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Abstract
We study Choquard type equation of the form

−�u + εu − (Iα ∗ |u|p)|u|p−2u + |u|q−2u = 0 in R
N , (Pε)

where N ≥ 3, Iα is the Riesz potential with α ∈ (0, N ), p > 1, q > 2 and ε ≥ 0.
Equations of this type describe collective behaviour of self-interacting many-body systems.
The nonlocal nonlinear term represents long-range attraction while the local nonlinear term
represents short-range repulsion. In the first part of the paper for a nearly optimal range of
parameters we prove the existence and study regularity and qualitative properties of positive
groundstates of (P0) and of (Pε) with ε > 0. We also study the existence of a compactly
supported groundstate for an integral Thomas–Fermi type equation associated to (Pε). In the
second part of the paper, for ε → 0 we identify six different asymptotic regimes and provide
a characterisation of the limit profiles of the groundstates of (Pε) in each of the regimes. We
also outline three different asymptotic regimes in the case ε → ∞. In one of the asymptotic
regimes positive groundstates of (Pε) converge to a compactly supported Thomas–Fermi
limit profile. This is a new and purely nonlocal phenomenon that can not be observed in
the local prototype case of (Pε) with α = 0. In particular, this provides a justification for
the Thomas–Fermi approximation in astrophysical models of self-gravitating Bose–Einstein
condensate.
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1 Introduction

1.1 Background

We are concerned with the asymptotic properties of positive groundstate solutions of the
Choquard type equation

−�u + εu − (Iα ∗ |u|p)|u|p−2u + |u|q−2u = 0 in R
N , (Pε)

where N ≥ 3, p > 1, q > 2 and ε ≥ 0. Here Iα(x) := Aα|x |−(N−α) is the Riesz
potential with α ∈ (0, N ) and ∗ denotes the standard convolution in R

N . The choice of the
normalisation constant Aα := �((N−α)/2)

π N/22α�(α/2)
ensures that Iα(x) could be interpreted as the

Green function of (−�)α/2 in R
N , and that the semigroup property Iα+β = Iα ∗ Iβ holds

for all α, β ∈ (0, N ) such that α + β < N , see for example [22, pp. 73–74].
Equation

−�v + εv − (Iα ∗ |v|p)|v|p−2v = 0 in R
N (C )

is often known as the Choquard equation and had been studied extensively during the last
decade, see [42] for a survey. In this work we are interested in the case when the standard
Choquard equation is modified by including the local repulsive |u|q−2u term.
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If uε is a solution of (Pε) with N = 3, α = 2, p = 2 and q = 4 then ψ(t, x) := eiεt uε(x)

is a standing wave solution of the time-dependent equation

i∂tψ = −�ψ − (I2 ∗ |ψ |2)ψ + |ψ |2ψ, (t, x) ∈ R × R
3. (1.1)

Equation of this form models, in particular, self-gravitating Bose–Einstein condensates with
repulsive short-range interactions, which describe astrophysical objects such as boson stars
and, presumably, dark matter galactic halos. In this context, (1.1) was introduced and studied
under the name of Gross–Pitaevskii–Poisson equation in [8, 16, 53], see a survey paper [17].

More generally, Eq. (Pε) can be seen as a stationary NLS with an attractive long range
interaction, represented by the nonlocal term, coupledwith a repulsive short range interaction,
represented by the local nonlinearity. While for the most of the relevant physical applications
p = 2, the values p �= 2 may appear in several relativistic models of the density functional
theory [2–4].

In this work we are specifically interested in the case where ε > 0 is a small (or large)
parameter and all other parameters are fixed. Our main goal is to understand the behaviour
of groundstate solutions of (Pε) when ε → 0. We also discuss the case ε → ∞, which is to
some extent dual to ε → 0. The local prototype of (Pε) and a formal limit of (Pε) as α → 0
is the equation

− �u + εu − |u|2p−2u + |u|q−2u = 0 in R
N . (1.2)

It is well-known that this equation admits a unique positive solution in H1(RN ) for any
1 < 2p < q < ∞ provided that ε > 0 is sufficiently small, and has no finite energy
solutions for large ε. This result goes back to Strauss [51, Example 2] and Berestycki and
Lions [6, Example 2] (see [41, Theorem A] for a precise existence statement and further
references). A complete characterization of all possible asymptotic regimes in (1.2) as ε → 0
was obtained in [41], see also earlier work [46]. Essentially, three different limit regimes were
identified in [41], depending on whether p is less, equal or bigger than the critical Sobolev
exponent p∗ = N

N−2 . Recently, (1.2) had been revisited in [28] where nondegeneracy of
ground-sates and sharp asymptotics of the L2-norm of the ground states as ε → 0 had been
described in connection with the uniqueness conjecture in the L2-constraint minimization
problem associated to (1.2). See also [39], where the same problem is studied with the
opposite sign of the |u|q−2u-term.

1.2 Existence and properties of groundstates for (P")

We are not aware of a systematic study of ground-sates of Choquard Eq. (Pε). First existence
results seem to appear in [45] in the case N = 3, α = 2, p = 2. See also [7, 23, 27, 29]
and references therein for further results which however do not cover the optimal ranges of
parameters. The planar case with the logarithmic convolution kernel was studied in [19] but
since the kernel is sign-changing this requires different techniques. Near optimal existence
results for the Choquard equation of type (Pε) with an attractive local perturbation (the
opposite sign of the local nonlinear term) were recently obtained in [30, 31].

Our first goal in thiswork is to establish the existence of ground-sate solutions of Choquard
Eq. (Pε) for an optimal range of parameters. By a groundstate solution of (Pε) we understand
a weak solution u ∈ H1(RN ) ∩ Lq(RN ) which has a minimal energy

Iε(u) := 1

2

∫
RN

|∇u|2dx + ε

2

∫
RN

|u|2dx − 1

2p

∫
RN

(Iα ∗ |u|p)|u|pdx + 1

q

∫
RN

|u|qdx

123



160 Page 4 of 59 Z. Liu, V. Moroz

amongst all nontrivial finite energy solutions of (Pε). Remarkably, and in contrast with its
local prototype (1.2), we prove that ground states for (Pε) exist for every ε > 0. We also
establish some qualitative properties of the solutions (Pε) such as regularity and decay at
infinity. These properties are similar to the standard Choquard Eq. (C ). Note that we do not
study the uniqueness or non-degeneracy of the groundstates of (Pε) and we are not aware of
any even partial results in this direction. We believe this is a very difficult open problem. Our
results do not rely and do not require the uniqueness or non-degeneracy.

Essential tools to control the nonlocal term inIε are theHardy–Littlewood–Sobolev (HLS)
inequality ∫

RN
(Iα ∗ |u|p)|u|pdx ≤ Cα‖u‖2p

2N p
N+α

∀u ∈ L
2N p
N+α (RN ), (1.3)

which is valid for any p ≥ 1 (and Cα is independent of p); and the Sobolev inequality

‖∇u‖22 ≥ S∗‖u‖22∗ ∀u ∈ D1(RN ), (1.4)

where 2∗ = 2N
N−2 is the critical Sobolev exponent and D1(RN ) denotes the homogeneous

Sobolev space with the norm ‖u‖D1(RN ) = ‖∇u‖L2 . The values of the sharp constants
S∗ > 0 and Cα > 0 are known explicitly [34, 35]. HLS and Sobolev inequalities can be used
to control the nonlocal term in the two cases:

• if N+α
N ≤ p ≤ N+α

N−2 then L
2N p
N+α (RN ) ⊂ L2 ∩ L2∗

(RN )

• if p ≥ N+α
N and q ≥ 2N p

N+α
then L

2N p
N+α (RN ) ⊂ L2 ∩ Lq(RN )

The two cases have non-empty intersection but this is not significant for us at this moment.
In each of these two cases, Iε : H1(RN ) ∩ Lq(RN ) → R is well defined and critical points
of Iε are solutions of (Pε).

Our main existence result for (Pε) is the following.

Theorem 1.1 Let N+α
N < p < N+α

N−2 and q > 2, or p ≥ N+α
N−2 and q >

2N p
N+α

. Then
for each ε > 0, Eq. (Pε) admits a positive spherically symmetric ground state solution
uε ∈ H1 ∩ L1 ∩ C2(RN ) that is a monotone decreasing function of |x |. Moreover, there
exists Cε > 0 such that

• if p > 2,

lim|x |→∞ uε(x)|x | N−1
2 e

√
ε|x | = Cε,

• if p = 2,

lim|x |→∞ uε(x)|x | N−1
2 exp

∫ |x |

ν

√
ε − νN−α

s N−α ds = Cε, where ν := (
Aα‖uε‖22

) 1
N−α ,

• if p < 2,

lim
x→∞ uε(x)|x | N−α

2−p = (
ε−1Aα‖uε‖p

p
) 1
2−p .

The existence range of Theorem 1.1 is optimal. This follows from the Pohožaev identity
argument, see Corollary 4.1. We emphasise that no upper restrictions on p and q are needed
and in particular, q could take Sobolev supercritical values, i.e. q > 2∗ (see Fig. 1). The
decay rates of ground states at infinity are exactly the same as in the standard Choquard case,
compare Theorem 2.4 below or [43, Theorem 4]. For a discussion of the implicit exponential
decay in the case p = 2 we refer to [43, pp. 157–158] or [44, Section 6.1].
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Fig. 1 Six limit regimes for (Pε)

as ε → 0 on the (p, q)-plane
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Our main goal in this paper is to understand and classify the asymptotic profiles as ε → 0
and ε → ∞ of the groundstates uε , constructed in Theorem 1.1. Remarkably, our study
uncovers a novel and rather complicated limit structure of the problem, with six different
limit equations (see Fig. 1) as ε → 0:

• Formal limitwhen the family of ground states uε converges to a groundstate of the formal
limit equation

−�u − (Iα ∗ |u|p)|u|p−2u + |u|q−2u = 0 in R
N . (P0)

The existence and qualitative properties of groundstate for (P0) for the optimal range
of parameters is new and is studied in Sect. 5, see Theorem 2.1. The convergence of the
groundstates to the limit profile is proved in Theorem 2.2.

• Choquard limit when the rescaled family

vε(x) := ε
− 2+α

4(p−1) uε

(
ε− 1

2 x
)

converges to a groundstate of the standard Choquard equation

−�v + v − (Iα ∗ |v|p)|v|p−2v = 0 in R
N , (C )

which was studied in [43]. The convergence is proved in Theorem 2.5.
• Thomas–Fermi limit when the rescaled family

vε(x) := ε
− 1

q−2 uε

(
ε
− 4−q

α(q−2) x

)

converges to a groundstate of the Thomas–Fermi type integral equation

v − (Iα ∗ |v|p)|v|p−2v + |v|q−2v = 0 in R
N . (TF)

The existence and qualitative properties of groundstate for (TF) for p �= 2will be studied
in the forthcoming work [26]. In this paper we consider only the case p = 2 which is
well known in the literature when α = 2 [1, 5, 36] and was studied recently in [11, 12]
for the general α ∈ (0, N ), yet for the range of powers q which is incompatible with our
assumptions. In Theorem 2.6 we prove the existence and some qualitative properties of
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a groundstate for (TF) with p = 2 for the optimal range q > 4N
N+α

. This extends some
of the existence results in [11, 12]. The convergence of vε to a groundstate of (TF) is
proved in Theorem 2.7 for p = 2 and α = 2 (the general case p �= 2 and α �= 2 will
be studied in [26]). Remarkably, for p = 2 the limit groundstates of (TF) are compactly
supported, so the rescaled groundstates vε develops a steep “corner layer” as ε → 0!

• Critical Choquard regime, when the family of ground states uε converges after an implicit
rescaling

vε(x) := λ
N−2
2

ε uε(λεx)

to a groundstate of the critical Choquard equation

−�v = (Iα ∗ |v| N+α
N−2 )|v| N+α

N−2 −2v, v ∈ D1(RN ). (CH L )

A detailed characterisation of the ground states of (CH L ) was recently obtained in [18,
21]. In Theorem 2.8 we derive a sharp two-sided asymptotic characterisation of the
rescaling λε , following the ideas developed in the local case in [41].

• Self-similar regime q = 22p+α
2+α

, when ground states uε are obtained as rescalings of the
groundstate u1, i.e.

u1(x) = ε
− 2+α

4(p−1) uε

(
ε− 1

2 x
)

• the Critical Thomas–Fermi regime, when the family of ground states uε converges after
an implicit rescaling

vε(x) := λ
N+α
2p

ε uε(λεx)

to a groundstate of the critical Thomas–Fermi equation

|v|q−2v = (Iα ∗ |v|p)|v|p−2v, v ∈ Lq(RN ). (TF∗)

Groundstates of this equation correspond to the minimizers of the Hardy–Littlewood–
Sobolev inequality and completely characterised by Lieb in [34]. In Theorem 2.9 we
derive a two-sided asymptotic characterisation of the rescaling λε .

Self-similar, Thomas–Fermi and critical Thomas–Fermi regimes are specific to the non-
local case only. When α = 0 they all “collapse” into the case p = q , which is degenerate for
the local prototype Eq. (1.2). Three other regimes could be traced back to the local Eq. (1.2)
studied in [41].

When ε → ∞ the limit structure is simpler. Only Choquard, Thomas–Fermi and self-
similar regimes are relevant (see Fig. 2) and there are no critical regimes. In particular, the
Thomas–Fermi limit with ε → ∞ appears in the study of the stationary Gross–Pitaevskii–
Poisson Eq. (1.1), see Remark 3.1.

The precise statements of our results for ε → 0 are given in Sect. 2. In Sect. 3we outline the
results for ε → ∞ and discuss the connection with astrophysical models of self-gravitating
Bose–Einstein condensate. In Sect. 4 we prove Theorem 1.1. In Sects. 5 and 6 we establish
the existence and basic properties of groundstates for the “zero-mass” limit equation (P0)

and for the Thomas–Fermi Eq. (TF). In Sects. 7 and 8 we study the asymptotic profiles of
the groundstates of (Pε) in the non-critical and critical regimes respectively. Finally, in the
Appendix we discuss a contraction inequality which was communicated to us by Augusto
Ponce and which we used as a key tool in several regularity proofs.

123



Limit profiles for singularly perturbed Choquard equations… Page 7 of 59 160

Asymptotic notations

For real valued functions f (t), g(t) ≥ 0 defined on a subset of R+, we write:

f (t) � g(t) if there exists C > 0 independent of t such that f (t) ≤ Cg(t);
f (t) � g(t) if g(t) � f (t);
f (t) ∼ g(t) if f (t) � g(t) and f (t) � g(t);
f (t) � g(t) if f (t) ∼ g(t) and limt→0

f (t)
g(t) = 1.

Bearing in mind that f (t), g(t) ≥ 0, we write f (t) = O(g(t)) if f (t) ∼ g(t), and f (t) =
o(g(t)) if lim f (t)

g(t) = 0. As usual, BR = {x ∈ R
N : |x | < R} andC, c, c1 etc., denote generic

positive constants.

2 Asymptotic profiles as " → 0

Our main goal in this work is to understand the asymptotic behaviour of the constructed in
Theorem 1.1 groundstate solutions uε of (Pε) in the limits ε → 0 and ε → ∞.

2.1 Formal limit (P0)

Loosely speaking, the elliptic regularity implies that uε converges as ε → 0 to a nonnegative
radial solution of the formal limit equation

−�u − (Iα ∗ |u|p)|u|p−2u + |u|q−2u = 0 in R
N . (P0)

However, (P0) becomes a meaningful limit equation for (Pε) only in the situation when
(P0) admits a nontrivial nonnegative solution. Otherwise the information that uε converges
to zero (trivial solution of (P0)) does not reveal any information about the limit profile of uε.
We prove in this work the following existence result for (P0).

Theorem 2.1 Let N+α
N < p < N+α

N−2 and 2 < q <
2N p
N+α

, or p > N+α
N−2 and q >

2N p
N+α

. Then

Eq. (P0)admits a positive spherically symmetric groundstate solution u0 ∈ D1∩Lq∩C2(RN )

which is a monotone decreasing function of |x |. Moreover,

• if p < N+α
N−2 then u ∈ L1(RN ),

• if p > N+α
N−2 then

u0 � |x |−(N−2) as |x | → ∞,

and if p > max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
then

u0 ∼ |x |−(N−2) as |x | → ∞.

The restrictions on p and q in the existence part of the theorem ensures that the energy
I0 which corresponds to (P0) is well-defined on D1(RN ) ∩ Lq(RN ), see (5.1) below. A
Pohožaev identity argument (see Remark 5.2) confirms that the existence range in Theorem
2.1 is optimal, with the exception of the “double critical” point p = N+α

N−2 and q = 2N p
N+α

= 2∗
on the (p, q)-plane (see Remark 5.3).
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Note that

max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
=

{
2
3

(
1 + N+α

N−2

)
if N+α

N−2 < 2,
N+α
N−2 if N+α

N−2 ≥ 2.

The upper bound on u0 in the case N+α
N−2 < 2 and N+α

N−2 < p ≤ 2
3

(
1 + N+α

N−2

)
remains open.

We conjecture that our restriction on p for the upper decay estimate is technical and that
u0 ∼ |x |−(N−2) as |x | → ∞ for all p > N+α

N−2 .

Observe that the energy I0 is well posed in the space D1(RN ) ∩ Lq(RN ), while Iε with
ε > 0 is well-posed on H1(RN ) ∩ Lq(RN ). Since H1(RN ) � D1(RN ), small perturbation
arguments in the spirit of the Lyapunov–Schmidt reduction are not directly applicable to the
family Iε in the limit ε → 0. Using direct variational analysis based on the comparison of
the groundstate energy levels for two problems, we establish the following result.

Theorem 2.2 (Formal limit (P0)) Let N+α
N < p < N+α

N−2 and 2 < q <
2N p
N+α

, or p >

max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
and q >

2N p
N+α

.

Then as ε → 0, the family of ground states uε of (Pε) converges in D1(RN ) and Lq(RN )

to a positive spherically symmetric ground state solution u0 ∈ D1 ∩ Lq(RN ) of the formal
limit Eq. (P0). Moreover, ε‖uε‖22 → 0.

The restriction p > max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
is related only to the upper decay bound

on u0 in Theorem 2.1, i.e. we could establish the convergence of uε to u0 for p > N+α
N−2 as

soon as we know that u0 ∼ |x |−(N−2) as |x | → ∞.

2.2 Rescaled limits

When N+α
N < p ≤ N+α

N−2 and q ≥ 2N p
N+α

the formal limit problem (P0) has no nontrivial
sufficiently regular finite energy solutions (see Remark 5.3). As a consequence, uε converges
uniformly on compact sets to zero. We are going to show that in these regimes uε converges
to a positive solution of a limit equation after a rescaling

v(x) := εsu(εt x),

for specific choices of s, t ∈ R. The rescaling transforms (Pε) into the equation

− ε−s−2t�v + ε1−sv − ε−(2p−1)s+αt (Iα ∗ |v|p)|v|p−2v + ε−(q−1)s |v|q−2v = 0 in R
N .

(2.1)
If q �= 22p+α

2+α
then there are three natural possibilities to choose s and t , each achieving

the balance of three different terms in (2.1). Note that the choice ε−s−2t = ε−(2p−1)s+αt =
ε−(q−1)s leads to s = t = 0, when (2.1) reduces to the original equation (Pε).

I. First rescaling. The choice ε−s−2t = ε1−s = ε−(2p−1)s+αt leads to s = − 2+α
4(p−1) , t = −1/2

and rescaled equation
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−�v + v − (Iα ∗ |v|p)|v|p−2v + ε
q(2+α)−2(2p+α)

4(p−1) |v|q−2v = 0 in R
N . (Cε)

If q > 22p+α
2+α

, we have limε→0 ε
q(2+α)−2(2p+α)

4(p−1) = 0, and we obtain as a formal limit the
Choquard equation

−�v + v − (Iα ∗ |v|p)|v|p−2v = 0 in R
N . (C )

II. Second rescaling. The choice ε1−s = ε−(2p−1)s+αt = ε−(q−1)s leads to s = − 1
q−2 ,

t = − 2p−q
α(q−2) and rescaled equation

ε
2(2p+α)−q(2+α)

α(q−2) (−�)v + v − (Iα ∗ |v|p)|v|p−2v + |v|q−2v = 0 in R
N . (TFε)

If 2 < q < 22p+α
2+α

we have limε→0 ε
2(2p+α)−q(2+α)

α(q−2) = 0 and we obtain as a formal limit the
Thomas–Fermi type integral equation

v − (Iα ∗ |v|p)|v|p−2v + |v|q−2v = 0 in R
N . (TF)

III. Third rescaling The choice ε−s−2t = ε1−s = ε−(q−1)s leads to s = − 1
q−2 , t = − 1

2 and
rescaled equation

−�v + v − ε
2(2p+α)−q(α+2)

2(q−2) (Iα ∗ |v|p)|v|p−2v + |v|q−2v = 0 in R
N

If 2 < q < 22p+α
2+α

we have limε→0 ε
2(2p+α)−q(α+2)

2(q−2) = 0, and we obtain as a formal limit the
nonlinear local equation

−�v + v + |v|q−2v = 0 in R
N .

Such equation has no nonzero finite energy solutions and we rule out the third rescaling as
trivial.

2.3 Self-similar regime q = 22p+˛
2+˛

In this special case the choice s = − 2+α
4(p−1) and t = −1/2 leads to the balance of all four

terms in (2.1), i.e. ε−s−2t = ε1−s = ε−(2p−1)s+αt = ε−(q−1)s . The rescaled equation in this
case becomes

−�v + v − (Iα ∗ |v|p)|v|p−2v + |v|q−2v = 0 in R
N , (P1)

and any solution of (Pε) is a rescaling of a solution of (P1). For completeness, we include
this obvious observation in the following statement.

Theorem 2.3 (Self-similar regime) Let N+α
N < p < N+α

N−2 and q = 22p+α
2+α

. Then for any
ε > 0,

uε(x) = ε
2+α

4(p−1) u1(
√

εx),

where u1 is a ground state solution of (P1).
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2.4 First rescaling: Choquard limit

The following result describes the existence region and some qualitative properties of the
groundstates of (C ).

Theorem 2.4 [43, Theorem 4] Let N+α
N < p < N+α

N−2 . Then Choquard’s Eq. (C ) admits a

positive spherically symmetric ground state solution v ∈ H1 ∩ L1 ∩ C2(RN ) such that v(x)

is a monotone decreasing function of |x |. Moreover, there exists C > 0 such that

• if p > 2,

lim|x |→∞ v(x)|x | N−1
2 e|x | = C,

• if p = 2,

lim|x |→∞ v(x)|x | N−1
2 exp

∫ |x |

ν

√
1 − νN−α

s N−α ds = C, where ν := (
Aα‖v‖22

) 1
N−α ,

• if p < 2,

lim|x |→∞ v(x)|x | N−α
2−p = (

Aα‖v‖p
p
) 1
2−p .

The existence interval in this theorem is sharp, in the sense that (C ) does not have finite

energy solutions for p /∈
(

N+α
N , N+α

N−2

)
. The uniqueness of the ground state solution is known

only for N = 3, p = 2 and α = 2 [33] and several other special cases [38, 49, 54].
In this paper we prove that after the 1st rescaling, groundstates of (Pε) converge to the

groundstates of the Choquard Eq. (C ), as soon as (C ) admits a nontrivial groundstate.

Theorem 2.5 (Choquard limit) Let N+α
N < p < N+α

N−2 and q > 22p+α
2+α

. As ε → 0, the
rescaled family of ground states

vε(x) := ε
− 2+α

4(p−1) uε(
x√
ε
) (2.2)

converges in D1(RN ) and Lq(RN ) to a positive spherically symmetric ground state solution
v0 ∈ D1 ∩ Lq(RN ) of the Choquard Eq. (C ).

2.5 2nd rescaling: Thomas–Fermi limit for p = 2

In this paper we consider the 2nd rescaling regime only in the case p = 2. The general case
p �= 2 is studied in the forthcoming work [26].

When p = 2 the formal limit equation for (Pε) in the 2nd rescaling is the Thomas–Fermi
type integral equation

v − (Iα ∗ |v|2)v + |v|q−2v = 0 in R
N . (TF)

One of the possible ways to write the variational problem that leads to (TF) after a rescaling
is

sTF := inf

{
‖v‖q

q + ‖v‖22 : 0 ≤ v ∈ L2 ∩ Lq(RN ),

∫
RN

(Iα ∗ v2)v2dx = 1

}
. (2.3)

By a groundstate of (TF) we understand a rescaling of a nonnegative minimizer for sTF that
satisfies the limit Eq. (TF).
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To study nonnegative minimizers of the sTF it is convenient to substitute

ρ := v2, m := q

2
,

for an equivalent representation

sTF = inf

{∫
RN

ρmdx +
∫
RN

ρ dx : 0 ≤ ρ ∈ L1 ∩ Lm(RN ),

∫
RN

(Iα ∗ ρ)ρ dx = 1

}
.

For m > mc := 2 − α/N it is not difficult to see that, after a rescaling, minimizers for sTF

are in the one-to-one correspondence with the minimizers of

σTF := inf

{∫
RN

|ρ|m dx −
∫
RN

(Iα ∗ ρ)ρ dx : 0 ≤ ρ ∈ L1 ∩ Lm(RN ), ‖ρ‖1 = 1

}
.

The existence and qualitative properties of minimizers for σTF in the case N = 3, α = 2
and for m > 4/3 is classical and goes back to [1, 36]. The case N ≥ 2, α ∈ (0, N ) and
m > mc it is a recent study by Carrillo et al. [12]. If m < mc then σTF = −∞ by scaling,
while m = mc is the L1-critical exponent for σTF (this case is studied in [11]). Note that
mc > 4+α

2+α
so in the 2nd rescaling regime we always have σTF = −∞ when ε → 0!

In the next theorem we show that, unlike for σTF , minimization for sTF is possible for all
m > 2N

N+α
. The existence and qualitative properties of the minimizers are summarised below.

Theorem 2.6 (Thomas–Fermi groundstate) Let m > 2N
N+α

. Then sTF > 0 and there exists a

nonnegative spherically symmetric nonincreasing minimizer ρ∗ ∈ L1 ∩ L∞(RN ) for sTF .
The minimizer ρ∗ satisfies the virial identity

m
∫
RN

ρmdx +
∫
RN

ρ dx = sTF
2N

N + α
(2.4)

and the Thomas–Fermi equation

mρm−1 =
(

sTF
2N

N + α
Iα ∗ ρ − 1

)
+

a.e. in R
N . (2.5)

Moreover, supp(ρ∗) = B̄R∗ for some R∗ ∈ (0,+∞), ρ∗ is C∞ inside the support, and

ρ∗ ∈ C0,γ (RN ) with γ = min{1, 1
m−1 } if α >

(
m−2
m−1

)
+, or for any γ < α

m−2 if m > 2 and

α ≤
(

m−2
m−1

)
+. Moreover, if α >

(
m−2
m−1

)
+ then Iα ∗ ρ∗ ∈ C0,1(RN ) and ρm−1∗ ∈ C0,1(RN ).

Meanwhile,

v0(x) =
(q

2

) 1
q−2

√
ρ∗

(( q
2

) 2
α(q−2)

(
2NsTF
N+α

)−1/α
x

)
, (2.6)

is a nonnegative spherically symmetric nonincreasing ground state solution of the Thomas–
Fermi Eq. (TF).

Only the existence part of the theorem requires a proof. The Euler–Lagrange equation,
regularity and qualitative properties of the minimizers could be obtained by adaptations of
the arguments developed for m > mc in [11, 12]. We outline the arguments in Sect. 7.3.

In the case m ≥ mc the uniqueness of the minimizer for σTF was recently proved in [10]
for α < 2, see also [13] for α = 2 and a survey of earlier results in this direction. For the full
range m > 2N

N+α
and for α < 2 the uniqueness of a bounded radially nonincreasing solution

for the Euler–Lagrange Eq. (2.5) (and hence the uniqueness of the minimizer ρ∗ for sTF ) is
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the recent result in [14, Theorem 1.1 and Proposition 5.4]. For α = 2 the same follows from
[24, Lemma 5]. For α ∈ (2, N ) the uniqueness of the minimizer for sTF or for σTF seems to
be open at present.

Nextweprove that in the special caseα = 2, groundstates of (Pε) converge to a groundstate
of the Thomas–Fermi Eq. (TF).

Theorem 2.7 (Thomas–Fermi limit for α = 2) Let N ≤ 5, p = 2, α = 2 and 4N
N+2 < q < 3.

As ε → 0, the rescaled family of ground states

vε(x) := ε
− 1

q−2 uε

(
ε
− 4−q

2(q−2) x

)
(2.7)

converges in L2(RN ) and Lq(RN ) to a nonnegative spherically symmetric compactly sup-
ported ground state solution v0 ∈ L2 ∩ Lq(RN ) of the Thomas–Fermi Eq. (TF).

Remark 2.1 While the uniqueness of the Thomas–Fermi groundstate v0 forα > 2 is generally
open, it is clear from the proof of Theorem 2.6 that every ground state of (TF) must have
the same regularity and compact support properties as stated in Theorem 2.6. In particular,
vε always exhibits as ε → 0 a “corner layer” near the boundary of the support of the limit
groundstate of (TF).

Remark 2.2 The case p �= 2 and α �= 2 is studied in our forthcoming paper [26]. We are
going to show that the minimization problem

sTF := inf

{
‖v‖q

q + ‖v‖22 : 0 ≤ v ∈ L2 ∩ Lq(RN ),

∫
RN

(Iα ∗ v p)v pdx = 1

}
.

admits a nonnegative spherically symmetric nonincreasing minimizer v∗ ∈ L1 ∩ L∞(RN )

for any p > N+α
N and q >

2N p
N+α

and this range is optimal. Moreover,

(a) if p ≥ 2 then Supp(v∗) = BR∗ and v∗ = λχBR∗ + φ, where R∗ > 0, λ > 0 if p > 2 or
λ = 0 if p = 2, and φ : BR → R is Hölder continuous radially nonincreasing, φ(0) > 0
and lim|x |→R∗ φ(|x |) = 0;

(b) if p < 2 then v∗ ∈ D1(RN ) and Supp(v∗) = R
N .

We will prove in [26] that such a minimizer is the limit of the rescaled groundstates vε(x) as
ε → 0 in the Thomas–Fermi regime.

2.6 Critical Choquard regime p = N+˛
N−2

When p = N+α
N−2 and q >

2N p
N+α

= 2∗, neither (C ) nor (P0) have nontrivial solutions. We
prove that in this case the limit equation for (Pε) is given by the critical Choquard equation

−�v = (Iα ∗ |v| N+α
N−2 )|v| N+α

N−2 −2v, v ∈ D1(RN ). (CH L )

A variational problem that leads to (CH L ) can be written as

SH L = inf
w∈D1(RN )\{0}

‖∇w‖22{∫
RN (Iα ∗ |w| N+α

N−2 )|w| N+α
N−2 dx

} N−2
N+α

. (2.8)

It is known [21, Lemma 1.1] that

SH L = S∗C
− N−2

N+α
α
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where S∗ is the Sobolev constant in (1.4) and Cα is the Hardy–Littlewood–Sobolv constant
in (1.3) (with p = N+α

N−2 ).
By a groundstate of (CH L ) we understand a rescaling of a positive minimizer for SH L

that satisfies Eq. (CH L ). Denote

U∗(x) =
(√

N (N − 2)

1 + |x |2
) N−2

2

(2.9)

a groundstate of the Emden–Fowler equation −�U∗ = U 2∗−1∗ in R
N . Then (see e.g.

[21, Lemma 1.1]) all radial groundstates of (CH L ) are given by the function

V (x) = (Sα∗ C2α
)− N−2

4(α+2) U∗(x) (2.10)

and the family of its rescalings

Vλ(x) = λ− N−2
2 V (x/λ) (λ > 0). (2.11)

In fact, if N = 3, 4 or if N ≥ 5 and α ≥ N − 4 then all finite energy solutions of (CH L )
are given by the rescalings and translations of U∗, see [21, Theorem 1.1].

We prove that in the critical Choquard regime the family of ground states uε converge in
a suitable sense to V after an implicit rescaling λε . Note that V ∈ L2(RN ) only if N ≥ 5
and hence the lower dimensions should be handled differently, as the L2-norm of uε must
blow up when N = 3, 4. Our principal result is a sharp two-sided asymptotic estimate on the
rescaling λε as ε → 0. Similar result in the local case α = 0 was first observed in [46] and
then rigorously established in [41]

Theorem 2.8 (Critical Choquard limit) Let p = N+α
N−2 and q >

2N p
N+2 = 2∗. There exists a

rescaling λε : (0,∞) → (0,∞) such that as ε → 0, the rescaled family of ground states

vε(x) := λ
N−2
2

ε uε(λεx)

converges to V in D1(RN ). Moreover, as ε → 0,

λε ∼

⎧⎪⎪⎨
⎪⎪⎩

ε
− 1

q−4 if N = 3,(
ε ln 1

ε

)− 1
q−2 if N = 4,

ε
− 2

(q−2)(N−2) if N ≥ 5.

(2.12)

2.7 Critical Thomas–Fermi regime q = 2Np
N+˛

When N+α
N < p < N+α

N−2 and q = 2N p
N+α

, neither (TF) nor (P0) have nontrivial solutions. We
show that in this case the limit equation for (Pε) is given by the critical Thomas–Fermi type
equation

|v|q−2v = (Iα ∗ |v|p)|v|p−2v, v ∈ Lq(RN ). (TF∗)

By a groundstate of (TF∗) we understand a positive solution of (TF∗) which is a rescaling
of a nonnegative minimizer for the Hardy–Littlewood–Sobolev minimization problem

STF = inf
w∈L

2N p
N+α (RN )\{0}

∫
RN |w| 2N p

N+α dx
{∫

RN (Iα ∗ |w|p)|w|pdx
} N

N+α

= C− N
N+α

α , (2.13)
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where Cα is the optimal constant in (1.3). It is known [34, Theorem 4.3] that all radial
groundstates of (TF∗) are given by

Ũ (x) =
(

σα,N

1 + |x |2
) N+α

2p

, (2.14)

for a constant σα,N > 0, and the family of rescalings

Ũλ(x) := λ
− N+α

2p Ũ (x/λ) = λ
− N

q Ũ (x/λ) (λ > 0). (2.15)

We prove that, similarly to the critical Choquard regime, in the critical Thomas–Fermi regime
the family of ground states uε converge in a suitable sense to Ũ after an implicit rescaling λε.
Note that Ũ ∈ L2(RN ) and Ũ ∈ D1(RN ) only if N ≥ 4, so N = 3 is now the only special
dimension. Our main result in the critical Thomas–Fermi regime is the following.

Theorem 2.9 (Critical Thomas–Fermi limit) Let N+α
N < p < N+α

N−2 and q = 2N p
N+α

. There
exists a rescaling λε : (0,∞) → (0,∞) such that as ε → 0, the rescaled family of ground
states

vε(x) := λ
N+α
2p

ε uε(λεx)

converges to Ṽ in Lq(RN ), where Ṽ is defined by (8.17). Moreover, if N ≥ 4 then as ε → 0,

λε ∼ ε− 1
2 , (2.16)

while if N = 3 then
⎧⎪⎨
⎪⎩

λε ∼ ε− 1
2 , p ∈ ( 1

3 (3 + α), 2
3 (3 + α)

)
,

ε− 1
2 (ln 1

ε
)− 1

2 � λε � ε− 1
2 (ln 1

ε
)
1
6 , p = 2

3 (3 + α),

ε
p−(3+α)

p � λε � ε
(3+α)(3+α−2p)

p(3p−(3+α)) , p ∈ ( 2
3 (3 + α), 3 + α

)
.

(2.17)

Remark 2.3 We expect that the upper asymptotic bounds (2.17) with p ≥ 2(3+α)
3 could be

refined to match the lower bounds, but this remains open at the moment.

3 Asymptotic profiles as " → ∞ and Gross–Pitaevskii–Poissonmodel

The behaviour of ground states uε as ε → ∞ is less complex than in the case ε → 0. Only
the 1st and the 2nd rescalings are meaningful, separated by the q = 22p+α

2+α
line, however the

limit equations “switch” compared to the case ε → 0. There are no critical regimes.

Theorem 3.1 (Choquard limit) Let N+α
N < p < N+α

N−2 and 2 < q < 22p+α
2+α

. As ε → ∞, the
rescaled family of ground states

vε(x) := ε
− 2+α

4(p−1) uε(
x√
ε
) (3.1)

converges in D1(RN ) and Lq(RN ) to a positive spherically symmetric ground state solution
v0 ∈ D1 ∩ Lq(RN ) of the Choquard Eq. (C ).

Clearly, for q = 2p+α
2+α

the self-similar regime of Theorem 2.3 is valid also as ε → ∞.

For p = 2 and q >
2p+α
2+α

we have the following.

123



Limit profiles for singularly perturbed Choquard equations… Page 15 of 59 160

Fig. 2 Three limit regimes for
(Pε) as ε → ∞ on the
(p, q)-plane

N+α
N

q

p1
2

2∗

N+α
N−2

2∗

Choquard

q = 2 2p+α
2+α

q = 2Np
N+α

Selfrescaling

ε → ∞
TF

Theorem 3.2 (Thomas–Fermi limit for α = 2) Assume that p = 2 and α = 2. Let N ≤ 5
and q > 3, or N ≥ 6 and q > 4N

N+2 . As ε → ∞, the rescaled family of ground states

vε(x) := ε
− 1

q−2 uε(ε
− 4−q

2(q−2) x) (3.2)

converges in L2(RN ) and Lq(RN ) to a nonnegative spherically symmetric compactly sup-
ported ground state solution v0 ∈ L2 ∩ Lq(RN ) of the Thomas–Fermi Eq. (TF).

The proofs of Theorems 3.2 and 3.1 are very similar to the proofs of Theorems 2.7 and
2.5. We only note that the proof on Theorem 3.2 will involve the estimate (7.25) with q ≥ 4
when the the right hand side of (7.25) blows-up. However the rate of the blow-up in (7.25)
isn’t strong enough and all quantities involved in the proof remain under control. We leave
the details to the interested readers.

Remark 3.1 Note that the nature of rescaling (3.2) changes when q = 4: for q > 4 the mass
of uε concentrates near the origin, while for q < 4 it “escapes” to infinity. In particular,
the stationary version of the Gross–Pitaevskii–Poisson Eq. (1.1) (q = 4, N = 3, α = 2)
fits into the Thomas–Fermi regime as ε → ∞. The rescaling (3.2) in this case takes the
simple form vε(x) = ε−1/2uε(x) and uε(x) ≈ √

εv0(x), or we can say that uε concentrates
towards the compactly supported v0. This is precisely the phenomenon which was already
observed in [8, 53], where the radius of the support of v0 has the meaning of the radius of
self-gravitating Bose–Einstein condensate, see [16]. The limit minimization problem sTF in
the Gross–Pitaevskii–Poisson Eq. (1.1) case becomes

sTF = inf

{∫
R3

ρ2dx +
∫
R3

ρ dx : 0 ≤ ρ ∈ L1 ∩ L2(R3),

∫
R3

(I2 ∗ ρ)ρ dx = 1

}
,

and the Euler–Lagrange Eq. (2.5) in this case is linear inside the support of ρ:

2ρ = ( 6
5 sTF I2 ∗ ρ − 1

)
+ a.e. in R

3. (3.3)

To find explicitly the solution of (3.3) constructed in Theorem 2.6, we use the sin(|x |)
|x |

ansatz as in [8, 53], [15, p. 92].
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For λ > 0 and |x | ≤ π/λ consider the family

ρλ(|x |) =
⎧⎨
⎩

λ
5
2√
2π

· sin(|λx |)
λ|x | , |x | < π/λ,

0, |x | ≥ π/λ.

Then −�ρλ = λ2ρλ in Bπ/λ, and

I2 ∗ ρλ(x) =

⎧⎪⎨
⎪⎩

λ−2
(

ρλ(x) + λ
5
2√
2π

)
, |x | < π/λ,

λ
1
2√
2π

I2(|x |)
I2(π/λ)

, |x | ≥ π/λ.

We compute ∫
R3

I2 ∗ ρλ(x)ρλ(x)dx = 1. (3.4)

Optimising in λ > 0, we find that

sTF = inf
λ>0

(∫
R3

ρ2
λ(x)dx +

∫
R3

ρλ(x)dx

)
= inf

λ>0

(
λ2

3
+ 2

√
2π

3
√

λ

)
= 5

6
· 2 3

5 π
4
5

and the minimum occurs at the optimal λ∗ =
(

π2

2

)1/5
. Taking into account the uniqueness of

the spherically symmetric nonincreasing minimizer for sTF in the case α = 2, which follows
from [13, Theorem 1.2] (see also [14, Lemma 5.2]), the function

ρ∗(|x |) = ρλ∗(|x |) =

⎧⎪⎨
⎪⎩

sin

(
2− 1

5 π
2
5 |x |

)

2
4
5 π

2
5 |x |

, |x | < 2
1
5 π

3
5 ,

0, |x | ≥ 2
1
5 π

3
5 .

is the unique spherically symmetric nonincreasing minimizer for sTF and a solution of (3.3).
The solution of the limit Thomas–Fermi Eq. (TF), which is written in this case as

v + v2 = (I2 ∗ v2)v a.e. inR
3 (3.5)

is given by the rescaled function in (2.6),

v0(x) =
√
2ρ∗

(√
2

( 6
5 sTF

)− 1
2 |x |

)
=

{√
sin(|x |)

|x | , |x | < π,

0, |x | ≥ π.
(3.6)

This is (up to the physical constants) the Thomas–Fermi approximation solution for self-
gravitating BEC observed in [8, 16, 53] and the support radius R0 = π is the approximate
radius of the BEC star. Our Theorem 3.2 provides a rigorous justification for the convergence
of the Thomas–Fermi approximation.

4 Existence and properties of groundstates for (P")

4.1 Variational setup

It is a standard consequence of Sobolev and Hardy–Littlewood–Sobolev (HLS) inequalities
[35, Theorems 4.3 and 8.3] that for N+α

N ≤ p ≤ N+α
N−2 and 2 < q ≤ 2N

N−2 the energy
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functional Iε ∈ C1(H1(RN ), R), cf. [42]. For p > N+α
N−2 the energy Iε is not well-defined on

H1(RN ). In this case an additional assumption q >
2N p
N+α

ensures the control of the nonlocal
term by the Lq and L2-norm via the HLS inequality and interpolation, i.e.

∫
RN

(Iα ∗ |u|p)|u|pdx ≤ C‖u‖2p
2N p
N+α

≤ C‖u‖2pθ
2 ‖u‖2p(1−θ)

q , (4.1)

for a θ ∈ (0, 1). As a consequence, for p > N+α
N−2 and q >

2N p
N+α

the energy Iε is well-defined
on the space

Hq := H1(RN ) ∩ Lq∗
(RN ), q∗ := max{q, 2∗}.

Clearly, Hq endowed with the norm

‖u‖Hq := ‖∇u‖L2 + ‖u‖L2 + (q∗−2∗)‖u‖Lq∗

is a Banach space,Hq ↪→ L
2N p
N+α (RN ) for any q > 2 andHq = H1(RN ) when 2 < q ≤ 2∗.

It is easy to check that Iε ∈ C1(Hq , R) and the problem (Pε) is variationaly well-posed, in
the sense that weak solutions u ∈ Hq of (Pε) are critical points of Iε, i.e.

〈I ′
ε(u), ϕ〉Hq =

∫
RN

∇u · ∇ϕdx + ε

∫
RN

uϕdx −
∫
RN

(Iα ∗ |u|p)|u|p−2ϕdx

+
∫
RN

|u|q−2uϕdx = 0,

for all ϕ ∈ Hq . In particular, weak solutions u ∈ Hq of (Pε) satisfy the Nehari identity
∫
RN

|∇u|2dx + ε

∫
RN

|u|2dx +
∫
RN

|u|qdx −
∫
RN

(Iα ∗ |u|p)|u|pdx = 0. (4.2)

It is standard to see that under minor regularity assumptions weak solutions of (Pε) also
satisfy the Pohožaev identity.

Proposition 4.1 (Pohožaev identity) Assume p > 1 and q > 2. Let u ∈ Hq ∩ L
2N p
N+α (RN ) be

a weak solution of (Pε). If ∇u ∈ L
2N p
N+α

loc (RN ) ∩ H1
loc(R

N ) then

N − 2

2

∫
RN

|∇u|2dx + εN

2

∫
RN

|u|2dx + N

q

∫
RN

|u|qdx

− N + α

2p

∫
RN

(Iα ∗ |u|p)|u|pdx = 0.

Proof The proof is an adaptation of [43, Proposition 3.1], we omit the details. ��

As a consequence, we conclude that the existence range stated in Theorem 1.1 is optimal.

Corollary 4.1 (Nonexistence) Let 1 < p ≤ N+α
N and q > 2, or p ≥ N+α

N−2 and 2 < q ≤ 2N p
N+α

.

Then (Pε) has no nontrivial weak solutions u ∈ Hq ∩L
2N p
N+α (RN )∩W

1, 2N p
N+α

loc (RN )∩W 2,2
loc (RN ).

Proof Follows from Pohožaev and Nehari identities. ��
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4.2 Apriori regularity and decay at infinity

We show that all weak nonnegative solutions of (Pε) are in fact bounded classical solutions
with an L1-decay at infinity. We first prove a partial results which relies on the maximum
principle for the Laplacian.

Lemma 4.1 Assume p > N+2
N and q > max{p, 2}. Let s >

N p
α

and u ∈ Hq ∩ Ls(RN ) be a
nonnegative weak solution of (Pε). Then u ∈ L∞(RN ).

Proof The assumption s >
N p
α

imply that Iα ∗ |u|p ∈ L∞(RN ). Then u ≥ 0 weakly satisfies

− �u ≤ Cu p−1 − uq−1 inR
N , (4.3)

where C = C(u) = ‖Iα ∗ |u|p‖∞. Choose m = m(u) > 0 such that Cm p−1 − mq−1 = 0.
Testing against um = (u − m)+ ∈ H1(RN ), we obtain∫

RN
|∇um |2dx =

∫
RN

∇u · ∇umdx ≤
∫
RN

(
Cu p−1 − uq−1) umdx ≤ 0, (4.4)

so ‖u‖∞ ≤ m. ��
The proof of the next statement in the case p < N+α

N−2 is an adaptation of the iteration
arguments in [43, Proposition 4.1]. We only outline the main steps of the proof. The case
p ≥ N+α

N−2 is new and relies heavily on the contraction inequality (A.3), which is discussed
in the appendix.

Proposition 4.2 (Regularity and positivity) Let N+α
N < p < N+α

N−2 and q > 2, or p ≥ N+α
N−2

and q >
2N p
N+α

. If 0 ≤ u ∈ Hq is a nontrivial weak solution of (Pε) then u ∈ L1 ∩ C2(RN )

and u(x) > 0 for all x ∈ R
N .

Proof Since u ∈ Hq we know that u ∈ Ls(RN ) for all s ∈ [2, q∗]. ��
Step 1. u ∈ L1(RN ).

Proof Note that u ≥ 0 weakly satisfies the inequality

− �u + εu ≤ (Iα ∗ u p)u p−1 in R
N . (4.5)

Since (−� + ε)−1 : Ls(RN ) �→ Ls(RN ) is a bounded order preserving linear mapping for
any s ≥ 1, we have

u ≤ (−� + ε)−1 (
(Iα ∗ u p)u p−1) in R

N . (4.6)

Then, by the HLS and Hölder inequalities, u ∈ Lsn (RN ) with 0 <
2p−1

sn
− α

N < 1 implies

u ∈ Lsn+1(RN ), where

1

sn+1
= 2p − 1

sn
− α

N
.

Since p > N+α
N , we start the sn-iteration with s0 = 2N p

N+α
<

2N (p−1)
α

, as in [43]. Then we
achieve sn+1 ≥ 1 after a finite number of steps. This implies u ∈ L1(RN ). ��

Step 2. u ∈ L∞(RN ).
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Proof Assume that q ≤ N p
α
, otherwise we conclude by Lemma 4.1. We consider separately

the cases p < N+α
N−2 and p ≥ N+α

N−2 , which use different structures within the Eq. (Pε).

A. Case p < N+α
N−2 . Note that u ≥ 0 weakly satisfies the inequality

− �u ≤ (Iα ∗ u p)u p−1 in R
N . (4.7)

Since u ∈ L1(RN ), we have (Iα ∗ u p)u p−1 ∈ Lt (RN ) with 1
t := 2p − 1 − α

N > 2
N . We

conclude that
u ≤ I2 ∗ (

(Iα ∗ u p)u p−1) in R
N . (4.8)

Then, by the HLS and Hölder inequalities, u ∈ Lsn (RN ) with 0 <
2p−1

sn
− α+2

N < 1 implies

u ∈ Lsn+1(RN ), where

1

sn+1
= 2p − 1

sn
− α + 2

N
.

Since p < N+α
N−2 , we start the sn-iteration with s0 = 2N p

N+α
>

2N (p−1)
α+2 , as in [43]. Then we

achieve sn+1 >
N p
α

after a finite number of steps. (Or if sn+1 = N p
α

we readjust s0.)

B. Case p ≥ N+α
N−2 and q >

2N p
N+α

. Note that u ≥ 0 weakly satisfies the inequality

− �u + uq−1 ≤ (Iα ∗ u p)u p−1 in R
N . (4.9)

Then, by the HLS and Hölder inequalities, and by the contraction inequality A.3, u ∈
Lsn (RN ) with 0 <

2p−1
sn

− α
N < 1 implies u ∈ Lsn+1(RN ), where

q − 1

sn+1
= 2p − 1

sn
− α

N
.

We start the sn-iteration with s0 = q . If q ≥ 2p we achieve sn+1 >
N p
α

after a finite number

of steps. If q < 2p we note that since p ≥ N+α
N−2 , we have s0 = q >

2N p
N+α

. Then we again

achieve sn+1 >
N p
α

after a finite number of steps. (Or if sn+1 = N p
α

we readjust s0.) ��
Step 3. u ∈ W 2,r (RN ) for every r > 1 and u ∈ C2(RN ).

Proof Since u ∈ L1 ∩ L∞(RN ), we have

−�u + εu = F in R
N ,

where F := (Iα ∗u p)u p−1 −uq−1 ∈ L∞(RN ). Then the conclusion follows by the standard
Schauder estimates, see [43, p. 168] for details. ��
Step 4. u(x) > 0 for all x ∈ R

N .

Proof We simply note that u ≥ 0 satisfies

− �u + V (x)u ≥ 0 in R
N , (4.10)

where V := ε + uq−2 ∈ C(RN ). Then u(x) > 0 for all x ∈ R
N , e.g. by the weak Harnack

inequality. ��
Proposition 4.3 (Decay asymptotics) Let N+α

N < p < N+α
N−2 and q > 2 or p ≥ N+α

N−2 and

q >
2N p
N+α

. Let 0 < uε ∈ L1 ∩ C2(RN ) be a radially symmetric solution of (Pε). Then

lim|x |→∞(Iα ∗ u p
ε )(x)|x |N−α = Aα‖uε‖p

p. (4.11)

Moreover, there exists Cε > 0 such that
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• if p > 2,

lim|x |→∞ uε(x)|x | N−1
2 e

√
ε|x | = Cε,

• if p = 2,

lim|x |→∞ uε(x)|x | N−1
2 exp

∫ |x |

ν

√
ε − νN−α

s N−α ds = Cε, where ν := (
Aα‖uε‖22

) 1
N−α ,

• if p < 2,

lim
x→∞ uε(x)|x | N−α

2−p = (
ε−1Aα‖uε‖p

p
) 1
2−p .

Proof To simplify the notation, we drop the subscript ε for uε in this proof.
Let u ∈ L1 ∩ C2(RN ) be a positive radially symmetric solution of (Pε). By the Strauss’

radial L1-bound [6, Lemma A.4], u p(|x |) ≤ C‖u‖1|x |−N p for all x ∈ R
N . Then by

[43, Propositions 6.1], there exists μ ∈ R such that
∣∣Iα ∗ u p(x) − Iα(x)‖u‖p

p
∣∣ ≤ μ

|x |N−α+δ
for x ∈ R

N , (4.12)

with 0 < δ ≤ min(1, N (p − 1)). In particular, this implies (4.11).
Case p ≥ 2. The derivation of the decay asymptotic of u in the case(s) p ≥ 2 requires
minimal modifications of the proofs of [43, Propositions 6.3, 6.5]. Indeed, (4.11) implies
(Iα ∗ |u|p)u p−2(x) ≤ 3

4ε for all |x | > ρ, for some ρ > 0. Therefore, u satisfies

−�u + ε

4
u ≤ 0 in |x | > ρ.

As in [43, Propositions 6.3] we conclude that

u(x) ≤ c|x |− N−1
2 e−

√
ε
4 |x |. (4.13)

Therefore, u is a solution of

−�u + Wε(x)u = 0 in |x | > ρ,

where

Wε(x) := ε − (Iα ∗ u p)u p−2(x) + uq−2(x) � ε − Aα‖u‖p
p

|x |N−α
u p−2(x)

+uq−2(x) as |x | → ∞.

The initial rough upper bound (4.13) implies that the term uq−2(x) in the linearisation poten-
tial Wε(x) has an exponential decay and is negligible in the subsequent asymptotic analysis
of Propositions 6.3 and 6.5 in [43]. We omit the details.
Case p < 2. This proof is an adaptation of [43, Propositions 6.6].

To derive the upper bound, we note that by Young’s inequality,

(Iα ∗ |u|p)u p−1 ≤ ε
− p−1

2−p (2 − p)(Iα ∗ |u|p)
1

2−p + ε(p − 1)u.

By (4.12), we have

(
(Iα ∗ |u|p)(x)

) 1
2−p ≤ Iα(x)

1
2−p

(‖u‖p
p + c|x |−δ

) 1
2−p
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≤ Iα(x)
1

2−p

(
‖u‖

p
2−p
p + c|x |−δ

)
for |x | > 1.

Therefore, u satisfies the inequality

−�u + ε(2 − p)u ≤ ε
− p−1

2−p (2 − p)Iα(x)
1

2−p

(
‖u‖

p
2−p
p + c|x |−δ

)
if |x | > 1.

Define now ū ∈ C2(RN \ B1) by⎧⎪⎪⎨
⎪⎪⎩

−�ū + ε(2 − p)ū = ε
− p−1

2−p (2 − p)Iα(x)
1

2−p

(
‖u‖

p
2−p
p + c|x |−δ

)
if |x | > 1,

ū(x) = u(x) if |x | = 1,
lim|x |→∞ ū(x) = 0.

We now apply [43, Lemma 6.7] twice and use the linearity of the operator −� + ε(2 − p)

to obtain

lim|x |→∞
ū(x)

Iα(x)
1

2−p

= ε
− 1

2−p ‖u‖
p

2−p
p .

By the comparison principle, we have u ≤ ū in R
N \ B1. Thus

lim sup
|x |→∞

u2−p(x)

Iα(x)
≤ ε−1‖u||p

p. (4.14)

To deduce the lower bound, note that by the chain rule, u2−p ∈ C2(RN ) and

−�u2−p = −(2 − p)u1−p�u + (2 − p)(p − 1)|∇u|2.
Since p ∈ (1, 2) and q > 2, by the equation satisfied by u and by (4.12) and (4.14), for some
cε > 0 we have

−�u2−p + ε(2 − p)u2−p ≥ (2 − p)Iα(x)
(‖u‖p

p − μ|x |−δ
) − (2 − p)uq−p

≥ (2 − p)Iα(x)
(‖u‖p

p − μ|x |−δ
)

−cε Iα(x)
q−p
2−p for x ∈ R

N .

Let u ∈ C2(RN \ B1) be such that
⎧⎪⎨
⎪⎩

−�u + ε(2 − p)u ≤ (2 − p)Iα(x)
(‖u‖p

p − μ|x |−δ
) − cε Iα(x)

q−p
2−p if |x | > 1,

u(x) = u(x)2−p if |x | = 1,
lim|x |→∞ u(x) = 0.

We apply now [43, Lemma 6.7] to deduce

lim|x |→∞
u(x)

Iα(x)
= ε−1‖u‖p

p.

By the comparison principle, u ≤ u2−p in R
N \ B1. We conclude that

lim inf|x |→∞
u2−p(x)

Iα(x)
≥ ε−1‖u‖p

p (4.15)

and the assertion follows from the combination of (4.15) and (4.14). ��
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4.3 Proof of the existence

Throughout this section, we assume that either N+α
N < p < N+α

N−2 and q > 2 or p ≥ N+α
N−2 and

q >
2N p
N+α

. We construct a groundstate of (Pε) by minimising over the Pohožaev manifold of
(Pε). Similar approach for Choquard’s equations with different classes of nonlinearities was
recently used in [25, 32].

Set

Pε := {u ∈ Hq \ {0} : Pε(u) = 0},
where Pε : Hq → R is defined by

Pε(u) = N − 2

2

∫
RN

|∇u|2dx + εN

2

∫
RN

|u|2dx + N

q

∫
RN

|u|qdx

− N + α

2p

∫
RN

(Iα ∗ |u|p)|u|pdx .

For each u ∈ Hq \ {0}, set
ut (x) := u

( x
t

)
. (4.16)

Then

fu(t) := Iε(ut )

= t N−2

2

∫
RN

|∇u|2dx + εt N

2

∫
RN

|u|2dx + t N

q

∫
RN

|u|qdx

− t N+α

2p

∫
RN

(Iα ∗ |u|p)|u|pdx . (4.17)

Clearly, there exists a unique tu > 0 such that fu(tu) = max{ fu(t) : t > 0} and f ′
u(tu)tu = 0,

which means that u(x/tu) ∈ Pε. Therefore Pε �= ∅.
Define M : Hq → R as

M(u) := ‖∇u‖22 + ‖u‖22 + ‖u‖q
q . (4.18)

Then M(u) = 0 if and only if u = 0. Taking into account the definition of M and the norm
‖ · ‖Hq , we can check that

2− q
2 ‖u‖q

Hq
≤ M(u) ≤ C‖u‖2Hq

if either M(u) ≤ 1 or ‖u‖Hq ≤ 1, (4.19)

where C > 0 is independent of u ∈ Hq .

Lemma 4.2 Assume that either N+α
N < p < N+α

N−2 and q > 2, or p ≥ N+α
N−2 and q >

2N p
N+α

.
Then there exists C > 0 such that for all u ∈ Hq ,

∫
RN

(Iα ∗ |u|p)|u|pdx ≤ C max
{

M(u)
N+α

N , M(u)
N+α
N−2

}
.

Proof For each u ∈ Hq \ {0}, let ut be defined in (4.16). If M(u) ≤ 1 then we set t =
M(u)− 1

N ≥ 1, and we have M(ut ) ≤ t N M(u) = 1. Thus it follows from the HLS inequality,

the embedding Hq ↪→ L
2N p
N+α (RN ), and (4.19) that
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∫
RN

(Iα ∗ |u|p)|u|pdx = t−(N+α)

∫
RN

(Iα ∗ |ut |p)|ut |pdx

≤ Ct−(N+α)‖ut‖2p
2N p
N+α

≤ C1t−(N+α)‖ut‖2p
Hq

≤ C2M(u)
N+α

N .

To clarify the last inequality, note that M(ut ) ≤ t N M(u) = 1. Then using (4.17), we obtain

Ct−(N+α)‖ut‖2p
Hq

≤ C M(u)
N+α

N

(
‖ut‖q

Hq

) 2p
q

≤ C M(u)
N+α

N

(
2

q
2 M(ut )

) 2p
q ≤ 2pC M(u)

N+α
N .

If M(u) > 1 then we set t = M(u)−
1

N−2 < 1, and we have M(ut ) ≤ t N−2M(u) = 1.
Similarly as before, we conclude that∫

RN
(Iα ∗ |u|p)|u|pdx = t−(N+α)

∫
RN

(Iα ∗ |ut |p)|ut |pdx

≤ Ct−(N+α)‖ut‖2p
2N p
N+α

≤ C1t−(N+α)‖ut‖2p
Hq

≤ C2M(u)
N+α
N−2 ,

which completes the proof. ��
To find a groundstate solution of (Pε), we prove the existence of a spherically symmetric

nontrivial nonegative minimizer of the minimization problem

cε = inf
u∈P ε

Iε(u), (4.20)

and then show that Pε is a natural constraint for Iε , i.e. the minimizer u0 ∈ Pε satisfies
I ′

ε(u0) = 0. Such approach for the local equations goes back at least to [50] in the local case
and to [48] in the case of nonlocal problems.

We divide the proof of the existence of the groundstate into several steps.
Step 1. 0 /∈ ∂Pε.

Proof Indeed, for u ∈ Pε , we have, by using the HLS and Sobolev inequalities,

0 = Pε(u) ≥ min

{
N − 2

2
,
εN

2
,

N

q

}
M(u) − C‖u‖2p

2N p
N+α

≥ min

{
N − 2

2
,
εN

2
,

N

q

}
M(u) − C(M(u))

N+α
N ,

which means that there exists C > 0 such that M(u) ≥ C for all u ∈ Pε . ��
Step 2. cε = infu∈P ε Iε(u) > 0

Proof For each u ∈ Pε , we have

Iε(u) = 1

N
‖∇u‖22 + α

2pN

∫
RN

(Iα ∗ |u|p)|u|pdx, (4.21)

therefore cε ≥ 0. If cε = 0, then there exists a sequence {un} ⊂ Pε such that Iε(un) → 0,
which means that ‖∇un‖22 → 0 and

∫
RN (Iα ∗ |un |p)|un |pdx → 0. Recall that Pε(un) = 0.

Then we conclude that ‖un‖22 → 0 and ‖un‖q
q → 0. This implies that ‖un‖2Hq

→ 0, which
contradicts to 0 /∈ ∂Pε. ��
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Step 3. There exists u0 ∈ Pε such that Iε(u0) = cε.

Proof Since cε is well defined, there exists a sequence {un} ⊂ Pε such that Iε(un) → cε.
It follows from (4.21) that both {‖∇un‖22} and {∫

RN (Iα ∗ |un |p)|un |pdx} are bounded. Note
that Pε(un) = 0. Then we see that {‖un‖22} and {‖un‖q

q} are bounded, and therefore {un} is
bounded in Hq .

Let u∗
n be the Schwartz spherical rearrangement of |un |. Then u∗

n ∈ Hq,rad , the subspace
of Hq which consists of all spherically symmetric functions in Hq , and

‖∇un‖22 ≥ ‖∇u∗
n‖22, ‖un‖22 = ‖u∗

n‖22, ‖un‖q
q = ‖u∗

n‖q
q ,

∫
RN

(Iα ∗ |un |p)|un |pdx

≤
∫
RN

(Iα ∗ |u∗
n |p)|u∗

n |pdx,

cf. [35, Section 3]. For each u∗
n , there exists a unique tn ∈ (0, 1) such that vn := u∗

n( x
tn

) ∈ Pε.
Therefore we obtain that

Iε(un) ≥ Iε(un( x
tn

)) ≥ Iε(vn) ≥ cε,

which implies that {vn} is also a minimizing sequence for cε, that is Iε(vn) → cε . (In fact,
we can also prove that tn → 1.)

Clearly {vn} ⊂ Hq,rad is bounded. Then there exists v ∈ Hq,rad such that vn⇀v weakly
in Hq and vn(x) → v(x) for a.e. x ∈ R

N , by the local compactness of the emebedding
Hq ↪→ L2

loc(R
N ) on bounded domains. Using Strauss’s Ls-bounds with s = 2 and s = q∗,

we conclude that

vn(|x |) ≤ U (x) := C min
{
|x |−N/2, |x |−N/q∗}

.

Since U ∈ Ls(RN ) for s ∈ (2, q∗), by the Lebesgue dominated convergence we conclude
that for s ∈ (2, q∗),

lim
n→∞

∫
RN

|vn |sdx =
∫
RN

|v|sdx .

Note that q∗ >
2N p
N+α

and hence we can always choose s >
2N p
N+α

> p such that {vn} is

bounded in Ls(RN ). Then by the nonlocal Brezis–Lieb Lemma with high local integrability
[40, Proposition 4.7] we conclude that

lim
n→∞

∫
RN

(Iα ∗ |vn |p)|vn |pdx =
∫
RN

(Iα ∗ |v|p)|v|pdx .

Thismeans that v �= 0, since by Lemma 4.2 the sequence {M(vn)} has a positive lower bound.
Then there exists a unique t0 > 0 such that v( x

t0
) ∈ Pε. By the weakly lower semi-continuity

of the norm, we see that

Iε(vn) ≥ Iε(vn( x
t0

)) ≥ Iε(v( x
t0

)) ≥ cε,

which implies that Iε(v( x
t0

)) = cε. We conclude this step by taking u0(x) := v( x
t0

). ��
Step 4. P ′

ε(u0) �= 0, where u0 is obtained in Step 3.

Proof Arguing by contradiction, we assume that P ′
ε(u0) = 0. Then u0 is a weak solution of

the following equation,

− (N − 2)�u + εNu − (N + α)(Iα ∗ |u|p)|u|p−2u + N |u|q−2 = 0 in R
N . (4.22)

123



Limit profiles for singularly perturbed Choquard equations… Page 25 of 59 160

By Propositions 4.1 and 4.2, u0 satisfies the Pohožaev identity

(N − 2)2

2
‖∇u0‖22 + εN 2

2
‖u0‖22 − (N + α)2

2p

∫
RN

(Iα ∗ |u0|p)|u0|pdx + N 2

q
‖u0‖q

q = 0.

This, together with Pε(u0) = 0, implies that

(N − 2)‖∇u0‖22 + (N + α)α

2p

∫
RN

(Iα ∗ |u0|p)|u0|pdx = 0,

which contradict u0 �= 0. ��
Step 5. I ′

ε(u0) = 0, i.e., u0 is a weak solution of (Pε).

Proof By the Lagrange multiplier rule, there exists μ ∈ R such that I ′
ε(u0) = μP ′

ε(u0). We
claim that μ = 0. Indeed, since I ′

ε(u0) = μP ′
ε(u0), then u0 satisfies in the weak sense the

following equation,

−(μ(N − 2) − 1)�u + (μN − 1)εu − (μ(N + α) − 1)(Iα ∗ |u|p)|u|p−2u

+(μN − 1)|u|q−2u = 0 in R
N .

By Propositions 4.1 and 4.2, u0 satisfies the Pohožaev identity

(μ(N − 2) − 1)(N − 2)

2
‖∇u0‖22 + ε(μN − 1)N

2
‖u0‖22

− (μ(N + α) − 1)(N + α)

2p

∫
RN

(Iα ∗ |u0|p)|u0|pdx + (μN − 1)N

q
‖u0‖q

q = 0.

By using Pε(u0) = 0 again, we conclude that

μ(N − 2)‖∇u0‖22 + μα(N + α)

2p

∫
RN

(Iα ∗ |u0|p)|u0|pdx = 0,

which means that μ = 0. Therefore I ′
ε(u0) = 0. ��

5 Existence and properties of groundstates for (P0)

In this section we study the existence and some qualitative properties of groundstate solutions
for the equation

−�u − (Iα ∗ |u|p)|u|p−2u + |u|q−2u = 0 in R
N , (P0)

where N ≥ 3, α ∈ (0, N ), p > 1 and q > 2. Equation (P0) appears as a formal limit of
(Pε) with ε = 0. The natural domain for the formal limit energy I0 which corresponds to
(P0) is the space

Dq := D1(RN ) ∩ Lq(RN ).

Clearly, Dq endowed with the norm

‖u‖Dq := ‖∇u‖L2 + ‖u‖Lq

is a Banach space, and Dq ↪→ Lq ∩ L2∗
(RN ). In particular, Dq ↪→ L

2N p
N+α (RN ) for N+α

N <

p < N+α
N−2 and 2 < q <

2N p
N+α

, or p ≥ N+α
N−2 and q >

2N p
N+α

. However, Hq � Dq . Hence
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(Pε) can not be considered as a small perturbation of (P0), since the domain of I0 is strictly
bigger than the domain of Iε.

If p ∈ ( N+α
N , N+α

N−2 ) and q ∈ (2, 2N p
N+α

) or p ≥ N+α
N−2 and q >

2N p
N+α

then the HLS,
Sobolev and interpolation inequalities ensure the control of the nonlocal term by the Lq and
D1-norms,∫

RN
(Iα ∗ |u|p)|u|pdx ≤ C‖u‖2p

2N p
N+α

≤ C‖u‖2pθ
q ‖u‖2p(1−θ)

2∗ ≤ C‖u‖2pθ
q ‖∇u‖2p(1−θ)

2

≤ C(‖u‖2p
q + ‖∇u‖2p

2 ) ≤ C‖u‖2p
Dq

, (5.1)

with a θ ∈ (0, 1). Then it is standard to check that I0 ∈ C1(Dq , R) and the problem (P0) is
variationaly well-posed, in the sense that weak solutions u ∈ Dq of (Pε) are critical points
of Iε, i.e.

〈I ′
0(u), ϕ〉Dq =

∫
RN

∇u · ∇ϕdx −
∫
RN

(Iα ∗ |u|p)|u|p−2ϕdx +
∫
RN

|u|q−2uϕdx = 0,

for all ϕ ∈ Dq . In particular, weak solutions u ∈ Dq of (P0) satisfy the Nehari identity
∫
RN

|∇u|2dx +
∫
RN

|u|qdx −
∫
RN

(Iα ∗ |u|p)|u|pdx = 0. (5.2)

As in Proposition 4.1, we see that weak solutions u ∈ Dq ∩ L
2N p
N+α (RN ) ∩ W

1, 2N p
N+α

loc (RN ) ∩
W 2,2

loc (RN ) of (P0) also satisfy the Pohožaev identity

N − 2

2

∫
RN

|∇u|2dx + N

q

∫
RN

|u|qdx − N + α

2p

∫
RN

(Iα ∗ |u|p)|u|pdx = 0. (5.3)

We are going to prove the existence of a ground state of (P0) by minimizing over the
Pohožaev manifold P0. This requires apriori additional regularity and some decay properties
of the weak solutions.

Lemma 5.1 (L1-decay) Let N+α
N < p < N+α

N−2 and 2 < q <
2N p
N+α

. If 0 ≤ u ∈ Dq is a weak

solution of (P0) then u ∈ L1(RN ).

Proof Note that u ≥ 0 weakly satisfies the inequality (4.9). Then, by the HLS and Hölder
inequalities, and by the contraction inequality A.3, u ∈ Lsn (RN ) with 0 <

2p−1
sn

− α
N < 1

implies u ∈ Lsn+1(RN ), where

q − 1

sn+1
= 2p − 1

sn
− α

N
.

We start the sn-iteration with s0 = q <
2N p
N+α

. Then we achieve sn+1 ≤ 1 after a finite
number of steps. ��
Proposition 5.1 (Regularity) Let N+α

N < p < N+α
N−2 and 2 < q <

2N p
N+α

, or p ≥ N+α
N−2 and

q >
2N p
N+α

. If 0 ≤ u ∈ Dq is a nontrivial weak solution of (P0) then u ∈ C2(RN ) and

u(x) > 0 for all x ∈ R
N .

Proof Since 0 ≤ u ∈ Dq we know that u ∈ Lq ∩ L2∗
(RN ). Assume that q ≤ N p

α
, otherwise

we conclude that u ∈ L∞(RN ) by a modification of the comparison argument of Lemma
4.1.
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If p > N+α
N−2 and q >

2N p
N+α

we can show that u ∈ L∞(RN ) by repeating the same iteration
argument as in the proof of Proposition 4.2, Step 2(B).

If N+α
N < p < N+α

N−2 and 2 < q <
2N p
N+α

we know additionally that u ∈ L1 ∩ L2∗
(RN ) by

Lemma 5.1. Then we can conclude that u ∈ L∞(RN ) by repeating the iteration argument in
the proof of Proposition 4.2, Step 2(A).

Finally, u ∈ Lq∗ ∩ L∞(RN ) implies u ∈ C2(RN ) by the standard Hölder and Schauder
estimates, while positivity of u(x) follows via the weak Harnack inequality, as in the proof
of Proposition 4.2, Steps 3 and 4. ��

Unlike in the case ε > 0, for p > N+α
N−2 we can not conclude that u ∈ L1(RN ) via

a regularity type iteration arguments. In fact, the decay of groundstates of (P0) is more
complex.

Proposition 5.2 (Decay estimates) Assume that either p < N+α
N−2 and q <

2N p
N+α

or p > N+α
N−2

and q >
2N p
N+α

. Let u ∈ Dq,rad be a nontrivial nonnegative weak solution of (P0). Then:

• if p < N+α
N−2 then u ∈ L1(RN ),

• if p > N+α
N−2 then

u0 � |x |−(N−2) as |x | → ∞,

and if p > max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
then

u0 ∼ |x |−(N−2) as |x | → ∞. (5.4)

Proof The case p < N+α
N−2 is the content of Lemma 5.1.

Assume p > N+α
N−2 . Then u ∈ L2∗ ∩ C2(RN ). By the Strauss’s radial Ls-bounds with

s = 2∗,
u(|x |) ≤ c(1 + |x |)− N−2

2 (x ∈ R
N ). (5.5)

Since q > 2∗, u > 0 satisfies

−�u + V (x)u > 0 in R
N ,

where

0 < V (x) := uq−2(x) ≤ c(1 + |x |)−(2+δ) (x ∈ R
N ),

for some δ > 0. By comparing with an explicit subsolution c|x |−(N−2)(1 + |x |−δ/2) in
|x | > 1, we conclude that

u(x) ≥ c(1 + |x |)−(N−2) (x ∈ R
N ). (5.6)

Assume now that p ≥ max
{

N+α
N−2 , 2

}
. Using again (5.5) and we conclude that

(
(Iα ∗ u p)u p−2) (x) ≤ W (x) := c(1 + |x |)−(N−2)(p−1)+α

≤ c(1 + |x |)−(2+δ) (x ∈ R
N ), (5.7)

for some δ ∈ (0, 1). Therefore, u > 0 satisfies

−�u − W (x)u < 0 in R
N .
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By comparingwith an explicit supersolution c|x |−(N−2)(1−|x |−δ/2) in |x | > 2, we conclude
that

u(x) ≤ C(1 + |x |)−(N−2) (x ∈ R
N ).

Next we assume that α < N − 4 and N+α
N−2 < p < 2. Using again (5.5), the lower bound

(5.6) and taking into account that p < 2, we conclude that

(
(Iα ∗ u p)u p−2) (x) ≤ W (x) := c(1 + |x |)− N−2

2 p+α+(N−2)(2−p)

≤ c(1 + |x |)−(2+δ) (x ∈ R
N ), (5.8)

where δ > 0 provided that p > 2
3

(
1 + N+α

N−2

)
. Then we conclude as before. ��

Proof of Theorem 2.1 We assume that either N+α
N < p < N+α

N−2 and 2 < q <
2N p
N+α

or

p > N+α
N−2 and q >

2N p
N+α

. Set

P0 := {u ∈ Dq \ {0} : P0(u) = 0},
where P0 : Dq → R is defined by

P0(u) = N − 2

2

∫
RN

|∇u|2dx + N

q

∫
RN

|u|qdx − N + α

2p

∫
RN

(Iα ∗ |u|p)|u|pdx .

As in the case ε > 0, it is standard to check that P0 �= ∅ (see (4.17)). To construct a
groundstate solution of (P0), we prove the existence of a spherically symmetric nontrivial
nonegative minimizer of the minimization problem

c0 = inf
u∈P 0

I0(u), (5.9)

and then show that P0 is a natural constraint for I0, i.e. the minimizer u0 ∈ P0 satisfies
I ′
0(u0) = 0. The arguments follow closely the proof of Theorem 1.1, except that instead of

the quantity M defined in (4.18), we use M : Dq → R defined by

M(u) := ‖∇u‖22 + ‖u‖q
q .

It is easy check that

2− q
2 ‖u‖q

Dq
≤ M(u) ≤ C‖u‖2Dq

if either M(u) ≤ 1 or ‖u‖Dq ≤ 1, (5.10)

where C > 0 is independent of u ∈ Dq . Similarly to Lemma 4.2, we also can prove that
there exists C > 0 such that for all u ∈ Dq ,∫

RN
(Iα ∗ |u|p)|u|pdx ≤ C max{M(u)

N+α
N , M(u)

N+α
N−2 },

which allows to control the nonlocal term. The remaining arguments follow closely Steps
1–5 in the proof of Theorem 1.1. We omit further details. ��
Remark 5.1 An equivalent route to construct a groundstate solution of (P0) is to prove the
existence of a minimizer of the problem

a0 = inf

{
1

2
‖∇w‖22 + 1

q
‖w‖q

q : w ∈ Dq ,

∫
RN

(Iα ∗ |u|p)|w|pdx = 2p

}
. (5.11)
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This does not require apriori regularity or decay properties of theweak solutions. It is standard
but technical to establish the relation

c0 = (α+2)q−2(2p+α)
(N+α)(q−2)−4p

(
(N−2)q−2N

(N+α)(q−2)−4p

) (N−2)q−2N
q−2

a
(α+2)q−2(2p+α)
(N+α)(q−2)−4p
0 ,

and to prove that the minimization problems for a0 and c0 are equivalent up to a rescaling.
Moreover, if w0 ∈ Dq is a minimizer for a0 then

−�w0 + |w0|q−2w0 = μ(Iα ∗ |w0|p)|w0|p−2w0, x ∈ R
N ,

where μ > 0 and u0(x) = μ
2

4(p−1)−(α+2)(q−2) w0

(
μ

q−2
4(p−1)−(α+2)(q−2) x

)
is a solution of (P0).

Remark 5.2 Combining (5.2) and (5.3), we conclude that

(N − 2)p − (N + α)

2p
‖∇u‖22 = (N + α)q − 2N p

2pq
‖u‖q

q ,

which implies that (P0) has no nontrivial solutions u ∈ Dq ∩ L
2N p
N+α (RN ) ∩ W

1, 2N p
N+α

loc (RN ) ∩
W 2,2

loc (RN ) either if p < N+α
N−2 and q ≥ 2N p

N+α
or if p > N+α

N−2 and q ≤ 2N p
N+α

. Moreover, if

p = N+α
N−2 then (P0) has no nontrivial solution for q �= 2N p

N+α
. This confirms that the existence

assumptions of Theorem 2.1 on p and q are optimal, with one exception of the double-critical
case p = N+α

N−2 and q = 2N p
N+α

.

Remark 5.3 In the double critical case p = N+α
N−2 and q = 2N p

N+α
the Pohožaev argument does

not lead to the nonexistence. In fact, it is not difficult to check (cf. [21, Lemma 1.1]) that the
Emden–Fowler solution U∗ defined in (2.9) satisfies

−�U∗ + U 2∗−1∗ = 2S− α
2∗ C−1

α

(
Iα ∗ U

N+α
N−2∗

)
U

α+2
N−2∗ , x ∈ R

N .

and the “Lagrangemultiplier” can not be scaled out due to the scale invariance of the equation.
It is an interesting open problem to show that a rescaling ofU∗ is aminimizer of the variational
problem (5.11) in the double-critical case.

6 The Thomas–Fermi groundstate

To simplify notation we set in this section m := q/2. Denote

E(ρ) :=
∫
RN

|ρ|mdx +
∫
RN

|ρ|dx, Dα(ρ) =
∫
RN

(Iα ∗ |ρ|)|ρ| dx,

and

A1 =
{
0 ≤ ρ ∈ L1 ∩ Lm(RN ) : Dα(ρ) = 1

}
.

We first establish the following.

Proposition 6.1 Let m > 2N
N+α

. Then the minimization problem

sTF = inf
A1

E

admits a nonnegative spherically-symmetric nonincreasing minimizer ρ∗ ∈ L1 ∩ Lm(RN ).
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Proof Let {ρn} ⊂ A1 be a minimizing sequence for sTF . Let {ρ∗
n } be the sequence of

symmetric-decreasing rearrangements of {ρn}. Then
E(ρn) = E(ρ∗

n ), Dα(ρ∗
n ) ≥ Dα(ρn) = 1,

see [35, Section 3]. Set ρ̄∗
n (x) := ρ∗

n

(
(Dα(ρ∗

n ))
1

N+α x
)
. Then ρ̄∗

n ∈ A1 and as n → ∞,

sTF ≤ E(ρ̄∗
n ) = (

Dα(ρ∗
n )

)− N
N+α E(ρ∗

n ) ≤ E(ρn) → sTF ,

which means that {ρ̄∗
n } ⊂ A1 is a minimizing sequence for sTF . Moreover, {ρ̄∗

n } is bounded
in L1(RN ) and Lm(RN ). By Strauss’s lemma,

ρ̄∗
n (|x |) ≤ U (|x |) := C min{|x |−N , |x |− N

m } for all |x | > 0. (6.1)

By Helly’s selection theorem for monotone functions, there exists a nonnegative spherically-
symmetric nonincreasing function ρ∗(|x |) ≤ U (|x |) such that, up to a subsequence,

ρ̄∗
n (x) → ρ∗(x) a.e. in R

N as n → ∞.

SinceU ∈ Ls(RN ) for all s ∈ (1, m), by the Lebesgue’s dominated convergencewe conclude
that for every s ∈ (1, m),

lim
n→∞

∫
RN

|ρ̄∗
n |sdx =

∫
RN

|ρ∗|sdx .

Note that 2N
N+α

∈ (1, m). Then by the nonlocal Brezis–Lieb lemma [40, Proposition 4.7] we
conclude that

lim
n→∞ Dα(ρ̄∗

n ) = Dα(ρ∗) = 1,

which implies that 0 �= ρ∗ ∈ A1. Therefore, using the standard Brezis–Lieb lemma,

sTF = lim
n→∞ E(ρ̄∗

n ) = lim
n→∞

(‖ρ∗‖1 + ‖ρ̄∗
n − ρ∗‖1

) + (‖ρ∗‖m
m + ‖ρ̄∗

n − ρ∗‖m
m

)

= E(ρ∗) + E(ρ̄∗
n − ρ∗) ≥ sTF

(
1 + Dα(ρ̄∗

n − ρ∗)
) N

N+α ≥ sTF ,

that is, E(ρ∗) = sTF . Moreover, ρ̄∗
n → ρ∗ strongly in L1(RN ) and Lm(RN ). ��

Proof of Theorem 2.6 Let ρ∗ ∈ L1 ∩ Lm(RN ) be a minimizer for sTF , as constructed in
Proposition 6.1. It is standard to show that ρ∗ satisfies

mρm−1∗ + 1 = λIα ∗ ρ∗ a.e. in supp(ρ),

mρm−1∗ + 1 ≥ λIα ∗ ρ∗ a.e. in R
N (6.2)

for a Lagrange multiplier λ ∈ R. The proof can be adapted from [1] or [11, Proposition 3.6]
and we omit it here. Since ρ∗ ≥ 0, (6.2) is equivalent to the Thomas–Fermi equation

mρm−1∗ = (λIα ∗ ρ∗ − 1)+ a.e. in R
N . (6.3)

Testing (6.3) against ρ∗ we conclude that

m‖ρ∗‖m
m + ‖ρ∗‖1 = λ, (6.4)

or taking into account the definition of sTF we conclude that

λ = sTF + (m − 1)‖ρ∗‖m
m . (6.5)
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To prove the virial identity (2.4) consider the rescaling ρt (x) = t− N+α
2 ρ∗(x/t). Then

Dα(ρt ) = 1, E(ρt ) = t N−m N+α
2 ‖ρ∗‖m

m + t
N−α
2 ‖ρ∗‖1,

and

d

dt
E(ρt )

∣∣
t=1 =

(
N − m

N + α

2

)
‖ρ∗‖m

m + N − α

2
‖ρ∗‖1 = 0,

since m > 2N
N+α

and hence t = 1 is the minimum of the differentiable function E(ρt ), which
implies that

m(N + α) − 2N

N − α
‖ρ∗‖m

m = ‖ρ∗‖1. (6.6)

Therefore we have

sTF = ‖ρ∗‖m
m + ‖ρ∗‖1 = (m − 1)(N + α)

N − α
‖ρ∗‖m

m,

λ = m‖ρ∗‖m
m + ‖ρ∗‖1 =

(
m + m(N + α) − 2N

N − α

)
‖ρ∗‖m

m = 2N (m − 1)

N − α
‖ρ∗‖m

m

= 2N

N + α
sTF .

It follows from (6.3) that ρ∗ satisfies

mρm−1∗ =
(

2N

N + α
sTF Iα ∗ ρ∗ − 1

)
+

a.e. in R
N , (6.7)

and the virial identity

m‖ρ∗‖m
m + ‖ρ∗‖1 = sTF

2N

N + α
.

To prove the L∞-bound on ρ∗, in view of the Strauss’ radial bound (6.1) we only need to
show that ρ∗ is bounded near the origin. Observe that

0 ≤ ρm−1∗ ≤ Iα ∗ ρ∗ a.e. in R
N . (6.8)

If m > N
α
then Iα ∗ ρ∗ ∈ C0,α− N

m (RN ) and hence ρ∗ ∈ L∞(RN ) in view of (6.3).
If m < N

α
we employ an Ls-iteration of the same structure as in our proof of Proposition

4.2, Step 2(B). Indeed, by the HLS and Hölder inequalities applied to (6.8), ρ∗ ∈ Lsn (RN )

with 0 < 1
sn

− α
N < 1 implies ρ∗ ∈ Lsn+1(RN ), where

m − 1

sn+1
= 1

sn
− α

N
.

We start the sn-iteration with s0 = m. If m ≥ 2 we achieve sn+1 > N
α
after a finite number

of steps. If m < 2 we note that s0 = m > 2N
N+α

by the assumption. Then we again achieve

sn+1 > N
α
after a finite number of steps. (Or if sn+1 = N

α
we readjust s0.)

The compact support property is standard (cf. [11, Corollary 3.8]). We sketch the argu-
ment for completeness. Indeed, since ρ∗ ∈ L1(RN ) is a nonnegative radially nonincreasing
function, it is known that for any α ∈ (0, N ),

Iα ∗ ρ∗(|x |) = C Iα(|x |)(1 + o(1)) as |x | → ∞,
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(and C = ‖ρ∗‖1 if α > 1), cf. [20, Corollary 2.3]. This is incompatible with (6.2), unless
ρ∗ has a compact support. Since ρ∗ is nonincreasing we also conclude that supp(ρ∗) is a
connected set and hence must be a ball of radius R∗ > 0 (and if α > 1 then R∗ � ‖ρ∗‖

1
N−α

1 ).

If α >
(

m−2
m−1

)
+ then the Hölder regularity ρ∗ ∈ C0,γ (RN ) with γ = min{1, 1

m−1 }
follows exactly as in [12, Theorem 8]. We only note that the iteration steps (3.26), (3.27) in
[12, p. 127] remain valid for any m ≤ 2, as soon as ρ∗ ∈ L∞(RN ), which is ensured by our

assumption m > 2N
N+α

. If m > 2 and α ≤
(

m−2
m−1

)
+ then ρ∗ ∈ C0,γ (RN ) for any γ < 2

m−2

by the same argument as in [12, Remark 2]. Further, ρ∗ ∈ C∞(BR∗) can be deduced as in
[12, Theorem 10].

Finally, keeping in mind that q = 2m, the function

v0(x) =
(q

2

) 1
q−2

√
ρ∗

(( q
2

) 2
α(q−2)

(
2NsTF
N+α

)−1/α
x

)

is a groundstate of the Thomas–Fermi equation in the form

v − (Iα ∗ |v|2)v + |v|q−2v = 0 in R
N , (TF)

by direct scaling computation and in view of the properties of ρ∗. ��

Remark 6.1 In [14, Proposition 5.16] the authors establish the existence of a unique bounded
nonnegative radially nonincreasing solution to the Euler–Lagrange Eq. (6.7) in the range

α ∈ (0, 2) and m ∈
(

2N
N+α

, mc

)
(for α = 2 the existence of a radial solution is classical, see

e.g. [36, Theorem 5.1], while the uniqueness follows from [24, Lemma 5]). These existence
results do not include an explicit variational characterisation of the solution in terms of sTF .
However once the existence of a minimizer for sTF is established (see Proposition 6.1),
solutions constructed for α ∈ (0, 2] in [14, 36] coincide with the minimizer for sTF in view
of the uniqueness.

7 Asymptotic profiles: non-critical regimes

In this section we prove the convergence of rescaled groundstates uε to the limit profiles in
the three noncritical regimes.

7.1 Formal limit (P0)

Throughout this section we assume that p > N+α
N−2 and q >

2N p
N+α

, or N+α
N < p < N+α

N−2 and

2 < q <
2N p
N+α

.
Let uε be the positive spherically symmetric groundstate solution of (Pε) constructed

in Theorem 1.1, and cε = Iε(uε) > 0 denotes the corresponding energy level, defined in
(4.20). We are going to show that uε converges to the constructed in Theorem 2.1 positive
spherically symmetric groundstate u0 of the formal limit Eq. (P0), which has the energy
c0 = I0(u0) > 0, as defined in (CH L ).

Below we present the proof only in the supercritical case p > N+α
N−2 and q >

2N p
N+α

. The

subcritical case N+α
N < p < N+α

N−2 and 2 < q <
2N p
N+α

follows the same lines but easier,
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because in this case u0 ∈ L1(RN ). The proof in the supercritical case relies on the decay

estimate (5.4), which needs an additional restriction p > max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
.

Lemma 7.1 Let p > max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
and q >

2N p
N+α

. Then 0 < cε − c0 → 0 as

ε → 0.

Proof First, we use uε with ε > 0 as a test function for P0. We obtain

P0(uε) = Pε(uε) − Nε

2
‖uε‖22 = − Nε

2
‖uε‖22 < 0.

Hence there exists a unique tε ∈ (0, 1) such that uε(x/tε) ∈ P0, and we have

c0 ≤ I0(uε(x/tε)) = t N−2
ε

N
‖∇uε‖22 + αt N+α

ε

2N p

∫
RN

(Iα ∗ |uε|p)|uε|pdx

< Iε(uε(x)) = cε, (7.1)

which means c0 < cε .
To show that cε → c0 as ε → 0 we shall use u0 as a test function for Pε. According to

(5.4), u0 ∈ L2(RN ) iff N ≥ 5. The dimensions N = 3, 4 require a separate consideration.

Case N ≥ 5. Since Pε(u0) = ε
2‖u0‖22 > 0, there exists tε > 1 such that u0(x/tε) ∈ Pε,

i.e.,

(N − 2)t N−2
ε

2
‖∇u0‖22 + Nεt N

ε

2
‖u0‖22 + Nt N

ε

q
‖u0‖q

q

= (N + α)t N+α
ε

2p

∫
RN

(Iα ∗ |u0|p)|uε|pdx .

This, combined with (5.3) and u0 ∈ L2(RN ), implies that

(N + α)(tαε − 1)

2p

∫
RN

(Iα ∗ |u0|p)|u0|pdx − (N − 2)(t−2
ε − 1)

2
‖∇u0‖22

= Nε

2
‖∇u0‖22 → 0.

Therefore, tε → 1 as ε → 0. Moreover,

tε ≤ 1 + Cε,

where C > 0 is independent of ε. Thus we have

cε ≤ Iε(u0(x/tε)) ≤ I0(u0) + C(t N
ε − 1) + Nεt N

ε

2
‖u0‖22

≤ c0 + Cε.

This, together with (7.1), means that cε − c0 → 0 as ε → 0.
To consider the case N = 3, 4, given R � 1, we introduce a cut-off function ηR ∈

C∞
c (RN ) such that ηR(r) = 1 for |r | < R, 0 < ηR(r) < 1 for R < |r | < 2R, ηR(r) = 0 for

|r | ≥ 2R and |η′
R(r)| ≤ R/2. It is standard to compute (cf. [52, Theorem 2.1]),

∫
RN

|∇(ηRu0)|2dx = ‖∇u0‖22 + O(R−(N−2)), (7.2)
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‖ηRu0‖22 =
{O(ln R), N = 4,
O(R), N = 3,

(7.3)

‖ηRu0‖q
q = ‖u0‖q

q − O(RN−q(N−2)), (7.4)∫
RN

(Iα ∗ |ηRu0|p)|ηRu0|pdx =
∫
RN

(Iα ∗ |u0|p)|u0|pdx + O(Rα−p(N−2)). (7.5)

We will use ηRu0 with a suitable choice of R = R(ε) as a family of test functions for Pε .

Case N = 4. By (7.2), (7.5), (7.4) and (7.3), for R � 1 we have

Pε(ηRu0) = P0(u0) + O(R−(N−2)) + Nε

2
O(ln R) − O(RN−q(N−2))

−O(Rα−p(N−2)) > 0.

Set R = ε−1. Then for each ε > 0 small, there exists t̃ε > 1 such thatPε(ηR(x /̃tε)u0(x /̃tε)) =
0. Similarly to the case N ≥ 5, we can show that t̃ε → 1 as ε → 0 and

t̃ε ≤ 1 + Cε.

We conclude that cε ≤ c0 + Cε.

Case N = 3. By (7.2), (7.5), (7.4) and (7.3), for R � 1 we have

Pε(ηRu0) = P0(u0) + O(R−(N−2)) + Nε

2
O(R) − O(RN−q(N−2))

−O(Rα−p(N−2)) > 0.

Set R = ε−1/2. Then for each ε > 0 small, there exists t̂ε > 1 such that
Pε(ηR(x /̂tε)u0(x /̂tε)) = 0 and t̂ε → 1 as ε → 0. We conclude as in the previous case.

��
Corollary 7.1 Let p > max

{
N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
and q >

2N p
N+α

. Then the quantities

‖∇uε‖22, ε‖uε‖22, ‖uε‖q
q ,

∫
RN

(Iα ∗ |uε|p)|uε|pdx,

are uniformly bounded as ε → 0.

Proof From Pohožaev and Nehari identities for Iε and Lemma 7.1 we have

c0 + o(1) = cε = Iε(uε(x)) = 1

N
‖∇uε‖22 + α

2N p

∫
RN

(Iα ∗ |uε|p)|uε|pdx,

N (p − 1)

2N p

∫
RN

(Iα ∗ |uε|p)|uε|pdx = cε + q − 2

2q
‖uε‖q

q ,

2N − q(N − 2)

2q
‖∇uε‖22 + N (2 − q)

2q
ε‖uε‖22 + (N + α)q − 2N p

2pq∫
RN

(Iα ∗ |uε|p)|uε|pdx = 0.

��
Lemma 7.2 Let p > max

{
N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
and q >

2N p
N+α

. Then ε‖uε‖22 → 0 as

ε → 0.
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Proof Lemma 7.1 implies that there exists a unique tε ∈ (0, 1) such that uε(x/tε) ∈ P0.
Indeed, assume that tε → t0 < 1 as ε → 0. Then by (7.1) we have, as ε → 0,

c0 ≤ I0(uε(x/tε)) = t N−2
ε

2
‖∇uε‖22 + αt N+α

ε

2N p

∫
RN

(Iα ∗ |uε|p)|uε|pdx

≤ t N−2
ε Iε(uε) = t N−2

ε cε → t N−2
0 c0 < c0, (7.6)

which is a contradiction. Therefore tε → 1 as ε → 0. Using P0(uε(x/tε)) = 0 again, we
see that

0 = (N − 2)t N−2
ε

2
‖∇uε‖22 + Nt N

ε

q
‖uε‖q

q − (N + α)t N+α
ε

2p

∫
RN

(Iα ∗ |uε|p)|uε|pdx

= Pε(uε) − Nεt N
ε

2
‖uε‖22 + (N − 2)(t N−2

ε − 1)

2
‖∇uε‖22 + N (t N

ε − 1)

q
‖uε‖q

q

− (N + α)(t N+α
ε − 1)

2p

∫
RN

(Iα ∗ |uε|p)|uε|pdx .

This implies that ε‖uε‖22 → 0 as ε → 0, since Pε(uε) = 0.

Proof of Theorem 2.2 (case p > max
{

N+α
N−2 , 2

3

(
1 + N+α

N−2

)}
and q >

2N p
N+α

). From Corollary

7.1 and (7.6), we see that {uε(x/tε)} is a minimizing sequence for c0 which is bounded in
D1

rad ∩ Lq(RN ). Then there exists w0 ∈ D1
rad ∩ Lq(RN ) such that

uε(x/tε)⇀w0 in D1
rad(RN ) and uε(x/tε) → w0 a.e. in R

N ,

by the local compactness of the emebedding D1(RN ) ↪→ L2
loc(R

N ) on bounded domains.
Using Strauss’ radial Ls-bounds with s = 2∗ and s = q , we conclude that

uε(x/tε) ≤ U (x) := C min
{
|x |−N/2∗

, |x |−N/q
}

.

Similarly to Step 3 in Sect. 4, using Lebesgue dominated convergence and nonlocal Brezis–
Lieb Lemma [40, Proposition 4.7], we can show that uε(x/tε) → w0 in D1 ∩ Lq(RN ) and
w0 is a groundstate solution of (P0). ��

7.2 1st rescaling: Choquard limit

Throughout this section we assume that N+α
N < p < N+α

N−2 and q > 22p+α
2+α

. The energy
corresponding to the 1st rescaling

v(x) := ε
− α+2

4(p−1) u

(
x√
ε

)
,

is given by

I(1)
ε (v) := 1

2

∫
RN

|∇v|2 + |v|2dx − 1

2p

∫
RN

(Iα ∗ |v|p)|v|pdx

+ε
q(2+α)−2(2p+α)

4(p−1)

q

∫
RN

|v|qdx, (7.7)

and the corresponding Pohožaev functional is

P(1)
ε (v) := N − 2

2

∫
RN

|∇v|2dx + N

2

∫
RN

|v|2dx − N + α

2p

∫
RN

(Iα ∗ |v|p)|v|pdx
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+ Nε
q(2+α)−2(2p+α)

4(p−1)

q

∫
RN

|v|qdx . (7.8)

Note that Iε(u) = ε
(N+α)−p(N−2)

2(p−1) I(1)
ε (v) and consider the rescaled minimization problem

c(1)
ε := inf

v∈P (1)
ε

I(1)
ε (v), (7.9)

where P(1)
ε := {v ∈ H1(RN ) \ {0} : P(1)

ε (v) = 0} is the Pohžaev manifold of (Cε). When
ε = 0, we formally obtain

c(1)
0 := inf

v∈P (1)
0

I(1)
0 (v). (7.10)

It is known that c(1)
0 > 0 and c(1)

0 admits aminimizer v0 ∈ H1(RN ), which is a groundstate
of the Choquard Eq. (C ) characterised in Theorem 2.4 (see [43, Propositions 2.1 and 2.2]).

Let uε be the positive spherically symmetric groundstate solution of (Pε) constructed in
Theorem 1.1. Then the rescaled groundstate

vε(x) := ε
− α+2

4(p−1) uε

(
x√
ε

)
,

is a groundstate solution of (Cε), i.e. I(1)
ε (vε) = c(1)

ε . We are going to show that vε converges
to the groundstate v0 of the Choquard Eq. (C ).

Lemma 7.3 0 < c(1)
ε − c(1)

0 → 0 as ε → 0.

Proof Clearly, P(1)
ε (vε) = 0 implies that P(1)

0 (vε) < 0. Let wε,t (x) = vε(
x
t ), then

P(1)
0 (wε,t ) = (N − 2)t N−2

2
‖∇vε‖22 + Nt N

2
‖vε‖22 − (N + α)t N+α

2p

∫
RN

(Iα ∗ |vε|p)|vε|pdx

has a unique maximum and P(1)
0 (wε,1) < 0, thus there exists tvε ∈ (0, 1) such that wε,tvε ∈

P
(1)
0 . Therefore we have

c(1)
0 ≤ I(1)

0 (wε,tvε ) = t N−2
vε

N
‖∇vε‖22 + α

2N p
t N+α
vε

∫
RN

(Iα ∗ |vε|p)|vε|p

<
1

N
‖∇vε‖22 + α

2N p

∫
RN

(Iα ∗ |vε|p)|vε|p

= I(1)
ε (vε) = c(1)

ε .

On the other hand, let v0 ∈ P
(1)
0 be a radially symmetric ground state of (C ), that is

I(1)
0 (v0) = c(1)

0 . ThenP(1)
ε (v0) > 0 and there exists tv0(ε) > 1 such thatv0(x/tv0(ε)) ∈ P

(1)
ε .

This implies that tv0(ε) is bounded, up to subsequence,we assume that tv0(ε) → tv0(0). Recall
that P(1)

0 (v0) = 0, we can conclude that tv0(0) = 1. Set κ := q(2+α)−2(2p+α)
4(p−1) . We obtain

N + α

2p
tαv0(ε)

∫
RN

(Iα ∗ |v0|p)|v0|pdx = N − 2

2
‖∇v0‖22t−2

v0
(ε) + N

2
‖v0‖22 + N

q
‖v0‖q

qεκ

≤ N − 2

2
‖∇v0‖22 + N

2
‖v0‖22 + N

q
‖v0‖q

qεκ

= N + α

2p

∫
RN

(Iα ∗ |v0|p)|v0|pdx + N

q
‖v0‖q

qεκ ,
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which means that tαv0(ε) ≤ 1 + Cεκ , or equivalently

tv0(ε) ≤ (1 + Cεκ)1/α ≤ 1 + Cεκ .

Therefore

c(1)
ε ≤ I(1)

ε (v0(
x

tv0(ε)
)) = t N−2

v0

N
‖∇v0‖22(ε) + αt N+α

v0
(ε)

2N p

∫
RN

(Iα ∗ |v0|p)|v0|pdx

= c(1)
0 + t N−2

v0
(ε) − 1

N
‖∇v0‖22 + α(t N+α

v0
(ε) − 1)

2N p

∫
RN

(Iα ∗ |u|p)|u|pdx

≤ c(1)
0 + Cεκ .

It follows that c(1)
ε → c(1)

0 as ε → 0. ��
Corollary 7.2 The quantities

‖∇vε‖22, ‖vε‖22, εκ‖vε‖q
q ,

∫
RN

(Iα ∗ |vε|p)|vε|pdx,

are uniformly bounded as ε → 0.

Proof Follows from Pohožaev and Nehari identities for I(1)
ε and Lemma 7.3, as in Corollary

7.1. ��
Proof of Theorem 2.5 Since

P(1)
0 (vε) = P(1)

ε (vε) − N

q
εκ‖vε‖q

q = − N

q
εκ‖vε‖q

q < 0,

there exists tε ∈ (0, 1) such that P(1)
0 (vε(x/tε)) = 0. Using Lemma 7.3, as ε → 0 we obtain

c(1)
0 ≤ I(1)

0 (vε(x/tε)) = t N−2
ε

2
‖∇vε‖22 + α

2N p
t N+α
ε

∫
RN

(Iα ∗ |vε|p)|vε|p ≤ I(1)
ε (vε)

= c(1)
ε → c(1)

0 .

Thus {vε(x/tε)} ⊂ P
(1)
0 is a minimizing sequence for c(1)

0 and we may assume that tε →
t0 ∈ (0, 1]. (If tε → 0 then 0 < c0 ≤ I(1)

0 (vε(x/tε)) → 0, which is a contradiction.) From
Corollary 7.2 we see that {vε(x/tε)} is bounded in H1

rad ∩ Lq(RN ). Then similarly to the
argument in Step 3 of Sect. 4, using Strauss’ radial bounds, Lebesgue dominated convergence
and nonlocal Brezis–Lieb Lemma [40, Proposition 4.7], we conclude that vε(x) → v0 in
D1 ∩ Lq(RN ) and v0 is a groundstate solution of (Cε). ��
Remark 7.1 We claim that in fact t0 = 1. Indeed, if t0 < 1 then there exists δ > 0 such that
for all ε ∈ (0, δ), it holds tε < t0+1

2 . Therefore,

c(1)
0 ≤ I(1)

0 (vε(x/tε)) = t N−2
ε

2
‖∇vε‖22 + α

2N p
t N+α
ε

∫
RN

(Iα ∗ |vε|p)|vε|p

≤
(

t0 + 1

2

)N−2

I(1)
ε (vε) =

(
t0 + 1

2

)N−2

c(1)
ε →

(
t0 + 1

2

)N−2

c(1)
0 ,
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as ε → 0, which is a contradiction. In particular, since

c(1)
0 ≤ I(1)

0 (vε(x/tε)) = I(1)
ε (vε(x/tε)) − t N

ε

q
εκ‖vε‖q

q ≤ c(1)
ε − t N

ε

q
εκ‖vε‖q

q ,

we conclude that εκ‖vε‖q
q → 0 as ε → 0.

7.3 2nd rescaling: Thomas–Fermi limit for˛ = 2

Throughout this section we assume that N ≤ 5, α = 2, p = 2 and 4N
N+2 < q < 3. The

energy corresponding to the 2nd rescaling

v(x) := ε
− 1

q−2 u

(
ε
− 4−q

2(q−2) x

)

is given by

I(2)
ε (v) := ε

2(3−q)
q−2

2

∫
RN

|∇v|2dx + 1

2

∫
RN

|v|2dx − 1

4

∫
RN

(I2 ∗ |v|2)|v|2dx

+ 1

q

∫
RN

|v|qdx, (7.11)

and the corresponding Pohožaev functional is

P(2)
ε (v) := (N − 2)ε

2(3−q)
q−2

2

∫
RN

|∇v|2dx + N

2

∫
RN

|v|2dx

− N + 2

4

∫
RN

(I2 ∗ |v|2)|v|2dx + N

q

∫
RN

|v|qdx . (7.12)

Note that Iε(u) = ε
q(N+2)−4N

2(q−2) I(2)
ε (v) and consider the rescaled minimization problem

c(2)
ε = inf

v∈P (2)
ε

I(2)
ε (v), (7.13)

whereP(2)
ε :=

{
u �= 0 : P(2)

ε (v) = 0
}
is the Pohožaev manifold of (TFε). When ε = 0, we

formally obtain
c(2)
0 := inf

v∈P (2)
0

I(2)
0 (v). (7.14)

By using an appropriate rescaling, it is standard to see that the minimization problem for c(2)
0

is equivalent to the minimization problem sTF , defined in (2.3). In particular, c(2)
0 > 0 and

c(2)
0 admits a minimizer v0 ∈ L2 ∩ Lq(RN ), which is a groundstate of the Thomas–Fermi
Eq. (TF) characterised in (2.6) of Theorem 2.6.

Let uε be the positive spherically symmetric groundstate solution of (Pε) constructed in
Theorem 1.1. It is clear that the rescaled groundstate

vε(x) := ε
− 1

q−2 uε

(
ε
− 4−q

2(q−2) x

)

is a groundstate solution of (TFε), i.e. I(2)
ε (vε) = c(2)

ε .We are going to show that vε converges
to a groundstate of the Thomas–Fermi Eq. (TF), characterised in Theorem 2.6.
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Before we do this, we deduce a two-sided estimate on the “boundary behaviour” of the the
nonnegative radially symmetric Thomas–Fermi minimizer ρ∗, constructed in Theorem 2.6.
Recall that supp(ρ∗) = B̄R∗ for some R∗ > 0 and ρ∗ is C∞ inside the support. Moreover,
since we assume that p = 2, α = 2 (and denote m = q/2), we see that ρm−1∗ ∈ C0,1(RN )

and ρ∗ ∈ C0,γ (RN ), where γ = min{1, 1
m−1 }. In particular, ρ∗ ∈ H1

0 (BR∗) and we can
apply −� to the Euler–Lagrange Eq. (2.5) considered in BR∗ , to obtain

− �
(
mρm−1∗

) = −�
(

sTF
2N

N+2 I2 ∗ ρ∗ − 1
)

= sTF
2N

N+2ρ∗ ≥ 0 in BR∗ . (7.15)

We conclude that ρm−1∗ is superharmonic in BR∗ and by the boundary Hopf lemma

ρm−1∗ ≥ c(R∗ − |x |) in BR∗ . (7.16)

Hence we deduce a two-sided bound

c(R∗ − |x |) 1
m−1 ≤ ρ∗ ≤ C(R∗ − |x |)γ in BR∗ . (7.17)

Similar estimates should be available for α �= 0, at least under the assumption α < 2. We
will study this in the forthcoming paper [26].

Lemma 7.4 0 < c(2)
ε − c(2)

0 → 0 as ε → 0.

Proof Let vε ∈ P
(2)
ε be a solution of (Pε) with I(2)

ε (vε) = c(2)
ε and ε > 0. Then

P(2)
0 (vε) = P(2)

ε (vε) − (N − 2)εν

2
‖∇vε‖22 = − (N − 2)εν

2
‖∇vε‖22 < 0,

where we denoted ν := 2(3−q)
q−2 . Let wε,t (x) = vε(

x
t ), then we obtain that

P(2)
0 (wε,t ) = Nt N

2
‖vε‖22 + Nt N

q
‖vε‖q

q − (N + 2)t N+2

4

∫
RN

(I2 ∗ |vε|2)|vε|2dx

has a unique maximum and P(2)
0 (wε,1) < 0. Thus there exists tε ∈ (0, 1) such that wε,tε ∈

P
(2)
0 . Therefore we have

c(2)
0 ≤ I(2)

0 (wε,tε ) = 1

2N
t N+2
ε

∫
RN

(I2 ∗ |vε|2)|vε|2

<
1

2N

∫
RN

(I2 ∗ |vε|2)|vε|2 = I(2)
ε (vε) = c(2)

ε , (7.18)

so c(2)
0 < c(2)

ε . We are going to prove that c(2)
ε → c(2)

0 as ε → 0.

Let v0 ∈ P
(2)
0 be a groundstate (2.6) of the Thomas–Fermi Eq. (TF), as constructed in

Theorem 2.6. From (2.6) and (7.17) we conclude that vq−2
0 ∈ C0,1(RN ) and

c(R∗ − |x |) 1
q−2 ≤ v0 ≤ C(R∗ − |x |)γ0 in BR∗ , (7.19)

where R∗ is the support radius of v0 and

γ0 := min
{
1
2 ,

1
q−2

}
.

Note that if q ≥ 4 then v0 /∈ D1(RN ) because of the singularity of the gradient on the
boundary of the support, even if v20 is Lipschitz.
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Given n � 1, we introduce the cut-off function ηn ∈ C∞
c (RN ) such that ηn(x) = 1 for

|x | ≤ R∗ − 1
n , 0 < ηn(x) < 1 for R∗ − 1

n < |x | ≤ R∗ − 1
2n , ηn(x) = 0 for |x | ≥ R∗ − 1

2n .
Furthermore, |η′

n(x)| ≤ 4n and |η′
n(x)| ≥ n

2 for R∗ − 4
5n < |x | < R∗ − 3

5n . Set

vn(x) := ηn(x)v0(x).

It is elementary to obtain the estimates∫
RN

(
I2 ∗ |vn |2) |vn |2dx =

∫
RN

(
I2 ∗ |v0|2

) |v0|2dx + O ( 1
n

)
, (7.20)

‖vn‖q
q = ‖v0‖q

q + O ( 1
n

)
, (7.21)

‖vn‖22 = ‖v0‖22 + O ( 1
n

)
. (7.22)

To estimate the gradient term, note that since v
q−2
0 is Lipschitz on R

N and smooth inside

the support, we have v
q−3
0 |∇v0| ∈ L∞(RN ) and then it follows from (7.19) that

|∇v0| ≤ C(R∗ − |x |)γ0(3−q).

Then we have
∫
RN

η2n |∇v0|2dx ≤
∫

|x |≤R∗− 1
2n

|∇v0|2dx ≤ C
∫ R∗− 1

2n

0
(R∗ − r)2γ0(3−q)dr

≤

⎧⎪⎨
⎪⎩

C, 2 < q < 4,
C(1 + ln n), q = 4,

C(1 + n
q−4
q−2 ), q > 4,

(7.23)

On the other hand, using the right hand side of (7.19), we have

∫
RN

|∇ηn |2v20dx =
∫

R∗− 1
n ≤|x |≤R∗− 1

2n

|∇ηn |2v20dx ≤ Cn2
∫ R∗− 1

2n

R∗− 1
n

(R∗ − r)2γ0r N−1dr

≤ Cn1−2γ0 ≤
{

C, 2 < q ≤ 4,

Cn
q−4
q−2 , q > 4.

(7.24)

Therefore ∫
RN

|∇vn |2dx ≤ 2
∫
RN

|∇ηn |2v20dx + 2
∫
RN

η2n |∇v0|2dx

≤

⎧⎪⎨
⎪⎩

C, 2 < q < 4,
C(1 + ln n), q = 4,

C(1 + n
q−4
q−2 ), q > 4,

(7.25)

Recall that N ≤ 5, α = 2, p = 2 and 4N
N+2 < q < 3 in this section, and hence γ0 = 1/2

(q ≥ 3 in (7.25) is needed to study the case ε → ∞). Then∫
RN

|∇vn |2dx ≤ 2
∫
RN

|∇ηn |2v20dx + 2
∫
RN

η2n |∇v0|2dx ≤ C .

Set n = ε− 3
2 ν . Then for ε > 0 small enough, we have

P(2)
ε (vε) = P(2)

0 (vε) + (N − 2)εν

2
‖∇vε‖22
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≥ P(2)
0 (v0) + (N − 2)εν

2

(∫
|x |≤ 3

4 R∗
|∇v0|2dx

)
− Cε

3
2 ν > 0,

and there exists tε > 1 such that P(2)
ε (vε(x/tε)) = 0. This implies that

N + 2

4
t2ε

∫
RN

(I2 ∗ |vε|2)|vε|2dx = N − 2

2
εν‖∇vε‖22t−2

ε (ε) + N

2
‖vε‖22 + N

q
‖vε‖q

q

≤ N − 2

2
εν‖∇vε‖22 + N

2
‖vε‖22 + N

q
‖vε‖q

q

= N − 2

2
εν‖∇vε‖22 + N + 2

4

∫
RN

(I2 ∗ |v0|2)|v0|2dx + Cε
3
2 ν .

It follows from (7.25) and (7.20) that tε → 1 as ε → 0. Moreover, we also have

tε ≤ 1 + Cεν.

Therefore, we have

c(2)
ε ≤ I(2)

ε (vε(x/tε)) = I(2)
0 (v0) + t N−2

ε εν

2
‖∇vε‖22 + C(t N

ε − 1) − C(t N+2
ε − 1)

≤ c(2)
0 + Cεν,

which means that c(2)
ε → c(2)

0 as ε → 0. ��
Lemma 7.5 ε

2(3−q)
q−2 ‖∇vε‖22 → 0 as ε → 0.

Proof According to Lemma 7.4, there exists a unique tε ∈ (0, 1) such that vε(x/tε) ∈ P
(2)
0 .

Now we claim that tε → 1 as ε → 0. If not, we assume that tε → t0 < 1 as as ε → 0, then
by (7.1), we have, as ε → 0,

c(2)
0 ≤ I(2)

0 (vε(x/tε)) = t N+2
ε

2N

∫
RN

(I2 ∗ |vε|2)|vε|2dx

≤ t N+2
ε I(2)

ε (vε) = t N+2
ε c(2)

ε → t N+2
0 c(2)

0 < c0,

this is a contradiction. Therefore our claim holds, i.e., tε → 1 as ε → 0. Using
P(2)
0 (vε(x/tε)) = 0 again, we see that

0 = Nt N
ε

2
‖vε‖22 + Nt N

ε

q
‖vε‖q

q − (N + 2)t N+2
ε

4

∫
RN

(I2 ∗ |vε|2)|vε|2dx

= P(2)
ε (vε) − (N − 2)εν

2
‖∇vε‖22 + N (t N

ε − 1)

2
‖vε‖22 + N (t N

ε − 1)

q
‖vε‖q

q

− (N + 2)(t N+2
ε − 1)

4

∫
RN

(I2 ∗ |vε|2)|vε|2dx,

which implies that εν‖∇vε‖22 → 0 as ε → 0 since P(2)
ε (vε) = 0. ��

Proof of Theorem 2.7 ByLemmas 7.4 and 7.5, we see that {vε(x/tε)} is a boundedminimizing
sequence of c(2)

0 . Then similarly to the arguments in the proof of Proposition 6.1 and Theorem
2.6, there exists v0 ∈ L2(RN ) ∩ Lq(RN ) such that

vε(x/tε) → v0 in L2(RN ) ∩ Lq(RN )

and v0 is a weak solution of (TF).
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8 Asymptotic profiles: critical regimes

8.1 Critical Choquard case

Throughout this sub-section we assume that p = N+α
N−2 and q > 2∗ = 2N

N−2 . Consider the
minimization problem

SH L = inf
u∈D1(RN )\{0}

‖∇u‖22(∫
RN (Iα ∗ |u| N+α

N−2 )|u| N+α
N−2 dx

) N−2
N+α

defined in (2.8). Combining Sobolev inequality (1.4) and HLS inequality (1.3),

‖∇u‖22 ≥ S∗‖u‖22∗ ≥ S∗C
− N−2

N+α
α

(∫
RN

(Iα ∗ |u| N+α
N−2 )|u| N+α

N−2 dx

) N−2
N+α

, (8.1)

hence SH L ≥ S∗C
− N−2

N+α
α . It is not difficult to check (cf. [21, Lemma 1.1]) that SH L =

S∗C
− N−2

N+α
α and SH L is achieved by the function

V (x) = (Sα∗ C2α
) 2−N
4(α+2) U∗(x), (8.2)

and the family of rescalings

Vλ(x) := λ− N−2
2 V (x/λ) (λ > 0),

here U∗ is the Emden–Fowler solution in (2.9). Up to a rescaling, Vλ is a solution of the
critical Choquard Eq. (CH L ) and satisfies

‖∇Vλ‖22 = ‖∇V ‖22 =
∫
RN

(
Iα ∗ |V | N+α

N−2

)
|V | N+α

N−2 dx =
∫
RN

(
Iα ∗ |Vλ| N+α

N−2

)
|Vλ| N+α

N−2 dx

= S
N+α
α+2

H L .

The energy functional associated to (CH L ) is

J (u) = 1

2
‖∇u‖22 − N − 2

2(N + α)

∫
RN

(
Iα ∗ |u| N+α

N−2

)
|u| N+α

N−2 dx .

We define

cH L = inf
u∈P H L

J (u) = inf
u∈D1(RN )\{0}

max
t>0

J (u(x/t)),

where

PH L =
{

u ∈ D1(RN ) \ {0} : PH L(u) := ‖∇u‖22 −
∫
RN

(Iα ∗ |u| N+α
N−2 )|u| N+α

N−2 dx = 0

}
.

By a simple calculation, we see that cH L = α+2
2(N+α)

S
N+α
α+2

H L .

Lemma 8.1 Let σε = cε − cH L . Then as ε → 0, we have

0 < σε �

⎧⎪⎪⎨
⎪⎪⎩

ε
q(N−2)−2N
(q−2)(N−2) , N ≥ 5,(
ε ln 1

ε

) q−4
q−2 , N = 4,

ε
q−6

2(q−4) , N = 3.
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Proof Note that uε ∈ Pε is a solution of (Pε) with Iε(uε) = cε , then PH L(uε) < 0, thus
there exists tε ∈ (0, 1) such that uε(x/tε) ∈ PH L and we have

cH L ≤ J

(
uε

(
x

tε

))
= (α + 2)

2(N + α)
t N−2
ε ‖∇uε‖22 < Iε(uε) = cε.

Therefore, σε = cε − cH L > 0.

Case N ≥ 5. Note that for N ≥ 5, Vλ(x) ∈ L2(RN ) for each λ > 0, thus we see that
Pε(Vλ(x)) > 0. Then for each ε > 0 and λ > 0, there exists a unique sε,λ > 1 such that
Pε(V (x/sε,λ)) = 0, which means that

(
sα
ε,λ − s−2

ε,λ

) N − 2

2
‖∇V ‖22 = Nελ2

2
‖V ‖22 + N

q
λ

2N−q(N−2)
2 ‖V ‖q

q := ψε(λ).

Then there exists λε > 0 such that

ψε(λε) = min
λ>0

ψε(λ) = N‖V ‖q
q

4q

(
N‖V ‖q

q(q(N − 2) − 2N )

2q N‖V ‖22

) 2N−q(N−2)
(q−2)(N−2)

ε
q(N−2)−2N
(q−2)(N−2) .

This implies that sε := sε,λε → 1 as ε → 0. Furthermore, we have

sε ≤ 1 + Cε
q(N−2)−2N
(q−2)(N−2) .

Therefore, we obtain that

cε ≤ Iε

(
Vλ

(
x

sε

))
= α + 2

2(N + α)
‖∇V ‖22s N−2

ε + α

N + α

⎛
⎝ ελ2ε

2
‖V ‖22 + λ

2N−q(N−2)
2

ε

q
‖V ‖q

q

⎞
⎠ s N

ε

≤ cH L + α + 2

2(N + α)
‖∇V ‖22

(
s N−2
ε − 1

)
+ Cε

q(N−2)−2N
(q−2)(N−2)

≤ cH L + Cε
q(N−2)−2N
(q−2)(N−2) ,

which means that σε ≤ Cε
q(N−2)−2N
(q−2)(N−2) .

To consider the case N = 3, 4, given R � λ, we introduce a cut-off function ηR ∈
C∞

c (RN ) such that ηR(r) = 1 for |r | < R, 0 < ηR(r) < 1 for R < |r | < 2R, ηR(r) = 0 for
|r | ≥ 2R and |η′

R(r)| ≤ R/2. Similarly, e.g. to [52, Section III, Theorem 2.1], we compute
∫
RN

|∇(ηR Vλ)|2dx = S
N+α
α+2

H L + O
(
(R/λ)−(N−2)

)
. (8.3)

∫
RN

(
Iα ∗ |ηR Vλ| N+α

N−2

)
|ηR Vλ| N+α

N−2 dx = S
N+α
α+2

H L + O
(
(R/λ)−N

)
. (8.4)

‖ηR Vλ‖q
q = λ

2N−q(N−2)
2 ‖V ‖q

q

(
1 + O

(
(R/λ)N−q(N−2)

))
. (8.5)

‖ηR Vλ‖22 = λ2‖ηR/λV ‖22 =
{
O (

λ2 ln R
λ

)
, N = 4,

O(Rλ), N = 3.
(8.6)

Here we only sketch the proof of (8.4). We may assume that R/λ � 1. Note that

sup
x∈RN

|V (x)| N+α
N−2 (1 + |x |)N+α < ∞.
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It follows from [43, Lemma 6.2] that

lim|x |→∞

(
Iα ∗ |V | N+α

N−2

)
(x)

Iα(x)
=

∫
RN

|V | N+α
N−2 dx . (8.7)

Therefore, by (8.7), we estimate∣∣∣∣
∫
RN

(
Iα ∗ |ηR Vλ| N+α

N−2

)
|ηR Vλ| N+α

N−2 dx −
∫
RN

(Iα ∗ |Vλ| N+α
N−2 )|Vλ| N+α

N−2 dx

∣∣∣∣
≤ 2

∫
Bc

R

(
Iα ∗ |Vλ| N+α

N−2

)
|Vλ| N+α

N−2 dx = 2
∫

Bc
R/λ

(
Iα ∗ |V | N+α

N−2

)
|V | N+α

N−2 dx

≤ C
∫

Bc
R/λ

1

|x |N−α(1 + |x |2) N+α
2

dx ≤ C
∫ ∞

R/λ

r−N−1dr = C(R/λ)−N .

∣∣∣∣
∫
RN

(
Iα ∗ |ηR Vλ| N+α

N−2

)
|ηR Vλ| N+α

N−2 dx −
∫
RN

(
Iα ∗ |Vλ| N+α

N−2

)
|Vλ| N+α

N−2 dx

∣∣∣∣
≥

∫
Bc
2R

(
Iα ∗ |Vλ| N+α

N−2

)
|Vλ| N+α

N−2 dx =
∫

Bc
2R/λ

(Iα ∗ |V | N+α
N−2 )|V | N+α

N−2 dx

≥ C
∫

Bc
2R/λ

1

|x |N−α(1 + |x |2) N+α
2

dx ≥ C
∫ ∞

2R/λ

r−N−1dr = C(R/λ)−N .

Combining the above inequalities, we obtain (8.4).
When R � λ, by the above estimates we conclude that Pε(ηR Vλ) > 0. Then there exists

a unique tε := tε(R, λ) > 1 such that Pε(ηR(x/tε)Vλ(x/tε)) = 0, which implies

N − 2

2

(
tαε

∫
RN

(Iα ∗ |ηR Vλ| N+α
N−2 )|ηR Vλ| N+α

N−2 dx − t−2
ε ‖∇(ηR Vλ)‖22

)

= Nε

2
‖ηR Vλ‖22 + N

q
‖ηR Vλ‖q

q := ψε(R, λ). (8.8)

Case N = 4. For each ε > 0 small, by (8.5), (8.6) and choosing

λε =
(

ε ln
1

ε

)− 1
q−2

, Rε = λε

ε
,

we have

ψε(Rε, λε) ≤ 2εO
(

λ2ε ln
Rε

λε

)
+ 4

q
λ4−q

ε ‖V ‖q
q

(
1 + O

(
Rε

λε

)4−2q
)

≤ C

(
ε ln

1

ε

) q−4
q−2

.

Then it follows from (8.8) that tε → 1 as ε → 0. Furthermore, we have tε ≤ 1 +
C

(
ε ln 1

ε

) q−4
q−2 .

Case N = 3. For each ε > 0 small, by (8.5), (8.6) and choosing

λε = ε
− 1

q−4 , Rε = ε− 1
2 ,

we have

ψε(Rε, λε) ≤ 3

2
εO(Rελε) + 3

q
λ

6−q
2

ε ‖V ‖q
q

(
1 + O

(
Rε

λε

)3−q
)

≤ Cε
q−6

2(q−4) .
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Then it follows from (8.8) that tε → 1 as ε → 0. Furthermore, we have tε ≤ 1 + Cε
q−6

2(q−4) .

Conclusion of the proof for N = 3, 4. Combining previous estimates together, we obtain

cε ≤ Iε(ηRε (x/tε)Vλε (x/tε))

= α + 2

2(N + α)
‖∇(ηRε Vλε )‖22t N−2

ε + α

N + α

(
ε

2
‖ηRε Vλε‖22 + 1

q
‖ηRε Vλε‖q

q

)
t N
ε

≤ cH L + O
(
(Rε/λε)

−(N−2)
)

+ Cψε(Rε, λε) = cH L +
⎧⎨
⎩

C
(
ε ln 1

ε

) q−4
q−2 , N = 4,

Cε
q−6

2(q−4) , N = 3,

which completes the proof of this lemma. ��
Lemma 8.2

‖uε‖q
q = 2qε

q(N − 2) − 2N
‖uε‖22, ‖∇uε‖22 + (q − 2)Nε

q(N − 2) − 2N
‖uε‖22

=
∫
RN

(Iα ∗ |uε| N+α
N−2 )|uε| N+α

N−2 dx .

Proof Follows from Nehari and Pohožaev identities for (Pε). ��
Lemma 8.3 (q−2)Nε

q(N−2)−2N ‖uε‖22 ≤ Cσε. Moreover, we have

lim
ε→0

ε‖uε‖22 = 0, lim
ε→0

‖uε‖q
q = 0, lim

ε→0
‖uε‖22∗ = S

N−2
α+2

H L C− N−2
N+α

α = (S∗C−1
α

) N−2
α+2 ,

lim
ε→0

‖∇uε‖22 = lim
ε→0

∫
RN

(
Iα ∗ |uε| N+α

N−2

)
|uε| N+α

N−2 dx = 2(N + α)

α + 2
cH L = S

N+α
α+2

H L .

Proof By Lemma 8.1, we see that

cH L + o(1) = cε = Iε(uε) = 1

N
‖∇uε‖22 + α(N − 2)

2N (N + α)

∫
RN

(
Iα ∗ |uε| N+α

N−2

)
|uε| N+α

N−2 dx .

(8.9)
This, together with Lemma 8.2, implies that there exists C > 0 such that∫

RN

(
Iα ∗ |uε| N+α

N−2

)
|uε| N+α

N−2 dx ≥ C

for all small ε > 0. Note that PH L(uε) < 0, then there exists tε ∈ (0, 1) such that
PH L(uε(x/tε)) = 0, which means that

‖∇uε‖22 = tα+2
ε

∫
RN

(Iα ∗ |uε| N+α
N−2 )|uε| N+α

N−2 dx .

If tε → 0 as ε → 0, then we must have ‖∇uε‖22 → 0 as ε → 0, this contradicts

0 < cH L ≤ J (uε(x/tε)) = (2 + α)t N−2
ε

2(N + α)
‖∇uε‖22.

Therefore, there exists C > 0 such that tε > C for ε > 0 small. Thus we have

cH L ≤ J (uε(x/tε)) = Iε(uε(x/tε)) − t N
ε

(
ε

2
‖uε‖22 + 1

q
‖uε‖q

q

)

≤ Iε(uε) − (q − 2)Nε

q(N − 2) − 2N
‖uε‖22t N

ε
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= cε − (q − 2)Nε

q(N − 2) − 2N
‖uε‖22t N

ε .

This means that

(q − 2)Nε

q(N − 2) − 2N
‖uε‖22 ≤ t−N

ε (cε − cH L) ≤ Cσε.

Moreover, we have ε‖uε‖22 → 0 as ε → 0. It follows from Lemma 8.2 that

‖uε‖q
q → 0, ‖∇uε‖22 + o(1) =

∫
RN

(
Iα ∗ |uε| N+α

N−2

)
|uε| N+α

N−2 dx → 2 + α

2(N + α)
cH L

= S
N+α
α+2

H L

as ε → 0.

Set wε(x) = uε(S
1

α+2
H L x), then we have, as ε → 0,

‖∇wε‖22 = S
2−N
α+2

H L ‖∇uε‖22 → SH L ,∫
RN

(
Iα ∗ |wε| N+α

N−2

)
|wε| N+α

N−2 dx = S
−(N+α)

α+2
H L

∫
RN

(
Iα ∗ |uε| N+α

N−2

)
|uε| N+α

N−2 dx → 1.

On the other hand, by the HLS inequality, we have

C
N−2
N+α
α SH L = S∗ ≤ ‖∇wε‖22

‖wε‖22∗
≤ C

N−2
N+α
α

‖∇wε‖22(∫
RN (Iα ∗ |uε| N+α

N−2 )|uε| N+α
N−2 dx

) N−2
N+α

→ C
N−2
N+α
α SH L .

This means that

lim
ε→0

‖wε‖22∗ = C− N−2
N+α

α , lim
ε→0

‖uε‖22∗ = S
N−2
α+2

H L C− N−2
N+α

α ,

which completes the proof. ��
Set

wε(x) := wε(x)

‖wε‖2∗
, V (x) := C

N−2
2(N+α)
α V (S

1
α+2
H L x).

Then ‖wε‖2∗ = ‖V ‖2∗ = 1, ‖∇V ‖22 = S∗ and {wε} is a minimizing sequence for the critical
Sobolev constant S∗. Similarly to the arguments in [41, p. 1094], we conclude that for ε > 0
small there exists λε > 0 such that∫

B(0,λε)

|wε(x)|2∗
dx =

∫
B(0,1)

|V (x)|2∗
dx .

We define the rescaled family

vε(x) := λ
N−2
2

ε wε(λεx).

Then

‖vε‖2∗ = 1, ‖∇vε‖22 = S∗ + o(1),

i.e., {vε} is a minimizing sequence for S∗. Furthermore,∫
B(0,1)

|vε|2∗
dx =

∫
B(0,1)

|V (x)|2∗
dx .
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Lemma 8.4 limε→0 ‖∇(vε − V )‖2 = limε→0 ‖vε − V ‖2∗ = 0, where vε(x) :=
λ

N−2
2

ε uε(λεx).

Proof Since {vε} is a minimizing sequence of S∗, it follows from the Concentration-
Compactness Principle of P.L.Lions [52, Chapter 1, Theorem 4.9] that

lim
ε→0

‖∇(vε − V )‖2 = lim
ε→0

‖vε − V ‖2∗ = 0.

which, together with the definitions of wε and wε, implies that

lim
ε→0

‖∇(vε − V )‖2 = lim
ε→0

‖vε − V ‖2∗ = 0.

��
By a simple calculation, we see that vε solves the equation

−�vε + λ2εS
2

α+2
H L εvε

= ‖wε‖
2(α+2)

N−2
2∗ λ−2α

ε S
2−α
α+2
H L (Iα ∗ |vε| N+α

N−2 )|vε| α+4−N
N−2 vε − ‖wε‖q−2

2∗ λ
2N−q(N−2)

2
ε S

2
α+2
H L |vε|q−2vε.

(8.10)

By the definition of vε and wε, we obtain

‖vε‖q
q = ‖wε‖−q

2∗ λ
q(N−2)−2N

2
ε S− N

α+2
H L ‖uε‖q

q , ‖vε‖22 = ‖wε‖−2
2∗ λ−2

ε S− N
α+2

H L ‖uε‖22. (8.11)

It follows from Lemma 8.2 and Lemma 8.3 that

‖wε‖q
2∗λ

2N−q(N−2)
2

ε S
N

α+2
H L ‖vε‖q

q = 2qε

q(N − 2) − 2N
‖wε‖22∗λ2εS

N
α+2
H L ‖vε‖22 ≤ Cσε. (8.12)

Therefore we can deduce the following estimates on λε .

Lemma 8.5 σ
− 2

(N−2)q−2N
ε � λε � ε− 1

2 σ
1
2

ε , as ε → 0.

Proof Since vε → V strongly in D1(RN ) and L2∗
(RN ), we have vε → V strongly in

Ls
loc(R

N ) for s ∈ [2, 2∗), thus we get that

‖vε‖q
q ≥

∫
B(0,1)

|vε|qdx ≥ C
∫

B(0,1)
|vε|2∗

dx →
∫

B(0,1)
|V |2∗

dx > 0 (8.13)

and

‖vε‖22 ≥
∫

B(0,1)
|vε|2dx →

∫
B(0,1)

|V |2dx > 0. (8.14)

Therefore, the assertion follows by (8.12), (8.13) and (8.14). ��
Set

Qε(x) := ‖wε‖q−2
2∗ λ

2N−q(N−2)
2

ε S
2

α+2
H L |vε|q−2.

By Lemma 8.5 and since uε ≤ C |x |−(N−2)/2‖uε‖2∗ , we conclude that

Qε(x) ≤ Q0(x) := C |x |− (N−2)(q−2)
2 ,
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where C > 0 does not depend on ε > 0 or x ∈ R
N . Therefore, for small ε > 0, it follows

from (8.10) that solutions vε > 0 satisfy the linear inequality

−�vε + λ2εS
2

α+2
H L εvε + Q0(x)vε ≥ 0, x ∈ R

N .

By [41, Lemma 4.8] we have the following lower estimates of vε .

Proposition 8.1 There exists R > 0 and c > 0 such that for all small ε > 0,

vε(x) ≥ c|x |−(N−2)e−√
εS

1
α+2
H L λε |x |, |x | ≥ R.

Theproof of the next result is nearly identical to the proofs in [41, Lemma4.6 andpp. 1097–
1098]. We outline the arguments for reader’s convenience.

Lemma 8.6 For ε → 0, we have ‖vε‖q
q ∼ 1,

λε ∼

⎧⎪⎪⎨
⎪⎪⎩

ε
− 1

q−4 , N = 3,(
ε ln 1

ε

)− 1
q−2 , N = 4,

ε
− 2

(q−2)(N−2) , N ≥ 5,

‖vε‖22 ∼

⎧⎪⎨
⎪⎩

ε
− q−6

2(q−4) , N = 3,
ln 1

ε
, N = 4,

1, N ≥ 5.

Proof For all N ≥ 3, (8.13) implies that ‖vε‖q
q ≥ C for some C > 0.

Case N ≥ 5. By Lemmas 8.1 and 8.5, we see that for N ≥ 5

ε
− 2

(q−2)(N−2) � λε � ε
− 2

(q−2)(N−2) .

Moreover, ‖vε‖22 ∼ 1 and ‖vε‖q
q ∼ 1 by Lemma 8.1, (8.12), (8.13) and (8.14).

Case N = 4. By Proposition 8.1, we obtain

‖vε‖22 ≥
∫
RN \BR

|vε|2dx ≥
∫ ∞

R
Cr−2e−2

√
εS

1
α+2
H L λεr dr = C�

(
0, 2

√
εS

1
α+2
H L λε

)
,

where�(0, t) = − ln t −γ +O(t) as t ↘ 0 is the incomplete Gamma function and γ ≈ 0.57
is the Euler constant. Hence, by Lemmas 8.1 and 8.5, we obtain that

‖vε‖22 ≥ C

(
− ln

(
2
√

εS
1

α+2
H L λε

)
− γ

)
≥ C ln

(
1√
ελε

)
≥ C ln

1

ε
.

This, together with Lemmas 8.1, 8.5 and (8.12), implies that

(
ε ln

1

ε

)− 1
q−2

� λε ≤ Cσ
1
2

ε

ε
1
2 ‖vε‖2

�
(

ε ln
1

ε

)− 1
q−2

.

Moreover,

‖vε‖22 ≤ Cσε

ελ2ε
≤ C ln

1

ε
, ‖vε‖q

q ≤ Cσελ
q−4
ε ≤ C .

Case N = 3. By Proposition 8.1, we obtain

‖vε‖22 ≥
∫
RN \BR

|vε|2dx ≥
∫ ∞

R
Ce−2

√
εS

1
α+2
H L λεr dr ≥ C√

ελε

(8.15)
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This, together with Lemma 8.5 and (8.12), implies that

λε ≤ Cσ
1
2

ε

ε
1
2 ‖vε‖2

≤ ε− 1
4 σ

1
2

ε λ
1
2
ε ⇐⇒ λε ≤ ε− 1

2 σε.

By Lemmas 8.1 and 8.5, we obtain that

ε
− 1

q−4 � λε � ε
− 1

q−4 . (8.16)

Furthermore, we deduce from Lemma 8.1, (8.15) and (8.16) that

Cε
− q−6

2(q−4) ≤ C√
ελε

≤ ‖vε‖22 ≤ Cσε

ελ2ε
≤ Cε

− q−6
2(q−4) , ‖vε‖q

q ≤ Cσελ
q−6
2

ε ≤ C .

This complete the proof. ��

8.2 Critical Thomas–Fermi case

Throughout this section we assume that N+α
N < p < N+α

N−2 and q = 2N p
N+α

. Let

STF = inf
w∈L

2N p
N+α (RN )\{0}

∫
RN |w| 2N p

N+α dx
{∫

RN (Iα ∗ |w|p)|w|pdx
} N

N+α

= C− N
N+α

α ,

where Cα is the optimal constant in (1.3), as described in (2.13).
It is well-known [34, Theorem 4.3] that STF is achieved by the function

Ṽ (x) = Ũ (S
1
α

TF x), (8.17)

and the family of rescalings

Ṽλ(x) := λ
− N+α

2p Ṽ (x/λ) = λ
− N

q Ṽ (x/λ) (λ > 0), (8.18)

here Ũ is the groundstate solution of (TF∗) defined in (2.14). It is clear that

‖Ṽλ‖q
q = ‖Ṽ ‖q

q =
∫
RN

(Iα ∗ |Ṽ |p)|Ṽ |pdx =
∫
RN

(Iα ∗ |Ṽλ|p)|Ṽλ|pdx = S
N+α

α

TF .

The energy functional which corresponds to (TF∗) is

H(u) = 1

q
‖u‖q

q − 1

2p

∫
RN

(Iα ∗ |u|p)|u|pdx .

We define,

cTF = inf
u∈P TF

H(u) = inf
u∈Lq (RN )\{0}

max
t>0

H(u(x/t)),

where

PTF =
{

u ∈ Lq(RN ) \ {0} : PTF (u) := ‖u‖q
q −

∫
RN

(Iα ∗ |u|p)|u|pdx = 0

}
.

By a simple calculation, we see that cTF = α
2N pS

N+α
α

TF .

Note that Ṽλ ∈ L2(RN ) for N ≥ 4, and Ṽλ ∈ D1(RN ) if N ≥ 3.
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Lemma 8.7 Let σε = cε − cTF and ε → 0. If N ≥ 4 then

0 < σε � ε
2N−q(N−2)

2q ,

while if N = 3 then

0 < σε �

⎧⎪⎪⎨
⎪⎪⎩

ε
3+α−p

2p , p ∈ ( 1
3 (3 + α), 2

3 (3 + α)
)
,(

ε ln 1
ε

) 1
4 , p = 2

3 (3 + α),

ε
(
3+α−p

p )2
, p ∈ ( 2

3 (3 + α), (3 + α)
)
.

Proof Note that uε ∈ Pε is a solution of (Pε) with Iε(uε) = cε, then PTF (uε) < 0, thus
there exists tε ∈ (0, 1) such that uε(x/tε) ∈ PTF and we have

cTF ≤ H

(
uε

(
x

tε

))
= 2p − q

2pq
t N
ε ‖uε‖q

q < Iε(uε) = cε.

Therefore, σε = cε − cTF > 0.

Case N ≥ 4. Note that for N ≥ 4, Ṽλ(x) ∈ L2(RN ) for each λ > 0 and therefore,
Pε(Ṽλ(x)) > 0. Then for each ε > 0 and λ > 0, there exists a unique sε,λ > 1 such that
Pε(Ṽ (x/sε,λ)) = 0, which means that

(sα
ε,λ − 1)

N + α

2p
‖Ṽ ‖q

q = (N − 2)

2s2ε,λ
λ

(N−2)q−2N
q ‖∇ Ṽ ‖22 + Nε

2
λ

Nq−2N
q ‖Ṽ ‖22

≤ (N − 2)

2
λ

(N−2)q−2N
q ‖∇ Ṽ ‖22 + Nε

2
λ

Nq−2N
q ‖Ṽ ‖22 := φε(λ)

then there exists λε > 0 such that

φε(λε) = min
λ>0

φε(λ) ≤ Cε
2N−q(N−2)

2q .

Therefore sε := sε,λε → 1 as ε → 0. Furthermore, we have

sε ≤ 1 + Cε
2N−q(N−2)

2q .

Therefore, we obtain that

cε ≤ Iε(Ṽλε (
x

sε

)) = s N−2
ε

N
‖∇ Ṽλε‖22 + αs N+α

ε

2N p

∫
RN

(Iα ∗ |Ṽ |p)|Ṽ |pdx

≤ cTF + cTF (s N+α
ε − 1) + Cε

2N−q(N−2)
2q

≤ cTF + Cε
2N−q(N−2)

2q ,

which means that σε ≤ Cε
2N−q(N−2)

2q .

Case N = 3. To consider the case N = 3, given R � λ, we introduce a cut-off function
ηR ∈ C∞

c (RN ) such that ηR(r) = 1 for |r | < R, 0 < ηR(r) < 1 for R < |r | < 2R,
ηR(r) = 0 for |r | ≥ 2R and |η′

R(r)| ≤ R/2. We then compute as in, e.g. [52, Theorem 2.1]:
∫
RN

|∇(ηR Ṽλ)|2dx = λ
p(N−2)−(N+α)

p ‖∇ Ṽ ‖22(1 + O
(

(R/λ)
p(N−2)−2(N+α)

p

)
. (8.19)

∫
RN

(Iα ∗ |ηR Ṽλ|p)|ηR Ṽλ|pdx = S
N+α

α

TF + O((R/λ)−N ). (8.20)
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‖ηR Ṽλ‖q
q = S

N+α
α

TF + O((R/λ)−N ). (8.21)

‖ηR Ṽλ‖22 = λ
3p−(3+α)

p ‖ηR/λṼ ‖22

∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ
3p−(3+α)

p

(
1 − ( R

λ
)
3p−2(3+α)

p

)
, p ∈ ( 1

3 (3 + α), 2
3 (3 + α)

)
,

λ
3
2 ln R

λ
, p = 2

3 (3 + α),

λ
3p−(3+α)

p ( R
λ
)
3p−2(3+α)

p , p ∈ ( 2
3 (3 + α), (3 + α)

)
.

(8.22)

When R � λ, by the above estimates, we see that Pε(ηR Ṽλ) > 0, then there exists a
unique tε := tε(R, λ) > 1 such that Pε(ηR(x/tε)Ṽλ(x/tε)) = 0, which implies that

N + α

2p

(
tαε

∫
RN

(
Iα ∗ |ηR Ṽλ|p) |ηR Ṽλ|pdx − ‖ηR Ṽλ‖q

q

)

≤ Nε

2
‖ηR Ṽλ‖22 + N − 2

2
‖∇(ηR Ṽλ)‖22 := ψε(R, λ). (8.23)

To estimate ψε(R, λ) we consider three cases.
(i) Case p ∈ ( 1

3 (3 + α), 2
3 (3 + α)

)
. For small ε > 0, set

λε = ε− 1
2 , Rε = ε− 3

2 .

Then

ψε(Rε, λε) = 1

2
λ

p−(3+α)
p

ε ‖∇ Ṽ ‖22
(
1 + O

(
(Rε/λε)

p−2(3+α)
p

))

+ Nε

2
O

(
λ

3p−(3+α)
p

ε

(
1 − (Rε/λε)

3p−2(3+α)
p

))

≤ Cε
3+α−p

2p .

Therefore it follows from (8.23) that tε → 1 as ε → 0 and tε ≤ 1 + Cε
3+α−p

2p .

(ii) Case p = 2
3 (3 + α). For small ε > 0, set

λε =
(

ε ln
1

ε

)− 1
2

, Rε = λε

ε
.

Then

ψε(Rε, λε) = 1

2
λ

− 1
2

ε ‖∇ Ṽ ‖22
(
1 + O

(
(Rε/λε)

−2
))

+ Nε

2
O

(
λ

3
2
ε ln(Rε/λε)

)
≤ C

(
ε ln 1

ε

) 1
4 .

Therefore it follows from (8.23) that tε → 1 as ε → 0 and tε ≤ 1 + C(ε ln 1
ε
)
1
4 .

(iii) Case p ∈ ( 2
3 (3 + α), 3 + α

)
. For small ε > 0, set

λε = ε
− 3+α−p

p , Rε = λε

ε
.

Then

ψε(Rε, λε) = 1

2
λ

p−(3+α)
p

ε ‖∇ Ṽ ‖22(1 + O
(

(Rε/λε)
p−2(3+α)

p

)

+ Nε

2
O

(
λ

3p−(3+α)
p (Rε/λε)

3p−2(3+α)
p

)
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≤ Cε

(
3+α−p

p

)2
.

Therefore it follows from (8.23) that tε → 1 as ε → 0 and tε ≤ 1 + Cε
(
3+α−p

p )2
.

Conclusion of the proof for N = 3. From (i)–(iii) we deduce that

cε ≤ Iε(ηRε (x/tε)Ṽλε (x/tε))

= α + 2

2(3 + α)
‖∇(ηRε Ṽλε )‖22tε + α

3 + α

(
ε

2
‖ηRε Ṽλε‖22 + 1

q
‖ηRε Ṽλε‖q

q

)
t3ε

≤ cTF + cTF
(
t3ε − 1

) + O(ε3) + Cψε(Rε, λε)

≤ cTF + O(ε3) +

⎧⎪⎪⎨
⎪⎪⎩

ε
3+α−p

2p , p ∈ ( 1
3 (3 + α), 2

3 (3 + α)
)
,(

ε ln 1
ε

) 1
4 , p = 2

3 (3 + α),

ε

(
3+α−p

p

)2
, p ∈ ( 2

3 (3 + α), (3 + α)
)
.

so the assertion follows. ��
Lemma 8.8

‖∇uε‖22 = (N p − N − α)ε

(N + α) − p(N − 2)
‖uε‖22, ‖uε‖q

q + 2pε

(N + α) − p(N − 2)
‖uε‖22

=
∫
RN

(Iα ∗ |uε|p)|uε|pdx .

Proof Follows from Nehari and Pohožaev identities for (Pε). ��
Lemma 8.9 (q−2)Nε

q(N−2)−2N ‖uε‖22 ≤ Cσε . Moreover, we have

lim
ε→0

ε‖uε‖22 = 0, lim
ε→0

‖∇uε‖22 = 0, lim
ε→0

‖uε‖22∗ = 0.

lim
ε→0

‖uε‖q
q = lim

ε→0

∫
RN

(Iα ∗ |uε|p)|uε|pdx = 2N p

α
cTF = S

N+α
α

TF .

Proof By Lemma 8.7, we see that

cTF + o(1) = cε = Iε(uε) = 1

N
‖∇uε‖22 + α

2N p

∫
RN

(Iα ∗ |uε|p)|uε|pdx . (8.24)

This, together with Lemma 8.8, implies that there exists C > 0 such that
∫
RN (Iα ∗

|uε|p)|uε|pdx ≥ C for all ε small. Note that PTF (uε) < 0, then there exists tε ∈ (0, 1)
such that PTF (uε(x/tε)) = 0, which means that

‖uε‖q
q = tαε

∫
RN

(Iα ∗ |uε|p)|uε|pdx .

If tε → 0 as ε → 0, then we must have ‖uε‖q
q → 0 as ε → 0, this contradicts

0 < cTF ≤ H(uε(x/tε)) = αt N+α
ε

2N p

∫
RN

(Iα ∗ |uε|p)|uε|pdx .

Therefore, there exists C > 0 such that tε > C for ε > 0 small. Then we have

cTF ≤ H(uε(x/tε)) = Iε(uε(x/tε)) −
(

εt N
ε

2
‖uε‖22 + t N−2

ε

2
‖∇uε‖22

)
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≤ Iε(uε) − 2pε

(N + α) − p(N − 2)
‖uε‖22t N

ε

= cε − 2pε

(N + α) − p(N − 2)
‖uε‖22t N

ε ,

this means that

2pε

(N + α) − p(N − 2)
‖uε‖22 ≤ t−N

ε (cε − cTF ) ≤ Cσε.

Moreover, we have ε‖uε‖22 → 0 as ε → 0. It follows from Lemma 8.8 that

‖∇uε‖22 → 0, ‖uε‖q
q + o(1) =

∫
RN

(Iα ∗ |uε|p)|uε|pdx → 2N p

α
cTF = S

N+α
α

TF

as ε → 0. ��

Set wε(x) = uε(S
1
α

TF x). Then we have, as ε → 0,

‖wε‖q
q = S− N

α

TF ‖uε‖q
q → STF ,∫

RN
(Iα ∗ |wε|p)|wε|pdx = S− N+α

α

TF

∫
RN

(Iα ∗ |uε|p)|uε|pdx → 1.

Let wε(x) = wε(x)/‖wε(x)‖q and V (x) := S− 1
q

TF Ṽ (S
1
α

TF x), then we see that ‖wε‖q
q =

‖V ‖q
q = 1 and

∫
RN

(Iα ∗ |wε|p)|wε|pdx = ‖wε‖− 2p
q

q

∫
RN

(Iα ∗ |wε|p)|wε|pdx → S− N+α
N

TF

= Cα =
∫
RN

(Iα ∗ |V |p)|V |pdx .

Thus {wε} is an optimizing sequence for Cα . Then similarly to the arguments in [41, Sec-
tion 4.4] it follows that for ε > 0 small there exists λε > 0 such that

∫
B(0,λε)

|wε(x)|qdx =
∫

B(0,1)
|V (x)|qdx .

We define the rescaled family

vε(x) := λ
N+α
2p

ε wε(λεx),

then

‖vε‖q = 1,
∫
RN

(Iα ∗ |vε|p)|vε|pdx = Cα + o(1),

i.e., {vε} is a maximizing sequence for Cα . Moreover,
∫

B(0,1)
|vε|qdx =

∫
B(0,1)

|V (x)|qdx .

123



160 Page 54 of 59 Z. Liu, V. Moroz

Lemma 8.10 limε→0 ‖vε − Ṽ ‖q = 0, where vε(x) := λ
N+α
2p

ε uε(λεx).

Proof It follows from Concentration-Compactness Principle of P.L.Lions [37, Theorem 2.1]
that

lim
ε→0

‖vε − V ‖q = 0,

which, together with the definitions of wε(x) and wε(x), implies that

lim
ε→0

‖vε − Ṽ ‖q = 0.

��
By a simple calculation, we see that

vε(x) = λ
N+α
2p

ε

‖wε‖q
uε(λεS

1
α

TF x)

solves the equation

− �vε + λ2εS
2
α

TFεvε

= ‖wε‖2p−2
q λ

(N+α)−p(N−2)
p

ε S
2+α
α

TF

(
(Iα ∗ |vε|p)|vε|pvε − ‖wε‖q−2p

q |vε|q−2vε

)
. (8.25)

By the definition of vε and wε, we obtain

‖∇vε‖22 = ‖wε‖−2
q λ

(N+α)−p(N−2)
p

ε S
2−N

α

TF ‖∇uε‖22, ‖vε‖22 = ‖wε‖−2
q λ

(N+α)−N p
p

ε S
−N
α

TF ‖uε‖22.
(8.26)

It follows from Lemma 8.8 and Lemma 8.9 that

‖wε‖2qλ

p(N−2)−(N+α)
p

ε S
N−2

α

TF ‖∇vε‖22 = (N p − N − α)ε

(N + α) − p(N − 2)
‖wε‖2qλ

N p−(N+α)
p

ε S
N
α

TF‖vε‖22
≤ σε. (8.27)

Lemma 8.11 Let ε → 0. If N ≥ 4 then

λε ∼ ε− 1
2 , (8.28)

while if N = 3 then
⎧⎪⎨
⎪⎩

λε ∼ ε− 1
2 , p ∈ ( 1

3 (3 + α), 2
3 (3 + α)

)
,

ε− 1
2 (ln 1

ε
)− 1

2 � λε � ε− 1
2 (ln 1

ε
)
1
6 , p = 2

3 (3 + α),

ε
p−(3+α)

p � λε � ε
(3+α)(3+α−2p)

p(3p−(3+α)) , p ∈ ( 2
3 (3 + α), 3 + α

)
.

(8.29)

Proof Since vε → V strongly in Lq(RN ), we have vε → V strongly in Ls
loc(R

N ) for
s ∈ [2, q), thus we get that

‖∇vε‖22 ≥ C‖vε‖22∗ ≥ C
∫

B(0,1)
|vε|qdx →

∫
B(0,1)

|V |qdx > 0 (8.30)
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and

‖vε‖22 ≥
∫

B(0,1)
|vε|2dx →

∫
B(0,1)

|V |2dx > 0. (8.31)

Therefore, by (8.27), (8.30) and (8.31), we have

Cσ

p
(N−2)p−(N+α)
ε ≤ λε ≤ Cε

p
(N+α)−N p σ

p
N p−(N+α)
ε .

Then (8.28) and (8.29) follow directly from Lemma 8.7. ��

Lemma 8.12 If either N ≥ 4, or N = 3 and p ∈
(
3+α
3 ,

2(3+α)
3

)
, then ‖∇vε‖22 ∼ 1,

‖vε‖22 ∼ 1.

Proof Follows from (8.27), (8.30), (8.31) and Lemma 8.11. ��
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Appendix A: A contraction inequality

Consider the equation
− �u + |u|q−2u = f in , R

N , (A.1)

where N ≥ 2 and q > 2. The existence for any f ∈ L1
loc(R

N ) of the unique distributional
solution u f ∈ L1

loc(R
N ) of (A.1) is the result in [9, Theorem 1]. The following remarkable

contraction estimate on subsolutions for (A.1) was communicated to us by Augusto Ponce.

Theorem A.1 Let 0 ≤ f ∈ Ls(RN ) for some s ≥ 1 and let v ∈ L1
loc(R

N ) be a nonnegative
distributional sub-solution of (A.1), i.e.

− �v + vq−1 ≤ f in D t ′(RN ). (A.2)

Then vq−1 ∈ Ls(RN ) and
‖v‖(q−1)s ≤ ‖ f ‖s . (A.3)

The inequality (A.3) is an extension to unbounded domains of the result in [47, Proposi-
tion 4.24], see also [47, Exercise 4.15 and a hint on p. 402]. We outline the arguments for
completeness.
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Lemma A.1 Let 0 ≤ f ∈ Ls(RN ) for some s ≥ 1. For m ∈ N, let um ∈ L1
loc(Bm) be the

unique nonnegative distributional solution of{−�u + uq−1 = f in Bm,

u = 0 on ∂ Bm .
(A.4)

Then um ∈ Ls(Bm) and ‖uq−1
m ‖s ≤ ‖ f ‖s .

Proof Denote Bm,ρ := Bm ∩ {|um |q−1 < ρ}. By the Cavalieri Principle (see e.g.
[47, Proposition 1.7]), applied with the measurable function |um |q−1 and measure dν :=
|um |q−1

χ{|u|q−1<ρ}dx , for every ρ > 0 we have
∫

Bm,ρ

|um |(q−1)sdx =
∫

Bm,ρ

|um |(q−1)(s−1)|um |q−1
χ{|um |q−1<ρ}dx

=
∫ ρ

0
ν({|um |(q−1)(s−1) > t})dt

= (s − 1)
∫ ρ

1
s−1

0
ν({|um |q−1 > τ })τ s−2dτ

= (s − 1)
∫ ρ

1
s−1

0
τ s−2

(∫
{|um |q−1≥τ }

|um |q−1
χ{|um |q−1<ρ}dx

)
dτ

≤ (s − 1)
∫ ρ

1
s−1

0
τ s−2

(∫
{ρ>|um |q−1≥τ }

| f |dx

)
dτ,

where in the last line we used the following key inequality proved in [47, (4.12) on p.67],∫
{|um |>k}

|um |q−1dx ≤
∫

{|um |>k}
| f |dx, ∀k > 0.

Applying once again Cavalieri’s Principle, this time with the measurable function |um |q−1

and measure d ν̄ := | f |χ{|um |q−1<ρ}dx , and using Hölder’s inequality, we have

∫
Bm,ρ

|um |(q−1)sdx ≤ (s − 1)
∫ ρ

1
s−1

0
τ s−2

(∫
{|um |q−1≥τ }

| f |χ{|um |q−1<ρ}dx

)
dτ

= (s − 1)
∫ ρ

1
s−1

0
ν({|um |q−1 > τ })τ s−2dτ

=
∫ ρ

0
ν({|um |(q−1)(s−1) > t})dt

=
∫

Bm,ρ

|um |(q−1)(s−1)| f |χ{|um |q−1<ρ}dx

≤
(∫

Bm,ρ

|um |(q−1)sdx

) s−1
s

‖ f ‖s,

which implies ∫
Bm,ρ

|um |(q−1)sdx ≤
∫

Bm,ρ

| f |sdx ≤
∫
RN

| f |sdx . (A.5)

Since the bound (A.5) holds uniformly for all m ∈ N and ρ → ∞, the assertion follows. ��
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Proof of Theorem A.1 Let m ∈ N and {um} be the sequence of solutions to (A.4). Observe
that um+1 also solves the equation on Bm and um+1 ≥ 0 on ∂ Bm . Thus, by the maximum
principle on Bm one has um+1 ≥ um , so {um} is an increasing sequence. Moreover, it follows
from (A.5) that {um} is locally bounded in Ls(RN ). Then {um} converges pointwise to a
function u∞ that satisfies, by Fatou’s lemma,

‖u∞‖Ls (RN ) ≤ ‖ f ‖Ls (RN ).

By the monotone convergence theorem, uq−1
m → uq−1∞ in Ls(Bm), for every m ∈ N. Hence

u∞ satisfies, for all ϕ ∈ C∞
c (RN ),

−
∫
RN

u∞�ϕdx +
∫
RN

uq−1∞ ϕdx =
∫
RN

f ϕdx,

i.e. u∞ is a distributional solution of (A.1). Then u∞ = u f is the unique solution of (A.1),
by the Brezis’s uniqueness result [9, Theorem 1].

Now let v ∈ L1
loc(R

N ) be a nonnegative distributional sub-solution of (A.1) and set
w = (v − u f )

+. By Kato’s inequality [9, Lemma A.1],

−�w +
(
vq−1 − uq−1

f

)
sign+(w) ≤ 0 in D ′(RN ).

On the other hand, there is a δ > 0 such that δ(a − b)q−1 ≤ aq−1 − bq−1 for all a ≥ b ≥ 0.
Then

−�w + wq−1 ≤ 0 in D ′(RN )

and w = 0 by [9, Lemma 2]. ��
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