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ABSTRACT
Redundancy resolution is a critical issue to achieve accurate kinematic control for manipulators.
End-effectors of manipulators can track desired paths well with suitable resolved joint variables. In
some manipulation applications such as selecting insertion paths to thrill through a set of points, it
requires the distal link of a manipulator to translate along such fixed point and then performmanip-
ulation tasks. The point is known as remote centre of motion (RCM) to constrain motion planning
and kinematic control of manipulators. Together with its end-effector finishing path tracking tasks,
the redundancy resolution of a manipulators has to maintain RCM to produce reliable resolved joint
angles. However, current existing redundancy resolution schemes on manipulators based on recur-
rent neural networks (RNNs) mainly are focusing on unrestricted motion without RCM constraints
considered. In this paper, an RNN-based approach is proposed to solve the redundancy resolution
issuewith RCM constraints, developing a new general dynamic optimisation formulation containing
the RCM constraints. Theoretical analysis shows the theoretical derivation and convergence of the
proposed RNN for redundancy resolution of manipulators with RCM constraints. Simulation results
further demonstrate the efficiency of the proposed method in end-effector path tracking control
under RCM constraints based on an industrial redundant manipulator system.
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1. Introduction

Nowadays,manipulators arewidely appearing inmany
industrial and service applications (Jin et al., 2018; Z.
Li & Huang, 2020; Z. Li et al., 2020; Su et al., 2019).
Manipulators can greatly eliminate inevitable labour
burdens on workers by doing repetitive and dull jobs
which workers would not like to sustain. Manipu-
lators are usually redundant with extra degrees of
freedom (DOFs) in joint space, and therefore they
can be utilised to fulfil more flexible and complex
manipulation tasks with their end-effectors (Yang
et al., 2018, 2019).

Generally speaking, redundancy resolution for
kinematic control of manipulators is to seek an
optimally-resolved joint variable solution as the ref-
erence for accurate servo control in the actuation
level, which can eventually generate a desired motion
for the end effector in the workspace. However, as
we may know, when investigating forward kinemat-
ics equations of redundant robots, the resultant map-
ping between a joint space and a Cartesian workspace
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exhibits strong coupled nonlinearity all the time. To
find the suitable solution in the joint space for manip-
ulator control, it is difficult to inversely obtain the
general analytical solutions at the joint space level
through directly solving such coupled-nonlinear for-
ward kinematics equations. Therefore, to tackle the
redundancy resolution problem in the joint space, the
original problem is converted into a problem which
considers solutions bymaking use of velocity kinemat-
ics equations ofmanipulators. Some early works found
the control solutions directly by solving the pseudoin-
verse of the Jacobian matrix of a manipulator (Klein
& Huang, 1983; Maciejewski, 1991), and such way
of processing may increase local instability and even
require additional computational costs which were not
expected.

To remedypseudoinverse-basedmethods for redun-
dancy resolution, by taking advantage of extra DOFs
and such inherent redundancy (Chen, Li, Li, et al., 2020;
Z. Li et al., 2020; Su,Qi, et al., 2020),Optimisation-based
(e.g. constrained quadratic programming) methods
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have been proposed to search for the optimal redun-
dancy resolutions (Chen & Zhang, 2017; Chen
et al., 2018; Kanoun et al., 2011; Khan et al., 2020;
Ma, 1996; Xu et al., 2019; Z. Zhang et al., 2020).
Such optimisation-based methods can involve phys-
ical constraints or other types of constraints which
can reflect performance indices in motion control
(Maciejewski, 1991; Y. Zhang, Chen, et al., 2018; Zhang
et al., 2019), but reliable solutions to such constrained
optimisation problems cannot be obtained in an ana-
lytical manner as well. Some numerical methods in a
serial-processing manner have been applied, but they
still result in a rather less efficient computational capa-
bility. To remedy such shortcomings, dynamic recur-
rent neural networks (RNNs) with parallel processing
ability have been proposed for redundancy resolution
and kinematic control with physical constraints (He
et al., 2021; S. Li, He, et al., 2017; S. Li et al., 2018,
2019; S. Li, Zhang, et al., 2017; Z. Li et al., 2016; Liao
et al., 2016; Z. Zhang et al., 2015; Z. Zhou et al., 2019).
For example, in Y. Zhang et al. (2003), joint veloc-
ity limits are considered for redundancy resolution
synthesised by a dual neural network. In Y. Zhang
et al. (2004), a unified quadratic-programming for
joint torque optimisation is established by combin-
ing the velocity-level and acceleration-level redun-
dancy resolution. In Xiao and Zhang (2013), repeti-
tive motion planning of manipulator with joint accel-
eration constraints involved is designed. In Guo
and Zhang (2014), a minimum-acceleration-norm as
the optimisation objective is proposed for obstacle
avoidance of manipulators in the joint-acceleration
level. In Y. Zhang et al. (2020), redundancy reso-
lution of manipulators with the joint velocity con-
straints is solved by a passivity-based approach from
an energy perspective. In Y. Zhang, Li, et al. (2018),
both velocity-level and acceleration-level constraints
are integrated into the redundant resolution of manip-
ulators. In S. Li et al. (2012), decentralised kinematic
control of multiple redundant manipulators for the
cooperative tasks was proposed with a set of joint con-
straints. In Yahya et al. (2014), geometrically bounded
singularities and joint limits are promisingly solved
for redundancy resolution with the aid of neural net-
works. In Chen, Li, Wu, et al. (2020), external dis-
turbances are considered as additional constraints are
suppressed by Super-twisting neural network method

for coordinated motion control of multiple robot
manipulators. In Kong et al. (2019), adaptive fuzzy
neural networks are developed for constrained coor-
dinated tasks with impendence learning for robots.

Remote centre of motion (RCM) is a remote fixed
point with no physical revolute joint around the loca-
tion (Su et al., 2019). For motion planning and control
of end-effector with tele-operated minimally invasive
manipulation, RCM usually leaves a sole point for the
manipulator performs positioning or/and insertion
(Aghakhani et al., 2013; Su, Schmirander, et al., 2020),
e.g. minimally invasive surgery into the subject’s body
through small incisions, industrial implanting with
sensors for detecting cracks. Such applications need
to impose physical constraints in joint space to guar-
antee safe motion generation of the end-effector of
the manipulator. One conventional way to do this
still needs solving pseudoinverse of Jacobian matrices
without task-oriented constraints considered. How-
ever, suchway of processingmay neglect taking advan-
tage of extra DoF to satisfy the RCM constraint as
manipulators are redundant. To the best of our knowl-
edge, there are fewworks reported from aspect of RNN
for redundancy resolution of manipulator with RCM
constraints.

Motivated by the aforementioned points, currently
most of redundancy resolution and kinematic control
methods based on RNNsmainly focus on dealing with
conventional physical constraints such as joint angle,
joint angular velocity and joint acceleration limits. In
this paper, in the task-oriented level which is especially
for minimally invasive manipulation, we are attempt-
ing to propose a new dynamic-model-based method
for redundancy resolution of manipulators with RCM
constraints synthesised by RNN. The contributions of
this work are summarised as follows.

(1) To the best of our knowledge, this paper is the first
work on RNN of primal dual type proposed for
redundancy resolution and kinematic control of
manipulators with RCM constraints.

(2) Simulation results on a 8-link planar manipula-
tor and a Kuka industrial manipulator synthesised
by the proposed RNN demonstrate the efficiency
of the proposedmethod in redundancy resolution
and kinematic control of manipulators with RCM
constraints.
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Figure 1. RCM constraint for a redundant manipulator during
motion planning and control.

2. Preliminaries

RCM means a remote static/fixed point near the
workspace with no physical revolute joint around the
location (Aghakhani et al., 2013; Su, Schmirander,
et al., 2020). To achieve manipulation such as mini-
mally invasive surgery into the subject’s body through
small incisions or industrial implanting with sen-
sors for detecting cracks, RCM usually leaves a sole
point for themanipulator performs positioning or/and
insertion. In addition to the joint physical constraints,
RCM imposes an additional constraint on the motion
planning and control of redundant manipulator.

Let us consider an n-link manipulator with its end-
effector’s position is remote from the objective RCM
position rP which is shown in Figure 1, the redun-
dant manipulator executes its task control operations
between the two end points rA and rB in theworkspace.
Point rA is the distal point of the end-effector, point
rB is the distal point of the n−1 link. The end-effector
of the redundant manipulator has to travel through
the objective point rP along the line/curve between
point rA and point rB. To describe the motion relation
between joints and end-effector, we have

{
ṙA = J1θ̇
ṙB = J2θ̇

(1)

where rA ∈ Rm and rB ∈ Rm denote the position vector
of the end-effector and the position vector of the end-
point of then−1th link of themanipulator respectively,
J1 ∈ Rm×n and J2 ∈ Rm×n respectively denote the Jaco-
bianmatrix of the wholemanipulator and the Jacobian
matrix of the associated n−1 link, and θ ∈ Rn denotes
the joint angle of the manipulator.

In Figure 1, rP denotes the position vector of the
RCMpointP, and it can bewithin the lineA−B and the
corresponding relation among rP, rA and rB is depicted

by

rP − rB = k(rA − rB) (2)

where k ∈ R is a scaling parameter to locate the posi-
tion rP with the RCMconstraint. Specially, when k = 0
is configured statically, then rP = rB; when k = 1 is
configured statically, then rP = rA; when 0<k<1,
rP should be dynamically modulated strictly between
points rA and rB. The redundancy resolution for kine-
matic control of the manipulator needs to finish the
two tasks: (1) let the end-effector track the desired path
accurately and (2) satisfy the RCM constraint to make
rP vary in a very small range or almost static during
motion planning and control. In an application sce-
nario, the last link (e.g. rA − rB) of the manipulator
can penetrate a small hole (e.g. rP) and simultane-
ously make the end-effector (e.g. rA) perform the path
tracking task.

3. Problem formulation

With a given/resolved joint angle θ , the positions of
points rA and rB can be determined by directly per-
forming redundancy resolution, but the position of
point rP cannot be determined. Consider rP is within
the line rA − rB, practically rP can be described by
the introducing a scaling parameter k to associate
it with rA and rB, thus the state variable pair (θ , k)
can describe the redundancy resolution results with
RCM constraints. By differentiating the both sides of
equation rp − rB = k(rA − rB) which depicts RCM,
one can obtain

ṙP − ṙB = k̇(rA − rB) + k(ṙA − ṙB) (3)

Then, combining the aforementioned equations (1),
we have

ṙP − J2θ̇ = k̇(rA − rB) + k(J1 − J2)θ̇ (4)

As the point rP should not move, then rP should fast
converge to a fixed position such as its initial position
rP(0) such that

ṙP = −ς(rP − rP(0)), ς ≥ 0 (5)

where ς is used to scale the convergence of rP to
the initial targeted point rP(0), guaranteeing the RCM
constraint being satisfied during kinematic control
process in a timely manner.
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As the following equation

rP = k(rA − rB) + rB (6)

always holds. Combining the aforementioned equa-
tions, next we have

ς[k(rA − rB) + rB − rP(0)] + k̇(rA − rB)

+ kJ1θ̇ + (1 − k)J2θ̇ = 0 (7)

i.e.

ς[k(rA − rB) + rB − rP(0)] + k̇(rA − rB)

+ [kJ1 + (1 − k)J2]θ̇ = 0 (8)

where we can call the equality above as the RCM
constraint for redundancy resolution.

Additionally, to guarantee k ∈ [0, 1] when k(0) ∈
[0, 1], we propose the following inequality constraint
for the RCM constraint

−c1k ≤ k̇ ≤ −c1(k − 1)

where c1 > 0 denotes the scaling parameter to adjust
the variation range of k to preserve safety margins.

Based on the derivations and discussions above,
we propose the quadratic programming formulation
for redundancy resolution of manipulators with RCM
constraints as follows:

argmin
θ ,k

θ̇T θ̇/2 + c2k̇2/2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ς[k(rA − rB) + rB − rP(0)] + k̇(rA − rB)

+[kJ1 + (1 − k)J2]θ̇ = 0

−c1k ≤ k̇ ≤ −c1(k − 1)

θ̇− ≤ θ̇ ≤ θ̇+

J1θ̇ = −c3(rA − rd) + ṙd
(9)

where c2 > 0 denotes one scaling parameter involved
in the objective function which shows the joint-
velocity based control and RCM constraint based con-
trol are simultaneously planned, c3 > 0 denotes the
parameter to scale convergence for the end-effector
position tracking, rd denotes the desired position vec-
tor for the end-effector to track, and θ̇− and θ̇+ are the
lower and upper joint velocity limits respectively.

In the proposed optimisation formulation for
redundancy resolution with RCM constraints, the
position of rP is dynamically adjusted by parameter
k with simultaneous positions rA and rB. The initial

value k(0) is chosen according to the specific sce-
narios for safe manipulation, e.g. when t = 0, rP can
be chosen in the middle of the line A−B, and thus
k(0) = 0.5.

Tomaintain the RCMconstraint, θ̇ and k̇ are used as
decision variables, and the variable which really con-
trols themanipulator is θ̇ as the control input action. In
practice, we can therefore solve k̇ and substitute it into
the aforementioned proposed optimisation formula-
tion and thus the RCM constraint can be satisfied and
modulated by resolving the joint angle variable θ .

The advantages of the proposed method is that the
RNN for redundancy resolution with the RCM con-
straint does not need to know the exact position rP for
the fixed pointP, whichmay save the sensor equipping.
For manipulation safety, we can exert more margins
like making the variable k under the range/limit 0.3 ≤
k ≤ 0.7 or 0.2 ≤ k ≤ 0.8.

4. Proposed RNN for redundancy resolution
with RCM constraints

In this section, the modelling and convergence of the
proposed RNN for redundancy resolution with RCM
constraints are addressed.

4.1. Model description

To solve redundancy resolution problem with RCM
constraints, first, according to theKarush–Kuhn–Tucker
(KKT) conditions (Boyd & Vandenberghe, 2004), we
need to first define the Lagrange function which
is associated with the objective function θ̇T θ̇/2 +
c2k̇2/2, the RCM constraint and the differential kine-
matics constraint as follows:

L = θ̇T θ̇/2 + c2k̇2/2 + λT1 [ς(k(rA−rB)+rB−rp(0))

+ k̇(rA − rB) + kJ1θ̇ + (1 − k)J2θ̇]

+ λT2 [J1θ̇ + c3(rA − rd) − ṙd] (10)

where λ1 and λ2 denote the Lagrange multiplier vec-
tors which are respectively associated with the RCM
constraint and the differential kinematic constraint.
Such definition of Lagrange function different from
the one of the well-known Hamiltonian form that
appear in an aspect of robotic dynamics derivation.
The partial derivatives of the Lagrange function with



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 5

respect to θ̇ , k̇, λ1 and λ2 are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂θ̇

= θ̇ + [kJ1 + (1 − k)J2]Tλ1 + JT1 λ2

∂L
∂ k̇

= c2k̇ + λT1 (rA − rB)
∂L
∂λ1

= ς(k(rA − rB) + rB − rp(0))

+(kJ1 + (1 − k)J2)θ̇ + k̇(rA − rB)
∂L
∂λ2

= J1θ̇ + c3(rA − rd) − ṙd

(11)

According to the design principle of the primal dual
neural network model for solving constrained optimi-
sation, we thus construct the following RNN solver:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εzż = −z + P�

(
z − ∂L

∂z

)

ε1λ̇1 = ∂L
∂λ1

ε2λ̇2 = ∂L
∂λ2

(12)

where z = [θ̇ , k̇], P�(·) denotes the piecewise linear
projection function array with the solution set �, i.e.

P�(u) =
⎧⎨
⎩

u−; u < u−
u; u− ≤ u ≤ u+
u+; u > u+

and εz > 0, ε1 > 0 and ε2 > 0 are the convergence-
scale parameters to accelerate solutions of the RNN
solverwhen increased. By substituting aforementioned
partial derivatives equations into the RNN solver, we
have the specifical form of the RNN solver for redun-
dancy resolution with RCM constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εzż = P�

(
z−

[
θ̇+(kJ1+(1 − k)J2)Tλ1 + JT1 λ2

c2k̇ + λT1 (rA − rB)

])

− z

ε1λ̇1 = ς(k(rA − rB) + rB − rp(0))

+ (kJ1 + (1 − k)J2)θ̇ + k̇(rA − rB)

ε2λ̇2 = J1θ̇ + c3(rA − rd) − ṙd
(13)

where the convergence scaling parameters can be con-
figured as εz = ε1 = ε2 = ε > 0 for unity. Figure 2
shows the architecture of the corresponding RNN for
RCM-based kinematic control of manipulator.

4.2. Theoretical analysis

Due to its convexity of the optimisation problem and
note that the aforementioned expression ∂L/∂z ∈ �

Figure 2. The overall RNN architecture for RCM based kinematic
control of manipulator. The RNN of the primal dual type possess
its neural states θ , k, λ1 and λ2, the inputs of the RNN are: model’s
differential kinematic information J1 and J2, the position infor-
mation of different links’ end-effectors rA, rB and rd , the desired
RCM position information rp(0) and rest parameter information.
With these input information, the training process of the RNNwill
try to minimise to objective function (energy function) with con-
straints and let the neural network states θ , k, λ1 and λ2 converge
to their equilibrium points with the convergence/learning rate
εz = ε1 = ε2.

includes the normal cone operator on z. Recall the
property on the linear projection to a normal cone,
the solution of optimisation problem is equivalent to
the solution of the piecewise linear projection equa-
tions P�(·). The dynamic optimisation solver based on
the primal dual neural network model solves the lin-
ear projection equations when the equilibrium point u
is reached (Gao, 2003; Gao & Liao, 2003). Therefore,
one can define a Lyapunov function V(z) = zTz/2 ≥
0 and obtain its time derivative V̇ = −zT[u − P�(z −
∂L(z,λ)

∂z )]/ε ≤ −zTz/ε ≤ 0, thus the convergence to
the equilibrium point can be achieved. Therefore, ż =
0, λ̇1 = 0 and λ̇2 = 0 are achieved in the steady state.
In this situation, as λ̇2 = 0 is held in the steady state,
which means J1θ̇ + c3(rA − rd) − ṙd = 0 is guaran-
teed, i.e. ṙA − ṙd = c3(rA − rd). It indicates that the
error between rA and the reference trajectory rd can
converge to zero finally.

5. Simulation results

In this section, simulation results on kinematic control
of two kinds of redundant robots are given to validate
the proposed method for safe redundancy resolution
with RCM constraints. The first one is a 8-link planar
robot and the other one is a Kuka 7-DoF robot. The
RCM constraint for the 8-link planar robot is locating
between the rA and rB, where rA is the position of the
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end-effector and rB is the position of the remote point
of its seventh link. The RCM constraint of the Kuka
7-DoF robot is locating between the rA and rB, where
rA is the position of the remote point at an additional
link from the end-effector and rB is the position of the
end-effector.

5.1. Simulation configuration

In the simulation,wefirst examine the performance for
the 8-link planar robot arm by the proposed method.
The lengths of the links are set as l1 = 0.2, l2 =
0.15, l3 = 0.15, l4 = 0.15, l5 = 0.15, l6 = 0.15, l7 =
0.15 and l8 = 0.15m. The 8-link planar robot arm’s
kinematics is depicted by

T8(θ) = T1(θ)T2(θ) · · ·Ti(θ) · · ·T7(θ)T8(θ)

whereTi(θ) denotes the homogeneous transformation
matrix between the adjacent joints of the 8-link planar
robot arm. According to such configuration, the 8-
link planar robot arm’s Jacobianmatrix for such 8-link
planar robot arm is obtained by

J =

⎡
⎢⎢⎣
dry
dθ1

dry
dθ2

· · · dry
dθn

drz
dθ1

drz
dθ2

· · · drz
dθn

⎤
⎥⎥⎦ ∈ R2×8

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dry
dθ1

= −
8∑

i=1
lisi

dry
dθ2

= −
8∑

i=2
lisi

...
dry
dθ8

= −l8s8

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

drz
dθ1

=
8∑

i=1
lici

drz
dθ2

=
8∑

i=2
lici

...
drz
dθ8

= l8c8

with

si = sin(θ1 + θ2 + · · · + θi)

and

ci = cos(θ1 + θ2 + · · · + θi)

The desired paths are planned as a circle with its radius
being 0.05m and a square with its length being 0.06m.
The convergence parameter ε of the primal dual neural
network solver for the proposed method is chosen as
0.0001, the initial value of k is set as 0.4, parameters
ς = 10, c2 = 1 and c3 = 10 are configured.

Table 1. D-H parameters of the Kuka manipulator.

Link ai (m) αi (rad) di (m)

1 0 −π/2 0.340
2 0 π/2 0
3 0 π/2 0.400
4 0 −π/2 0
5 0 −π/2 0.400
6 0 π/2 0
7 0 0 0.126

Next, the performance of the proposed method
on the Kuka redundant robot is examined. The
D–H parameter is according to Table 1 (Z. Li
et al., 2020). The desired paths are planned as fol-
lows : (i) a circle with its radius being 0.15m, ( ii)
a square with its length being 0.20m, ( iii) a tetra-
cuspid curve with its mathematical form being rd =
[0.15 cos3 ωt, 0.15 sin3 ωt, 0]T with ω = 0.5 and (iv) a
‘8’ shape (eight-character) curve with its mathematical
form being rd = [0.16 cosω1t, 0.15 sinω2t, 0]T with
ω1 = 0.5 and ω2 = 0.8. The convergence parameter ε

of the primal dual neural network solvers for the pro-
posed method is chosen as 0.0001, the initial value of
k is set as 0.4, parameters ς = 10, c2 = 1 and c3 = 10
are configured.

5.2. Performance of 8-link planar robot arm

Figure 3 presents the comprehensive performance of
the proposed method on the 8-link planar robot arm
for circle path tracking. Figure 3(a) shows the circle
path tracking process, andwe can roughly observe that
the path tracking iswell donewithRCMconstraint sat-
isfied (a point rP is obviously seen). Figure 3(b) shows
the position error [Ex,Ey] of the end-effector, and we
can evidently see that the position error [Ex,Ey] fast
converges to zero. Figure 3(c) shows resolved joint
angle for the 8-link planar robot by the proposed
method. Figure 3(d) shows the 2D coordinates of the
rP point, and we see that its X-axis coordinate rpx is
changing from−0.02 to−0.005m and its Y-axis coor-
dinate rpx is changing from 0.523 to 0.53m. The rP
point is changing in a very small range in both X-axis
and Y-axis, which is much less as compared with the
radius of the circle path to track. Figure 3(e) shows
convergence of the variable kwhich is used tomaintain
the motion planning constrained by RCM. Figure 3(f)
further shows the convergence of the rP point, and it
can be seen that point rP can fast converge to the steady
state which makes it static after the transient process.
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Figure 3. Comprehensive performance of the proposed method for circle path tracking with the RCM constraint for the 8-link planar
manipulator. The RCM point is kept non-stationary while the circle path tracking task for the end-effector is performed simultaneously.
One could observe that the position error of the end-effector converges to zero and the 2D RCM coordinates are held in the steady-state:
(a) circle path tracking, (b) position error of the end-effector, (c) resolved joint angle, (d) coordinates of rP for RCM, (e) variable k and
(f ) convergence of RCM point rP .

All these results verify the proposedmethod is efficient
for the 8-link planar robot on kinematic control with
the RCM constraint.

Figure 4 presents the comprehensive performance
of the proposedmethod on the 8-link planar robot arm
for square path tracking. Figure 4(a) shows the square
path tracking process, andwe can roughly observe that
the path tracking iswell donewithRCMconstraint sat-
isfied (a point rP is obviously seen). Figure 4(b) shows
the position error [Ex,Ey] of the end-effector, and we
can evidently see that the position error [Ex,Ey] fast
converges to zero. Figure 4(c) shows resolved joint
angle for the 8-link planar robot by the proposed
method. Figure 4(d) shows the 3D coordinates of the
rP point, and we see that its coordinate rp is chang-
ing from −0.02 to −0.005m and its Y-axis coordinate
rpx is changing from 0.523 to 0.53m. The rP point is
changing in a very small range in both X-axis and Y-
axis, which is much less as compared with the radius
of the circle path to track. Figure 4(e) shows the con-
vergence of the variable k which is used to maintain

the motion planning constrained by RCM. Figure 4(f)
further shows the convergence of the rP point, and it
can be seen that point rP can fast converge to the steady
state which makes it static after the transient process.
All these results verify the proposedmethod is efficient
for the 8-link planar robot on kinematic control with
the RCM constraint.

5.3. Performance of 7-DoF redundant robot

Figure 5 presents the comprehensive performance of
the proposed method on the Kuka redundant robot
arm for circle path tracking. Figure 5(a) shows the cir-
cle path tracking process, and we can roughly observe
that the path tracking is well done with RCM con-
straint satisfied (a point rP is obviously seen). Figure
5(b) shows the position error [Ex,Ey,Ez] of the end-
effector, and we can evidently see that the position
error [Ex,Ey,Ez] fast converges to zero. Figure 5(c)
shows resolved joint angle for the 8-link planar robot
by the proposed method. Figure 5(d) shows the 3D



8 Z. LI AND S. LI

Figure 4. Comprehensive performance of the proposed method for square path tracking with the RCM constraint for the 8-link planar
manipulator. The RCM point is kept non-stationary while the square path tracking task for the end-effector is performed simultaneously.
One could observe that the position error of the end-effector converges to zero and the 2D RCM coordinates are held in the steady-state.
(a) Square path tracking, (b) position error of the end-effector, (c) resolved joint angle, (d) coordinates of rP for RCM, (e) variable k and
(f ) convergence of RCM point rP .

coordinates of the rP point, andwe see that its 3D coor-
dinate rp is with a very small range and almost static.
The rP point is changing in a very small range and is
much less as compared with the radius of the circle
path to track. Figure 5(e) shows the convergence of the
variable k which is used to maintain the motion plan-
ning constrained by RCM. Figure 5(f) further shows
the convergence of the rP point, and it can be seen that
point rP can fast converge to the steady state which
makes it static after the transient process. All these
results verify the proposed method is efficient for the
Kuka redundant robot arm on circle path tracking
control with the RCM constraint satisfied.

Figure 6 presents the comprehensive performance
of the proposed method on the Kuka redundant robot
arm for square path tracking. Figure 6(a) shows the
square path tracking process, and we can roughly
observe that, the path tracking is well done with RCM
constraint satisfied (a point rP is obviously seen).
Figure 6(b) shows the position error [Ex,Ey,Ez] of the
end-effector, andwe can evidently see that the position

error [Ex,Ey,Ez] fast converges to zero. Figure 6(c)
shows resolved joint angle for the 8-link planar robot
by the proposed method. Figure 5(d) shows the 2D
coordinates of the rP point, andwe see that its 3D coor-
dinate rp is changing in a very small range and almost
fixed. The rP point is changing in a very small range
and is much less as compared with the length of the
square path to track. Figure 6(e) shows the conver-
gence of the variable k which is used to maintain the
motion planning constrained by RCM. Figure 6(f) fur-
ther shows the convergence of the rP point, and it can
be seen that point rP can fast converge to the steady
state which makes it static after the transient process.
All these results verify the proposed method is effi-
cient for the Kuka redundant robot arm on square path
tracking control with the RCM constraint satisfied.

Figure 7 presents the comprehensive performance
of the proposed method on the Kuka redundant robot
arm for tetracuspid path tracking. Figure 7(a) shows
the tetracuspid path tracking process, and we can
roughly observe that, the path tracking is well done
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Figure 5. Comprehensive performance of the proposed method for circle path tracking with the RCM constraint for the Kuka manip-
ulator. The RCM point is kept non-stationary while the circle path tracking task for the end-effector is performed simultaneously. One
could observe that the position error of the end-effector converges to zero and the 3D RCM coordinates are held in the steady-state:
(a) circle path tracking, (b) position error of the end-effector, (c) resolved joint angle, (d) coordinates of rP for RCM, (e) variable k and
(f ) convergence of RCM point rP .

with RCM constraint satisfied (a point rP is obviously
seen). Figure 7(b) shows the position error [Ex,Ey,Ez]
of the end-effector, and we can evidently see that the
position error [Ex,Ey,Ez] fast converges to zero. Figure
7(c) shows resolved joint angle for the redundant robot
arm by the proposed method. Figure 7(d) shows the
3D coordinates of the rP point, andwe see that its 3D rp
is almost fixedwith very small position changes. Figure
6(e) shows the convergence of the variable k which is
used to maintain the motion planning constrained by
RCM. Figure 7(f) further shows the convergence of the
rP point, and it can be seen that point rP can fast con-
verge to the steady state which makes it static after the
transient process. All these results verify the proposed
method is efficient for the Kuka redundant robot arm
on tetracuspid path tracking control with the RCM
constraint satisfied.

Figure 8 further presents the comprehensive perfor-
mance of the proposedmethod on theKuka redundant
robot arm for ‘eight-character’ path tracking. Figure

8(a) shows the ‘eight-character’ path tracking process,
and we can roughly observe that, the path tracking
is well done with RCM constraint satisfied (a point
rP is obviously seen). Figure 8(b) shows the posi-
tion error [Ex,Ey,Ez] of the end-effector, and we can
evidently see that the position error [Ex,Ey,Ez] fast
converges to zero. Figure 8(c) shows resolved joint
angle for the 8-link planar robot by the proposed
method. Figure 8(d) shows the 3D coordinates of the
rP point, which is almost fixed with very small posi-
tion changes. Figure 8(e) shows convergence of the
variable k which is used to maintain the motion plan-
ning constrained by RCM. Figure 8(f) further shows
the convergence of the rP point, and it can be seen
that point rP can fast converge to the steady state
which makes it static after the transient process. All
these results verify the proposed method is efficient
for the Kuka redundant robot arm on ‘eight-character’
path tracking control with the RCM constraint
satisfied.
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Figure 6. Comprehensive performance of the proposed method for square path tracking with the RCM constraint for the Kuka manip-
ulator. The RCM point is kept non-stationary while the square path tracking task for the end-effector is performed simultaneously. One
could observe that the position error of the end-effector converges to zero and the 3D RCM coordinates are held in the steady-state.
(a) Square path tracking, (b) position error of the end-effector, (c) resolved joint angle, (d) coordinates of rP for RCM, (e) variable k and
(f ) convergence of RCM point rP .

Figure 7. Comprehensive performance of the proposed method for tetracuspid path tracking with the RCM constraint for the Kuka
manipulator: (a) tetracuspid path, (b) position error of the end-effector, (c) resolved joint angle, (d) coordinates of rP for RCM, (e) variable
k and (f ) convergence of RCM point rP .
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Figure 8. Comprehensive performance of the proposed method for eight-character path tracking with the RCM constraint for the
Kuka manipulator: (a) eight-character path, (b) position error of the end-effector, (c) resolved joint angle, (d) coordinates of rP for RCM,
(e) variable k and (f ) convergence of RCM point rP .

To summarise, the proposed RNN-based method
is efficient for redundancy resolution of manipula-
tors with RCM constraints. The proposed method can
guarantee the convergence of the optimal solution for
the resolved joint angle θ̇ and RCM modulation vari-
able k simultaneously, and the position of the point rP
for RCM can be modulated in a very small range and
almost static in space.

6. Conclusion

Current existing redundancy resolution schemes on
manipulators based on RNNs mainly focusing on
unrestricted motion without RCM constraints. In this
paper, for the first time, a recurrent neural network is
proposed to solve the redundancy resolution issuewith
RCM constraints, with a new and general dynamic
optimisation formulation containing the RCM con-
straints. Theoretical analysis shows the derivation and
convergence of the proposed RNN for redundancy
resolution of manipulators with RCM constraints.
Simulation results further demonstrate the efficiency
of the proposed method in end-effector path tracking

control under RCM constraints based on an indus-
trial redundant manipulator system. The limitations
of the study might include that redundant manipu-
lators have to obligate enough extra DoFs to satisfy
both RCMconstraints and physical constraints. Future
works can be directed into data-driven based learn-
ing control approaches synthesised by discrete-time
version of RNN.
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