each of these stabilisers

and the qubits over which they act is shown in Fig. 5.1. Finally, one can define the

logical operator used to measure the state of the logical qubit, ZL, given by

ZL = Z1Z2Z3Z4Z5Z6Z7. (5.4)

Therefore, the logical zero state is the common +1 eigenstate of all the stabilisers as

well as of ZL, which is given by

|0⟩L =
1

2
√
2
( |0000000⟩+ |0110110⟩+ |1111000⟩+ |1001110⟩

+ |0011011⟩+ |0101101⟩+ |1100011⟩+ |1010101⟩). (5.5)

Similarly, one can find the form of the logical one state, |1⟩L. These states satisfy

ZL |0⟩L = |0⟩L and ZL |1⟩L = − |1⟩L. One can also define the logical X operator, XL,
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given by

XL = X1X2X3X4X5X6X7, (5.6)

which flips the logical qubit, XL |0⟩L = |1⟩L and XL |1⟩L = |0⟩L. Due to the form of

this construction, one can apply logical bit-flip and phase-flip gates by simply using

seven single qubit X or Z gates.

Now that we have defined the stabilisers and the logical states, let us assume that

an error E of the form of a Pauli operator occurs on one of the physical qubits that

encode the zero logical state. Since the error does not commute with all the stabilisers,

the state will no longer be a +1 eigenstate for all of them and

S(i)
α E |0⟩L = −E |0⟩L , i = 1, 2, 3, α = x, z (5.7)

for those stabilisers S
(i)
α that anticommute with E. Once the measurement of the

stabilisers has been performed, it is possible to obtain a one-to-one relation between

the measurement outcomes, also called syndrome, and the error that happened and

in which physical qubit it happened. One can then conclude which operation has to

be applied to correct the code. As an example, let us assume that the code suffers

an X1 error. The measurement of the S
(1)
z stabiliser would return a −1 while the

outcome of all the other stabiliser measurements would be a +1. This syndrome would

be associated to an X1 error, which can then be corrected by applying X1 on the first

qubit.

The Steane code ensures the correction of single bit-flip and/or phase-flip errors.

However, for some cases with more than one error of the same type, the result of the

correction plus the original error might complete a stabiliser, which would effectively

return the state to the correct logical state. An example of this would be when an X

error appears on the first, second, and third qubit. When one measures the stabilisers

for this case, the conclusion would be that an X error appeared on the fourth qubit,

so the correction corresponds to apply an X4 operator. For this case, the original

error plus the correction corresponds to an stabiliser, which leaves the original state

unchanged. Therefore, the Steane code can also correct these specific cases. However,

in order to ensure that the code corrects more than single bit flips and phase flips, one

has to increase the size of this code [136].
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Chapter 6

Bayesian formalism

When learning statistics, one usually sees two different approaches on how to interpret

sets of measured data, the common frequentist approach and the Bayesian approach.

The frequentist approach consists in assuming a model given a prior knowledge and

repeating the same experiment to estimate a set of probabilities based on the frequency

of each of the outcomes. These probabilities can then be used to obtain information on

the parameters of the model. Thus, a frequentist works by studying the frequency of

experimental outcomes, which are more accurate the more the experiment is repeated.

The Bayesian approach starts by modelling the prior knowledge by using a probability

distribution of the parameters of the system. This prior knowledge is updated mea-

surement after measurement, obtaining at the end a probability distribution that has

more information about the parameters of the experiment than the prior knowledge.

In this chapter, we provide an introduction to Bayes’ theorem and the concept of

Bayesian inference, which will be the central part of the protocols derived in this thesis.

6.1 Bayes theorem and Bayesian inference

Bayes’ theorem prescribes how to update the prior probability distribution P (Θ) of

a set of parameters Θ after a measurement outcome, m, by using the likelihood of

that outcome given Θ, P (m|Θ). The final result is a posterior probability distribution,

P (Θ|m), with the form

P (Θ|m) ∝ P (m|Θ)P (Θ) (6.1)
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up to a normalisation factor. This posterior can then be used as a prior for the next

update through an iterative process in which the probability distribution after T mea-

surements is given by

p(Θ|m1, ...,mT ) ∝ p(Θ)

T∏
t=1

P (mt|Θ), (6.2)

provided that the measurements are independent of each other. For an increasing

number of measurements, the degree of uncertainty of the parameters Θ will decrease

until we obtain a precise enough set of estimates for the parameters under study. An

example of Bayesian inference is shown in Fig. 6.1.

Figure 6.1: Bayesian inference example. A simple case of Bayesian inference can
be applied to the problem of characterising a Bernouilli experiment, e.g., estimating the
probability of obtaining tails or heads when tossing a coin [153]. If the probability of
obtaining heads is P (H|q) = q and for tails it is P (T |q) = 1 − q, the probability distri-
bution obtained by applying Bayesian inference after obtaining NH heads and NT tails
is P (q|NH , NT ) ∝ qNH (1 − q)NT . Left: Prior probability distribution of the parameter q
before tossing the coin, i.e., before measuring the system. Since nothing is known about the
system, the prior is a uniform probability distribution. Right: Probability distributions of
q after 10, 100, and 1000 measurements. The results are obtained by simulating a coin with
a true value of the parameter q of 0.7 and the estimate obtained after 1000 measurements
for the case shown is 0.69. Moreover, since we have access to the probability distribution,
we can easily calculate the standard deviation of this estimate, which is σq = 0.015.

While, as explained, Eq. (6.2) defines how to perform Bayesian inference for esti-

mating parameters, in some cases we will have a degree of freedom in the protocol in

the form of the measurements that we can perform. In the next section, we give a brief

explanation of how one can take advantage of this degree of freedom in order to select

the measurements that provide the most information about the desired parameters.
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6.2 Shannon’s entropy and adaptiveness

In order to decide which are the most informative measurements that we can perform in

a system, we will introduce a few basic concepts of information theory [153, 154]. In the

following we will use discrete one-dimensional probability distributions and outcomes

for simplicity, but the results shown are generalisable to other cases.

Shannon’s entropy, introduced by Claude Shannon in his paper “A Mathematical

Theory of Communication” in 1948 [155], quantifies the level of uncertainty of a random

variable, Θ. It is defined as

H(Θ) = −
∑
i

p(θi) log2(p(θi)), (6.3)

where θi represents each possible result of Θ, and we use base 2 logarithms, to express

the result in bits of information. From this definition, we can get the intuitive idea

that when the probability of a given outcome is much higher than the others, which

is a case where we have a considerable amount of information about the system, the

entropy is low, with the limiting case where one of the probabilities is one and the

others zero having no entropy. Similarly, if all the probabilities are similar, that is, we

do not know much about the system, then the entropy is high, with the limiting case

of having equal probabilities for all outcomes maximising the entropy.

As we have seen from the Bayesian approach, our knowledge about a given param-

eter can be expressed as a probability distribution and, as such, we can directly use

Shannon’s entropy. In particular, in the Bayesian approach we work with prior and

posterior distributions, where the posterior is obtained after performing a measurement

on the system (which can be seen as asking a question) and obtaining an outcome (an

answer). We will use {mα
j }Jj=1 to denote the set of all J possible outcomes when the

measurement settings used for obtaining that outcome (or the question asked) is α. If

we were to obtain the outcome mα
j , we can compare the entropy difference between the

prior and the posterior

IG(Θ,mα
j ) =

∑
i

p(θi|mα
j ) log2(p(θi|mα

j ))−
∑
i

p(θi) log2(p(θi)). (6.4)

The interpretation of this result is that, thanks to the measurement performed on the

system, we have gained information about the system, and this is given by IG(Θ,mα
j ).
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Figure 6.2: Adaptive measurement example. In this example, the goal is to guess
an integer between 1 and 8 that another person has chosen. Unless we know that this
person had some bias when choosing the number, our best prior is a discrete uniform
distribution. This prior has an entropy of 3 that can be obtained by using Eq. (6.3), this
means that there are 3 bits of information to be learnt since the distributions involved
are uniform. In this example, we show two different measurement settings, i.e., questions
that we can ask: the optimal approach (green) and the “bold” approach (red). In the
optimal case, the questions are selected in such a way that for each possible answer the
entropy of the posterior is 2, which means that the expected information gain with that
measurement setting is 1 bit. Following this strategy, one will guess the correct number
after three questions. In the “bold” approach, one tries to guess directly the number, this
high-risk high-reward strategy is successful one out of eight times, in which case one learns
3 bits. However, the other times the information gain is only 0.2 bits. This results in an
expected information gain of 0.55 bits for this measurement setting. This strategy guesses
the correct number after 4.375 questions on average.

We ideally want to perform measurements that maximise this information gain. How-

ever, since we do not know what the outcome of our measurement will be, the best we

can do is to use a measurement setting that maximises

IG(Θ, α) =
∑
j

IG(Θ,mα
j )p(m

α
j ). (6.5)

In other words, we look for the measurement setting that maximises the expected infor-

mation gain based on our current knowledge about the system. It should be noted that

this result for optimal experimental design can also be obtained by arguments of max-

imising the expected Kullback-Leibler divergence between the prior and the posterior
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distribution [153, 156].

Bayesian updates and optimal measurement settings can be thought of as being

at the core of how we, as humans, infer to reach a conclusion, where we can look

around or ask questions (among other tools at our disposal) to update our knowledge

about our surroundings. In this sense, it is intuitive that there are strategies to obtain

information more efficiently, and the previous result for optimal measurement settings

can be used to obtain the optimal strategy for simple cases, such as solving problems

in game theory like the examples in Ref. [157] or Fig. 6.2. Unfortunately, even when

finding an optimal measurement setting is possible, this might depend on numerical

calculations that slow down a Bayesian inference process. However, as we will see in

Chapters 7 and 8, one can use some approximations about the prior distribution to

obtain an optimal measurement setting by using analytically obtained rules.

For more details about information theory and optimal measurement settings, the

reader is referred to Refs. [158, 159]

6.3 Particle filtering algorithm

Using the results explained in Sec. 6.1 we can obtain a probability distribution for our

unknown parameters based on the results of a set of measurements. However, obtaining

interesting properties, such as the mean values or the variances, from the inferred prob-

ability distributions resulting from an inference process cannot be done analytically in

general. Therefore, we depend on obtaining these values numerically. A simple way

to perform this numerical process is to evaluate the probability distribution at a set

of points to discretise it. However, the dimensionality of the probability distribution

under study increases with the number of parameters that we want to estimate. If

we were to discretise the probability distribution by evaluating it in points of a fixed

grid in the parameter space, this increasing dimensionality would require an increasing

number of evaluations of the distribution, otherwise, we could run into a discretisation

error when calculating the estimates and variances of the distribution due to undersam-

pling the probability distribution. Since for a higher number of parameters we would

need a higher number of evaluations, this could make the process prohibitively slow.

To circumvent this dimensionality problem we draw on the ideas of particle filtering
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algorithms [160–164] with which we can obtain approximate samples from a given prob-

ability distribution, which can then be used to obtain an approximation of its estimates

and variances. Obtaining approximate samples allows us to adapt the evaluations that

we perform on the probability distribution so that they are located in more relevant

points on the parameter space, therefore requiring fewer evaluations than a naive fixed

grid approach as the one described before.

In the following, we introduce the basic methods that we will use for a particle

filtering algorithm: The importance sampling and the sampling importance resampling

methods. We will then explain how to use them for a Bayesian inference protocol for

parameter estimation.

6.3.1 Importance sampling (IS)

Our goal is to obtain a set of samples from a target probability distribution, p(Θ),

where Θ is a vector composed by the parameters that we want to learn, and which we

consider to be variables since we use a Bayesian approach. However, due to the form

of p(Θ), there might not be a simple way to sample directly from it. Thus, we will use

a sampling probability distribution, s(Θ), from which we assume that it is simple to

obtain a set of Np samples, {Θ̃i}
Np

i=1, where Θ̃i is a point in the parameter space that we

will call particle. Since we can obtain perfect samples from s(Θ), we can approximate

the probability in an infinitesimal interval as

s(Θ)dΘ ≈ 1

Np

Np∑
i=1

δ
Θ̃i

(dΘ), (6.6)

where we introduce the Dirac measure,

δ
Θ̃i

(A) ≡

{
1, if Θ̃i ∈ A

0, otherwise
. (6.7)
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The expected value of a function f(Θ) under p(Θ) is

f(Θ) =

∫
R
f(Θ)p(Θ)dΘ =

∫
R
f(Θ)

p(Θ)

s(Θ)
s(Θ)dΘ

≈ 1

Np

Np∑
i=1

∫
R
f(Θ)

p(Θ)

s(Θ)
δ
Θ̃i

(dΘ)

=
1

Np

Np∑
i=1

f(Θ̃i)
p(Θ̃i)

s(Θ̃i)
=

Np∑
i=1

f(Θ̃i)w
(i), (6.8)

where we have defined the importance weights, w(i), as

w(i) ≡ 1

Np

p(Θ̃i)

s(Θ̃i)
for i = 1, ..., Np, (6.9)

which is the same result that we would obtain by using the following approximation

for p(Θ):

p(Θ)dΘ ≈
Np∑
i=1

w(i)δ
Θ̃i

(dΘ). (6.10)

Therefore, the importance weights correspond to a correction applied to the samples

obtained from s(Θ) so that the resulting weighted particle system represents an ap-

proximation of p(Θ).

By using IS one can obtain a set of weighted particles that discretise a complex

probability distribution. However, IS can lead to many particles having small weights

after multiple iterations, which would then have a small contribution to the probability

distribution, the same problem that one would find when using a fixed grid approach.

This problem can be solved by using the weighted particle system to obtain samples

approximately distributed to the target distribution. In order to obtain these samples,

we will use the sampling importance resampling method.

6.3.2 Sampling importance resampling (SIR)

The SIR method is an extension of the IS which complements it by following it with

a resampling step, which generates samples approximately distributed according to

the target probability distribution. The resampling is implemented as follows: After

obtaining a set of weighted particles {Θ̃i, w
(i)}Np

i=1 by using IS, we define the normalised
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weights

w̃(i) ≡ w(i)∑Np

i=1w
(i)

for i = 1, ..., Np, (6.11)

allowing us to define the normalised particle system {Θ̃i, w̃
(i)}Np

i=1. We can then generate

Np approximate samples, {Θ̂i}
Np

i=1, by using the discrete probability distribution defined

by {Θ̃i, w̃
(i)}Np

i=1

P (Θ̂j = Θ̃i) = w̃(i), for i, j = 1, ..., Np. (6.12)

The resulting set of samples (or weightless particles), {Θ̂i}
Np

i=1, approximates the re-

sult of sampling the target probability distribution. By using these samples, we can

approximate the target probability distribution as

p(Θ)dΘ ≈ 1

Np

Np∑
i=1

δ
Θ̂i

(dΘ). (6.13)

Therefore, by using the SIR method we can obtain approximate samples from a poste-

rior distribution by using samples from a prior. This can then be implemented into a

Bayesian inference protocol as we will explain now.

6.3.3 Bayesian parameter estimation

Our Bayesian inference model will be represented by a state-space model (SSM) [165]

characterised by a set of states Θt at each inference step t. We can obtain information

about the state Θt by performing measurements, mt, to obtain a probability distribu-

tion of Θt based on the outcomes of these measurements. We assume that our process

is a first-order Markov process, such as the state Θt only depends on the previous

state, Θt−1. Additionally, we assume our measurements to be dependent only on the

current state Θt. A step-by-step representation of the following process can be found

in Fig. 6.3. With these considerations, we can define the transition probability from

the state Θt−1 to Θt, T (Θt|Θt−1), by

p(Θt|m1:t−1) =

∫
T (Θt|Θt−1)p(Θt−1|m1:t−1)dΘt−1. (6.14)

The form of this transition probability depends on the system under consideration and

can be used, for example, to model the introduction of noise into the system, which

can be included on purpose to move the particles after each iteration to avoid having
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Figure 6.3: Bayesian particle filtering algorithm. (1) Representation of a cycle
of the calibration process. The initial probability distribution at iteration t with t − 1
measurements, p(Θt|m1:t−1), is updated by performing a new set of measurements, mt, to
obtain p(Θt|m1:t). The estimates obtained from this probability distribution can then be
used to calibrate the parameters, obtaining the initial probability distribution for iteration
t + 1. (2) Steps followed to perform an iteration of the particle filtering algorithm for
a simplified case with only one parameter, Θ. In (a) we have particles obtained from
sampling the prior probability distribution p(Θt|m1:t−1). A new set of measurements is
performed to obtain the posterior probability distribution in (b) by using the likelihood
of the outcome obtained for the new measurement, p(mt|Θt). The weights are obtained
as prescribed by Eq. (6.18), where a bigger weight is visually represented by a bigger
size of the particle. These weighted particles can then be used to obtain the estimate
of the parameter at this iteration, Θ̄t, by using Eq. (6.19). In (c), a resampling process
is performed to obtain particles with equal weights that approximate particles from the
posterior probability distribution. The previously obtained value Θ̄t is also shown here.
Finally, in (d), Θ̄t has been used to calibrate the parameter Θ, where for this example we
are assuming that the ideal value of Θ is zero, therefore, the correction applied is to change
the value of the parameter by −Θ̄t.

several particles in the same position as could happen when using Eq. (6.12), or to

introduce corrections on the parameters based on the previous estimate of the state.

With these definitions, our goal will consist in obtaining an estimate of Θt from a set

of measurements performed on the system m1:t = {m1, ...,mt}.
Using Bayes’ theorem, we find a relation between the states before and after the

measurement

p(Θt|m1:t) ∝ p(mt|Θt)p(Θt|m1:t−1), (6.15)

up to a normalisation factor. Thus, from p(Θt|m1:t−1) and p(mt|Θt) we may infer

p(Θt|m1:t), which can then be used with T (Θt+1|Θt) to obtain p(Θt+1|m1:t) through

Eq. (6.14). This defines an iterative process to estimateΘt by performing measurements
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and updating our knowledge based on the results.

In case the probability distribution p(Θt|m1:t) becomes too complex, we can use

the SIR method to obtain approximate samples of this distribution at each step. To

this end, we will distinguish two sets of samples at step t. First, we have {Θ̃i,t}
Np

i=1

that represents the positions of the particles at step t before the measurement and

resampling, that is, the approximate samples from p(Θt|m1:t−1). Second, we have

{Θ̂i,t}
Np

i=1 that represents the positions of the particles at step t after the measurement

and resampling, which are approximate samples of p(Θi,t|m1:t). At iteration t we

want to obtain {Θ̂i,t}
Np

i=1 from {Θ̃i,t}
Np

i=1 and Eq. (6.15). To this end, we calculate the

importance weights as defined in Eq. (6.9)

w
(i)
m,t =

1

Np

p(Θ̃i,t|m1:t)

p(Θ̃i,t|m1:t−1)
, for i = 1, ..., Np, (6.16)

where we have introduced the subindex m in w
(i)
m,t to specify that the new weights are

obtained after a measurement mt. According to Eq. (6.15) we can rewrite Eq. (6.16)

as

w
(i)
m,t ∝ p(mt|Θ̃i,t), for i = 1, ..., Np, (6.17)

from which we can obtain the normalised importance weights

w̃
(i)
m,t =

p(mt|Θ̃i,t)∑Np

i=1 p(mt|Θ̃i,t)
, for i = 1, ..., Np. (6.18)

Using this set of weighted particles, {Θ̃i,t, w̃
(i)
m,t}

Np

i=1, we can then obtain the estimates

and variances at that iteration:

Θt =

Np∑
i=1

w̃
(i)
m,tΘ̃i,t, (6.19)

Var(Θt) =

Np∑
i=1

w̃
(i)
m,t(Θ̃i,t −Θt)

2. (6.20)

These are the quantities of interest at each iteration of the Bayesian inference process.

Finally, we can use the SIR method with these weighted particles to obtain a new

set of equally weighted particles, {Θ̂i,t}
Np

i=1. This allows us to correct the previously

obtained estimates of the parameters, bringing them closer to their ideal value. The
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form in which the correction moves our set of particles will be given by the transition

function, T (Θt+1|Θt), which we can use with {Θ̂i,t}
Np

i=1 and Eq. (6.14) to obtain the

particles that will be used at the beginning of the next iteration: {Θ̃i,t+1}
Np

i=1. This

completes an iteration of a Bayesian protocol using a particle filter.

73



6. BAYESIAN FORMALISM

74



Part II

Research results

75





Chapter 7

Adaptive Bayesian phase

estimation for quantum error

correcting codes

In this chapter, we explain the work about phase estimation of quantum error correcting

code states by application of Bayesian inference that we presented in Ref. [1]. In this

work, we introduced an adaptive Bayesian method to measure systematic phase shift

errors appearing in the experimental preparation of multi-qubit states. In particular,

we used it for correcting the errors appearing in the logical states of the Steane code

introduced in Sec. 5.2. Using this method one is capable of adapting the experimental

configuration for each measurement based on the previous measurements in such a way

that it optimises the information gained. Additionally, we derive a simple analytical

rule for this adaptive selection, saving computational power that would be otherwise

used in obtaining numerically the optimal measurement at each step of the process.

We compared our method to the Phase Optimisation Method (PHOM) proposed in

Ref. [52], which is a frequentist and non-adaptive phase estimation method based on a

generalization of a Ramsey experiment [166] for multi-qubit states that was realised in

an experimental implementation of the Steane code. In order to compare both of these

methods, we simulated them to estimate quantum phases appearing in the preparation

of quantum states needed for the Steane code. The efficiency obtained by simulation of

our method is in agreement with the efficiency derived from the theoretical calculations,

and shows an improvement by reducing the number of measurements required by more
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than one order of magnitude when compared to the PHOM.

In Sec. 7.1 we will explain the importance of correcting unwanted relative phases

appearing during the initialisation of a code state for the correct performance of the

QEC code. In Sec. 7.2 we explain a single-qubit state phase measurement as a toy

model to introduce the concepts and notation required for this chapter. To this end

we will also compare a frequentist approach to this problem, which consists in per-

forming parameter scans, to a Bayesian inference approach. In Sec. 7.3 we introduce

and compare the efficiencies of the PHOM and our Bayesian inference method to an

intermediate quantum state obtained during the preparation of the logical states of

the Steane code. This intermediate state has a less complex structure than the final

states of the code but the generalisation of the protocol shown in this section to the

final state of the code is straightforward. Finally, in Sec. 7.4 we generalise the previous

results and present our Bayesian inference method to estimate the phase shifts on the

fully encoded seven-qubit logical states and perform a comparison between the results

obtained for the efficiency of our method with the PHOM.

7.1 Background

In Chapter 5 we saw that in quantum error correction quantum information is encoded

in entangled many-qubit systems, in the form of a logical qubit. As shown in Sec. 5.2,

the Steane code is obtained by restricting the Hilbert space of seven qubits to the

subspace of states which are simultaneously +1 eigenstates of six commuting stabiliser

operators S
(i)
x and S

(i)
z , i = 1, 2, 3 (see Fig. 5.1). These stabilisers define a 2-dimensional

subspace for this 7-qubit system that can be used to encode a logical qubit. However,

due to imperfections during the initial state preparation of the |0⟩L and |1⟩L logical

states in the experimental realisation of this code, the obtained state might differ from

the expected ideal one [51]. Dynamical phase shifts during the encoding sequence can

accumulate and give rise to unknown, although systematic, relative phases between the

eight components of the expected ideal final state given in Eq. (5.5), resulting instead

in the following state

∣∣0′〉
L
=

1

2
√
2
(|0000000⟩+ eiϕ1 |0110110⟩+ eiϕ2 |1111000⟩+ eiϕ3 |1001110⟩

+ eiϕ4 |0011011⟩+ eiϕ5 |0101101⟩+ eiϕ6 |1100011⟩+ eiϕ7 |1010101⟩). (7.1)
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Examples of errors that can introduce these phase shifts are magnetic shifts between

the different electronic states used to define the computational subspace, or a slowly

varying laser field frequency introducing a detuning with respect to the qubit transition,

such as the case studied in Chapter 8.

Additionally, other errors and in particular incoherent processes can generate pop-

ulations in other states. A simple one-parameter model of such errors is given by a

Werner-state [167] of the form

ρ =
p

dim
1 + (1− p)

∣∣0′〉
L

〈
0′
∣∣
L
. (7.2)

The first component represents a completely mixed state (dim = 27 = 128 in our case)

and the parameter p ∈ [0, 1] quantifies the magnitude of this white-noise component.

For more experimental details on the origin of these errors we refer the reader to

Refs. [51, 52]. However, we note that incoherent errors such as the one described

by the mixed-state contribution in the state in Eq. (7.2) cannot be corrected by the

techniques we discuss here. Therefore, to keep notation simple, in what follows we will

omit the mixed state component in state descriptions and only consider the part of the

state containing the relative phases which can be detected and compensated by the

methods discussed.

An error-free initialisation of the QEC states is vital for the correct performance

of the QEC code. Thus, the experimental implementation of QEC needs a method

to estimate unwanted phase shifts so it can be followed by the necessary corrections.

Additionally, the experimental parameters might drift over time, requiring a periodic

estimation of the phases. Due to this, the time required for the method is also an

important factor. The less time it takes to produce an estimate, the more time is

available to perform experiments with the logical qubit. In the next sections we will

present our Bayesian inference method to estimate the phases and study the behaviour

of the variance of the estimates as a function of the number of measures needed. This

study will then prove that our method is superior to the usual frequentist approach to

this problem.
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7.2 Single-qubit phase estimation example

Before we start with the correction of multiple phase shifts in a multi-qubit state, it is

recommendable to start with a simple toy model for the measurement of the phase of

a single qubit so we can explain the basic elements of our method.

Suppose that we have a setup that is able to produce copies of qubits in a state

with an unwanted relative phase ϕ due to some systematic error

|ψ⟩ = 1√
2

(
|0⟩+ eiϕ |1⟩

)
. (7.3)

Our goal is to obtain an estimate of this phase from a finite set of data obtained

from measurements performed on different copies of this state. Measuring the Z Pauli

operator yields information about the populations of |0⟩ and |1⟩, but we already know

that these populations are 1/2. This measurement is uninformative with respect to the

phase ϕ. Instead, we will perform measurements of the form

Oθ = cos(θ)X + sin(θ)Y (7.4)

on the XY plane of the Bloch sphere (see Fig. 7.1 (a)). The expected value of this

operator for the state |ψ⟩ is sensitive to ϕ

⟨ψ|Oθ |ψ⟩ = cos(ϕ− θ). (7.5)

In the following subsections, we will study two different ways in which we can perform

and interpret the outcomes of the measurements in order to obtain the value ϕ, one

related to a frequentist approach and the other being a Bayesian inference approach.

7.2.1 Frequentist approach

The most intuitive approach to this problem is the frequentist one. In order to estimate

ϕ, one can apply a Ramsey-type experiment that can be summarised as follows (see

Fig. 7.1):

1. Divide the interval [−π, π) in M equidistant points

θm = m · 2π
M

− π, m = 0, 1, ...,M − 1. (7.6)
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Figure 7.1: Frequentist phase estimation scan. (a) Bloch sphere representation of
the measurements to be performed for estimating the phase ϕ of the quantum state of
Eq. (7.3). The observables Oθ are obtained by rotating the observable X around the Z
axis by an angle θ. The way Oθ is selected depends on the method used to estimate ϕ.
In the Ramsey scan case different values of θ are selected and several measurements are
performed for each of these values. This allows a reconstruction of the expected sinusoidal
dependence of ⟨ψ|Oθ |ψ⟩ with θ that yields an estimate for the phase ϕ (panel (b)). In
the Bayes case, the outcomes of Oθ are used to update the probability distribution P (ϕ).
In this case, the value θ for each measurement is different and it is selected in a way that
maximises the information gain per measurement (See Sec. 7.2.2 and Fig. 7.2). (b) Scan
simulation for the phase estimation of the state |ψ⟩ in Eq. (7.3) with ϕ = 1. The points
represent the values Oθm where the θm are M = 10 equidistant points in the interval
[−π, π). The points are obtained by simulating N = 50 measurements of Oθm for each θm
and they are used to fit a cosine whose phase A is the estimation obtained for ϕ and it is
given by A = 0.99± 0.09. The error of A is obtained by a bootstrap resampling [168].

81



7. ADAPTIVE BAYESIAN PHASE ESTIMATION FOR QUANTUM
ERROR CORRECTING CODES

2. For each of the values θm we perform N measurements of which N
(m)
+ will have

outcome +1 and N
(m)
− will have outcome −1. We estimate the expected value

⟨ψ|Oθm |ψ⟩ as (N (m)
+ −N

(m)
− )/N .

3. Using the estimates of ⟨ψ|Oθm |ψ⟩ obtained for the different values of θm, we

perform a least squares fit to a function of the form

f(θ) = cos(A− θ). (7.7)

4. By comparison of Eqs. (7.5) and (7.7), our estimate of ϕ is given by the fitted

parameter A.

The more measurements we are able to perform, the more precise the estimates

of ⟨ψ|Oθm |ψ⟩ will be. As a consequence, we will be able to obtain a better fit that

will yield a more precise estimate of the ϕ. However, this method has an important

limitation: you must restrict your measurements to a set of values θm and perform

several measurement for each of them. Additionally, these values are selected in a

completely arbitrary way. Thus, we might wonder if there is a way to perform each

measurement with a different value of θ in such a way that, based on the previous

outcomes, it maximises the amount of information gained about ϕ. As we will see in

the next subsection, this is the case with the Bayesian inference approach.

7.2.2 Bayesian inference approach

To perform a Bayesian inference process to estimate ϕ, we need to know the likelihoods

of our measurements first. In our case we measure the operators Oθ (with different

values of θ for each measurement) with possible outcomes +θ and −θ. The likelihoods

of these outcomes for the state given in Eq. (7.3) are

P (±θ|ϕ) =
1± cos(ϕ− θ)

2
. (7.8)

Assuming no prior knowledge about the value of ϕ, we start with a uniform probability

distribution P (ϕ) = 1/2π defined in the interval [−π, π) as a prior. From this prior

we can start a Bayesian inference process as described in Sec. 6.1: After the first

measurement, we will be able to update our prior to obtain a posterior by using the
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likelihood of the outcome

P (ϕ|±θ1) ∝ P (ϕ) · P (±θ1 |ϕ). (7.9)

This posterior can be used as a prior for the next measurement and so on, defining

an iterative process. After N measurements, the probability distribution for ϕ will be

given by

P (ϕ|±θ1 , ...,±θN ) ∝ P (ϕ)P (±θ1 |ϕ) · ... · P (±θN |ϕ) =

=
1

2π
· 1± cos(ϕ− θ1)

2
· ... · 1± cos(ϕ− θN )

2
. (7.10)

As the number of measurements increases, the posterior probability distribution can

be approximated by a normal distribution with decreasing standard deviation. An

example of this process is shown in Fig. 7.2

7.2.2.1 Efficiency of the parameter learning process

Now that we have defined the Bayesian inference process applied to the phase estimation

of a single-qubit, we can study the accuracy of the estimate as a function of the number

of measurements. While doing this, we will also prove that there is a way of selecting

the value θ for each measurement based on the previous results which maximises the

information gain of ϕ.

Let us suppose that, after a sufficiently large number n of measurements, the prob-

ability distribution Pn(ϕ) ≡ P (ϕ|±θ1 , ...,±θn) can be approximated by a Gaussian with

mean ϕ̄n and standard deviation σn

Pn(ϕ) ≈
1√
2πσ2n

exp

(
−(ϕ− ϕ̄n)

2σ2n

)
. (7.11)

For the measurement n+1, the probability p±n+1 of measuring ± when the angle selected

is θn+1 is

p±n+1 =

∫ π

−π

1± cos(ϕ− θn+1)

2
Pn(ϕ)dϕ . (7.12)

The probability distribution after having obtained + or − is updated as

P±
n+1(ϕ) =

1

p±n+1

1± cos(ϕ− θn+1)

2
Pn(ϕ), (7.13)
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Figure 7.2: Bayesian phase estimation. Bayesian inference process for the phase
estimation of the state |ψ⟩ in Eq. (7.3) with ϕ = 2. Each step of the inference process
consists in performing a measurement of the operator Ôθn−1

, updating the probability
distribution based on the result of the measurement and selecting an optimal angle θn for
the next measurement. 1) One starts with a uniform probability distribution of ϕ. θ = 0
is selected for the first measurement. 2) If the + outcome is obtained (as assumed here),
the probability distribution is updated by multiplying the prior probability distribution by
the likelihood of obtaining a + and renormalizing. The maximum of P (ϕ|1 measurement)
is located at ϕ = 0. 3) The optimal selection of θ will be given by Eq. (7.16). Thus, we
select θ = π/2 for the next measurement. 4) Assume + is obtained again. The probability
distribution can be updated again based on this result. This process of measuring, updating
and finding the next optimal θ can be performed iteratively. 5) After 10 measurements
the probability distribution can be approximated by a normal distribution. 6) After 500
measurements we obtain a normal distribution centered near the value ϕ = 2 used for the
simulation.

where p±n+1 appears due to normalisation. These posterior probability distributions will

have a standard deviation denoted by σ±n+1. The average decrease of the variance after

performing measurement n+ 1 is given by (see Appendix A.2)

σ2n+1 − σ2n = −αn+1σ
4
n (7.14)

with

αn+1 ≡
eσ

2
n sin2(ϕn − θn+1)

1− eσ2
n cos2(ϕn − θn+1)

. (7.15)

From inspection of Eqs. (7.14) and (7.15), we conclude that the maximum decrease on

average for the variance is obtained when we select a value of θn+1 that maximizes the

84



7.3 Two-plaquette case

value of αn+1. This is achieved (see Fig. 7.3) for

θn+1 = ϕn ± π

2
. (7.16)

Then, it can be proven that the succession in Eq. (7.14) has the following asymptotic

solution:

σ2n =
1

αnn
. (7.17)

However, as the variance decreases, αn approaches the constant value 1 (except for

values close to θn = ϕn−1± kπ, k ∈ N) as Fig. 7.3 shows. This means that after several

measurements, the decrease of the variance will be independent on the value of θ we

select for the next measurement and σ2n will evolve as

σ2n =
1

n
. (7.18)

Similar results can be obtained by performing calculations involving Shannon’s entropy

as explained in Sec. 6.2 [169–171] for the selection of the optimal measurement. How-

ever, this approach requires numerical calculations to obtain the optimal measurement

in each step of the iteration. This can lead to a slow evaluation by the classical com-

puter of the optimal measurement settings, as compared to the simple rule governed by

Eq. (7.16) of our method, leading to a slow-down of the calibration. In Figure 7.3 we

show that, after several measurements, this adaptive way of selecting the next measure-

ment becomes as efficient as a non-adaptive method for the one-qubit case. However,

we stress that this is not a generic feature but specific to this simple example. We will

show in the following sections that for the phase measurement of multi-qubit states an

adaptive approach to the selection of the measurements yields an improvement in the

efficiency as compared to the non-adaptive approach. It is worth mentioning that the

result in Eq. (7.18) indicates that our increase in the knowledge of the system satisfies

the Standard Quantum Limit (SQL).

7.3 Two-plaquette case

Now that we have explained the basic idea behind phase estimation of quantum states,

we can move from the single-qubit toy model to a more complex case. This will be what

we call the two-plaquette case, in which we will study a multi-qubit state appearing in
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Figure 7.3: Adaptiveness of the phase measurement settings. The quantity α
dictates the decrease of the variance σ2

n+1 − σ2
n after each measurement step. This figure

shows the dependence of α with θn for the case ϕ̄n = 0 and different values of σ2
n. Other

values of ϕ̄n produce the same plot with a translation on the horizontal axis. As σ2
n

decreases α approaches 1 except for the values θ = ϕ̄n ± kπ.

an intermediate step during the preparation of the Steane code states. Thanks to this

example we will be able to study a multi-qubit state which shows some complications

that do not appear in the single-qubit case. From this case we will define a Bayesian

inference process that will be easily generalisable to the phase estimation of the final

states of the Steane code.

At the start of the preparation of the Steane code states, four-qubit entangling

operations are applied to the first plaquette (Fig. 7.4 (a)). This yields the quantum

state |ψ1⟩ ∝ (1 + S
(1)
x ) |0⟩⊗7composed by the superposition of two components in the

computational basis which can have a relative phase due to systematic errors. This is

equivalent to a single-qubit phase estimation, as the phase can be corrected by rotating

one of the four qubits and performing measurements of the S
(1)
x stabiliser.

We can increase the complexity of the problem by considering the state |ψ2⟩ obtained
by application of four-qubit entangling operations to the first and second plaquettes

(see Fig. 7.4 (b))

|ψ2⟩ ∝
2∏

i=1

(1 + S(i)
x ) |0⟩⊗7 = |0000000⟩+ |0110110⟩+ |1111000⟩+ |1001110⟩ . (7.19)

This state is a +1 eigenstate of the X-type stabilisers on the first and second plaquette,
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Figure 7.4: One and two-plaquette cases. (a) One-plaquette case. During the first
step of the preparation of the seven-qubit error correcting code, four-qubit entangling
operations are performed on qubits 1 to 4. A phase appearing in the resulting state due

to systematic errors can be estimated by performing measurements of S
(1)
x for different

rotations on the first qubit. This is similar to the single-qubit phase estimation. (b) Two-
plaquette case. After the manipulation of the first and second plaquettes, up to three
relative phases can appear in quantum state obtained. To estimate these phases we can

perform measurements of S
(1)
x , S

(2)
x and S

(1)
x S

(2)
x for different rotations on the first, second

and fifth qubit.

S
(1)
x = X1X2X3X4, S

(2)
x = X2X3X5X6 and the product of both, S

(1)
x S

(2)
x = X1X4X5X6.

As such, it maximises their mean value:

⟨ψ2|S(1)
x |ψ2⟩ = ⟨ψ2|S(2)

x |ψ2⟩ = ⟨ψ2|S(1)
x S(2)

x |ψ2⟩ = 1. (7.20)

However, systematic phase shifts accumulate during the preparation of |ψ2⟩ due to

experimental errors. The state |ψ′
2⟩ containing these unknown phase shifts is

∣∣ψ′
2

〉
∝ |0000000⟩+ eiϕ1 |0110110⟩+ eiϕ2 |1111000⟩+ eiϕ3 |1001110⟩ . (7.21)

In order to compensate these relative phase shifts we can apply single qubit Z rotations

(see Fig. 7.4 (b)). For example, by rotating the first, second and fifth qubits by angles

θ1, θ2 and θ5 respectively we obtain

eiθ1Z1eiθ2Z2eiθ5Z5
∣∣ψ′

2

〉
∝ |0000000⟩+ ei[ϕ1+2(θ2+θ5)] |0110110⟩

+ ei[ϕ2+2(θ1+θ2)] |1111000⟩+ ei[ϕ3+2(θ1+θ5)] |1001110⟩ . (7.22)

The selection of qubits to be rotated is arbitrary as long as these three rotations do
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not commute with S
(1)
x , S

(2)
x and S

(1)
x S

(2)
x . The expected values of the stabilisers in the

state Eq. (7.21) are given by

⟨S(1)
x ⟩ = cos[ϕ2 + 2(θ2 + θ1)] + cos[ϕ1 − ϕ3 + 2(θ2 − θ1)]

2
, (7.23)

⟨S(2)
x ⟩ = cos[ϕ1 + 2(θ2 + θ5)] + cos[ϕ2 − ϕ3 + 2(θ2 − θ5)]

2
, (7.24)

⟨S(1)
x S(2)

x ⟩ = cos[ϕ3 + 2(θ5 + θ1)] + cos[ϕ1 − ϕ2 + 2(θ5 − θ1)]

2
, (7.25)

Therefore, for this case we are trying to estimate three phases, not one as in the single-

qubit case. In order to obtain information about the unknown systematic phases, we

can perform measurements of these stabilisers for different values of the rotation angles

θ. Once the values of these phases are measured it is possible to perform single-qubit

rotations to transform the state |ψ′
2⟩ into the desired state |ψ2⟩.

In the following subsections, we will talk about two different approaches to this

problem. The first one is the PHOM, based on a similar frequentist approach as the

scans explained for the single-qubit case in Sec. 7.2.1, while the second one is our

Bayesian inference method, which is similar to the one in Sec. 7.2.2 but with some

additional difficulties due to the increased dimensionality of the problem. We will

explain both and show how the Bayesian method can be performed in an adaptive way.

Finally, we will compare both methods and demonstrate that ours is more efficient than

the PHOM since it requires less measurements to obtain estimates of the phases with

the same associated errors.

7.3.1 Phase Optimisation Method

The Phase Optimisation Method introduced in Ref. [52] is a frequentist approach that

can be used to estimate phases of multi-qubit states appearing during the preparation

of the Steane code. It consists in performing scans of the expected values of each

stabiliser for different single-qubit rotation values to find the values of the rotations

that optimise the expected value of each stabiliser. Once the expected values are

optimised, it means that the found single-qubit rotations correct the unwanted phases.

The PHOM is an iterative protocol. For concreteness, we review how it works for the

the state in Eq. (7.21).
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1. For each stabiliser, an associated rotation on a qubit i, θi, is chosen. The selec-

tion is arbitrary, but each stabiliser must not commute with its associated qubit

rotation. We associate θ2 with S
(1)
x , θ5 with S

(2)
x and θ1 with S

(1)
x S

(2)
x .

2. Choose an initial configuration for the set of rotation parameters, which we will

denote as θ(0) = { θ(0)1 , θ
(0)
2 , θ

(0)
5 }.

3. Scan ⟨S(1)
x ⟩ in a similar way as in the single-qubit case (see Fig. 7.1 (b)) over its

associated angle, θ2, in the interval [−π, π] while keeping θ1 = θ
(0)
1 and θ5 = θ

(0)
5

fixed. Determine and fix θ2 to the value θ2 = θ
(1)
2 for which ⟨S(1)

x ⟩ is maximized.

Similarly perform scans of ⟨S(2)
x ⟩ over θ5 to obtain θ

(1)
5 and ⟨S(1)

x S
(2)
x ⟩ over θ1

to obtain θ
(1)
1 . With these steps θ(0) = { θ(0)1 , θ

(0)
2 , θ

(0)
5 } has changed to θ(1) =

{ θ(1)1 , θ
(1)
2 , θ

(1)
5 }. Performing this step completes one PHOM iteration.

4. The values of the angles θ might not converge to the values that correct the phases

after only one iteration. If necessary, repeat step (3) for a number of iterations I

until the set of angles θ converges to a desired precision.

After enough iterations have been performed, this method will converge to an estimate

of the angles θ1, θ2 and θ5 that correct the systematic phases ϕ1, ϕ2 and ϕ3. The

precision of this estimate will become better as the number of measurements used for

the scans of each iteration increases.

The convergence of the original PHOM method depends on the number of iterations

performed, which in turn depends on the value of the original phases that we want to

correct. This makes the efficiency of the PHOM difficult to study, since there is no

way to know from the start how many iterations will be needed. This can be avoided

with a modified version of the PHOM that we also introduced in [1] and that we called

constant cosine PHOM.

7.3.1.1 Constant cosine PHOM

The constant cosine PHOM is a similar method that also performs scans of the expected

values of the stabilisers for different qubit rotations to obtain a correction for systematic

phases. This process is closer to the scan method in Sec. 7.2.1. From Eq. (7.23) we can
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see that if we keep the value θ2− θ1 fixed and vary θ2+ θ1 the mean value of ⟨S(1)
x ⟩ will

be given by

⟨S(1)
x ⟩ = cos[ϕ2 + 2(θ2 + θ1)] + h

2
, h ≡ cos[ϕ1 − ϕ3 + 2(θ2 − θ1)]. (7.26)

The offset h is uniform for all measurements because the difference θ2−θ1 is fixed. Thus
the angle ϕ2 that represents the phase shift to be corrected is the value of −2(θ2 + θ1)

for which a maximum in the mean value ⟨S(1)
x ⟩ is reached. A similar reasoning can be

followed for ⟨S(2)
x ⟩ and ⟨S(1)

x S
(2)
x ⟩ to obtain ϕ1 and ϕ3. This method has the advantage

of finding an estimate for the phases with only one round of scans, with the precision

of the estimate increasing with the number of measurements used for each scan.

7.3.2 Bayesian inference approach

Now that we have introduced the more intuitive PHOM, let us explain and analyse the

two Bayesian inference methods that we designed to measure the phases in the state

|ψ′
2⟩ of Eq. (7.21) of the two-plaquette case. The methods are (i) a Bayesian inference

method by direct application of the likelihoods, and (ii) a Bayesian inference method

using marginal likelihoods. We will first describe the direct Bayesian inference method

and show that its complexity and non-adaptivity makes it almost equally efficient to the

constant cosine PHOM. Next, we will explain the marginal likelihood method and show

how, due to its simplicity, it is possible to find a rule to select adaptive measurements,

allowing this method to be more efficient than the constant cosine PHOM.

7.3.2.1 Direct Bayesian inference method

For this method, the Bayesian estimation of the phases requires measuring the plaque-

ttes and updating the probability distribution based on the outcomes. The likelihoods

of each plaquette measurement is obtained from the expected values as

P1(±θ|ϕ) =
1± ⟨S(1)

x ⟩
2

,

P2(±θ|ϕ) =
1± ⟨S(2)

x ⟩
2

, (7.27)

P12(±θ|ϕ) =
1± ⟨S(1)

x S
(2)
x ⟩

2
.
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Here P1(±θ|ϕ) is the likelihood of obtaining a + or a − outcome when measuring S
(1)
x

for θ = {θ1, θ2, θ5} and ϕ = {ϕ1, ϕ2, ϕ3}. Similarly, P2(±θ|ϕ) is related to S
(2)
x and

P12(±θ|ϕ) to S
(1)
x S

(2)
x . For instance, the likelihood for S

(1)
x is given by

P1(±θ|ϕ) =
2± cos[ϕ2 + 2(θ2 + θ1)]± cos[ϕ1 − ϕ3 + 2(θ2 − θ1)]

4
. (7.28)

Since the likelihoods are functions of three variables, the probability distribution is

a three-dimensional function. As explained in Sec. 6.3, as the number of parameters

increases, so does the dimensionality of the posterior distributions, which complicates

finding the estimates of the desired parameters and their variance. While perform-

ing a Bayesian inference on the three-dimensional distribution case might be possible

with a particle filtering algorithm, this will not be the case for the full Steane code

preparation, where the seven parameters are too many for a particle filter. To avoid

this dimensionality problem we can keep one of the cosines constant for each stabiliser

measurement in a similar way as it is done for the constant cosine PHOM. This is done

by keeping the value of θ2−θ1 constant to ensure that one of the cosines has a constant

value that we denote as h2. This yields a likelihood given by (see also Eq.(7.26))

P1(±θ|ϕ2, h) =
2± h2 ± cos[ϕ2 + 2(θ2 + θ1)]

4
(7.29)

for the first plaquette. Similar expressions can be obtained for the other stabilisers.

This approach yields normal probability distributions defined on two variables, one

being h1, h2 or h3 and the other being ϕ1, ϕ2 or ϕ3, depending on the stabiliser that

is measured. The estimate for each phase is easily obtained from its corresponding

probability distribution.

We performed a numerical study of the efficiencies of this method and the constant

cosine PHOM protocol (see Fig. 7.5). The numerical fit of the data obtained with

the PHOM showed that the scaling of the variance as a function of the number of

measurements n is given by σ2i,n = (6.6 ± 0.2)/n when estimating the single angle ϕi.

Similarly, for the constant cosine Bayes we obtained σ2i,n = (6.2± 0.6)/n. However, in

order to obtain an estimate of the other two phases, these processes must be repeated for

each of the other stabilisers. This yields a scaling of the variance of σ2n = (19.8± 0.4)/n

for the PHOM and σ2n = (18.6 ± 1.0)/n for the constant cosine Bayes method. This
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provides an estimate of the efficiency of the PHOM and the direct Bayesian inference

method for the intermediate state |ψ′
2⟩.

Figure 7.5: Constant cosine PHOM and Bayesian inference efficiencies. Be-
haviour of the variance of ϕ1 obtained for the simulations of the constant cosine approach
for both the PHOM (red circles) and the Bayesian inference (green squares) as a function
of the number of measurements n. Solid lines represent fits of the numerical data obtained
for both methods. The same behaviour is obtained for ϕ2 and ϕ3 (not shown).

From the results obtained, the Bayesian inference method as explained above does

not offer much of an advantage as compared to the PHOM, since both have a similar

efficiency with the number of measurements. In the end, this low efficiency is a conse-

quence of both of these methods (i) being able only to scan one of the stabilisers at the

same time and (ii) performing measurements in a non-adaptive way. In the following

we will introduce and analyze the Bayesian marginal likelihood method, which provides

an improvement in efficiency over both the PHOM and the constant cosine Bayesian

inference method by solving both of these problems.

7.3.2.2 Marginal likelihood method

In this method, we select the control phases to obtain a likelihood that depends only on

one of the phases that we want to estimate. Because of this, the probability distribution

is a 1D function. We can follow this approach for each likelihood, updating three

1D probability distributions (one for each unknown phase) simultaneously with each

measurement outcome.
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Let us first consider measurements of the first stabiliser, whose likelihood is given

by Eq. (7.28), focusing on the value of ϕ2. To estimate this phase, we have two different

control parameters, θ1 and θ2, that we can change before each measurement. We choose

to perform a measurement under the constraint of keeping the value of 2(θ2 − θ1) fixed

to a certain value θc while changing the value of 2(θ2 + θ1). With this choice, the

containing ϕ1 −ϕ3 is fixed and assumes a constant value c2. This yields the likelihood

P1(±θ|ϕ2) =
2± cos[ϕ2 + 2(θ2 + θ1)]± c2

4
. (7.30)

Now, for a second measurement we select θ1 and θ2 such that they fulfill the same

constraint as before but shifted by ±π, i.e. 2(θ2 − θ1) = θc ± π. For this selection,

the value of the second cosine term in Eq. (7.28) becomes −c2 instead of c2 and the

likelihood is given by

P1(±θ|ϕ2) =
2± cos[ϕ2 + 2(θ2 + θ1)]∓ c2

4
. (7.31)

Therefore, if we fix 2(θ2+θ1) and perform such a combined pair of measurements under

the discussed constraints, one with c2 and another with −c2, we can marginalize over

c2 to obtain the following marginal likelihood for each individual measurement

P1(±θ|ϕ2) =
2± cos[ϕ2 + 2(θ2 + θ1)]

4
, (7.32)

which only depends on ϕ2. After this pair of measurements, we then fix 2(θ2 + θ1) to a

new value and perform another pair of measurements in the same way as before. The

key observation is that, as a result of this process, the likelihood obtained is similar to

the one for the single-qubit case of Eq. (7.8). This allows one to directly generalise the

analysis for the scaling of the variance from the single-qubit case (see Eq. (7.14) and

7.15) to ϕ2 (see Appendix A.2) obtaining

σ22,n+1 − σ22,n = −α2,n+1σ
4
2,n, (7.33)

where

α2,n ≡
exp
(
σ22,n

)
sin2(ϕ2,n − θ̃2,n+1)

4− exp
(
σ22,n

)
cos2(ϕ2,n − θ̃2,n+1)

, (7.34)

and θ̃2,n ≡ −2(θ2,n + θ1,n). For small values of σ22,n+1, α2,n+1 can be approximated by
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(see Fig. 7.7)

α2,n+1 ≈
sin2(ϕ2,n − θ̃2,n+1)

4− cos2(ϕ2,n − θ̃2,n+1)
. (7.35)

Note that in this two-plaquette case, in Eq. (7.35) a 4 appears in the denominator,

as opposed to the 1 in the single-qubit case. Due to this, the quantity α2,n+1, which

determines the decrease in the uncertainty, has a sinusoidal behaviour between 0 and

1/4. Note also that in constrast to the single-qubit case (cf. Fig. 7.3) this oscillatory

behaviour does not disappear with an increasing number of measurements. Figure 7.7

shows that the decrease in the standard deviation is maximized if we choose θ̃2,n+1 =

ϕ̄2,n ± π/2, making this the optimal adaptive measurement selection. For this optimal

choice the value of α2,n+1 is 1/4, for which the variance scales as σ22,n = 4/n.

So far, in the explanation of the protocol we have focused on estimating ϕ2. How-

ever, our protocol allows one to measure ϕ1, ϕ2 and ϕ3 at the same time. Based on the

adaptive way of selecting the measurements as explained above, we make the following

selection, 
θ̃1,n ≡ −2(θ2 + θ5) = ϕ̄1 + β1

θ̃2,n ≡ −2(θ2 + θ1) = ϕ̄2 + β2

θ̃3,n ≡ −2(θ1 + θ5) = ϕ̄3 + β3

(7.36)

where each βj is either π/2 or −π/2. Making these selections fixes the following values


2(θ2 − θ5) = −ϕ̄2 + ϕ̄3 + β3 − β2

2(θ5 − θ1) = −ϕ̄1 + ϕ̄2 + β2 − β1

2(θ2 − θ1) = −ϕ̄1 + ϕ̄3 + β3 − β1

(7.37)

Since the combinations of βj appearing in Eq. (7.37) yield either ±π or 0, we choose the

β-parameters in a way that we alternate between these values to marginalize over the

value ci appearing in each of the three likelihoods. This yields a likelihood equivalent to

Eq. (7.32) for the measurement of each stabilizer. For the selection given by Eq. (7.36)

it is guaranteed that our protocol realises adaptive optimal measurements while also

having the benefit that in each measurement set one can use the measure obtained for

each of the three stabilisers to update the corresponding probability distribution of each

single phase at the same time, as opposed to the PHOM and the Bayesian inference

with the constant cosine. Thus, the estimate of each phase will have a variance σ2n
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Input: n copies of the state |ψ′〉
Output: List of estimated phases φ̄ = { φ̄1, φ̄2, φ̄3 }

and corresponding probability distributions P = { P(φ1), P(φ2), P(φ3) }
• Define
θ = { θ1, θ2, θ5 } . angles θk to perform rotations on qubit k
Π = { P2(±θ, φ1), P1(±θ, φ2), P12(±θ, φ3) } . likelihoods corresponding to φ1, φ2, φ3

S = { S (2)
x , S

(1)
x , S

(1)
x S (2)

x } . stabilizers corresponding to the likelihoods Π

• Set all probability distributions in P equal to 1/2π
• Set all the angles in θ equal to zero
for m in n do
• Rotate qubits Q = { 1, 2, 5 } along the Z axis by the angles in θ
•Measure the stabilizers in S and obtain the measurement setM
for j in J = 1, 2, 3 do . The set J corresponds to the indices of the phases in φ̄
• Update the j-th probability in P with the j-th likelihood in Π

according to the j-th measurement inM
• Compute the maximum of the j-th probability in P and denote it as φ̄ j

• Update the list of estimated phases with φ̄ j

end for
• Compute the new rotation angles in θ by solving the linear system S

S =



2(θ2 + θ5) = −φ̄1 + β1

2(θ2 + θ1) = −φ̄2 + β2

2(θ1 + θ5) = −φ̄3 + β3

where each β j is chosen alternately at each measurement between {+π/2,−π/2}
end for

1

Figure 7.6: Marginal likelihood Bayesian inference pseudocode. Pseudocode to
determine the three phases, ϕ = {ϕ1, ϕ2, ϕ3 }, appearing in the two-plaquette case of
Sec. 7.3 by implementation of the marginal likelihood Bayesian inference method. This
pseudocode can also be applied for estimating the seven phases appearing in the complete
Steane code case of Sec. 7.4 after redefining ϕ, the list of unknown phases and their indices
J ; P, their probability distributions; θ, the angles for the rotations of the measurements;
Π, the likelihoods; S the list of stabilisers; Q the list of qubits to be rotated; the system of
equations S according to Eq. (A.20) in Appendix A.1.
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Figure 7.7: Adaptiveness of the marginal likelihood Bayesian protocol. Depen-
dence of the factor αi,n on θ̃i,n for i = 1, 2, 3 (here ϕ̄i,n−1 = 0). αi,n dictates the decrease
of the variance step by step. αi,n oscillates between 0 and 0.25 and its mean value is

(2 −
√
3)/2 ≈ 0.134, with its maximum at θ̃i,n = ϕ̄i,n−1 ± π/2. By Eq. (7.17), this is the

optimal way of selecting θ̃i,n.

given by

σ2n =
4

n
. (7.38)

Finally, it is interesting to analyse by how much the efficiency of the protocol would

decrease if one did not make an adaptive choice of the parameters. If one selected the

values θ̃i,n randomly, then αi,n would have a mean value equal to αi,n = (2−
√
3)/2 ≈

0.134, which is readily obtained by integrating Eq. (7.35) over a uniform probability

distribution of θ̃i,n. Taking into consideration Eq. (7.17) the scaling of the variance in

such a non-adaptive protocol would be given by

σ2i,n ≈ 1

0.134n
≈ 7.5

n
. (7.39)

From these results we can see the reasons behind this marginal likelihood method

having a better efficiency than the PHOM or direct Bayesian inference. First, the

marginal likelihood method can update the information from each unknown phase

by measuring the stabilisers in the same copy of the quantum state, while the other

two methods can only measure one of the phases with each copy. Second, with the

marginal likelihood method we found a rule to perform adaptive measurements, reduc-
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ing even more the number of measurements needed as compared to the PHOM and

direct Bayesian inference.

The marginal likelihood method, which is shown in this section for the two-plaquette

intermediate case, can be directly generalised for the correction of the seven unwanted

phases appearing in the Steane code logical states, as we will explain in the following.

7.4 Correction of the full Steane code

The correction of the unwanted phases in the Steane code logical states (see Eq. (7.1)

for the |0′⟩L case) can be done with a generalisation of the marginal likelihood method

from Sec. 7.3.2.2. This is obtained directly by considering that now we have seven

unwanted phases and that to estimate them we can perform measurements of different

combinations of stabilisers: S
(1)
x , S

(2)
x , S

(3)
x , S

(1)
x S

(2)
x , S

(1)
x S

(3)
x , S

(2)
x S

(3)
x and S

(1)
x S

(2)
x S

(3)
x .

For example, the marginal likelihood for the measurement of the first stabiliser is

P1(±θ|ϕ2) =
4± cos

(
ϕ2 − θ̃2

)
8

, (7.40)

where θ̃2 ≡ −2(θ1 + θ2 + θ3 + θ4). Similar expressions are obtained for the other six

combinations of stabilisers (see A.1). From these likelihoods we can study the behaviour

of the variance as a function of the measurements. The variance and the values of α

for each angle ϕi for the next step n+ 1 (αi,n+1) are given by (see Appendix A.2)

σ2i,n+1 − σ2i,n = −αi,n+1σ
4
i,n, (7.41)

with

αi,n+1 =
eσ

2
i,n sin2(ϕi,n − θ̃i,n+1)

16− eσ
2
i,n cos2(ϕi,n − θ̃i,n+1)

. (7.42)

For small values of σ2i,n one finds

αi,n+1 ≈
sin2(ϕi,n − θ̃i,n+1)

16− cos2(ϕi,n − θ̃i,n+1)
. (7.43)

The maximum value of each αi,n+1 is 1/16 for θ̃i,n+1 = ϕ̄i,n ± π/2. This rule ensures

an adaptive way of selecting the measurements that yields more information than a
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non-adaptive selection and gives the scaling

σ2n =
16

n
(7.44)

for the variance of the estimate for each phase measured.

Now that we have generalised the marginal likelihood method to the full Steane code

case, we are only left with studying how much does our method improves the efficiency

compared to the PHOM. For this we simulated several times a PHOM process for the

Steane code |0′⟩L state in Eq. (7.1). From the errors of these estimates we estimated

the variance of the method. As for the variance of the marginal likelihood method,

obtaining the variance is much simpler since an advantage of performing Bayesian

inference is that the information of the unknown parameter is contained in a probability

distribution from which one can directly obtain a variance.

7.4.1 PHOM simulations

For the numerical simulations of the PHOM, we initially fix the number of iterations

I to be performed as explained in step (4) of Sec. 7.3.1 and we choose a number n of

copies of the initial quantum state that we can measure. We then choose N different 7-

dimensional vectors representing the seven initially unknown phases ϕ(k) (k = 1, ...,N).

We perform the PHOM following Sec. 7.3.1 and the expressions (A.4) to (A.11) in A.1

in order to obtain an estimate of the seven phases ϕ
(k)
est . For each of the vectors, we

calculate the difference between the estimated phases and the phases chosen initially:

ϕ
(k)
est − ϕ(k). We finally compute an estimate of the variance of the PHOM for a given

n and a fixed number of iterations I as

σ2n =
1

N

N∑
k=1

(ϕ
(k)
est − ϕ(k))2, (7.45)

where N is a large number to obtain a good estimate of σ2n, in our case N = 50000.

To perform the scans of each stabiliser we divide the intervals [−π, π] of the angles

θs into M = 10 points. Since we have to measure seven stabilisers, the number of

measurements per point (mpp) we can perform is mpp = n/(7MI). Repeating this

process using a different n and I = 1, . . . , 4 yields the data plotted with circles in

Fig. 7.8.
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Figure 7.8: Efficiency of the PHOM (original and constant cosine versions) and
marginal likelihood Bayesian protocol. Behaviour of the variance as a function of the
total number of measurements n. Only for the PHOM, the total number of measurements is
given by n = 7·M ·I ·mpp, where 7 corresponds to the number of phases to be estimated,M
is the number of division of the interval [−π, π] of each phase, I is the number of iterations
used for the PHOM, and mpp is the number of measurement for each of the M divisions.
For the PHOM using constant cosines a behaviour of σ2

n = (209.5 ± 0.5)/n is obtained.
The PHOM shows a similar behaviour when using enough iterations for the method to
converge. Finally, using marginal Bayes the performance is σ2

n = (16.2 ± 0.1)/n. Error
bars for results of the constant cosine PHOM and the Bayes method are smaller than the
symbol size.

A similar process is done for the constant cosine PHOM, where in this case it is

simpler because this method only requires one iteration (see Sec. 7.3.1). The results

obtained for this case are represented by the triangles in Fig. 7.8, where performing a fit

of the relation between the variance and the number of measurements for the constant

cosine PHOM yields a behaviour of σ2n = (209.5± 0.5)/n.

From the results obtained, we can see that as the number of iterations used for the

PHOM increases, the variance with the number of resources decreases until reaching

a similar behaviour as that of the constant cosine PHOM. This is due to the PHOM

having two limitations, one given by the number of iterations and another by the finite

number of measurements used for each scan. If a small number of iterations is used,

most of the PHOM simulations do not converge and the result is a wrong estimation
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Figure 7.9: Convergence of the PHOM. Behaviour of the variance for increased
number of iterations of the PHOM algorithm. In each iteration the mean values of each
stabiliser combination are reconstructed by performing a scan measuring an interval of
length π divided in ten points and performing a fixed amount of measurements per point
(mpp) for each of these divisions. The variance approaches a constant value after several
iterations. This is due to the finite number of mpp introducing a constant statistical noise.
As the number of mpp increases this noise decreases.

for the phases which results in a big variance. As the number of iterations increases,

more simulations converge to a correct phase and the variance obtained decreases.

After performing enough iterations, all the simulations converge and the only source

of error is the number of measurements used for each scan. As this number increases,

the statistical error of each scan performed decreases yielding a better estimate of each

phase. This behaviour is represented in Fig. 7.9. Thus, the constant cosine PHOM will

always be the lower bound for the variances of the PHOM and we will focus on it for

the comparison with the marginal likelihood method.

7.4.2 Marginal likelihood Bayes simulations

To obtain the behaviour of the variance with the number of measurements for the

marginal likelihood Bayes inference method we apply a generalisation of the method

shown in the pseudocode of Fig. 7.6 with the expressions (A.12) to (A.20) in Ap-

pendix A.1. After performing enough measurements (n ≈ 100) the probability dis-

tribution obtained can be approximated by a normal probability distribution for each

of the phases that is used for computing the variances and for estimating the error
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of this adaptive technique. The results for the variances are shown in Fig. 7.8 where

the data is plotted with squares. It can be seen that the variance decreases as the

number of measurements used increases. A numerical fit of the data obtained reveals

that the variance decreases as σ2n = (16.2±0.1)/n, as was expected from the analytical

derivation of the method in Sec. 7.4.

7.5 Summary

In this chapter we have explained our work on the derivation of an adaptive Bayesian

protocol to measure systematic phase shift errors appearing in the experimental prepa-

ration of multi-qubit states. It is important to note that having modelled the errors

appearing in these states as only unwanted relative phases allows us to focus on this

type of errors instead of forcing us to do a complete state tomography (as explained

in Sec. 2.5) that would require a considerable amount of measurements for obtaining

information about both the phases and the populations. In our case, we have aimed

the protocol at the correction of errors appearing in the logical states of the Steane

code. This method is capable of finding, by a simple analytical rule, the measurement

settings that maximise the information gained at each measurement step. The simplic-

ity of this rule saves computational power that would otherwise be needed to estimate

numerically the optimal measurement at each step of the protocol.

We compared our method to the PHOM, a non-adaptive phase estimation method

based on a generalisation of a Ramsey experiment for multi-qubit states that was re-

cently demonstrated for the Steane code [51]. We simulated both methods to measure

quantum phases appearing in the preparation of quantum states needed for the Steane

code. The efficiency obtained by simulation of our method is in agreement with the

efficiency derived from the theoretical calculations. It shows a reduction of the mea-

surement time by more than one order of magnitude when compared with the PHOM

(see Fig. 7.10). We notice that although there are methods that yield a better efficiency

than the Standard Quantum Limit (SQL) [172–175], these methods rely on the non-

trivial implementation of multi-qubit gates which we do not consider here. However, it

might be interesting to generalise our protocol to these kind of techniques.

A very important conclussion is that this type of Bayesian methods can be gener-

alised to other systematic errors appearing in any kind of multi-qubit states, regardless
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Figure 7.10: Efficiency comparison. Comparison of the efficiencies among the different
methods studied to measure phases for the three-plaquette case. For the PHOM case the
results for the optimal selection of iterations have been used.

the physical platform used to create that quantum state such as, e.g. trapped ions,

Rydberg atoms in optical lattices or tweezer arrays, and other AMO and solid-state

architectures.

Given the success of this Bayesian approach for estimating and correcting unwanted

phases, it is interesting to see how a similar approach can be used to calibrate quantum

gates used in the experiment. This is the problem that we will study in Chapters 8

and 10, where we will respectively show advantages of using Bayesian protocols for

calibrating single-qubit gates and entangling gates.
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Chapter 8

Bayesian laser frequency locking

In this chapter we explain the derivation and the results from the experimental imple-

mentation of a Bayesian inference protocol aimed at the estimation of laser frequencies

and magnetic fields in a trapped-ion architecture. A calibration of these parameters

is vital for the correct implementation of operations in trapped-ion systems. In par-

ticular, the implementation of single-qubit operations depends on the application of a

laser field with a frequency resonant to the qubit transition, as discussed in Sec. 4.3.

It is also highly desirable to lock this frequency to the transition frequency not at a

single point in time, but at all times [176, 177]. In order to achieve this, our protocol

can be performed at different times in order to obtain an estimation of the drifts of

these parameters over time. Using these estimates, one can compensate the drifts, thus

obtaining a dynamic frequency lock of the laser to the transition frequency.

The Bayesian inference protocol that we show here can be completely automated,

which allows a computer to perform the calibration of these experimental parameters

without requiring supervision from personnel of the laboratory. On top of this, the pro-

tocol uses simple analytical rules to select optimal measurement settings that yield the

most information about the desired parameters. Finally, since the Bayesian approach

takes into account all the measurements performed, this protocol does not suffer from

the so-called fringe hopping errors that can appear in a frequentist approach to Ramsey

spectroscopy, and that we will explain in Sec. 8.2.

This work was performed during a visit to the University of Innsbruck, in collab-

oration with Marc Bußjäger, who was a master student at the time. A version of the
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results of this work, more focused on the experimental details, can be found in his

master thesis [178].

We begin this chapter by explaining our goal in Sec. 8.1, where we introduce the

parameters to be calibrated, and highlight their importance for the experiment. In

Sec. 8.2, we introduce the Ramsey cycle commonly employed for the calibration of these

parameters, using a frequentist approach. We then explain its extension to a Bayesian

inference protocol in Sec. 8.3. In Sec. 8.4 we show the results from the experimental

implementation of our Bayesian protocol. Finally, in Sec. 8.5 we provide a summary of

the results from this chapter.

8.1 Laser frequency locking

The correct performance of a trapped-ion quantum computer depends on tuning a laser

field to a frequency that is resonant with the qubit transition. As can be seen from the

results shown in Sec. 4.3, having a non-zero detuning of the laser’s frequency ωL with

respect to the qubit transition ωeg, that is

∆ = ωeg − ωL ̸= 0, (8.1)

introduces errors in the quantum operations of trapped-ion qubits. Indeed, this non-

resonant laser frequency introduces an unwanted σz component to the Hamiltonian

describing the evolution of a trapped-ion qubit under the effect of the laser field. Due

to this, it is important to realise a calibration process to reduce the detuning as much

as possible. A Rabi spectroscopy [44, 178, 179] may provide an initial calibration of

the laser’s frequency, which can then be followed by a Ramsey spectroscopy process,

which will be explained in detail in Sec. 8.2.

After the initial calibration, undesired time-dependent effects may still introduce a

detuning. An example of this is a frequency drift due to the heating of the cavity of

the laser over time. Due to this drift, which we will consider to be constant in time,

the laser’s frequency will grow linearly in time as

ωL(t) = ωL,0 + ω̇L · t, (8.2)

where ωL,0 is the initial frequency of the laser and ω̇L is the drift.
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Another source of errors is a drift of the magnetic field B(t) experienced by the

qubits and which we consider to be given by

B(t) = B0 + Ḃ · t. (8.3)

Similarly to the previous case, B0 is the initial magnetic field and Ḃ represents the

constant drift. This causes a Zeeman shift of the levels of the ion, effectively changing

the transition frequency of the qubit over time. The change in the transition frequency

introduced by the Zeeman shift will be given by the difference between the shifts suffered

by the excited state and the ground state (see Eq. (4.18)). In particular

∆ωeg,Z(t) = −1

2

µB B(t)

ℏ
(gD − gS) , (8.4)

for the trapped-ion qubit transition 4S1/2(m = −1/2) ↔ 3D5/2(m = −1/2)—which we

denote as (−1/2,−1/2) from now on. As a consequence, the qubit transition frequency

will grow linearly in time

ωeg(t) = ωeg,0 +∆ωeg,Z(t), (8.5)

from the transition frequency of the qubit without Zeeman shifts ωeg,0.

In order to correct these drifts, one could periodically measure and correct the

detunings. However, this requires a considerable amount of time and the detuning still

accumulates between calibrations. In order to reduce the impact of these problems, one

can obtain an estimate of the drifts and compensate for them over time. To do this,

we can consider the auxiliary transition 4S1/2(m = −1/2) ↔ 3D5/2(m = −5/2), which

we denote as (−1/2,−5/2). This transition will suffer a Zeeman shift

∆ωaux,Z(t) = −µBB(t)

ℏ

(
5

2
gD − 1

2
gS

)
, (8.6)

which modifies the transition frequency

ωaux(t) = ωeg,0 +∆ωaux,Z(t). (8.7)

The detuning of the laser with respect to these two transitions at a given time, ∆(t)

and ∆aux(t), can be measured and, since each transition has a different sensitivity to
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the magnetic field, one may obtain the detuning resulting from the laser’s drift, and the

one resulting from the Zeeman shift. These measurements can be repeated over time

to obtain an estimate of the drifts, which can then be used to lock the laser frequency

to the qubit transition.

As explained before, the detunings can be obtained from Ramsey spectroscopy,

which is usually performed in a frequentist manner. However, in this work we integrate

the Ramsey spectroscopy in a Bayesian inference process. In the following sections we

explain the Ramsey spectroscopy process in the frequentist and the Bayesian approach.

8.2 Frequentist Ramsey spectroscopy

A Ramsey sequence consists in applying two π/2-pulses to a qubit, each of them around

a rotation axis located on the equator of the Bloch sphere, separated by a waiting time

τR. Assuming an initial state |g⟩, and a detuning ∆ between the laser and the qubit

transition, which is much smaller than the Rabi frequency, ∆ ≪ Ω, the final state of

the qubit will be

|ψf ⟩ ≈ Uϕ2

(π
2

)
e−i∆·τRσz Uϕ1

(π
2

)
|g⟩ . (8.8)

The angles ϕ1 and ϕ2 indicate the rotation axis of each of the π/2 pulses. If ϕ1 = ϕ2 and

∆ = 0, the final state would be |e⟩. As we introduce some detuning, we will measure

some population in the |g⟩ state. It is therefore possible to extract information about

a detuning by performing Ramsey sequences, as shown in Fig. 8.1.

For a more precise modeling of the calibration process, we have to consider situations

in which the detuning is not small compared to the Rabi frequency. In this case the

π/2-pulses will not be rotations around an axis in the equator of the Bloch sphere,

since their rotation axis will have a Z component. Moreover, the duration of the gates,

τπ/2, which was obtained assuming ∆ = 0, will not even be that of a correct π/2-pulse

for this case. When including these effects into the sequence, one obtains that the

likelihood of measuring the |e⟩ state at the end is given by [119]

P (|e⟩ |∆, τR, ϕ) =
4Ω2

Ω̃2
sin2

(
Ω̃τπ/2

2

)[
cos

(
Ω̃τπ/2

2

)
sin

(
∆τR + ϕ

2

)

−∆

Ω̃
sin

(
Ω̃τπ/2

2

)
cos

(
∆τR + ϕ

2

)]2
. (8.9)
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Figure 8.1: Ramsey sequences. In a Ramsey sequence, two π/2-pulses are applied
with a waiting time τR in between them to obtain information about a detuning ∆. Left:
The first rotation (red) is selected to be a π/2 rotation around the Y axis. This state then
evolves by rotating around the Z axis by an angle ∆ · τR (green), which in this case is
π/2. Finally, a rotation around the X axis brings the qubit to the |e⟩ state (blue). Middle:
Similar case but with ∆ · τR = 3π/2, which causes the final rotation to bring the qubit to
the initial state, |g⟩. Right: An arbitrary waiting time for the sequence causes the final
state to be in a superposition of |g⟩ and |e⟩.

where ϕ = ϕ2 − ϕ1 and Ω̃ =
√
Ω2 +∆2.

It is important to note that Eq. (8.9) is just an approximation. In the experiment,

the qubit will be subject to amplitude and phase damping, each of them characterised

by a relaxation (T1) and coherence (T2) time, respectively. In the experimental setup

used, phase damping errors dominate the amplitude damping ones, that is T2 ≪ T1.

Therefore, we will only consider phase damping, although the amplitude damping could

be included too. When one accounts for dephasing, the likelihood becomes

PT2 (|e⟩ |∆, τR, ϕ) =
1

2
+

(
P (|e⟩ |∆, τR, ϕ)−

1

2

)
e
− τR

T2 . (8.10)

However, if we limit the Ramsey sequences to waiting times τR ≪ T2, we can work

with Eq. (8.9).

A frequentist approach for using Ramsey sequences to estimate the detuning of the

laser consists in performing a scan over the detuning, while measuring the expected

populations of the qubit after a Ramsey sequence, for a fixed waiting time and phase

ϕ = 0 between the π/2-pulses. These results are fit to Eq. (8.9) in order to see when

the probability of measuring the |e⟩ state is maximised. The maximum corresponds to

the situation where the detuning is zero.

It is important to explain the role of the waiting time during a Ramsey scan. As
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can be seen in Fig. 8.2, a longer waiting time results in the appearance of more of

the so-called Ramsey fringes in the scan. The zero detuning case will be related to the

position of the maximum of one of these fringes (and the phase between the π/2-pulses),

thus, if the range of detunings used for the scan is too small, it might not be possible

to distinguish which one is the correct fringe. It is therefore important to select an

appropriate waiting time for the range of frequencies under consideration.

Figure 8.2: Ramsey fringes. Probability of measuring the state |e⟩ after a Ramsey
sequence obtained from Eq. (8.9) with Ω = 2π · 10kHz and ϕ = 0. Left: For this case the
waiting time is zero, which makes the sequence equivalent to that of a Rabi scan. Right: In
this case the waiting time is τR = 100µs, and we can see the appearance of several Ramsey
fringes.

While the previous method is valid for estimating and correcting the detuning, it

can require a large amount of measurements. An alternative frequentist method for

estimating the detuning can be realised when an initial, but perhaps not very precise,

calibration has been performed. Here, even though the value of the detuning might be

unknown, its range is established as ∆ ≪ Ω. In this case one can select an initial short

waiting time and obtain two data points for the expected values of the populations with

ϕ = ±π/2. Since the waiting time is small, this amounts to sampling two symmetric

points around a unique Ramsey fringe. For zero detuning, the expected value of the

populations are measured around symmetric points around the center of the Ramsey

fringe, which results in 0.5 for both data points. However, if there is a detuning, this

symmetry is broken, yielding different expected values for each point. This asymmetry

can be used to correct the detuning, moving closer to the center of the Ramsey fringe.

Once a first step is completed, one can repeat the process for a longer waiting time,
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for which the central Ramsey fringe becomes narrower. This can be used for a more

precise measurement of the detuning, but the increased waiting time has an upper limit

in order to not overlap other non-central Ramsey fringes in the error interval of our

detuning, which may result in the protocol using one of the non-central Ramsey fringes.

This error in the calibration protocol is called fringe hopping, and leads to errors in the

estimated detuning. Therefore, the final protocol consists in measuring two data points

with ϕ = ±π/2 for an initially small waiting time, correcting the detuning according

to the results, and repeat this process while slowly increasing the waiting time at each

step. This ensures that we do not suffer from fringe hopping errors, while effectively

increasing the precision of the measurements.

8.3 Bayesian Ramsey spectroscopy

The frequentist approach for the Ramsey spectroscopy is a relatively complex protocol

in which one increases the waiting time after each step in an specific way in order

to avoid fringe hopping. In contrast, the Bayesian inference protocol only depends on

performing measurements and updating the prior distribution with the likelihood of the

outcomes. To begin with the Bayesian inference protocol, we need a prior distribution of

the detuning, P (∆), which will model our knowledge of this parameter at the beginning

of the protocol. In our case, we consider a rectangular prior distribution defining a range

of possible values in the interval [−∆max,∆max]

P (∆) =

{
1

2∆max
, ∆ ∈ [−∆max,∆max]

0, otherwise
. (8.11)

However, the prior distribution can be adapted to other distributions, such as a normal

distribution, depending on our prior knowledge. Once we have defined this prior, we

just need to perform measurements and update it. This will be done by using the

likelihood as defined by Eq. (8.9) (or Eq. (8.10)). Since the possible outcomes are

binary, the associated likelihood for the outcome m is

P (m|∆, τR, ϕ) =

{
P (|e⟩ |∆, τR, ϕ) , m = |e⟩
1− P (|e⟩ |∆, τR, ϕ) , m = |g⟩

. (8.12)

While it is possible to select different parameters for each individual Ramsey cycle,
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Figure 8.3: Bayesian inference updates. Example of how the information is updated
after individual measurements performed with Ω = 2π · 10kHz, τR = 30µs, and a detuning
of ∆ = −2π · 2.5kHz. The distributions shown are not normalised for clarity in the figure.
Left: The distribution before any measurements is assumed to be a constant distribution
defined in the interval shown. If the result of the first measurement, obtained for ϕ = 0,
is |e⟩, the prior is updated by using the likelihood of that measurement to obtain the
posterior (orange). If a second measurement returns the same outcome, the posterior is
updated using the same likelihood as before (green). As a consequence, the posterior gets
narrower. If for the third measurement a |g⟩ state is measured, and since the likelihood
associated to this outcome attributes a zero probability to the case of ∆ = 0, the posterior
is divided into two peaks. Right: By changing ϕ to π/2, if the outcome of the next
measurement is |e⟩, we can update our posterior to distinguish which one of the two peaks
is more probable.

changing the measurement settings requires time in the experiment, and doing this

would considerably slow the calibration process. Therefore, we will consider the same

configuration for nexp measurements. In this case we will obtain ng measurements of

the |g⟩ state and ne = nexp − ng measurements of |e⟩. To avoid long notation, we

introduce Mt = {τR,t, ϕt, ng,t, ne,t} in order to specify the experimental configuration

and outcomes of a set of nexp = ng,t+ne,t measurements, where t = 1, ..., T will be one

of the total T sets of measurements. Consequently, the prior distribution after t sets

of measurements, P (∆|M1:t), will be updated as

P (∆|M1:t) ∝ P (|g⟩ |∆,Mt)
ng,t · P (|e⟩ |∆,Mt)

ne,t · P (∆|M1:t−1), (8.13)

which defines the Bayesian inference process for the Ramsey spectroscopy. An example

of this process with nexp = 1 is shown in Fig. 8.3.

Until now we have explained how to measure and update a prior distribution based

on an experimental setup consisting of a waiting time and a relative angle between the
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π/2-pulses. Note that we have not commented yet upon how to select the measurement

configurations. These are degrees of freedom of the protocol that we can take advan-

tage of in order to obtain a more accurate estimate of the detuning, while requiring

less measurements. In the following, we will study the adaptivity of our method by

considering the total number of measurements n performed in the t sets of measure-

ments, and finding the optimal measurement setting for the next single measurement

update, n + 1. We will then use this resulting measurement setting for the whole set

of measurements t + 1. This simplifies the study, since we will consider only binary

outcomes of the n+1 measurement, instead of the 2nexp possible outcomes in the t+1

set of measurements.

After performing t sets of measurements, we can consider the probability distribu-

tion of the detuning to be approximated by a normal distribution

Pn(∆) = P (∆|M1:t) ≈
1√
2πσ2n

· exp
(
− ∆2

2σ2n

)
, (8.14)

where σ2n is the variance after these n measurements. We consider this normal distri-

bution to be centered around ∆ = 0, which can always be the case if after each set

of measurements we correct the detuning by subtracting the estimated value of the

detuning. Additionally, we assume that σ2n is sufficiently small so that σn ≪ Ω, and

that the waiting time selected for the next measurement satisfies τR,n ≪ T2. In this

case, the likelihood of a |e⟩ measurement of the next set can be approximated by

P (|e⟩ |∆, τR,n+1, ϕn+1) ≈
1 + cos (∆ · τR,n+1 + ϕn+1)

2
. (8.15)

The expected decrease in the variance obtained from this likelihood, and the one cor-

responding to a |g⟩ outcome, is given by (see Appendix A.3)

σ2n+1 − σ2n = −
e−σ2

nτ
2
R,n+1σ4nτ

2
R,n+1 sin

2(ϕn+1)

1− e−σ2
nτ

2
R,n+1 cos2(ϕn+1)

. (8.16)

From the latter, one can obtain that the optimal measurement settings for the n + 1

measurement are given by
τoptR,n+1 = 1/σn,

ϕoptn+1 = ±π
2
.

(8.17)
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By a closer inspection of the likelihood, one can get an intuitive understanding of

why these measurement settings are optimal, and a representation of this is shown

in Fig. 8.4: Choosing ϕn+1 = ϕoptn+1 ensures that the likelihood is asymmetric on the

position of the maximum of the prior distribution. This is done to ensure that the

posterior distribution is kept as a single located zone in the parameter space. If we

were to use ϕn+1 = 0, then the minimum of the Ramsey fringe would be located at the

position of the maximum of the prior, which could divide the distribution in two peaks

in the posterior for a |g⟩ outcome, which is an unwanted behaviour. In the case where

the prior is not centered around zero, that is, ∆n ̸= 0, this condition would be given

by (see Appendix A.3)

ϕoptn+1 = ±π
2
−∆n τ

opt
R,n+1 = ±π

2
− ∆n

σn
. (8.18)

As for the waiting time, if we were to choose τR,n+1 too small then the update

would not have a considerable effect on reducing the variance. If otherwise, the waiting

time is too large, then the update would divide the prior normal distribution in several

peaks, which is not a desired behaviour either. However, setting the waiting time to

τoptR,n+1 we manage to set the periodicity of our likelihood to the scale of our prior, which

minimises the standard deviation of the posterior.

As explained, these are the optimal measurement settings for the n+1 measurement.

However, we will use these settings for all the measurements in the t + 1 iteration of

the algorithm, since changing them for each measurement in this iteration would be

prohibitively slow in the experimental implementation. After the t + 1 iteration is

complete, we will then obtain a new set of measurement settings for the t+2 iteration

and so on.

Since we just learnt how to select the parameters of the Ramsey sequence, we have

now all the components to perform the Bayesian inference protocol, which will be as

follows:

1. Define the initial prior distribution P (∆) as in Eq. (8.11) or as another probability

distribution that models the initial knowledge about the detuning.

2. Select a waiting time for the initial set of measurements, τR,t with t = 1, small

enough so that the first posterior does not have several peaks.
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Figure 8.4: Optimal measurement setup. Different measurement settings for a
Bayesian Ramsey cycle update with Ω = 2π · 10kHz and a Gaussian prior. Upper left:
Example of optimised measurement settings. The likelihood is asymmetric in the position
where the maximum of the prior is, and the waiting time is equal to the inverse of the
standard deviation of the prior. As a result, part of the left side of the prior distribution
is discarded in the posterior, minimising the posterior variance. Upper right: An incorrect
selection of ϕ can cause the posterior to be divided into two peaks. In the case shown, this
happens when measuring the outcome |g⟩. In the case of a |e⟩ measurement (not shown),
the posterior would be a normal distribution with a higher standard deviation as the one
obtained with the optimised settings. Lower left: A short waiting time causes the likeli-
hood to be approximately constant in the interval of intererest of the prior distribution,
causing the posterior to be almost the same as the prior. This leads to a small information
gain. Lower right: A long waiting time causes the posterior to be divided into several
peaks. Therefore, the reduction of the variance compared to the prior is small.

3. Perform nexp measurements and obtain ng,t measurements of |g⟩ and ne,t mea-

surements of |e⟩.

4. Update the prior by using the likelihood of obtaining those results given the

selected experimental setup as in Eq. (8.13) to obtain the posterior distribution.

5. Correct the detuning by using the estimated value of the posterior distribution.

This step is optional if the estimate of ∆, ∆̄, satisfies ∆̄ ≪ Ω.

6. If the posterior distribution is approximately a normal distribution, obtain its

variance and set the measurement settings for the next set of measurements to

113



8. BAYESIAN LASER FREQUENCY LOCKING

the optimal values as in Eq. (8.17). If the detuning was not corrected in the

previous step, the optimal phase has to be selected as in Eq. (8.18). However, if

there is more than one peak in the posterior, select a different phase ϕ for the

next measurements such as there is only one peak left after the next iteration

(see Fig. 8.5).

7. Set the current posterior distribution as the prior for the next iteration.

8. Repeat from step 3 to 7 until the uncertainty of the detuning meets the desired

threshold.

Figure 8.5: Experimental Bayesian Ramsey protocol. Bayesian inference updates
for each iteration of the protocol with the experimental configurations and outcomes shown
in table 8.1, for a detuning of ∆ = 2π · 2kHz. Top left: After the first iteration, the prior
is updated into a posterior with more than one peak. Top right: By selecting a phase
ϕ for the second iteration such as the likelihood allows to distinguish which one is the
correct peak, we can obtain a single peak in the posterior. Bottom left and right: With an
approximate normal distribution as the prior, we can select the waiting time and the phase
between pulses adaptively, achieving a fast convergence of the protocol to an estimate of
the detuning after the fourth iteration of 1991± 111Hz.
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8.4 Experimental results

The experimental implementation of the Bayesian Ramsey spectroscopy protocol was

done in collaboration with Marc Bußjäger [178]. As preparation for the experiment,

an initial calibration round over a wide detuning range was performed by using Rabi

spectroscopy. With this initial calibration, rough estimates of the (−1/2,−1/2) and

(−1/2,−5/2) transitions were obtained, with an error of the order of a few kilohertz,

which was small enough to implement our Bayesian Ramsey spectroscopy.

In order to show that the Bayesian protocol works, a previously precisely calibrated

(−1/2,−1/2) transition was intentionally detuned to ∆ = 2π · 2kHz. This is the value

that the Bayesian protocol is expected to produce as an outcome. The experiment

consisted of four ions manipulated by global beams, therefore each Ramsey cycle pro-

duced four independent outcomes. Ten repetitions were repeated for each experimental

configuration of the Ramsey cycle, which means a total of 40 outcomes before updating

the waiting time and phase between π/2-pulses for the next iteration. This is repeated

for a total of T = 4 iterations.

The Ramsey experiments are done with a π-pulse time of tπ = 19.6µs and a coher-

ence time of T2 = 4ms. The initial iteration of Ramsey cycles, t = 1, is performed with

a waiting time of τR = 70.2µs and a phase between pulses of ϕ = 90◦. The posterior is

a distribution with more than one peak (see Fig. 8.5), which can be effectively reduced

to just one peak by changing the value of ϕ for the next iteration, t = 2, which then

allows for the selection of adaptive measurements for the next iterations. The values

used for each iteration and the results obtained are given in table 8.1. The result of

the Bayesian protocol for these outcomes (see Fig. 8.5) is a detuning of 1991± 111Hz,

in agreement with the intentionally introduced detuning of 2kHz, which indicates that

the protocol works correctly.

After checking that the Bayesian protocol could be used to obtain the detuning

of a laser with respect to a transition, it was used by Marc Bußjäger in Ref. [178] to

estimate the drifts ω̇L and Ḃ. In order to obtain these values, the Bayesian protocol

was used to obtain an estimate of the detuning every two minutes. The configuration

for this case was T = 10 iterations, each of them consisting on 20 cycles acting at the

same time over two ions for the (−1/2,−1/2) transition, and over the other two ions

for the (−1/2,−5/2) transition. A linear fit was performed by using these estimates,
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t τR,t(µs) ϕt ng,t ne,t
1 70.2 90◦ 37 3

2 70.2 211.7◦ 24 16

3 187.2 144.8◦ 17 23

4 707.8 157.8◦ 10 30

Table 8.1: Experimental results of the Bayesian Ramsey protocol. Using the
adaptive Bayesian Ramsey spectroscopy as explained, we perform measurements, update
our knowledge about the detuning, and obtain the optimal experimental configuration for
the next set of measurements. The resulting probability distributions at each step are
shown in Fig. 8.5

where a maximum look-back time of 1 hour for the magnetic field and 2 hours for

the laser frequency is defined to only include recent enough data points, which results

in better linear fits than using all the available data points. In order to characterise

the quality of the laser stabilisation performed by the Bayesian protocol, frequentist

Ramsey experiments were performed over the stabilised laser. One hundred exper-

iments were performed every second, alternating between the (−1/2,−1/2) and the

(−1/2,−5/2) transitions after every 104 experiments. The results of these experiments

showed a mean detuning ∆−1/2 = 32 ± 36 Hz for the (−1/2,−1/2) transition and a

∆−5/2 = 18±41 Hz mean detuning for the (−1/2,−5/2) transition. These errors in the

stabilised laser frequencies are explained due to the deviations from the linear trend of

ωL(t) and B(t). Therefore, the Bayesian protocol was able to stabilise the laser to the

desired transitions, up to a few tens of Hertz.

8.5 Summary

In this chapter we have shown that the adaptive Bayesian Ramsey protocol is an im-

provement from the traditional frequentist approach to the Ramsey spectroscopy in

different ways. First of all, it defines a simple rule for the optimal selection of the

parameters for a Ramsey cycle in order to maximise the information gained by each

outcome. This decreases the amount of measurements required to estimate the de-

tuning of a laser from a given transition, meaning that less time must be lost in the

calibration process. As a consequence, this time that is saved from the calibration of

the system can be used for more relevant experiments. Second, the automation of the

protocol is simple in the sense that the selection of experimental parameters for each
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iteration, the update rules, and also obtaining the estimate of the detuning, are steps

easily programmable in a computer. Third, beyond the estimate, it is straightforward

to obtain the error associated to it. Finally, this protocol is less sensitive to errors

such as fringe hopping, since it considers the previous measurements on top of the ones

associated to the current iteration.

The experimental implementation of this protocol has been able to obtain the cor-

rect values of the detunings. Due to this, it was then used to perform laser frequency

stabilisation [178], which required measuring the detuning of the laser from two tran-

sitions as a function of time, in order to estimate a frequency drift. The result of this

process was a laser stabilised to the desired transitions with a detuning of the order of

a few tens of Hertz, where this error comes mainly from the simple linear model used

for the drift rather than due to any issue related to the Bayesian protocol itself.

Given the advantages that the Bayesian approach shows for the calibration of lasers,

additional applications of Bayesian protocols for calibrating experimental setups can

be thought of. In the following chapters, we will focus on the study of the Mølmer-

Sørensen entangling gate in order to implement a Bayesian inference protocol for its

calibration in the experiment. With this goal, in Chapter 9 we will derive the evolu-

tion introduced by this gate as well as possible miscalibrations that can appear in its

experimental implementation. Particularly, we will focus on modeling the effect of one

of these miscalibrations, known as center line detuning, for which there is no analyt-

ical derivation. After introducing these concepts, we will then introduce a Bayesian

protocol for the calibration of this gate in Chapter 10.
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Chapter 9

Miscalibrations in the

Mølmer-Sørensen gate

In the previous chapter we explained the importance of the correct calibration of single-

qubit gates and we developed a Bayesian protocol for their calibration in trapped-ion

platforms. From that work, it is straightforward to think about designing a Bayesian

protocol for the calibration of entangling gates. However, the implementation of entan-

gling gates depends on more complex physical models than those used for single-qubit

gates. Due to this, it is more challenging to achieve high fidelities in entangling gates

than for single-qubit gates, since one needs a deep understanding of the gate and the

effects that possible miscalibrations have on its performance. This complicates the

implementation of not only Bayesian techniques but of any calibration protocol as

compared to the calibration of single-qubit operations. Therefore, having access to

an analytical understanding of these effects is desirable for the implementation and

calibration of a quantum gate.

In this chapter, we will focus on the study of the Mølmer-Sørensen (MS) gate, which

we briefly mentioned in Sec. 4.4, and the possible miscalibrations that can appear

in its experimental implementation. The MS gate has some experimentally relevant

properties, such as being able to create entanglement between more than two ions with

a single application, and its independence on the initial vibrational state of the ions to

first order. Moreover, its application, together with single-qubit rotations, is sufficient

to obtain a CNOT gate [180]. As explained, the physical model of this entangling gate

is more complex than those used for the implementation of the single-qubit gates that
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we have seen. This higher degree of complexity increases the number of experimental

parameters that need to be calibrated to obtain a high-fidelity gate. Additionally, for

the miscalibration of some of these parameters there is no analytical model for the

action of the gate on the quantum system. However, as we explained, it is helpful

to understand the effects of these miscalibrations to determine if the gate is correctly

calibrated or not. Specially, for understanding which miscalibration is limiting the

fidelity of the gate.

After introducing the MS gate, we will focus on understanding the effect of one of

these miscalibrations: the center line detuning. A center line detuning appears due to

a miscalibration in the frequencies of the bichromatic laser used to implement the MS

gate. Until recently there was no analytical derivation of the evolution introduced by

the center line detuned MS gate. In this thesis, we introduce a semianalytical model

that we developed in Ref. [2], based on a Magnus expansion [181]. This perturbative

model provides physical and analytical insights into the final states obtained after the

application of the MS gate with a center line detuning. This allows us to estimate key

properties such as populations, relative phases, fidelities, or purities after the miscali-

brated gate. After this study of the MS gate, we will then be in position to introduce

in Chapter 10 the Bayesian protocol aimed at its calibration.

In Sec. 9.1, we introduce the derivation of the ideal MS gate, which we then gener-

alise to consider different gate miscalibrations that allow for an analytical derivation.

In Sec. 9.2, we introduce the derivation of a Magnus expansion applied to a center line

detuned MS gate, which is used to obtain the form of the final states obtained from the

application of the gate. In Sec. 9.3, we use these final states to obtain expressions for

quantities of interest such as populations, relative phases, fidelities, and purities. We

also compare these predictions with results obtained from numerical integration of the

gate evolution. Finally, in Sec. 9.4 we show experimental results that further validate

the results obtained from our model.

9.1 Mølmer-Sørensen gate

The Mølmer-Sørensen gate is based on the application of a force that is dependent

on the internal state of the ions, and takes advantage of a common vibrational mode

shared between the trapped ions [121]. This force induces a periodic movement of the
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motional state of the ions in phase space. At the end of the gate the motion is returned

to its original state with an accumulated relative phase in the internal states. The MS

phase can be used to create entanglement between more than two ions with a single

application and is independent of the initial vibrational state to first order [131, 132].

This last property provides the gate with a robustness when working with thermal

states of the gate-mediating phonon mode, which can result from imperfect ground

state cooling.

In order to derive the MS gate Hamiltonian, let us consider a system of N ions in a

linear trap interacting with a bichromatic laser field of frequencies ω1 and ω2. We will

focus on the lowest frequency center-of-mass (COM) mode of the ions and ignore the

other more energetic modes, because the frequency difference between the COM mode

and the other modes is much larger than the Rabi frequency of the driving laser field.

This system may be described by the Hamiltonian

H(t) = H0 +Hint(t),

H0 =
N∑
j=1

ωeg,0

2
σz,j + ν(a†a+ 1/2),

Hint(t) =

N∑
j=1

Ω(t)

2

(
σ+j + σ−j

)(
ei(k1xj−ω1t+φ) + ei(k2xj−ω2t+φ) + h.c.

)
,

(9.1)

where ωeg,0 is the transition frequency between the internal states, |e⟩ and |g⟩, used
to encode the qubit; ν is the trap frequency of the COM mode, which defines the

distance of the motional sidebands (see Fig. 9.1) from the carrier; a† and a are the

Fock operators related to the COM mode; σ+j and σ−j are the ladder operators acting

on the internal states of the jth ion and, similarly, σx,j , σy,j and σz,j represent the Pauli

operators acting on the internal state of that ion; φ is the phase of the two laser tones

of frequencies ω1 and ω2 - we will consider φ to be equal for both; k⃗1 and k⃗2 are the

wavevectors of each laser tone; Ω(t) is the Rabi frequency, which is assumed to be equal

for all ions and for both components of the laser field, and can be time-dependent for

a general pulse-shape of the laser, f(t),

Ω(t) = Ω f(t). (9.2)

In order to implement the MS gate, the frequencies of the bichromatic laser must be
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Figure 9.1: Mølmer-Sørensen gate resonant paths. (a) Energy diagram for two
ions with quantised center of mass vibrational mode of frequency ν interacting with a
bichromatic laser of frequencies ω1 = ωeg + δ and ω2 = ωeg − δ. The bichromatic laser
allows a resonant two-photon transition between |g, g, n⟩ and |e, e, n⟩. There are four
different paths, each of them going through an intermediate virtual state separated by
ϵ = ν − δ to one of the sidebands. (b) Similar diagram as before but for the transition
|e, g, n⟩ ↔ |g, e, n⟩ introduced by the MS gate.

centered around the carrier transition frequency and close to the sideband transition

frequency, that is, ω1 = ωeg,0 + δ and ω2 = ωeg,0 − δ, with a detuning δ close but

not equal to ν, see Fig. 9.1. Introducing these values in the interaction term of the

Hamiltonian we obtain

Hint(t) =
N∑
j=1

Ω(t)

2

(
ei(k⃗1x⃗j−(ωeg,0+δ)t+φ) + ei(k⃗2x⃗j−(ωeg,0−δ)t+φ) + h.c.

)(
σ+j + σ−j

)
.

(9.3)

We can write k⃗ix⃗ = ηi(a
† + a) with i = 1, 2, where ηi is the Lamb-Dicke parameter

(see Eq. (4.26)), and since δ ≪ ωeg,0 we can assume η1, η2 ≈ η. We can simplify this

Hamiltonian by assuming that we are in the Lamb-Dicke regime, η
√
n≪ 1, with n being

the phonon number of the COM motional state, introducing the sideband detuning as

ϵ = ν − δ, transforming to the interaction picture defined by the evolution operator,

V (t) = eiH0t, that is

Ĥ(t) = V (t)H(t)V †(t) + i

(
d

dt
V (t)

)
V †(t). (9.4)

Finally, applying the rotating wave approximation to keep only the terms rotating with

ϵ and ignoring the other fast-rotating terms that go with ν + δ or ωeg,0, we obtain the
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following Hamiltonian

Ĥ(t) = −ηΩ(t)
(
a†eiϵt + ae−iϵt

)
Sφ, (9.5)

where we have defined

Sφ = Sy cos(φ) + Sx sin(φ), (9.6)

and

Sα =
1

2

N∑
j=1

σα,j , α = x, y, z. (9.7)

The evolution introduced by the Hamiltonian in Eq. (9.5) can be solved by calcu-

lating the limit to infinity of a product of small evolution operators [132, 182]

Û(t) = lim
K→∞

K∏
k=1

exp
(
−iĤ(tk)∆t

)
= lim

K→∞

K∏
k=1

exp
[
D(γ(tk)Sφ∆t)

]
, (9.8)

where t = K ·∆t, D(α) is the displacement operator as in Eq. (3.58), and we defined

γ(t) ≡ iηΩ(t)eiϵt. (9.9)

Using the Baker-Campbell-Hausdorff relation [183]

D(α)D(β) = D(α+ β) exp(i Im(αβ∗)), (9.10)

we obtain

K∏
k=1

exp
[
D(γ(tk)Sφ∆t)

]

= D

(
K∑
k=1

γ(tk)Sφ∆t

)
K∏
k=2

exp

(
i Im

γ(tk)K−1∑
j=1

γ∗(tj)S
2
φ

∆t2

)
, (9.11)

for which in the limit K → ∞ we obtain

Û(t) = D

(∫ t

0
γ(t′)dt′Sφ

)
exp

(
i Im

∫ t

0
γ(t′)dt′

∫ t′

0
γ∗(t′′)dt′′S2

φ

)
. (9.12)
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Therefore, the action of the gate can be expressed in terms of

Γ(t) =

∫ t

0
γ(t′)dt′, (9.13)

θ(t) = Im

∫ t

0
γ(t′)dt′

∫ t′

0
γ∗(t′′)dt′′. (9.14)

For a simple case with a constant Rabi frequency, although these calculations can

be performed for other pulse shapes, the time evolution introduced by the gate is given

by

Û(t) = D

(
ηΩ

ϵ
(eiϵt − 1)Sφ

)
exp

[
i

(
(ηΩ)2

ϵ
t−

(
ηΩ

ϵ

)2

sin(ϵt)

)
S2
φ

]
. (9.15)

The parameters of the gate can be tuned to obtain the desired evolution

MSφ(θ) = exp
(
iθS2

φ

)
. (9.16)

One typically aims to obtain θ = π/2, for which the action of the gate on a state in

the computational basis produces a maximally entangled state. In order to achieve

this, there are two approaches. The first uses a gate in the weak-field regime, ηΩ ≪ ϵ,

where the bichromatic laser has a small coupling to the sidebands, which makes the

population transfered to them negligible. In this regime, we obtain

Û(t) ≈ exp

(
i
(ηΩ)2

ϵ
S2
φt

)
. (9.17)

Within this approximation, the evolution operator does not change the motional state

of the ions at any time, performing a Rabi oscillation between |e, e, n⟩ ↔ |g, g, n⟩ and

|g, e, n⟩ ↔ |e, g, n⟩ with a rotating axis defined by Sφ in the equator of the Bloch sphere

defined by these two states. However, restricting the gate to this regime causes it to

be slow. To obtain a faster gate we can consider the MS gate where we set

tg|ϵ| = 2π, (9.18)

with tg being the gate time. With this condition the displacement operator in Eq. (9.15)

becomes the identity (since Γ(tg) = 0), and the argument in the exponential simplifies.
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We then have to configure the gate in such a way that

θ(tg) =
(ηΩ)2

ϵ
tg =

π

2
, (9.19)

to obtain the evolution operator

Û(tg) = exp
(
i
π

2
S2
φ

)
(9.20)

For this case, the coupling of the bichromatic laser with the sidebands is not negligi-

ble, and the motional state at intermediate times between the beginning and the end of

the gate will be different from the initial one. This can be seen since the displacement

operator in Eq. (9.15) performs a loop in phase space, returning to the original point at

the end of the gate (see Fig. 9.2 (b)). As for the entanglement introduced by the gate,

given by θ(tg), it is equal to the area enclosed by this loop. A similar explanation can

be made for the gate in the weak-field regime. In this case the gate performs several

loops in phase space of a much smaller size, making the population of the sidebands

negligible at all times, and the rotation induced by the gate will be equal to the area

enclosed by several small loops.

Figure 9.2: Single-loop MS gate. (a) Evolution of the populations of the internal
states of two qubits for the initial state |g, g, 0⟩ under the action of a single-loop MS gate
with constant Rabi frequency. The states |e, g⟩ and |g, e⟩ have a finite population during
the gate, but they return to zero after the gate is completed. At the end of the gate, the
qubits are in a maximally entangled state. (b) Trajectory in phase space, defined by the,
momentum, p, and position, q, induced by the MS gate with the ions on the +1 eigenstate
of Sφ (in orange) and the −1 eigenstate (in blue), with the black circle indicating the initial
position. The trajectory returns to the initial point in phase space after tg. The rotation
introduced by the gate is given by the area enclosed by the trajectory.
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While the evolution shown in Eq. (9.20) would be the effect of the ideal MS gate,

obtained by a perfect calibration of the parameters, it is important to understand what

are the effects that a wrong calibration would introduce in the gate. One can see that

if the relation in Eq. (9.19) is not satisfied, the entanglement between the internal

state of the ions introduced by the gate would not be the desired one. Additionally, a

miscalibration in the relation between the gate time and the sideband detuning shown

in Eq. (9.18) can change the motional state of the ions and introduce entanglement

between the internal and motional states. This can be understood in terms of the

example shown in Fig. 9.2 as a loop in phase space that does not return the motional

state to the initial one at the end of the gate due to an under or over-rotation. On top

of this, this miscalibration would also introduce an error in the value of θ. All of these

unwanted effects reduce the fidelity of the gate.

The previous examples of the effects that some miscalibrations have on the gate

can be easily understood thanks to having access to a closed form of the evolution

introduced by the gate. However, this will not be the case for a gate with a center line

detuning. In the following we introduce what is a center line detuning, its sources and

how this miscalibration affects the Hamiltonian of the MS gate.

9.1.1 Center line detuned MS gate

A center line detuning is a miscalibration appearing in the MS gate due to the fre-

quencies of the bichromatic laser not being centered around the carrier. A center line

detuning can appear due to two different contributions. First, the transition frequency

between |g⟩ and |e⟩ can be affected by an AC-Stark shift λAC(t) ∝ Ω(t)2 caused by

the interaction of the laser with off-resonant atomic levels [184, 185], which will be

time-dependent due to the pulse-shape of the laser, f(t). Due to this, the transition

frequency will have the form

ωeg(t) = ωeg,0 + λAC f(t)
2. (9.21)

Another contribution to the center line detuning that we consider is due to a shift, λl,

of the bichromatic laser frequencies given by

ω1 = ωeg,0 + ωd + λl,

ω2 = ωeg,0 − ωd + λl.
(9.22)
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Figure 9.3: Center line detuned MS gate. (a) The existence of a center line detuning,
λ, which appears due to the laser frequencies not being centered around the carrier, breaks
the symmetry between the four paths and the two-photon resonance. (b) Similar phase
space plot as in Fig. 9.2, but with a constant center line detuning λ/ϵ = 0.1. The center line
detuning miscalibration deforms the loop as compared to the ideal case, causing the final
motional state to be different from the initial one, therefore introducing and entanglement
between the motional states and the ionic states. Additionally, the trajectory in this case is
dependent on the initial motional state, with the case shown being for initial |n = 0⟩. This
effect also causes the final internal state to be different from the ideal one (not shown).

Combined, these contributions cause a detuning of the mean value of the bichro-

matic frequencies from the carrier transition frequency, given by

λ(t) = λAC f(t)
2 − λl. (9.23)

The effect of this miscalibration on the level structure of the MS gate at a given time

is shown in Fig. 9.3 (a).

Introducing these changes into the model and following a similar derivation as for

the ideal MS gate, where instead of changing into the interaction picture defined by

the evolution operator generated by H0, we change to the interaction picture defined

by

W (t) = exp

i
 N∑

j=1

ωeg,0 − λl
2

σz,j + ν(a†a+ 1/2)

 t

 , (9.24)

and obtain the Hamiltonian

Ĥ(t) = λ(t)Sz − ηΩ(t)(a†eiϵt + ae−iϵt)Sφ. (9.25)

Therefore, the effect of the center line detuning miscalibrations is the appearance of an

unwanted Sz term in the Hamiltonian. This term does not only cause the dynamics
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to be different from the ideal gate (see for example Fig. 9.3 (b)), but also causes the

evolution introduced by the gate to not have an analytical solution.

In the following section we present a perturbative study based on a Magnus expan-

sion [181, 186], which we use to analyse the effect that the center line detuning has on

the gate’s performance.

9.2 Perturbative study of the center line detuned MS gate

As we saw in the previous section, the Hamiltonian with a center line detuning has

the form of the ideal Hamiltonian of the MS gate plus an additional term accounting

for the center line detuning miscalibration. In the following we will rescale the time

as τ = ϵ t, which is dimensionless since ϵ is a frequency. This rescaling is convenient

since it makes our study independent of specific choices for the gate parameters. The

adimensional time-dependent Schrödinger equation becomes

iϵ
d

dτ
ϕ(τ) = Ĥ(τ/ϵ)ϕ(τ). (9.26)

The evolution is ruled by a rescaled Hamiltonian, Ĥ(τ), given by

Ĥ(τ) = Ĥideal(τ) + H̃cl(τ), (9.27)

where
Ĥideal(τ) = −Ω̃(τ/ϵ)(a†eiτ + ae−iτ )Sφ,

Ĥcl(τ) = λ̃(τ/ϵ)Sz,
(9.28)

with Ω̃(τ/ϵ) = ηΩ(τ/ϵ)/ϵ and λ̃(τ/ϵ) = λ(τ/ϵ)/ϵ.

In order to simplify the analysis, we will consider a square pulse-shape. In this

case we can write λ̃(τ/ϵ) = λ̃ = (λAC − λl)/ϵ and Ω̃(τ/ϵ) = Ω̃ = ηΩ/ϵ, which satisfies

Ω̃ = 1/2 when we consider the conditions in Eq. (9.18) and Eq. (9.19). We note that for

the study of a given time-dependent pulse shape, one can follow a similar derivation as

the one that we will show, at the cost of introducing the pulse shape in the respective

numerical integrals that will appear.

Our goal is to obtain the evolution operator, Û(τ), associated to the Hamiltonian

in Eq. (9.27). In the following we will study the effect of the center line detuning

miscalibration by using a Magnus expansion approach where we consider this unwanted
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term as a perturbation. This perturbative study is justified since typical values of the

center line detuning miscalibration represent only a small fraction of the value of the

sideband detuning. Without loss of generality, we will continue to assume that the

common phase of both laser tones is φ = 0.

9.2.1 Magnus expansion

We already know the form of the evolution introduced by the unperturbed Hamiltonian,

Ĥideal(τ), given by the rescaled version of Eq. (9.15)

Û0(τ) = D
[
F (τ)Sy

]
· exp

[
iG(τ)S2

y

]
, (9.29)

where F (τ) = Ω̃ (eiτ −1) and G(τ) = Ω̃2
(
τ−sin(τ)

)
. We can move to another rotating

frame defined by this free evolution operator, Û0(τ). In this frame, the Hamiltonian of

the system becomes

H̃(τ) = Û
†
0(τ)ĤclÛ0(τ). (9.30)

In this rotating frame, we separate the perturbation term due to the center line detuning

of the initial Hamiltonian, Ĥ(τ), from the one that allows for an analytical solution.

From now on, we will focus on studying the term arising from the center line detuning

as a perturbation to the Hamiltonian of the ideal gate (with the perturbative parameter

being λ̃) by using a Magnus expansion [181, 186], which has the advantage of producing

a unitary perturbative evolution operator at any order. With this approach, we can

represent the operator that describes the evolution due to this Hamiltonian, Ũ(τ), in

exponential form:

Ũ(τ) = exp
[
M(τ)

]
. (9.31)

The Magnus exponent, M(τ), is given by a series

M(τ) =
∑
j=1

Mj(τ), (9.32)
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with the first terms

M1(τ) = −i
∫ τ

0
H̃(t1)dt1, (9.33)

M2(τ) = −1

2

∫ τ

0

∫ t1

0
[H̃(t1), H̃(t2)]dt2dt1. (9.34)

Here, M1(τ) and M2(τ) have a first and second order dependence on λ̃, respectively.

Considering only these terms and ignoring higher order dependences on the center line

detuning, the evolution operator is approximated by

Ũ(2)(τ) ≈ 1 +M1(τ) +
(
M2(τ) +M2

1 (τ)/2
)
. (9.35)

We can now use this result with the free evolution operator to obtain an approximation

up to second order in Magnus expansion, Û(2)(τ), of the evolution, Û(τ), introduced by

the Hamiltonian in Eq. (9.27)

Û(2)(τ) ≈ Û0(τ) + Û0(τ)M1(τ) + Û0(τ)
(
M2(τ) +M2

1 (τ)/2
)
. (9.36)

One can use this second order evolution operator or, more generally, the corresponding

evolution operator obtained by a perturbation expansion up to Kth order, to obtain

the action that the gate has over an initial state after a normalised gate time τg. In

the following we consider the initial states |σ, σ′, n⟩ in the computational basis where

σ, σ′ ∈ {g, e}, and study the action of the center line detuned gate on them in a sum

over kth order perturbative correction states
∣∣∣ψ(k)

σ,σ′,n

〉
with coefficients λ̃k. The resulting

state
∣∣∣Ψ(K)

σ,σ′,n

〉
can be written as:

∣∣∣Ψ(K)
σ,σ′,n

〉
= Û(K)(τg)

∣∣σ, σ′, n〉 = ∣∣ψσ,σ′,n

〉
−

K∑
k=1

λ̃k
∣∣∣ψ(k)

σ,σ′,n

〉
, (9.37)

where
∣∣ψσ,σ′,n

〉
is the target state of the ideal gate.

We will begin by studying the first order Magnus expansion, from which we will

be able to write the perturbed evolution as a unitary operator acting on the qubit

space. From this we will see that the only linear effect that the center line detuning

has on the gate is the appearance of an unwanted relative phase. In order to obtain

further results, we will need to study the second order Magnus expansion, which will
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9.2 Perturbative study of the center line detuned MS gate

allow us to capture more exactly the dependences of other key properties, namely the

populations, fidelities, and purities, with the center line detuning.

9.2.2 First order Magnus expansion

In order to study the first order dependence of the MS gate on the center line detuning,

we consider only the first two terms in Eq. (9.36)

Û(1)(τ) ≈ Û0(τ) + Û0(τ)M1(τ). (9.38)

In the absence of any center line detuning, the final state after the application of the

ideal MS gate for a normalised gate time, τg = 2π (see Eq. (9.18)), for each initial state

would be given by

|ψg,g,n⟩ = Û0(τg) |g, g, n⟩ =
eiπ/4√

2

(
|g, g, n⟩ − i |e, e, n⟩

)
, (9.39)

|ψe,e,n⟩ = Û0(τg) |e, e, n⟩ =
eiπ/4√

2

(
− i |g, g, n⟩+ |e, e, n⟩

)
, (9.40)

|ψg,e,n⟩ = Û0(τg) |g, e, n⟩ =
eiπ/4√

2

(
|g, e, n⟩+ i |e, g, n⟩

)
, (9.41)

|ψe,g,n⟩ = Û0(τg) |e, g, n⟩ =
eiπ/4√

2

(
i |g, e, n⟩+ |e, g, n⟩

)
. (9.42)

One can then calculate the first order corrections to the final states (see Appendix A.4),

given by∣∣∣ψ(1)
g,g,n

〉
=
∑
m≥0

[
ifoddn,mI

m
n (|e, g,m⟩+ |g, e,m⟩)

+ f evenn,m ((Inm + Imn ) |g, g,m⟩+ (Inm − Imn ) |e, e,m⟩)
]
,

(9.43)

∣∣∣ψ(1)
e,e,n

〉
=
∑
m≥0

[
−ifoddn,mI

m
n (|e, g,m⟩+ |g, e,m⟩)

+ f evenn,m ((Inm + Imn ) |g, g,m⟩+ (Inm − Imn ) |e, e,m⟩)
]
,

(9.44)

∣∣∣ψ(1)
g,e,n

〉
=
∣∣∣ψ(1)

e,g,n

〉
= i

∑
m≥0

Inmf
odd
n,m

(
|g, g,m⟩+ |e, e,m⟩

)
, (9.45)
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Figure 9.4: Representation of the first order Magnus expansion coefficients.
Values of the numerical coefficients an, defined in Eq. (9.53). These values appear in the
predictions of our model due to the first order corrections to the final state. Therefore,
for the first values of n, the first order effects decrease as n increases (see, for example,
Eq. (9.55), Fig. 9.5, and Fig. 9.6). These low values of n are the most relevant in the
experiment since the initial motional state of the ions is cooled before the application of
the gate. An inset is shown for the absolute values of the Inm coefficients, from which the
an coefficients are obtained by using Eq. (9.53).

where we defined

f evenn,m =
(1 + (−1)n−m)

2
, foddn,m =

(1− (−1)n−m)

2
, (9.46)

and Inm, which is a matrix (see Appendix A.4 and Fig. 9.4) obtained from numerical

integrations of

Inm =
i

2

∫ τg

0
eiG(τ) ⟨m|D[F (τ)] |n⟩ dτ. (9.47)

While these coefficients depend on the pulse-shape and on the phonon motional states,

they do not have any dependence on the center-line detuning. This implies that, for

obtaining corrections to the final states, we only need to calculate Inm once for that

given pulse-shape. The coefficients obtained can then be used with Eq. (9.37) for the

calculation of the final state
∣∣∣Ψ(1)

σ,σ′,n

〉
up to first order for any value of the center

line detuning. In our constant pulse-shape case, all of these coefficients have the form

of a real value multiplied by (−1 + i). The code that we developed to obtain these

coefficients can be found in the GitHub repository in Ref. [187], which also includes the

numerical calculation of the second order coefficients appearing in Sec. 9.2.3.

We can prove that, up to first order in λ̃, the center line detuning does not introduce
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any unwanted entanglement between the internal and motional states. This can be

shown by computing the density matrix of the state
∣∣∣Ψ(1)

σ,σ′,n

〉
that from Eq. (9.37)

takes the form:∣∣∣Ψ(1)
σ,σ′,n

〉〈
Ψ

(1)
σ,σ′,n

∣∣∣ = ∣∣∣Ψ(1),tr
σ,σ′,n

〉〈
Ψ

(1),tr
σ,σ′,n

∣∣∣⊗ |n⟩ ⟨n|+O(λ̃2), (9.48)

where the states
∣∣∣Ψ(1),tr

σ,σ′,n

〉
are the following

∣∣∣Ψ(1),tr
g,g,n

〉
=

1√
2

[
(1− ianλ̃) |g, g⟩ − i |e, e⟩

]
, (9.49)∣∣∣Ψ(1),tr

e,e,n

〉
=

1√
2

[
− i |g, g⟩+ (1 + ianλ̃) |e, e⟩

]
, (9.50)∣∣∣Ψ(1),tr

g,e,n

〉
=

1√
2

(
|g, e⟩+ i |e, g⟩

)
, (9.51)∣∣∣Ψ(1),tr

e,g,n

〉
=

1√
2

(
|e, g⟩+ i |g, e⟩

)
, (9.52)

and we defined the real numbers an as

an = 4Inn/(−1 + i). (9.53)

A representation of the values an for different values of n is shown in Fig. 9.4.

From these results one can obtain that the action of the center line detuned MS gate

over the qubits is, in the computational basis and up to first order, a unitary operator

given by

Û(1),tr
n (τg) =

1√
2


1− ianλ̃ 0 0 −i

0 1 i 0
0 i 1 0

−i 0 0 1 + ianλ̃

 . (9.54)

Therefore, the center line detuning does not introduce, up to first order, any unwanted

entanglement between the internal and motional states. In order to compare this uni-

tary with the one from the ideal MS gate we consider that 1 − ianλ̃ ≈ exp
(
−iλ̃an

)
,

from which we can identify

Û(1),tr
n (τg) = Rz(−anλ̃)Û0(τg)Rz(−anλ̃), (9.55)

where

Rz(ϕ) ≡ exp (i ϕ Sz/2) . (9.56)
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Figure 9.5: Representation of the final states obtained from first order Magnus
expansion. Representation in the Bloch sphere spanned by |g, g⟩ and |e, e⟩ of the effect of
applying the center line detuned gate on the initial state |g, g, n⟩ obtained from first order
Magnus expansion, shown in Eq. (9.49), for n = 0, 1, 2. The black arrow indicates the ideal
final state (|g, g⟩ − i |e, e⟩)/

√
2 and the grey arrow indicates the state (|g, g⟩ + |e, e⟩)/

√
2.

The colors shown in the legend are used to indicate the final state after the application of
the MS gate as a function of the center line detuning. These states show a relative phase

different from the ideal one, (|g, g⟩ + exp
(
iϕ

(1)
g,g,n(λ̃)

)
|e, e⟩)/

√
2, given by Eq. (9.60) and

Eq. (9.61) in Sec. 9.3.1. The error in the phase is larger for an initial Fock motional state
of n = 0, and decreases for the cases n = 1 and n = 2. This can be understood by looking
at the behaviour of the parameter an shown in Fig. 9.4, which one can use to predict, up
to first order, the final relative phases for other values of the initial Fock state.

This shows that the predominant effect to first order, of the center line detuning is

an error in the relative phase for the initial states |e, e, n⟩ and |g, g, n⟩ (see Fig. 9.5).

Other relevant effects, e.g. in the final electronic and motional populations, quantum

state fidelities or purity of the final qubit states appear in higher order, and thus require

an expansion at least to second order in the center line detuning.

9.2.3 Second order Magnus expansion

In order to obtain the final states up to second order, we have to calculate the corre-

sponding terms, as given by Eq. (9.37). These can be calculated (see Appendix A.4)

and are given by∣∣∣ψ(2)
g,g,n

〉
=
∑
m≥0

Jn
+,m |g, g,m⟩ − Jn

−,m |e, e,m⟩ , (9.57)∣∣∣ψ(2)
e,e,n

〉
=
∑
m≥0

−Jn
−,m |g, g,m⟩+ Jn

+,m |e, e,m⟩ , (9.58)∣∣∣ψ(2)
g,e,n

〉
=
∣∣∣ψ(2)

e,g,n

〉
=
∑
m≥0

(
Jn
1,m − Jn

2,m

) (
|g, e,m⟩+ |e, g,m⟩

)
. (9.59)
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with Jn
+,m, Jn

−,m, Jn
1,m and Jn

2,m being numerical coefficients (see Appendix A.4) that,

similarly as the Inm coefficients, do not depend on the center line detuning. While these

coefficients depend on the pulse-shape, one only needs to calculate them once and then

they can be used to calculate the final state up to second order,
∣∣∣Ψ(2)

σ,σ′,n

〉
, for any value

of the center line detuning.

In this second order Magnus expansion, the effect of the gate can no longer be

expressed as a unitary operator acting on the qubit states. This is because the states

obtained from second (or higher) order have a residual entanglement between internal

and motional states. As a consequence, the states obtained after tracing the phonons

are no longer pure states. However, this second order expansion will allow us to obtain

a better approximation of the final state, as we will see in the following section.

9.3 Predictions of the model

Having derived the final states after the application of the center line detuned gate by

using a Magnus expansion, we are now in the position to estimate the effect that a

center line detuning miscalibration has on the relative phase (Sec. 9.3.1), populations

(Sec. 9.3.2), fidelities (Sec. 9.3.3), and purities (Sec. 9.3.4) of the final state with respect

to the ideal one. While the following study can be performed for any initial state by

using the results shown in Sec. 9.2, in the following we will focus on the case of |g, g, n⟩
as initial state. We will also explain how these results can be generalised for the more

experimentally relevant case where ions are in thermal motional states.

9.3.1 Relative phase

Following our perturbative approach, we can write the final relative phase of the state in

Eq. (9.37) when considering the initial state |σ, σ′, n⟩ as the relative phase of the target
state, ϕ

(0)
σ,σ′,n, plus the terms related to the kth order correction, up to the considered

Kth order:

ϕ
(K)
σ,σ′,n(λ̃) = ϕ

(0)
σ,σ′,n +

K∑
k=1

λ̃kδϕ
(k)
σ,σ′,n (9.60)

Looking at the results from the first order Magnus expansion, we can see that the

predominant effects of this miscalibration is over the relative phase of the final internal

states. From Eq. (9.54) and Eq. (9.55) we can see that the initial states |g, e, n⟩ and
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Figure 9.6: Relative phase predicted by the Magnus expansion model. Relative
phases after the detuned MS gate with initial state |g, g, n⟩ (in this example we consider
initial COM phonon numbers n = 0, 1, 2, 3) for the numerical integration of the Hamiltonian

in Eq. (9.27) and for the results from the first and second order Magnus expansion, ϕ
(1)
g,g,n

and ϕ
(2)
g,g,n, obtained by using Eq. (9.60). The ideal relative phase is −π/2 since the ideal

final state is (|g, g⟩− i |e, e⟩)/
√
2. The second order terms improve the phase estimation as

compared to the first order case. Very minor differences with respect to the numerics are
expected and result from not accounting for higher order corrections. We note that for the
cases shown, the dependence of the phase error on the center line detuning decreases as n
increases, in accordance to what is shown in Fig. 9.5. An inset is included for the case
with initial n = 3 for clarity.

|e, g, n⟩ are not affected by a center line detuning in first order. As for the initial state

|g, g, n⟩, it has a first order correction given by (see Eq. (9.55))

δϕ(1)g,g,n = an. (9.61)

This causes the final state to have an error in the final relative phase as compared to

the target state in Eq. (9.49), of relative phase ϕ
(0)
g,g,n = −π/2.

For the case of the initial state |e, e, n⟩ one can obtain, after following the same

derivation, that the relative phase introduced by the center line detuning is the same

but of opposite sign. Therefore, the relative phase has a leading first order perturbative

term dependent on the center line detuning. A visual representation of this effect is

shown in Fig. 9.5.

Additionally, one can use the results from the second order Magnus expansion to

improve the relative phase prediction. In order to do this, one can, for the initial state

|g, g, n⟩ case for example, calculate the coherence element between |e, e⟩ and |g, g⟩ of

the traced final state:

ρee,gg (2)g,g,n (λ̃) =
−i+ λ̃an + λ̃2bn

2
. (9.62)
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where

bn = −(1− i)
(
(Jn

+,n)
∗ − Jn

−,n

)
+
∑
m̸=n

(
Inm − Imn

)(
Inm + Imn

)∗
f evenn,m . (9.63)

Calculating the argument of this coherence term up to second order, we obtain

δϕ(2)g,g,n = Re(bn), (9.64)

which can be used with Eq. (9.60) to obtain the second order correction. A comparison

between the relative phases predicted up to first and second order, ϕ
(1)
g,g,n and ϕ

(2)
g,g,n,

and the one obtained from the numerical integration of the Hamiltonian in Eq. (9.27),

for different initial motional states is shown in Fig. 9.6.

This result can be generalised for the case where the initial motional state is in a

mixed state defined by a thermal distribution with a mean number of phonons n̄, pn̄(n),

as in Eq. (3.63). In this case, the relative phases in first, ϕ
(1)
g,g,n̄, and second order, ϕ

(2)
g,g,n̄,

are given by

ϕ
(K)
g,g,n̄ =

∑
n=0

pn̄(n)ϕ
(K)
g,g,n, K = 1, 2. (9.65)

Since each of the populations of the thermal state is affected by a different error in

the final relative phase, one can expect that the center line detuning also introduces a

dephasing of the final internal state superposition, causing decoherence in the quantum

states.

9.3.2 Populations

Using the final states resulting from the first order Magnus expansion in Sec. 9.2.2,

one can obtain that the center line detuning does not introduce a first order correction

of the populations when considering the elements of the computational basis as initial

states. Due to this, we have to consider the states obtained from the second order

137



9. MISCALIBRATIONS IN THE MØLMER-SØRENSEN GATE

Figure 9.7: Populations predicted by the Magnus expansion model. Populations
after the action of the detuned MS gate over the initial state |g, g, n⟩ (in this example we
consider the cases with n = 0, 1, 2, 3) obtained by numerical integration of the Hamiltonian
in Eq. (9.27) and with the expressions for the second order Magnus expansion shown in
Eq. (9.66)-(9.68). None of these populations have a linear dependence with the center line
detuning, which justifies the use of the second order Magnus expansion for their study.
While the quadratic terms captures the behaviour of the populations with the center line
detuning, one can also see that the model has slight deviations from the numerics in higher
order terms. This is specially the case for the behaviour of P (gg) for the initial state
|g, g, 0⟩, in which the second order term has almost no importance, making the third order
term (which is not considered in our calculations) dominant.

Magnus expansion. The populations obtained from
∣∣∣Ψ(2)

g,g,n

〉
are given by

P (2)
g,g,n(gg, λ̃) =

1

2
+ cg,g,nλ̃

2, (9.66)

P (2)
g,g,n(ee, λ̃) =

1

2
+ ce,e,nλ̃

2, (9.67)

P (2)
g,g,n(ge, λ̃) = Pg,g,n(eg, λ̃) = ce,g,nλ̃

2, (9.68)

where the expressions for cg,g,n, ce,g,n and ce,e,n can be found in Appendix A.4.

From these equations one can see that the center line does not only introduce an

error in the populations of |g, g⟩ and |e, e⟩, but also populates states |e, g⟩ and |g, e⟩,
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which are ideally unpopulated when considering the initial |g, g, n⟩ state. A comparison

between these predictions for the populations and the numerics is shown in Fig. 9.7.

In this figure one can see that our model correctly predicts the behaviour obtained

from the numerics, with differences arising from third-order terms, which we are not

considering.

9.3.3 Fidelity

Here, we will study the fidelity Fg,g,n(λ̃) of the final internal state when applying a

center line detuned MS gate to |g, g, n⟩ compared to the ideal final internal state

∣∣ψtr
g,g,n

〉
=

1√
2

(
|g, g⟩ − i |e, e⟩

)
. (9.69)

This fidelity will be given by (see Eq. (2.14))

Fg,g,n(λ̃) =
〈
ψtr
g,g,n

∣∣ ρg,g,n(λ̃) ∣∣ψtr
g,g,n

〉
, (9.70)

where ρg,g,n(λ̃) is the density matrix of the internal state after applying the center

line detuned MS gate. In a similar way as for the populations studied in the previous

section, this fidelity has no linear dependence with the center line detuning. Due to

this, we consider the fidelity up to second order Magnus expansion, for which we will

need to consider the second order density matrix, which has the form

ρ(2)g,g,n(λ̃) =


P

(2)
g,g,n(gg, λ̃) 0 0 ρ

ee,gg (2)
g,g,n (λ̃)

0 P
(2)
g,g,n(eg, λ̃) ρ

ge,eg (2)
g,g,n (λ̃) 0

0 ρ
eg,ge (2)
g,g,n (λ̃) P

(2)
g,g,n(ge, λ̃) 0

ρ
gg,ee (2)
g,g,n (λ̃) 0 0 P

(2)
g,g,n(ee, λ̃)

 , (9.71)

where ρ
gg,ee (2)
g,g,n (λ̃) is the complex conjugate of ρ

ee,gg (2)
g,g,n (λ̃) in Eq. (9.62), and one can

easily check that all the coherences of |e, g⟩ and |g, e⟩ with |e, e⟩ and |g, g⟩ are zero

thanks to the appearance of products of foddn,m and f evenn,m defined in Eq. (9.46). Finally,

the last element left, ρ
ge,eg (2)
g,g,n (λ̃), has the following form:

ρge,eg (2)g,g,n (λ̃) = λ̃2
∑
m≥0

foddn,m|Imn |2, (9.72)

although this element will not be needed to calculate the fidelity or the purity in

Sec. 9.3.4 in second order approximation.
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Figure 9.8: Infidelities predicted by the Magnus expansion model. Infidelity
of the target internal state obtained for the ideal MS gate (no center line detuning) in
Eq. (9.69) compared to the state obtained by numerically integrating the Hamiltonian in
Eq. (9.27), and the fidelity estimation obtained from the second order Magnus expansion
for initial motional states with n = 0, 1, 2, 3. The initial state used is |g, g, n⟩, with the
second order Magnus expansion prediction being Eq. (9.73).

Using this density matrix we can obtain the fidelity up to second order, which is

given by

F (2)
g,g,n(λ̃) = 1 +

λ̃2

2
(cg,g,n + ce,e,n − Im(bn)) , (9.73)

We compare this result for the final state fidelities with the ones obtained numerically

by integrating the Hamiltonian in Eq. (9.27) in Fig. 9.8.

Finally, we can generalise this result for the case of having an initial thermal state,

for which we obtain

F
(2)
g,g,n̄(λ̃) =

∑
n

pn̄(n)F
(2)
g,g,n(λ̃). (9.74)

9.3.4 Purity

Finally, we will study how much the center line detuned MS gate transforms the initial

pure state |g, g, n⟩ into a mixed state. In order to quantify this, we will consider again

the density matrix of the final internal state, ρg,g,n(λ̃), which we will use to obtain its

purity, γg,g,n(λ̃) (see Eq. (2.12)), given by

χg,g,n(λ̃) = Tr
[
ρg,g,n(λ̃)

2
]
. (9.75)

In a similar way as in the previous cases, the final purity does not show a first order

dependence with the center line detuning. Therefore, we will consider the purity up to
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Figure 9.9: Purities predicted by the Magnus expansion model. Purity of the
final state obtained numerically by taking |g, g, n⟩ as the initial state compared to the
purity obtained by using Eq. (9.76) derived from the second order Magnus expansion. The
perturbative expression manages to capture the predominant second order effect of the
center line detuning, with the differences from the numerics arising from terms of higher
order not considered.

second order in the center line detuning, for which we obtain

χ(2)
g,g,n(λ̃) = Tr

[(
ρ(2)g,g,n(λ̃)

)2]
= 1− λ̃2

(
Im(bn)−

a2n
2

− cg,g,n − ce,e,n

)
. (9.76)

From this result we can see that the phonon mixing introduced by the center line

detuned MS gate affects the purity of the final state to second order in the center line

detuning parameter. A comparison between the result in Eq. (9.76) and the numerics

is shown in Fig. 9.9.

9.4 Experimental validation

In the previous section we compared the predictions of our model with the numerical

simulation results. Now we will make a comparison of some of these model predictions

with experimental results obtained by Lukas Gerster [2] at Innsbruck University.

To prepare the Fock states of the COM mode, the ions are initially Doppler cooled

on the 42S1/2 −→ 42P1/2 transition, followed by sideband cooling of the COM mode

as explained in Sec. 4.3, to prepare the ground state |g, g, 0⟩. We then apply a π-

pulse to one of the ions to spectroscopically decouple it in an auxiliary level of the

D5/2 manifold [44]. We then apply alternating π-pulses on the blue and red sideband,

where each pulse adds a single phonon. For odd phonon states, we apply a π-pulse

on the carrier following the sideband pulses [188]. Finally, we retrieve the hidden ion

from the auxiliary level. For the initial ground state cooling we find a mean phonon
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Figure 9.10: Cycle for the experimental phase measurement of the center line
detuned MS gate. Representation of the effect of the MS gate sequence given by our
model up to first order in the center line detuning. A center line detuned MS gate is applied
to the initial state, |g, g, n⟩ represented in (1). While the target state after a calibrated
MS gate should be 1/

√
2(|g, g, n⟩ − i |e, e, n⟩) in (2), the state after this first gate differs

by a phase as given by Eq. (9.55), resulting in the state (3). The second detuned MS gate
introduces a final phase, resulting in the state in (4), before applying the ideal entangling
operation. The final state |e, e, n⟩ in (5) after this sequence is obtained if the second MS
gate has a relative phase with respect to the first one given by φd = ϕseqn (λ).

number of n̄ ≈ 0.05. After the preparation sequence for Fock states n > 0 we measure

5% population outside of the target electronic state, which decreases the signal-to-

noise ratio of the measurement. We use an additional repumping step to return this

population to the electronic ground state, but this leaves us with a corresponding error

in the initial prepared Fock state.

After preparing the desired |g, g, n⟩ state, we control the center line detuning of

our MS gates. This center line detuning is introduced on purpose by changing the

frequencies of the laser fields by λ from their ideal value. This causes the Hamiltonian

of the MS gate to have the form

Ĥexp = −ηΩ(a†eiϵt + ae−iϵt) [Sy cos(φ+ λ t) + Sx sin(φ+ λ t)] . (9.77)

This Hamiltonian can be obtained from the one that we considered in Eq. (9.25) with

a time-independent value λ(t) = λ by performing a picture change defined by V (t) =

Rz(2λ t). Therefore, after taking into account this picture change, all the results of

our model can be used for this experiment. Although in the experiment the laser pulse

is switched on and off adiabatically using a Blackman like shape [189], each of them

requires only ∼ 4% of the gate time. Due to this, we approximate the pulse-shape as a
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constant one.

The evolution introduced by the MS gate in the experiment is, up to first order,

given by

Û(1),tr
n,exp,φ(tg, t0) = Rz(2λtf )Û

(1),tr
n,φ (tg)Rz(−2λt0), (9.78)

where t0 is the time at the beginning of the gate, tf = t0 + tg is the time at the end,

and we introduced φ to denote the phase of the MS gate. We perform a sequence of

two center line detuned MS gates, where we consider that the second one has a relative

phase of φd with respect to the first one. For this sequence, the resulting population

predicted by our model, up to first order, is

P (ee, λ) =
∣∣∣⟨e, e| Û(1),tr

n,exp,φd
(2 tg, tg)Û

(1),tr
n,exp,0(tg, 0) |g, g⟩

∣∣∣2
= |⟨e, e|MSφd

(π/2)Rz [−ϕseqn (λ)]MS0(π/2) |g, g⟩|2

=
1 + cos

[
2φd + ϕseqn (λ)

]
2

,

(9.79)

where

ϕseqn (λ) =
2λ an
ϵ

(9.80)

represents the phase introduced by the center line detuning of the gates obtained from

the first order terms of our model.

Using sequences of this type, we can measure the final population of |e, e⟩ for a

given center line detuning, while varying the value of φd. This data can then be used

to experimentally obtain the values of ϕseqn (λ) for that center line detuning by fitting

a cosine to the measurement outcomes, and compare them with the predicted values

from our model. The fit includes amplitude and offset as free parameters, as higher

order effects, dephasing, and SPAM errors will affect the amplitude of the observed

oscillations. The comparison between the experimental results and the prediction from

our model is shown in Fig. 9.11.

Using this setup, we can also study the behaviour of the populations after the

application of a center line detuned gate in the experiment. In order to do this, we

prepared |g, g, n⟩ states with n = 0, 1, 2, 3, to which we then applied a single MS gate

while scanning over the center line detuning. A comparison between the experimental

results and the populations predicted by our model up to second order is shown in

Fig. 9.12.
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Figure 9.11: Experimental results for the phase error introduced by a center
line detuned gate. (a) Experimental measurements of the phase ϕseq(λ) obtained by
applying MS gates with ϵ = −2π · 11kHz to initial states |g, g, n⟩ with n = 0, 1, 2, 3. The
dashed lines represent the corresponding estimated values of our model, obtained by using
Eq. (9.80). The asymmetry of the error bars stems from the asymmetric behaviour of the
P (eg)+P (ge) outcomes observed in both the numerical simulations shown in Fig. 9.7 and
the experimental results in Fig. 9.12, which causes an asymmetry on the contrast of the
phase oscillation. (b) Comparison of the slope values obtained from first order Magnus
expansion and from performing a linear fit using the experimental results.

9.5 Summary

In this chapter, we explained the results that we achieved in Ref. [2] for a semianalytical

model to characterise the effects of a center line detuning on the implementation of a

Mølmer-Sørensen gate. This model was obtained from a Magnus expansion where the

center line detuning was considered as a perturbation to the ideal MS gate Hamiltonian.

Using this approach, we have shown how to estimate the final states obtained after

application of the miscalibrated MS gate, in our case up to first and second order on the

center line detuning, by using a set of coefficients obtained from numerical integrations.

Using these results it is then straightforward to understand the dependences of certain

properties, such as relative phases, populations, fidelities, and purities, of the final

states as polynomials characterised by the numerical coefficients mentioned before. We

then compared the prediction of these properties obtained from our theoretical model

to results from numerical integration, finding only minor differences arising for higher

center line detuning values due to influence of higher than second order terms, which we

do not consider in our work. However, this discrepancy between model and numerical

predictions appears for values of the center line detuning higher than those appearing

during an experimental calibration of the MS gate. The value of the center line detuning
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Figure 9.12: Experimental results for the populations after a center line de-
tuned gate. Experimental measurements of the populations obtained by application of
a MS gate with ϵ = −2π · 11kHz to initial states |g, g, n⟩ with n = 0, 1, 2, 3. The values
obtained from the Magnus expansion are represented by the discontinuous lines, and the
ones from numerical simulation by dashed-dotted lines.

miscalibration is typically only a fraction of the sideband detuning. Furthermore, we

compared the predicted values of relative phases and populations from our model to

values obtained from experimental measurements by systematically varying deliberately

introduced center line detuning and find good agreement between the model predictions

and the experimental results. These results further validated our model, and confirmed

the utility of our model for studying and improving experimental implementations of

the MS gate.

Our model was derived by assuming that the center line detuning was the only

miscalibration, but this will not be the case in a real implementation of a MS gate,

where other parameters will differ from their ideal values, with some of these examples

and their consequences discussed in Sec. 9.1. However, in the cases where the center line

detuning miscalibration is relatively larger than for the other parameters, it will be the

predominant effect. In this case one can detect that the outcomes of the miscalibrated

gate agree with the results expected from the analytical model, and this information

can be used to compensate for the miscalibration of the center line detuning.

Overall, our model provides an in-depth understanding of the effects of a center line
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detuning in an implementation of the MS gate, which before had only been assessed

by performing numerical calculations [185]. This can then be used during the experi-

mental calibration of the gate in order to identify and compensate the effect of center

line detuning miscalibrations. Therefore, we believe that the method and the results

presented here can help in designing and improving calibration routines for entangling

gate operations. Indeed, with this in-depth understanding of the effects that the stud-

ied miscalibrations have on the MS gate, we are in a better position to explain in the

next chapter the Bayesian protocol aimed at its calibration that we derived in Ref. [3].
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Chapter 10

Bayesian calibration of the

Mølmer–Sørensen gate

In Chapter 9 we introduced the Mølmer-Sørensen gate, used to create entanglement

between trapped-ion qubits. We also explained some of the parameter miscalibrations

that can appear during its implementation, as well as their effects on the performance

of the gate. As we saw in that chapter, the implementation of the MS gate depends

on a more complex physical model like the one shown in Sec. 4.3 for single-qubit gates.

This higher complexity of the model increases the difficulty of properly calibrating the

gate.

Several techniques have been developed over the years for the detection and charac-

terisation of miscalibrated gates. In the experiment, one can perform quantum process

tomography [190] to obtain a complete characterisation of a gate’s action. However,

as we saw in Sec. 2.5, this highly informative protocol has the drawback of scaling

exponentially with the number of qubits involved in the gate [103]. Moreover, errors in

the resulting characterisation can appear due to the existence of SPAM errors or sys-

tematic errors [191]. These problems motivate the use of alternative characterisation

techniques such as randomised benchmarking [108, 192], cycle benchmarking [193, 194],

gate set tomography [107, 108], machine-learning methods [195], and Bayesian infer-

ence protocols [196, 197]. Similarly as we did for other applications in this thesis, we

will develop a Bayesian protocol for the detection and correction of the miscalibrations

that can appear in the implementation of the MS gate.

Similar to the cases shown in Chapters 7 and 8, our Bayesian protocol benefits
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from into account all the previous measurements when producing an estimate of the

miscalibrations, even after changing the experimental settings. On top of this, our

protocol will also enable a completely automated calibration process. However, we will

find that the implementation of a Bayesian protocol for this gate has complications that

did not appear in the calibration protocol for single-qubit gates shown in Chapter 8.

Due to the higher complexity of the MS physical model, one needs to account for

a higher number of parameters that can be miscalibrated in the experiment. This

increases the difficulty of the calibration, not only due to higher dimensionality of the

probability distributions involved but also because of correlations between experimental

errors, which complicates the calibration of a single parameter at each time. Moreover,

we also saw in Chapter 9 that there is no analytical derivation of the action of the gate

for some of the parameters that we might consider to be miscalibrated. The lack of a

likelihood function for the possible outcomes further complicates the implementation

of a Bayesian protocol.

In this chapter, we address these difficulties and offer a Bayesian protocol for the

calibration of the MS gate. This algorithm was developed in collaboration with the

University of Innsbruck and implemented by the experimental collaborators, led by

PhD student Lukas Gerster, in the joint work published in Ref. [3].

This chapter is organised as follows: In Sec. 10.1 we introduce the parameters in

which we will focus our calibration process and explain their relevance. These param-

eters will be calibrated by using a set of control parameters and calibration rules that

we describe in Sec. 10.2. In Sec. 10.3 we define our Bayesian protocol, with which we

will obtain the estimates of the experimental parameters needed for their calibration,

as well as all the components required for its implementation. Finally, in Sec. 10.4, we

show the results obtained from this protocol.

10.1 Parameters of the calibration

In Chapter 9 we derived a MS gate Hamiltonian that included the contributions of

the center line detuning, caused by an AC Stark shift of the qubit levels, λAC(t), and

a miscalibration of the frequencies of the bichromatic laser field, λl. We did this by

considering the interaction picture defined by W (t) in Eq. (9.24), which allowed us
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to obtain the Hamiltonian in Eq. (9.25). In this chapter, we will consider a slightly

different version of this interaction picture defined by WAC(t), given by

WAC(t) = exp

i
 N∑

j=1

ωeg,0 t+
∫ t
0 λAC(t

′)dt′

2
σz,j + ν(a†a+ 1/2)t

 . (10.1)

Using this transformation and following a similar derivation as in the previous chapter,

we obtain the Hamiltonian

Ĥ(t) = −ηΩ(t)(a†eiϵt + ae−iϵt) [Sy cos(φ+ Λ(t)) + Sx sin(φ+ Λ(t))] , (10.2)

which is the same that we obtained in Eq. (9.77), but including a time-dependent center

line detuning. In Eq. (10.2) we used

Λ(t) ≡
∫ t

0
λ(t′)dt′, (10.3)

the integral of the total center line detuning λ(t) as defined in Eq. (9.23).

In this chapter, we will use this new Hamiltonian, instead of the one in Eq. (9.25),

to define the parameters that we want to calibrate in a more straightforward way.

However, it is important to note that using one Hamiltonian or another is equivalent,

since they only differ by a change of reference frame.

Now we are in the position of defining the parameters that we want to calibrate.

First, in order to obtain the required entanglement between the qubits, we need to

ensure that the rotation angle θ(tg) at the end of the gate satisfies θ(tg) = π/2. Then,

to avoid any residual entanglement between the internal states of the ions and their

motional state at the end of the gate, the sideband detuning, ϵ, needs to be chosen

such that the quantity Γ(t), defined in Eq. (9.13), satisfies Γ(tg) = 0. These first

two conditions were derived and explained in more detail in Chapter 9, and they were

found to be given, for the constant pulse-shape case, by θ(tg) = (ηΩ)2 tg/ϵ = π/2 and

Γ(tg) = tg|ϵ| = 2π. However, in the following we will consider that the laser pulse is

switched on and off adiabatically using a Blackman-like shape [189], which is a better

approximation of the pulse-shape used in the experiments. This pulse uses a small

fraction of the gate time at the beginning of the pulse to increase the laser power to

its maximum and, similarly, takes the same time to decrease the laser power to zero
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at the end of the gate. The shape ensures adiabaticity during the switch-on and off

of the laser, preventing unwanted excitation of the carrier transition [189]. Using this

pulse-shape, we will redefine tg as an effective gate time given by the duration of the

laser pulse of the full width at half maximum.

The previous conditions were obtained for the case in which the laser frequencies

are centered around the carrier at all times, that is, λ(t) = 0. When the AC Stark shift

is time-dependent, this cannot be satisfied at all times using constant laser frequencies.

In the following, we will consider that the center line detuning is time-independent,

λ(t) = λ, even though this might not be the case, and we will aim to set it to zero. The

error appearing from this approximation will be given by a non-zero integral Λ(tg).

This error has the effect of accumulating an unwanted phase, ∆φ = Λ(tg), for each

application of each consecutive gate, as can be seen from Eq. (10.2). This cumulative

phase can be detected by applying the MS gate more than once, and corrected by

introducing a phase between consecutive gates.

Now that we know the conditions that we will be considering for a correct imple-

mentation of the MS gate, we will explain the control parameters that we can tune in

order to realise a calibrated MS gate.

10.2 Experimental control parameters

In order to calibrate the MS gate we need to set the gate parameters

Θ = (Ω, λ, ϵ, ∆φ), (10.4)

as close as possible to their optimal values

Θopt =

(
Ωopt =

π

ηtg
, λopt = 0, ϵopt =

2π

tg
, ∆φopt = 0

)
, (10.5)

where the condition for Ωopt is obtained from setting θ(tg) = (ηΩ)2 tg/ϵ = π/2 and

Γ(tg) = tg|ϵ| = 2π. Since we do not have direct access to these experimental parameters,

we rely on changing the control parameters of the gate Θc = (tg, fcl, fsb, ϕ), i.e., the

gate time tg, the common frequency fcl = (fr + fb)/2, which is the mean frequency

between the red (fr) and blue (fb) tone of the laser, the frequency difference 2fsb =
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fb − fr of the bichromatic laser field, and the difference between the common phase

between consecutive gates, ϕ.

These control parameters Θc can be used to calibrate the gate in the following way:

By performing measurements of the populations of the ions after the application of an

MS gate sequence we obtain a set of estimates of the current experimental parameters,

that we denote as

Θ = (Ω, λ, ϵ, ∆φ). (10.6)

These estimates can then be used to adjust the control parameters, Θc, to set Θ equal

to Θopt. This will be done in the following way: The time of the gate will be corrected

as

tg → tg
Ωopt

Ω
, (10.7)

where we choose to change the gate time instead of the laser intensity since it is easier

to control in the experiment, while producing an equivalent correction.

The other corrections are implemented by subtracting the difference between the

estimated and the ideal parameter value from the control parameter. In the case of the

sideband detuning this is given by

fsb → fsb − ϵ̄+ ϵopt. (10.8)

As for the correction of the center line detuning, this is described by

fcl → fcl − λ̄+ λopt. (10.9)

Finally, the phase between consecutive gates is changed as

ϕ→ ϕ−∆φ+∆φopt. (10.10)

With this set of rules, we will be able to update the parameters of the MS gate in order

to iteratively bring the parameters Θ closer to Θopt. In the following, we will consider

an specific implementation of the MS gate with a Rabi frequency such as the ideal MS

gate is achieved for a gate time of around 100µs, which in turn corresponds to a target

sideband detuning of around ϵ = 2π · 10kHz.
As we have seen, in order to calibrate the MS gate, we just need a way of obtaining

the estimates Θ. In the following, we will introduce a Bayesian protocol with which
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we will be able to obtain and update our estimates after each set of measurements.

10.3 Bayesian inference protocol

While in Chapter 8 we implemented a Bayesian protocol that can be used for the

calibration of single-qubit gates, we can already see some additional complications that

will arise in the implementation of a Bayesian protocol for the calibration of the MS

gate. First of all, for this case we do not have an analytical function for the likelihood

function. While this is undesired, we will see how to solve this problem by using a

numerical interpolator. The second problem that appears is that, since we have to

estimate four parameters at the same time, the probability distributions involved will

be four-dimensional, from which it might be inefficient to obtain the estimates and

variances by using a naive approach. In order to solve this, we will particularise the

particle filtering algorithm explained in Sec. 6.3. After solving these problems, we will

then be able to define our Bayesian protocol.

10.3.1 Measurement settings

The measurements that we will be considering will consist in the application of MS

gate sequences to an initial |g, g⟩ state, and measuring the final populations of the

qubits. The lengths of these sequences will be of Ng = 1, ..., 7 gates. The importance

of performing sequences of more than one gate can be understood by considering that,

for example, measurements of the populations after a single gate have no dependency

on the phase difference miscalibration between MS gates, ∆φ. Therefore, measuring

the populations after a single gate yields no information about this parameter. Due to

this, one needs to consider sequences of more than one gate. Furthermore, as the length

of the gate sequence increases, so does the number of local maxima and minima of the

corresponding likelihoods. This results in an enhanced sensitivity to miscalibrated gate

parameters (see Fig. 10.1). However, this increased sensitivity by using longer gate

sequences will be limited by errors not considered in our model, such as dephasing or

amplitude damping of the qubits. Due to this, the longest gate sequences that we use

consist in seven consecutive gates.

Additionally, one can introduce a phase difference between the gates, ∆φtarget, on

purpose. This can be done by changing the control parameter ϕ accordingly. In our
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Figure 10.1: Scans of Mølmer-Sørensen gate sequences. Numerical simulations of
scans of the populations of |g, g⟩ (in green), |e, e⟩ (in blue), and the sum of populations of
|e, g⟩ and |g, e⟩ (in orange) of the final state obtained after sequences of Ng = 2, 3 and 5
gates. Each scan is performed by varying one of the parameters while keeping the others
constant and equal to their optimal value for the MS gate. The vertical lines mark a set
of optimal values for the parameters.

case, we will consider only the cases with ∆φtarget = 0 or ∆φtarget = π/4. The first

case corresponds to sequences of MS gates without any relative phase introduced on

purpose between each gate, while in the second case we introduce a relative phase of

π/4 between each consecutive gate.

From this set of possible measurement settings, it is possible to obtain a criterion

for the selection of optimal measurements, with some examples being discussed and

compared in Ref. [3].

10.3.2 Interpolator

We have explained the different measurement settings that we will consider for the

updates of our Bayesian protocol. However, we do not have analytical formulas for the

likelihoods of each possible outcome given a measurement setting. These likelihoods

could be obtained by numerical integration but, since we will be using a particle filter

for our protocol, this integration should be performed for each particle of the particle

filter at each iteration, which would make this approach prohibitively slow.

We will solve this problem by using an interpolator, which consists in a four-

dimensional grid in the Θ parameter space. Each of the points in the grid will have an
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array composed by probabilities that the states |e, e⟩, |g, g⟩, |e, g⟩ and |g, e⟩ are mea-

sured after a gate sequence, given the values of Θ associated to that point. These values

are obtained from numerical integration of the Hamiltonian. To obtain the likelihoods

for an arbitrary value in the parameter space we can then perform an interpolation with

this discrete set of calculated likelihoods. For this we use a spline interpolator [198],

which allows us to better approximate the outcome probabilities, without increasing

the number of grid points required as compared to using linear interpolation. While

the initial numerical calculations for all the points in the grid might be time consuming,

these calculations must be done only once, before the actual experimental calibration.

After obtaining these values, one can use them for approximating the likelihoods asso-

ciated to a given gate sequence and point in parameter space. This can be done every

time that a calibration of the gate is needed, without having to calculate the interpo-

lator again. Since an interpolator depends on performing simple calculations to obtain

the likelihoods, they are considerably faster than performing numerical integrations to

obtain them. An interpolator is calculated for each of the previously mentioned gate

sequences.

While there are other possible choices for an interpolator aside from the spline

interpolator that we use, our choice produces faithful and fast enough results such that

the interpolator is not a limiting factor of the calibration process. However, we note

that for other calibration processes different from the MS gate calibration shown in

this chapter, this might not be the case, which could require an in depth study of other

types of interpolators with a potential to improve the efficiency.

10.3.3 Implementation of the particle filter

Now that we have an interpolator that gives us access to approximated values of the

likelihoods, we are in the position to perform measurements in order to implement a

Bayesian inference process. However, as we have seen, this inference process involves

a four-dimensional probability distribution. This high dimensionality compromises the

precision of the estimates and variances obtained from the inference process if one uses,

for example, points in a fixed grid to evaluate the probability distributions. This occurs

since, as the number of measurements increases, most of the fixed points used to sample

the probability distribution would go to zero. This was the reason why we introduced

in Sec. 6.3 the particle filtering algorithm, which updates the positions of the sampling
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points to ensure that they are located in positions of the parameter space where the

probability distribution is non-vanishing.

It is straightforward to particularise the particle filtering algorithm as described in

Sec. 6.3 for the Bayesian inference estimation of the parameters Θ = (Ω, λ, ϵ, ∆φ).

The inference protocol works as follows:

1. Sample a set of Np particles from a simple initial probability distribution. In our

case, we select our initial probability distribution to be a four-dimensional normal

distribution with standard deviations of σΩ = 0.2 · Ωopt for the Rabi frequency,

σλ = 2π · 1 kHz for the center line detuning, σϵ = 2π · 1 kHz for the sideband

detuning and σ∆φ = 0.33π for the phase, and we use Np = 10000 particles. This

value for Np will be justified by the results shown in Sec. 10.4 and Fig. 10.4.

2. Select a measurement setting and perform a set of measurements.

3. Use the interpolator to obtain the likelihoods for the given measurement outcomes

for each particle position and update their weights as given by Eq. (6.18).

4. Obtain the estimates, Θt, and variances, Var(Θt), at the current iteration, t, by

using these updated particles as given by Eq. (6.19) and Eq. (6.20).

5. Resample the particles by using the SIR method as explained in Sec. 6.3.2 and

displace them by introducing a small Gaussian noise to avoid stacking particles

in the same positions.

6. Use the estimates obtained to update the control parameters as explained in

Sec. 10.2, where the particles also have to be moved according to these corrections.

7. This completes an interation. Repeat the process starting from step 2 to perform

the next iteration.

For a schematic of these steps, the reader is referred to Fig. 6.3.

10.3.4 Stopping criterion

Now that we have defined how to perform the Bayesian inference updates and, with it,

the calibration protocol of the MS gate, we need a criterion to determine when to stop

the protocol. In order to do this, we need to define a threshold that, when reached,
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Figure 10.2: Randomised benchmarking stopping criterion. Expected infideli-
ties per gate as a function of the individual parameter miscalibrations obtained from
randomised benchmarking. The value 2 · 10−3 (red dashed line) for each parameter
has been chosen as an infidelity per gate threshold. These curves inform the choice
of target thresholds for each experimental parameter (orange dashed lines) of values
TΩ = 0.02 · Ωopt, Tλ = 2π · 150Hz, Tϵ = 2π · 200Hz, T∆φ = 0.028π.

informs us that the gate realised is good enough. In the Bayesian protocols explained

in previous chapters, this was straightforward: In the case shown in Chapter 7, the

uncertainty of the seven unwanted phases behaved equally, so it was enough to set a

target uncertainty in the phases so that the algorithm could be stopped after reaching

it. The case shown in Chapter 8 was similar, in which we would just need to define

a target uncertainty in the laser frequency detuning with respect to the transition

frequency under study. However, the current case is different. We have to calibrate four

parameters, but we do not have any criterion yet for selecting the target uncertainties

of each parameter. This is because we do not know how the performance of the gate

depends on the errors of each parameter.

We solve this by simulating randomised benchmarking as explained in Sec. 2.5.3.

We do this by keeping three of the parameters equal to their ideal values, while varying

the fourth parameter. This process is repeated for each parameter. The results are

four curves that tells us the behaviour of the fidelity per gate as a function of how far

is each single parameter with respect to its ideal value (see Fig. 10.2).

Using these curves, we define a set of four thresholds, TΘ = (TΩ, Tλ, Tϵ, T∆φ), one

for each experimental parameter, by obtaining the error for which these curves (shown

in Fig. 10.2) start to have a bigger infidelity per gate than a selected threshold. The

value of this infidelity per gate threshold is arbitrary, and in our case we chose 2 · 10−3

since it is a value comparable to the achievable fidelity in the experimental system due

to the presence of incoherent errors. This leads us to the following thresholds for each

parameter: TΩ = 0.02 · Ωopt, Tλ = 2π · 150Hz, Tϵ = 2π · 200Hz, T∆φ = 0.028π.
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We can then define our stopping criterion by using these thresholds. This will be

done by stopping the protocol when the standard deviation of each parameter estimate

is less than its corresponding threshold. However, it is important to note that reaching

these thresholds for all the uncertainties does not mean that our infidelity per gate is

smaller than the selected value of 2 ·10−3. This is because the thresholds were obtained

for the cases where only one of the parameters had a difference with respect to its ideal

value. After the calibration, all the parameters will have slight deviations from their

ideal values. Assuming the parameters are normally distributed with the standard

deviation of the distributions equal to the thresholds we expect, from simulation, a

median infidelity of ≈ 5 · 10−3.

10.4 Results of the Bayesian calibration

In the previous section we have introduced all the components necessary for the im-

plementation of a Bayesian inference protocol with the goal of obtaining the set of

estimates, Θ = (Ω, λ, ϵ, ∆φ), of the parameters of the MS gate. The control param-

eters, Θc = (tg, fcl, fsb, ϕ), can then be updated after each iteration of the Bayesian

protocol by using the estimates obtained after that iteration. The calibration will then

be finished after reaching the thresholds defined by the stopping criterion. A simula-

tion of a run of this protocol, reaching the stopping criterion thresholds after eleven

iterations (for a total of 1100 measurements), is shown in Fig. 10.3.

In order to study the performance of the algorithm, we define a distance of an initial

set of experimental parameters to the target ones as

D2
start =

∑
Θ

(Θstart −Θopt)
2

σ2Θ
(10.11)

with σ2Θ being the variance of the prior distribution considered at the beginning of

the calibration projected onto one of the experimental parameters, Θ, and Θstart and

Θopt being the corresponding starting value and optimal value, respectively, for that

parameter. Using this definition of distance, we randomly generated sets of values of

the experimental parameters at different distances, and performed Bayesian calibration

on each of them. The phase was not varied since it is a periodic parameter, which

limits how far the phase values can be from the optimal value. Using these results,
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Figure 10.3: Example of a simulated MS gate Bayesian calibration. Pro-
jections of the particle densities of the particle filter for the experimental parameters,
Θ = (Ω, λ, ϵ, ∆φ), at each iteration, t, of a single calibration run, with t = 0 representing
the particles obtained from the prior four-dimensional normal distribution. The projec-
tions of the probability densities are normalised to their corresponding maximum values
achieved during the calibration. The red lines represent the true value of each experimen-
tal parameter at a given iteration, and the orange lines represents the ideal target values
to be achieved. For each iteration a measurement setting is used to obtain 100 measure-
ment outcomes. The initial values of the experimental parameters used for this case are
Ωstart = 0.91 · Ωopt, λstart = −2π · 0.9kHz, ϵstart = 2π · 11.2kHz, and ∆φstart = 0.3π.
The algorithm stops after eleven iterations, when it reaches the thresholds defined in
Sec. 10.3.4 for the standard deviations of all the parameters, which have a value at the
end of the calibration of σΩ,final = 0.007 · Ωopt, σλ,final = 2π · 51Hz, σϵ,final = 2π · 117Hz,
and σ∆φ,final = 0.014π. The true values of the experimental parameters achieved from
this calibration are Ωfinal = 1.009 · Ωopt, λfinal = −2π · 22Hz, ϵfinal = 2π · 9990Hz, and
∆φfinal = 0.01π.

we considered that, for each calibration process, the algorithm converged correctly if

the experimental parameters obtained after the calibration were closer to their ideal

values than twice the stopping thresholds. Following this procedure, we managed to

obtain the convergence of the calibration protocol as a function of the initial distance

of the experimental parameters. This process can also be done for different number of

particles, Np, which can be used to inform our decision on how many particles to use.

The results are shown in Fig. 10.4.

Using this protocol, a calibration of the MS gate in the experiment was shown in

Ref. [3]. In this implementation, a total of 100 measurements were performed for each
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Figure 10.4: Capture range of the Bayesian protocol. The performance of our
Bayesian protocol is analysed by simulating calibration rounds for initial sets of exper-
imental parameters at different distances, as defined in Eq. (10.11), and obtaining the
fraction of converged runs for each distance and number of particles used. A run is consid-
ered to have converged correctly if the distance of the experimental parameters obtained
to the target values is less than two times the stopping thresholds. For each distance, 2000
tuneups were run. The initial normal prior distribution used was defined by the following
standard deviations: σΩ = 0.2 · Ωopt, σϵ = 2π · 1kHz, σωcl

= 2π · 1kHz, and σ∆φ = 0.33π.

iteration, requiring a total of 1200± 500 measurements to reach the target thresholds

used for the stopping criterion. The time required for the complete calibration protocol

was 41±17s, achieving a median gate infidelity of 1.3(1) ·10−3. The difference between

this mean infidelity and the one of 5 · 10−3 estimated in Sec. 10.3.4 was attributed to

correlations appearing between the parameters partially compensating each other. We

then compared in Ref. [3] our Bayesian protocol to another calibration protocol based on

manual iterations over single parameter scans as defined in Ref. [199]. We found that the

experimental results obtained using the Bayesian algorithm outperform the simulations

of iterative single parameter scans both in terms of median gate infidelity achieved and

measurements required. Examples of the efficiencies of these single parameter scans

are a median gate infidelity of 4 · 10−2 when performing 2000 measurements, which

gets improved up to a median gate infidelity of 7 · 10−3 when performing 5900 for the

calibration. As can be seen, these results are considerable worse than the median gate

infidelity obtained with our protocol, while also requiring a considerable higher number

of measurements.

159



10. BAYESIAN CALIBRATION OF THE MØLMER–SØRENSEN
GATE

10.5 Summary

In this chapter we introduced a Bayesian inference protocol to estimate and calibrate the

experimental parameters of an entangling two-qubit Mølmer-Sørensen gate. This pro-

cess presented additional complications as compared to the other protocols explained in

Chapter 7 and 8, such as the non-existence of an analytical likelihood function, or per-

forming Bayesian inference with relatively high-dimensional probability distributions.

In order to solve these problems, we introduced a numerical interpolator that allowed

for fast numerical estimations of likelihoods at points in parameter space. This inter-

polator was then used with a particle filtering algorithm that allowed us to work with

four-dimensional probability distributions efficiently. Using these tools, we obtained a

completely automated Bayesian protocol that can be used for the calibration of the MS

gate. A more advanced version of this protocol was then used in Ref. [3] to calibrate MS

gates in the experiment, with improvements such as rules to optimise the measurement

settings. This calibration of the MS gate in the experiment required 1200± 500 shots,

and resulted in gates with a median residual infidelity of 0.13%.

While this protocol is particularised for the calibration of the MS gate, which in

turn is a gate specific to trapped-ion architectures, it is possible to generalise it for

other calibration problems. Due to this, similar Bayesian protocols can be studied and

implemented for the calibration of other quantum gates in other physical platforms.

This broad applicability of Bayesian protocols appears due to their only dependency

on having access to a likelihood of the different possible experimental outcomes, which

depends mainly on having a model of the Hamiltonian introduced by the gate. Finally,

the tools that we used, such as the interpolators or the particle filtering algorithm, to

avoid the difficulties arising during the derivation of our MS gate calibration protocol

can be used in other Bayesian applications where these problems might appear.
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Chapter 11

Conclusions and Outlook

The field of quantum information has been the subject of considerable work for the

past years. The physical platforms that were theoretically proposed for the implemen-

tation of quantum information processing only a few decades ago led to the current

experimental implementations of qubits and high-fidelity gates. Thanks to these devel-

opments, we are currently crossing the threshold from testing and improving quantum

information processing implementations, to more complex and interesting experiments.

Within these advanced implementations, one can think of two possible paths to follow:

The first one is the development and experimental realisation of fault-tolerant QEC

codes, which will be needed for a longer term implementation of an error free quantum

computer. The second one consists in taking advantage of the currently available NISQ

devices to run small quantum algorithms, with the goal of obtaining advantages with

respect to classical computers. While these fields are seeing considerable and exciting

advances, they still depend on further efforts to improve the current gates or increase

the number of qubits available in a register.

The research presented in this thesis has been developed in this direction, with the

main objective of designing protocols for the calibration of gates and quantum states.

An objective when designing these protocols is to reduce the resources that they require,

namely the amount of measurements required, and time invested by the laboratory

personnel. The importance of this is clear: On the one hand, decreasing the number of

measurements needed allows for a calibration that is faster than the time scales on which

the to-be-calibrated parameters drift, leaving more time to perform other experiments

with a calibrated setup. On the other hand, as the size of the quantum device achieved
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in the experiment increases, so does the number of different calibrations that must

be performed. This poses a scalability problem unless the calibration protocols are

completely automated.

The protocols developed in this thesis make use of Bayesian inference to achieve the

desired calibration. We have shown that these protocols have clear advantages, with

respect to the aforementioned goals, as compared to other currently used calibration

protocols based on frequentist approaches. The Bayesian inference process offers a clear

criterion to obtain an estimate of the desired calibration parameters, which takes into

account all the previous measurements. Furthermore, since these protocols work with

probability distributions, they have direct access to not only the estimates, but also

to their corresponding uncertainties, something that is, in general, more demanding

for frequentist approaches. With respect to the number of measurements required, we

have also shown that Bayesian protocols allow for a clear and intuitive interpretation

on how to select measurement settings that optimise the information gained, effectively

decreasing the amount of measurements needed. Finally, the simplicity of the Bayesian

inference process, and the selection rules for the measurement settings, allow for a

complete automation of the calibration protocols, which can be easily implemented by

a computer program.

The protocols developed in this thesis were aimed at solving problems relevant in

current quantum computers. In Chapter 7, we developed a protocol for the correction

of unwanted phases appearing in the encoding of the logical states in the Steane code,

which was the result of our work in Ref. [1]. This protocol uses a simple analytical

rule for selecting optimal measurements and takes advantage of all the measurements.

Due to these advantages, we demonstrated that our protocol requires 13 times less

measurements than a frequentist approach that was implemented in the experiment in

Ref. [52]. While, in the longer term, some parts of the error compensation achieved by

our protocol might be taken care of by the QEC protocols themselves, in the near term it

is a useful tool to compensate for the imperfections currently present on experimental

preparations of the Steane code. In this direction, a possible generalisation of our

protocol could be the improvement of other QEC codes of larger size, such as the recent

experimental implementations of the surface code [200, 201]. Moreover, these protocols

could also be used for the correction of stabiliser measurements. For this, a model of
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the circuits used to perform stabiliser measurements, with possible error sources, could

be developed. These errors could then be characterised by means of Bayesian inference,

and taken into account for an improvement of the QEC code implementation in the

experiment.

In Chapter 8, we developed a Bayesian protocol in a trapped-ion architecture to

estimate the detuning of a laser frequency with respect to the qubit transition. Similarly

as in the previous case, using this approach we obtained an analytical rule for selecting

optimal measurement settings. This Bayesian protocol was then completely automated,

and used to perform a dynamic calibration in the experiment. A possible continuation

of this study could consist in the improvement of the protocol by introducing non-linear

models for the drift. However, for us the most appealing generalisation was the study

of this type of protocol for the calibration of entangling gates.

In Chapter 9, we introduced the Mølmer-Sørensen gate, used for creating entangle-

ment between trapped-ion qubits. We developed a semianalytical model, based on a

Magnus perturbative expansion, for understanding how the presence of a center line de-

tuning affected the gate. The results from this line of research resulted in Ref. [2]. The

predictions of our model were in agreement both with numerical simulations and exper-

imental results. However, our proposed model could be further improved in different

ways. For example, the predictions of our model for the populations are limited by the

order of the Magnus expansion, but higher order terms could be calculated by using our

systematic treatment to accurately predict higher order behaviours. Additionally, in

the results shown, we considered that the pulse shape of the laser used to implement the

MS gate was constant in time. However, one could consider a general time-dependent

laser pulse to study the effect that the center line detuning has on a given pulse shape.

This could be readily done by following a similar derivation as we did, and could be

specially useful when considering implementations of fast gates [202–206], for which

considering the laser pulse as constant might not be a valid approximation. Another

interesting approach would consist in the incorporation of other miscalibrations on top

of the center line detuning. A way to do this would consist in using the effects that were

derived analytically for the other miscalibrations, and combine them with our model,

since correlations between errors in these parameters should appear only from terms

higher or equal to second order. The derivation of such a model could open the way

for an analytical derivation of the interpolators, which we had to calculate numerically
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for the Bayesian calibration of the MS gate. Finally, one could further generalise this

model by considering open-system dynamics to account for additional sources of errors

such as dephasing of the quantum states, or using a similar Magnus expansion approach

to characterise the effects of miscalibrations in other quantum gates.

Equipped with a clear model of the MS gate and its parameters, we then introduced

a Bayesian protocol aimed at its calibration in Chapter 10. An advanced version of

this protocol, which included a criterion for the selection of optimal measurements,

was then satisfactorily implemented in the experiment in Ref. [3]. For this case, we

also obtained a completely automated protocol, for which we had to use auxiliary

elements such as an interpolator, and a particle-filtering algorithm. Both of these

auxiliary elements are not specific to this calibration protocol, and could be used for

multi-parameter calibration of other quantum gates. Additionally, this protocol has

been particularised for two-qubit entangling gates. This motivates the question of how

this protocol could be extended for entangling gates of N qubits. Regarding this, an

advantage of the MS gate is its simple generalisation for the entanglement of N qubits,

which would allow the use of the same experimental parameters as the ones shown

in this chapter. Due to this, our protocol would be generalisable to a higher number

of qubits as long as the simulations performed to obtain the interpolator manage to

describe other experimental imperfections such as magnetic field gradients or unequal

Rabi frequencies on the individual ions. Another possible improvement would consist

in using this protocol for performing a dynamical calibration of the four parameters

involved, by modelling their evolution as a drift over time in a similar way as it was

studied for the laser-locking case. Finally, another topic of research could consist in the

study of the evolution of the qubits state by considering open-system dynamics. This

would provide a more accurate physical model of the evolution introduced by the gate,

and improve the quality of the interpolators, yielding an improvement of the estimates

obtained with the protocol.

All of these Bayesian protocols were developed for specific calibrations, and some

of them are even specific for trapped-ion architectures. However, an important outlook

is that the parts that compose the Bayesian protocols as we implemented them are

platform-agnostic, independent of the experiment that one wants to calibrate. That

means that, as long as the likelihoods for all the possible outcomes in an experiment

are available, one can develop and implement a Bayesian protocol. As a consequence,
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the cases shown in this thesis can serve as a guide for generalising Bayesian protocols

for the calibration of other quantum gates in other quantum computing architectures,

or the improvement of QEC codes implemented in experiments.
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Appendix A

Appendices

A.1 Generalisation for the three-plaquette case

In this appendix, we provide details on the expressions appearing in the three-plaquette

case. For the seven-qubit Steane code the logical 0 is given by

|0⟩L =
1

2
√
2
(|0000000⟩+ |0110110⟩+ |1111000⟩+ |1001110⟩

+ |0011011⟩+ |0101101⟩+ |1100011⟩+ |1010101⟩) (A.1)

Due to experimental errors, phases appear in the preparation of the |0⟩L state. The

state obtained will be then

∣∣0′〉
L
=

1

2
√
2
(|0000000⟩+ eiϕ1 |0110110⟩+ eiϕ2 |1111000⟩+ eiϕ3 |1001110⟩

+ eiϕ4 |0011011⟩+ eiϕ5 |0101101⟩+ eiϕ6 |1100011⟩+ eiϕ7 |1010101⟩) (A.2)

Single-qubit Z rotations can be performed on the seven qubits of the code state |0′⟩L
to obtain the following state and likelihoods for each stabiliser combination

∣∣0′〉
L

Rotations−−−−−−→ 1

2
√
2
(|0000000⟩+ ei[ϕ1+2(θ2+θ3+θ5+θ6)] |0110110⟩

+ ei[ϕ2+2(θ1+θ2+θ3+θ4)] |1111000⟩+ ei[ϕ3+2(θ1+θ4+θ5+θ6)] |1001110⟩

+ ei[ϕ4+2(θ3+θ4+θ6+θ7)] |0011011⟩+ ei[ϕ5+2(θ2+θ4+θ5+θ7)] |0101101⟩

+ ei[ϕ6+2(θ1+θ2+θ6+θ7)] |1100011⟩+ ei[ϕ7+2(θ1+θ3+θ5+θ7)] |1010101⟩), (A.3)
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P1(±θ|ϕ) =
1

8
{4± cos[ϕ2 + 2(θ1 + θ2 + θ3 + θ4)]± cos[ϕ1 − ϕ3 + 2(−θ1 + θ2 + θ3 − θ4)]

± cos[ϕ4 − ϕ6 + 2(−θ1 − θ2 + θ3 + θ4)]± cos[ϕ5 − ϕ7 + 2(−θ1 + θ2 − θ3 + θ4)]},
(A.4)

P2(±θ|ϕ) =
1

8
{4± cos[ϕ1 + 2(θ2 + θ3 + θ5 + θ6)]± cos[ϕ2 − ϕ3 + 2(θ2 + θ3 − θ5 − θ6)]

± cos[ϕ4 − ϕ5 + 2(−θ2 + θ3 − θ5 + θ6)]± cos[ϕ6 − ϕ7 + 2(θ2 − θ3 − θ5 + θ6)]}, (A.5)

P3(±θ|ϕ) =
1

8
{4± cos[ϕ4 + 2(θ3 + θ4 + θ6 + θ7)]± cos[ϕ1 − ϕ5 + 2(θ3 − θ4 + θ6 − θ7)]

± cos[ϕ2 − ϕ6 + 2(θ3 + θ4 − θ6 − θ7)]± cos[ϕ3 − ϕ7 + 2(−θ3 + θ4 + θ6 − θ7)]}, (A.6)

P12(±θ|ϕ) =
1

8
{4± cos[ϕ3 + 2(θ1 + θ4 + θ5 + θ6)]± cos[ϕ1 − ϕ2 + 2(−θ1 − θ4 + θ5 + θ6)]

± cos[ϕ4 − ϕ7 + 2(−θ1 + θ4 − θ5 + θ6)]± cos[ϕ5 − ϕ6 + 2(−θ1 + θ4 + θ5 − θ6)], (A.7)

P13(±θ|ϕ) =
1

8
{4± cos[ϕ6 + 2(θ1 + θ2 + θ6 + θ7)]± cos[ϕ1 − ϕ7 + 2(−θ1 + θ2 + θ6 − θ7)]

± cos[ϕ2 − ϕ4 + 2(θ1 + θ2 − θ6 − θ7)]± cos[ϕ3 − ϕ5 + 2(θ1 − θ2 + θ6 − θ7)]}, (A.8)

P23(±θ|ϕ) =
1

8
{4± cos[ϕ5 + 2(θ2 + θ4 + θ5 + θ7)]± cos[ϕ1 − ϕ4 + 2(θ2 − θ4 + θ5 − θ7)]

± cos[ϕ2 − ϕ7 + 2(θ2 + θ4 − θ5 − θ7)]± cos[ϕ3 − ϕ6 + 2(−θ2 + θ4 + θ5 − θ7)]}, (A.9)

P123(±θ|ϕ) =
1

8
{4± cos[ϕ7 + 2(θ1 + θ3 + θ5 + θ7)]± cos[ϕ1 − ϕ6 + 2(−θ1 + θ3 + θ5 − θ7)]

± cos[ϕ2 − ϕ5 + 2(θ1 + θ3 − θ5 − θ7)]± cos[ϕ3 − ϕ4 + 2(θ1 − θ3 + θ5 − θ7)]}. (A.10)

The expected values of each plaquette can be easily obtained from these expressions.

For example, the first plaquette expected value is given by

⟨S(1)
x ⟩ = P1(+θ|ϕ)− P1(−θ|ϕ) (A.11)
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The expected values for the other plaquettes can be obtained from the corresponding

likelihood in the same way. The marginal likelihoods are given by

P1(±θ|ϕ2) =
4± cos[ϕ2 − θ̃2]

8
(A.12)

P2(±θ|ϕ1) =
4± cos[ϕ1 − θ̃1]

8
(A.13)

P3(±θ|ϕ4) =
4± cos[ϕ4 − θ̃4]

8
(A.14)

P12(±θ|ϕ3) =
4± cos[ϕ3 − θ̃3]

8
(A.15)

P13(±θ|ϕ6) =
4± cos[ϕ6 − θ̃6]

8
(A.16)

P23(±θ|ϕ5) =
4± cos[ϕ5 − θ̃5]

8
(A.17)

P123(±θ|ϕ7) =
4± cos[ϕ7 − θ̃7]

8
(A.18)

where

Θ̃ =



θ̃2 ≡ −2(θ1 + θ2 + θ3 + θ4)

θ̃1 ≡ −2(θ2 + θ3 + θ5 + θ6)

θ̃4 ≡ −2(θ3 + θ4 + θ6 + θ7)

θ̃3 ≡ −2(θ1 + θ4 + θ5 + θ6)

θ̃6 ≡ −2(θ1 + θ2 + θ6 + θ7)

θ̃5 ≡ −2(θ2 + θ4 + θ5 + θ7)

θ̃7 ≡ −2(θ1 + θ3 + θ5 + θ7)

(A.19)
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As for the generalization of the pseudocode in Fig. 7.6, it is achieved by changing the

previous definitions to the following ones

J = 1, ..., 7,

S = { θ̃i = ϕi + βi } ,

Q = { 1, 2, 3, 4, 5, 6, 7 } ,

T = { θ1, θ2, θ3, θ4, θ5, θ6, θ7 } , (A.20)

ϕ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7 } ,

P = {P (ϕ1), P (ϕ2), P (ϕ3), P (ϕ4), P (ϕ5), P (ϕ6), P (ϕ7) } ,

S = {S(2)
x , S(1)

x , S(1)
x S(2)

x , S(3)
x , S(2)

x S(3)
x , S(1)

x S(3)
x , S(1)

x S(2)
x S(3)

x },

Π = {P2(±θ|ϕ1), P1(±θ|ϕ2), P12(±θ|ϕ3), P3(±θ|ϕ4), P23(±θ|ϕ5), P13(±θ|ϕ6), P123(±θ|ϕ7)},

where the βi in S are chosen randomly from the set {+π/2,−π/2}.

A.2 Analytical study of the variance scaling for the phase

measurement case

In this appendix, we present some details on the scaling of the variance with the number

of measurements when applying the Bayesian adaptive method to the single-qubit state

of Eq. (7.3) in Chapter 7. The expressions obtained are easy to generalise to the two

and three-plaquette cases, appearing also in that chapter.

Let us suppose that after n measurements the knowledge about the phase ϕ is given

by a normal distribution with mean value ϕn and variance σ2n

Pn(ϕ) =
1√
2πσ2n

e
− (ϕ−ϕn)2

2σ2
n . (A.21)

After performing a measurement the updated probability distribution is given by

P±
n+1(ϕ) =

1

p±n+1

(
1± cos(ϕ− θn+1)

2

)
Pn(ϕ), (A.22)

where p±n+1 is the probability at step n of obtaining a + or − in the measurement n+1.

Since at step n it is unknown what the measurement n+ 1 will yield, we consider the
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case

expected value of the variance after the measurement n+ 1, σ2n+1

σ2n+1 = p+n+1(σ
+
n+1)

2 + p−n+1(σ
−
n+1)

2, (A.23)

where (σ±n+1)
2 are the variances after obtaining a + or − for the measurement n + 1

given by

(σ±n+1)
2 =

∫ π

−π
ϕ2P±

n+1(ϕ)dϕ−
(∫ π

−π
ϕP±

n+1(ϕ)dϕ

)2

. (A.24)

This yields

p+n+1(σ
+
n+1)

2 =

∫ π

−π
ϕ2Pn(ϕ)

1 + cos(ϕ− θn+1)

2
dϕ

− 1

p+n+1

(∫ π

−π
ϕPn(ϕ)

1 + cos(ϕ− θn+1)

2
dϕ

)2

, (A.25)

p−n+1(σ
−
n+1)

2 =

∫ π

−π
ϕ2Pn(ϕ)

1− cos(ϕ− θn+1)

2
dϕ

− 1

p−n+1

(∫ π

−π
ϕPn(ϕ)

1− cos(ϕ− θn+1)

2
dϕ

)2

. (A.26)

Introducing (A.25) and (A.26) into (A.23) yields

σ2n+1 = σ2n − 1

4p+n+1p
−
n+1

×
(∫ π

−π
ϕPn(ϕ) cos(ϕ− θn+1)dϕ

)2

+
p+n+1 − p−n+1

2p+n+1p
−
n+1

(∫ π

−π
ϕPn(ϕ)dϕ

)
×
(∫ π

−π
ϕPn(ϕ) cos(ϕ− θn+1)dϕ

)
+

4p+n+1p
−
n+1 − 1

4p+n+1p
−
n+1

(∫ π

−π
ϕPn(ϕ)dϕ

)2

(A.27)

where

4p+n+1p
−
n+1 − 1 = −

(∫ π

−π
Pn(ϕ) cos(ϕ− θn+1)dϕ

)2

(A.28)

p+n+1 − p−n+1 =

(∫ π

−π
Pn(ϕ) cos(ϕ− θn+1)dϕ

)
(A.29)
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Thus, we obtain

σ2n+1 − σ2n = − 1

p+n+1p
−
n+1

[(∫ π

−π

Pn(ϕ) cos(ϕ− θn+1)

2
dϕ

)
×
(∫ π

−π
ϕPn(ϕ)dϕ

)
−
(∫ π

−π

ϕPn(ϕ) cos(ϕ− θn+1)

2
dϕ

)]2
(A.30)

If we consider Pn(ϕ) has a low enough standard deviation we can change the intervals

of integration [−π, π) with (−∞,∞) to obtain

∫ ∞

−∞
ϕPn(ϕ)dϕ = ϕn,∫ ∞

−∞

Pn(ϕ) cos(ϕ− θn+1)

2
dϕ =

e−σ2
n/2

2
cos
(
ϕn − θn+1

)
,∫ ∞

−∞

ϕPn(ϕ) cos(ϕ− θn+1)

2
dϕ = −e

−σ2
n/2σ2n
2

sin
(
ϕn − θn+1

)
+
e−σ2

n/2ϕ̄n
2

cos
(
ϕn − θn+1

)
,

p±n+1 =
1

2

(
1± e−σ2

n/2 cos
(
ϕn − θn+1

))
. (A.31)

Replacing the values of these integrals in (A.30) we obtain

σ2n+1 − σ2n = − e−σ2
nσ4n sin

2(ϕn − θn+1)

1− e−σ2
n cos2(ϕn − θn+1)

. (A.32)

Similar calculations can be performed for the two and three plaquette case likelihoods,

the only difference being the cosine appearing in the likelihood having amplitude 1/4

and 1/8 respectively and the angle θ̃i,n+1 being a linear combination of the rotations

performed on different qubits for measurement n+1. Taking this into account, for the

two-plaquette case the decrease in the variance for each ϕi is

σ2i,n+1 − σ2i,n = −
e−σ2

i,nσ4i,n sin
2(ϕi,n − θi,n+1)

4− e−σ2
i,n cos2(ϕi,n − θi,n+1)

(A.33)

and for the three-plaquette case

σ2i,n+1 − σ2i,n = −
e−σ2

i,nσ4i,n sin
2(ϕi,n − θi,n+1)

16− e−σ2
i,n cos2(ϕi,n − θi,n+1)

. (A.34)
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A.3 Analytical study of the variance scaling for the Ram-

sey cycle case

In this appendix, we present the scaling of the variance with the number of measure-

ments when applying the Bayesian adaptive method to the Ramsey spectroscopy in

Chapter 8.

Let us suppose that after n measurements the knowledge about the detuning ∆ is

given by a normal distribution with mean value ∆n and variance σ2n

Pn(∆) =
1√
2πσ2n

e
− (∆−∆n)2

2σ2
n . (A.35)

We can follow the same procedure as we did in Appendix A.2, but using the likelihood

in Eq. (8.15). With this, we obtain the following integrals∫ ∞

−∞
∆Pn(∆)d∆ = ∆n,∫ ∞

−∞

Pn(∆) cos(∆ + ϕn+1)

2
d∆ =

e−σ2
nτ

2
R,n+1/2

2
cos
(
∆nτR,n+1 + ϕn+1

)
,∫ ∞

−∞

∆Pn(∆) cos(∆ + ϕn+1)

2
d∆

=
e−σ2

nτ
2
R,n+1/2

2

[
∆n cos

(
∆nτR,n+1 + ϕn+1

)
− σ2nτR,n+1 sin

(
∆nτR,n+1 + ϕn+1

)]
,

p±n+1 =
1

2

[
1± e−σ2

nτ
2
R,n+1/2 cos

(
∆nτR,n+1 + ϕn+1

)]
, (A.36)

where we use + and − in p±n+1 to denote a |1⟩ and |0⟩ measurement, respectively. Using

these results and (A.30), we obtain

σ2n+1 − σ2n = −
e−σ2

nτ
2
R,n+1σ4nτ

2
R,n+1 sin

2(∆nτR,n+1 + ϕn+1)

1− e−σ2
nτ

2
R,n+1 cos2(∆nτR,n+1 + ϕn+1)

. (A.37)

Assuming that ∆n, which is always possible if after each measurement we correct the

detuning so that the normal distribution in Eq. (A.35) is centered around zero, we

obtain

σ2n+1 − σ2n = −
e−σ2

nτ
2
R,n+1σ4nτ

2
R,n+1 sin

2(ϕn+1)

1− e−σ2
nτ

2
R,n+1 cos2(ϕn+1)

. (A.38)

This expected decrease in the variance is maximised when the measurement settings of
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the n+ 1 measurement are selected to be ϕn+1 = π/2 and τR,n+1 = 1/σn.

A.4 Numerical coefficients

In this appendix, we derive the form of the numerical coefficients that were used in

Chapter 9. In the basis defined by the eigenstates of Sy, |+,+⟩, |+,−⟩, |−,+⟩ and

|−,−⟩, where

|±⟩ = 1√
2
(|g⟩ ± i |e⟩), (A.39)

the evolution operator of the ideal MS gate can be written as

Û0(τ) =


D[F (τ)]eiG(τ) 0 0 0

0 1 0 0
0 0 1 0

0 0 0 D[−F (τ)]eiG(τ)

 , (A.40)

where F (τ) = Ω̃(eiτ − 1) and G(τ) = Ω̃2(τ − sin τ). From Eq. (9.33) and Eq. (9.36) we

obtain

Û1,M (τg) ≡ Û0(τg)M1(τg) = −iλ̃
∫ τg

0
Û †
0(τ

′ − τg)Sz Û0(τ
′)dτ ′. (A.41)

Analysing the form of the integrand shows that its application couples a |+,+, n⟩ state

with |+,−,m⟩ and |−,+,m⟩, with corresponding coefficients I++,n
+−,m and I++,n

+−,m, that is

Û1,M (τg) |+,+, n⟩ = −λ̃
∑
m=0

I++,n
+−,m |+,−,m⟩+ I++,n

−+,m |−,+,m⟩ . (A.42)

Similarly, for the action on other Sy basis states we obtain

Û1,M (τg) |−,−, n⟩ = −λ̃
∑
m=0

I−−,n
+−,m |+,−,m⟩+ I−−,n

−+,m |−,+,m⟩ , (A.43)

Û1,M (τg) |+,−, n⟩ = −λ̃
∑
m=0

I+−,n
++,m |+,+,m⟩+ I+−,n

−−,m |−,−,m⟩ , (A.44)

Û1,M (τg) |−,+, n⟩ = −λ̃
∑
m=0

I−+,n
++,m |+,+,m⟩+ I−+,n

−−,m |−,−,m⟩ . (A.45)
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These coefficients are obtained from numerical integration of matrix elements as de-

scribed in Eq. (A.41), and they can all be described in terms of Inm ≡ I++,n
+−,m,

I++,n
+−,m = I++,n

−+,m = I+−,m
++,n = I−+,m

++,n = Inm, (A.46)

I−−,n
+−,m = I−−,n

−+,m = I+−,m
−−,n = I−+,m

−−,n = (−1)n−mInm. (A.47)

Therefore, it is enough to calculate the coefficients Inm, which have the form

Inm =
i

2

∫ τg

0
eiG(τ) ⟨m|D[F (τ)] |n⟩ dτ, (A.48)

where for m ≥ n

⟨m|D(α) |n⟩ =
√
m!

n!
αm−ne−|α|2/2

n∑
k=0

(−1)k
(
n

k

)
|α|2k

(m− n+ k)!
, (A.49)

and for m < n

⟨m|D(α) |n⟩ =
√
m!

n!
(α∗)n−me−|α|2/2

m∑
k=0

(−1)n−k

(
n

k

)
|α|2(m−k)

(m− k)!
. (A.50)

By using these expressions, one can numerically calculate the Inm coefficients for the

first order Magnus expansion.

As for the second order coefficients, we have to work with Eq. (9.34) and the second

order terms of Eq. (9.36) to obtain them. This requires to calculate the action of the

following operators

Û0(τg)M2(τg) = − λ̃
2

2
Û0(τg)

∫ τg

0

∫ τ1

0

[
Û †
0(τ1)Sz Û0(τ1), Û

†
0(τ2)Sz Û0(τ2)

]
dτ2dτ1,

(A.51)

Û0(τg)M1(τg)
2 = −λ̃2

∫ τg

0

∫ τg

0
Û †
0(τ1 − τg)Sz Û0(τ1)Û

†
0(τ2)Sz Û0(τ2)dτ2dτ1, (A.52)

where for convenience we define the combination of these operators as

Û2,M (τg) = Û0(τg)

(
M2(τg) +

M1(τg)
2

2

)
(A.53)

By close inspection of the previous integrands, one can see that they couple |+,+, n⟩
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and |−,−, n⟩ to states of the form |+,+,m⟩ and |−,−,m⟩

Û2,M (τg) |+,+, n⟩ = −λ̃2
∑
m=0

Jn
1,m |+,+,m⟩+ Jn

2,m |−,−,m⟩ , (A.54)

Û2,M (τg) |−,−, n⟩ = −λ̃2
∑
m=0

Jn
2,m |+,+,m⟩+ Jn

1,m |−,−,m⟩ . (A.55)

Similarly, they couple |+,−, n⟩ and |−,+, n⟩ to |+,−,m⟩ and |−,+,m⟩

Û2,M (τg) |+,−, n⟩ = −λ̃2
∑
m=0

Jn
3,m(|+,−,m⟩+ |−,+,m⟩), (A.56)

Û2,M (τg) |−,+, n⟩ = −λ̃2
∑
m=0

Jn
3,m(|+,−,m⟩+ |−,+,m⟩), (A.57)

where the coefficients, Jn
1,m, Jn

2,m, and Jn
3,m, can be calculated by numerically integrating

Eq. (A.51) and Eq. (A.52) using Eq. (A.49) and Eq. (A.50). Their expressions are

Jn
1,m =

1

4

∫ τg

0

∫ τ1

0
e−i(G(τ1)−G(τ2)−G(τg)) ⟨m|D(F (τg))D

†(F (τ1))D(F (τ2)) |n⟩ dτ2dτ1

− 1

4

∫ τg

0

∫ τ1

0
ei(G(τ1)−G(τ2)+G(τg)) ⟨m|D(F (τg))D

†(F (τ2))D(F (τ1)) |n⟩ dτ2dτ1

+
1

4

∫ τg

0

∫ τg

0
ei(G(τ2)−G(τ1−τg)) ⟨m| |D†(F (τ1 − τg))D(F (τ2)) |n⟩ dτ2dτ1

(A.58)

Jn
2,m =

1

4

∫ τg

0

∫ τ1

0
e−i(G(τ1)−G(τ2)−G(τg)) ⟨m|D†(F (τg))D(F (τ1))D(F (τ2)) |n⟩ dτ2dτ1

− 1

4

∫ τg

0

∫ τ1

0
ei(G(τ1)−G(τ2)+G(τg)) ⟨m|D†(F (τg))D(F (τ2))D(F (τ1)) |n⟩ dτ2dτ1

+
1

4

∫ τg

0

∫ τg

0
ei(G(τ2)−G(τ1−τg)) ⟨m|D(F (τ1 − τg))D(F (τ2)) |n⟩ dτ2dτ1

(A.59)

Jn
3,m =

1

8

∫ τg

0

∫ τ1

0
ei(G(τ1)−G(τ2)) ⟨m|D†(F (τ1))D(F (τ2)) +D(F (τ1))D

†(F (τ2)) |n⟩ dτ2dτ1

− 1

8

∫ τg

0

∫ τ1

0
ei(G(τ2)−G(τ1)) ⟨m|D†(F (τ2))D(F (τ1))−D(F (τ2))D

†(F (τ1)) |n⟩ dτ2dτ1

+
1

8

∫ τg

0

∫ τg

0
ei(G(τ1)−G(τ2)) ⟨m|D†(F (τ1))D(F (τ2)) +D(F (τ1))D

†(F (τ2)) |n⟩ dτ2dτ1

(A.60)
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After obtaining the numerical coefficients Inm, Jn
1,m, Jn

2,m, and Jn
3,m, we can write the

action of the center line detuned gate over the states |+,+, n⟩, |+,−, n⟩, |−,+, n⟩ and
|−,−, n⟩. To consider the action over the states |g, g, n⟩, |g, e, n⟩, |e, g, n⟩ and |e, e, n⟩
it is enough to use

|g, g, n⟩ = 1

2

(
|+,+, n⟩+ |+,−, n⟩+ |−,+, n⟩+ |−,−, n⟩

)
, (A.61)

|g, e, n⟩ = −i
2

(
|+,+, n⟩ − |+,−, n⟩+ |−,+, n⟩ − |−,−, n⟩

)
, (A.62)

|e, g, n⟩ = −i
2

(
|+,+, n⟩+ |+,−, n⟩ − |−,+, n⟩ − |−,−, n⟩

)
, (A.63)

|e, e, n⟩ = 1

2

(
− |+,+, n⟩+ |+,−, n⟩+ |−,+, n⟩ − |−,−, n⟩

)
. (A.64)

Using the previous relations and Eq. (A.42)-(A.45), we obtain the first order cor-

rection to the states,
∣∣∣ψ(1)

σ,σ′,n

〉
, defined in Eq. (9.43)-(9.45). Similarly, Using Eq. (A.54)-

(A.57), we obtain the second order correction to the states,
∣∣∣ψ(2)

σ,σ′,n

〉
, defined in Eq. (9.57)-

(9.59), where we introduced the following coefficients

Jn
+,m =

Jn
1,m + Jn

2,m + 2Jn
3,m

2
, (A.65)

Jn
−,m =

Jn
1,m + Jn

2,m − 2Jn
3,m

2
. (A.66)

Finally, from the form of the final state corrected up to second order when using

the initial state |g, g, n⟩,
∣∣∣Ψ(2)

g,g,n

〉
, we can calculate the coefficients that are used in

Sec. 9.3.2 and Sec. 9.3.4:

cg,g,n = −Re
(
Jn
+,n

)
− Im

(
Jn
+,n

)
+
∑
m≥0

|Inm + Imn |2f evenn,m , (A.67)

ce,e,n = Re
(
Jn
−,n

)
− Im

(
Jn
−,n

)
+
∑
m ̸=n

|Inm − Imn |2f evenn,m , (A.68)

ce,g,n =
∑
m̸=n

|Imn |2foddn,m. (A.69)

The corresponding coefficients when the initial state is in a different state of the com-

putational basis can be calculated in a similar way.
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[20] H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,”

Physics Reports 469 no. 4, (2008) 155–203.

180



REFERENCES

[21] K. R. Brown, J. Kim, and C. Monroe, “Co-designing a scalable quantum

computer with trapped atomic ions,” npj Quantum Information 2 no. 1, (2016)

1–10.

[22] R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature

453 no. 7198, (2008) 1008–1015.

[23] B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum

computing with trapped ion hyperfine qubits,” Quantum Information

Processing 3 no. 1, (2004) 45–59.

[24] T. Harty, D. Allcock, C. J. Ballance, L. Guidoni, H. Janacek, N. Linke,

D. Stacey, and D. Lucas, “High-fidelity preparation, gates, memory, and

readout of a trapped-ion quantum bit,” Physical Review Letters 113 no. 22,

(2014) 220501.

[25] T. Sriarunothai, S. Wölk, G. S. Giri, N. Friis, V. Dunjko, H. J. Briegel, and

C. Wunderlich, “Speeding-up the decision making of a learning agent using an

ion trap quantum processor,” Quantum Science and Technology 4 no. 1, (2018)

015014.

[26] M. Johanning, A. F. Varón, and C. Wunderlich, “Quantum simulations with

cold trapped ions,” Journal of Physics B: Atomic, Molecular and Optical

Physics 42 no. 15, (2009) 154009.

[27] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of

single trapped ions,” Reviews of Modern Physics 75 no. 1, (2003) 281. 2, 43, 44,

51

[28] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic

quantum states in a single-Cooper-pair box,” Nature 398 no. 6730, (1999)

786–788. 2, 43

[29] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453

no. 7198, (2008) 1031–1042. 43

181



REFERENCES

[30] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang,

S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state of

play,” Annual Review of Condensed Matter Physics 11 (2020) 369–395. 2

[31] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,”

Physical Review A 57 no. 1, (1998) 120. 2, 43

[32] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M.

Vandersypen, “Spins in few-electron quantum dots,” Reviews of Modern Physics

79 no. 4, (2007) 1217. 2, 43

[33] S. Barz, “Quantum computing with photons: introduction to the circuit model,

the one-way quantum computer, and the fundamental principles of photonic

experiments,” Journal of Physics B: Atomic, Molecular and Optical Physics 48

no. 8, (2015) 083001. 2

[34] D. Jaksch, J. Cirac, P. Zoller, S. Rolston, R. Côté, and M. Lukin, “Fast
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