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Abstract

The early detection of terrorist threat objects, such as guns and knives, through improved
metal detection, has the potential to reduce the number of attacks and improve public
safety and security. Walk through metal detectors (WTMDs) are commonly deployed
for security screening purposes in applications where these attacks are of particular con-
cern such as in airports, transport hubs, government buildings and at concerts. However,
there is scope to improve the identification of an object’s shape and its material proper-
ties. Using current techniques there is often the requirement for any metallic objects to
be inspected or scanned separately before a patron may be determined to pose no threat,
making the process slow. This can often lead to build ups of large queues of unscreened
people waiting to be screened which becomes another security threat in itself. To improve
the current method, there is considerable potential to use the fields applied and measured
by a metal detector since, hidden within the field perturbation, is object characterisation
information. The magnetic polarizability tensor (MPT) offers an economical characteri-
sation of metallic objects and its spectral signature provides additional object character-
isation information. The MPT spectral signature can be determined from measurements
of the induced voltage over a range of frequencies for a hidden object. With classification
in mind, it can also be computed in advance for different threat and non-threat objects,
producing a dataset of these objects from which a machine learning (ML) classifier can be
trained. There is also potential to generate this dataset synthetically, via the application of
a method based on finite elements (FE). This concept of training an ML classifier trained
on a synthetic dataset of MPT based characterisations is at the heart of this work.
In this thesis, details for the production and use of a first of its kind synthetic dataset
of realistic object characterisations are presented. To achieve this, first a review of re-
cent developments of MPT object characterisations is provided, motivating the use of
MPT spectral signatures. A problem specific, H(curl) based, hp-finite element discreti-
sation is presented, which allows for the development of a reduced order model (ROM),
using a projection based proper orthogonal decomposition (PODP), that benefits from a-
posteriori error estimates. This allows for the rapid production of MPT spectral signatures
the accuracy of which is guaranteed. This methodology is then implemented in Python,
using the NGSolve finite element package, where other problem specific efficiencies are
also included along with a series of additional outputs of interest, this software is then
packaged and released as the open source MPT-Calculator. This methodology and
software are then extensively tested by application to a series of illustrative examples.
Using this software, MPT spectral signatures are then produced for a series of realistic
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threat and non-threat objects, creating the first of its kind synthetic dataset, which is also
released as the open source MPT-Library dataset. Lastly, a series of ML classifiers are
documented and applied to several supervised classification problems using this new syn-
thetic dataset. A series of challenging numerical examples are included to demonstrate
the success of the proposed methodology.
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Chapter 1

Introduction

1.1 Metal Detectors

Metal detectors have many uses from hobbyist treasure hunting and assisting with arche-
ological digs [29] to more safety critical applications such as security screening [87, 82]
and humanitarian demining [7].
Security screening is required in many situations with obvious applications in airports
and other transport hubs, however, these systems are also deployed in scenarios such as
stadiums, concert halls and some museums. Due to the number of people that need to
be processed in these applications and the safety critical nature of the work, there is a
requirement for speed without undermining the accuracy of the process. With increased
gun and knife crime in many countries (e.g. U.K. knife crime has seen a significant in-
crease in the last 8-9 years [38]), the early detection of such weapons has the potential to
reduce the number of related attacks and improve safety and security.
Similarly, the identification of hidden anti-personal landmines and unexploded ordnance
(UXO) in areas of former conflict is vital, with over 7,000 recorded casualties due to
landmines in 2020 alone, 80% of which were civilians and of these civilian casualties half
were children [126]. At current rates, it is estimated that it would take 1,100 years to re-
move all of the world’s active anti-personnel landmines, this is provided no new mines are
laid [90], sadly this is not the case, with new landmines being deployed in Afghanistan,
Colombia, India, Myanmar, Nigeria, and Pakistan in 2020 [126]. One other considera-
tion, is the remoteness of the affected areas [48], this presents significant difficulties in the
requirements for the system to be used, due to lack of high powered computing available
in such remote areas a solution with low computational overhead is required.
Metal detection is a low frequency electromagnetic technique that operates typically be-
tween 0.5-500kHz [9]. A metal detector works by passing a low frequency electric current
through a coil, which induces a magnetic field. When this magnetic field interacts with
a highly conducting body, eddy currents are generated. The generation of eddy currents
perturbs the magnetic field. A second set of coils senses the perturbation as a voltage.
Many commercial metal detectors sense metal objects based on simple thresholding and
give an audible signal when the threshold is above a certain level. While metal detectors
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do detect metal objects, they are often not able to distinguish between different shapes,
different materials and small objects close to coils and larger objects further away.
Magnetic induction tomography (MIT) uses a similar physical process to metal detection.
It is based on placing a series of coils around a conducting object and takes measurements
of induced voltages in the coils generated by magnetic induction to recover images of con-
ductivity (and permeabilty). Typical operating frequencies are 5-500kHz [80]. A review
of the technique is provided by Griffiths [46]. Images are often produced by voxelting
the imaging region and minimising a cost functional to update conductivity values in the
voxels. It has been used for industrial process modelling (e.g. molten metal [81, 119])
and has been proposed as a novel medical imaging modality (e.g. for strokes in the
brain [142]). Related to MIT is electrical impedance tomography (EIT), which relies
on low-frequency currents and measures the voltages induced by the presence of low con-
ducting objects [59, 106]. While EIT still operates at low-frequncies, the physical process
is no longer magnetic induction but instead electrical in nature and is commonly used for
medical imaging [23].
Ground penetrating radar (GPR) is another imaging based technique, it is based on high
frequency electromagnetic pulses typically in the range or 10-5000MHz [67]. GPR like
metal detection is used for locating objects underground. GPR provides images of the
sub-surface unlike in low-frequency metal detection and MIT, GPR works with electro-
magnetic fields that propagate as waves. When these waves interact with buried objects
they may be partially absorbed, reflected and scattered. The time of travel and energy of
the reflected waves is used to build up an image of the subsurface. One advantage of GPR
is its ability to go beyond detection of metal alone, and can detect non-permeable, non-
conducting objects. Proposals for a method combining GPR and classical metal detection
have also been proposed [88].
Metal detection is a low-cost modality, which provides a fast and efficient method of
detecting metal objects. However, there is scope to better understand the information
contained in signals measured by metal detectors and how these can be utilised to better
identify the location of hidden metallic objects and information about their shape, size
and material properties. Thereby solving the metal detection inverse problem.

1.1.1 Approaches to Solving the Metal Detection Inverse Problem

As discussed previously, the simplest approach to metal detection is based on threshold-
ing [136]. The signals measured by a metal detector are in the form of voltages in a set
of measurement coils. In principal, one could use knowledge of the currents induced in
the exciting fields and the voltages measured in the measurement coils as a basis for solv-
ing an electromagnetic inverse problem akin to what is done in MIT and the related EIT.
If sufficiently many exciting coils and measurement coils are available, a cost functional
approach can be prescribed for the difference between the measured voltages and the volt-
ages obtained by solving the eddy current approximation to Maxwell’s equations with a
given conductivity distribution. Given a voxelated grid, and a numerical approximation
to the partial differential equations, the functional then needs to be minimised to find the
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optimal set of conductivity values for the voxels.
Unfortunately, the solution for conductivity distributions in MIT (and EIT) is severely
ill-posed. An ill-posed problem differs from a well-posed problem [52], since: A so-
lution may not exist; The solution may not be unique; The solution may not change
continuously with the data. The small number of measurements also makes the prob-
lem very difficult. This means that the discrete non-linear system that needs to be solved
is ill-conditioned. For this reason regularisation needs to be added to the functional to
be minimised, Tikhonov regularisation is the most widely used [41]. Adding too little
regularisation means the ill-conditioning dominates. Adding too much means that any in-
teresting features are smoothed out and any useful information in the image is lost. There
are automated methods for choosing the amount of regularisation to be added which in-
clude the discrepancy principal [51, 50] and L-curve methods [53, 25].
Common approximate approaches for solving the set of partial differential equations in-
clude either finite element methods or finite difference methods [18, 78, 124]. In the case
of the finite element method, non-standard vectoral edge elements must be applied to ap-
proximate the eddy current approximation of the Maxwell system as the use of a nodal
finite element approximation will lead to the generation of spurious modes and the con-
tinuity of fields at material interface conditions would be incorrectly imposed by a nodal
scheme [75, 103]. Such finite elements are now widely used in electromagnetics and high
order versions are available e.g. [77]. Finite difference approximations typically use rect-
angular grids and some authors have adopted the staggered grids used in finite difference
time domain (FD-TD) [124] to the frequency domain.
Some examples of this approach for imaging of conductivities relevant to both MIT and
metal detection are [34, 121]. As well as imaging conductivity, some approaches image
both conductivity and permeability [120].
Additionally, instead of using a voxelated grid, one could use a level-set approach to rep-
resent the hidden conducting objects, this approach attempts to reconstruct the interface
between regions of differing conductivity [118]. To overcome the issues associated with
the ill-posed nature of the inverse conductivity problem and the small number of mea-
surements that can be made in metal detection, an alternative approach, which attempts
to characterise hidden conducting objects by a small number of parameters using a mag-
netic polarizability tensor has gained popularity. This may have considerable advantages
for example in airport security scanning [82] and landmine detection [96].

1.2 Characterising Objects by Magnetic Polarizability
Tensors

In contrast to building a ‘picture’ of the domain, significant work has been done in re-
cent years to characterise hidden conducting objects using a small number of parameter
through a magnetic polarizability tensor (MPT). The MPT is a complex symmetric rank 2
tensor, which has 6 independent coefficients. Its coefficients are a function of the exciting
frequency, the object’s size, its shape as well as its conductivity and permeability. Initially
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the MPT was used based on engineering intuition [86, 94]. But, following the derivation
of the leading order term in an asymptotic expansion of the perturbed magnetic field by
Ammari, Chen, Chen, Garnier and Volkov [13], Ledger and Lionheart showed that the
result reduces to an object characterisation using a rank 2 complex symmetric tensor,
thus, providing the first explicit formula for the MPT [69]. In the subsequent works,
Ledger and Lionheart derived alternative formulations, which although equivalent for ex-
act continuous fields, offer advantages for their explicit computation and for investigating
their properties [70, 71, 72, 73]. In [72] Ledger and Lionheart have extended Ammari et
al’s [13] to provide a complete asymptotic expansion of the perturbed magnetic field and
introduce the concept of generalised MPTs (GMPTs). The rank 2 MPTs have been vali-
dated against exact solutions for a conducting sphere and against measurements of MPTs
for different objects [70, 71].
Also, Ledger and Lionheart have proven the way in which the tensor coefficients vary with
the exciting frequency [73] and explained the improved object characterisation this offers.
The connection of the MPT to simpler rank 2 Póyla-Szegö tensor is considered in [70, 73].
In [69] Ledger and Lionheart explain how objects with rotational or reflectional symme-
tries have a reduced number of independent coefficients and describe how these can be
determined from the object symmetries. In addition to these theoretical advancements,
apparatus have been developed to measure MPTs in a lab based setting [96] and are be-
coming ever more accurate. As well as these lab based settings signals from commercial
metal detectors have also been used to recover MPT coefficients [86, 87, 82, 83]. In con-
trast to determining conductivity distributions in MIT, determining the MPT coefficients
is easier and can be achieved by simple linear least squares, by solving an over-determined
linear system of equations, which is much better conditioned. Minimal regularisation may
be added in the case of noisy measurements.
From previous studies of the simpler Póyla-Szegö tensor characterisation of an object for
a fixed conductivity contrast in electrical impedance tomography (EIT), it is known that
shape and material contrast information cannot be separated [15]. In [15] it is also shown,
for a two dimensional object, that a unique equivalent ellipse can be constructed that has
the same Póyla-Szegö tensor if the object’s conductivity contrast is known. For a three-
dimensional object, a numerical procedure has been proposed for computing an equivalent
ellipsoid that has the same Póyla-Szegö tensor, although it is not clear if the resulting el-
lipsoid is unique [64]. Given this, it is generally accepted that using an MPT characterisa-
tion at a single frequency also only provides limited information. In addition, for electro-
sensing, where it has been postulated that electric fish characterise objects by Pólya-Szegö
tensors [65, 63], spectral information, with frequency dependent contrasts, have been used
for the successful classifications of objects [11]. There has been success in small scale
measured MPT spectral signatures for object classification [14, 74, 82, 87, 62, 101] and a
theoretical study of the MPT spectral signature [73] has been undertaken.
One approach for the automated computation of the MPT spectral signature is to post-
process finite element method (FEM) solutions to eddy current problems obtained using
commercial packages (e.g. with ANSYS as in [100]), however, improved accuracy, and a
better understanding, can be gained by using the available explicit expressions for MPT
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coefficients, which rely on computing finite element (FE) approximations to a transmis-
sion problem [69, 71, 73]. In common with other approaches to solving metal detection
problems and inverse problems in MIT, the vectoral nature of the transmission problems
dictates that vectoral edge based finite elements be used. Appropriate formulations for
solving the transmission problem needed for computing the MPT have already been pre-
sented in the context of solving eddy current problems [77].
A further alternative would be to use the boundary element method (BEM) to discretise
the transmission problem, which only requires discretisation of the conductor’s surface
for a homogenous conductor and hence fewer degrees of freedom. However, unlike the
sparse matrices in FEM, BEM results in fully populated matrices, and, for general inho-
mogeneous objects, requires discretisation of the conductor’s volume and coupling with
FEM. Appropriate types of BEM for the transmission problem are described in [56, 57].

1.3 Classification and Machine Learning

Machine learning (ML) has been around for a long time, with the concept of a logic based
neural network being postulated about as far back as 1944 by McCulloch and Pitts [104].
More classical techniques, date back far further, with the term regression coined by Gal-
ton in the late 19th century [39], although the concept of a least squares fit was developed
for astronomical applications at the start of the 19th century by Gauss and Legendre in-
dependently [115]. The theory and mathematical reasoning behind these techniques and
many more is well understood and has been well documented in literature [20, 54, 66].
However, it is only due to recent advances in personal computing and the wide spread
availability of machine learning libraries such as Scikit learn, Pytorch and Tensor Flow,
that the full capabilities of these techniques have been able to be realised.
Of particular interest for the work in this thesis are the ML methods used for classifica-
tion. ML classifiers are capable of finding patterns in data and making predictions from
this data that humans are simply incapable of. Once trained, in an off-line process known
as training, they are capable of processing large quantities of data extremely efficiently,
making them well suited to the task of metal detection, showing particular promise when
combined with an approach based on MPT spectral signatures. Some of the well known
classification algorithms that are commonly applied in data science applications as well
as in science and engineering include decision trees, random forests, gradient boosting,
support vector machines, neural networks and logistic regression [20, 54, 66].
The MPT spectral signature has been exploited as an object feature description in a range
of simple classification algorithms including simple library classification for homoge-
neous [14] and inhomogeneous objects [74], a k nearest neighbours (KNN) classification
algorithm [82] and other machine learning approaches [127]. The MPT classification of
objects has already been applied to a range of different applications including airport se-
curity screening [87, 82], waste sorting [62] and anti-personnel landmine detection [101].
The aforementioned supervised classification techniques rely on a library of MPT spectral
signatures to learn how to classify the objects. Previous practical applications have used
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dictionaries of measured MPT coefficients for known objects, relevant for the application
under consideration, for example, [83] considered between 3-13 classes of objects with up
to 200 samples for the classification. But, such dictionaries are subject to errors and have
unavoidable noise, as described above, and hence, this may limit the performance of clas-
sification of unknown objects if it is then used in a metal detection system with less noise
(and/or reduced errors) compared to the system used for the measuring the dictionary.
Despite this existing work there is considerable scope for using alternative ML classifiers
and larger dictionaries or simulated (instead of measured) object characterisations to be
harnessed in metal detection object classification.

1.4 Aim and Objectives

The aim of this thesis is to harness the state-of-the-art mathematical developments in MPT
object characterisation by Ledger and Lionheart in a series of papers [69, 70, 71, 73]
and to apply recent developments in ML classification to the metal detection problem.
This will centre around the creation and use of a synthetic database of conducting object
characterisations, with the application of hidden conducting security threat identification
in mind. The thesis covers: the development of a problem specific FE implementation
that benefits from the application of a reduced order model (ROM) allowing for the fast
computation of MPT spectral signatures; the creation of a synthetic database of realistic
conducting object characterisations; and application of supervised classification methods.
To achieve this aim, the next specific objectives are considered:

1. Provide a review of the recent work and developments of theory surrounding MPTs.

2. Develop a robust and accurate computational methodology for the solution of eddy-
current problems using finite elements software.

3. Create an efficient ROM that allows for the fast computation of MPT spectral sig-
natures across many frequencies.

4. Demonstrate the accuracy and efficiency offered by this computational methodol-
ogy.

5. Apply the method to a series of geometrically realistic objects to create a database
of threat and non-threat object characterisations.

6. Document and implement a series of supervised ML classifiers to the database of
object characterisations.

The research carried out in order to achieve these objectives is split into several stages,
which are described in the outline of the thesis. This research was done as part of the Re-
ducing the threat to public safety project, in collaboration with Keele University, Swansea
University, The University of Manchester and University College London with the indus-
trial partners Rapiscan Systems, MT Safeline and Defence Science Technology Labratory
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(DSTL). The research was conducted under the supervision of Prof. Paul D. Ledger of
Keele University and Dr. Cinzia Giannetti of Swansea University. The Reducing the
threat to public safety project, is supported by the Engineering and Physical Sciences Re-
search Council in the form of grant EP/R002134/2 and a DTP studentship with project
reference number 2129099.

1.5 Outline of the Thesis

This thesis is formed of 10 chapters and is complemented by an appendix, and is parti-
tioned into 6 parts. The organisation of these is as follows:

—PART I—
Preliminaries

• Chapter 1: (Introduction) presents a brief introduction to metal detection, dis-
cussing critical safety and security based applications, providing motivation for the
work conducted throughout the thesis. An overview of current methodologies is
provided, this covers related imaging based methods such as MIT and GPR. Then a
review of current work on MPTs is presented, touching on subjects such as the short
comings of single frequency characterisations and difficulties in measuring MPTs
plus the advantages of generating MPTs using a computational approach. Recent
work using MPT coefficients and eigenvalues as features in a ML scheme are then
discussed. The aim and objectives of this thesis are then stated.

—PART II—
MPT Spectral Signatures

• Chapter 2: (Eddy-Current Model and Object Characterisation) achieves three
things, firstly it sets the scene for other chapters in the thesis, introducing and dis-
cussing important topics such as the formulation of the time harmonic eddy current
model, basic metal detector designs and current methodology, the difference be-
tween the forward and inverse problems, the asymptotic expansion and MPT. Sec-
ondly, it gives an overview of the MPT, discussing limiting cases which provide a
fundamental insight into the behaviour of the MPT and highlight the important role
object topology plays. Lastly, it provides motivation for the use of the MPT spectral
signature as opposed to the MPT at a single frequency. The chapter also contains
previously undocumented scaling results relating to object size and conductivity
with frequency.

• Chapter 3: (Finite Element Discretisation and the Reduced Order Model) fo-
cuses on the development of an efficient FE based method for the rapid compu-
tation of MPT spectral signatures. This involves reducing the computational cost
associated with solving the transmission problems discussed in Chapter 2, the de-
velopment of a reduced order model involving projection based proper orthogonal
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decomposition (PODP) to further reduce the cost of the spectral aspect of the MPT
spectral signature. For the full order solution, a hp-FE discretisation is used for
the weak forms associated with the transmission problems documented in Chapter
2. The ROM benefits from a-posteriori error estimates, which provide an upper
bound on the error in the MPT coefficients obtained with the reduced order model
compared to those obtained from a full order solution.

• Chapter 4: (Implementation Details of MPT-Calculator Software) builds
on the work presented in Chapter 3, focusing on the implementation for the
computation of MPT coefficients and the development of open source software
MPT-Calculator created by the author. The chapter discusses the reasons be-
hind the choice of FE framework, the computational implementation using this FE
framework, structure of the software and the problem specific efficiencies that have
been achieved in the implementation used. The chapter also documents the support
offered for the software in the form of a user guide and a YouTube video series.

• Chapter 5: (Numerical Results for the Reduced Order Model) presents a series
of illustrative examples to demonstrate the implementation and performance of the
ROM, with a-posteriori error estimates, proposed in Chapters 3 and 4. The chapter
covers many important topics such as linearly vs logarithmically placed snapshots
for the ROM, accuracy of the methods, additional snapshot placement and time sav-
ings offered by the methods. The chapter also contains examples of the application
of the original scaling results documented in Chapter 2.

—PART III—
Object Characterisation

• Chapter 6: (Decomposing the Inverse Problem to one of Object Location and
Object Classification) describes the decomposition of the inverse problem, to one
of object location and object classification. In this chapter a brief review of meth-
ods to obtain the location of a hidden target is presented with the methodology of
the MUSIC algorithm documented. Object classification will be based on object
characterisations, with those that are invariant under position and rotation being ad-
vocated for due to their obvious advantages. A series of applicable invariants that
can be obtained from the MPT coefficients are then presented, these include eigen-
values, principal and deviatoric tensor invariants along with the eigenvalues of the
commutator of the real and imaginary tensor also being proposed.

• Chapter 7: (Real World Object Characterisation Dataset) focuses on the de-
velopment of a dataset of realistic object characterisations that could be used in
a detection device in a security screening environment. The dataset, called the
MPT-Library, created by the author is the first of its kind and has been made
publicly available. The chapter provides a series of illustrative examples to demon-
strate how the ROM approach described in Chapter 3 can be applied to a set of real-
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istic geometries and combined with an appropriate choice of eigenvalues or tensor
invariants in Section 6.3 to form a realistic dataset for object classification.

—PART IV—
Object Classification

• Chapter 8: (Probabilistic and Non-Probabilistic Machine Learning Classifiers)
builds on the work presented in Chapter 7, documenting and comparing probabilis-
tic and non-probabilistic ML classifiers that are appropriate for classifying objects
when the features are MPT invariants, with the goal of developing an ML classifier
trained on the MPT-Library that could be deployed in a walk through metal de-
tector. The chapter starts by documenting the capability of currently deployed walk
through metal detectors and lab based solenoid measurement systems. The chapter
proposes a method for adding noise to the MPT coefficients that simulates the noise
associated with measuring MPT coefficients in real world setups. Then a review
of candidate ML classifiers are documented with references provided for those less
familiar with the methods. Finally metrics that will be used to validate the results
are discussed.

• Chapter 9: (Machine Learning Classification Results) presents results for the
application of the ML classifiers discussed in Chapter 8 applied to two problems,
a coin classification problem and a multi-class problem. The former is used as a
demonstrative example where various intricacies about the problem are considered
such as a sampling method based on the scaling results derived in Chapter 2 used to
enrich the dataset, the effect the level of noise has on the problem, and the effect the
number of frequencies measured has on the accuracy of the created classifier. The
multi-class problem is then considered with classes of similar shaped objects being
grouped together. The chapter culminates with an investigation into removing spe-
cific knife geometries out of the training set and the effect it has on the classifier’s
ability to detect these threat objects.

—PART V—
Conclusions

• Chapter 10: (Conclusions and Future Work) presents an overview of the work
and the achievements of this thesis. The conclusions extracted from each chapter
are stated. Furthermore, a list of recommendations for future research, that could
further improve methods and results are provided.

—PART IV—
Appendices

• Appendix A: builds on the description of the MPT-Calculator software pro-
vided in Chapter 4, presenting further details of the contents of the files.
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1.6 Research Outcomes

This section presents a list of the research outcomes from the work performed as part of
this thesis.

1.6.1 Journal Publications

• B. A. Wilson and P. D. Ledger. Efficient computation of the magnetic polarizability
tensor spectral signature using POD. International Journal for Numerical Methods
in Engineering, 122(8), 1940-1963, 2021.

• P. D. Ledger, B. A. Wilson, A. A. S. Amad, and W. R. B. Lionheart. Identification
of metallic objects using spectral magnetic polarizability tensor signatures: Object
characterisation and invariants. International Journal for Numerical Methods in
Engineering, 122(15), 3941-3984, 2021.

• B. A. Wilson, P. D. Ledger, and W. R. B. Lionheart. Identification of metallic ob-
jects using spectral magnetic polarizability tensor signatures: Object classification.
(accepted) 2022, DOI: 10.1002/nme.6927.

1.6.2 Conference Papers and Presentations

• B. A. Wilson and P. D. Ledger. Hidden security threat identification: A reduced
order model for the rapid computation of object characterisations. UK Association
for Computational Mechanics Conference, Loughborough, United Kingdom. April
2020.

• B. A. Wilson and P. D. Ledger. Hidden security threat identification: Computing
an ML library using FEM accelerated by a reduced order model. UK Association
for Computational Mechanics Conference, Loughborough, United Kingdom. April
2021.

• B. A. Wilson and P. D. Ledger. Hidden security threat identification: A library of
MPT spectral signature object characterizations for ML. ECCOMAS Young Inves-
tigators Conference, Valencia, Spain. July 2021.

• B. A. Wilson and P. D. Ledger. Hidden security threat identification: Applying
ML classifiers to a computationally created library of realistic threat objects. In-
ternational Workshop on Optimisation and Inverse Problems in Electromagnetics,
Szczecin, Poland. September 2021. Awarded prize for third best presentation by a
PhD student.

1.6.3 Research Posters

• B. A. Wilson and P. D. Ledger. Machine Learning for the Improvement of Metal
Detection ZCCE workshop, Swansea, United Kingdom. January 2019.
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• B. A. Wilson and P. D. Ledger. Machine Learning for the Improvement of Metal
Detection SIAM-IMA Student Chapter’s inaugural Early Career Researcher con-
ference, Liverpool, United Kingdom. April 2019.

• B. A. Wilson and P. D. Ledger. Machine Learning for the Improvement of Metal
Detection Siam UKIE National Student Chapter conference, Manchester, United
Kingdom. June 2019. Awarded prize for best poster presentation.

• B. A. Wilson and P. D. Ledger. Computing Characterisations of Conducting Ob-
jects using NG-Solve for Metal Detection NGSolve User Meeting, Vienna, Austria.
July 2019.

• B. A. Wilson and P. D. Ledger. Improved Metallic Object Characterisation, Loca-
tion and Detection ZCCE workshop, Swansea, United Kingdom. January 2020.

• B. A. Wilson and P. D. Ledger. Machine Learning for the Improvement of Metal
Detection ZCCE workshop, Swansea, United Kingdom. January 2021.

1.6.4 Software Packages and Datasets

The methodology described in this thesis has resulted in a new open source software,
the MPT-Calculator [134], which allows for the rapid production of MPT spectral
signatures. Along with the software itself there is considerable support offered around
the software, in the form of a user guide and a YouTube video series. In addition to this
software, a dataset, of realistic object characterisations, the MPT-Library [132], which
is the first of its kind, has be produced and made publicly available. This dataset has been
viewed 51 times and downloaded 12 times at the time of writing, showing it is being well
utilised already.
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Part II

MPT Spectral Signatures
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Chapter 2

Eddy-Current Model and Object
Characterisation

2.1 Introductory Remarks

The aim of this chapter is three fold, firstly to set the scene for other chapters in the thesis,
introducing and discussing important topics such the formulation of the time harmonic
eddy current model, basic metal detector designs and methodology, the difference be-
tween the forward and inverse problems, the asymptotic expansion and MPT. Secondly,
to give an overview of the MPT, discussing limiting cases which provide a fundamental
insight into the behaviour of the MPT and highlight the important role object topology
plays. Lastly, to provide motivation for the use of the MPT spectral signature as opposed
to the MPT at a single frequency.
The chapter is based on a combination of the work presented by the author in [133, 76],
along with results first presented in [69, 70].
The main novelties of the chapter are the collation of recent results that have been proved
by Ledger and Lionheart in [69, 70, 71] on the characterisation of objects by MPTs that
will be relevant for the remaining chapters of the thesis. These include Ledger and Lion-
heart’s real-imaginary split symmetric form of the MPT presented in (2.5), their limiting
frequency approach for the eddy-current model for which a numerical implementation is
employed in Chapters 3 and 4, and finally results proved by Ledger on the scaling of the
MPT under the parameters of object size and conductivity.
The structure of the chapter is as follows in Section 2.2 the time harmonic eddy current
model, along with the forward and inverse problems are discussed. In Section 2.3 the
asymptotic expansion and real-imaginary symmetric form of the MPT is presented along
with discussing the limiting frequency of the eddy-current model. Next, in Section 2.4 a
series of limiting cases for the MPT are considered. In Section 2.5 the extent to which an
MPT at a fixed frequency uniquely characterises an object is examined. In Section 2.6 an
examination into the improvements to MPT object characterisation given spectral data. In
Section 2.7 scaling results under changes in object size and conductivity parameters are
derived. The chapter finishes with concluding remarks in Section 2.8.
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2.2 Eddy Current Model

The eddy current model is a low frequency approximation of the Maxwell system that
neglects the displacement currents, it is commonly accepted to be valid if the quasi-static
assumption applies (dimension D « α of the object Bα is small compared to the wave-
length) and the conductivities are high (σmax " ωεmax, where εmax denotes the object’s
maximum permittivity, here assumed to be εmax “ ε0 « 8.854 ˆ 10´12F/m). A rigorous
justification of the model involves the topology of the conducting body [12]. The eddy
current model is described by the time-harmonic system

∇ˆEα “ iωµHα, (2.1a)

∇ˆHα “ J0 ` σEα, (2.1b)

where Eα and Hα are the electric and magnetic interaction fields, respectively, J0 is
an external current source, i :“

?
´1, ω is the angular frequency, µ is the magnetic

permeability and σ is the electric conductivity.

2.2.1 Metal Detection

In metal detection, the conducting body is assumed to be contained in some medium
Bc
α :“ R3zB̄α, where the overbar denotes the closure of Bα. The overbar to denote

the complex conjugate, but it should be clear from the context as to which definition
applies. This medium is assumed to have a vastly lower conductivity σ « 0 and have
a permeability µ “ µ0 :“ 4π ˆ 10´7H/m. A current J0 is passed through a series
of excitor coils which each generate a background field H0. When this time varying
background field interacts with a highly conducting object it generates eddy currents. The
eddy currents generated lead to aH0 being perturbed toHα. A sequence of measurement
coils at position x then sense the perturbation pHα ´H0qpxq in the form of a voltage.
The situation of a single measurement and excitor coil is shown in Figure 2.1.

µ∗, σ∗

Bα

µ = µ0

σ = 0

J0

Bc

α

Exciter coil

Measurement coil

Figure 2.1: A diagram showing a conducting object Bα, in a non-conducting medium Bc
α,

with a current J0 passing through an exciter coil and an associated measurement coil.
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The model shown in Figure 2.1, is described by the system (2.1), with

µpxq “

"

µ˚ x P Bα

µ0 x P Bc
α

, σpxq “

"

σ˚ x P Bα

0 x P Bc
α

. (2.2)

The regions Bα and Bc
α are coupled by the transmission conditions

rnˆEαsΓα “ rnˆHαsΓα “ 0, (2.3)

which hold on Γα :“ BBα. In the above, rusΓα :“ u|` ´ u|´ denotes the jump, the `
refers to just outside ofBα and the´ to just inside andn denotes a unit outward normal to
Γα. The electric interaction field is non-physical in Bc

α and, to ensure uniqueness of this
field, the condition ∇ ¨ Eα “ 0 is imposed in this region. Furthermore, we also require
that Eα “ Op1{|x|q and Hα “ Op1{|x|q as |x| Ñ 8, denoting that the fields go to zero
at least as fast as 1{|x|, although, in practice, this rate can be faster.

Hand-held metal detector: Hand-held metal detectors are used in a variety of situa-
tions for a variety of different purposes, including, anit-personnel landmine clearance [7]
and archeological digs [29], with additional applications in prospecting. The concealed
object Bα is assumed to be buried in relatively non-conducting, σ « 0, non-permeable,
µ “ µ0, soil. The search coil assembly of the detector contains the coils of wires which
make up the excitor and measurement coils, that the current source J0 passes though and
take the measurements pHα ´H0qpxq, respectively. Note that practical metal detectors
measure a voltage perturbation, which corresponds to

ş

S
n ¨ pHα ´H0qpxqdx over an

appropriate surface S [71]. For very small coils, this voltage perturbation is approximated
by m ¨ pHα ´H0qpxq where m is the magnetic dipole moment of the coil [71]. These
coils are supported by the operator in the non-conducting, non-permeable, air above the
soil and object, Bc

α consists of the combination of soil and air. The detector can then be
moved through the air above the object to take measurements pHα´H0qpxq for different
positions x. A Diagram of the set up can be seen in Figure 2.2.

Walk-through metal detector: Walk-through metal detectors, which are commonly
used in airport security screening [87, 82], are another example of detecting hardware that
rely upon the eddy current principal. The concealed objectBα passes through the detector
as the person walks through the detector, with the air, person’s clothing and body making
up the non-conducting, non-permeable region Bc

α. The arch design of the detector allows
for multiple exciting and measurement coils to be housed in the panels of the detector,
enabling greater precision in measurements by using combinations of coil pairs. These
coil pairs are chosen in turn and take measurements with the excitor coil having a current
source J0 pass through it and the measurement coil taking measurements pHα´H0qpxq.
A diagram of the set up can be seen in Figure 2.3. In metal detection the location of the
object and it materials are unknown. We shall introduce this as an inverse problem in the
next section. The corresponding direct forward problem relates to the solution of (2.1)
where the location, shape of the object and its materials properties are known and the task
is determine the fields Eα andHα in and around the object from knowledge of J0.
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µ∗, σ∗

Bα

µ = µ0

σ = 0

J0

Soil

Air

Figure 2.2: A diagram showing a hidden conducting object Bα, buried in soil, with an
excitor and measurement coil located in the air above.

µ∗, σ∗

Bα

Air

J0

µ = µ0

σ = 0

Figure 2.3: A diagram showing a concealed conducting object Bα, with a current source
passing through a coil located in one side of the detector, and measurement coils located
throughout the detector.
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2.2.2 Inverse Problem

The inverse problem is to determine the location, shape and material properties (σ˚ and
µ˚) of the conducting object Bα from measurements of pHα ´H0qpxq taken at a range
of locations x. Here, H0 denotes the background magnetic field and E0 and H0 are the
solutions of (2.1) with σ “ 0 and µ “ µ0 in R3. Similar to above, the decay conditions
E0 “ Op1{|x|q and H0 “ Op1{|x|q as |x| Ñ 8 are required. Additionally, as described
in the introduction and will be further justified in Section 2.6 there are considerable ad-
vantages in using spectral data, i.e. additionally measuring pHα ´H0qpxq over a range
of frequencies ω, within the limit of the eddy current model.
A traditional approach to the solution of this inverse problem involves creating a discrete
set of voxels, each with unknown σ and µ, and posing the solution to the inverse problem
as an optimisation process in which σ and µ are found through minimisation of an appro-
priate functional e.g. [122]. From the resulting images of σ and µ one then attempts to
infer the shape and position of the object. However, this problem is highly ill-posed [24]
and presents considerable challenges mathematically and computationally in the case of
limited noisy measurement data.
Preference is given to an alternative approach, where the object will be characterised by
a small number of coefficients that can be obtained from the measurements. In the next
section this characterisation is introduced.

2.3 The Asymptotic Expansion and MPT Description

Following the definition made in [13, 69] where Bα :“ αB ` z where B is a unit size
object with Lipschitz boundary [31], that is that for each point on BB, B is locally the set
of points located above the graph of some Lipschitz function, α is the object size and z is
the object’s translation from the origin as shown in Figure 2.4.

µ∗,σ∗

Bα

e1

e2

e3

z

B
0

Bc

µ = µ0

σ = 0

x

J0

Figure 2.4: A diagram showing the physical description of Bα with respect to the coordi-
nate axes.
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Then, using the asymptotic formula obtained by Ammari, Chen, Chen, Garnier and
Volkov [13], Ledger and Lionheart [69] have derived the simplified form

pHα ´H0qpxqi “ pD
2
xGpx, zqqijpMqjkpH0pzqqk `Opα

4
q, (2.4)

which holds as αÑ 0 and makes the MPT explicit. The relationship between the leading
order term in the above to the dipole expansion of pHα ´H0qpxq is discussed in [71]. In
the above, Gpx, zq :“ 1{p4π|x ´ z|q is the free space Laplace Green’s function, D2

xG

denotes the Hessian of G, Einstein summation convention of the indices is implied and
M “ pMqjkejbek, where ei denotes the ith orthonormal unit vector, is the MPT. Unlike
a matrix, due toM being a rank 2 tensor, its coefficients transform as the coefficients of a
rank 2 tensor under rotation of the coordinate axes, i.e. pMq1ij “ pRqippRqjqpMqpq where
R “ R1pαqR2pβqR3pγq where α, β and γ are the Euler angles and R is an orthogonal
rotation matrix describing the coordinate rotation, an example of such rotation can be seen
in Figure 2.5.

e
′

3

e1

e
′

1

e2

e
′

2

e3

α

β

γ

Figure 2.5: A diagram showing rotated coordinate axes e11, e
1
2 and e13, which are obtained

by applying the angles α, β and γ of rotation for each of the coordinate axes.

This expansion has a series of properties which we summarise below:

• There exist different, yet equivalent formulae, for computing the tensor coefficients,
these forms may be exploited in various situations, this document makes use of
the formulation derived by Ledger and Lionheart in Theorem 5.1 of [73], how-
ever, other formulations derived by Ledger and Lionheart in [69, 70, 71] which are
equivalent for exact fields.

• It is an asymptotic expansion as α Ñ 0, this means that the residual becomes in-
creasingly small for small objects. In practice, provided that α ă 1m the leading
order term provides a reasonable approximation. Further improvements can be ob-
tained using generalised magnetic polarizability tensors (GMPTs) [72].
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• The MPT is a rank 2 complex symmetric tensor, i.e. its coefficients satisfy
pMqij “ pMqji, and it, therefore, transforms as a rank 2 tensor, i.e. pMq1ij “
pRqippRqjqpMqpq, this was proved by Ledger and Lionheart in Theorem 3.2 of [69].

• The MPT is invariant under position shown, i.e. pMqij “ pMrαB, ω, σ˚, µrsqij is
a function of αB, ω, σ˚, µr, where µr :“ µ˚{µ0, but is independent of position z,
this was shown by Ammari et al. in Theorem 3.2 of [14].

• The asymptotic expansion (2.4) allows the object position z to be separated from
αB, ω, σ˚, µr. But, it is not possible to separate αB, ω, σ˚, µr at a single frequency.
this is explained further in Section 2.5.1.

• The MPT’s dependence on ω is called its spectral signature. This will allow further
object characterisation to be captured. This is explained further in Section 2.6.

• Higher order GMPTs and a complete asymptotic expansion of pHα ´H0qpxq as
αÑ 0 have been derived by Ledger and Lionheart in [72], these provide additional
object characterisation information, this is outside the scope of the investigation and
will therefore not be considered in this thesis.

On occasion, the MPT will be written asMrαB, ωs to emphasise its dependence on αB
and ω, the MPT will also be denoted asMrαB, ω, σ˚, µrs, to emphasise its dependence
also on µr and σ˚. The above formulation, and the definition ofM below, are presented
for the case of a single homogenous object B, the extension to multiple inhomogeneous
objects can be found in [74, 73].
Using the derivation in [73], the explicit formulae for the computation of the coefficients
ofM are stated, which are particularly well suited to a FEM discretisation, that will be
discussed in more detail in Chapter 3. The splitting pMqij :“ pN 0qij ` pRqij ` ipIqij
obtained in [73] is used, with

pN 0
rαB, µrsqij :“ α3δij

ż

B

p1´ µ̃´1
r qdξ `

α3

4

ż

BYBc
µ̃´1
r ∇ˆ θ̃p0qi ¨∇ˆ θ̃p0qj dξ,

(2.5a)

pRrαB, ω, σ˚, µrsqij :“ ´
α3

4

ż

BYBc
µ̃´1
r ∇ˆ θp1qj ¨∇ˆ θp1qi dξ, (2.5b)

pIrαB, ω, σ˚, µrsqij :“
α3

4

ż

B

ν
´

θ
p1q
j ` pθ̃

p0q
j ` ej ˆ ξq

¯

¨

´

θ
p1q
i ` pθ̃

p0q
i ` ei ˆ ξq

¯

dξ,

(2.5c)

where Bc :“ R3zB and N 0rαB, µrs, RrαB, ω, σ˚, µrs, IrαB, ω, σ˚, µrs are real sym-
metric rank 2 tensors, which each have real eigenvalues. Note that sometimes the nota-
tion pR̃rαB, ω, σ˚, µrsqij “ pN 0rαB, µrsqij ` pRrαB, ω, σ˚, µrsqij will be used so that
pR̃rαB, ω, σ˚, µrsqij “ RepMrαB, ω, σ˚, µrsqij indicate the real coefficients of the MPT
and pIrαB, ω, σ˚, µrsqij “ ImpMrαB, ω, σ˚, µrsqij indicate the imaginary coefficients
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of the MPT. In the above, θp0qi “ θ
p0q
i pαB, µrq,θ

p1q
i “ θ

p1q
i pαB, ω, σ˚, µrq, ξ is chosen to

be measured from an origin inside B,

µ̃rpξq :“

"

µr ξ P B

1 ξ P Bc ,

and ν :“ α2ωµ0σ˚, δij is the Kronecker delta. The computation of (2.5) rely on the real
solution θp0qi pξq of the transmission problem [73, 69, 13]

∇ˆ µ̃´1
r ∇ˆ θp0qi “ 0 in B YBc, (2.6a)

∇ ¨ θp0qi “ 0 in B YBc, (2.6b)

rnˆ θ
p0q
i sΓ “ 0 on Γ, (2.6c)

rnˆ µ̃´1
r ∇ˆ θp0qi sΓ “ 0 on Γ, (2.6d)

θ
p0q
i ´ ei ˆ ξ “ Op|ξ|

´1
q as |ξ| Ñ 8, (2.6e)

where Γ :“ BB and the complex solution θp1qi pξq of the transmission problem

∇ˆ µ´1
r ∇ˆ θp1qi ´ iνpθ

p0q
i ` θ

p1q
i q “ 0 in B, (2.7a)

∇ˆ∇ˆ θp1qi “ 0 in Bc, (2.7b)

∇ ¨ θp1qi “ 0 in Bc, (2.7c)

rnˆ θ
p1q
i sΓ “ 0 on Γ, (2.7d)

rnˆ µ̃´1
r ∇ˆ θp1qi sΓ “ 0 on Γ, (2.7e)

θ
p1q
i “ Op|ξ|´1

q as |ξ| Ñ 8. (2.7f)

Note also the choice to introduce θ̃p0qi pξq :“ θ
p0q
i pξq ´ ei ˆ ξ, which can be shown to

satisfy the same transmission problem as (2.6) except with a non-zero jump condition
for rn ˆ µ̃´1

r ∇ ˆ θ̃p0qi sΓ and the decay condition θ̃p0qi pξq “ Op|ξ|´1q as |ξ| Ñ 8. The
computational treatment of (2.6) and (2.7) will be discussed in Chapter 3.

2.3.1 Reductions in the Number of Independent Coefficients

As discussed in Section 2.3, the MPT is a rank 2 complex symmetric tensor, in the case
of a general object (with no symmetries) this therefore means that it has 6 independent
complex coefficients. However, Ledger and Lionheart show in [69] that this number can
be reduced if the object has rotational or reflectional symmetries. The basis for this is that
if the object is the same under a rotation or reflection then so will be its MPT. They use
these arguments to derived the MPTs of some standard object shapes in Table 1 of [69].

Reflectional symmetry: In the case of an object Bα has reflectional symmetry in some
plane with unit normal vector n the transformation tensor R can be defined as

pRqij :“ δij ´ 2ninj, (2.8)
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where, the transformed tensorpMq1ij is defined to be

pMq1ij :“ pRqilpRqjmpMqlm. (2.9)

In the case where n “ e3, that is to say that the object is symmetric in the x3 direction
through the plane x3 “ 0, the following equalities can be found, pMq1ii “ pMqii for
i “ 1, 2, 3, pMq112 “ pMq12 and pMq121 “ pMq21, pMq1i3 “ ´pMqi3 “ 0 for i “ 1, 2

and , pMq13i “ ´pMq3i “ 0 for i “ 1, 2, this leads to a tensor in the form

M “

¨

˝

M11 M12 0

M21 M22 0

0 0 M33

˛

‚, (2.10)

where,M12 “M21 due to the symmetric property of the MPT.

Rotational symmetry: In the case where the objectBα has rotational symmetries about
some axis ei we may define some transformation tensor R which defines the rotation. In
the case that the object Bα has rotational symmetries about the axis e3, a rotation around
e3 by α in the anti-clockwise direction can be defined as

R :“

¨

˝

cosα ´ sinα 0

sinα cosα 0

0 0 1

˛

‚, (2.11)

then once again defining the transformation as,

pMq1ij :“ pRqilpRqjmpMqlm. (2.12)

If Bα is invariant under an anti-clockwise rotation around e3 with ψ “ π{2 the following
equalities can be found, pMq111 “ pMq22 ùñ pMq11 “ pMq22, pMq133 “ pMq33 for
the on diagonal coefficients of the tensor and, using the fact that the tensor is symmetric,
pMq112 “ ´pMq12 “ 0, pMq121 “ ´pMq21 “ 0, and pMq113 “ pMq23, pMq123 “

´pMq13, which implies pMq113 “ pMq23 “ 0 and pMq123 “ ´pMq13 pMq131 “ pMq31,
pMq132 “ ´pMq31, which implies pMq131 “ pMq32 “ 0, this leads to a tensor in the form

M “

¨

˝

M11 0 0

0 M22 0

0 0 M33

˛

‚, (2.13)

whereM11 “M22.

Limiting case of a sphere: In the limiting case of where Bα is a sphere, there are
infinitely many rotational and reflectional symmetries, this leads to an MPT which is di-
agonal with only a single independent coefficient. An analytical solution for a conducting
sphere in a time varying magnetic field was derived by Wait [128]. In the case of a sphere
of unit radius the formulation in (2.4) provides an approximation of the form

Mδij ´ pMqij “ Opα4
q,
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where M is the exact diagonal coefficient for the sphere, which are defined as

M :“ 2πα3 p2µ˚ ` µ0qvp´ pµ0p1` v
2q ` 2µ˚qq

pµ˚ ´ µ0qvp` pµ0p1` v2q ´ µ˚qq
, (2.14)

where v “ α
?
µ˚σωi, p “

a

2v{π coshpvq, q “
a

2v{π sinhpvq and α is the radius
of Bα in the case of B being a sphere of unit radius. An equivalent formulation using
Bessel functions was presented by Wait [128]. An example of how the response changes
with frequency for the case where Bα is a permeable conducting sphere of unit radius,
with α “ 0.01 m, a permeability µr “ 2 and conductivity σ˚ “ 106 S/m is shown in
Figure 2.6. This analytical solution will be exploited later in Chapter 5 when calculating
associated error with the FE simulations.
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pR̃rαB, ω, σ˚, µrsqii pIrαB, ω, σ˚, µrsqii
Figure 2.6: Permeable conducting sphere of unit radius B, α “ 0.01 m µr “ 2 and
σ˚ “ 106 S/m: Comparison of the on diagonal coefficients pR̃rαB, ω, σ˚, µrsqii and
pIrαB, ω, σ˚, µrsqii.

2.4 Limiting Cases

In this section we present previously documented results pertaining to limiting cases of
the MPT, these give some interesting insights into the behaviour of the MPT for specific
use cases.

2.4.1 Limiting Magnetostatic Case and the Pólya-Szegö Tensor

When considering the limiting case of ω “ 0, pRrαB, ω “ 0, σ˚, µrsqij “ pIrαB, ω “
0, σ˚, µrsqij “ 0, thus, pMrαB, ω “ 0, σ˚, µrsqij “ pN 0rαB, µrsqij . The coefficients
of N 0rαB, µrs have been further simplified by Ledger and Lionheart in Theorem 9
of [70] to the coefficients of the Pólya-Szegö tensor T rαB, µrs, where the coefficients
pT rαB, µrsqij are defined as

pT rαB, µrsqij :“ α3
´

δijpµr ´ 1q|B| ` pµr ´ 1q2
ż

Γ

n´ ¨ p∇ξφiqξjdξ
¯

, (2.15)
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where |B| is the volume of B and φi, i “ 1, 2, 3, can be found by solving a scalar trans-
mission problem,

∇2φi “ 0 in B YBc, (2.16a)

rφisΓ “ 0 on Γ, (2.16b)

rn ¨ µ̃r∇φisΓ “ n ¨∇ξi on Γ, (2.16c)

φi Ñ 0 as |ξ| Ñ 8. (2.16d)

Following the notation presented in [15], with T rαB, ks where k is referred to as the
contrast, the tensor is simpler than the MPT and characterises small homogeneous con-
ducting objects with shape B in electrical impedance tomography (k “ σ˚{σ0) and small
permeable homogeneous objects with shape B in magnetostatics (k “ µr “ µ˚{µ0q,
it is symmetric and is positive (negative) definite provided that the contrast k ą 1

(0 ď k ă 1) [15]. This formulation will be used in Section 2.5 when considering the
MPT object characterisation at limiting frequencies.

2.4.2 Limiting Case of ν Ñ 8 and σ˚ Ñ 8

Considering an object B and the limiting case of ν “ α2µ0σ˚ω Ñ 8. Although the
choice of either ω fixed and σ˚ Ñ 8 or σ˚ fixed and ω Ñ 8 are both valid. In reality,
while this MPT can be computed, the limiting case of ω Ñ 8 does not hold in practice as
the eddy current model is a low frequency approximation to the Maxwell system. This was
studied by Ledger and Lionheart in Lemma 4.1 of [73] the coefficients of pMrαB, ω Ñ
8, σ˚, µrsqij simplify to

pMrαB, ω Ñ 8, σ˚, µrsqij “ α3δij|B| ´
α3

4

ż

Bc
∇ˆ θ̃p8qi ¨∇ˆ θ̃p8qj dξ, (2.17)

where θp8q is the real vector field solution to

∇ˆ∇ˆ θp8qi “ 0 in Bc, (2.18a)

∇ ¨ θp8qi “ 0 in Bc, (2.18b)

nˆ∇ˆ θp8qi |` “ ´2nˆ ei on Γ, (2.18c)

θ
p8q

i “ Op|ξ|´1
q as |ξ| Ñ 8. (2.18d)

An example of this for the permeable conducting sphere is presented in Figure-
fig:limitingsphereexample.
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Figure 2.7: Permeable conducting sphere of unit radius B, α “ 0.01 m µr “ 2 and
σ˚ “ 106 S/m: Comparison of the on diagonal coefficients of the pR̃rαB, ω, σ˚, µrsqii,
pN 0rαB, µrsqii and pR̃rαB, ω Ñ 8, σ˚, µrsqii.

Additionally, restricting the problem to the limiting case of σ˚ Ñ 8, for an object B,
which is simply connected, with the first betti number of B, β1pBq “ β1pB

cq “ 0. Recall
that β0pBq indicates the number of connected parts of B, which for a bounded connected
region in R3 is always 1, β1pBq is the genus and is equal to the number of holes in B and
β2pBq is equal to the number of voids in B. For further details on Betti numbers and their
implications for MPTs see [70] and references therein. The coefficients of pMrαB, ω Ñ
8, σ˚, µrsqij “ pT rαB, µr “ 0sqij as was shown by Ledger and Lionheart in Theorem
11 of [70], with

pT rαB, µr “ 0sqij “ ´α
3
`

|B|δij `

ż

Γ

n´ ¨ eiψjdξ
˘

, (2.19)

where ψj solves

∇2ψj “ 0 in Bc (2.20a)

n ¨∇ψj|` “ n ¨∇ξ on Γ (2.20b)

ψj Ñ 0 as |ξ| Ñ 8. (2.20c)

2.4.3 Limiting Frequency of the Eddy Current Model

To improve on the approximate conditions for the validity of the eddy current model stated
in Section 2.2 understanding the role the topology of the object on the limiting frequency
of the eddy current model is important. Schmidt, Sterz and Hiptmair [107] have obtained
the following estimates

C1εmaxµmaxω
2D2

! 1, (2.21a)

C2εmaxωσ
´1
min ! 1, (2.21b)

that are required to hold to ensure the validity of the eddy current model. In the above,
C1 “ C1pBq and C2 “ C2pBq are constants that depend on the object’s topology and
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p|B|α3qp1{3q is the diameter of the computational domain.

In particular, an object with a long thin extension or with a small gap (eg hoarse-
shoe shaped conductor) lead to capacitive coupling and have large C1pBq and C2pBq

limiting the frequency ωlimit at which the MPT spectral signature remains valid compared
to using the quasi-static and high conductivity conditions alone. Schmidt et al. describe
a numerical procedure that allows the constants to be estimated numerically for different
objects by solving a low-dimensional eigenvalue problem. Once the constants have been
found, the limiting the frequency ωlimit can be estimated from (2.21). This procedure is
applied to the numerical examples in this work.

2.5 MPT Object Characterisation at a Fixed Frequency

The notion that an object can be uniquely characterised is fundamental to the idea of ob-
ject identification, for if an object cannot be uniquely characterised, identification would
be impossible. In this section, the extent to which a MPT at a fixed frequency uniquely
characterises an object is examined, this section is key in motivating the use of MPT spec-
tral signatures. This section, follows the arguments presented by Ledger, Wilson, Amad
and Lionheart in [76]. First, eigenvalue decompositions of the real and imaginary parts
of the MPT for a fixed frequency is considered and, secondly, a proof of how equivalent
ellipsoids can be constructed at limiting frequencies is derived.

2.5.1 Eigenvalue Decomposition at Fixed Frequency

Consider the characterisation of an object Bα “ αB by an MPT (recall the characterisa-
tion is independent of z), which can be expressed by the splitting

MrαB, ω, σ˚, µrs “N 0
rαB, µrs `RrαB, ω, σ˚, µrs ` iIrαB, ω, σ˚, µrs,

“R̃rαB, ω, σ˚, µrs ` iIrαB, ω, σ˚, µrs, (2.22)

where the interest in this section is for a fixed frequency 0 ď ω “ Ω ă 8. For simplicity
in this section, the assumption is made that the parameter dependent coefficients of the
rank 2 tensors are arranged as 3ˆ3 matrices and use the same notation for both. Thus, the
associated matrices R̃rαB,Ω, σ˚, µrs and IrαB,Ω, σ˚, µrs are symmetric,N 0rαB, µrs is
positive definite if µr ą 1, RrαB,Ω, σ˚, µrs is negative definite and IrαB,Ω, σ˚, µrs is
positive definite and they can be diagonalised as follows

R̃rαB,Ω, σ˚, µrs “QR̃rαB,Ω,σ˚,µrsΛR̃rαB,Ω,σ˚,µrspQR̃rαB,Ω,σ˚,µrsqT , (2.23a)

IrαB,Ω, σ˚, µrs “QIrαB,Ω,σ˚,µrsΛIrαB,Ω,σ˚,µrspQIrαB,Ω,σ˚,µrsqT , (2.23b)

where QR̃rαB,Ω,σ˚,µrs is an orthogonal matrix whose columns are the eigenvectors of
R̃rαB,Ω, σ˚, µrs and ΛR̃rαB,Ω,σ˚,µrs is a diagonal matrix whose diagonal entries are the
eigenvalues of R̃rαB,Ω, σ˚, µrs and T denotes the transpose. The matrices QIrαB,Ω,σ˚,µrs
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and ΛIrαB,Ω,σ˚,µrs contain the eigenvectors and eigenvalues of IrαB,Ω, σ˚, µrs, respec-
tively. Furthermore, if the object has reflectional or rotational symmetries, the number
of independent coefficients in R̃rαB,Ω, σ˚, µrs and IrαB,Ω, σ˚, µrs are reduced, which
was discussed in Section 2.3.1. In the case that R̃rαB,Ω, σ˚, µrs and IrαB,Ω, σ˚, µrs
have at most 3 independent coefficients, this reduction means that QR̃rαB,Ω,σ˚,µrs “

QIrαB,Ω,σ˚,µrs “ QpBqwhere the emphasis is made that Q only depends onB. Moreover,
when R̃rαB,Ω, σ˚, µrs and IrαB,Ω, σ˚, µrs are diagonal, due to canonical choice of B
and the object’s reflectional and rotational symmetries [69], then Q “ I is the identity
matrix.

2.5.2 Equivalent Ellipsoids

For an ellipsoidal object Eα “ αE of size α with material parameters µr, σ˚ and aligned
with coordinate axes such that E is defined by

ˆ

ξ1

a

˙2

`

ˆ

ξ2

b

˙2

`

ˆ

ξ3

c

˙2

“ 1, (2.24)

with a ě b ě c then, for a fixed frequency ω “ Ω, its MPTMrαE,Ω, σ˚, µrs, as well as
its real and imaginary parts, are diagonal.
Next, considering the frequencies ω “ 0 or ω Ñ 8 the work presented in [79] is reviewed,
which shows that equivalent ellipsoids Ep0q and Ep8q can be found, that have the same
MPT asMrαB, 0, σ˚, µrs andMrαB,8, σ˚, µrs, respectively, a comment is also made
on the construction of ellipsoids for other fixed frequencies.

2.5.3 Equivalent Ellipsoid Ep0q

For the limiting case of ω “ 0, as discussed in Section 2.4.1 it is know that

MrαB, ω “ 0, σ˚, µrs “ N 0
rαB, µrs “ T rαB, µrs, (2.25)

This tensor is simpler than the MPT and characterises small homogeneous conducting ob-
jects with shape B in electrical impedance tomography (k “ σ˚{σ0) and small permeable
homogeneous objects with shape B in magnetostatics (k “ µr “ µ˚{µ0q, it is symmetric
and is positive (negative) definite provided that the contrast k ą 1 (0 ď k ă 1) [15].
Next consideration is given to the extent of whichMrαB, ω “ 0, σ˚, µrs uniquely deter-
mines the object B. Before, presenting the results, recall that for the ellipsoid defined by
(2.24) an analytical expression is available for T rαE, ks in the form

T rαE, ks “ α3
pk ´ 1q|E|

¨

˚

˝

1
1´A1`kA1

0 0

0 1
1´A2`kA2

0

0 0 1
1´A3`kA3

˛

‹

‚

, (2.26)

where |E| :“ 4
3
πabc is the volume of the ellipsoid and A1, A2, A3 are the elliptical

integrals
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A1 :“
bc

a2

ż 8

1

1

t2
b

t2 ´ 1`
`

b
a

˘2
b

t2 ´ 1`
`

c
a

˘2
dt,

A2 :“
bc

a2

ż 8

1

1
´

t2 ´ 1`
`

b
a

˘2
¯3{2

b

t2 ´ 1`
`

c
a

˘2
dt,

A3 :“
bc

a2

ż 8

1

1
b

t2 ´ 1`
`

b
a

˘2
´

t2 ´ 1`
`

c
a

˘2
¯3{2

dt,

that are a function of a, b, c [15]. These integrals can also be shown to be equivalent to
the alternative expressions in terms of incomplete elliptic integrals given by Osborn [95],
which can be computed using standard libraries and they satisfy A1 `A2 `A3 “ 1 [95].
From the above, the following results, which were proved by Ledger et al in [76], about
the MPT characterisation of B at ω “ 0 are obtained.

Lemma 2.5.1. [Ledger [76]] Given α and 0 ă µr ă 8, µr ‰ 1, an equivalent ellipsoid
Ep0q for an object B can be found such that

ΛR̃rαB,0,σ˚,µrs “R̃rαEp0q, 0, σ˚, µrs “ T rαEp0q, µrs,
ΛIrαB,0,σ˚,µrs “IrαEp0q, 0, σ˚, µrs “ 0,

holds and its radii a, b and c can uniquely be determined fromMrαB, ω “ 0, σ˚, µrs “

R̃rαB, 0, σ˚, µrs ` iIrαB, 0, σ˚, µrs.

Corollary 2.5.2 (Ledger [76]). An important corollary of Lemma 2.5.1 is that
MrαB, ω “ 0, σ˚, µrs does not provide a unique object characterisation as there is an
equivalent ellipsoid Ep0q that has the same MPT.

Remark 2.5.3 (Ledger [76]). Proving analytically that the map pA2{A1, A3{A1q Ñ

pb{a, c{aq is injective is an open question. Nonetheless, the numerical justification pro-
vided in Figure 2 of [76] shows that this map is injective in practice.

Remark 2.5.4 (Ledger [76]). There are an infinite number of ways to choose α ! 1 and
B that result in the same product αB. If |B| is chosen such that detpT rB, µrsq “ 1 then
α can be recovered from detpT rαB, µrsq and Lemma 2.5.1 only requires knowledge of µr
to determine the equivalent ellipsoid Ep0q.

A numerical approach to finding the equivalent ellipsoid has been previously proposed
by [64] and involves solving the minimisation problem

min
u

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

i“1

pΛN 0rαB,µrsqii ´ pT rαEp0,uq, µrsqii
ˇ

ˇ

ˇ

ˇ

ˇ

2

, (2.27)

for u :“ pa, b, cq so as to find the equivalent ellipsoid Ep0q. Since a ą 0, b ą 0 and
c ą 0 it can be shown that the associated non-linear system is continuous with respect to
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the unknown variables, hence the approximate solution of this non-linear system is well-
posed [64], but it was unclear if the solution a, b and c exists and is unique. Lemma 2.5.1
addresses this issue and, if desired, the steps in the proof can be followed as alternative
approach for determining a, b and c. In practice, applying (2.27) gives the same result as
the procedure for the examples presented in Section 2.5.5.1.

2.5.4 Equivalent Ellipsoid Ep8q

Recalling from Section 2.4.2 that for the case of ν Ñ 8 which implies either σ˚ Ñ 8 or
ω Ñ 8 it is known that [73]

lim
σ˚Ñ8

MrαB, ω, σ˚, µrs “M8
rαBs ” lim

ωÑ8
MrαB, ω, σ˚, µrs, (2.28)

where, importantly, the latter equivalence must be viewed with care as ω Ñ 8 would vi-
olate the eddy current assumption and, instead, this limit should be viewed as the limiting
frequency for which the eddy current model is valid. Again restricting the topology of B
to the case that its Betti number β1pBq “ 0 then [73]

lim
σ˚Ñ8

MrαB, ω, σ˚, µrs “M8
rαBs “ T rαB, 0s ” lim

ωÑ8
MrαB, ω, σ˚, µrs. (2.29)

The following results, which were proved by Ledger et al in [76], on the characterisation
of B as ω Ñ 8 (up to the limit of the eddy current model) can be proved in an analogous
way to Lemma 2.5.1.

Lemma 2.5.5. [Ledger [76]] Given α, an equivalent ellipsoid Ep8q independent of µr
can be found for an object B with β1pBq “ 0 such that

lim
ωÑ8

ΛR̃rαB,ω,σ˚,µrs “ lim
ωÑ8
R̃rαEp8q, ω, σ˚, µrs “ T rαEp8q, 0s,

lim
ωÑ8

ΛIrαB,ω,σ˚,µrs “ lim
ωÑ8
IrαEp8q, ω, σ˚, µrs “ 0,

holds (up to the limit of the eddy current model) and its radii a, b and c can uniquely be
determined from
limωÑ8MrαB, ω, σ˚, µrs “ limωÑ8

´

R̃rαB, ω, σ˚, µrs ` iIrαB, ω, σ˚, µrs
¯

.

Corollary 2.5.6 (Ledger [76]). In a similar manner to Lemma 2.5.1, Lemma 2.5.5 shows
that limωÑ8MrαB, ω, σ˚, µrs (up to the limit of the eddy current model) does not provide
a unique object characterisation as there is an equivalent ellipsoid Ep8q that has the
same MPT.

Remark 2.5.7. [Ledger [76]] The equivalent ellipsoid Ep8q is independent of µr since
limωÑ8ΛR̃rαB,ω,σ˚,µrs is independent of µr [73]. However, in general, Ep0q is dependent
on µr asMrαB, ω “ 0, σ˚, µrs is dependent on µr. Additionally, it is only guaranteed
that Ep0q is independent of µr if B is an ellipsoid and in this case B “ Ep0q “ Ep8q.
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2.5.5 Equivalent Ellipsoid EpΩq

For the non-limiting fixed frequency case ω “ Ω, IrαB, ω, σ˚, µrs is non-vanishing
and ΛR̃rαB,0,σ˚,µrs can no longer be expressed in terms of T rαE, ks. However, a semi-
analytical solution is available for the MPT of an ellipsoid [45, 19, 17], which would allow
an analogous numerical procedure to (2.27) to be applied to find an equivalent ellipsoid.
But, given the non-explicit nature of this solution, it is not possible to show existence
or uniqueness in this case. Nonetheless, the conjecture is made for β1pBq “ 0 such an
equivalent ellipsoid exists so that the MPT characterisation at a fixed frequency does not
uniquely characterise the object’s shape and materials. To be able do this alot more data
would be required.

2.5.5.1 Equivalent Ellipsoids at Fixed Frequency for an Irregular Tetrahedron

Ledger and Lionheart in [76] discuss how from Lemma 2.5.1 and 2.5.5 can be used to
find an equivalent ellipsoid can be found that has the same MPT as the object B at ω “
0 and for ω Ñ 8 (up to the limit of the eddy current model). To illustrate that the
spectral signature of the MPT for an object contains richer information than the spectral
signature of an equivalent ellipsoid obtained at a fixed frequency, a comparison is made
ofMrαB, ω, σ˚, µrs andMrαEp0q, ω, σ˚, µrs in Figure 2.8 using method summarised in
Chapter 3 for the case where B is the irregular tetrahedron as described in Section 2.4.3.
The resulting equivalent ellipsoid Ep0q has a “ 1.4426, b “ 1.8797 and c “ 2.4243

(to 4dp). The observation is made that the eigenvalues of the real and imaginary parts
ofMrαEp0q, ω, σ˚, µrs agree well with those ofMrαB, ω, σ˚, µrs for small ω, but the
spectral signature differs for large ω.

101 103 105 107

Frequency (rad/s)

-6e-5

-4e-5

-2e-5

0

2e-5

λ
(R̃

)

Tetrahedron, PODP, N = 13, λ1(R̃)

Tetrahedron, PODP, N = 13, λ2(R̃)

Tetrahedron, PODP, N = 13, λ3(R̃)

Ellipsoid, PODP, N = 13, λ1(R̃)

Ellipsoid, PODP, N = 13, λ2(R̃)

Ellipsoid, PODP, N = 13, λ3(R̃)

101 103 105 107

Frequency (rad/s)

0

5e-6

1e-5

1.5e-5

2e-5

2.5e-5

λ
(I

)

Tetrahedron, PODP, N = 13, λ1(I)

Tetrahedron, PODP, N = 13, λ2(I)

Tetrahedron, PODP, N = 13, λ3(I)

Ellipsoid, PODP, N = 13, λ1(I)

Ellipsoid, PODP, N = 13, λ2(I)

Ellipsoid, PODP, N = 13, λ3(I)

λipR̃q λipIq

Figure 2.8: Irregular tetrahedron B with vertices as stated in (5.1), α “ 0.01 m,
µr “ 2 and σ˚ “ 5.96 ˆ 106 S/m. Comparison of λipR̃rαB, ω, σ˚, µrsq and
λipR̃rαEp0q, ω, σ˚, µrsq as well as λipIrαB, ω, σ˚, µrsq and λipIrαEp0q, ω, σ˚, µrsq us-
ing an equivalent ellipsoid Ep0q.

The corresponding results comparing MrαB, ω, σ˚, µrs and MrαEp8q, ω, σ˚, µrs are
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shown in Figure 2.9, where the equivalent ellipsoid Ep8q is defined by a “ 1.3693, b “
1.9090 and c “ 2.9404 (to 4dp). The observation is made that the eigenvalues of the real
and imaginary parts ofMrαEp8q, ω, σ˚, µrs agree well with those ofMrαB, ω, σ˚, µrs
for small and large ω, but the spectral signature differs considerably for other ω.
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Figure 2.9: Irregular tetrahedronB with vertices as stated in (5.1), α “ 0.01 m µr “ 2 and
σ˚ “ 5.96ˆ106 S/m: Comparison of λipR̃rαB, ω, σ˚, µrsq and λipR̃rαEp8q, ω, σ˚, µrsq
as well as λipIrαB, ω, σ˚, µrsq and λipIrαEp8q, ω, σ˚, µrsq using an equivalent ellipsoid
Ep8q.

These results motivate the advantages of using spectral MPT signature over using MPT
information from a single frequency, since, rather than a single equivalent ellipsoid, there
are multiple equivalent ellipsoids corresponding to different ω providing greater informa-
tion for the classification. In the next section further theoretical insights in to the object
characterisation using spectral data is provided.

2.6 MPT Object Characterisation from Spectral Data

In this section, an examination into the improvements to MPT object characterisation
given spectral data. Firstly, eigenvalue decompositions of the real and imaginary parts of
the MPT for spectral data are considered and then, secondly, the arguments presented by
Ledger and Lionheart in [76] for a theoretical justification for the observations seen in
Figures 2.8 and 2.9 are recalled.

2.6.1 Eigenvalue Decomposition in the Spectral Case

Consider the case of the characterisation of an object by an MPT with varying fre-
quency ω so that the real and imaginary parts of an MPT expressed by (2.22) are avail-
able continuously as a function of ω. A similar decomposition to (2.23) again applies,
except QR̃, ΛR̃, QI and ΛI are functions of ω. If B has reflectional or rotational
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symmetries, QR̃rαB,ω,σ˚,µrs “ QIrαB,ω,σ˚,µrs “ QpBq and, in the limiting case where
R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are diagonal, Q “ I is the identity matrix. If
QR̃rαB,ω,σ˚,µrs “ QIrαB,ω,σ˚,µrs “ QpBq , the only dependence of the MPT’s coefficients
on α, ω, µr and σ˚ is through ΛR̃rαB,ω,σ˚,µrs and ΛIrαB,ω,σ˚,µrs.

2.6.2 Understanding the Spectral Signature of MPTs

Using the results above, an explanation of the results observed in Figures 2.8 and 2.9 is
given in the following results which were proved by Ledger et al in [76].

Lemma 2.6.1. [Ledger [76]] IfB is not an ellipsoid, the coefficients ofMrαB, ω, σ˚, µrs
andMrαEp0q, ω, σ˚, µrs are different away from ω “ 0.

Lemma 2.6.2. [Ledger [76]] IfB is not an ellipsoid, the coefficients ofMrαB, ω, σ˚, µrs
and MrαEp8q, ω, σ˚, µrs are different away from ω Ñ 8 (upto the limit of the eddy
current model).

Remark 2.6.3 (Ledger [76]). Provided thatB is not an ellipsoid, Lemma 2.6.1 has shown
that the coefficients of MrαB, ω, σ˚, µrs and MrαEp0q, ω, σ˚, µrs are different away
from ω “ 0 and Lemma 2.6.2 has shown that the coefficients of MrαB, ω, σ˚, µrs and
MrαEp8q, ω, σ˚, µrs are different away from ω Ñ 8 (up to the limit of the eddy current
model). Furthermore, as discussed in Remark 2.5.7, unless B is an ellipsoid, Ep0q ‰
Ep8q. Indeed, the conjecture is made that if the the real and imaginary parts of an MPT
expressed by (2.22) are available at discrete frequencies 0 ď ωm ă 8,m “ 1 . . . ,M then
there areM different equivalent ellipsoidsEpωnq, n “ 1, . . . ,M . Thus, the MPT spectral
signature provides considerable advantages over MPT characterisation at a single fixed
frequency and, hence, forms the basis of object characterisation strategy for the rest of
the thesis.

2.7 Scaling of the MPT Under Parameter Changes

Two results that aid the computation of the frequency sweep of an MPT for an object
with scaled conductivity and an object with a scaled object size from an already known
frequency sweep of the MPT for the same shaped object were derived by Ledger in [133]
and a novel implementation of these results has been made.

Lemma 2.7.1. [Ledger [133]] Given the MPT coefficients for an object αB with material
parameters µr and σ˚ at frequency sω, the coefficients of the MPT for an object, which
has the same B, α and µr, but with conductivity sσ˚, at frequency ω, are given by

pMrαB, ω, sσ˚, µrsqij “pMrαB, sω, σ˚, µrsqij, (2.30)

where pMrαB, sω, σ˚, µrsqij denote the coefficients of the original MPT at frequency sω.
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Lemma 2.7.2. [Ledger [133]] Given the MPT coefficients for an object αB with material
parameters µr and σ˚ at frequency s2ω, the coefficients of the MPT for an object sαB,
which is the same as B apart from having size sα, at frequency ω, are given by

pMrsαB, ω, σ˚, µrsqij “s3
pMrαB, s2ω, σ˚, µrsqij, (2.31)

where pMrαB, s2ω, σ˚, µrsqij denote the coefficients of the original MPT at frequency
s2ω.

2.8 Chapter Summary

This chapter presented material designed to set the scene for subsequent chapters cover-
ing topics such as the formulation of the time harmonic eddy current model, basic metal
detector designs and methodology, the difference between the forward and inverse prob-
lems, the asymptotic expansion and MPT. The chapter also gives an overview of the MPT
and discussing limiting cases which provide a fundamental insight into the behaviour of
the MPT and highlight the important role object topology plays. Lastly, the chapter pro-
vides motivation for the use of the MPT spectral signature as opposed to the MPT at a
single frequency.
The main novelties of the chapter are the collation of recent results that have been proved
by Ledger and Lionheart in [69, 70, 71] on the characterisation of objects by MPTs
that will be relevant for the remaining chapters of the thesis. These include their real-
imaginary split symmetric form of the MPT presented in (2.5), their approach to finding
limiting frequency of the eddy-current model a numerical implementation is employed in
Chapters 3 and 4, their investigation for MPT object characterisations at fixed frequencies
which documents a novel method for determining the best fitting ellipsoid for a given ob-
ject at a given frequency, with an example to an irregular tetrahedron and finally Ledger’s
scaling of the MPT under the parameters of object size and conductivity. A novel imple-
mentation of Ledger’s scaling result has been made and results of this are presented in
Section 5.6.
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Chapter 3

Finite Element Discretisation and the
Reduced Order Model

3.1 Introductory Remarks

This chapter focuses on the development and implementation of a ROM, for the rapid
computation of the MPT spectral signatures. This involves reducing the computational
cost associated with solving (2.7) for different ω. The ROM benefits from a-posteriori er-
ror estimates, which provide an upper bound on the error in the MPT coefficients obtained
with the reduced order model compared to those obtained from a full order solution. For
the full order solution, a hp-FE discretisation is used of the weak forms associated with
the transmission problems (2.6) and (2.7).
The chapter is based on an extended version of the work presented by the author in [133].
The main novelties of the chapter are the implementation of regularised weak forms of
(2.6) and (2.7), using the open source FE library NGSolve for the efficient solutions of
these full order problems, the application of projection based proper orthogonal decom-
position (PODP) to generate a ROM and the implementation of a-posterori error estimates
to certify the MPT coefficients obtained with the ROM.
The structure of the chapter is as follows: First in Section 3.2.1, the weak forms of the
problems are discussed, also stating the FE discretisation implemented in Section 3.2.2.
In Section 3.3 a ROM based on PODP is derived. Finally, in Section 3.3.3 a-posteriori
error estimates for the MPT coefficients obtained by the ROM are derived. The chapter
finishes with concluding remarks in Section 3.4.

3.2 Full Order Model

To approximate the solutions to the transmission problems (2.6) and (2.7) the unbounded
domainBc is truncated at a finite distance from the objectB and create a bounded domain
Ω containing B. On BΩ, the decay conditions (2.6e) and (2.7f) are approximated by
n ˆ θ̃

p0q
i “ n ˆ pθ

p0q
i ´ ei ˆ ξq “ 0 and n ˆ θp1qi “ 0, respectively. On this finite

domain, the associated weak variational statements to these problems are approximated
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using FEM with a Hpcurlq conforming discretisation with mesh spacing h and order
elements p where

Hpcurlq :“
 

u : u P pL2
pΩqq3, ∇ˆ u P pL2

pΩqq3
(

, (3.1)

and L2pΩq denotes the standard space of square integrable functions. In Section 3.2.1
their weak formulations are provided, their discretisation are provided in Section 3.2.2. It
is clear that the eddy current model (2.1), the asymptotic formula (2.4), the domain trun-
cation to form Ω and the steps that follow to form a discrete FE model all involve approx-
imations. However, the goal is to accurately and efficiently obtain the MPT coefficients
in (2.5) and, to distinguish the coefficients obtained using FEM from those obtained from
the further reduced ROM, the FEM approximation is referred to as the full order model.

3.2.1 Weak Formulation of the Problem

Following the approach advocated in [77] for magnetostatic and eddy current problems, a
regularisation term ε

ş

Ω
θ̃
p0q
i ¨ψdξ is added, where ε is a small regularisation parameter, to

the weak variational statement of (2.6), written in terms of θ̃p0qi , in order to circumvent the
Coulomb gauge∇ ¨ θ̃p0qi “ 0. For details of the small error induced by this approximation
see [77, 140]. Then, choosing an appropriate set of Hpcurlq conforming FE functions
in W phpq Ă Hpcurlq, the following discrete regularised weak form for (2.6) has been
obtained by Ledger [68]: Find real solutions θ̃p0,hpqi P Y XW phpq such that

ż

Ω

µ̃´1
r ∇ˆ θ̃p0,hpqi ¨∇ˆψphpqdξ ` ε

ż

Ω

θ̃
p0,hpq
i ¨ψphpqdξ

“ 2

ż

B

p1´ µ´1
r qei ¨∇ˆψphpqdξ, (3.2)

for all ψphpq P Y XW phpq, where

Y :“
!

u PHpcurlq : nˆ u “ 0 on BΩ
)

.

In a similar manner, the discrete weak variational statement of (2.7) has been obtained by
Ledger [68]: Find complex solutions θp1,hpqi P Y XW phpq such that

ż

Ω

`

µ´1
r ∇ˆ θp1,hpqi

˘

¨
`

∇ˆψphpq
˘

dξ ´ i

ż

B

νθ
p1,hpq
i ¨ψphpqdξ

` ε

ż

ΩzB

θ
p1,hpq
i ¨ψphpqdξ “ i

ż

B

νθ
p0,hpq
i ¨ψphpqdξ, (3.3)

for all ψphpq P Y XW phpq.
For what follows it is beneficial to restate (3.3) in the following form: Find θp1,hpqi P

Y XW phpq such that

a
`

θ
p1,hpq
i ,ψphpq;ω

˘

“ r
`

ψphpq;θ
p0,hpq
i ,ω

˘

, (3.4)

38



for all ψphpq P Y XW phpq where

a
`

θ
p1,hpq
i ,ψphpq;ω

˘

: “
〈
µ̃´1∇ˆ θp1,hpqi ,∇ˆψphpq

〉
L2pΩq

´ i
〈
νθ

p1,hpq
i ,ψphpq

〉
L2pBq

` ε
〈
θ
p1,hpq
i ,ψphpq

〉
L2pΩzBq

, (3.5a)

r
`

ψphpq;θ
p0,hpq
i ,ω

˘

: “ i
〈
νθ

p0,hpq
i ,ψphpq

〉
L2pBq

, (3.5b)

〈u,v〉L2pΩq :“
ş

Ω
u ¨ vdξ denotes the L2 inner product over Ω and ω indicates the

list of the problem parameters pω, σ˚, µr, αq that one might wish to vary. Note that
r
`

ψphpq;θ
p0,hpq
i ,ω

˘

is a function of µr as θp0,hpqi depends on µr.

3.2.2 Finite Element Discretisation

For the implementation of (3.2) and (3.4), NGSolve [4, 109, 108, 140] is used along
with the hierarchic set of Hpcurlq conforming basis functions proposed by Schöberl and
Zaglmayr [110], which are available in this software. Although there are many avail-
able choices for software, such as deal.ii, FENicS and COMSOL, the choice to use
NGSolve is made for several key factors: the ease of use provided by the python in-
terface; the unstructured tetrahedral meshes; the efficient implementation of hierarchical
p-version H(curl) conforming elements; and the availability of robust preconditioners
which benefit from parallelisation. This choice is further discussed in Chapter 4. In the
following, for simplicity, focus is given to the treatment of θp1,hpqi and drop the index i as
each direction can be computed in a similar way (as can θ̃p0,hpqi ). The basis functions are
denoted byN pkqpξq P W phpq leading to the expression of the solution function along with
the weighting functions

θp1,hpqpξ,ωq :“
Nd
ÿ

k“1

N pkq
pξqqkpωq, (3.6a)

ψphpqpξ,ωq :“
Nd
ÿ

k“1

N pkq
pξqlkpωq, (3.6b)

where Nd is the number of degrees of freedom. Here, and in the following, the bold italic
font denotes a vector field and the bold non-italic Roman font represents a matrix (upper
case) or column vector (lower case). With this distinction, (3.6) is rewritten in matrix
form as

θp1,hpqpξ,ωq “ Npξqqpωq, (3.7a)

ψphpqpξ,ωq “ Npξqlpωq, (3.7b)

where Npξq is the matrix constructed with the basis vectorsN kpξq as its columns, i.e.

Npξq :“
“

N p1q
pξq,N p2q

pξq, ...,N pNdqpξq
‰

.
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With this, (3.4) is also rewritten as follows

Nd
ÿ

i“1

Nd
ÿ

j“1

lipωqa
`

N pjq
pξq,N piq

pξq;ω
˘

qjpωq “
Nd
ÿ

i“1

lipωqr
`

N piq
pξq;θp0,hpq,ω

˘

, (3.8)

and, with a suitable choice of lipωq, (3.8) is rewritten as the linear system of equations

Apωqqpωq “ rpθp0,hpq,ωq, (3.9)

where the coefficients of Apωq and rpθp0,hpq,ωq are defined to be

pApωqqij :“ a
`

N pjq
pξq,N piq

pξq;ω
˘

, (3.10a)

prpθp0,hpq,ωqqi :“ r
`

N piq
pξq;θp0,hpq,ω

˘

. (3.10b)

NGSolve offers efficient approaches for the computational solution to (3.9) using pre-
conditioned iterative solvers [140, 77]. The combination of Balancing Domain Decom-
position by Constraints (BDDC) preconditioner [84] along with the conjugate gradients
solver was found to work well for the problem, with (3.9) being a complex symmetric
matrix which is positive definite. Following the solution of (3.9), θp1,hpqpξ,ωq is obtained
using (3.7) and, by repeating the process for i “ 1, 2, 3, θp1,hpqi pξ,ωq is obtained. Then
pMrαB, ωsqij , for the full order model, is found by using (2.5).

3.3 Reduced Order Model (ROM)

A traditional (full order model) approach for the computation of the MPT spectral sig-
nature, i.e. the variation of the coefficients ofMrαB, ωs with frequency, would involve
the repeated solution of the Nd sized system (3.9) for different ω. To reduce the com-
putational cost of this, it is desirable to apply a ROM in which the solution of (3.9) is
replaced by a surrogate problem of reduced size. Thus, reducing both the computation
cost and time to produce a solution for each new ω. In particular, in Section 3.3.1, a ROM
based on the POD method [26, 8, 55, 112] is described and, in Section 3.3.2, the variant
called projection based POD (denoted by PODP) is applied, this has already been shown
to outperform interpolation based POD in the analysis of an eddy current problem as part
of magneto-mechanical coupling applied to MRI scanners [112], hence, we only consider
the prior. To emphasise the generality of the approach, the formulation is presented for
an arbitrary list of problem parameters denoted by ω. In Section 3.3.3 a procedure for
computing certificates of accuracy on the ROM solutions with negligible additional cost
is derived.

3.3.1 Proper Orthogonal Decomposition

Following the solution of (3.9) for qpωq for different values of the set of parameters, ω, a
matrix D P CNdˆN is constructed, with the vector of solution coefficients as its columns
in the form

D :“
“

qpω1q,qpω2q, ...,qpωNq
‰

. (3.11)
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Note that qpωiq denotes the vector of coefficients, which, when combined with (3.7a),
produces a representative full order model solution snapshot for the ith set of parameters
ωi and N ! Nd denotes the number of such snapshots. Application of a singular value
decomposition (SVD) e.g. [21, 52, 42] gives

D “ UΣVH , (3.12)

where U P CNdˆNd and V P CNˆN are unitary matrices and Σ P RNdˆN is a diagonal
matrix enlarged by zeros so that it becomes rectangular. In the above, VH “ V

T
is the

Hermitian of V.
The diagonal entries pΣqii “ σi

1 are the singular values of D and they are arranged as
σ1 ą σ2 ą ... ą σN . Based on the sparse representation of the solutions to (2.7) as
function of ν, and hence ω, (and hence also the sparse representation of the MPT) found
in [73], these are expected to decay rapidly towards zero, which motivates the introduction
of a truncated singular value decomposition (TSVD) e.g. [21, 52]

D « DM
“ UMΣM

pVM
q
H , (3.13)

where UM P CNdˆM are the first M columns of U, ΣM P RMˆM is a diagonal matrix
containing the first M singular values and pVMqH P CMˆN are the first M rows of VH .
The computation of (3.13) constitutes the off-line stage of the POD. Using (3.13) it is
possible to recover an approximate representation for each of the solution snapshots as
follows

qpωjq « UMΣM
ppVM

q
H
qj, (3.14)

where ppVMqHqj refers to the jth column of pVMqH .

3.3.2 Projection Based Proper Orthogonal Decomposition (PODP)

Two common POD based methods are interpolation based proper orthogonal decompo-
sition and projection based proper orthogonal decomposition. Implementations for both
methods were considered due to the work presented by Seoane [112] where both methods
were considered to tackle a related eddy current problem. However, after some initial
investigations were conducted, PODP was found to work better. In the online stage of
PODP, qPODP pωq « qpωq is obtained by taking a linear combination of the columns
of UM where the coefficients of this projection are contained in the vector pMpωq. An
approximation of lpωq is produced in a similar way so that

θp1,hpqpξ,ωq « pθp1,hpqqPODP
pξ,ωq :“NpξqqPODP pωq “ NpξqUMpMpωq P Y pPODP q,

(3.15a)

ψphpqpξ,ωq « pψp1,hpqqPODP
pξ,ωq :“NpξqlPODP pωq “ NpξqUMoMpωq P Y pPODP q,

(3.15b)

1Note that σ˚ is used for conductivity and σi for a singular value, however, it should be clear from the
application as to which definition applies
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where P Y pPODP q Ă Y XW phpq. Substituting these lower dimensional representations in
to (3.8) the following is obtained

M
ÿ

i“1

M
ÿ

j“1

oMi pωqa
`

N pjq
pξqpUM

qj,N
piq
pξqpUM

qi;ω
˘

pMj pωq

“

M
ÿ

i“1

oMi pωqr
`

N piq
pξqpUM

qi;θ
p0,hpq,ω

˘

,

poMpωqqHppUM
q
HApωqUM

qpMpωq “ poMpωqqHpUM
q
Hrpθp0,hpq,ωq. (3.16)

Then, choosing oMpωq appropriately, to obtain the linear system

AM
pωqpMpωq “ rMpθp0,hpq,ωq, (3.17)

which is of size M ˆ M where AMpωq :“ pUMqHApωqUM and rMpθp0,hpq,ωq :“

pUMqHrpθp0,hpq,ωq. Note, since M ă N ! Nd, this is significantly smaller than (3.9)
and, therefore, substantially computationally cheaper to solve. After solving this reduced
system, and obtaining pMpωq, an approximate solution for θp1,hpqpξ,ωq is obtained using
(3.15).
Focusing on the particular case whereω “ ω, it is observed that A and r can be expressed
as the simple sums

Apωq “Ap0q
` ωAp1q,

rpθp0,hpq, ωq “ωrp1qpθp0,hpqq,

where the definitions of Ap0q, Ap1q and rp1qpθp0,hpqq are defined as,

pAp0qqij :“ ap0q
`

N pjq
pξq,N piq

pξq
˘

,

pAp1qqij :“ ap1q
`

N pjq
pξq,N piq

pξq
˘

,

prp1qpθp0,hpqqqi :“ rp1q
`

N piq
pξq;θp0,hpq

˘

,

where ap0q, ap1q and rp1q are defined as,

ap0q
`

θ
p1,hpq
i ,ψphpq;ω

˘

: “
〈
µ̃´1∇ˆ θp1,hpqi ,∇ˆψphpq

〉
L2pΩq

` ε
〈
θ
p1,hpq
i ,ψphpq

〉
L2pΩzBq

,

ap1q
`

θ
p1,hpq
i ,ψphpq;ω

˘

: “ ´i
〈
α2µ0σ˚θ

p1,hpq
i ,ψphpq

〉
L2pBq

,

rp1q
`

ψphpq;θ
p0,hpq
i ,ω

˘

: “ i
〈
α2µ0σ˚θ

p0,hpq
i ,ψphpq

〉
L2pBq

.

Then, by computing and storing pUMqHAp0qUM , pUMqHAp1qUM , pUMqHrp1qpθp0,hpqq,
which are independent of ω, it follows that AMpωq and rMpθp0,hpq, ωq can be efficiently
calculated for each new ω from the stored data. In a similar manner, by precomputing
appropriate data, the MPT coefficients in (2.5) can also be rapidly evaluated for each new
ω using the PODP solutions. This leads to further considerable computational savings.
Emphasis is placed on the fact that the PODP is only applied to obtain ROM solutions for
θp1qpξ, ωq and not to θp0qpξq, which does not depend on ω.
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3.3.3 An a-posterori Error Estimate to Certify the PODP Output

Ledger [133] has derived an a-posterori error estimate on the MPT coefficients obtained
with PODP, with respect to those obtained with full order model, as a function of ω.
His approach builds on the procedure described in [55] for obtaining a-posteriori error
estimates on outputs of interest from ROM solutions and the approach is summarised
here. Importantly, this estimate can be computed at negligible additional cost during the
online stage of PODP allowing it to be used to certify the MPT coefficients obtained
using the ROM and to check their accuracy is within acceptable limits. To do this,
he sets εipωq “ θ

p1,hpq
i pωq ´ pθ

p1,hpq
i qPODPpωq P Y phpq, where the subscript i has been

reintroduced, as the cases i “ 1, 2, 3 need to be distinguished between. Although εi
also depends on ξ, it has been chosen here, and in the following, to only emphasise its
dependence on ω. Introducing Y phpq “ Y XW phpq for simplicity of notation, and noting
that this error satisfies

apεipωq,ψ;ωq “ rpψ;θ
p0,hpq
i , ωq @ψ P Y phpq, (3.19)

which is called the error equation [55] and

apεipωq,ψ;ωq “ 0 @ψ P Y pPODP q, (3.20)

which is called Galerkin orthogonality [55]. The Riesz representation [55] of
rp¨;θ

p0,hpq
i , ωq denoted by r̂ipωq P Y phpq is such that

pr̂ipωq,ψqY phpq “ rpψ;θ
p0,hpq
i , ωq @ψ P Y phpq, (3.21)

so that

apεipωq,ψ;ωq “ pr̂ipωq,ψqY phpq @ψ P Y phpq. (3.22)

Then, by using the alternative set of formulae for the tensor coefficients [73]

pRrαB, ωsqij “ ´
α3

4

ż

B

νImpθp1,hpqj q ¨ θ
p0,hpq
i dξ

“ ´
α3

4

〈
νImpθp1,hpqj q,θ

p0,hpq
i

〉
L2pBq

, (3.23a)

pIrαB, ωsqij “
α3

4

ˆ
ż

B

νRepθp1,hpqj q ¨ θ
p0,hpq
i dξ `

ż

B

νθ
p0,hpq
j ¨ θ

p0,hpq
i dξ

˙

“
α3

4

ˆ〈
νRepθp1,hpqj q,θ

p0,hpq
i

〉
L2pBq

`

〈
νθ

p0,hpq
j ,θ

p0,hpq
i

〉
L2pBq

˙

, (3.23b)

which are written in terms of the full order solutions, Ledger’s a-posteriori error esti-
mate for the tensor entries computed using PODP is stated in the lemma below which
was proved by Ledger in [133]. Note that the formulae stated in (2.5) are used for
the actual POD computation of pRPODP rαB, ωsqij and pIPODP rαB, ωsqij , but the form
in (3.23) is useful for obtaining the error estimate. Also, as pN rαBsqij is indepen-
dent of ω the equality pN 0,PODP rαBsqij “ pN 0rαBsqij holds, leading to the equality
MPODP rαB, ωs “ N 0,PODP rαBs `RPODP rαB, ωs ` iIPODP rαB, ωs for the MPT ob-
tained by PODP.
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Lemma 3.3.1. [133] (note, this was contributed by Ledger) An a-posteriori error estimate
for the tensor coefficients computed using PODP is

ˇ

ˇpRrαB, ωsqij ´ pRPODP
rαB, ωsqij

ˇ

ˇ ďp∆rωsqij, (3.24a)
ˇ

ˇpIrαB, ωsqij ´ pIPODP rαB, ωsqij
ˇ

ˇ ďp∆rωsqij, (3.24b)

where

p∆rωsqij :“
α3

8αLB

`

}r̂ipωq}
2
Y phpq ` }r̂jpωq}

2
Y phpq ` }r̂ipωq ´ r̂jpωq}

2
Y phpq

˘

, (3.25)

and αLB is a lower bound on a stability constant.

Remark 3.3.2. Ledger’s a-posteriori error estimate in Lemma 3.3.1 allow the coefficients
ofMPODP rαB, ωs obtained by PODP to be certified at low-computational cost during
the on-line stage of the ROM using the procedure described below. The bound does not
give an explicit dependence on N or ω, but, if desired, could be used as part of an iter-
ative procedure to choose additional candidate ω values for the representative full order
model solution snapshots in a similar manner to that described in [55]. The (spectral)
behaviourMrαB, ωs with ω has been considered in [73], where results on the functions
that characterise the spectral signature of the MPT are provided.

A novel efficient evaluation of (3.24) has been made and it follows the approach presented
in [55, pg. 52-54], adapted to complex matrices and with the simplification that a Riesz
representation r̂ipωq P Y ph0q is computed using the lowest order elements for computa-
tional efficiency. The computations are split in to those performed in the off-line stage
and those in the on-line stage as follows.
In the off-line stage, the following p2M`1qˆp2M`1qHermitian matrices are computed

Gpi,jq
“
`

Wpiq
˘H M´1

0 Wpjq, (3.26)

where, since Gpj,iq “ pGpi,jqqH , it follows that, in practice, only the 3 matrices Gp1,1q,
Gp2,2q and Gp3,3q are required for computing the certificates on the diagonal entries of the
tensors, and the further 3 matrices Gp1,2q, Gp1,3q and Gp2,3q are needed for the off-diagonal
terms. In the above, pM0qij “

〈
N piq,N pjq

〉
L2pΩq

are the coefficients of a real symmetric
FEM mass matrix for the lowest order, with N piq,N pjq P W ph0q being typical lowest
order basis functions, and

Wpiq :“ Pp0
´

rp1qpθ
p0q
i q Ap0qUpM,iq Ap1qUpM,iq

¯

, (3.27)

where Pp0 is a projection matrix of the FEM basis functions from order p to the lowest order
0, UpM,iq is the UM obtained in (3.13) for the ith direction. The stability constant αLB “
λminminp1, ω

ω1
q is obtained from the smallest eigenvalue of an eigenvalue problem [55,

pg56], which, in practice, is only performed once for smallest frequency of interest ω1.
In the on-line stage,

}r̂ipωq}
2
Y phpq “

`

pwpiq
pωqqHGpi,iq

pwpiq
pωqq

˘1{2
, (3.28a)

}r̂ipωq ´ r̂jpωq}
2
Y phpq “

`

}r̂ipωq}
2
Y phpq ` }r̂jpωq}

2
Y phpq ´ 2Reppwi

pωqqHGpi,jq
pwpjq

pωqqq
˘1{2

,

(3.28b)
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is evaluated, for each ω by updating the vector

wpiq
pωq “

¨

˝

ω

´pM,piqpωq

´ωpM,piqpωq

˛

‚, (3.29)

where pM,piq refers to pM for the ith direction. Then (3.24) is applied to obtain the
a-posteriori error estimate.

3.4 Chapter Summary

This chapter has presented a novel method for applying PODP to produce a ROM for the
efficient computation of MPT spectral signatures. Original, regularised, weak forms of
the transmission problems (2.6) and (2.7) were stated and discretised usingHpcurlq con-
forming elements. In the offline stage of the method, several snapshot full order problems
are solved, using the NGSolve FE library, to which a truncated singular value decompo-
sition is then applied. This allows for the projection of the problem from the full order
space to a reduced order space, within which they can be solved in the online stage, at a
greatly reduced computational cost [133]. Additionally the method presented also benefits
from a-posteriori error estimates for the MPT coefficients derived by Ledger [133], which
can be computed at a small additional computational cost, and, if desired, these error esti-
mate could be used to drive an adaptive procedure for choosing new full order snapshots
to further reduce the error. Further details on the novel computational implementation
of these will follow in Chapter 4. Results pertaining to the computational savings, along
exploratory results obtained using the method are documented in Chapter 5 and are also
presented by the author in [133].
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Chapter 4

Implementation Details of
MPT-Calculator Software

4.1 Introductory Remarks

This chapter focuses on the implementation of the computation of MPT coefficients which
has been made openly available in a software package called the MPT-Calculator.
The chapter covers topics such as the choice of FE framework, computational implemen-
tation and support offered for the MPT-Calculator.
This chapter has been constructed from various sources and includes adapted code snip-
pets from the author [134] and the NGSolve documentation [4]; adapted explanations
from the documentation provided by the author [134]; and screenshots and analytics from
the authors’ YouTube channel [130].
The chapter provides justification of the choice to implement the H(curl) conforming
basis functions offered by NGSolve, documenting the key features of NGSolve which
make it the preferred FE framework to use in the production of the MPT-Calculator.
The chapter presents the main aims and objectives of the MPT-Calculator, document-
ing the numerical efficiencies which have been implemented to speed up production of
MPT spectral signatures. The chapter also covers the available support offered in the doc-
umentation and corresponding MPT-Calculator YouTube channel. The main novel-
ties of the chapter are: the implementation of novel weak forms in NGSolve; the efficient
implementation of the ROM discussed in Section 3.3, along with associated a-posteriori
error certificates derived in Section 3.3.3; and the production and support offered in the
open source software the MPT-Calculator.
The chapter is organised as follows: First in Section 4.2 the justification of the choice
to use NGSolve as the FE framework the MPT-Calculator is established. In Sec-
tion 4.2.1, an example of the implementation for the solution and post-processing of the
problem (3.2) with a procedural outline to the solution of this problem is provided. Pro-
cedures for obtaining solutions to (3.4) are also documented in Section 4.2.2. In Sec-
tion 4.3, an overview of the MPT-Calculator is provided documenting the key aims
for developing the software, the structure available outputs and the numerical efficiencies
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implemented. In Section 4.4, the support offered in the way of documentation and videos
provided on the MPT-Calculator YouTube channel, documenting the topics covered
by the videos. The chapter finishes with concluding remarks in Section 4.5.

4.2 NGSolve

Key to the approximate computation of θp0qi and θp1qi , required for the computation of the
MPT coefficients, is to discretise weak forms, such as (3.2) and (3.4), using the FE method
leading to linear systems, such as (3.9) in the latter case. Details of FE discretisations can
be found in many texts [27, 111, 93] and will not be repeated here. Rather than implement
a new FEM procedures, it was decided to make use of an existing FE framework. Due
to non-standard nature of the problem, there exists a requirement of user defined weak
forms. Although there are many FE packages which allow for this, such as COMSOL [1],
deal.ii [2] and FEniCS [3], NGSolve [4, 109, 108, 140] has been chosen, based
on several key attributes of NGSolve when compared to other FE packages previously
mentioned.

The ease of use provided by the Python interface: This is important for two reasons,
firstly, this allows for the creation of the ROM, presented in Section 3.3, to be done in
Python as opposed to inside the NGSolve library, allowing for a rapid and swift code
development. Secondly, since part of this project involves producing a large dataset this
benefits greatly by using scripting over of using a graphical user interface, which would
be very slow for large numbers of objects. This allows for the production of more data
with less human interaction. FEniCS also has a Python interface allowing similar rapid
development. On the other hand deal.ii is entirely in C++. Although COMSOL has
a similar interface, COMSOL’s interface uses Java which is generally harder and more
unforgiving than Python as a language.

The unstructured tetrahedral meshes: Automatic procedures are available for gener-
ating unstructured tetrahedral meshes around complex geometries and these are imple-
mented in NetGen, the mesher which forms part of NGSolve. Unstructured meshes
are also possible in FEniCS and COMSOL. On the other hand, deal.ii uses hexahe-
dral meshes and it is much harder, and not always possible, to generate meshes around
complex configurations. In such cases, a commercial mesh generator is also needed. The
tetrahedral elements provided in NGSolve also benefit from geometric polynomial en-
richment allowing for greater precision in the approximation of geometry.

The efficient implementation of hierarchical p-versionH(curl) conforming elements:
H(curl) conforming elements are an appropriate choice for the problem since using these
avoid the possibility of spurious modes, the use of these was advocated in [77] for mag-
netostatic and eddy current problems, this also leads to well conditioned matrices. With
NGSolve providing a hierarchical implementation of the basis functions proposed by
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Zaglmayr and Schöberl [110] which allows for the possibility of using p-refinement for
greater fidelity in calculations. This basis also explicitly splits the basis in to gradients
and non-gradient functions. As discussed in [77] this allows the introduction to efficient
preconditioning for the linear system such as in (3.9) (see also below). While COMSOL
and FEniCS also offer higher orderH(curl) basis functions, those proposed by Zaglmayr
and Schöberl [110, 140] lead to better conditioned matrices.

The availability of robust preconditioners which benefit from parallelisation:
NGSolve offers a number of robust and efficient preconditioners along with a range of
iterative solvers, the combination of Balancing Domain Decomposition by Constraints
(BDDC) preconditioner [84] along with the conjugate gradients solver, which is ap-
propriate for systems with a stiffness matrix which is positive definite and (Hermitian)
symmetric, was found to work well for the problem. The BDDC preconditioner also
benefits from being highly parallelizable which is efficiently done using NGSolve’s
shared memory pipeline.

These factors, together with previous successful implementations of this basis [27, 69] in
the research group meant NGSolve was selected as the library of choice.

In addition to the reasons discussed above, using NGSolve has some additional
efficiencies which can be implemented. As p increases the number of degrees of freedom
increases rapidly. However, of these, the interior degrees of freedom, which grow at rate
Opp3q, are independent between each element and can be eliminated using a process
known as static condensation. This is achieved by eliminating element-internal unknowns
of higher order FEs via a Schur complement factorisation, therefore, reducing the size
of the linear system in (3.9) and reducing solution times. Secondly, due to construction
of the H(curl) basis in NGSolve, where gradients and non-gradients are made explicit.
The transmission problem in (2.6) and (2.7) and their associated weaks forms in (3.2)
and (3.3) together with construction of the basis, allows the gradient basis function to be
skipped in ΩzB. This yet again reduces the number of degrees of freedom decreasing
solution time.

4.2.1 Implementation in NGSolve for the Approximate Solution of
θ
p0,hpq
1 to Compute pN 0q11

In this section an example of an implementation in NGSolve is given for the approx-
imate solution of θp0,hpq1 and the computation of pN 0q11. The first stage is to generate
an unstructured tetrahedral discretisation Ω, which consists of both the object B and the
truncated region of free space surrounding it to a truncation boundary. In the case where
B is made up of multiple materials, B is replaced by B and the approach in [74] is
followed. In this section it is assumed that such a discretisation is available in .vol file
where each region Bpnq in B is tagged µpnqr values (additionally also with with σpnq˚ and
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values when working out the full MPT) which the region outside is tagged as free space.
The first step in the process is to import the Python modules which will be used1.

01 from ngsolve import *
02 import netgen.meshing as ngmeshing

The next step is to load and initialise the mesh,

03 ngmesh = ngmeshing.Mesh(dim=3)

04 ngmesh.Load(‘‘Object.vol’’)

05 mesh = Mesh(‘‘Object.vol’’)

06 mesh.Curve(5)

these four lines are vital and each have a distinct job, line 03 first defines that the
mesh which will be used is a 3D mesh, line 04 loads the mesh to line 05 creates the mesh
instance in Python, finally line 06 uses curved FEs at curved boundaries and material
interfaces to better approximate the object’s shape, in this case this is achieved with 5th

order polynomials. The next step is to define the region specific parameters

07 mu coef = [ mur[mat] for mat in mesh.GetMaterials() ]

08 mu r = CoefficientFunction(mu coef)

09 inout coef = [inorout[mat] for mat in

mesh.GetMaterials() ]

10 inout = CoefficientFunction(inout coef)

for each parameter being defined there are 2 steps the first, which is done on lines
07, 09, creates lists of the values of each parameter corresponding to each element in the
mesh from Python dictionaries mur, sig and inorout. The second step converts these
lists to a coefficient functions which NGSolve can use quickly and efficiently. Note the
addition of the parameter inout, this corresponds to elements which are contained in B
and takes a value of 1 P B and 0 P Bc. It is at this point the FE space is created and some
problem specific variables are defined.

11 fes = HCurl(mesh, order=4, dirichlet=‘‘outer’’, flags

= { ‘‘nograds’’ : True })
12 theta = GridFunction(fes)

13 theta.Set((0,0,0), BND)

14 u, v = fes.TnT()

15 e = CoefficientFunction( (1,0,0) )

1Although it is generally bad programming practice to use from ... import * we use this to
reduce the amount of code and improve code readability, the NGSolve functions used throughout this
section start with a capital letter. Additionally all classes, methods and instances used through out the code
are NGSolve functions with the exception of lines 04 and 05.
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16 epsi = 10**-10

Here the FE space, solution vector, test and trial functions and a coefficient func-
tion for the forcing vector for the right hand side are all initialised. In line 11 we define
an FE space which is based on order p “ 4 H(curl) conforming elements, which skip
the gradient functions in all of the domain Ω, which is appropriate for problem (3.2),
as set by flags = { ‘‘nograds’’ : True }. In addition the outer boundary
has been set to have dirichlet boundary conditions and, in this case, n ˆ θp0,hpqi “ 0

on BΩ is an appropriate boundary condition for this problem and allows the otherwise
unbounded domain to be replaced by a finite domain, as described in Section 3.2.
Finally, the coefficient function e has been defined, these are the unit vector e1 which
will be used as a forcing term along with a small regularisation parameter epsi, (set
to 10´10), which was mentioned in Section 3.2.1 which is required to circumvent the
Coulomb gauge. It is at this point that the bilinear and linear forms in (3.2) are prescribed.

17 a = BilinearForm(fes, symmetric=True, condense=True)

18 a += SymbolicBFI((mu r**(-1))*(curl(u)*curl(v)))

19 a += SymbolicBFI(epsi*(u*v))

20 f = LinearForm(fes)

21 f += SymbolicLFI(inout*(2*(1-mu r**(-1))) *
InnerProduct(e,curl(v)))

in line 17 the bilinear form is initialised, the inclusion of the two flags
symmetric=True and condense=True these are both included for numerical
efficiency. The first, setting symmetric=True can be done due to the problem having
a symmetric stiffness matrix, this reduces memory consumption and wall clock time
as when this is set NGSolve only operates on half of the stiffness matrix enforcing
symmetry with the other. The second, setting condense=True informs NGSolve
of the intention to apply static condensation as discussed above. Next the BDDC
preconditioner is defined, matrices assembled and inverse operator defined.

22 c = Preconditioner(a,"bddc")

23 a.Assemble()

24 f.Assemble()

25 c.Update()

26 inverse= CGSolver(a.mat, c.mat, precision=10**-10,

maxsteps=1000)

The final step in obtaining a solution to the problem is done in the next lines.

27 f.vec.data += a.harmonic extension trans * f.vec

28 theta.vec.data = inverse * f.vec

29 theta.vec.data += a.harmonic extension * Theta.vec
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30 theta.vec.data += a.inner solve * f.vec

Lines 29-30 implement both the static condensation procedure and iterative solu-
tion technique using the operators defined above. For further details see [4]. The final
step in the process is to post-process the solution which is done in the next lines.

31 alpha = 0.001

32 N0 11 = (alpha**3)*(Integrate(1-mu r**(-1),mesh) +

(1/4)*(Integrate(mu r**(-1)*(InnerProduct(curl(theta),

curl(theta))),mesh)))

Untill this point the solution obtained has been dimensionless, α defines (in me-
ters) the size of the units used in the mesh (α “ 0.001(m) the units used in Object.vol
are in mm). Line 32 is a direct implementation of (2.5a) for i “ j “ 1. The above
process can then be easily extended to handle i, j “ 1, 2, 3. The full procedure can
be summarised in a simple algorithmic format shown in Algorithm 1, which calls
Algorithm 2 to compute the approximative θp0,hpqi solutions.

Algorithm 1 Calculation of pN 0qij

Define object geometry B, µr and α.
Choose a suitable large domain Ω such that B Ă Ω and prescribe boundary conditions
nˆ θ

p0,hpq
i “ 0 on BΩ.

Define spacing and generate a mesh.
Choose aH(curl) conforming FE space and choose element order.
SOLVE θ

p0,hpq
i pB, µr,mesh) using function in Algorithm 2.

for i, j “ 1, 2, 3 do
Implement (2.5a) to compute pN 0qij .

end for

Algorithm 2 Function for approximate solution of θp0,hpq

function SOLVE θ
p0,hpq
i (B, µr,mesh)

for i “ 1, 2, 3 do
Choose ei to be the ith column of the identity matrix.
Prescribe the bilinear forms and linear forms in (3.2).
Setup the preconditioner and assemble matrix.
Solve linear system for coefficients of θp0,hpqi .

end for
end function

In an analogous algorithm to that in Algorithm 2, a similar function can be defined for
obtaining an approximate solutions for θp1,hpq, and this is done in Algorithm 3. Note the
inclusion of α and σ˚ in the list of dependencies for the function which was not required
previously, are needed to compute θp1,hpq.
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Algorithm 3 Function for approximate solution of θp1,hpq

function SOLVE θ
p1,hpq
i (B,α, ω, σ˚, µr,θ

p0,hpq
i ,mesh)

for i “ 1, 2, 3 do
Prescribe the bilinear forms and linear forms in (3.4).
Setup the preconditioner and assemble matrix.
Solve linear system for coefficients of θp1,hpqi .

end for
end function

4.2.2 Implementation and Methods for Computing pMqij
In a manner similar to the implementation provided for pN 0qij in the previous section,
procedures can be defined for the different algorithms which calculate pMqij which are
implemented in the MPT-Calculator. There are two distinct algorithms2 to calcu-
late pMqij , the first which repeatedly solves the problem defined in (3.4) for different
frequencies of ωf , f “ 1, 2, ..., F 3 this procedure is summarised in Algorithm 4.

Algorithm 4 Full order solution of θp1,hpq and calculation of pMqij
Define object geometry B, µr, σ˚, and α.
Choose a suitable large domain Ω such that B Ă Ω and prescribe boundary conditions
nˆ θ

p0,hpq
i “ 0 and nˆ θp1,hpqi “ 0 on BΩ.

Define spacing and generate a mesh.
Choose aH(curl) conforming FE space and choose element order.
SOLVE θ

p0,hpq
i pB, µr,mesh) using function in Algorithm 2.

for i, j “ 1, 2, 3 do
Implement (2.5a) to compute pN 0qij .

end for
for ω “ ω1, ω2, ..., ωF do

SOLVE θ
p1,hpq
i pB,α, ω, σ˚, µr,θ

p0,hpq
i ,mesh) using function in Algorithm 3.

for i, j “ 1, 2, 3 do
Implement (2.5b,c) to compute pRqij and pIqij and therefore pMqij .

end for
end for

The second which employs the use of a ROM, which was discussed in Section 3.3, this
procedure, summarised in Algorithm 5, solves the problem defined in (3.4), N (which is
less than F ) times and uses these solutions to produce F surrogate problems which can
then be solved at a reduced computational cost.

2In practice there are three separate solver functions in the MPT-Calculator with the additional
function handling the case when a single MPT is produced. This implementation is, in part, due to the
additional outputs which are available for a single MPT output.

3Note, in Chapters 8 and 9 F will be re-used as the number of features although this should be clear
from context.
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Algorithm 5 Reduced order solution of pθp1,hpqqPODP and calculation of pMqij
Define object geometry B, µr, σ˚, and α.
Choose a suitable large domain Ω such that B Ă Ω and prescribe boundary conditions
nˆ θ

p0,hpq
i “ 0 and nˆ θp1,hpqi “ 0 on BΩ.

Define spacing and generate a mesh.
Choose aH(curl) conforming FE space and choose element order.
SOLVE θ

p0,hpq
i pB, µr,mesh) using function in Algorithm 2.

for i, j “ 1, 2, 3 do
Implement (2.5a) to compute pN 0qij .

end for
for ω “ ω1, ω2, ..., ωN do

SOLVE θ
p1,hpq
i pB,α, ω, σ˚, µr,θ

p0,hpq
i ,mesh) using function in Algorithm 3.

end for
Construct D using solutions θp1,hpqi as stated in (3.11).
Compute TSVD (3.13), to obtain UM ,ΣM and pVMqH .
OBTAIN p∆rωsqij OFF-LINE using function in Algorithm 6 (if required).
for ω “ ω1, ω2, ..., ωF do

Solve reduced linear systems (3.17) for ω.
OBTAIN p∆rωsqij on-line using function in Algorithm 7 (if required).
Project pM to full order space using (3.15a) to obtain pθp1qi q

PODP .
for i, j “ 1, 2, 3 do

Implement (2.5b,c) with pθp1qi q
PODP to compute pRqij and pIqij and therefore

pMqij .
end for

end for

Algorithm 6 Off-line stage of function to produce a-posterori error estimates
function OBTAIN p∆rωsqij OFF-LINE(UM ,Ap0q,Ap1q, rp1q)

Obtain the stability constant αLB by solving an eigenvalue problem [55, pg56].
for i “ 1, 2, 3 do

Construct the matrix Wpiq from (3.27).
end for
for i, j “ 1, 2, 3 do

Obtain Gpi,jq from (3.26).
end for

end function
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Algorithm 7 On-line stage of function to produce a-posterori error estimates
function OBTAIN p∆rωsqij ON-LINE(Gpi,jq,pM )

for i “ 1, 2, 3 do
Construct the vector wpiq from (3.29).
Calculate ||r̂i||2Y hp from (3.28a).

end for
for i, j “ 1, 2, 3 do

Calculate ||r̂i ´ r̂j||
2
Y hp

from (3.28b).
Calculate p∆rωsqij from (3.25).

end for
end function

4.3 MPT-Calculator Overview

The MPT-Calculator is a wrapper built around the framework provided by
NGSolve, it provides a command line interface which allows for the repeated, post-
processed solution of (3.2) and (3.4), to obtain the coefficients of the MPT (2.5) in a fast,
efficient and automated manner. The key features of the MPT-Calculator are:

• The seamless integration with NGSolvewhich allows the user to produce an object
of interest, defined in the .geo file format provided by NGSolve, a desired MPT
spectral signature can then be produced from this input.

• The additional outputs offered, such as the error certificates, discussed in Sec-
tion 3.3.3, produced for the ROM, the object specific frequency limit of the eddy
current model, discussed in Section 2.4.3, or the .vtk output available for the eddy
currents at single frequency.

• The reduction in solution time and ease of use when compared with previous codes
which also calculate MPTs using an FEM approach.

• The supporting material which is included with the software, including the in-depth
documentation detailing all aspects of the software and YouTube video series which
provides a walk-through of several demonstrative examples.

We will briefly discuss several aspects of the MPT-Calculator.

4.3.1 Structure of the Code

The user is expected interact with four files main.py, Settings.py,
PlotterSettings.py and a geometry file, .geo file, these files allow the
user to produce an array of different MPT spectral signatures for many different objects.
In this section we discuss the layout of the folder system in place, how each of the input
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files can used and edited by the user to produce a frequency sweep along with how and
where the results are saved. The structure of the code can be seen in Figure 4.1.

Figure 4.1: Image displaying the structure of the main folder of the MPT-Calculator.

This structure is used to produce an MPT spectral signature in the procedure summarised
by the pipeline laid out in Figure 4.2.

In Figure 4.2 the four input files are denoted in green, the functions that are asso-
ciated with obtaining a solution, i.e. that mesh, solve and save are denoted in blue and
the functions that produce an output are denoted in red, the only exception to this is
SingleSolve.py which in addition to producing a solution for the MPT at a single
frequency also exports a vector field for the eddy currents in the .vtk file format. More
detail about the contents of each file in Appendix A.

4.3.2 Algorithm Selection and Available Outputs

As mentioned in Section 4.2.2 there are three algorithms, two of which are related, that are
available in the MPT-Calculator, these correspond to when a single MPT, a full order
or reduced order MPT spectral signature are to be produced4. The chosen algorithm is

4Although the single MPT is a full order MPT spectral signature at a single frequency the differentiation
is made here due to the separate handling of the cases in the code.
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MeshCreation.py

main.py

Checkvalid.py

main.py

ResultsFunctions.py

main.py

FullSolvers.py

PODSolvers.py
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PODFunctions.py

MPTFunctions.py

main.py Object.geoSettings.py

main.py

ResultsFunctions.py

Plotters.py

End

PlotterSettings.py

Figure 4.2: Pipeline of the MPT-Calculator.

selected within the main.py file, this selection determines which of the solver functions
FullSovers.py, PODSolvers.py and SingleSolve.py are called and in turn
which output is produced.

Single MPT: The case when a single MPT is to be produced is a special case of the
procedure presented in Algorithm 4, with the number of frequencies at which to produce
an MPT is F “ 1. The reason for separating the case of a single MPT and a full order MPT
spectral signature is due to the differences in the outputs produced. When this procedure
is chosen the output folder produced has the structure that can be seen in Figure 4.3. This
output shown in Figure 4.3 differs from the full order MPT spectral signature in 2 key
ways, firstly there is no graphical output produced for the single MPT, this is due to the
representation being constructed of a single point for each MPT coefficient. The second
reason is due to the additional .vtk output which is available for the single MPT, when
selected, this exports the field of eddy-currents in a .vtk file format for later visualisation
in Pararview. This option is only available for the single MPT due to the .vtk files being
very large in size. Finally, the inclusion of the file Eddy-current breakdown.txt

is noted, this is an additional output available in all of the procedures discussed and stores
the object specific eddy-current limit which was discussed in Section 2.4.3.

57



Figure 4.3: Image displaying the structure of the output folder produced for the case of a
single MPT.

Figure 4.4: Image displaying the structure of the output folder produced for the case of a
full order MPT spectral signature.

Full order MPT spectral signature: The case when a full order MPT spectral signa-
ture is to be produced involves the direct implementation of the procedure presented in
Algorithm 4. Although F can be any positive integer, significant cost savings in the cal-
culation of the MPT spectral signature are obtained if the reduced order method is applied
for F ą 10. An example of this is presented in Chapter 5 with the cost breakdown docu-
mented in Figure 5.6. When selected the output folder produced has the structure which
can be seen in Figure 4.4. When compared to the outputs which are found in the case
of a single MPT, the full order MPT spectral signature has several additional outputs,
firstly the graphical outputs which show how pMqij and λipMq changes as a function
of ω are included. There are also several files Plotters.py, PlotEditor.py and
PlotterSettings.py, which relate to re-plotting of these graphs and allow for the
easy visualisation of the data.

Reduced order MPT spectral signature: As mentioned above, when an MPT spectral
signature is required at a large number of frequencies F ą 10, there are computational

58



Figure 4.5: Image displaying the structure of the output folder produced for the case of a
reduced order MPT spectral signature.

savings offered by employing the ROM technique described in Section 3.3 for which the
procedure is outlined in Algorithm 5. When selected the output folder produced has the
structure that can be seen in Figure 4.5. When compared to the outputs which are found in
the case of a full order MPT spectral signature, the reduced order MPT spectral signature
has several additional outputs, firstly the additional .csv files located in the Data folder,
the file ErrorBars.csv contains the error certificates derived in Section 3.3.3, the files
PODEigenvalues.csv, PODFrequencies.csv and PODTensors.csv contain
the post-processed full order solutions which were used to create the ROM. The other
difference is the inclusion of the additional plotter functions PODPlotEditor.py,
PODPlotEditorWithErrorBars.py and PlotEditorWithErrorBars.py,
these give more functionality when re-plotting the graphs produced.

4.3.3 Numerical Efficiencies

In addition to being user friendly, the MPT-Calculator benefits from:

• The implementation of the ROM, discussed in Section 3.3. When used, it was
shown to reduce wall clock time by 86% [131], this reduction is affected by the
number of full order solutions used in the generation of the ROM and the number
of output frequencies desired. Further details of computational cost comparisons
will be presented in Chapter 5.

• The parallelised option offered also greatly reduces the wall clock time. Due to the
nature of the problem, many steps such as the for loops solving θp1qi have no bearing
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on each other removing the need for them to be done sequentially. This therefore
allows them to be trivially parallelised across many CPUs.

• Due to the 3-D nature of the problem, for each full order solution there are three
directions which require a solution, this reduces to solving three linear systems
which take the form of that presented in (3.9). Due to construction, all of these sys-
tems have the same stiffness matrix Apωq and differ only by their forcing function
rpθp0,hpq,ωq. This allows the preconditioning of the matrix, which for the BDDC
preconditioner is the most computationally expensive step, to be done only once,
and then be reused for the different forcing functions reducing wall clock time for
the preconditioning step.

• When producing an MPT spectral signature the forcing functions rpθp0,hpq,ωq in
the full order problem are proportional to frequency, this has been exploited in the
implementation by initialising the forcing functions only once for the sweep then
scaling by ω for each full order solution to be be obtained.

• Since the MPT is symmetric, when post-processing the solutions to calculate the
MPT coefficients only half of the off diagonal coefficients are calculated reducing
wall clock time for post-processing.

Exploiting all of the efficiencies above, as well as those of NGSolve, the reduction in
wall clock time is substantial when compared to similar codes.

4.4 Github and YouTube

As discussed previously the MPT-Calculator is an open source software, accessible
at the from a github repository created by the author [134]. Along with the code there
is detailed documentation provided which helps guide the user in how best to interact
with the code, with steps on how to install the code, detailed descriptions of the input
and .geo files and multiple demonstrative examples. In addition to the code and doc-
umentation, there is a series of videos uploaded to the MPT-Calculator YouTube
channel [130]. This series of videos provides a walk through guide on how to install and
use the MPT-Calculator, covering topics such as constructing an object in the .geo
file format, hp-refinement, obtaining additional outputs and post-processing existing out-
puts of the code, and how to export the eddy current fields and visualise these fields in
paraview.
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Figure 4.6: Screenshot of the MPT-Calculator YouTube channel.

Video 1: The first video of the series is an introductory video and the shortest of the five,
this video gives a short overview of what is covered in the series. It discusses the software
dependencies and explains where the relevant software (NGSolve and Python) can be
downloaded from. It also explains how to download and setup the MPT-Calculator
software. Finally, it points the user to the user to the documentation included when down-
loading the MPT-Calculator.

Video 2: The second video in the series is designed to teach the user how to interact
with the software through a demonstrative example showing the user how to obtain an
MPT spectral signature for one the pre-made .geo files. In the video the user is shown
how to use the option to use the ROM for fast computation of an MPT spectral signature
and how to perform hp-refinement to obtain converged results for the object. The video
finishes at the point where a converged MPT spectral signature has been obtained

Video 3: The third video in the series focuses on the outputs of the
MPT-Calculator, the video explains the structure of the output folder, data
and graphs generated in the previous video. It explains how to obtain additional outputs,
which may be of interest to the user, such as, the error certificates, and object dependant
eddy-current limit. The video also covers how to use the basic visualisation tool included
with the code, which allows the user to change which lines are plotted and the look of the
graphs by editing the line styles used when plotting.

Video 4: The focus of video 4 is on how to create an object of interest by combining
primitives using NetGen’s Constructive Solid Geometry (CSG), using the .geo file for-
mat, the example of a simple stud earring is used. The video shows how to set material
properties for the different regions in the domain and explains how to save the mesh cre-
ated so that it can be used to produce an MPT spectral signature. The video finishes with
an MPT spectral signature being obtained for the earring.
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Video 5: The final video in the series shows a simulation to produce an MPT at a single
frequency and shows hows the resulting eddy-current field can be exported as a .vtk
file so that the eddy-currents within the conductor associated with the 3 transmission
problems solved can be visualised. This .vtk file is then opened in paraview and the
user is shown how to apply a threshold filter to remove the outer domain of the simulation
and finally apply a stream tracer to visualise the eddy-currents.

The addition of these supplementary videos to the software is important, as it in-
creases the accessibility of the software significantly, with written instructions alone
commonly being misconstrued. The videos, which have only recently been uploaded
have been and are being utilised, this usage is summarised in Figure 4.7, as can be seen
from the views metric the videos have been viewed 169 times, although by YouTube
standards this is low, in an academic setting this is significant. This is also expected
grow now that the paper [133] has appeared and as the approach becomes better known.
From the watch time metric the content has been viewed for over 9 hrs in total, with the
majority of the time spent viewing video 2 and 4, this also fits with what is expected
since video 2 and 4 are the most technical and are therefore expected to be rewatched,
this gives credence to the statistics and that the theory that viewers purposefully found
the videos and rewatched elements of them.

Figure 4.7: Usage statistics of MPT-Calculator its dedicated YouTube channel as of
16th November 2021.

4.5 Chapter Summary

This chapter presented work related to the development, computational implementa-
tion and support offered for the MPT-Calculator. The chapter provided justifi-
cation for the choice to use NGSolve as the FE framework with which to build the
MPT-Calculator and provides an explicit example of the implementation used to ob-
tain an approximate solution to the problem presented in (3.2). The chapter presents an
overview of the MPT-Calculator, documenting key aims and objectives of the soft-
ware providing insight into the structure, use of, and numerical efficiencies implemented
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in the software. The chapter also discusses support offered for the code in the form of doc-
umentation and video tutorials provided on the MPT-Calculator’s dedicated YouTube
channel. The main novelties of the chapter are: the implementation of novel weak forms
in NGSolve; the efficient implementation of the ROM discussed in Section 3.3, along
with associated a-posteriori error certificates derived in Section 3.3.3; and the produc-
tion and support offered in the open source software the MPT-Calculator. Results
pertaining to the computational savings, along with exploratory results obtained using
the MPT-Calculator will follow in Chapter 5 and are also presented by the author
in [133].
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Chapter 5

Numerical Results for the Reduced
Order Model

5.1 Introductory Remarks

This chapter presents a series of illustrative examples to demonstrate the implementation
and performance of the ROM, with a-posteriori error estimates, proposed in Chapters 3
and 4. The chapter has been adapted and extended from the work presented by the author
in [133].
The key aim of the chapter is to document the accuracy, efficiency and time savings of-
fered by the ROM, with the main novelties of the chapter being as follows. The compar-
ison of linearly vs logarithmically chosen full order snapshots, comparing the associated
singular value from the TSVD for varying numbers of full order snapshots and the relative
error produced in the eigenvalues of the MPT for the two choices. A demonstration of
the accuracy of the ROM where the eigenvalues obtained using the ROM are compared
with those of the full order and analytical solutions for a permeable conducting sphere
are also compared. The application of a-posteriori error certificates to the ROM derived
in Lemma 3.3.1. An investigation into the number of shapshots used in the ROM, along
with the positioning of new snapshots. The application of the ROM and associated error
certificates to a range of simple geometric object. As well as numerical examples of the
scaling results derived in Section 2.7, where the possibility of producing MPT spectral
signatures for objects which vary in size and or conductivity at negligible computational
cost is shown.
The structure of the chapter is as follows; First Section 5.2 contains results for a per-
meable conducting sphere, showing results comparing number of snapshots along with
linearly vs logarithmically chosen snapshots, the accuracy, efficiency and speed will be
benchmarked. In Section 5.3 results for a permeable conducting torus are presented.
Next, in Section 5.4 results for a permeable conducting tetrahedron are presented. Then,
in Section 5.5 results for an inhomogeneous conducting bar are shown. In Section 5.6
contains numerical examples of the scaling results presented in Lemmas 2.7.1 and 2.7.2
for a permeable conducting sphere and a permeable conducting tetrahedron. The Chapter
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is concluded in Section 5.7 with some closing remarks.

5.2 Conducting Permeable Sphere

Consider the case where Bα “ αB is a permeable conducting sphere of radius α “

0.01 m and B is the unit sphere centred at the origin. The sphere is chosen to have
a relative permeability µr “ 1.5 and conductivity σ˚ “ 5.96 ˆ 106 S/m. To produce
the snapshots of the full order model, Ω is set to be a ball 100 times the radius of B 1,
a mesh of 26 385 unstructured tetrahedra, refined towards the object is generated, and
p “ 3 elements are applied. This discretization is chosen since it has already been found
to produce an accurate representation of MrαB, ω, σ˚, µrs for 102 ă ω ă 108 rad/s
by comparing with exact solution of the MPT spectral signature for a sphere [128, 71].
Indeed, provided that the geometry discretisation error is under control, performing p-
refinement of the full order model solution results in exponential convergence to the true
solution [69]. For this mesh, p-refinement has been found to give exponential convergence
ofMrαB, ω, σ˚, µrs down to relative error of less than 0.01% and so further increases in
the size of Ω were not deemed to be required.

Two different schemes for choosing frequencies ω for generating the solution vectors
qpωq required for D in (3.11) are considered. Firstly, linearly spaced frequencies
ωmin ď ωn ď ωmax, n “ 1, 2, . . . , N , are considered where, as in Section 3.3.1, N is
the number of representative full order solution snapshots that follow from using each
value of ωn, in turn, and this choice of samples is denoted by “Lin” in the results. Sec-
ondly, logarithmically spaced frequencies ωmin ď ωn ď ωmax are considered and this
regime is denoted by “Log” in the results.

Considering both linearly and logarithmically spaced frequencies with ωmin “ 1 ˆ

102 rad/s, ωmax “ 1 ˆ 108 rad/s and N “ 9, 13, 17, in turn, to generate the snapshots,
the application of an SVD to D in (3.12) leads to the results shown in Figure 5.1 where
the values have been scaled by σ1 and are strictly decreasing. Observe that “Log” case
produces singular values σi{σ1, which tend to 0 with increasing i, while the “Lin” case
produces σi{σ1, which tend to a finite constant with increasing i. Also shown is the toler-
ance TOL “ 1 ˆ 10´3, i.e. defining M such that σM{σ1 ď TOL ă σM`1{σ1 where the
matrices UM , ΣM and pVHqM are created by taking the first M columns of U, first M
rows of VH and first M rows and columns of Σ.

1Loosely speaking, given the decay of the solutions to (2.6) and (2.7), this truncation is such that the
difference between the continuous solutions on the bounded and unbounded domains is not more than 1%,
but typically much smaller in practice.
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Figure 5.1: Sphere with µr “ 1.5, σ˚ “ 5.96 ˆ 106 S/m, α “ 0.01 m: PODP applied to
the computation ofMrαB, ω, σ˚, µrs showing σi{σ1 for paq linearly spaced ωn and pbq
logarithmically spaced ωn.

The superior performance of logarithmically spaced frequencies over those lin-
early spaced is illustrated in Figure 5.2 using the error measure |epΛipωqq| :“

|Λexact
i pωq ´ ΛPODP

i pωq|{|Λexact
i pωq| with ω, where Λipωq “ λipR̃rαB, ω, σ˚, µrsq `

iλipIrαB, ω, σ˚, µrsq, λip¨q indicates the ith eigenvalue and where the exact solution has
been calculated from (2.14)2. Notice that choosing ωn to be logarithmically spaced for the
representative full order model solution snapshots results in a smaller error compared to
choosing ωn to be linear spaced and also shows an algebraic increase with ω for N ą 5.

102 103 104 105 106 107 108

Frequency (rad/s)

1e-9

1e-7

1e-5

1e-3

1e-1

e(
Λ
i(
ω

))

Log, N = 17

Log, N = 13

Log, N = 9

Log, N = 5

Lin, N = 17

Lin, N = 13

Lin, N = 9

Lin, N = 5

Figure 5.2: Sphere with µr “ 1.5, σ˚ “ 5.96 ˆ 106 S/m, α “ 0.01 m: PODP applied to
the computation ofMrαB, ω, σ˚, µrs showing variation of epΛipωqq with ω for linearly
and logarithmically spaced frequencies.

2Further details of the error associated with the PODP approximation for this example can be found in
the documentation of the MPT-Calculator [134].
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Further tests reveal that the accuracy of the PODP usingN “ 9, 13, 17 and logarithmically
spaced ωn remains similar to that shown in Figure 5.2 for TOL ď 1ˆ 10´3 for this prob-
lem. Next, in Figure 5.3, a comparison of λipR̃rαB, ω, σ˚, µrsq and λipIrαB, ω, σ˚, µrsq,
each with ω, for the full order model, PODP using N “ 9 and the exact solution. Again,
the results for i “ 1, 2, 3 are identical and, hence, only i “ 1 is shown. In this figure,
excellent agreement can be observed between PODP, the full order model solution and
exact solution.
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Figure 5.3: Sphere with µr “ 1.5, σ˚ “ 5.96 ˆ 106 S/m, α “ 0.01 m: PODP applied
to the computation ofMrαB, ω, σ˚, µrs with N “ 9 and TOL “ 1 ˆ 10´4 showing paq
λipR̃rαB, ω, σ˚, µrsq and pbq λipIrαB, ω, σ˚, µrsq each with ω.

In Figure 5.4, the certification of the output pR̃PODP rαB, ω, σ˚, µrsqii ˘ p∆rωsqii (sum-
mation of repeated indices is not implied) and pIPODP rαB, ω, σ˚, µrsqii˘p∆rωsqii, each
with ω are shown. These are obtained using the a-posteriori error estimate in Lemma 3.3.1
and computed using the technique described in Section 3.3.3 for the case where i “ 1 and
with N “ 17, 21 and TOL “ 1ˆ 10´6. Similar certification can be obtained for the other
tensor coefficients. The output certification is observed to be almost indistinguishable
from the the MPT coefficients obtained with PODP for low frequencies in both cases and
the error estimates rapidly tend to 0 for all ω as N is increased. Note that the a-posteriori
error bounds always vanish when ω corresponds to an ωn used for the representative
full order solution snapshots. The larger error estimates for higher frequencies indicate
that the MPT coefficients obtained by PODP for these frequencies is less reliable than
those for smaller frequencies. However, smaller error bounds and increased reliability is
achieved by increasing N as shown in Figure 5.4 pcq and pdq compared to Figure 5.4 paq
and pbq. Note that TOL “ 1 ˆ 10´6 is chosen as larger tolerances lead to larger error
estimates, however, this reduction in tolerance does not substantially affect the computa-
tional cost of the ROM. Although the effectivity indices p∆rωsq11{|pRrαB, ω, σ˚, µrs ´
RPODP rαB, ω, σ˚, µrsq11| and p∆rωsq11{|pIrαB, ω, σ˚, µrs´IPODP rαB, ω, σ˚, µrsq11|)
of the PODP with respect to the full order model are clearly larger at higher frequencies, it
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is emphasised that they are computed at negligible additional cost, they converge rapidly
to the MPT coefficients obtained with PODP as N is increased and give credibility in the
PODP solution without the need of performing additional full order model solutions to
validate the ROM.
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(c) pR̃rαB, ω, σ˚, µrsq11, N “ 21 (d) pIrαB, ω, σ˚, µrsq11, N “ 21

Figure 5.4: Sphere with µr “ 1.5, σ˚ “ 5.96 ˆ 106 S/m, α “ 0.01 m: PODP ap-
plied to the computation ofMrαB, ω, σ˚, µrs with TOL “ 1ˆ 10´6 showing the PODP
solution, full order model solutions and certification of the output p¨q ˘ p∆rωsq11 for
paq pR̃rαB, ω, σ˚, µrsq11 using N “ 17, pbq pIrαB, ω, σ˚, µrsq11 using N “ 17, pcq
pR̃rαB, ω, σ˚, µrsq11 using N “ 21 and pdq pIrαB, ω, σ˚, µrsq11 using N “ 21, each
with ω.

Alternatively, smaller error certificates and increased fedility can be achieved by choosing
the additional ωn for the representative offline solution snapshots corresponding to where
p∆rωsqij is largest and, if desired, this could be used as part of an adaptive process in a
similar manner to [55]. In Figure 5.5 the effect of adding an additional, targeted, snapshot
at the value of ω where

ř3
i“1

ř3
j“1p∆rωsqij is largest is shown. Initially, setting N “ 17

and TOL “ 1 ˆ 10´6, the results in Figure 5.5 (a) and (b) are obtained, where the error
certificates are found to be largest at ω “ 7.08ˆ107 rad/s. Adding an additional snapshot
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ωn “ 7.08 ˆ 107 rad/s, such that N “ 18 and TOL “ 1 ˆ 10´6, reduces the size of
the error certificates shown in Figure 5.5 (c) and (d). Comparing, Figure 5.4 (c), (d),
and Figure 5.5 (c), (d), the reduction in p∆rωsqij using a single targeted snapshot is far
greater than merely increasing the number of logarithmically spaced snapshots. Note that
when additional snapshots are produced, the projection UM , must be recomputed. This
means the adaptive scheme has additional computational overheads of recomputing the
projection UM for each additional snapshot (or set of snapshots).
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(a) pR̃rαB, ω, σ˚, µrsq11, N “ 17 (b) pIrαB, ω, σ˚, µrsq11, N “ 17
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(c) pR̃rαB, ω, σ˚, µrsq11, N “ 18 (d) pIrαB, ω, σ˚, µrsq11, N “ 18

Figure 5.5: Sphere with µr “ 1.5, σ˚ “ 5.96 ˆ 106 S/m, α “ 0.01 m: PODP ap-
plied to the computation ofMrαB, ω, σ˚, µrs with TOL “ 1ˆ 10´6 showing the PODP
solution, full order model solutions and certification of the output p¨q ˘ p∆rωsq11 for
paq pR̃rαB, ω, σ˚, µrsq11 using N “ 17, pbq pIrαB, ω, σ˚, µrsq11 using N “ 17, pcq
pR̃rαB, ω, σ˚, µrsq11 using N “ 18 and pdq pIrαB, ω, σ˚, µrsq11 using N “ 18, each
with ω.

The computational speed-ups offered by using the PODP compared to a frequency sweep
performed with the full order model are shown in Figure 5.6 paq where N “ 9, 13, 17 and
logarithmically spaced ωn are chosen with ωmin “ 1 ˆ 102 rad/s, ωmax “ 1 ˆ 108 rad/s,
as before. For the comparison, the number of output points N0 produced in a frequency
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sweep is varied and the time taken to produce each of these frequency sweeps is measured
when using a 2.9 GHz quad core Intel i5 processor3 and also show the percentage speed up
offered by each of these PODP sweeps. Figure 5.6 pbq shows the break down of the com-
putational time for the offline and online stages of the PODP for the case where N “ 13.
Note, in particular, that the computational cost increases very slowly with N0 and that
the additional cost involved in computing the output certification is small. The break-
down of computational costs for other N is similar. The implementation in NGSolve,
and in the MPT-calculator tool, is parallelised and further reductions in time can be
achieved by increasing the number of cores used. In particular, in NGSolve parallelism
is exploited in many aspects, which include meshing, matrix assembly, linear algebra and
iterative solution of the linear systems, and is further exploited in MPT-calculator

through the computation of the representative full order model solution snapshots, com-
putation of the ROM solutions at different output frequencies, computation of the PODP
MPT coefficients and calculation of the a-posteriori error estimate.
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Figure 5.6: Sphere with µr “ 1.5, σ˚ “ 5.96 ˆ 106 S/m, α “ 0.01 m: PODP applied
to the computation of MrαB, ω, σ˚, µrs with TOL “ 1 ˆ 10´6 showing, for different
numbers of outputs N0, paq sweep computational time for N “ 13, 17, 21 compared with
full order and pbq a typical break down of the offline and online computational times for
N “ 13.

5.3 Conducting Permeable Torus

Next, consider Bα “ αB to be a torus where B has major and minor radii a “ 2

and b “ 1, respectively, α “ 0.01 m and the object is permeable and conducting with
µr “ 1.5, σ˚ “ 5 ˆ 105 S/m. The object is centred at the origin so that it has rota-
tional symmetry around the e1 axis, therefore, MrαB, ω, σ˚, µrs has independent coef-

3In subsequent chapters a more powerful machine will be used due to the large computational overhead
for producing so many frequency sweeps.
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ficients pMrαB, ω, σ˚, µrsq11 and pMrαB, ω, σ˚, µrsq22 “ pMrαB, ω, σ˚, µrsq33, and,
thus, R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs each have 2 independent eigenvalues for
each ω. Hence, there are only two independent curves for λipR̃rαB, ω, σ˚, µrsq and
λipIrαB, ω, σ˚, µrsq, as functions of ω. To compute the full order model, Ω is set to
be a sphere of radius 100, centred at the origin and containing B, a mesh of 26 142

unstructured tetrahedra, refined towards the object is generated, and p “ 3 elements
are applied. This discretisation has already been found to produce an accurate repre-
sentation of MrαB, ω, σ˚, µrs for the frequency range with ωmin “ 1 ˆ 102 rad{s and
ωmax “ 1ˆ 108 rad{s with the full order model.

The ROM is constructed using N “ 13 representative full order solution snapshots that
follow from using each value of the logarithmically spaced ωn in turn and TOL “ 1 ˆ

10´4. Figure 5.7 shows the results for λipR̃rαB, ω, σ˚, µrsq and λipIrαB, ω, σ˚, µrsq,
each with ω, for both the full order model and the PODP. The agreement is excellent in
both cases.
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Figure 5.7: Torus with major and minor radii of a “ 2 and b “ 1, respectively, and
µr “ 1.5, σ˚ “ 5 ˆ 105 S/m, α “ 0.01 m: PODP applied to the computation of
MrαB, ω, σ˚, µrs N “ 13 and TOL “ 1 ˆ 10´4 showing paq λipR̃rαB, ω, σ˚, µrsq
and pbq λipIrαB, ω, σ˚, µrsq, each with ω.

In Figure 5.8 the certification of the output pR̃PODP rαB, ω, σ˚, µrsqii ˘ p∆rωsqii (no
summation over repeated indices implied) and pIPODP rαB, ω, σ˚, µrsqii ˘ p∆rωsqii
are shown, each with ω. These are obtained using the a-posteriori error estimate in
Lemma 3.3.1 and computed using the technique described in Section 3.3.3 for the case
where N “ 17 and TOL “ 1ˆ 10´6. Note the increase in the number of snapshots from
N “ 13 to N “ 17 and the reduction in tolerance to ensure a small error estimate.
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Figure 5.8: Torus with µr “ 1.5, σ˚ “ 5 ˆ 105 S/m, α “ 0.01 m: PODP applied to
the computation ofMrαB, ω, σ˚, µrs with TOL “ 1 ˆ 10´6 and N “ 17 showing the
PODP solution and certification of the output p¨q ˘ p∆rωsqii for paq pR̃rαB, ω, σ˚, µrsqii,
pbq pIrαB, ω, σ˚, µrsqii, each with ω.

5.4 Conducting Permeable Tetrahedron

The third object considered is where Bα “ αB is a conducting permeable tetrahedron.
The vertices of the tetrahedron B are chosen to be at the locations

v1 “

¨

˝

0

0

0

˛

‚, v2 “

¨

˝

7

0

0

˛

‚, v3 “

¨

˝

5.5

4.6

0

˛

‚ and v4 “

¨

˝

3.3

2

5

˛

‚, (5.1)

the object size is α “ 0.01 m and the tetrahedron is permeable and conducting with µr “ 2

and σ˚ “ 5.96ˆ 106 S/m. The object does not have rotational or reflectional symmetries,
therefore, MrαB, ω, σ˚, µrs has 6 independent coefficients and, thus, R̃rαB, ω, σ˚, µrs
and IrαB, ω, σ˚, µrs each have 3 independent eigenvalues for each ω. To compute the
full order model, Ω is set to be a cube with sides of length 200 centred about the origin, a
mesh of 21 427 unstructured tetrahedra, refined towards the object is generated, and p “ 3

elements are applied. This discretisation has already been found to produce an accurate
representation ofMrαB, ω, σ˚, µrs for the frequency range with ωmin “ 1 ˆ 102 rad{s
and ωmax “ 1ˆ 108 rad{s.

The ROM is constructed using N “ 13 representative full order solution snapshots that
follow from using each value of the logarithmically spaced ωn in turn and TOL “ 1 ˆ

10´4. Figure 5.9 shows the results for λipR̃rαB, ω, σ˚, µrsq and λipIrαB, ω, σ˚, µrsq,
each with ω, for both the full order model and the PODP. The agreement is excellent in
both cases.
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Figure 5.9: Irregular tetrahedron with µr “ 2, σ˚ “ 5.96ˆ 106 S/m, α “ 0.01 m: PODP
applied to the computation ofMrαB, ω, σ˚, µrs N “ 13 and TOL “ 1 ˆ 10´4 showing
paq λipR̃rαB, ω, σ˚, µrsq and pbq λipIrαB, ω, σ˚, µrsq, each with ω.
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Figure 5.10: Irregular tetrahedron with µr “ 2, σ˚ “ 5.96 ˆ 106 S/m, α “ 0.01

m: PODP applied to the computation of MrαB, ω, σ˚, µrs with TOL “ 1 ˆ 10´6

and N “ 21 showing the PODP solution and certification of the output p¨q ˘ p∆rωsqij
for paq pR̃rαB, ω, σ˚, µrsqij , with i “ j pbq pIrαB, ω, σ˚, µrsqij , with i “ j, pcq
pR̃rαB, ω, σ˚, µrsqij , with i ‰ j, pdq pIrαB, ω, σ˚, µrsqij with i ‰ j, each with ω.
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In Figure 5.10 the certification of the output pR̃PODP rαB, ω, σ˚, µrsqij ˘ p∆rωsqij and
pIPODP rαB, ω, σ˚, µrsqij˘p∆rωsqij are shown, both with ω, for i “ j and i ‰ j obtained
using the a-posteriori error estimate in Lemma 3.3.1 and computed using the technique
described in Section 3.3.3 for the case where N “ 21 and TOL “ 1ˆ 10´6. Once again,
increasing the number of snapshots from N “ 13 to N “ 21 and reducing the tolerance
to ensure tight certificates bounds, except at large frequencies.

5.5 Inhomogeneous Conducting Bar

As a final example consider Bα “ αB to be the inhomogeneous conducting bar made
up from two different conducting materials. The size, shape and materials of this ob-
ject are the same as those presented in Section 6.1.3 of [74]. This object has rota-
tional and reflectional symmetries such that MrαB, ω, σ˚, µrs has independent coeffi-
cients pMrαB, ω, σ˚, µrsq11, pMrαB, ω, σ˚, µrsq22 “ pMrαB, ω, σ˚, µrsq33 and, thus,
R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs each have 2 independent eigenvalues for each ω.
To compute the full order model, Ω is set to be a sphere of radius 100, centred about
the origin, a mesh of 30 209 unstructured tetrahedra, refined towards the object is gen-
erated, and p “ 3 elements are applied. This discretisation has already been found to
produce an accurate representation of MrαB, ω, σ˚, µrs for the frequency range with
ωmin “ 1ˆ 102 rad{s and ωmax “ 1ˆ 108 rad{s.

The ROM is constructed using N “ 13 representative full order solution snapshots that
follow from using each value of the logarithmically spaced ωn in turn and TOL “

1ˆ10´4. Figure 5.11 shows the results for λipR̃rαB, ω, σ˚, µrsq and λipIrαB, ω, σ˚, µrsq,
each with ω, for both the full order model and the PODP. The agreement is excel-
lent in both cases. The behaviour of λipR̃rαB, ω, σ˚, µrsq with ω for the inhomoge-
neous conducting bar is different to that for a homogeneous object, showing the pres-
ence of multiple non-local points of inflection rather being sigmoid with ω. Similarly,
λipIrαB, ω, σ˚, µrsq, for the inhomogeneous conducting bar, shows the presence of local
maxima rather than a single maxima. Further details about the behaviour of MPT spectral
signature of inhomogeneous objects can be found in [74].

In Figure 5.12 the output certificates pR̃PODP rαB, ω, σ˚, µrsqii˘p∆rωsqii (no summation
over repeated indices implied) and pIPODP rαB, ω, σ˚, µrsqii ˘ p∆rωsqii are shown, both
with ω. These are obtained using the a-posteriori error estimates in Lemma 3.3.1 and
computed using the technique described in Section 3.3.3 for the case where N “ 23 and
TOL “ 1ˆ 10´6. Note that increasing the number of snapshots from N “ 13 to N “ 23

and reducing the tolerance to ensure small error estimates, except at large frequencies.
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Figure 5.11: Inhomogeneous bar with two distinct conductivities (see Section 6.1.3
of [74]): PODP applied to the computation of MrαB, ω, σ˚, µrs N “ 13 and TOL “
1ˆ 10´4 showing paq λipR̃rαB, ω, σ˚, µrsq and pbq λipIrαB, ω, σ˚, µrsq, each with ω.
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Figure 5.12: Inhomogeneous bar with two distinct conductivities (see Section 6.1.3
of [74]): PODP applied to the computation of MrαB, ω, σ˚, µrs with N “ 23

showing the PODP solution and certification of the output p¨q ˘ p∆rωsqii for paq
pR̃rαB, ω, σ˚, µrsqii, pbq pIrαB, ω, σ˚, µrsqii, each with ω.
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5.6 Numerical Examples of Scaling

In this section the application of the results presented in Section 2.7 are illustrated.

5.6.1 Scaling of Conductivity

As an illustration of Lemma 2.7.1, consider a conducting permeable sphere Bα “ αB

where α “ 0.01 m with materials properties µr “ 1.5 and σp1q˚ “ 1 ˆ 107 S/m and a
second object, which has the same shape, size and permeability as the first except that
σ
p2q
˚ “ sσ

p1q
˚ “ 10σ

p1q
˚ . In Figure 5.13, a comparison for the full order computations

of MrαB, ω, σp1q˚ , µrs and MrαB, ω, σp2q˚ , µrs with that obtained from (2.30) is made.
Observe that the translation predicted by (2.30) is in excellent agreement with the full
order model solution forMrαB, ω, σp2q˚ , µrs.
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Figure 5.13: Sphere with µr “ 1.5, σp1q˚ “ 1 ˆ 107 S/m , α “ 0.01 m and sec-
ond sphere, which is the same as the first except that σp2q˚ “ sσ

p1q
˚ “ 10σ

p1q
˚ : showing

the translation predicted by (2.30) compared with the full order model solutions for paq
λipR̃rαB, ω, σ˚, µrsq and pbq λipIrαB, ω, σ˚, µrsq.

5.6.2 Scaling of Object Size

To illustrate Lemma 2.7.2, consider a conducting permeable tetrahedron Bp1qα “ αp1qB “

0.01B with vertices as described in Section 5.4 and material properties µr “ 1.5 and
σ˚ “ 1 ˆ 106 S/m. Then, consider a second object Bp2qα “ αp2qB “ sαp1qB “ 0.015B,
which, apart from its size, is otherwise the same as Bp1qα . In Figure 5.14, a comparison
for the full order computations ofMrαp1qB,ω, σ˚, µrs andMrαp2qB,ω, σ˚, µrs with that
obtained from (2.31) is made. Observe that the translation and scaling predicted by (2.31)
is in excellent agreement with the full order model solution forMrαp2qB,ω, σ˚, µrs.
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Figure 5.14: Tetrahedron Bp1qα “ αp1qB “ 0.01B with µr “ 1.5 and σ˚ “ 1 ˆ 106 S/m,
α “ 0.01 m and a second tetrahedron, which is the same as the first except that
B
p2q
α “ αp2qB “ sαp1qB “ 0.015B: showing the translation and scaling predicted by

(2.31) compared with the full order model solutions for paq λipR̃rαB, ω, σ˚, µrsq and pbq
λipIrαB, ω, σ˚, µrsq.

5.7 Chapter Summary

In this chapter a series of illustrative examples for the implementation of the ROM, with a-
posteriori error estimates, was presented, which demonstrated the accuracy and efficiency
of the method. First, the choice of linearly vs logarithmically chosen full order snapshots
was compared, where the associated singular values from the TSVD for varying numbers
of full order snapshots and the relative error produced in the eigenvalues of the MPT for
a conducting sphere was compared for the two choices. Second, the results of an im-
plementation of the a-posteriori error certificates derived in Lemma 3.3.1 was presented,
showing that error certificates can be reduced in size by increasing the number of snap-
shots and a brief description was included on how an adaptive scheme may be created
with the error certificates being used to inform the choices of future snapshots. Third, the
time savings offered with the implementation of the ROM was discussed. Fourth, a series
of illustrative examples producing MPT spectral signatures, using the ROM, for a range
of homogeneous geometric objects, along with presenting results for an inhomogenous
conducting bar, showing error certificates for all cases were presented. Lastly, numerical
examples of the scaling results derived in Section 2.7 were presented, showing the possi-
bility of producing spectral signatures for objects which vary in size and or conductivity
at negligible computational cost.
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Chapter 6

Decomposing the Inverse Problem to
one of Object Location and Object
Classification

6.1 Introductory Remarks

This chapter describes the decomposition of the inverse problem, to one of object location
and object classification, the latter of which will be based on object characterisations that
are invariant under position and rotation, which can be obtained from the MPT coeffi-
cients.
The chapter has been adapted and extended from the work presented by the author in [76].
The key novelty of the chapter is the proposal of several candidate MPT spectral signature
invariants, which would make ideal ML features including: tensor eigenvalues; tensor in-
variants, both principal and deviatoric; and eigenvalues of the commutator or the real and
imaginary part of the MPT.
The structure of the chapter is as follows: In Section 6.2, the decomposition of the inverse
problem into one of location and characterisation is considered and methods for determin-
ing object location via a MUSIC algorithm along with a method for determining MPT
coefficients by solving an overdetermined linear system are presented. In Section 6.3,
candidate MPT spectral signature invariants are presented and discussed, these include
tensor eigenvalues, tensor invariants, both principal and deviatoric, and eigenvalues of the
commutator. The chapter is concluded in Section 6.4 with some closing remarks.

6.2 Inverse Problem

Recall from Section 2.2.2 that the inverse problem is to determine the location, shape and
material properties (σ˚ and µ˚) of the conducting objectBα from measurements of pHα´

H0qpxq taken at a range of locations x in the air. A traditional approach to the solution
of this inverse problem involves creating a discrete set of voxels, each with unknown
σ and µ, and posing the solution to the inverse problem as an optimisation process in
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which σ and µ are found through minimisation of an appropriate functional e.g. [122].
From the resulting images of σ and µ one then attempts to infer the shape and position
of the object. However, this problem is highly ill-posed [24] and presents considerable
challenges mathematically and computationally in the case of limited noisy measurement
data. Instead, the problem may be simplified by first splitting the problem into two, one
of location, and one of classification. In the following sections the combination of a
MUSIC (multiple signal classification) algorithm for location and measurement of the
MPT coefficients will be discussed.

6.2.1 Location of a Hidden Object

The task of determining the MPT of a hidden object separates in to first determining the
position of the object z and secondly determining the MPT coefficients from the mea-
surements. The former can be done using a range of methods, some common techniques
include the MUSIC algorithm proposed by [13, 14], for which a method for multiple
object location has been presented by Ledger et al in [74]; A voxelated approach such
as commonly employed for imaging conductivity in MIT (previously discussed in Chap-
ter 1) could be used to determine a targets location (only) rather than seeking an accurate
conductivity distribution by using a coarse voxelated discretisation. Alternatively an ex-
tension of the approach described in Section 6.2.2, where both the coefficients of the MPT
and the object’s location are sought together by posing a functional to be minimized for
both could be employed e.g. [86, 87].

6.2.2 Measurement of MPT Coefficients

In the electrical engineering community, the measurement of MPT coefficients as a func-
tion of frequency is sometimes called MPT spectroscopy and procedures have been devel-
oped for anti-personal landmine detection [94, 10, 33, 7] as well as for MPT measurement
and real time classification for security screening [86, 87, 82, 83, 141] and other applica-
tions. The basic idea is that background fields Hpmq

0 , m “ 1, . . . ,Me, from Me different
exciters are generated, in turn, and measurements of the resulting magnetic field pertur-
bation pHα´H

pmq
0 qpxq caused by the presence of a hidden conducting permeable object

are made at sufficiently many positions x around the object for a range of exciting fre-
quency. Considering a single frequency excitation, the perturbed magnetic field is usually
measured as an induced voltage in the form

Vind
nm “

ż

Cpnq
n ¨ pHα ´H

pmq
0 qpxqdx, (6.1)

where n “ 1, . . . ,Mr correspond to the different receiver coils and Cpnq is an appropriate
surface related to coil n [71]. In light of (2.4), and the MPT object characterisation, we
see that the leading order term gives an approximation to Vind

nm and the accuracy of the
approximation will depend on the uniformity of H0pzq as well as the object size.The
measurements Vind, measured

nm will also have unavoidable errors and noise from a range of
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sources, accepting these errors and noise, determining the MPT’s coefficients from an
over determined linear system of the form

Au “ b, (6.2)

using least squares where Roman fonts are used for matrices and vectors in linear systems.
In the above, u, A and b have the entries

puqj “uj “ pMqqr,

pAqij “Aij “ pH
pmq
0 pzqqr

ż

Cpnq
pD2

xGpx, zqnqqdx,

pbqi “bi “

ż

Cpnq
n ¨ pHα ´H

pmq
0 qpxqdx « V ind, measured

nm ,

where i “ pn´1qMe`m, m “ 1, . . . ,Me, n “ 1, . . . ,Mr j “ 3pq´1q`r, q, r “ 1, 2, 3.
In addition, the known symmetry ofM can be used to reduce the number of complex un-
knowns in (6.2) from 9 to 6. Clearly, we need the product MeMr ą 6 in order for the
system to be over determined, however, it is not only important that we have sufficiently
many measurements, but also that the location of emitting and receiving coils are correctly
chosen so that all of the coefficients ofM can be determined. For further details, and an
algorithm of how this can be automated, see [71]. The discrete, measured spectral signa-
ture ofM follows by repeating the above process using Vind, measured

mn at different excitation
frequencies ωm, m “ 1, . . . ,M 1 and, depending on the system and application, errors of
around 1-5% can be expected with current systems [32, 82, 83]. Note that using a higher
order expansion of (2.4), derived in [72], will lead to an improved approximation of Vind

nm

in (6.1), particularly if H0pzq is non-uniform, and allow the coefficients of generalised
MPTs to be found.

6.3 MPT Spectral Signature Invariants for Object Clas-
sification

Bishop [20] describes the process of classification as taking an input vector x and assign-
ing it to one of K discrete classes Ck, k “ 1, . . . , K. For example, in security screening,
the simplest form of classification with K “ 2 involves only the classes threat (C1) and
non-threat (C2), and one with a higher level of fidelity might include the classes of metal-
lic objects such as key (C1), coin (C2), gun (C3), knife (C4) ... where the class numbers
are assigned as desired. He recommends that it is convenient (in probabilistic methods of
classification) to use a 1-of-K coding system in which the entries in a vector t P RK take
the form

ti :“

"

1 if i “ k

0 otherwise
,

1Note also, M is distinguished from the number of modes in the ROM and subsequently refers to the
number of output frequencies, previously given the symbol F in Chapter 5. F will subsequently be used
when describing feature for ML classification.
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if the correct class is Ck. Requiring that we always have
řK
k“1 tk “ 1, then this approach

has the advantage that tk can be interpreted as the probability that the correct class is
Ck. In this section, we focus on alternative choices of the F features in the input vector
x P RF for the classifier. In subsequent chapters we will compare the performance of
different ML classifiers based for these alternatives. The focus here is on suitable features
that are invariant to rotation of the object. Note that the rank 2 MPT, and hence the invari-
ants considered below, are invariant to the position of the object, which was previously
discussed in Chapter 2.

6.3.1 Tensor Eigenvalues

Recall that the diagonal matrices ΛR̃rαB,ωm,σ˚,µrs and ΛIrαB,ωm,σ˚,µrs contain the eigen-
values of R̃rαB, ωm, σ˚, µrs and IrαB, ωm, σ˚, µrs, respectively, and satisfy the object
rotation invariant property

λipR̃rαB, ωm, σ˚, µrsq “ pΛR̃rαB,ωm,σ˚,µrsqii

“ pΛR̃rαRpBq,ωm,σ˚,µrsqii “ λipR̃rαRpBq, ωm, σ˚, µrsq,

λipIrαB, ωm, σ˚, µrsq “ pΛIrαB,ωm,σ˚,µrsqii

“ pΛIrαRpBq,ωm,σ˚,µrsqii “ λipIrαRpBq, ωm, σ˚, µrsq,

at each discrete frequencies ωm, m “ 1, . . . ,M in the MPT spectral signature, where R

is an orthogonal matrix describing the object rotation (see also Section 2.3.1). Thus, one
option is to select the features for the classifier as

pxqi “ xi “

"

λjpR̃rαB, ωm, σ˚, µrsq, i “ j ` pm´ 1qM

λjpIrαB, ωm, σ˚, µrsq, i “ j ` pm` 2qM
,

where j “ 1, 2, 3 and m “ 1, . . . ,M so that F “ 6M . This is particularly attractive,
since any hidden object is likely to be in some unknown rotated configuration compared
to canonical choice of the corresponding object in the library and, as the eigenvalues
are invariant under object rotation, knowledge of the orthogonal rotation matrix R is
not needed to perform the classification. Furthermore, in practice, measurements lead to
noisy tensor coefficients in the formM` Er ` iEi where Er ` iEi is a complex symmetric
rank 2 tensor and represents the noise. To understand the effects of noise, consider for
simplicity a symmetric real matrix A corrupted by a real symmetric E, applying results
on eigenvalue perturbations [42] it can be shown that

3
ÿ

i“1

pλipA` Eq ´ λipAqq
2
ď }E}2F ,

so that the eigenvalues λi of A are similar to those of A ` E provided E represents the
low-moderate noise. However, for an eigenvalue-eigenvector pair λ1,q1 [42]

distpq1pAq,q1pA` Eqq ď
4

d
CpEq,
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where d “ minµPλipAq,µ‰λi |λi ´ µ| ą 0 and CpEq is a constant depending on E. In other
words, if the eigenvalues are close (so d is small), the eigenvectors will be badly effected
by the noise. The same applies to the real and imaginary parts ofM` Er ` iEi when the
coefficients are arranged as matrices.

6.3.2 Tensor Invariants

While λipR̃rαB, ωm, µr, σ˚sq, λipIrαB, ωm, µr, σ˚sq, m “ 1, . . . ,M , are invariant un-
der object rotation, their behaviour is well understood and they behave well for noisy
measurements, classifying objects on the basis of these may still cause practical is-
sues. Firstly, care is needed with the ordering of the eigenvalues since choosing a
simple rule such as λ1 ě λ2 ě λ3 may lead to confusing results. For example, if
the object has rotational and/or reflectional symmetries, one might find there are only
2 independent eigenvalues at each frequency in the real and imaginary parts of the
MPT, then, applying the aforementioned rule independently to R̃rαB, ωm, σ˚, µrs and
IrαB, ωm, σ˚, µrs could lead to λ2pR̃rαB, ωm, σ˚, µrsq “ λ3pR̃rαB, ωm, σ˚, µrsq and
λ1pIrαB, ωm, σ˚, µrsq “ λ2pIrαB, ωm, σ˚, µrsq. Secondly, there is a danger that dif-
ferent ordering rules are applied in the creation of the training library for the classifier
compared to that used for testing some new candidate object. To overcome this, tensor
invariants can be used, which are independent of how λ1, λ2 and λ3 are assigned. One
possibility are the principal tensor invariants, which, for a rank 2 tensorA, are (e.g. [22])

I1pAq :“tr pAq “ λ1pAq ` λ2pAq ` λ3pAq, (6.3a)

I2pAq :“
1

2

`

tr pAq2 ´ tr pA2
q
˘

“ λ1pAqλ2pAq ` λ1pAqλ3pAq ` λ2pAqλ3pAq, (6.3b)

I3pAq :“det pAq “ λ1pAqλ2pAqλ3pAq, (6.3c)

which contain the same information as the tensor’s eigenvalues λipAq and can also be
computed from (6.3). They satisfy

λ3
´ I1pAqλ2

` I2pAqλ´ I3pAq “ 0, (6.4)

are rotationally invariant and, like the eigenvalues, are less-susceptible to noise than the
tensor’s eigenvectors.
Borrowing notation from continuum mechanics (e.g. [22]), I1pAq is related to the hydro-
static part of A given by H “ 1

3
trpAqI, where I is the identity matrix and is associated

with the extent to which the operation Hv stretches or shrinks the magnitude of v. The
invariant I2pAq is often, but not exclusively, related to the deviatoric part of A given by
S “ A´H describing the extent to which Sv distorts the components of v. The invariant
I3pAq describes the extent of coupling of the two aforementioned cases and whether or
not the tensor A, when arranged as a 3 ˆ 3 matrix, is singular or not. In addition, when
applied to (limiting cases) of R̃rαB, ωm, σ˚, µrs and IrαB, ωm, σ˚, µrs, it has a further
physical interpretation: Recall that the product αB implies that there are an infinite num-
ber of ways to choose α ! 1 and B, which still result in the same αB. For example,
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if |B| is chosen such that det pN 0rαB, µrsq “ I3pN 0rαB, µrsq “ α9 then this invariant
provides object size information, while, in general I3pN 0rαB, µrsq, will be a function of
|B|, α and µr. Similarly, I3pR̃rαB, ωm, σ˚, µrsq and I3pIrαB, ωm, σ˚, µrsq will be func-
tions of |B|, α, ωm, σ˚ and µr. Thus, I3pR̃rαB, ωm, σ˚, µrsq and I3pIrαB, ωm, σ˚, µrsq,
for fixed α, ωm, σ˚ and µr, will scale like |B|3. This in turn will lead to larger maxima
for I3pIrαB, ω, σ˚, µrsq, when considering objects with a larger volume, this phenomena
can be observed and is commented on in Chapter 7. Using principal invariants, we could
then select the features as

xi “

"

IjpR̃rαB, ωm, σ˚, µrsq, i “ j ` pm´ 1qM

IjpIrαB, ωm, σ˚, µrsq, i “ j ` pm` 2qM
, (6.5)

where j “ 1, 2, 3 and m “ 1, . . . ,M so that F “ 6M .
As an alternative to the principal invariants stated in (6.3), the alternative set of invariants
(e.g. [22])

I1pAq :“tr pAq “ λ1pAq ` λ2pAq ` λ3pAq, (6.6a)

J2pAq :“
1

2
tr pS2

q “
1

3
I1pAq2 ´ I2pAq “

1

2
ps1pSq2 ` s2pSq2 ` s3pSq2q

“
1

2
ppλ1pAq ´ I1pAq{3q2 ` pλ2pAq ´ I1pAq{3q2 ` pλ3pAq ´ I1pAq{3q2q,

(6.6b)

J3pAq :“det pSq “ 2

27
I1pAq3 ´

1

3
I1pAqI2pAq ` I3pAq “

1

3
s1pSqs2pSqs3pSq

“pλ1pAq ´ I1pAq{3qpλ2pAq ´ I1pAq{3qpλ3pAq ´ I1pAq{3q, (6.6c)

where λipAq “ sipAq ` I1pAq{3 can be used. These invariants satisfy

s3
´ J2pAqs´ J3pAq “ 0,

and the roots of this equation are the eigenvalues si of S. The invariants J2pAq and J3pAq
are both related to the extent to which Sv distorts the components of v. In this case, we
can select the features as

xi “

$

’

’

’

&

’

’

’

%

I1pR̃rαB, ωm, σ˚, µrsq, i “ 1` pm´ 1qM

JjpR̃rαB, ωm, σ˚, µrsq, i “ j ` pm´ 1qM

I1pIrαB, ωm, σ˚, µrsq, i “ 1` pm` 2qM

JjpIrαB, ωm, σ˚, µrsq, i “ j ` pm` 2qM

, (6.7)

where j “ 2, 3 and m “ 1, . . . ,M and F “ 6M . One potential advantage of using (6.6)
as a set of features is that, for the case where R̃rαB, ωm, σ˚, µrs and IrαB, ωm, σ˚, µrs
are each a multiple of identity (such as for the MPT characterisation of a cube or sphere),
J2 and J3 vanish.
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Figure 6.1: Irregular tetrahedron B with vertices (5.1), α “ 0.01 m µr “ 2 and σ˚ “
5.96ˆ 106 S/m: Comparison of pR̃rαB, ω, σ˚, µrsqij and λipR̃rαB, ω, σ˚, µrsq.

6.3.3 Eigenvalues of the Commutator of R̃rαB, ω, σ˚, µrs and
IrαB, ω, σ˚, µrs

The off-diagonal entries pR̃rαB, ω, σ˚, µrsqij and pIrαB, ω, σ˚, µrsqij with i ‰ j are
much smaller than those on the diagonal with i “ j as the results

|pR̃rαB, ω, σ˚, µrsqij| ď|trpR̃rαB, ω, σ˚, µrsq| “
ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

k“1

λkpR̃rαB, ω, σ˚, µrsq
ˇ

ˇ

ˇ

ˇ

ˇ

, (6.8a)

pIrαB, ω, σ˚, µrsqij ďtrpIrαB, ω, σ˚, µrsq “
3
ÿ

k“1

λkpIrαB, ω, σ˚, µrsq, (6.8b)

obtained in Lemma 6.1 of [73] show. This implies that the tensor’s eigenvalues, and
hence its principal invariants (6.3) (as well as the alternative invariants (6.6)), are dom-
inated by the behaviour of its diagonal coefficients. To illustrate this, Figure 6.1 shows
the comparison between λipR̃rαB, ω, σ˚, µrsq and pR̃rαB, ω, σ˚, µrsqij for the irregular
tetrahedron discussed in Section 2.6.1. Observe that the behaviour of the eigenvalues is
dominated by the diagonal coefficients of R̃rαB, ω, σ˚, µrs, similar arguments also apply
to λipIrαB, ω, σ˚, µrsq and pIrαB, ω, σ˚, µrsqij .
To improve the discrimination between objects whose tensors R̃rαB, ω, σ˚, µrs and
IrαB, ω, σ˚, µrs have different eigenvectors, their commutator is considered, which has
coefficients

pZrαB, ω, σ˚, µrsqij :“ pR̃rαB, ω, σ˚, µrsqikpIrαB, ω, σ˚, µrsqkj
´ pIrαB, ω, σ˚, µrsqikpR̃rαB, ω, σ˚, µrsqkj (6.9)

where Einstein summation convention of the indices is implied. The commutator mea-
sures how different the eigenspaces of R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are. It van-
ishes when the R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are simultaneously diagonalisable
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(i.e. the eigenvectors of QR̃rαB,ω,σ˚,µrs “ QIrαB,ω,σ˚,µrs “ QpBq are the same). In
Lemma 8.11 of [73], |pZrαB, ω, σ˚, µrsqij| has been shown to grow at most linearly with
ω. In addition, the coefficients of Z transform as a rank 2 tensor and so the eigenvalues
of ZrαBs and ZrαRpBqs are the same.
It is easy to show that, since R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are symmetric,
ZrαB, ω, σ˚, µrs has vanishing diagonal coefficients and is skew symmetric. Then, by
arranging the coefficients of ZrαB, ω, σ˚, µrs as a 3ˆ 3 matrix, we find that its eigenval-
ues are zero or purely imaginary

λipZq P
"

0,˘i
b

pZq212 ` pZq213 ` pZq223

*

,

and, thus,
a

pZq212 ` pZq213 ` pZq23 “
a

I2pZrαB, ω, σ˚, µrsq is useful as an addi-
tional classifier for situations where the off-diagonal coefficients of the tensors are
amongst its independent coefficients 2. For an object where the only independent co-
efficients pR̃rαB, ω, σ˚, µrsqij and pIrαB, ω, σ˚, µrsqij are associated with i “ j then
a

pZq212 ` pZq213 ` pZq23 vanishes. This invariant can easily be added to the list of fea-
tures in (6.3), (8.1) or (6.7) as

xi “
a

I2pZrαB, ωm, σ˚, µrsq, i “ 6M `m, (6.10)

for m “ 1, . . . ,M bringing the total number of features to F “ 7M .

6.4 Chapter Summary

This chapter presented material detailing the decomposition of the inverse problem, to
one of location and classification, the latter of which was restricted to be based on char-
acterisations that are invariant under position and rotation, which can be obtained from
the MPT coefficients. First, the MUSIC algorithm for locating hidden targets is briefly
reviewed and the method documented. Second, a method of determining the coefficients
of the MPT by creation of an over determined linear system wass presented. Third, a
systematic review of candidate MPT spectral signature invariants is given, this proposed,
tensor eigenvalues, both principal and deviatoric tensor invariants, and eigenvalues of
the commutator. The key novelty of the chapter is the proposal of these candidate MPT
spectral signature invariants as features for a ML classifier, with the principal and devi-
atoric invariants not being considered previously. In Chapter 7, results will be presented
to compare MPT spectral signature invariants for realistic threat and non-threat objects.
Additionally the idea to use MPT spectral signature invariants will be further developed
in Chapter 8 with numerical results being presented in Chapter 9.

2 Note that I1pZrαB, ω, σ˚, µrsq “ I3pZrαB,ωm, σ˚, µrsq “ 0

88



Chapter 7

Real World Object Characterisation
Dataset

7.1 Introductory Remarks

This chapter provides a series of illustrative examples to demonstrate how the ROM ap-
proach described in Chapter 3 can be combined with an appropriate choice of eigenvalues
or tensor invariants in Section 6.3 and sampling at M frequencies to form a realistic
dataset for object classification.
The chapter has been adapted and extended from the work presented by the author in
[76, 135] and the full open source dataset, MPT-Library [132].
The novelties of the chapter are as follows: Firstly, the application of the ROM approach
described in Chapter 3 to a set of real world geometries generating a first of its kind
dataset, which is openly available for other people to use. Secondly, constructing this
dataset based upon the invariants described in Section 6.3. Lastly, the investigation into
how small changes in a geometry affect the MPT spectral signature and the invariants
derived from this signature.
This chapter is organised in the following distinct sections: In the first part (Sections 7.2-
7.3) exemplar non-threat objects are presented, in the second part (Sections 7.4-7.5) threat
objects are discussed and in the third part (Section 7.6) details about the open source
dataset the MPT-Library are documented.
This chapter is organised as follows: In Section 7.2, results for house keys are presented
including an investigation into how small changes in key geometry affect the MPT spec-
tral signature and its invariants. In Section 7.3, results of MPT spectral signatures for
British coins are presented. In Section 7.4, results of MPT spectral signatures for the
TT-33 receiver are presented with a short investigation into how small changes in model
geometry affect the MPT spectral signature. In Section 7.5, results of MPT spectral sig-
natures for several kitchen knives are presented. In Section 7.6, a series of meshes for
objects in the MPT-Library are presented. The chapter is concluded in Section 7.7
with some closing remarks.
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7.2 Non-Threat Items: Keys for Pin-Tumbler Locks

Common materials of keys for pin-tumbler locks include brass, plated brass, nickel silver,
and steel. Amongst these, brass is often chosen due to its low cost, ease of cutting and its
self lubricating characteristics, which avoids the key getting stuck in a lock. Therefore,
this study, is restricted to keys made of brass, with the material parameters to be µr “
µ˚{µ0 “ 1 and σ˚ “ 1.5ˆ 107 S/m being selected. An illustration of the cross-section of
a key for a pin-tumbler lock is included in Figure 7.1 where the dimensions are similar to
a house key and the physical key Bα is indicated as well as the non-dimensional object B
used in the computations.

(a) Bα (b) B

Figure 7.1: Typical key for a pin-tumbler lock: (a) Physical object Bα and (b) non-
dimensional object B.

To understand how the effects of small changes in the key geometry affect the MPT fre-
quency spectral signature for frequencies in the range 102 ď ω ď 108rad/s, a sequence
of 9 different key geometries were produced, showing incremental geometric refinement
towards keys 8 and 9. In each case, setting α “ 0.001m and specifying the dimensions
of the different cases for B to be non-dimensional. For example, in the case of key 1,
B with length 34, has a width of 6.5 (min)-14 (max) and a thickness of 2.5 whereas B
for key 4 has a maximum thickness of 2.5 and a deep blade cut of 0.75 and notches of
maximum size 1.75. The meshes of the two sets of keys are shown in Figures 7.2 and 7.3.
These meshes have local refinement towards the edges of the keys and each case the mesh
extends out to a truncation boundary in the form of the r´1000, 1000s3 rectangular box
and comprise of between 51 726 and 108 523 unstructured tetrahedra. Importantly, note
that the connectedness of the different key types. Of the different keys, keys 2, 4, 6, 7, 8
and 9 are multiply connected and have Betti numbers β0pBq “ β1pBq “ 1 and β2pBq “ 0

the remaining keys are simply connected with β0pBq “ 1 and β1pBq “ β2pBq “ 0.

7.2.1 Set 1 of Brass House Keys

Restricting consideration to the set 1 of house keys, it can be seen that under p-refinement
of the mesh of 56 241 unstructured tetrahedra for key 1 using p “ 0, 1, 2, 3 order elements
leads to a rapid convergence of the MPT spectral signature presented in the form of the
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(a) Key 1 (b) Key 2 (c) Key 3 (d) Key 4

(e) Key 9

Figure 7.2: Set 1 of brass house keys : Surface distribution of elements of the keys in the
meshes cases 1-4 and 9.

(a) Key 5 (b) Key 6 (c) Key 7 (d) Key 8

Figure 7.3: Set 2 of brass house keys : Surface distribution of elements of the keys in the
meshes cases 5-8 (see Figure 7.2 for key 9 also in this set).

eigenvalues of R̃rαB, ω, σ˚, µrs 1 and IrαB, ω, σ˚, µrs, namely λipR̃q and λi pIq, i “
1, 2, 3, as illustrated in Figures 7.4 and 7.5. Note that, due to the reflectional symmetries
for key 1, there are only three independent coefficients each in R̃ and I.
The role played by a key’s topology and its equivalent ellipsoid at a fixed frequency is
now considered. Previously, in Lemma 2.5.5, the equivalence between λipM8rαBsq and
λipT rαB, 0sq “ T rαEp8q, 0s, for the situation where β1pBq “ 0 was established. In
Figure 7.6, λipR̃q and λipT rαB, 0sq “ T rαEp8q, 0s for key 1 and key 2 are compared,
the former having β1pBq “ 0 and the latter having β1pBq “ 1. As expected, since
limωÑ8pIqij “ 0, good agreement can be seen in the limiting case as ω Ñ 8 (up to
the limit of the eddy current model) between λipR̃q and λipT rαB, 0sq for key 1, but not
for key 2 where λipR̃q is different to λipT rαB, 0sq “ T rαEp8q, 0s since the equivalent
ellipsoid Ep8q can not describe the MPT spectral signature as ω Ñ 8 if β1pBq ‰ 0.
Thus, highlighting the important role that an object’s topology plays.

1Note that the coefficients of N 0 vanish in this case as µr “ 1, but the notation of R̃ “ N 0 ` R is
retained for ease of comparison with later results.
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(c) λ3pR̃q

Figure 7.4: Key 1 from set 1 of brass house keys: p-refinement study using p “ 0, 1, 2, 3

order elements for (a) λ1pR̃q, (b) λ2pR̃q, (c) λ3pR̃q.

In a similar manner to the results shown in Figures 7.4 and 7.5, by performing p-
refinement on the meshes for the other keys, and considering snapshot frequencies, the
MPT coefficients were found to converge using p “ 3 elements. However, to acceler-
ate the computation of the MPT spectral signature for the keys, the approach described in
Chapter 3, was followed. This involves computing solutions atN representative full order
model solutions at logarithmically spaced frequencies and then extracting a basis using a
tolerance of TOL “ 10´8 and solving reduced sized problems to approximate θp1qi pωq at
other frequencies and, henceforth, predict the MPT coefficients at other frequencies. This
process is illustrated in Figure 7.7 for key 1 using N “ 31. The a-posteriori error esti-
mates p∆rωsqij that are obtained at low-computational cost during the online stage of the
ROM, are used to certify the ROM solutions that have been obtained, are also shown in
this figure. These illustrate that, in this case, the ROM predictions are reliable with respect
to the full order model prediction of the MPT. Note that the PODP solutions are also very
acceptable using N “ 13 representative full order model solution snapshots, but instead
N “ 31 have been used to ensure p∆rωsqij is small at all but the highest frequencies, a
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Figure 7.5: Key 1 from set 1 of brass house keys: p-refinement study using p “ 0, 1, 2, 3

order elements for (a) λ1pIq, (b) λ2pIq and (c) λ3pIq.
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Figure 7.6: Set 1 of brass house keys: Comparison of λipR̃q and λipT rαB, 0sq for (a)
Key 1 and (b) Key 2
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more detailed study on this is presented in Section 5.2. Still further, the frequency ωlimit,
obtained using the method described in Section 2.4.3, at which the eddy current approx-
imation for this object is predicted to break down is shown. Smaller p∆rωsqij could be
obtained by increasing N , however, this was not deemed to be necessary as the bounds,
which provide confidence that the PODP predictions are accurate, are already tight for
ω ď ωlimit.
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(a) pR̃qij (a) pIqij

Figure 7.7: Key 1 from set 1 of brass house keys: PODP prediction of the spectral signa-
ture showing also the frequencies used for the representative full order solution snapshots
and limiting frequency for (a) pR̃qij and (b) pIqij .

To compare the results for different keys in set 1, the MPT spectral signature using the
principal invariants Ii, i “ 1, 2, 3, for R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are pre-
sented, these have been obtained using the PODP approach in Figure 7.8. In this figure,
a family of curves that each show a similar behaviour for all the keys in the set can be
observed.
The invariant I1pR̃q is monotonically decreasing with logω, implying the hydrostatic
part of R̃ is associated with a maximum response at high frequencies, while the invari-
ant I2pR̃q, which is monotonically increasing with logω, implies the deviatoric part of
R̃ begin to plays a significant role for ω ą 105rad/s. The invariant I3pR̃q, which is
monotonically decreasing with logω, implies the interaction between the hydrostatic and
deviatoric part of R̃ begin to plays a significant role for ω ą 105rad/s. The invariants
IipIq, i “ 1, 2, 3, each have a single local maximum and are greater or equal to 0 for
all ω. The invariant I1pIq implies that hydrostatic part of I is associated with a max-
imum response at ω « 105rad/s and has a broad response over the frequency range
102 ď ω ď 108rad/s while the invariant I2pIq implies the deviatoric part of I is asso-
ciated with a maximum response at ω « 105rad/s , but its effects are more limited to the
narrower frequency band 104rad/s ď ω ď 107rad/s. Finally, the invariant I3pIq has a
maximum at ω « 105rad/s, although interaction between hydrostatic and deviatoric parts
are more limited to the 104rad/s ď ω ď 106rad/s. Comparing the keys, the effects are
diminished from keys 1,2,3,4 and 9, in turn and, for example, the peak value of I3pIq
reduces in sequence of the volumes of the keys which reduce from 7.81 ˆ 10´7 m3 for
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key 1 to 6.31 ˆ 10´7 m3 for key 9, as expected. Furthermore, the results for Ii, i “ 2, 3

applied to R̃ and I are similar when comparing the keys 1 and 2.
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Figure 7.8: Set 1 of brass house keys: Comparison of tensor invariants. (a) I1pR̃q, (b)
I1pIq (c) I2pR̃q, (d) I2pIq, (e) I3pR̃q and (f) I3pIq.

Next, in Figure 7.9, the MPT spectral signature using the alternative invariants Ji, i “ 2, 3,
for R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are presented, these have been obtained using
the PODP approach. Note that the invariant I1 is not reproduced, as this forms part of
both sets, and has already been shown in Figure 7.8. It can be seen that, for the different
keys making up set 1, a family of similar curves is obtained and there are similarities to
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the behaviour of the invariants Ii, i “ 2, 3, with frequency for these tensors. However,
the following differences are noteworthy, firstly, the monotonic increase and decrease of
J2pR̃q and J3pR̃q with logω, respectively, is much more rapid between 104 ď ω ď 105

than that of I2pR̃q and I3pR̃q. Secondly, the curves for JipR̃q and JipIq, i “ 2, 3, are very
similar when comparing the keys 3 and 4, whereas the corresponding curves for IipR̃q and
IipIq, i “ 2, 3, for these keys are different. On the other hand, the similarities previously
observed between the invariants Ii, i “ 2, 3, for R̃ and I keys 1 and 2 are also reflected
by the invariants Ji, i “ 2, 3, for these tensors and keys.
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Figure 7.9: Set 1 of brass house keys: Comparison of tensor invariants. (a) J2pR̃q, (b)
J2pIq, (c) J3pR̃q and (d) J3pIq.

Finally, comparisons of the invariant
a

I2pZrαB, ω, σ˚, µrsq are considered as a function
of ω for keys in set 1, this can provide additional information about the object’s character-
isation if the independent coefficients of the MPT are not only associated with its diagonal
coefficients. The convergence of

a

I2pZq to 0 under p-refinement for key 1 is first shown
in Figure 7.10. The mirror symmetries for this object imply that R̃rαB, ω, σ˚, µrs and
IrαB, ω, σ˚, µrs each have only 3 independent coefficients (at each frequency) that lie on
the diagonal of the tensors and so

a

I2pZq is expected to vanish for exact computations.
Alongside this, in the same figure, the convergence under p-refinement of key 4 is shown,
this has 6 independent coefficients each in R̃ and I (at each frequency) and exhibits rapid
convergence of the invariant

a

I2pZq to the shown curve as a function of ω. The be-
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haviour of
a

I2pZq for keys 4 and 9 is shown in Figure 7.11. For keys 1´3,
a

I2pZq “ 0

shall henceforth be set.
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Figure 7.10: Set 1 of brass keys: p-refinement study for
a

I2pZq for (a) Key 1 and (b)
Key 4.
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Figure 7.11: Set 1 of brass keys: Comparison of
a

I2pZq for keys 4 and 9.

7.2.2 Set 2 of Brass House Keys

Now considering set 2 of the brass house keys, the results previously shown in Fig-
ure 7.8 are reproduced for the invariants Ii, i “ 1, 2, 3, for R̃rαB, ω, σ˚, µrs 2 and
IrαB, ω, σ˚, µrs for the second set of keys and show these in Figure 7.12. In a simi-
lar manner to Figure 7.8, the results included in Figure 7.12 form a family of similar
curves and that their behaviour follows a similar pattern to that previous described for the
keys in set 1. The results for Ii, i “ 1, 2, 3 for the tensor characterisations of keys 5 and 6
are similar, which is not surprising given the similarities in these geometries. In addition,
there are only small differences in Ii, i “ 1, 2, 3 for the tensor characterisations of keys 8

2Note that the coefficients ofN 0 vanish as µr “ 1, but the notation of R̃ “ N 0`R is retained for ease
of comparison with later results.
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Figure 7.12: Set 2 of brass house keys: Comparison of tensor invariants. (a) I1pR̃q, (b)
I1pIq (c) I2pR̃q, (d) I2pIq, (e) I3pR̃q and (f) I3pIq

and 9. Note that key 8 has a circular head and key 9 a polygonal head, but the volume of
material is similar and the symmetries of the objects and the number of independent coef-
ficients in R̃ and I (for each frequency) are otherwise the same for these two keys. Keys
5´8 are associated with a gradual reduction in the volume of the material for the key and
thus the magnitude of the associated I3pIq and I3pR̃q, curves for these cases reduces as
expected.
Similarly, in Figure 7.13, the results for the invariants Ji, i “ 2, 3 form a family of curves
with the behaviour of the invariants similar to that described for the keys in set 1. Note
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Figure 7.13: Set 2 of brass house keys: Comparison of tensor invariants. (a) J2pR̃q, (b)
J2pIq, (c) J3pR̃q and (d) J3pIq

that the results for the keys in set 2 for Ji, i “ 2, 3 can be grouped into keys 5, 6 and keys
7, 8 and 9 where the results for keys 8 and 9 for J2pIq (and J3pIq) are indistinguishable
on this scale. The former group does not contain the notches or the blade cut while the
latter set all have the same notches, keys 8 and 9 have the deep blade cut and key 9 differs
from the others by having a polygonal head rather than a circular head (although has a
similar volume to keys 7 and 8).
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Figure 7.14: Set 2 of brass house keys: Comparison of the tensor invariant
a

I2pZq.

Of the keys in set 2, only keys 8 and 9 have independent coefficients in RrαB, ω, σ˚, µrs
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and IrαB, ω, σ˚, µrs that are not only associated with the diagonal entries of the tensor.
The behaviour of

a

I2pZrαB, ω, σ˚, µrsq for these keys is shown in Figure 7.14. For the
other keys in set 2

a

I2pZq “ 0 is set.

7.3 Non-threat items: British Coins

In this section, inspired by the previous article on MPT characterisations of US coins [32],
MPT spectral signature characterisations for British coins in the denominations 1 penny
(p), 2p, 5p, 10p, 20p, 50p, £1, £2 are presented. Examples of the 1982 (20p), 1992 (1p,
2p), 1997 (50p), 1998 (£2), 2012 (5p,10p), 2017 (£1) issues of these denominations are
listed in Table 7.1, which also summarises the shape, diameter, thickness, composition
based on the information available from the Royal Mint [91]. The table also sets out the
electrical properties, where the conductivity values for the different material compositions
have been obtained from [58] at room temperature. For the quoted compositions, a value
of µr “ 1 has been assumed, however, in practice, some Copper-Nickel mixtures with a
high iron content can have a µr slightly above 1 (e.g [47]). The later issues of the 1p, 2p,
5p and 10p coins have a significantly different composition to that presented in Table 7.1
and, instead of a high copper content, they are instead copper plated steel. Note that each
of the coins considered are simply connected.
With the exception of the £1 and £2 denominations, the coins are modelled as homoge-
neous conductors while the former are each modelled as an annulus with two different
materials. The majority of the coins have a circular face and only the 20p and 50p differ,
being Reuleaux heptagonal discs. The coins with a circular face are modelled so that their
circular region lies in the plane spanned by e1 and e2 and, hence, they have rotational
symmetry about the e3 axis (for any angle). Consequently, the independent coefficients
of R̃rαB, ω, µr, σ˚s 3 and IrαB, ω, µr, σ˚s for such coins are pR̃q11 “ pR̃q22, pR̃q33 and
pIq11 “ pIq22 and pIq33 (for each frequency). The Reuleaux heptagonal discs are mod-
elled in a similar way, with a 51.428 (4dp) degree rotational symmetry about the e3 and,
consequently, it also follows that their independent coefficients of the MPT for such coins
are associated with the same entries.
To model the 1p coin, B is considered to be a circular disc of diameter 20.3 and thickness
1.52 and set α “ 0.001 m. An unstructured mesh of 33 351 unstructured tetrahedra was
generated to model the object and the region surrounding it out to a truncation boundary
in the form of the rectangular box r´1000, 1000s3. In a similar way, unstructured meshes
of between 24 963 and 36 957 tetrahedra were generated to model the other coins. On
these meshes, p “ 4 elements were found to be satisfactory for accurately computing the
representative full order model solution snapshots. In order to produce the MPT spectral
signature for the coins, N “ 13 representative full order solution snapshots were obtained
at logarithmically spaced frequencies over the range 101 ď ω ď 1010rad/s were used in
combination with the PODP approach and a tolerance of TOL “ 10´6.

3Note that the coefficients of N 0 vanish as µr “ 1, but the notation of R̃ “ N 0 `R is kept for ease of
comparison with later results
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Coin Shape Diameter
in mm

Thickness
in mm

Composition Relative
Perme-
ability
(µr)

Conductivity
(σ˚) in S/m

1p

(1971-Date)

Circular
Disc

20.3 1.52 97% Copper,
2.5% Zinc
and 0.5% Tin

1 4.03ˆ107

2p

(1971-Date)

Circular
Disc

25.9 2.03 97% Copper,
2.5% Zinc
and 0.5% Tin

1 4.03ˆ107

5p

(1990-Date)

Circular
Disc

18 1.7 75% Copper
and 25%
Nickel

1 2.91ˆ106

10p

(1990-Date)

Circular
Disc

24.5 1.85 75% Copper
and 25%
Nickel

1 2.91ˆ106

20p

(1982-Date)

Reuleaux
Hep-
tagonal
Disc

21.4 1.7 84% Copper
and 16%
Nickel

1 5.26ˆ106

50p

(1997-Date)

Reuleaux
Hep-
tagonal
Disc

27.3 1.78 75% Copper
and 25%
Nickel

1 2.91ˆ106

£1

(2017-Date)

Annulus 15.2
/23.45
(in/out)

2.8 / 2.8
(in/out)

Nickel Plated
Brass / 70%
Copper,
24.5% Zinc
and 5.5%
Nickel

1 /1
(in/out)

1.63ˆ107 /
5.26ˆ106

(in/out)

£2

(1998-Date)

Annulus 21 /28.4
(in/out)

2.5 /2.5
(in/out)

75% Copper
and 25%
Nickel/ 97%
Copper,
2.5% Zinc
and 0.5% Tin

1 /1
(in/out)

2.91ˆ106 /
1.93ˆ107

(in/out)

Table 7.1: Set of British Coins 1p, 2p, 5p,10p, 20p, 50p, £1 and £2 : Coin shape, dimen-
sions and electrical properties.

101



Although the PODP solutions are very acceptable using N “ 13 representative full order
model solution snapshots, in order to achieve smaller a-posteriori error estimates, results
obtained with N “ 21 and TOL “ 10´8 are considered and shown in Figure 7.15. Also
included in this figure is the limiting frequency ωlimit predicted by following the approach
in Section 2.4.3. The rotational symmetry of the object implies that the object has just
two independent coefficients each in R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs, which lie on
the diagonal of the tensors. Of these pR̃q33 and pIq33 have the largest magnitude in a
direction that is perpendicular to the plane of the disc, which is as expected for a non-
magnetic disc [32]. Note that the 1p coin issued after 1992, which has a high µr value,
would have dominant components pR̃q11 “ pR̃q22 and pIq11 “ pIq22 in the plane of the
disc, as expected for a magnetic disc [32].
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Figure 7.15: 1p Coin from set of British coins: PODP prediction of the spectral signature
showing also the frequencies used for the representative full order solution snapshots and
limiting frequency for (a) pR̃qii and (b) pIqii.

To compare the results for the different coins, the MPT spectral signatures using the prin-
cipal invariants Ii, i “ 1, 2, 3, for R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are presented
these have been obtained using the PODP approach in Figure 7.16. In this figure, con-
sideration has been restricted to frequencies such that 102 ď ω ď 108rad/s in order to
allow comparisons with the earlier key results. In practice, the eddy current model breaks
down at a frequency of ωlimit ă 108rad/s (or greater) for all the coins considered and so
higher frequencies are physically invalid in any case. Unlike the corresponding results for
the house keys shown in Figures 7.8 and 7.12, the results obtained for the coins shown in
Figure 7.16 do not form a family of similar curves since both the volumes and materials of
the coins vary significantly motivating the ability to discriminate between different coins,
however, some of the trends previously observed cary over to this case also. The curves
for I1pR̃q and I3pR̃q are monotonically decreasing with logω, while I2pR̃q is monoton-
ically increasing with logω. The curves for IipIq, i “ 1, 2, 3, each have a single local
maximum, although the peaks appear at different frequencies for different coins and the
different invariants, however, the width of the frequency band reduces for all cases, when
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considering I2pIq and I3pIq compared to I1pIq. On considering the different coins, sim-
ilarities can be seen between the MPT spectral signatures of the 1p, 2p coins, the 5p, 10p
coins and the 20p and 50p coins. This can be explained as follows: the composition of
the coins in these groups is the same and their dimensions can be approximately obtained
by a simple scaling, hence, the scaling results in Lemma 5.2 of [133] predict that the
tensor coefficients of the larger sized coin can be obtained from the smaller object by a
translation and scaling, which is also observed in the invariants.
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Figure 7.16: Set of British coins: Comparison of tensor invariants. (a) I1pR̃q, (b) I1pIq
(c) I2pR̃q, (d) I2pIq, (e) I3pR̃q and (f) I3pIq.
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The £2 coin has the largest volume and also the highest peak value in I3pIq, the mag-
nitude of the peaks reduce in sequence of the volumes of the coins, as expected. The
multiple local maxima in the coefficients of I and the multiple points of inflection in the
coefficients of R̃, which are known to be associated with objects with inhomogeneous
conductivity [74], are not easily distinguished on the invariants for the £1 and £2 coins,
probably due to the difference in conductivities being approximately 1 order of magnitude
or less.
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Figure 7.17: Set of British coins: Comparison of tensor invariants. (a) J2pR̃q, (b) J2pIq,
(c) J3pR̃q and (d) J3pIq.

The corresponding results obtained for the alternative invariants Ji, i “ 2, 3, for
R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs are presented in Figure 7.17. Again, unlike the
keys, the plots of these invariants do not form a family of similar curves as both the vol-
umes and conductivities of the different coins are different. While for most coins J2pR̃q is
monotonically increasing with logω and J3pR̃q is monotonically decreasing with logω,
however, there are exceptions, most notably with the £2 coin, which can be explained by
its inhomogeneous materials. One might expect a similar behaviour with the inhomoge-
neous £1 coin, but it is difficult to observe on this scale. The behaviour of J2pIq and J3pIq
with logω shows a single local maximum for each coin where the presence of multiple
local maxima for the £1 and £2 can’t be observed on this scale. Of the coins considered,
the curves associated with the 2p, 50p and £2 cases have the largest magnitude, indicating
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that they have the largest deviatoric component, which is expected. Due to the coefficients
of the MPT having units of volume, they are a function of the geometry, frequency and
materials, any invariants are computed from the coefficients, so an increase in volume
will lead to a larger magnitude of the coefficients and hence also a larger magnitude of
the invariants. It is observed that the deviatoric invariants highlight this dependence to a
greater extent as this scales with α9, |B|3 (i.e. volume cubed).

(a) |RepJeq| for ω “ 103 rad/s. (b) |RepJeq| for ω “ 105 rad/s.

(c) |RepJeq| for ω “ 107 rad/s.

Figure 7.18: 1p coin from the set of British coins: Contours of the eddy-currents J e “
iωσ˚θ

p1q
3 for different values of ω, (a) ω “ 103 rad/s, (b) ω “ 105 rad/s, (c) ω “ 107 rad/s

in a cut through the coin, on the plane spanned by e1 and e3.

Figure 7.19: £1 coin from set of British coins: Contours of |RepJ eq| in a cut through the
coin, on the plane spanned by e1 and e3, where J e “ iωσ˚θ

p1q
3 are the eddy currents and

showing the field lines corresponding to ImpJ eq with ω “ 103 rad/s.

In order to compute the MPT spectral signature, the solution of an ROM is obtained
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at each frequency of interest. As the frequency increases, the skin depth reduces and
the associated eddy currents become confined to a thin layer close to the surface of the
conductor. In Figure 7.18, a cut through the 1p coin is shown, on the plane spanned by e1

and e3, in order to illustrate the eddy currents J e “ iωσ˚θ
p1q
3 obtained at the frequencies

ω “ 103 rad/s, ω “ 105 rad/s and ω “ 107 rad/s.
In Figure 7.19, a contour plot is shown for the eddy-currents J e “ iωσ˚θ

p1q
3 in cut through

the £1 coin, on a plane spanned by e1 and e3 for ω “ 103rad/s. This figure also includes
the field lines for RepJ eq. For the coin models, each of the associated MPT frequency
spectra have independent coefficients that are only associated with diagonal entries of the
tensor. Thus,

a

I2pZrαB, ω, σ˚, µrsq “ 0 is set in each case.

7.4 Threat Items: TT-33 Semi-Automatic Pistol

In this section, MPT spectral signature characterisations for components of an exemplar
semi automatic pistol are presented. The Tokarev TT-33 has been chosen, this can be
seen in Figure 7.20, and was originally designed in the Soviet Union in the late 1920’s,
with production in the USSR between 1930-1954 [123]. It has also been produced in
other countries including China, Hungary, North Korea, Pakistan, Romania, Vietnam and
Yugoslavia and exported to other nations around world. It is still used by the Bangladeshi
and North Korean armed forces and the police in Pakistan often carry the pistol as a side
arm. Under a different name, it is occasionally supplied to the police and armed forces
in China [60]. This gun is chosen due to both it’s simplicity and prevalence in conflict
zones and less economically developed countries with about 1.7 million being produced
in total [123].

Figure 7.20: Image of Tokarev TT-33 from [16] reproduced with permission under Cre-
ative Commons License CC-BY

The starting point of the characterisation are the blueprints for the larger parts of a non-
firing replica [5], which is sufficient for the purpose. The focus of the investigation is on
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the receiver (with the magazine and ammunition removed), the reason being that some-
one wishing to disguise a semi-automatic pistol might disassemble the main pieces and
carry them separately through a security control check. As the receiver is one of the
larger components, it should be easiest to identify by a metal detector. The exact ma-
terials of the receiver are not known although it is likely to be made of a carbon steel
alloy such as 1020 or 4140, which has a conductivity of around σ˚ “ 4.5 ˆ 106 S/m to
σ˚ “ 6.25ˆ 106 S/m [92] and, for the simulations, a conductivity of σ˚ “ 6.2ˆ 106 S/m
has been chosen. Such steels are ferrous and exhibit a non-linear constitutive relationship
between the magnetic flux density B and the magnetic field H , but, if restricted to low
field strengths, where the relationship is linear, µ˚ “ µrµ0 “ |B|{|H | and the mathe-
matical model developed in [13, 69] still applies. Values of µr obtained experimentally
for different steels vary enormously (eg from µr “ 100 to µr “ 600 or larger) as of-
ten µ˚ “ µrµ0 “ |B|{|H | is applied when the curve is no longer straight. Numerical
simulations using high values of µr become increasingly challenging and so a relative
permeability of µr “ 5 has been chosen.
An extreme simplification of the receiver for TT-33 is to model it as simple L-shape made
up of two rectangular regions glued together (the overall dimensions of the physical L-
shape are 148 mmˆ17.5 mmˆ10.1 mm). A mesh discretising the L-shape, with overall
dimensions 148 ˆ 17.5 ˆ 101, and the surrounding region out to a truncation boundary,
in the form of a box of dimensions r´1000, 1000s3, was generated with h-refinement
towards the edges, containing 62 656 unstructured tetrahedra with α “ 0.001 m. A se-
quence of geometric improvements on the basic L-shape model was then considered, as
shown in Figure 7.21, which shall be referred to as TT-33 with a trigger hole, TT-33 with
no internals, TT-33 without chamfers and TT-33 with chamfers, having discretisations
comprising of between 94 092 and 175 217 tetrahedral elements, respectively. With the
exception of the L-shape, all contain a model of the trigger guard (a loop of steel where
the trigger would be placed) and assume that the magazine is removed, as the top-view
of TT-33 with trigger hole shown in Figure 7.22 illustrates. TT-33 with no internals and
TT-33 without chamfers offer further geometric improvements with TT-33 with chamfers
being the closet to the actual blueprint and includes small holes in the receiver used to fix
the other components of the pistol in place. Only the L-shape is simply connected with
β1pBq “ 0, the TT-33 with trigger hole β1pBq “ 2, TT-33 with no internals and TT-33
without chamfers each have β1pBq “ 4 while TT-33 without chamfers has β1pBq “ 13

each object has β0pBq “ 1 and β2pBq “ 0.
In each case, N “ 13 representative solution snapshots to full order problem at logarith-
mically spaced frequencies in the range 8 ˆ 10´1 ď ω ď 8 ˆ 108 rad/s were found to
converge by using p “ 4 elements. Then, by applying the PODP approach described in
Chapter 3 with a tolerance of TOL “ 10´6, the MPT spectral signature for each of the
receiver models was obtained. With the exception of the model with chamfers each of
the models of the receiver has an axis of symmetry in the e2 direction and so there are
4 independent coefficients each in R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs corresponding
to pR̃q11, pR̃q22, pR̃q33, pR̃q13 “ pR̃q31 at each frequency with similar for I. The model
with chamfers, which lacks this symmetry, has 6 independent coefficients each in R̃ and
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(a) (b) (c)

(d) (e)

Figure 7.21: Set of receiver models for TT-33 pistol: surface distribution of elements for
(a) L-shape domain, (b) TT-33 with a trigger hole, (c) TT-33 with no internals, (d) TT-33
without chamfers and (e) TT-33 with chamfers

Figure 7.22: Set of receiver models for TT-33 pistol: top view of TT-33 with a trigger
hole

I (at each frequency), which means that all coefficients of the tensor are independent of
each other.
A comparison of the MPT spectral signatures using the principal invariants Ii, i “ 1, 2, 3

for R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs is presented, these have been obtained using
the PODP approach in Figure 7.23. In this figure, consideration has been restricted to
frequencies such that 102 ď ω ď 108 rad/s in order to allow comparisons with the ear-
lier key and coin results. In practice, the eddy current model breaks down at a frequency
ωlimit ă 2 ˆ 106 rad/s for all the TT-33 models considered and so, in practice, higher
frequencies are not relevant. While the IipIq, i “ 1, 2, 3, invariants for the TT-33 models
are similar to that for the keys and coins, the behaviour of IipR̃q, i “ 1, 2, 3 are quite dif-
ferent due to µr ‰ 1. For I1pR̃q, the curves are monotonically decreasing with logω, but
do not asymptote to 0 for small ω. For I2pR̃q and I3pR̃q the curves are neither monoton-

108



ically increasing or decreasing with logω and the curves do not asymptote to 0 for small
ω motivating that discrimination between the object is possible. The L-shape exhibits
significant differences to the TT-33 models with a different location of resonant peak in
IipIq, i “ 1, 2, 3 and a significantly different behaviour for IipR̃q, i “ 1, 2, 3. The results
for the TT–33 with a trigger hole and TT-33 with no internals models are similar with
further differences for the TT-33 without chamfers and TT-33 with chamfers. However,
all these latter four cases exhibit a resonance peak of around ω “ 104rad/s for IipIq,
i “ 1, 2, 3. The magnitude of the resonance peak for I3pIq decreases in sequence of the
associated volume of the different TT-33 models.
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Figure 7.23: Set of receiver models for TT-33 pistol: Comparison of tensor invariants. (a)
I1pR̃q, (b) I1pIq (c) I2pR̃q, (d) I2pIq, (e) I3pR̃q and (f) I3pIq.

The corresponding results obtained for the invariants Ji, i “ 2, 3 for R̃rαB, ω, σ˚, µrs
and IrαB, ω, σ˚, µrs that have been obtained using the PODP approach are shown in
Figure 7.24. These results again illustrate the significant difference between the L-shape
and the other models. With the exception of the L-shape, the results for J2pR̃q show a
monotonic increase with logω, those for J3pR̃q show a monotonic decrease, J2pIq and
J3pIq show a single local maximum. The results for TT-33 with and without chamfers are
similar with greater differences exhibited between the TT-33 with no internals and TT-
33 with trigger hole. The results shown in Figures 7.23 and 7.24 indicate the significant
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difference between the spectral signatures of the L-shape and the more realistic models,
which adds the credibility that the MPT spectral signature makes it possible to distinguish
between a carpenters metallic set-square (which closely resembles an L-shape) and the
receiver of a pistol, for example.
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Figure 7.24: Set of receiver models for TT-33 pistol: Comparison of tensor invariants. (a)
J2pR̃q, (b) J2pIq, (c) J3pR̃q and (d) J3pIq.

For the TT-33 models, each of the associated MPT frequency spectra have independent
coefficients that are associated with both on and off diagonal entries of the tensor. The
behaviour of

a

I2pZrαB, ω, σ˚, µrsq for the different models is shown in Figure 7.25.

Finally, in Figure 7.26 the contours of |RepJ eq| and field lines for RepJ eq are shown on
the plane spanned by e1 and e3 with ξ2 “ 0 and the TT-33 with chamfers model for the
situations where J e “ iωσ˚θ

p1q
1 , J e “ iωσ˚θ

p1q
2 , J e “ iωσ˚θ

p1q
3 are the eddy currents

corresponding to ω “ 103 rad/s.
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Figure 7.25: Set of receiver models for TT-33 pistol: Comparison of the tensor invariant
a

I2pZq.
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Figure 7.26: TT-33 with chamfers from the set of receiver models for TT-33 pistol:
Contours of |RepJ eq| and streamlines for RepJ eq on the plane spanned by e1 and e3 with
ξ2 “ 0. (a) J e “ iωσ˚θ

p1q
1 , (b) J e “ iωσ˚θ

p1q
2 and (c) J e “ iωσ˚θ

p1q
3

7.5 Threat Items: Knives

Knife crime in the U.K. is a persistent issue with 47 000 offences involving a knife or
sharp instrument in England and Wales from April 2018 - March 2019, 285 of which
currently recorded as homicide [38] with trend being a significant increase in the last
8-9 years. The early recognition of threat objects through metal detection may help to
reduce the number of offences involving a sharp instrument. In this section, MPT spectral
signature characterisations for exemplar knife models are presented.
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A set of 5 different knife models is considered, which are named as chef, cutlet, meat
cleaver, Santoku and Wusthof. The chef knife is a model of a cheap chef knife, featuring
a 20cm long, 5cm tall blade with a constant thickness of 1.5mm and a partial tang 4. This
model is an example of a stamped knife would normally be constructed with a plastic
handle and only the cutting edge of the knife would be sharpened to a point. Obviously,
only the metallic part of the knife has been modelled . The cutlet knife is a model of a
cheap cutlet, featuring a 11cm long, 2cm tall blade with a constant thickness of 1.25mm
and a partial tang. This model is an example of a stamped knife and would normally
be constructed with a plastic handle and only the cutting edge of the knife would be
sharpened to a point. The cleaver is a model of a meat cleaver featuring a 20cm long, 9cm
tall blade with a thickness of 3mm over the majority of the blade with a double bevel 6.4
cm from the spin and a full tang with 3 rivets, which are each 2cm long, have radius 3mm
and are spaced 45mm apart centre to centre. This model could be made using either the
method of stamping or forging. The Santoku features a 17cm long, 4.5cm tall blade with
a thickness of 1.275mm at its spine, which tapers over the height of the blade to a point at
the cutting edge. It features a full tang with 3 rivets, which are each 2cm long, have radius
3.5mm and are spaced 42.5mm apart centre to centre. This model would normally be
constructed from a single piece of steel with the two sides of the handle being made with
either wood or a plastic material which are then both stuck and riveted to the steel. Finally,
the Wusthof has a 20cm long, 5cm tall blade with a thickness of 2mm at its spine, which
tapers over the height of the blade to a point at the cutting edge. It features a full tang with
3 rivets, which are each 2cm long, have radius 3.5mm and are spaced 42.5mm apart centre
to centre. In each case, the measurements quoted have been obtained by approximately
measuring the dimensions of common household knives. The blade of the knives have
been assumed to be made of 440 grade stainless steel, which has a relative permeability
µr “ 62 [125] and conductivity σ˚ “ 1.6 ˆ 106 S/m[92], but modelled instead with a
lower relative permeability µr “ 5, and the rivets to be made of copper, which is non-
magnetic having a relative permeability µr “ 1 and a conductivity σ˚ “ 5.8 ˆ 107 S/m
[92]. Note that each of the knives are simply connected.

A mesh of each of the geometries was generated assuming dimensionless units, the size
parameter α “ 0.001 m and by placing the knife configuration centrally in a box of di-
mensions r´1000, 1000s3 . The resulting meshes contain 25 742, 14 935, 55 226, 55 226

and 79 945 unstructured tetrahedra for the chef, cutlet, meat cleaver, Santoku and Wusthof
knives, respectively, and images of the distribution of elements on the surface of the object
are reproduced in Figure 7.27. Each of the knives has been orientated so that the blade
is parallel to the e1 direction and lies in the plane spanned by e1 and e2 with the knife
configuration being symmetrical in the e3 direction. Thus, there are 4 independent co-
efficients each in R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs corresponding to pR̃q11, pR̃q22,
pR̃q33, pR̃q13 “ pR̃q31 at each frequency with similar for I.

The results obtained by using N “ 13 representative full order solution snapshots at

4 The tang is the back portion of the blade, which extends or connects to a handle, a full tang extends
the full length of the handle while a partial tang only extends partially in to the handle [129]
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(a) (b) (c)

(d) (e)

Figure 7.27: Set of knives: surface distribution of elements for (a) chef, (b) cutlet, (c)
meat cleaver, (d) Santoku and (e) Wusthof

logarithmically spaced frequencies in the range 101 ď ω ď 1010 rad/s were found to
converge with p “ 4 elements. Then, by applying the PODP algorithm described in
Chapter 3 with a tolerance of TOL “ 10´6, the MPT spectral signature for each of the
receiver models was obtained. A comparison of the MPT spectral signatures using the
principal invariants Ii, i “ 1, 2, 3 for R̃rαB, ω, µr, σ˚s and IrαB, ω, µr, σ˚s that have
been obtained using the PODP approach in Figure 7.28. In this figure, consideration has
been restricted to frequencies such that 102 ď ω ď 108rad/s in order to allow comparisons
with the earlier results. In practice, the eddy current model breaks down at a frequency
ωlimit ă 5 ˆ 106rad/s for all the knives considered and so higher frequencies are not
relevant.

The results obtained for the different models shown in Figure 7.28 have some similari-
ties to the TT-33 models in that I1pR̃q is monotonically increasing with logω and I2pR̃q,
I3pR̃q are not monotonically increasing or decreasing with logω and the curves IipIq,
i “ 1, 2, 3, each show a single local maximum with logω. However, the characteristics
of the curves is otherwise quite different, again motivating that discrimination between
objects is possible. Comparing the different knife models, different behaviour is observed
for the invariants in each case. On closer inspection of the eigenvalues of R̃ and I it is
possible to observe multiple non-stationary points of inflection and multiple local max-
ima, respectively, particularly when considering the Santoku and Wusthof knives, which
are inhomogeneous. Although the cleaver also has inhomogeneous materials, the larger
extent of material in the blade largely disguises these effects. The corresponding results
for the alternative invariants are shown in 7.29, where again observe a significant differ-
ence between the clever and the other models.
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Figure 7.28: Set of knives: Comparison of tensor invariants. (a) I1pR̃q, (b) I1pIq (c)
I2pR̃q, (d) I2pIq, (e) I3pR̃q and (f) I3pIq.
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Figure 7.29: Set of knives: Comparison of tensor invariants. (a) J2pR̃q, (b) J2pIq, (c)
J3pR̃q and (d) J3pIq.

For the knife models, each of the associated MPT frequency spectra have independent
coefficients that are associated with both on and off diagonal entries of the tensor. The
behaviour of

a

I2pZrαB, ω, σ˚, µrsq for the different models is shown in Figure 7.30.
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Figure 7.30: Set of knives: Comparison of the tensor invariant
a

I2pZrαB, ω, σ˚, µrsq.
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7.6 MPT-Library

In addition to the examples of real world object considered previously, a larger, more
extensive list of objects has been produced and documented in the form of an open
source dataset, MPT-Library [132]. This dataset has been constructed using the
ROM method described in Section 3.3 using the open source MPT-Calculator soft-
ware [134], which was discussed in Chapter 4. A full list of the of the objects can be found
in Table 7.2, this includes the number of different material versions of each object there
are in the library. Some exemplar objects can be found in Figures 7.31 and 7.32, these
figures show threat and non-threat objects respectively, for which MPT spectral signatures
have been obtained and are contained in [132].

Hammer heads

Knuckle dusters

Pairs of scissors

Screw drivers

Figure 7.31: Set of multiple threat and non-threat objects: Sample illustrations of some
of the different threat object geometries considered (not to scale).
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Bracelets Belt buckles

Earrings / Piercings

Pendents Rings

Shoe shanks

Watch/ watch with metallic strap

Figure 7.32: Set of multiple threat and non-threat objects: Sample illustrations of some
of the different non-threat object geometries considered (not to scale).

7.7 Chapter Summary

This chapter provided a series of illustrative examples which demonstrated how the ROM
approach described in Chapter 3 can be combined with an appropriate choice of eigenval-
ues or tensor invariants in Section 6.3 and sampling at M frequencies to form a realistic
dataset of object characterisations.
The key novelties of the chapter were, the application of the ROM approach described in
Chapter 3 and 4 to a set of real world geometries creating a first of its kind dataset of MPT
spectral signature characterisations for real world objects. Constructing this dataset based
upon the invariants described in Section 6.3 is highly novel and previously not considered.
The investigation into how small changes in a geometry affect the MPT spectral signature
and the invariants derived from this signature, this also gives insight to the level of detail
required for objects in such a library. The MPT-Library discussed in this chapter will
be used in Chapter 9 for classification based on the library.
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Part IV

Object Classification
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Chapter 8

Probabilistic and Non-Probabilistic
Machine Learning Classifiers

8.1 Introductory Remarks

This chapter documents and compares probabilistic and non-probabilistic ML classifiers
that are appropriate for classifying objects when the features are with MPT invariants,
with the goal of developing an ML classifier that could be deployed in a walk through
metal detector.
The chapter has been adapted from the work presented by the author in [135].
The novelties of the chapter are as follows: Firstly, a methodology is documented to cre-
ate a dictionary of threat/ non-threat objects based on principal tensor invariants. Then,
consideration of appropriate noise that could be added to simulate real world measure-
ments is considered. Lastly, ML classifiers are reviewed and collated in a form suitable
for being used in conjunction with principal invariants (discussed in Section 6.3.2) as ob-
ject features.
The chapter is organised as follows: First in Section 8.2, a recap of arguments for the ad-
vocated use of principal tensor invariants as ML features, the methodology for the creation
of a dictionary based on these invariants and the method used to add noise to simulate a
real world measurement system are presented. In Section 8.3, a series of probabilistic and
non-probabilistic ML classifiers are documented and compared. In Section 8.4, metrics to
measure performance of the classifiers along with methods to further validate these clas-
sifiers are presented. The chapter is concluded in Section 8.5 with some closing remarks.

8.2 MPT Spectral Signature Invariants for Object Clas-
sification

As discussed in Section 6.3, the process of classification, as described by Bishop [20],
involves asigning an input vector x and assigning it to one of K discrete classes Ck,
k “ 1, . . . , K. Following the 1-of-K coding system recommended by Bishop [20], the
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entries in a vector t P RK take the form

ti :“

"

1 if i “ k

0 otherwise
,

if the correct class is Ck. In Section 6.3, different choices for the F features in the input
vector x P RF are considered, which are associated with either the eigenvalues, principal
invariants or deviatoric invariants of R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs, respectively,
evaluated at different frequencies ω “ ωm, m “ 1, . . . ,M . The focus of this chapter is
the situation where

xi “

"

IjpR̃rαB, ωm, σ˚, µrsq, i “ j ` pm´ 1qM

IjpIrαB, ωm, σ˚, µrsq, i “ j ` pm` 2qM
, (8.1)

with j “ 1, 2, 3 , m “ 1, . . . ,M . For exact arithmetic, and a rank 2 tensor A,

I1pAq :“trpAq, (8.2a)

I2pAq :“
1

2

`

trpAq2 ´ trpA2
q
˘

, (8.2b)

I3pAq :“detpAq, (8.2c)

are the principal invariants. In the above, trp¨q denotes the trace and detp¨q the determinate
and it is assumed the entries ofA are arranged as a symmetric 3ˆ 3 matrix, which is also
celled A. The input vector x is defined in this way for the following reasons:

1. Using features that are invariant to object rotation is important as both a hidden
object’s shape and its orientation are unknown. Using either eigenvalues λipR̃q,
λipIq, i “ 1, 2, 3 or the principal tensor invariants overcomes this issue as both are
invariant to an object’s unknown orientation and, hence, simplifies the classification
problem.

2. Invariants overcome the ordering issue that is associated with assigning the eigen-
values as the invariants are independent of how the eigenvalues are assigned.

3. The invariants can be computed as either products or sums of the entries ofA with-
out first calculating λipAq. Hence, they are smooth functions of the tensor coeffi-
cients. Rather than a sub-determinant method, an alternative approach for finding I3

follows by first convertingA to (upper) triangular form and the determinant follows
by the product of its diagonal entries. However, while the eigenvalues of a triangu-
lar matrix are its diagonal entries, the eigenvalues of A are not preserved when it
is converted and further computation is needed. There are many iterative computa-
tional alternatives for finding λipAq (see e.g. [42]), which are preferred to directly
finding the roots of detpA´ λIq “ 0, especially for large matrices. Although, even
a simple low-cost approach for directly determining the eigenvalues of a symmetric
3ˆ 3 matrix still requires determining an inverse cosine of a non-linear function of
the matrix?s trace and determinant [116] and, hence, involves non-smooth opera-
tions. Thus, the finding λipAqmay result in a loss of accuracy in practical numerics
compared to using the simple sums or products to find IipAq.
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4. The (probabilistic) ML classification algorithms considered are better at captur-
ing an underlying relationship between features and the likelihood of class that is
smooth, albeit, with noisy data. The process involved in finding eigenvalues may
lead to a greater entanglement between class and features that a classifier might
need to unravel compared to using invariants.

As an example, Figure 8.1 shows a comparison of the principal tensor invariants for a
selection of 4 different metallic watch styles computed using the method presented in
Chapter 3 and are objects included in the MPT-Library. The object dimensions are in
mm so α “ 0.001m and the results shown are for the case where the material is gold,
so that σ˚ “ 4.25 ˆ 107 S/m and µr “ 1 (MPT-Library also includes MPT spectral
signatures for watches made of platinum and silver). An unstructured mesh of tetrahe-
dra is used to discretise each object and the truncated unbounded region which surrounds
it, resulting in meshes ranging from 14 935 to 17 5217 elements. In each case, the trun-
cated boundary for the non-dimensional transmission problem is r´1000, 1000s3. Order
p “ 4 elements were applied on the meshes and snapshot solutions obtained at 13 loga-
rithmically spaced frequencies over the range 1 rad/s ď ω ď 1 ˆ 1010 rad/s. The MPT
spectral signature for each object was produced using the PODP method discussed in
Section 3.3 using a relative singular value truncation of 10´4. Also shown is a verti-
cal line, which indicates the value of ω that the eddy current model assumption is likely
to become inaccurate for this geometry [76, 107]. Finally, a grey window is included
corresponding to the frequency range 5.02 ˆ 104 rad/s ď ω ď 8.67 ˆ 104 rad/s, where
measurements taken by a commercial walk through metal detector [82], and the greater
range 7.53 ˆ 102 rad/s ď ω ď 5.99 ˆ 105 rad/s, where measurements are taken using
recent MPT measurement system [96], the latter being able to capture more information
from the signature. These spectral signatures will form part of the dictionary for object
classification, which will be discussed later in Section 9.3.

8.2.1 Construction of the Dictionary

Each class Ck may be comprised of Gpkq geometries and, in addition, V pkq variations in
object size and object materials are considered so that each class is comprised of P pkq

different samples. In total, over all the classes, there are P “
řK
k“1 P

pkq samples.
Given the information α, B, σ˚, µr the MPT spectral signature described by
R̃rαB, ω, σ˚, µrs and IrαB, ω, σ˚, µrs can be obtained, as described in Section 3.3, and
then invariants then follow from (8.1). This process is then repeated for each of the ge-
ometries Bpgkq, gk “ 1, . . . , Gpkq that makes up the class. To take account of the V pkq

different object sizes and materials, physically motivated samples α „ Npmα, sαq and
σ˚ „ Npmσ˚ , sσ˚q are drawn, where mα and mσ˚ denotes means and sα and sσ˚ standard
deviation, respectively, and Npm, sq denotes a normal distribution with mean m and stan-
dard deviation s. While it would be possible to also obtain the MPT spectral signature
using the method described in Section 3.3 for each sample, instead, the computational
cost of obtaining these spectral signatures is reduced by using the scaling results derived
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Figure 8.1: Set of watches: Comparison of tensor invariants. (a) I1pR̃q, (b) I1pIq (c)
I2pR̃q, (d) I2pIq, (e) I3pR̃q and (f) I3pIq.

in Lemmas 2.7.1 and 2.7.2. Given an MPT spectral signature of an object for a given
α,B, µr and σ˚, these results predict the MPT spectral signature of another object with
the same B and µr, but different σ˚ and α, at negligible computational cost. The results
hold for objects with homogeneous materials and there are no restrictions on ω (upto the
limit of the eddy current model), but assume that a broader band MPT spectral signature is
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available for the original object compared to the grey windows highlighted in Figure 8.1.
The invariants then again follow from (6.3). Finally, by setting the class labels, the pairs
(xp P RF , tp P RK), p “ 1 . . . , P pkq 1 for all the samples that make up the class Ck
are obtained. Repeating this process for each of the classes gives rise to the the general
dictionary

D “ ppx1, t1q, px2, t2q, . . . , pxP , tP qq, (8.3)

or alternatively,
D “ pDp1q, Dp2q, ..., DpKqq, (8.4)

where,
Dpkq “ ppx1, t1q, px2, t2q, ..., pxP pkq , tP pkqqq, (8.5)

is the dictionary associated with class Ck and consists of P pkq observations.
In practice, the dictionary stated in (8.3) is split as D “ pD(train), D(test)q where D(train) is
the training and D(test) is the testing dataset, respectively. The purpose of this splitting is
to enable the classifier to be trained on given data D(train) and then tested on previously
unseen data D(test). Although there is no optimal choice for the ratio of training to testing,
the choice is made to employ a ratio of 3:1 throughout, which is commonly used in ML
classification and is in the range of 3:1 to 4:1 that Kuhn and Johnson suggest [66][pg.71].

8.2.2 Noise

When MPT spectral signatures for hidden objects are measured by a metal detector they
will contain un-avoidable errors, as pointed out in [133]. For example, if an object is
placed in a non-uniform background magnetic field that varies significantly over the object
there is a modelling error since the background field in the rank 2 MPT model assumes the
field over the object is uniform. There are other errors and noise associated with capacitive
coupling with other low-conducting objects or soil, if the object is buried, as well as
other generals noise (e.g. from amplifiers, parasitic voltages and filtering) [83]. The
accuracy of the signature can be improved by repeating the measurements and applying
averaging filters, at the cost of spending more time to take the measurements. However, in
a practical setting, there is trade-off to be made in terms of improving the accuracy against
the meaurement time and, consequently, the accuracy of the measured MPT coefficients
is about 1% to 5% [32, 82, 83], depending on the application.
The MPT spectral signature coefficients employed have been produced numerically using
the method described in Section 3.3. This means that the MPT coefficients are obtained
with higher accuracy than can currently be achieved from practical measurements, since
the spectral signature is accurately computed for a large frequency range (up to the limit of
the eddy current model) rather than noisy measurements being taken at a small number of
discrete frequencies. The advantage of this is it allows a much larger library of objects and
variations of materials to be considered, which is all highly desirable for achieving greater
fidelity and accuracy when training an ML classifier. But, for practical classification,
noise appropriate to the system must be added.

1Note that the entries of tp are all 0 except for ptpqCk
“ 1 corresponding to the kth class
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After filtering and averaging, the noise remaining in an MPT spectral signature measured
by a metal detector can be well approximated by Gaussian additive noise, with a level
dependent on the factors identified above. Hence, in this work, noise is added to the
simulated MPT spectral signatures in the following way: A signal noise ratio (SNR) is
specified in decibels and used to determine the amount of noise to add to each of the com-
plex tensor coefficients pMrαBppq, ω, σ˚, µrsqij as a function of frequency for each object
αBppq in the dictionary. Considering each of the i, jth MPT coefficients individually,

v :“ pMrαBppq, ωm, σ˚, µrsqij,

is introduced to calculate a noise-power measure as

noise “
vv

10SNR{10
.

The noisy coefficients are then specified as

pMrαBppq, ωm, σ˚, µrsqij ` eij where eij “

c

noise
2
pu` ivq

with u, v „ Np0, 1q. The above process is repeated for the 6 independent coefficients
of the complex symmetric MPT and for each frequency in the spectral signature. SNR
values of 40, 20 and 10dB lead to values of | eijMij

| “ 0.01, 0.10 and 0.32 on average, which
is equivalent to 1%, 10% and 32% noise, respectively. One realisation of the effect of the
added noise on I1pR̃q and I1pIq for a British one penny coin can be seen, in the next
chapter, in Figure 9.1. Note, the model for noise results in a noise power measure that
varies over the MPT spectral signature according to vv. If the physical system behaves
differently, this can be taken in to account by applying an appropriate model for the noise
at this stage. Once the noisy M at each ωm are found, the principal invariants of the
real and imaginary parts ofM at each ωm easily follow. Hence, an entry px, tq P D is
replaced with pxnoise, tq. By repeating this for all objects leads to the updated dictionary
D.

8.3 Classification

In this section, a quick hands-on review of ML classification is provided. Readers who
are familiar with this subject should skip this section as this material can be found in the
references cited below.

8.3.1 Probabilistic versus Non-Probabilistic Classification

Applied to classification problems, Bayes’ theorem can be expressed in the form [20]

ppCk|xq “
ppx|CkqppCkq

ppxq
, k “ 1, ¨ ¨ ¨ , K, (8.6)
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which relates the posterior ppCk|xq to the likelihood ppx|Ckq and the prior ppCkq where,
for classification,

ppxq “
K
ÿ

n“1

ppx|CnqppCnq,

is easily explicitly obtained as the normalising constant.
In the inference stage of probabilistic classification, one seeks to design a classifier γkpxq
that provides a probabilistic output, which approximates ppCk|xq. On the other hand, non-
probabilistic classifiers either predict a class Ck with certainty or, more commonly, have
a statistical interpretation that provides a frequentist approximation ppCk|xq « γkpxq to
ppCk|xq. One measure of accuracy of classification is the mean squared error (MSE)

MSEpγkq “ Exrγkpxq ´ ppCk|xqs
2, (8.7)

where Ex is the expectation with respect to ppxq [85][pg 309.]. If desired, this can be
summed over the classes k “ 1, . . . , K or considered for each class. Other metrics are
considered in Section 8.4.
Given approximations ppCk|xq « γkpxq, k “ 1, . . . , K, the class decision is typi-
cally achieved using the maximum a-posterior (MAP) estimate arg maxkPKpppCk|xqq «

arg maxkPKpγkpxqq i.e. the MAP estimate corresponds to the class Cn with n such that

n “ arg max
kPK

pγkpxqq. (8.8)

However, the MAP may have drawbacks if there are several similar probabilities and/or if
the data is noisy. Hence, understanding the uncertainty in the approximations of ppCk|xq
are also important. This is considered in Section 8.3.5.

8.3.2 Bias and Variance

The classifiers considered are based on ML algorithms. For an ML method Γ, which
takes D “ Dtrain as the input and returns a learned classifier γk, k “ 1, . . . , K, Manning,
Raghavan and Schütze [85][pg. 309-312] define the Learning-errorpΓq “ EDrMSEpΓDqs

as a measure of accuracy of the classifier, which is to be minimised, and they show that it
can be expressed as

Learning-errorpΓq :“ExrbiaspΓ,xq ` variancepΓ,xqs,

biaspΓ,xq :“rppCk|xq ´ EDΓDpxqs
2,

variancepΓ,xq :“EDrΓDpxq ´ EDΓDpxqs
2,

where ΓDpxq implies that the ML method is applied to data set D and outputs approxima-
tions ppCk|xq « γkpxq to ppCk|xq, k “ 1, . . . , K, for data x.
Bias measures the difference between the true ppCk|xq and the prediction ΓDpxq averaged
over the training sets [85][pg 311]. Bias is large if the classifier is consistently wrong,
which may stem from erroneous assumptions. A small bias may indicate several things
and not just that the classifier is consistently correct, for further details see [85]. Related
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to high bias is underfitting, which refers to a classifier that is unable to capture the re-
lationship between the input and output variables correctly and produces large errors on
both the training and testing data sets.
Variance is the variation of the prediction of learned classifiers and is the average differ-
ence between ΓDpxq and its average EDΓDpxq [85][pg. 311]. Variance is large if different
training sets give rise to different classifiers and is small if the choice of training set has
only a small influence on the classification decisions, for further details see [85]. Related
to high variance is overfitting, which is the opposite of underfitting, and refers to a classi-
fier that has too much complexity and also learns from the noise resulting in high errors
on the test data.
The ideal classifier would be a classifier having low bias and low variance, however,
the two are inextricably linked and there is therefore a trade off between two [20, 85].
While the performance of classifiers is very application dependent, linear classifiers tend
to have a high bias and low variance and non-linear classifiers tend to have a low bias
and high variance [85]. The ML methods Γ that are considered here are commonly found
in established ML libraries such as scikit-learn, which is the implementation that
is used, due to its good range of probabilistic and non-probabilistic classifiers within a
single environment and ease of use. The finer details of the different methods can be
found in [20, 54, 40] among many others, although a brief summary of the methodolo-
gies is given, for those less familiar with the approaches and to set notation. First non-
probabilistic methods are discussed and then probabilistic classifiers.

8.3.3 Non-Probabilistic Classifiers

8.3.3.1 Decision Trees

Tree based algorithms can simply be interpreted as making a series of (binary) decisions
that ultimately lead to the prediction of a class. For F “ 2, this results in the partition
of the feature space into a series of K rectangular regions corresponding to the different
classes. To establish the regions, and, hence the classes, a tree is constructed where, at
each node, a binary decisions about a component of x, and the process is terminated with a
decision at the leaf-node (for example, if x1 ď t1 and x2 ď t2 then the class is C1, whereas
if x1 ď t1 and x2 ą t2 the class is C2 etc). In order to grow a tree, a greedy algorithm is
applied to decide how to split the variables, the split points and the topology of the tree
[54][pg. 308]. Growing a tree that is too large may overfit the data, while a small tree may
not capture the structure. To overcome this, a larger than needed tree is usually grown and
is then pruned. To understand how this works, consider a tree, then by applying the rules
of the tree, a subset of the training data for its m node is obtained. It then follows that
p̂mk is the proportion of this data that has class Ck and the associated class is determined
as kpmq “ arg maxk p̂mk. The pruning is then achieved by applying a cost-complexity
optimisation based on the node impurity measures misclassification error, Gini index or
cross-entropy, which can each be written in terms of ((non-linear) functions and/or sums
of) p̂mk. For further details see [54][pg. 309] [20][pg. 666]. Decision trees are often
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used as a base classifier for more advanced ensemble methods such as gradient boost and
random forests discussed below.

8.3.3.2 Random Forests

The random forests classifier is an example of what is known as “a bootstrap aggre-
gating (bagging) algorithm” that attempts to reduce the variance of the typically high-
variance low-bias decision tree algorithm [54][pg. 587]. As Hastie, Tibshirani and Fried-
man [54][pg. 587] continue to describe, the idea behind bagging is to average many noisy,
but unbiased models to reduce their variance. Trees are notoriously noisy, and hence ben-
efit from averaging. Since each tree generated by bagging is identically distributed then
expectation of an average of such trees is the same as the expectation of any of them. This
means that bias unchanged, but random forests offer the hope of improvement by variance
reduction. For details of their implementation see [54][Chapt. 15].

8.3.3.3 Support Vector Machine

A support vector machine (SVM) classifier generalises simple linear classifiers (e.g.
Fisher’s linear discriminant analysis) by producing non-linear, rather than linear, classifi-
cation boundaries. These are obtained by constructing a linear boundary in a transformed
version of the feature space, which becomes non-linear in the feature space [20][pg. 325],
[54][Chapt. 12], [30]. So, after making a transformation ψpxq : RF Ñ RF̃ with F̃ ě F

being possibly infinite dimensional, the goal of the classifier is to learn how to determine
w and w0 in

Gpxq “ wTψpxq ` w0, (8.9)

with }w} “ 1 such that it predicts C1psayq ifGpxq ă 0 and C2 ifGpxq ą 0. For the sepa-
rable case, the idea behind SVM is to find the hyperplane that creates the biggest margin,
defined by 2M between the training data describing the two classes. Given N training
points px1, y1q, px2, y2q, . . . , pxN , yNq with yi P t´1, 1u indicating the class label, then
this problem can be framed as the optimisation problem

maxw,w0,}w}“1M

subject to yipw
Tψpxiq ` w0q ěM, i “ 1, . . . , N (8.10)

which can also be rephrased as a convex optimisation problem (quadratic criterion and
linear constraints). In the non-separable case, slack variables s1, . . . , sN are introduced
to deal with points that lie on the wrong side of the margin and the linear constraint is
replaced by yipw

Tψpxiq ` w0q ě Mp1 ´ siq. For further details, and its computational
implementation using Lagrange multipliers, see [54][pg. 420]. This practical implemen-
tation involves the introduction of symmetric positive definite or symmetric positive semi
definite kernel functions kpx,x1q “ ψpx1qTψpxq [54][pg. 424], which avoids the intro-
duction of ψpxq itself, but imposes limitations on their choice in order that optimisation
problem remains convex. Typically kernel types include polynomial, Gaussian, and radial
basis function kernels, however, the investigation is limited to the latter.
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To apply SVM to multi-class problems, the problem is reduced into a series of binary
classification problems. This is done by employing either an ovo (one versus one) or
an ovr (one versus rest) strategy, with the former being chosen in this work, where an
SVM is trained for each possible binary classification. This leads to KpK´1q

2
models being

trained, for example in a 3-class problem (K “ 3) a classifier would be trained to separate
the pairs pC1, C2q, pC1, C3q and pC2, C3q, then a voting scheme based on these classifiers
would be applied.

8.3.4 Probabilistic Classification

Considering problems withK ą 2, it is beneficial for the practical probabilistic classifiers
described below to write (8.6) in the form of the softmax function (also known as the
normalised exponential)

ppCk|xq “ σpxq :“
exp ak

řK
k“1 exp ak

, (8.11)

where ak “ lnpppx|CkqppCkqq.
If ppx|Ckq has a simple Gaussian form, the evaluation of ppCk|xq for given x becomes
explicit. However, in many practical cases, ppx|Ckq will have a complicated form and this
will dictate the use of classifier γkpxq that approximates ppCk|xq instead. Nonetheless,
all probabilistic classifiers benefit from establishing (approximations of) the likelihood of
each of the classes Ck, k “ 1, . . . , K rather than just a single output.
Some alternative ML methods Γ, which provide probabilistic classifiers, will be explored
below.

8.3.4.1 Logistic Regression

In the case that ppx|Ckq has a simple Gaussian form, a suitable linear classifier is logistic
regression [20][Chapt. 4]. This is based on the following assumptions

1. The likelihood probability distribution is Gaussian:

ppx|Ckq “
1

p2πqF {2|Σ|1{2
exp

ˆ

´
1

2
px´mkq

TΣ´1
px´mkq

˙

,

where mk is the mean of all xi, pxi, tiq P Dpkq, that are associated with class Ck
and Σ is a covariance matrix.

2. The covariance matrix Σ is common to all the classes.

In this case, the evaluation of ppCk|xq is explicit with ak in (8.11) replaced with the
rescaled ãk for K ą 2 [20]

ãk “ w̃T
k x` w̃k0,

where

w̃k “ Σ´1mk,

w̃k0 “ ´
1

2
mkΣ

´1mk ` ln ppCkq.
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In the generative approach, the learning involves first computing mk and Σ directly from
the training data Dptrainq while in discriminative approach, the pK´1qpF `1q coefficients
of w̃k and wk0 compared to the KF ` F 2{2 coefficients needed otherwise are found
by numerical optimisation from Dptrainq2. When applied to other data sets, this results
in an approximate ppCk|xq « γkpxq to ppCk|xq. Note, that only w̃k and w̃k0 for k “
1, ¨ ¨ ¨ , K´1 need to be determined since

řK
k“1 ppCk|xq “ 1, which allows approximation

ppCK |xq « γKpxq to be found from γkpxq, k “ 1, . . . , K ´ 1.

8.3.4.2 Multi-Layer Perceptron

If ppx|Ckq does not have a simple form, and ppCk|xq is not explicit, then the multi-
layer perceptron (MLP) neural network can be applied in an attempt to approximate
ppCk|xq [20][Chapt. 5]. For example, for a K ą 2 class problem using 3-layers (with 1
input, 1 hidden and 1 output) and J internal variables (neurons) in the hidden layer, the
approximation to ppCK |xq takes the form.

ppCk|xq « γkpx,wq “ σ

˜

J
ÿ

j“1

w
p2q
kj σ

˜

F
ÿ

i“1

w
p1q
ji pxqi ` w

p1q
j0

¸

` w
p2q
k0

¸

(8.12)

where w
p1q
ji , w

p2q
kj are the JpF ` 1 `Kq `K coefficients of w to be found from network

training and σp¨q is the soft-max activation function defined in (8.11). In this case, the
input layer comprises of the features x P RF and output layer are the approximate of
the posterior probabilities γkpx,wq, k “ 1 . . . , K. If the number of internal variables in
each hidden layer is fixed at J , and there are L hidden layers, then the total number of
parameters, w

p1q
ji , w

p2q
ji , . . ., which describe the network, that need to be found are J2pL´

1q ` JpF ` L ` Kq ` K. Given N training points px1, t1q, px2, t2q, . . . , pxN , tNq, and
following a maximum likelihood [20][pg. 232] approach, the parameters are found by
optimising a logloss error function evaluated over the training data set

Epwq “ ´
N
ÿ

n“1

K
ÿ

k“1

ptnqk ln γkpxn,wq, (8.13)

or, alternatively, they can be found by a Bayesian approach [20][pg. 277].
As remarked by Richard and Lippmann [102], MLP can provide good estimates of
ppCk|xq if sufficient training data is available, if the network is complex enough and
if the classes are sampled with the correct a-prori class probabilities in the training data.
Nonetheless, designing appropriate networks, with the correct number of hidden layers
and neurons, can be challenging. Furthermore, a complex network with a large number
of neurons can require a large amount of training data to avoid overfitting.

8.3.4.3 Gradient Boost

Gradient boost is an example of what is known as a “boosting algorithm” [37, 35]. Boost-
ing attempts to build a stronger classifier by combining the results of weaker base clas-

2The implementation employed in the numerical examples is based on the discriminative approach.
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sifiers through a weighted majority vote [54][Chapt. 10] and, in the case of gradient
boost, this is achieved through optimisation using steepest descent. As described by
Friedman [37], gradient boost can be applied to approximating ppCk|xq in probabilis-
tic classification. By again considering (8.13), with ykpxn,wq replaced by (8.11) with
x “ xn, and choosing the parameters w “ wpxq as pwpxqqk “ wkpxq “ akpxq, then the
kth component of the negative gradient of the loss function is

rk “ ´
BEpwq

Bwk
“

N
ÿ

n“1

ptnqk ´ γkpxn,wq.

Starting with an initial guess ar0sk pxq “ 0, k “ 1, . . . , K, then, for a given x, an iterative
procedure is used to improve the estimate ppCk|xq « γkpx,w

rmsq of ppCk|xq at iteration
m. In this procedure, K decision trees are trained at each iteration to predict rk, k “
1, . . . , K, and the leaf nodes of the tree are then used to update armsk pxq until a convergence
criteria is reached. For details of the practical implementation see [37].

8.3.5 Understanding Uncertainty in Classification

For the majority of the classifiers considered, an ML algorithm ΓD trained on dictionary
D produces a classifier ΓDpxq “ γkpxq « ppCk|xq, which provides an indication of the
likelihood of the class Ck being correct. The decision, as to the correct class, is then
based on the MAP estimate. When this process is repeated for different pairs pxi, tiq P
T “ D(test), γkpxiq may be different for each xi. It is useful to explore how sensitive
γkpxiq is to changes in xi when it is evaluated for different pxi, tiq P T` “ D(test,p`qq

associated with the test data for one class C`. To do this, confidence intervals for the
average ET`γkpxq are considered.
A first approach might be to use the sample mean and sample variance

γk “
1

P ptest,p`qq

P ptest,p`qq
ÿ

i“1

γkpxiq and Sk “

d

řP ptest,p`qq

i“1 pγkpxiq ´ γkq2

P ptest,p`qq ,

to construct an interval in the form

γk ´ CV
Sk

?
P ptest,p`qq

ď ET`γkpxq ď γk ` CV
Sk

?
P ptest,p`qq

. (8.14)

In the above, CV is a critical value based on a t-test and the confidence level chosen.
However, in practice, if γk Ñ 0.5 as the sample size P ptest,p`qq Ñ 8 and, small confidence
bounds have been obtained, it might wrongly be concluded that γkpxq “ 0.5 with a
high degree of confidence. Instead, this may also indicate that half the observations are
predicting γkpxiq « 0 and the half are predicting γkpxiq « 1, which has the same sample
mean. This can occur, since at most Sk “ 0.5, and, for large P ptest,p`qq, the confidence
bounds produced by (8.14) are narrow due to division by this quality in computation of
the bounds. Hence, γk and (8.14) do not give any insight into the variation within the
different observations γkpxiq.
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Instead, ordering γkpxiq as

OpCkq “ pγkx1q, γkpx2q, ..., γkpxP ptest,p`qqqq, such that γkpxiq ď γkpxi`1q, (8.15)

the yth-percentile is defined as

γk,y “ pOpCkqq y
100

P ptest,p`qq , (8.16)

and use interpolation between neighbouring values if y
100

is not an integer. The median
value of γkpxq is then considered, given by γk,50, as the average and use the percentiles
corresponding to Q1 ” γk,25, Q3 ” γk,75 and γk,5, γk,95 to understand uncertainty in the
predictions.

8.4 Evaluating the Performance of Classifiers

Metrics for assessing performance that are applicable to both probabilistic and non-
probabilistic classifiers given D(train) and D(test) data sets are now described.

8.4.1 Metrics

8.4.1.1 Confusion Matrices, Precision, Sensitivity and Specificity

First the definitions of true positive, false positive, true negative and false negative for a
given class Ck are recalled (see e.g. [98]).

• True positive (TP), the case where the classifier predicts x belongs to Ck and is
correct in its prediction.

• False positive (FP) (type 1 error), the case where the classifier predicts x belongs
to Ck and is incorrect in its prediction.

• True negative (TN), the case where the classifier predicts x does not belong to Ck
and is correct in its prediction.

• False negative (FN) (type 2 error), the case where the classifier predicts x

does not belong to Ck and is incorrect in its prediction.

Following the training of a classifier, its performance can be evaluated on the test data set
Dptestq. Applying the classifier to each sample pxn, tnq P Dptest,piqq, where the true class
label is Ci, the number of predictions of each class Cj , j “ 1, . . . , K can be counted and
the result recorded in the pCqijth element of a confusion matrix C P RKˆK . Repeating
this process for i “ 1, . . . , K leads to the complete matrix 3. The 4 cases (TP, FP, TN,

3Note the convention used by scikit-learn is used for C, other references use a different conven-
tion where the rows and columns are swapped.
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FN) for each class Ck can be defined in terms of pCqij as [98, 40]

TPpCkq :“ pCqkk, FNpCkq :“
K
ÿ

j“1
j‰k

pCqkj,

FPpCkq :“
K
ÿ

i“1
i‰k

pCqik, TNpCkq :“
K
ÿ

i“1
i‰k

K
ÿ

j“1
j‰k

pCqij,

and the precision, sensitivity and specificity for each of the classes Ck using [98]

precisionpCkq :“
TPpCkq

TPpCkq ` FPpCkq
:“

TPpCkq
#predicted positives for Ck

,

sensitivitypCkq :“
TPpCkq

TPpCkq ` FNpCkq
:“

TPpCkq
#actual positives for Ck

,

specificitypCkq :“
TNpCkq

TNpCkq ` FPpCkq
“

TNpCkq
#predicted negatives for Ck

.

The precision and sensitivity (also known as the true positive rate or recall) are measures
of the proportion of positives that are correctly identified and specificity (also called the
true negative rate) measures the proportion of negatives that are correctly identified.
The entries in confusion matrices are often presented as frequentist probabilities (i.e.
pCqij is normalised by

řK
p“1

řK
q“1pCqpq), which, as the sample size P pkq becomes large,

provides an approximation to ppCj|xq with px, tq P Dptest,piqq. Confusion matrices will
also be presented in this way.

8.4.1.2 κ Score

Possible choices for a metric which provides an overall score of the performance of the
classifier include accuracy, the F1 score and Cohen’s κ score [113, 114, 98, 28, 105].
Vairants of the commonly used F1 score include the macro-averaged F1 score (or macro
F1 score), the weighted-average F1 score (or weighted F1 score) and the micro-averaged
F1 score (micro F1 score). However, the F1 score can sometimes lead to an incorrect
comparison of classifiers [99, 113]. As Powers’ [99] notes, the macro F1 score is not
normalised, which is overcome by the weighed F1 score and the F1 score is not symmet-
ric with respect to positive and negative cases. Some of these drawbacks are taken in to
account by using the micro F1 score, however, the κ score also takes into account chance
agreement [28, 114]. This is useful when comparing problems with both, differing num-
bers of instances per class and differing numbers of classes as it takes the chance a naive
classifier has into account with κ P p´8, 1q, with a naive classifier obtaining a value of
0. For these reasons, the κ score will be used and which is defined as

κ :“
accuracy´ random accuracy

1´ random accuracy
(8.17)
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for comparing classifiers where

accuracy :“

řK
k“1 TPpCkq

řK
k“1 TPpCkq ` FNpCkq

,

random accuracy :“
K
ÿ

k“1

pTPpCkq ` FNpCkqq ¨ pTPpCkq ` FPpCkqq
pTPpCkq ` FPpCkq ` TNpCkq ` FNpCkqq2

.

8.4.2 Validation Methods

Evaluating the performance of different classifiers can be considerably enhanced by em-
ploying cross validation [66]. This is particularly important if D(test) is small and, other-
wise, may lead to inaccurate predictions of a classifier’s performance. The Monte Carlo
cross validation (MCCV) technique (also known as “Leave group out cross validation”)
is employed [66][pg. 71]. This involves performing ` iterations where, for each itera-
tion, the dataset D is split into training and testing D “ pD(test), D(train)q with D(train) and
D(test) being drawn differently from D each time, irrespective of the splittings in previ-
ous iterations. Other variants of cross validation include k-fold cross validation, repeated
k-fold cross validation and bootstrapping, for further details see Kuhn and Johnson [66].
Kuhn and Johnson explain that no resampling method is uniformly better than another
and that the differences between the different methodologies is small for larger samples
sizes, which further motivates that actually performing cross validation is more important
than the method chosen for doing so.

8.5 Chapter Summary

This chapter has documented and compared a selection of appropriate probabilistic and
non-probabilistic ML classifiers which are appropriate for use with principal invariants of
the MPT as features, other approaches could also be considered, but the selection does
provide a good range of different methods.
The key novelties of the chapter were: Firstly, a methodology to create a dictionary of
threat/ non-threat objects based on principal tensor invariants has been documented. Sec-
ondly, application of noise to simulate real world measurements has been considered.
Lastly, the collation of ML classifiers that are appropriate for use in conjunction with
principal tensor invariants as ML features were presented.
In Chapter 9 the ML classifiers discussed in this chapter will be applied to a series of
dictionaries created using principal tensor invariants of the MPT.
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Chapter 9

Machine Learning Classification
Results

9.1 Introductory Remarks

This chapter documents results for the application of probabilistic and non-probabilistic
classifiers that were discussed in Section 8.3 to the dictionary created using method de-
scribed in Section 8.2.1.
This chapter has been adapted from the work presented by the author in [135].
The novelties of the chapter are as follows: Firstly, the construction of a large dictionary
of object characterisations based on the results of Section 8.2.1 along with applying Lem-
mas 2.7.1 and 2.7.2 and a sampling to method to provide considerable enhancements in
terms of variations of object conductivity and size at negligible computational cost. An
investigation of classifier performance as a function of number of excitation frequencies
and applied noise. Note that this is the first time that a computational dictionary of realis-
tic MPT spectral signatures has been employed for object classification. Finally, a novel
investigation into the classification of unseen objects is presented.
The chapter is organised as follows: First, in Section 9.2 construction and classification
of British coins using logistic regression on the coin dictionary is documented. In Sec-
tion 9.3.1 a methodology for the construction of a multi-class dictionary is discussed. In
Sections 9.3.2 and 9.3.3, classification results for an 8 class and 15 class problems are
presented, where multiple probabilistic and non-probabilistic ML classifiers are applied to
the respective dictionaries. Then, in Section 9.3.4, classification results of unseen objects
using the 8 class dictionary are presented. Limitations and potential improvements about
the methods are then reviewed in Section 9.4. The chapter is concluded in Section 9.5
with closing remark.

9.2 Classification of British Coins

Building on the MPT spectral signature characterisations of British coins presented in
Section 7.3, this section deals with their classification using logistic regression.
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9.2.1 Construction of the Coin Dictionary

To create the coin dictionary, the approach described in Section 8.2.1 is followed. The kth
class Ck, k “ 1, ..., K “ 8 is chosen, to correspond to the kth British coin denomination
one penny (1p), two pence (2p), five pence (5p), ten pence (10p), twenty pence (20p),
fifty pence (50p), one pound (£1), two pounds (£2), respectively, in order of increasing
value. The coins have different geometries, and, in some cases different materials [76],
although within each class the restriction of a single geometry Gpkq “ 1 is chosen, then
considering a fixed P pkq “ P {K number of samples for each class so that P pkq “ V pkq

in this case. Note, P pkq “ 2000 is chosen for coin classification unless otherwise stated.
The shape Bpkq of the kth coin class is as described in the specification of Table 7.1
and in the MPT-Library [132] the MPT spectral signatures for each coin geometry
have previously been obtained. From these, signatures evaluated at M equally spaced
frequencies were chosen, with ωm such that 5.02 ˆ 104 rad/s ď ωm ď 8.67 ˆ 104 rad/s,
although the larger frequency range of 7.53ˆ102 rad/s ď ωm ď 5.99ˆ105 rad/s has been
considered. To account for the fact that the measured MPT coefficients will be noisy,
Figure 9.1 shows realisations of noise being added to the spectral signatures of I1pR̃q and
I1pIq for the 1p coin. The curves in this figure correspond to the cases of no noise and
noise with SNR values of 40dB, 20dB and 10dB.
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Figure 9.1: Set of British coins: 1p coin αB, α “ 0.001m, µr “ 1 and σ “ 4.03 ˆ 107

S/m showing the spectral signatures for noiseless and realisations of noise with SNRs of
40dB, 20dB and 10dB (a) I1pR̃rαB, ω, σ˚, µrsq and (b) I1pIrαB, ω, σ˚, µrsq.

The V pkq variations account for the fact that within each class there can be:

1. Variation in the object size α, such that the volume in the different observations of
coins of a certain denomination can change. While it is expected that a coins size
may be fairly uniform when they leave the mint, they are likely to become increas-
ingly bashed and dented once they enter circulation, hence their object size may
change over time. the object size is chosen to be ˘2.52% of the coins specification,
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by settingmα “ 0.001m for each coin and sα “ 0.001p1.0252´1q{3 “ 8.4ˆ10´6m
i.e. to be 1{3 the difference of the upper limit and the respective mean.

2. Variation in the object conductivity/conductivities σ˚pxq to account for variations
in the manufacturing process, such that the conductivity in the different observa-
tions of coins of a certain denomination can change. In most cases the coins are
assumed to be homogeneous conductors, but for £1 and £2 coin denominations the
objects are each an annulus. As the coins dominant composition material is copper,
using [6, 58] an upper limit for conductivity is found to be ˘7.09% of the coins
specification. Thus, mσ˚ is set according to the conductivities of each coin denom-
ination, so for a 1p coin, for example, mσ˚ “ 4.307 ˆ 107S/m and sσ˚ in a similar
way to sα, so that sσ˚ “ 4.307ˆ 107p1.0709´ 1q{3 “ 9.52ˆ 105S/m.

3. Note that the object’s permeability will be fixed as µr “ 1 as all the coins considered
are assumed to be non-magnetic [76].

Given that p
´

´3 ď α´mα
sα

ď 3
¯

“ 0.9974, 99.74% of the object sizes generated are ex-
pected to fall within the prescribed variation in object sizes due to being bashed and
dented in circulation. Similarly, 99.74% of the σ˚ values generated are expected to fall
within our prescribed variation in σ˚. Overall, this means that 0.9974 ¨ 0.9974 “ 0.9948

or 99.48% of the values generated are representative of genuine currency.
The effect of these samples on the MPT spectral signature is illustrated in Figure 9.2 for
the 1p coin class (C1) and noiseless data. This will now be explored further: Given
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Figure 9.2: Set of British coins: 1p coin (class C1) with P pkq “ P {K “ 2000, with
α „ Np0.001, 8.4 ˆ 10´6q m and σ˚ „ Np4.03 ˆ 107, 9.52 ˆ 105q S/m showing the
histograms for the distribution of the spectral signatures (a) I1pR̃rαBp1q, ω, σ˚, µrsq and
(b) I1pIrαBp1q, ω, σ˚, µrsq.

α „ Np0.001, 8.4 ˆ 10´6q m, σ˚ „ Np4.03 ˆ 107, 9.52 ˆ 105q S/m, drawing P pkq

samples of α and σ˚ and applying the scaling results in Lemmas 2.7.1 and 2.7.2, the
histograms of the random variables X “ I1pR̃rαBp1q, ωm, σ˚, µrq „ ppx1`pm´1qM |C1q
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Figure 9.3: Set of British coins: 1p coin (class C1) with P pkq “ P {K “ 2000, with
α „ Np0.001, 8.4ˆ10´6qm and σ˚ „ Np4.03ˆ107, 9.52ˆ105q S/m showing the density
of the histograms of pZ ´mXq{sX , presented in the form of probability densities, where
X is instances of the following (a) I1pR̃rαBp1q, ωm, σ˚, µrq, (b) I1pIrαBp1q, ωm, σ˚, µrsq,
(c) λ1pR̃rαBp1q, ωm, σ˚, µrsq and (d) λ1pIrαBp1q, ωm, σ˚, µrsq at distinct frequencies ωm.

and X “ I1pIrαBp1q, ωm, σ˚, µrsq „ ppx1`pm`2qM |C1q are obtained and shown in Fig-
ure 9.2. Then, by taking cross section sections at selected frequencies ωm the histograms
shown in Figure 9.3, which are presented in the form of probability densities. The
corresponding distributions obtained by sampling X “ λ1pR̃rαBp1q, ωm, σ˚, µrsq and
X “ λ1pIrαBp1q, ωm, σ˚, µrsq are also included in this figure. In each case, these distri-
butions have been normalised using the transformationZ “ pX´mXq{sX , wheremX and
sX indicates the mean and standard deviation of X 1 and a curve of best fit made through
the density of the histogram. As a comparison, the standard normal distribution is in-
cluded. Notice that the normalised sample distributions of X “ I1pR̃rαBp1q, ωm, σ˚, µrsq
for different ωm are identical, as are those for X “ I1pIrαBp1q, ωm, σ˚, µrsq for dif-
ferent ωm, and have a close fit to the standard normal distribution. The conclusion is

1The sample mean and sample standard deviation are used as an approximation to mX and sX , respec-
tively.
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similar for the other invariants and other coins. This outcome can be explained by the
central limit theorem, which implies, given a large enough sample size, the samples of
I1pR̃rαBp1q, ωm, σ˚, µrsq and I1pIrαBp1q, ωm, σ˚, µrsq are expected to follow a normal
distribution even if the parent distribution is not normal 2. The normalised sample distri-
butions of X “ λ1pR̃rαBp1q, ωm, σ˚, µrsq and X “ λ1pIrαBp1q, ωm, σ˚, µrsq also follow
a normal distribution, but the fit is not as good as for the invariants. The results are sim-
ilar for other eigenvalues and other coins. For our chosen α „ Np0.001, 8.4 ˆ 10´6q m,
σ˚ „ Np4.03 ˆ 107, 9.52 ˆ 105q S/m and smaller sample sizes, the distributions of X “

I1pR̃rαBp1q, ωm, σ˚, µrq, X “ I1pIrαBp1q, ωm, σ˚, µrsq, X “ λ1pR̃rαBp1q, ωm, σ˚, µrsq
and X “ λ1pIrαBp1q, ωm, σ˚, µrsq still approximately follow a normal distribution with
the fit being superior for the invariants. By considering different instances of noise, simi-
lar histograms to those shown in Figure 9.3 can be obtained and again similar conclusions
about the resulting distributions of the eigenvalues and invariants at each ωm apply.

9.2.2 Classification Results

For the coin classification problem, consideration is only given to the logistic re-
gression classifier using default settings of scikit-learn, as Figure 9.3 indicates
that a normal distribution is a good approximation for the sample distributions of
IipR̃rαBpkq, ωm, σ˚, µrq and IipIrαBpkq, ωm, σ˚, µrq, i “ 1, 2, 3, for a sufficiently large
sample size. It is also observed that the feature space can be separated linearly. To illus-
trate this, the simplest case of just F “ 2 features is examined, I1pR̃rαBpkq, ω1, σ˚, µrsq

and I1pIrαBpkq, ω1, σ˚, µrsq, and M “ 1 with ω1 “ 6.85 ˆ 104 rad/s. Figure 9.4
shows the class boundaries when the MAP estimate (8.8) is applied for different levels
of noise, the crosses indicate the locations of the means mk for each class obtained from
Dptrainq and the circles indicate the samples from Dptestq assuming a 3:1 training-testing
D “ pDptrainq, Dptestqq splitting and MCCV with ` “ 100 (as described in Section 8.4.2),
which is employed throughout. From this figure, the class boundaries are observed to
change only slightly if noise with SNR of 40dB is added and, with greater noise, the
changes to the boundaries are only moderate. It is also possible to see that the number
of misclassifications is very small for SNR= 40dB and 20dB and still modest for 10dB,
which has a κ “ 0.66 score using (8.17). Furthermore, and importantly, the locations of
the means mk for each class do not change significantly for P pkq “ P {K “ 2000 since
using this large number of instance per class has the effect of largely averaging out the
effects of noise and the object variations that were previously illustrated in Figures 9.1
and 9.2. While this figure indicates that the samples form a ppx|Ckq that is normally

2Although α „ Npmα, sαq and σ˚ „ Npmσ˚
, sσ˚

q are chosen the parent distributions
ppx1`pm´1qM |C1q and ppx1`pm`2qM |C1q, for pR̃rαB, ω, σ˚, µrsqij or pIrαB, ω, σ˚, µrsqij , respectively,
should not be expected to be normally distributed, due to the powering operation involved in the scaling
in Lemma 2.7.2, which, for large sα, can have significant effect. However, the invariant I1 only involves
summation and will not change the distribution further for independent variables. The invariants I2 and I3
do involve products and so are likely to further change the parent distribution, but, compared to the root
finding in eigenvalues, these are much smoother operations and so their effects are expected to be smaller.
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distributed, especially for noiseless and noisy data with SNR of 40dB, 20dB, which is
consistent with the assumptions of this classifier, described in Section 8.3.4.1, the ob-
servation that the assumption of a common covariance matrix between the classes does
not hold for coin data set is clear. The variance between the features is anisotropic for
each cluster, as indicated by different sized and different orientated ellipses, which also
becomes increasingly apparent for increased noise levels. While logistic regression typ-
ically has a high-bias and low-variance, its bias is expected to be lower for this problem
than others given the above.

(a) Noiseless (b) SNR =40dB

(c) SNR=20dB (d) SNR=10dB

Figure 9.4: Set of British coins: linear feature space splitting for the classes Ck,
k “ 1, . . . , K, for a simplified case of F “ 2 features based on maxk γkpxq for logis-
tic regression and P pkq “ P {K “ 2000 for (a) noiseless and SNR of (b) 40dB, (c) 20dB,
(d) 10dB.

This behaviour also carries over when F “ 6M and greater M is used. In Figure 9.5 the
overall performance of the classifier is illustrated, using the κ score (8.17) as a function of
P pkqq for test data with SNR=10dB noise and paq for noiseless training data and pbq noisy
training data with SNR=10dB. The different curves correspond to M “ 1, 2, 3, 5, 10, 20

frequencies. The curve for M “ 1 corresponds to the same frequency considered in
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Figure 9.4, but has F “ 6 features instead of F “ 2. Increasing M also increases F
and, for either noiseless or noisy training data, the classifier’s performance is improved
for fixed P pkq as more feature information is available in x P RF for each px, tq P D(train)

and, hence, it becomes easier for the classifier to find relationship between the features
and classes and, in the decision stage, partitioning according to (8.8) becomes easier
for larger F . On the other hand, increasing P pkq “ P {K, for a fixed M and noiseless
training data, reduces the κ score and increases the variability as the classifier becomes
increasingly overfitted to the training data and experiences more misclassifications as P pkq

is increased. For noisy training data, the classifier is exposed to more noisy data in D(train)

as P pkq is increased and, hence, its performance improves and its variability decreases.
The relatively high accuracy of logistic regression for the coin classification problem,
even with an SNR of 10dB, can in part be attributed to how well the assumptions of
logistic regression hold in practice for this problem and the normalisation of the data that
is performed prior to training.
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Figure 9.5: Set of British coins: Overall performance of logistic regression classifier
as a function of P pkq and different numbers of frequencies M using the κ score (8.17)
for a testing noise SNR=10dB, for (a) noiseless training data and (b) training data with
SNR=10dB.

The relationship between noise level, number of frequencies and classifier performance
is further considered in Figure 9.6. This figure shows the noise level against M , with the
contours indicating the resulting κ score for fixed P pkq. The concentric curves correspond
to all the systems with a M and a noise level that achieve the same accuracy. As is to be
expected, results for the classifier can be improved by increase both/ either M or SNR.
This figure is of practical value as it allows practitioners to choose M , given an SNR, in
order to achieve a desired level of accuracy.

Some illustrative approximations ppCk|xq « γkpxq to posterior probabilities ppCk|xq,
k “ 1 . . . , K, that are obtained for SNR=10dB are illustrated in Figure 9.7. For each
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Figure 9.6: Set of British coins: Overall performance of logistic regression classifier with
P pkq “ 2000, comparing M and SNR using the κ score (8.17).

px, tq P Dptestq, a potentially different distribution can be expected and, in the cases shown,
px, tq P Dptest,p3q and px, tq P Dptest,p4qq have been chosen so that correct classifications
should be C3 (a 5p coin) and C4 (a 10p coin), respectively. Additionally, the bars shown
are for the median value γk,50, obtained by considering all the samples px, tq P Dptest,p3qq

and px, tq P Dptest,p4qq, respectively, and indicate the Q1, Q3 quartiles as well as γk,5 and
γk,95 percentiles, which have been obtained using (8.16). The cases shown correspond to
the best and worst cases among all Dptest,pkqq for this level of noise. A common trait of
logistic regression is that it gives a strong γkpxq for one class and low values for the other
classes and the results obtained also exhibit this. Comparing γkpxq, k “ 1, . . . , K, for
px, tq P Dptest,p3q and px, tq P Dptest,p4qq, the most likely classes are found to correspond to
the 5p and 10p coins, respectively. For the 5p coin, the inter quartile and inter percentile
ranges are small and so there is high confidence in this prediction and a low variability.
For the 10p coin, they are larger indicating less confidence in the prediction and a higher
variability.

Next, frequentist approximations to ppCj|xq for px, tq P Dptest,piqq are presented in the form
of a confusion matrix with entries pCqij , i, j “ 1, . . . , K, for the cases of SNR=20dB and
SNR=10dB in Figure 9.8, using the approach described in Section 8.4.1.1. Considering
the case with SNR=10dB, the performance of the classifier is compared using P pkq “ 50

and P pkq “ 2000 instances per class. There are only a small number of misclassifications
for the P pkq “ 50 case and these are further reduced by using P pkq “ 2000.

9.3 Multi-Class Problem

Building on the MPT spectral signature characterisation of threat and non-threat objects
presented in Chapter 7, this section deals with the construction of dictionaries for the
8-class and 15-class problems and classification using a range of ML classifiers.
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Figure 9.7: Set of British coins: Approximations ppCk|xq « γkpxq to posterior probabil-
ities ppCk|xq, k “ 1, . . . , K, using the logistic regression classifier using P pkq “ 2000

where (a) px, tq P Dptest,p3qq and (b) px, tq P Dptest,p4qq.
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Figure 9.8: Set of British coins: Confusion matrices for noise corresponding to
SNR=10dB showing showing the effect of different numbers of instance per class (a)
P pkq “ 50 and (b) P pkq “ 2000.

9.3.1 Construction of the Multi-Class Dictionary

To create the multi-class dictionary, the approach described in Section 8.2.1 is followed
where, in the most general setting, the classes Ck, k “ 1, ..., K, are chosen to correspond
to the different threat and non-threat type objects listed in Table 9.1. Unlike the coins,
each class is comprised of objects of different geometries, as well as different sizes and
materials, so that Gpkq ‰ 1 in general. However, when creating the classes, geometries
that have (physical) similarities have been grouped together. For example, the coins class
C1 includes the Gp1q “ 8 different denomination of British coins described in the previ-
ous section. Furthermore, in Figures 7.31 and 7.32, the surface finite element meshes are
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shown corresponding to exemplar threat and non-threat object geometries, respectively,
within each of these different classes and Table 9.2 gives an overall summary of the ma-
terials and object sizes. In the case of the coins, guns, keys and knives, the simulated
MPT spectral signatures are those presented in Chapter 7, with the complete set of MPT
spectral signatures for all objects in the MPT-Library dataset [132]. These simulated
spectral signatures were generated in a similar way to those described in Chapter 7. In
total, there are

řK
k“1G

pkq “ 67 different distinct geometries and 158 including different
material variations. In Table 9.1 the relationship between P pkq, V pkq and Gpkq is given
for each class Ck and V pkq is chosen times such that an approximately equal number of
samples P pkq « P {K for each class of object, with P pkq “ 5000 in the following unless
otherwise stated. While mσ˚ is object specific, mα “ 0.001m is set, to fix the object size,
and sα “ 0.0084mα and sσ˚ “ 0.024mσ˚ have been chosen to account for manufacturing
imperfections. A fixed number of M “ 28 linearly spaced frequencies is set, such that
7.53 ˆ 102 rad/s ď ωm ď 5.99 ˆ 105 rad/s, although some comments are made about
the performance using 5.02 ˆ 104rad/s ď ωm ď 8.67 ˆ 104 rad/s. In a similar manner
to the coin classification problem, noise corresponding to SNR values of 40dB, 20dB is
added. Consideration of an SNR of 10dB is dropped in this section as this represents a
very high level of 32% noise, which, of course, performs worse than 20dB noise. Using
the information above, two different types of dictionaries were formed. Firstly, D15 for
the complete set of K “ 15 classes and, secondly, D8 comprising of K “ 8 different
classes. The grouped classes for the D8 are described in Table 9.3.
For these dictionaries, in the majority of cases Gpkq ‰ 1. Considering α „ Npmα, sαq,
σ˚ „ Npmσ˚ , sσ˚q and gk “ 1, . . . , Gpkq, the parent distributions of the variables
X “ IipR̃rαBpgkq, ωm, σ˚, µrq „ ppxi`pm´1qM |Ckq andX “ IipIrαBpgkq, ωm, σ˚, µrsq „
ppxi`pm´1qM |Ckq will be far from normal. For P pkq “ P {K “ 5000 samples and
the class C1, comprised of the Gp1q “ 8 different denominations of UK coins, the
probability density distributions are shown in Figure 9.9. Even with a sample size of
P pkq “ P {K “ 5000 the sample distributions are also far from normal and a very large
sample is expected to be needed in order for the central limit theorem to apply in this case.

In the following, classification using the dictionary D8 is presented and then proceed to
present results for D15.

9.3.2 Classification Results Using D8

From the observations in Figure 9.9, logistic regression is not expected to perform well
using the D8 dictionary and for it to have a high bias. Instead, consideration is given to
the full range of probabilistic and non-probabilistic classifiers described in Sections 8.3.3
and 8.3.4 and retain logistic regression for comparison. An optimised set of hyperparam-
eters for each classifier were obtained as follows: A grid based search was performed to
maximise the κ score (8.17) for the relevant hyperparameters for each classifier for the
dictionary corresponding to P pkq “ 5000 and SNR=40dB and these were then adopted
for the simulations presented in this section. To illustrate the hyperparameter grid-based
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Class # Geometries #Materials # Additional Total
(Gpkq) per geometry variations (V pkq) (P pkq)

Guns (C1) 1 1 V p1q V p1q

Hammers (C2) 2 3 V p2q 6V p2q

Knives (C3) 5 1 V p3q 5V p3q

Knuckle dusters (C4) 2 1 V p4q 2V p4q

Screw drivers (C5) 6 3 V p5q 18V p5q

Scissors (C6) 2 3 V p6q 6V p6q

Bracelets (C7) 4 3 V p7q 12V p7q

Belt buckles (C8) 3 4 V p8q 12V p8q

Coins (C9) 8 1 V p9q 8V p9q

Earrings (C10) 9 3 V p10q 18V p10q

Keys (C11) 4 1 V p11q 4V p11q

Pendents (C12) 7 3 V p12q 21V p12q

Rings (C13) 7 3 V p13q 21V p13q

Shoe shanks (C14) 3 1 V p14q 3V p14q

Watches (C15) 4 3 V p15q 12V p15q

Table 9.1: Set of multiple threat and non-threat objects: Full list of 15 threat and non-
threat object classes detailing the number of geometries in each class, Gpkq, the number
of materials per geometry, the number of additional variations to account for geometrical
and material variations and the total number in each class, P pkq.
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Figure 9.9: Set of multiple threat and non-threat objects: British coins (class C1) with
P pkq “ P {K “ 5000, with α „ Np0.001, 8.4 ˆ 10´6q m and σ˚ „ Npmσ˚ , 0.024mσ˚q,
where mσ˚ is determined by the material Bpkq, showing the densities for normalised his-
tograms of pZ ´ mXq{sX , presented in the form of probability densities, where X is
instances of the following (a) I1pR̃rαBp1q, ωm, σ˚, µrq and (b) I1pIrαBp1q, ωm, σ˚, µrsq at
distinct frequencies ωm.
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Class minpσ˚q maxpσ˚q minpµrq maxpµrq minpα3|B|q maxpα3|B|q

S/m S/m m3 m3

Guns (C1) 6.2ˆ 106 6.2ˆ 106 5 5 3.3ˆ 10´5 3.3ˆ 10´5

Hammers (C2) 1.3ˆ 106 1.6ˆ 106 1.02 5 4.3ˆ 10´5 2.0ˆ 10´4

Knives (C3) 1.5ˆ 105 5.8ˆ 107 1 5 3.3ˆ 10´6 6.5ˆ 10´5

Knuckle 1.5ˆ 107 1.5ˆ 106 1 1 1.7ˆ 10´5 1.8ˆ 10´5

dusters (C4)
Screw 1.3ˆ 106 1.6ˆ 106 1.02 5 1.1ˆ 10´6 3.4ˆ 10´6

drivers (C5)
Scissors (C6) 1.3ˆ 106 1.6ˆ 106 1.02 5 2.4ˆ 10´6 9.5ˆ 10´6

Bracelets (C7) 9.4ˆ 106 6.3ˆ 107 1 1 5.5ˆ 10´7 2.1ˆ 10´6

Belt 5.6ˆ 105 1.5ˆ 107 1 5 1.5ˆ 10´5 2.1ˆ 10´5

buckles (C8)
Coins (C9) 2.9ˆ 106 4.0ˆ 107 1 1 4.3ˆ 10´7 1.9ˆ 10´6

Earrings (C10) 9.4ˆ 106 6.3ˆ 107 1 1 1.0ˆ 10´8 2.3ˆ 10´7

Keys (C11) 2ˆ 107 1.5ˆ 107 1 1 6.3ˆ 10´7 6.7ˆ 10´7

Pendents (C12) 9.4ˆ 106 6.3ˆ 107 1 1 8.0ˆ 10´8 1.6ˆ 10´6

Rings (C13) 9.4ˆ 106 6.3ˆ 107 1 1 7.0ˆ 10´8 9.2ˆ 10´7

Shoe 6.2ˆ 106 6.2ˆ 106 5 5 8.9ˆ 10´7 1.4ˆ 10´6

shanks (C14)
Watches (C15) 9.4ˆ 106 6.3ˆ 107 1 1 4.7ˆ 10´6 3.3ˆ 10´5

Table 9.2: Set of multiple threat and non-threat objects: Full list of 15 threat and non-
threat object classes detailing composition of different materials and different object sizes
in each class.

optimisation, the κ score is investigated for different choices of L and J for MLP in Fig-
ure 9.10. For this result, it has been assumed the same number of neurons in each layer and
used max_iter=300 rather than max_iter=200 to allow an increased number of it-
erations to be performed to ensure convergence. From this figure, it can be observed there
are a range of different L and J that lead to a network with a similar level of accuracy.
As remarked in Section 8.3.4.2, for the type of network being considered, the number of
variables grow quadratically with J and linearly with L. Hence, from a computational
cost perspective, choosing a network with a small J and a large L is generally preferable
to a network with a large J and small L, if the cost of computing each variable is assumed
the same. For this reason, a network with L “ 3 and J “ 50 is adopted as MLP archi-
tectures in this range result in high κ score, while minimising computational cost. Also,
if desired, J could be further reduced without compromising accuracy. For SVM, rather
than the default ovr strategy, decision function shape=‘ovo’ is employed, this
is due to the performance of kernel based methods not scaling in proportion with the
size of the training dataset. The grid-based optimisation led to a significant variation in
performance for SVM, with the optimum values being a regularisation parameter C =
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Class Composition Total P pkq

Tools pC1q Hammers 6V p2q ` 6V p6q ` 18V p5q

Scissors
Screwdrivers

Weapons pC2q Guns V p1q ` 2V p4q ` 5V p3q

Knuckle dusters
Knives

Clothing pC3q Belt buckles 12V p8q ` 3V p14q

Shoe shanks
Earrings pC4q Earrings 18V p10q

Pendants pC5q Pendants 21V p12q

Pocket items pC6q Coins 8V p9q ` 4V p11q

Keys
Rings pC7q Rings 21V p13q

Wrist items pC8q Bracelets 21V p7q ` 12V p15q

Watches

Table 9.3: Set of multiple threat and non-threat objects: Amalgamated list of K “ 8

threat and non-threat object classes detailing their composition and total number in each
class P pkq.
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Figure 9.10: Set of multiple threat and non-threat objects: Overall performance of
MLP for different uniform network architectures, with P pkq “ 5000 when K “ 8 and
SNR=40dB, showing κ score for different numbers of hidden layers L and numbers of
neurons per layer J .

10e6 and a Kernel coefficient gamma = 1. For the random forest classifier, the grid
based optimisation resulted in the choice of max depth = 100 and n estimators

= 100. For gradient boost, the grid-based optimisation led to choice of n estimators

= 50 and max dpeth = 2 and later, in the case of an unseen object, it is shown that
the effects of varying the number of trees within the ensemble and the maximum depth

151



of each tree. Finally, for the decision tree classifier, the grid-based optimisation led to the
choice max depth = 100. Of course, the hyperparameter choices for each classifier
have been optimised for P pkq “ 5000, SNR “ 40dB and this K “ 8 class problem, for
different P pkq and SNR levels, as well as other classification problems, this choice may no
longer be optimum. More sophisticated alternatives to our simple grid-based optimisation
include using a Bayesian optimisation [117], a hyperband optimisation [36] or simulated
annealing [139].
For MLP, rather than the default settings of hidden_layer_sizes=(100), which
means a network with L “ 1 hidden layer and J “ 100 neurons, L “ 3 hidden
layers are used with J “ 50 neurons in each layer, a choice which will be justified
shortly. In addition, max_iter=300 is set rather than max_iter=200 to allow an
increased number of iterations to be performed to ensure convergence. For gradient boost
n_estimators=100 is chosen with max_depth=3 and later the effects of varying
the number of trees within the ensemble and the maximum depth of each tree is shown.
In Figure 9.11, the overall performance of the classifiers is shown with different levels of
noise. The κ score (8.17) is used to assess the performance of the classification due to
the variations within the classes. In each case, it is observed that increasing P pkq « P {K

generally leads to an improved performance of the classification in all cases, since the
classifier is exposed to more noisy data in Dptrainq

8 and its variability decreases. The figure
shows that, in both noise cases, the best performing classifier is random forests, although,
for large P pkq, the performance of random forest, gradient boost, decision trees and SVM
(particularly for SNR “ 40dB) are all very similar with κ « 1 indicating a low bias and
low variance. As random forest is a bagging algorithm and gradient boost is a boosting
algorithm the expectation is for them to perform well. However, the good performance
of decision trees is surprising. While the performance of SVM is good, it is less robust
as (small) changes in hyperparameters can have a significant affect on its performance.
The second best probabilistic classifier is MLP, which shows a significant benefit for large
P pkq. Comparing SNR=40dB and SNR=20dB a slight reduction in accuracy is observed
for a given P pkq using SNR=20dB, although, by increasing P pkq, the effects of noise can
be overcome. In particular, SVM sufferes noticeably more with SNR “ 20dB compared
to random forest, gradient boost and decision trees, but its performance for large P pkq is
still good and may be improved further by additional hyperparameter optimisation. Also,
although not included, the corresponding results for 5.02ˆ 104 rad/s ď ωm ď 8.67ˆ 104

rad/s using M “ 20 are not as good as those for 7.53 ˆ 102 rad/s ď ωm ď 5.99 ˆ

105 rad/s using M “ 28, with those shown offering at least a 5% improvement for the
best performing classifiers, small P pkq and SNR=20dB. Interestingly, logistic regression
improves by 25% when the larger frequency range is used. Attention is given to the two
best performing probabilistic classifiers, gradient boost and MLP, in the following.
The approximations ppCk|xq « γkpxq to posterior probabilities ppCk|xq, k “ 1, . . . , K,
obtained for gradient boost and MLP are shown in Figure 9.12, with px, tq P Dptest,p6qq

8

chosen so that the correct classification should be C6 (ie a pocket item: a coin or a key).
Additionally, the bars for the median value γk,50 of γkpxq, obtained by considering all
the samples px, tq P Dptest,p6qq

8 , are shown together with the Q1, Q3 quartiles as well as

152



102 103

Number of instances per class P (k)

0.2

0.4

0.6

0.8

1.0
κ

sc
or

e

DecisionTree

GradientBoost

LogisticRegression

MLP

RandomForest

SVM

102 103

Number of instances per class P (k)

0.2

0.4

0.6

0.8

1.0

κ
sc

or
e

DecisionTree

GradientBoost

LogisticRegression

MLP

RandomForest

SVM

(a) SNR=40dB (b) SNR=20dB

Figure 9.11: Set of multiple threat and non-threat objects: Overall performance of dif-
ferent classifiers as a function of P pkq when K “ 8 using the κ score (8.17) showing (a)
SNR=40dB and (b) SNR=20dB.

γk,5 and γk,95, for different SNR, which have been obtained using (8.16). The results for
SNR=40dB strongly indicate that the most likely class is a pocket item for both classifiers,
since γ6,50 « 1. For the gradient boost classifier, the inter quartile and inter percentile
ranges are small and, so, there is high confidence in this prediction. However, there is
less confidence in the corresponding prediction for the MLP as both the inter quartile
and inter percentile ranges are larger. For SNR=20dB, the median value γ6,50 falls for
both classifiers and, so, there is much greater uncertainty in the classification over the
samples, as illustrated by the larger inter percentile ranges for the different object classes.
Comparing the two classifiers, there is less confidence in the prediction with MLP than
for gradient boost.

Next, the frequentist approximations to ppCj|xq for px, tq P Dptest,piqq presented in the form
of a confusion matrix with entries pCqij , i, j “ 1, . . . , K, for the cases of SNR=40dB and
SNR=20dB and the gradient boost and MLP classifiers in Figure 9.13. As expected, for
SNR=20dB, an increased misclassification is observed amongst the classes compared to
SNR=40dB with situation being worse for the MLP classifier compared to the gradient
boost. Looking at the row corresponding to the true label for the C6 (pocket items) class,
for both SNR=40dB and SNR=20dB, it can be observed that the frequentist probability in
column j is approximately similar to the median approximate posterior probability γjpxq
shown in Figure 9.12. Also, while the gradient boost exhibits near perfect classification
for SNR=40dB (and SNR=20dB), MLP does not perform as well, particularly among the
earrings and pendents.

In Table 9.4, the precision, sensitivity and specificity are shown for each of the different
object classes Ck, k “ 1, . . . , K, for the case of SNR=20dB and the MLP classifier. In
general, the proportion of negatives that are correctly identified is very high (as indicated
by the specificity) and is close to 1 in all cases, whereas the proportions of positives
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(a) Gradient boost SNR=40dB (b) Gradient boost SNR=20dB
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Figure 9.12: Set of multiple threat and non-threat objects: Approximations ppCk|xq «
γkpxq posterior probabilities ppCk|xq, k “ 1, . . . , K, where px, tq P Dptest,p2qq

8 for P pkq “
5000 when K “ 8 showing the classifiers (a) gradient boost SNR=40dB, (b) gradient
boost SNR=20dB, (c) MLP SNR=40dB and (d) MLP SNR=20dB.

correctly identified (indicated by the precision and sensitivity) varies amongst the different
object classes, the best case being C1 (weapons) and worst case C5 (pendents). The
corresponding results for gradient boost are all close to 1.

To justify the choice of L “ 3 and J “ 50 for MLP, the κ score is shown for different
choices of L and J in Figure 9.10 for the case where SNR=40dB. For this result, it is
assumed that there are the same number of neurons in each layer. From this figure, it is
observed there are a range of different L and J that lead to a network with a similar level
of accuracy. As remarked in Section 8.3.4.2, for the type of network being considered,
the number of variables grows quadratically with J and linearly with L. Hence, from a
computational cost perspective, choosing a network with a small J and a large L is gen-
erally preferable to a network with a large J and a small L, if the cost of computing each
variable is assumed the same. For this, reason, a network with L “ 3 and J “ 50 is
adopted as MLP architectures in this range result in high κ score, while minimising com-

154



To
ols

W
ea

po
ns

Clot
hin

g

Ear
ing

s

Pen
da

nts

Poc
ke

t it
em

s
Ring

s

W
ris

t it
em

s

predicted label

Tools

Weapons

Clothing

Earings

Pendants

Pocket items

Rings

Wrist items

tr
ue

la
be

l
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

To
ols

W
ea

po
ns

Clot
hin

g

Ear
ing

s

Pen
da

nts

Poc
ke

t it
em

s
Ring

s

W
ris

t it
em

s

predicted label

Tools

Weapons

Clothing

Earings

Pendants

Pocket items

Rings

Wrist items

tr
ue

la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.0

0.2

0.4

0.6

0.8

(a) Gradient boost SNR=40dB (b) Gradient boost SNR=20dB

To
ols

W
ea

po
ns

Clot
hin

g

Ear
ing

s

Pen
da

nts

Poc
ke

t it
em

s
Ring

s

W
ris

t it
em

s

predicted label

Tools

Weapons

Clothing

Earings

Pendants

Pocket items

Rings

Wrist items

tr
ue

la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.76 0.22 0.00 0.01 0.00

0.00 0.00 0.00 0.24 0.65 0.08 0.02 0.02

0.00 0.00 0.00 0.00 0.04 0.94 0.02 0.00

0.00 0.00 0.00 0.01 0.01 0.03 0.94 0.01

0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.97

0.0

0.2

0.4

0.6

0.8

To
ols

W
ea

po
ns

Clot
hin

g

Ear
ing

s

Pen
da

nts

Poc
ke

t it
em

s
Ring

s

W
ris

t it
em

s

predicted label

Tools

Weapons

Clothing

Earings

Pendants

Pocket items

Rings

Wrist items

tr
ue

la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.76 0.23 0.00 0.02 0.00

0.00 0.00 0.00 0.24 0.62 0.09 0.02 0.02

0.00 0.00 0.00 0.00 0.05 0.90 0.04 0.01

0.00 0.00 0.00 0.01 0.01 0.04 0.93 0.01

0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.96

0.0

0.2

0.4

0.6

0.8

(c) MLP SNR=40dB (d) MLP SNR=20dB

Figure 9.13: Set of multiple threat and non-threat objects: Comparison of confusion ma-
trices for P pkq “ 5000 whenK “ 8 showing the classifiers (a) gradient boost SNR=40dB,
(b) gradient boost SNR=20dB, (c) MLP SNR=40dB and (d) MLP SNR=20dB.

Ck Precision Sensitivity Specificity
Tools pC1q 0.97 0.98 1.00

Weapons pC2q 0.99 0.99 1.00

Clothing pC3q 0.98 0.98 1.00
Earrings pC4q 0.64 0.84 0.93
Pendants pC5q 0.60 0.34 0.97

Pocket items pC6q 0.75 0.73 0.96
Rings pC7q 0.70 0.82 0.95

Wrist items pC8q 0.90 0.87 0.99

Table 9.4: Set of multiple threat and non-threat objects: Precision, sensitivity and speci-
ficity measures (to 2d.p.) for each of the classes Ck when SNR=20dB and P pkq “ P {K “

5000 for the MLP classifier.
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putational cost. Also, if desired, J could be further reduced without comprising accuracy.
Of course, this choice has been optimised for P pkq “ 5000, SNR=40dB and this K “ 8

class problem, for different P pkq and SNR levels, as well as other classification problems,
this choice may no longer be optimum.

9.3.3 Classification Results Using D15

Figure 9.14 repeats the investigation shown in Figure 9.11 for D15, instead of D8, and,
given the relationship between the multi-class dictionaries, using the same classifier hy-
perparameters. The trends described previously again apply, except, with a further sig-
nificant gain in the performance for all classifiers for the increased fidelity K “ 15

class problem compared to the previous K “ 8 class problem. This is because each
class, for K “ 15, is comprised of objects that have increased similarity between
their volumes, shapes and materials, and, hence, their MPT spectral signatures, com-
pared to the K “ 8 problem. This, in turn, reduces each classifier’s bias as it be-
comes easier to establish the relationship between the features and class. Nonetheless,
X “ IipR̃rαBpgkq, ωm, σ˚, µrq „ ppxi`pm´1qM |Ckq and X “ IipIrαBpgkq, ωm, σ˚, µrsq „
ppxi`pm´1qM |Ckq are still far from normal and, so, logistic regression does not perform
well. The best performance being again given by random forests, gradient boost, deci-
sion trees and SVM (particularly for SNR “ 40dB). Again, attention is focused on the
gradient boost and MLP, which are the best two performing probabilistic classifiers in the
following.

102 103

Number of instances per class P (k)

0.2

0.4

0.6

0.8

1.0

κ
sc

or
e

DecisionTree

GradientBoost

LogisticRegression

MLP

RandomForest

SVM

102 103

Number of instances per class P (k)

0.2

0.4

0.6

0.8

1.0

κ
sc

or
e

DecisionTree

GradientBoost

LogisticRegression

MLP

RandomForest

SVM

(a) SNR=40dB (b) SNR=20dB

Figure 9.14: Set of multiple threat and non-threat objects: Overall performance of differ-
ent classifiers as a function of P pkq when K “ 15 using the κ score (8.17) showing (a)
SNR=40dB and (b) SNR=20dB.

The approximations ppCk|xq « γkpxq to posterior probabilities ppCk|xq, k “ 1, . . . , K,
obtained for gradient boost and MLP are shown in Figure 9.15, with px, tq P Dptest,p9qq

15

chosen so that the correct classification should be C9. The bars are for γk,50, obtained
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by considering all the samples px, tq P Dptest,p9qq
15 , with the Q1, Q3 quartiles indicated as

well as γk,5 and γk,95, for different SNR, which have been obtained using (8.16). The
results for SNR=40dB strongly indicate that the most likely class is a pocket item for both
classifiers, since γ9,50 « 1. For the gradient boost classifier, the inter quartile and inter
percentile ranges are very small and so there is very high confidence in this prediction;
the MLP classifier has larger ranges and, therefore, less confidence. For SNR=20dB,
γ9,50 falls slightly for gradient boost and by a larger amount for MLP. The gradient boost
still shows a high degree of confidence in the prediction, but the MLP is more uncertain.
Compared to the results shown in Figure 9.12 for D8, the performance in Figure 9.15 for
D15 is improved for MLP and remains excellent for gradient boost (when considering the
amalgamated pocket item class and the split coin and keys classes).
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(a) Gradient boost SNR=40dB (b) Gradient boost SNR=20dB

Gu
ns

Ha
m

m
er

s

Kn
iv

es

Kn
uc

kl
e 

Du
st

er
s

Sc
re

wd
riv

er
s

Sc
iss

or
s

Br
ac

el
et

s

Be
lt 

Bu
ck

le
s

Co
in

s

Ea
rri

ng
s

Ke
ys

Pe
nd

an
ts

Ri
ng

s

Sh
oe

 S
ha

nk
s

W
at

ch
es

Classes Ck

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pr

ox
im

at
e 

po
st

er
io

r p
ro

ba
bi

lit
y 

k(x
) k(x)

max( k(x))
Q1,Q3 Quartile
5%,95% Percentile

Gu
ns

Ha
m

m
er

s

Kn
iv

es

Kn
uc

kl
e 

Du
st

er
s

Sc
re

wd
riv

er
s

Sc
iss

or
s

Br
ac

el
et

s

Be
lt 

Bu
ck

le
s

Co
in

s

Ea
rri

ng
s

Ke
ys

Pe
nd

an
ts

Ri
ng

s

Sh
oe

 S
ha

nk
s

W
at

ch
es

Classes Ck

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pr

ox
im

at
e 

po
st

er
io

r p
ro

ba
bi

lit
y 

k(x
) k(x)

max( k(x))
Q1,Q3 Quartile
5%,95% Percentile

(c) MLP SNR=40dB (d) MLP SNR=20dB

Figure 9.15: Set of multiple threat and non-threat objects: Approximations ppCk|xq «
γkpxq to posterior probabilities ppCk|xq, k “ 1, . . . , K, where px, tq P Dptest,p9qq

15 (Coins)
for P pkq “ 5000 when K “ 15 showing (a) gradient boost SNR=40dB, (b) gradient boost
SNR=20dB, (c) MLP SNR=40dB and (d) MLP SNR=20dB.

Next, the frequentist approximations to ppCj|xq for px, tq P Dptest,piqq are presented in the
form of a confusion matrix with entries pCqij , i, j “ 1, . . . , K, for the cases of SNR=40dB
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and SNR=20db and the MLP classifier, in Figure 9.16. The results for the gradient boost
are not shown as it has a near perfect identity confusion matrix on this scale for these
noise levels. Compared to the corresponding results shown in Figure 9.13 for D8, the
results for D15 show the ability of the classifier to better discriminate between different
objects. However, MLP still shows significant misclassifications for pendents whereas
gradient boost does not.
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Figure 9.16: Set of multiple threat and non-threat objects: Comparison of confusion
matrices for P pkq “ 5000 when K “ 15 showing (a) MLP SNR=40dB and (b) MLP
SNR=20dB.

In Table 9.5, the precision, sensitivity and specificity are shown for each of the different
object classes Ck, k “ 1, . . . , K, for the case of SNR=20dB and the MLP classifier. In
general, the proportion of negatives that are correctly identified (as indicated by the speci-
ficity) is very high and is close to 1 in all cases. The proportions of positives correctly
identified (indicated by the precision and sensitivity) varies amongst the different object
classes, but is generally much closer to 1 than shown in Table 9.4 for D8. The classes
C1, C3 and C4 (guns, knives and knuckle dusters in Dp15q), which make up the amalga-
mated weapons class C2 in D8, all perform very well, but the worst case still remains C12

(the pendents). The corresponding results for precision, sensitivity and specificity for the
gradient boost classifier are all close to 1.

9.3.4 Classification of Unseen Objects using D8

When testing the performance of classifiers in the previous sections, the construction of
the dictionary, described in Section 9.3.1, means thatDptrainq andDptestq are both comprised
of samples that have MPT spectral signatures associated with objects that share the same
geometry and have similar object sizes and material parameters. To illustrate the ability of
a classifier to recognise an unseen threat object, Dptrainq

8 is constructed, as in Section 9.3.1,
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Ck Precision Sensitivity Specificity
Guns pC1q 1.00 1.00 1.00

Hammers pC2q 1.00 1.00 1.00
Knives pC3q 1.00 1.00 1.00

Knuckle dusters pC4q 1.00 1.00 1.00
Screwdrivers pC5q 0.95 0.96 1.00

Scissors pC6q 1.00 1.00 1.00

Bracelets pC7q 0.83 0.85 0.99
Belt buckles pC8q 0.99 0.98 1.00

Coins pC9q 0.70 0.72 0.98
Earrings pC10q 0.75 0.75 0.98

Keys pC11q 0.90 0.95 0.99
Pendants pC12q 0.67 0.53 0.98

Rings pC13q 0.71 0.77 0.98
Shoe shanks pC14q 0.99 1.00 1.00

Watches pC15q 0.99 0.99 1.00

Table 9.5: Set of multiple threat and non-threat objects: Precision, sensitivity and speci-
ficity measures (to 2d.p.) for each of the classes Ck when SNR=20db and P pkq “ P {K “

5000 for the MLP classifier.

except, for one class Ck, where Dptrain,pkqq
8 is replaced with data that is obtained from

Gpkq ´ 1 (instead of Gpkq) geometries and V pkq samples. Also, P pkq “ 2000, instead of
P pkq “ 5000 is chosen, due to the higher computational cost of the investigation presented
in the following. The classifier is tested using a sample that is constructed only from V pkq

samples of the unseen Gpkqth geometry.
A geometry is removed from the C2 class of weapons, which originally has Gp2q “ 8

geometries, and the unseen geometry is varied to be one of the chef, cutlet, meat cleaver,
Santoku, and Wusthof knives, shown in Figure 7.31, where the naming convention from
Section 6.4 of [76] is adopted. The gradient boost classifier is applied to this problem, as it
was seen to perform best for both the K “ 8 and K “ 15 class problems. Previously, the
optimised hyperparameters n estimators=50 and max depth=2 have been shown
to lead to accurate results. However, this problem is more challenging, as it involves
attempting to classify data from the samples in px, tq P Dptest,p2qq

8 that are only constructed
from samples of the unseenGp2qth geometry, and, therefore, the previous hyperparameters
are no longer optimal. This is illustrated in Figure 9.17 for the case where SNR=40dB
and, here, the average κ score obtained from considering the situations when instances of
the chef, cutlet, meat cleaver, Santoku, and Wusthof knife geometries as being unseen is
presented. This suggests the optimal performance will be for a very limited region where
n estimators « 30 and max depth=1 and, away from this, the performance of the
classifier will be poor.
The poor performance of the gradient boost classifier for this problem for a large range
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Figure 9.17: Set of multiple threat and non-threat objects: Overall performance of the
gradient boost classifier for different values in the hyperparameter space, with P pkq “
2000 when K “ 8 and SNR=40dB, showing average κ score for different values of
numbers of trees (n estimators) and tree depth (max depth).

of hyperparameters is due to its inability to correctly classify the cutlet knife geometry,
with the classifier instead predicting this as a tool rather than a weapon in the majority
of cases (indicating bias against this geometry) and, additionally, for other geometries,
the relatively high degree of uncertainty that is associated with γ2pxq despite γ2,50 being
high (indicating a high variance). This can further be explained by the comparison of the
knife volumes using a fixed α “ 0.001m shown in Table 9.6, where it can be seen that
the cutlet knife geometry has a volume that is an order of magnitude smaller than that
of the knives. The MPT spectral signature depends on the object’s volume as well as its
materials and geometry and, as each cutlet knife tends to be associated smaller volumes to
those considered inDptrainq

8 this has contributed to the classifier not being able to recognise
it.

Knife Volume (m3)
Chef 1.46ˆ 10´5

Cutlet 3.28ˆ 10´6

Meat cleaver 6.50ˆ 10´5

Santoku 2.51ˆ 10´5

Wusthof 3.48ˆ 10´5

Table 9.6: Set of multiple threat and non-threat objects: Comparison of volumes for
different knife models.

The situation can be improved by increasing the standard deviations sα and sσ˚ , so that
D
ptrain,p2qq
8 includes MPT spectral signatures that are closer to that of the omitted Gp2qth

geometry. In Table 9.7, three alternatives A, B and C are considered to the previous
control choice. Then, in Figure 9.18, the investigation shown in Figure 9.17 for cases
A, B and C is repeated. In this figure the classifier is observed to have less variability
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and performs increasingly well over a wide range of hyperparameters, as sα and sσ˚ are
increased. In the limiting case of C, the overall performance of the classifier is uniform
with κ “ 0.75 over the complete space of hyperparameters considered.

scaling regime sα sσ˚
Control 0.0084mα 0.0236333mσ˚

A 0.02mα 0.05mσ˚

B 0.05mα 0.1mσ˚

C 0.1mα 0.2mσ˚

Table 9.7: Set of multiple threat and non-threat objects: List of the parameters for the
sampling distributions considered.
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Figure 9.18: Set of multiple threat and non-threat objects: Overall performance of
the gradient boost classifier for different values in the hyperparameter sapce, with
P pkq “ 2000 with K “ 8 and SNR=40dB, showing average κ score for different val-
ues n estimators and max depth, for different scaling regimes (a) Control, (b) A,
(c) B and (d) C.
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(a) Dptestq “ Chef (b) Dptestq “ Cutlet
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(c) Dptestq “ meat cleaver (d) Dptestq “ Santoku
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(e) Dptestq “Wusthof

Figure 9.19: Set of multiple threat and non-threat objects: Approximate posterior prob-
abilities γkpxq « ppCk|xq, k “ 1, . . . , K, using the gradient boost classifier for P pkq “
2000 whenK “ 8 and SNR=40dB showing the case whenDptrainq is constructed using the
scaling regime C and cases where Dptestq is constructed of instances (a) chef, (b) cutlet,
(c) meat cleaver, (d) Santoku and (e) Wusthof.

Furthermore, in Figure 9.19, for case C, approximatations ppCk|xq « γkpxq, to posterior
probabilities ppCk|xq, k “ 1, . . . , K, obtained for the case where the training samples
are taken as px, tq P D

ptrain,p2qq
8 , with either the chef, cutlet, meat cleaver, Santoku or
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Wusthof geometry being treated as unseen, in turn. These results were obtained with
n estimators=50 and max depth=2 with SNR=40dB. From this figure it can be
observed that γ2,50 « 1 for the unseen chef, meat cleaver, Santoku or Wusthof knives sug-
gesting the most likely class is C2 (a weapon) with small interpercentile and interquartile
ranges, which indicates a high degree of certainty associated with the prediction and also
a low variability. However, when the unseen object is a cutlet knife, γ1,50 « 1 with small
interpercentile and interquartile ranges, which indicates that the classifier is still consis-
tently misclassifying this object as a tool, instead of a weapon, despite the classifier being
trained over a wider range of object sizes and conductivities. Hence, the classifier remains
biased against this geometry. It is conjectured that this is due to the significant difference
in the shape of the MPT spectral signature for the cutlet knife geometry shown in Fig-
ure 33 of [76], compared to the other knives and gun geometry on which the classifier is
trained.

9.4 Limitations and Potential Improvements

One important as yet unanswered question from the previous sections is the limitations of
the proposed approach. This section discusses the limitations of the method and potential
ways these could be mitigated. Limiting factors of the method are as follows:

1. As was investigated in Section 9.3.4, the extensiveness of the dictionary plays a key
role in determining the accuracy of the generated classifier. The ability to vary size
and conductivity greatly improves the extent to which realistic objects are charac-
terised along with the extensiveness of the dictionary, however this could be further
improved by varying permeability which also hasn’t been previously considered.
The increase in the number of distinct geometries, which are relevant for the metal
detection application being considered, will produce more accurate classifiers.

2. The present classifier has used simulated measurements throughout as access to lab-
oratory measurements was not available due to the covid pandemic between 2020-
2022. In work after this PhD, measurements of the MPT spectral signature have
been shown to be in good agreement with those simulated by MPT calculator for
a range of objects and testing of the classifier is underway. As was studied exten-
sively in this chapter, the accuracy of the measurement system plays a vital role
in the accuracy of the predictions being made by the classifier. The considered
method for adding noise in this thesis is certainly a good approximation of labo-
ratory measurements, however, in other systems the measurement noise may vary
from system to system and from application to applications. There is also the poten-
tial for missing information, for example, in the case of a buried object, measure-
ments cannot be taken all around the object that prevents all the MPT coefficients
being accurately being recovered and the impact of this is not considered. There
are also mathematical modelling assumptions that are not taken account. Again for
buried objects, the soil’s conductivity is not taken account and is instead assumed
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to be non-conducting. Improving the mathematical model in this case would also
improve the object characterisation.

3. The current method considers the characterisation of a single object at a time, this
could lead to potential issues if multiple small objects are close to each other, lead-
ing to the potential misclassification of a of a single larger object. The perturbed
magnetic field in the presence of multiple objects has previously been considered
by Ledger et al [74], which found that as long as the objects are separated by at
least the size of the largest object the objects can be independently characterised by
distinct MPT object characterisation and, in such cases, the procedure described in
this chapter can be applied to each object in turn. Otherwise the group of objects
cannot be individually characterised.

4. The propensity for machine learning classifiers to overfit to small datasets is an-
other concern, although an attempt has been made to combat this with variations of
object based on scalings and simulated noise being applied, a more thorough study
is required on the subject. Other methods such as early stopping could also be em-
ployed where loss on a validation set is monitored to gain insight into whether the
classifier is overfitting to the dataset. This validation set could also be constructed
from real world measurements this would also be beneficial as currently the training
and testing sets are constructed using the same method.

Work on each of the points raised above is now ongoing in several future projects.

9.5 Chapter Summary

This chapter has documented results for the application of probabilistic and non-
probabilistic classifiers that were discussed in Section 8.3 and were applied to dictio-
naries of threat and non-threat objects, which were created using method described in
Section 8.2.1.
The key novelties of the chapter were as follows: The construction of a large dictionary
of object characterisations based on the results of Section 8.2.1 along with applying Lem-
mas 2.7.1 and 2.7.2 and a sampling to method to provide considerable enhancements in
terms of variations of object conductivity and size at negligible computational cost. The
investigation of classifier performance as a function of number of excitation frequencies
and applied noise, with this being the first time that a computational dictionary of realistic
MPT spectral signatures has been employed for object classification. The novel investiga-
tion into the classification of unseen objects is presented. Finally, a review of limitations
and potential improvements was then presented.
This chapter will be followed by conclusions and possible further work presented in Chap-
ter 10.
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Chapter 10

Conclusions and Future Work

10.1 Concluding Remarks

This thesis has harnessed the state-of-the-art mathematical developments in MPT object
characterisation described in the introduction and reviewed in Chapter 2, which have been
applied in conjunction with recent developments in machine learning classification to the
metal detection problem. First, a review of recent developments of MPT object character-
isations was provided. A problem specific, hp-finite element discretisation was presented,
which paved the way for the development of a PODP based ROM that benefits from a-
posteriori error estimates. Thus, allowing for the rapid production of MPT spectral signa-
tures the accuracy of which was guaranteed. This methodology was then implemented in
Python, using the NGSolve finite element library, where other problem specific efficien-
cies were also included, this software was then packaged and released as the open source
MPT-Calculator. Using this software, MPT spectral signatures were then produced
for a series of realistic threat and non-threat objects, creating the first of its kind synthetic
dataset. This was also released as the open source MPT-Library dataset. Lastly, a
series of ML classifiers were documented and applied to several supervised classification
problems using this synthetic dataset. Therefore, it can be concluded that the aim and
objectives stated in Chapter 1 have been achieved. In the following a more detailed de-
scription of the conclusions that can be extracted from each of the chapters of the thesis
are provided.

10.2 Conclusions

The recent work and developments in the theory surrounding the MPT have been re-
viewed, with important results being presented.

• Chapter 2: (Eddy-Current Model and Object Characterisation) presented an
introduction to important topics such as the formulation of the time harmonic eddy
current model and an asymptotic expansion of the perturbed magnetic field. An
overview of the MPT was presented, documenting recent key results and discussing
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limiting cases, which provided a fundamental insight into the behaviour of the MPT
and highlighted the important role object topology plays along with providing mo-
tivation for the use of MPT spectral signatures as opposed to MPTs at a single
frequency. This chapter addresses the objective “Provide a review of the recent
work and developments of theory surrounding MPTs”.

A robust, efficient and accurate computational methodology for the solution of eddy-
current problems was devised, implemented and packaged.

• Chapter 3: (Finite Element Discretisation and the Reduced Order Model) pro-
posed a PODP based ROM for the acceleration of the solution of vectorial trans-
mission problems by finite elements and the efficient computation of MPT spectral
signatures. This included the presentation of a problem specific weak form, where,
a H(curl) based, hp-finite element discretisation was advocated, to obtain the so-
lutions of the full order problem. The development of a PODP based ROM was
proposed, this benefitted from a-posteriori error estimates, which provided an up-
per bound on the error in the predicted MPT coefficients with respect to the full
order model solution.

• Chapter 4: (Implementation Details of MPT-Calculator Software) built on
the work presented in Chapter 3, focusing on the associated implementation and the
development of the open source software MPT-Calculator. The chapter justi-
fies the choice of FE framework, documents the computational implementation of
the methodology presented in Chapter 3 and discusses the support provided with,
and usage of, the packaged open source MPT-Calculator software. Chapters 3
and 4 address the objective “Develop a robust and accurate computational method-
ology for the solution of eddy-current problems using finite elements software”.

The accuracy and efficiency of the proposed ROM was shown for several demonstrative
problems with a comparison being made to the use of finite elements alone.

• Chapter 5: (Numerical Results for the Reduced Order Model) presented a series
of illustrative examples to demonstrate the implementation and performance of the
reduced order model, with a-posteriori error estimates, proposed in Chapters 3 and
4. Discussing important topics such as snapshot placement, accuracy of the method,
additional snapshot placement and time savings offered by the method. This chapter
addresses the objective “Demonstrate the accuracy and efficiency offered by this
computational methodology”.

The methodology for the decomposition of the inverse problem to one of object loca-
tion and object classification was then described, as part of this, several candidate tensor
invariants were considered.

• Chapter 6: (Decomposing the Inverse Problem to one of Object Location and
Object Classification) describes the decomposition of the inverse problem, to one
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of object location and object classification, which follows since the MPT is inde-
pendent of object position. In this chapter, a brief review of methods to obtain the
location of a hidden target is presented, with the methodology of the MUSIC algo-
rithm documented. A series of applicable tensor invariants that could be obtained
from the MPT coefficients were then presented, with each being invariant of object
rotation. This chapter contributes to the objective “Apply the method to a series of
geometrically realistic objects to create a database of threat and non-threat object
characterisations”.

A synthetic dataset of realistic threat and non-threat object characterisations were pro-
duced using the methodology presented in chapters 3 and 4.

• Chapter 7: (Real World Object Characterisation Dataset) focused on the devel-
opment of an open source synthetic dataset of realistic object characterisations that
could be used for object identification in a possible security screening environment.
The dataset, called the MPT-Library, consists of object characterisations of 67
unique geometries, with multiple materials considered for each geometry produc-
ing characterisation of 158 distinct objects. The number of basic object descriptions
were then significantly enhanced using scaling results for object size and object con-
ductivity. Chapters 6 and 7 address the objective “Apply the method to a series of
geometrically realistic objects to create a database of threat and non-threat object
characterisations”.

A review of supervised ML classifiers applicable for deployment in a security screening
setting was presented, this also included a recap of basic ML terminology, algorithms and
evaluation methods.

• Chapter 8: (Probabilistic and Non-probabilistic Machine Learning Classifiers)
built on the work presented in Chapter 7, documenting and comparing probabilistic
and non-probabilistic Machine Learning (ML) classifiers that are appropriate for
classifying objects when the features are MPT invariants, with the goal of develop-
ing an ML classifier trained on the MPT-Library that could be deployed in a walk
through metal detector. First, an appropriate method for adding noise to the MPT
coefficients that simulates the noise associated with measuring MPT coefficients in
real world set ups was described. Then a review of candidate ML classifiers were
documented with references provided for those less familiar with the methods. Fi-
nally metrics that were later used in Chapter 9 to evaluate the performance were
discussed. This chapter contributes to the objective “Document and implement a
series of supervised ML classifiers to the database of object characterisations”.

A series of supervised ML classifiers were applied to several problems created using the
open source synthetic dataset developed in Chapter 7.

• Chapter 9: (Machine Learning Classification Results) presented results for the
application of the ML classifiers discussed in Chapter 8, applied to four problems, a
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coin classification problem, two multi-class problems (using 8 and 15 classes) and
classification of unseen objects, all created using the dataset developed in Chapter
7. The first was used to highlight how statistical properties of the dataset can be
used to motivate the choice of a simple logistic regression classifier. The 8-class
and 15-class problems were used to illustrate the need to use more advanced forms
of classification and to motivate the need to optimise the hyperparameters. The
15-class problem highlighted the benefits of using increased object class fidelity.
Chapters 8 and 9 address the objective “Document and implement a series of super-
vised ML classifiers to the database of object characterisations”.

In summary, a problem specific weak form was presented for the solution of a transmis-
sion problem needed to compute MPT coefficients. The transmission problem was then
discretised using FE. An ROM methodology based on the PODP was developed to ac-
celerate solutions to the transmission problem for new frequencies. This benefitted from
a-posteriori error estimates, which provided an upper bound on the error associated with
the MPT coefficients. The ROM methodology was implemented in Python using the
NGSolve FE library and then tested on a series of illustrative examples where the per-
formance, accuracy and time savings associated with the ROM were documented showing
time savings in the order of 86% were possible when using the ROM compared with FE
alone for a frequency sweep using 161 output values. Investigations were also conducted
where snapshot and additional snapshot placement was considered showing the advan-
tages of using logarithmically spaced snapshots as well as showing the possibility to de-
velop an adaptive scheme using the a-posteriori error estimates to inform the placement of
new snapshots, which reduced the size of the error estimates increasing confidence in the
prediction. A decomposition of the inverse problem into object location and object iden-
tification was presented. Object classification was the main focus and candidate tensor
invariants that are invariant of object rotation were reviewed. These tensor invariants were
then used in conjunction with the ROM methodology developed in the previous chapters
to develop a first of its kind synthetic dataset of realistic object characterisations that could
be used for object detection in a security screening environment. A review of applicable
ML classifiers was presented along with validation methods and metrics that were later
used to evaluate the performance of the classifiers. Finally, a series of four challenging
classification problems were developed using the synthetic dataset previously developed,
with the ML classifiers being used to solve these problems. These were used to motivate
how statistical properties of the dataset can be used to choose an appropriate classifier,
also considering the trade off between noise and number of frequencies sampled at, along
with demonstrating the benefit of increased dataset size. Lastly an investigation was then
conducted into the effect that removing specific knife geometries out of the training set
had on the classifier’s ability to detect these threat objects, the ability of the classifier to
generalise was shown with 80% of the knife models still being correctly identified.
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10.3 Recommendations for Future Work

The accomplishments of this thesis open up several possible lines of research that could be
considered to improve and extend the capabilities of the current methodology. Several of
these lines are being followed up as part of the grants EP/V049496/1 and EP/V009109/1
funded by the Engineering and Physical Research Council and led by Prof. P.D. Ledger.
Future work can be split into two key areas, the improvement of methodologies already
presented and the extension to new methodologies that have not been previously consid-
ered. Firstly, a list for the former is as follows:

• Object discretisation: In this thesis, the open source software NetGen from
NGSolve [4] was used to produce and mesh objects of interest. However, for
producing larger datasets of more complex geometries, improvements to the us-
ability of the method could be made if integration with a commercial tool such as
Solidworks or Ansys was developed. Further to this, with recent developments
in 3D object reconstruction [89], a procedure could be developed within which a
digital twin of a real world object could be created and simulated.

• Adaptive snapshot placement: In Chapter 3, the methodology for an adaptive
snapshot procedure based on the a-posteriori error estimates, which built on the
procedure described in [55], was presented. As was shown in Chapter 3, with the
comparison of using a single targeted additional snapshot vs four additional pre-
determined snapshots, there is the possibility for a reduction in time and computa-
tional cost if such an automatic adaptive procedure was implemented to generate
additional snapshots to further improve the accuracy.

• Application specific datasets: The dataset produced in relation to the work pre-
sented in this thesis was security screening motivated. However, for tasks other
than security screening applications, such as humanitarian demining [7] and arche-
ological digs [29] alternative, application specific datasets could be created.

The possible extensions of the work are summarised as follows:

• Comparisons with real world measurements: There is considerable scope in
making comparisons from the MPT-Library to real world measurements, with
work in this direction already being undertaken [97]. Further to this, consideration
could be given to the deployment of an ML classifier that is trained using synthetic
data and used to classify real world data rather than simulated data with noise.

• Use of synthetic data for calibration and noise reduction: Further to the pre-
vious point, due to the superior accuracy the MPT coefficients can be calculated
to using the methodology presented in this thesis when compared with real world
measurements. There is potential to use the synthetic measurements produced in
a scheme to calibrate or reduce noise in measurements of real world systems. The
procedure could be deployed in a measurement device and used as a preprocessing
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step, this would involve training an ML algorithm such as an autoencoder using the
real world measured MPT spectral signature as inputs and the synthetic data as the
desired outputs. Work in related fields has been conducted on the topic of noise
reduction such as in the case of medical imaging [43] where autoencoders were
used.

• Production of new geometries using a generative model: An extension to the
production of new geometries would be the automation of this process, where a
generative model could be used to produce new geometries from existing ones.
Generative models have been growing in popularity with recent developments such
as generative adversarial networks (GANs) [44] being studied extensively in appli-
cations such as image-to-image translation [61] and more recently there has been
increasing interest for extending dataset sizes in other fields using GANs such as
datasets of MRI images [49]. An application of the 3D-GAN developed by Wu et
al. [137] and related work could be used to extend a synthetic dataset such as the
one developed as part of this thesis. This could also be used in conjunction with
the idea of 3D object reconstruction [89] discussed earlier to further automate the
process.

• ML based ROM: There is the potential to replace the methodology presented on
ROMs in this thesis by replacing the ROM with an ML regression algorithm. This
potentially has the ability to rapidly predict MPTs for objects with new permeabil-
ities (for which scaling results do not exist) and, potentially, new geometries. ML
based ROMs have been used before in related fields such as computational fluid
dynamic where an ROM based on Gaussian process regression was used to model
air flows in urban environments [138].

• Improved fidelity of MPT-Calculator: Improve the capabilities of the
MPT-Calculator, in particular investigating cases for high values of µr where
fidelity could be improved and increase the limits on numbers of degrees of free-
dom. Work is already being conducted on this.

• GMPTs: The MPT provides the object characterisation in the leading order term
in an asymptotic expansion of pHα ´H0qpxq as α Ñ 0, as such there is scope for
both calculating and measuring higher order object characterisations known as gen-
eral magnetic polarizability tensors (GMPTs) [72], which provide improved object
characterisations. Work has already begun on this [97].

• Library of GMPTs: There is also the potential to develop improved ML classi-
fiers based on GMPT object characterisations. The extension is not trivial though,
GMPTs are more complicated than MPTs and further theoretical developments are
needed to better understand their properties. Work in this direction is underway in
the aforementioned grants. Still further, unlike MPTs where either eigenvalues or
principal invariants are invariant under rotation and provide appropriate ML fea-
tures, choosing appropriate invariants for GMPTs is still open.

172



Part VI

Appendices

173





Appendix A

MPT-Calculator File Details

Input files: The four input files of the MPT-Calculator allow the user to dictate sev-
eral aspects of the procedure1. The file main.py is designed to be the most interacted
with allowing the user to define, firstly .geo file to be used, the geometric and poly-
nomial refinement to be used, the frequencies the MPT should be produced at and how
the simulation should be run, i.e. using a reduced order model and/ or in parallel. The
file Settings.py contains several sections. The first of which DefaultSettings
allows the user to define aspects of how the procedure should be carried out defining such
things as how many CPUs are to be used when simulating in parallel, how many full order
solutions should be used when producing the reduced order model, etc. The middle two
sections AdditionalOutputs and SaverSettings allow the user to define which
additional outputs they would like to produce and where to save the outputs, the additional
outputs include the error certificates described in Section 3.3.3, the object dependant eddy
current limit described in Section 2.4.3 and the vector field of eddy currents exported as
a .vtk file. The final section SolverParameters allows the user to change aspects
of how the problems are solved defining how much regularisation to add to the problem,
the tolerance the solution should be obtained to etc. The PlotterSettings.py file
defines how the graphical representation of the results will appear, this file allows the user
to change which coefficients are shown, the line styles to be used, and whether the object
dependent eddy current limit should be indicated on the graph. The .geo file is the file
in which the geometry and material properties of the object are defined, the geometry
of the object is built using Constructive Solid Geometry (CSG), where simple geometric
objects such as spheres, blocks are used along with logical operators unions and comple-
ments to create larger and more interesting and intricate objects. The material properties
of different regions can then be tagged using the API created by the author in the process
described in Section 5 of the documentation for the MPT-Calculator [134].

Solution files: The solution files of the MPT-Calculator are associated with sim-
ulating/ obtaining a solution for the finite element problems. The first of these files is

1A more thorough explanation of these files is provided in the MPT-Calculator documenta-
tion [134].
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MeshCreation.py, this file contains two functions, the first, Meshmaker, runs a
subprocess calling NGSolve and produces a mesh for the object defined in the chosen
.geo file, the second, VolMatUpdater, reads the .geo file and interprets the tagged
material properties, updating the .vol file which will be used by NGSolve later in the
process. The next file ResultsFunctions.py contains several functions and is used
twice throughout the procedure, the first time, the function FolderMaker is called, it
creates the folder structure which will be used when saving the outputs, it is at this point
the input files used are copied to the results folder, this stops the user from changing these
before the files are copied. The second time this function is used, it calls one of three
saver functions SingleSave, PODSave or FullSave, this call is dependant on the
inputs of main.py, these functions in turn call the relevant plotter function defined in
Plotters.py, then save the relevant outputs in the results folder produced earlier. The
final solution files, FullSolvers.py, PODSolvers.py and SingleSove.py are
associated with the ‘problem solving’ part of the procedure, these interact directly with
NGSolve and is tasked with creating finite element spaces within which the problems
can be solved, creating and solving linear systems of equations (although this is done by
calling functions which reside in MPTFunctions.py) and in the case of the parallelised
version of code distributing the work between CPUs in an efficient manner.

Output files: The output files of the MPT-Calculator produce results which are to
be saved. The first of these files, Checkvalid.py, is responsible for the production of
the object specific eddy current limit, this is the additional output which was discussed
previously in Section 2.4.3. The next file, PODFunctions.py, contains a function
which is designed to produce the MPT coefficients directly from the reduced order model
without the need to project the solutions back to the full order space, this comes with sig-
nificant errors when calculating the imaginary coefficients and is therefore not used in the
current version of the MPT-Calculator. The file MPTFunctions.py contains sev-
eral functions, all of which can be used in parallel, which are tasked with the calculation
of the MPT coefficients, the first two functions Theta0 and Theta1, do not give an out-
put and are sub-functions called by SingleSove.py, the functions Theta1 Sweep

and Theta1 Lower Sweep are sub-functions which are called by FullSolvers.py
and PODSolvers.py they both solve the finite element problems and post-process the
solutions calculating the MPT coefficients. The final function MPTCalculator post-
processes the solutions calculating the MPT coefficients. The final file is Plotters.py,
this file contains several functions all of which are tasked with producing the graphical
outputs of the code, these are also affected by the inputs of PlotterSettings.py
which determine the look of the graphs.
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