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Chapter 1

Introduction

Cosmology, in very few words, is the study of the Universe and its evolution, from
its very first moments to its possible end. It is an incredible old science which
came to life through humans’ inherent curiosity to understand the world around
them. Our approach to this science has changed massively over millennia before
being formalised into its current model

Egyptians and Mesopotamians were among the first civilizations to keep
records of stars and constellations, but, as it could be expected, their interpre-
tation of astronomical phenomenons and their origins relied heavily on creation
myths and traditionalistic beliefs.
A more intellectual approach, partially based on astronomical evidence, debate
and reason was at the foundation of Greek philosophy. Aristarchus, Aristotle and
Hipparchus are a few of the many great thinkers who spent their life investigating
the cosmological problem; the advent of modern mathematics (with Pythagoras)
and the use of both observations and experimentation are the underlying themes
in the Greek Geometrical Cosmology. During the Hellenistic era, thanks to the
advancement of numerous observational techniques, the first rudimentary helio-
centric model of a spherical Earth was proposed.
However the strong religious influence and the limited experimental and obser-
vational capability slowed the evolution of Cosmology, confining it to (mostly)
the area of Astronomy until more recent times. It is only after the scientific
revolution, thanks to Copernicus, Kepler, Galileo and Newton, that the Universe
can finally be considered as an environment where physical laws, formulated in

1



1. INTRODUCTION

a mathematical language, are the same everywhere. Yet the law of the static
gravitational field together with the idea of an infinite Universe still presented
some problems when implemented to explain the beginning of the Universe1.
Modern Cosmology officially began with the publication, in 1915, of Einstein’s
theory of General Relativity. Since then, our understanding of the history of the
Universe has seen an unprecedented growth thanks to the development of new
theories and the advent of new technologies which have exponentially improved
our ability to collect data.
The Standard Cosmological model, or ΛCDM, is, as of today, the most widely
accepted cosmological model used to describe the history of the Universe. Accord-
ing to this model, which has been confirmed by data2, our Universe started in an
incredibly hot and dense state (Hot Big Bang) and expanded to produce the ob-
servable Universe. However, there are several aspects of the ΛCDM model which
are not well understood yet. For example, in order to explain today flatness,
isotropy and homogeneity, the Universe is required to start with very particular
initial conditions.

Starting from the ’80s scientists realized that this problem could be solved
introducing an early de Sitter phase of exponential expansion in the very early
Universe, which takes the name of inflation. The most basic inflationary paradigm
predicts that the exponential expansion is driven by the energy density of one or
more scalar fields, called inflatons, rolling down a potential. It has been estimated,
thanks to direct measurements on the Cosmic Microwave Background (CMB),
that the energy scale of this mechanism is around ∼ 1016Gev. Unfortunately,
even if in the last decades inflation has been one of the most widely studied
phenomenon in cosmology, we still do not know how it happened. In fact different
inflationary scenarios lead to very similar predictions: in particular current data
do not allow us to discern between single or multifield models. To make any
progress in this direction we have to wait for accurate measurements of primordial

1Olbers paradox, formulated in 1896 is probably the most famous problem in this sense.
He questioned how it is possible that the sky is dark at night if the Universe is infinite and
therefore filled with an infinite number of stars.

2This model agrees with measures of the current acceleration, with measures of the the
Cosmic Microwave Background (CMB) and with the maps of the distributions of large scale
structure
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non-gaussianities or large scale structures; single field and multifield models of
inflation behave very differently and produce distinctive signatures which would
help us to determine how many scalars were involved during the expansion.
Until we can obtain these measurements, much of the modern day research focuses
on more complex multifield models, with particular attention to non-geodesic
models, for different reasons. A major advantage afforded to us is that these
types of models can be easily embedded into UV theories, which is interesting
given the high energy scale involved in inflation, they do satisfy recently proposed
consistency conjectures and they do not require incredibly flat potentials.
The research presented in the first part of this thesis is conducted within this
theoretical context. We focus on non-geodesic multifield models of inflation and
the conditions needed for their realizations.

In the second part of the thesis we analyse an often overlooked consequence of
the inflationary mechanism: the possibility to have general cosmologies near the
singularity. In fact as recalled above, the theory of inflation, independently on
how it is realised, solves the problem of the initial conditions of the ΛCDM flat-
tening and homogenising the Universe just few moments after its beginning. As a
consequence, it allows us to discuss the evolution of the Universe near the singu-
larity, i.e. before the exponential expansion, under more general hypothesis than
homogeneity and isotropy. In the last chapters we address the dynamical evo-
lution of general cosmologies, the Bianchi models and inhomogeneous Universes,
near the singularities under the semi-classical approximation.

The outline of the thesis is as follow:

1. In Chapter 2 we present an overview of modern cosmology and the infla-
tionary theory. We discuss single field and multifield models dynamics and
we conclude the chapter showing how the latters can be embedded in a high
energy theory.

2. In Chapter 3 we present part of the work published in [6]. Here we derive
the fat inflation attractor, a novel way to avoid the η-problem in the context
of multifield inflation, where the masses of the scalar fields are heavier than
the Hubble scale.

3



1. INTRODUCTION

3. In Chapter 4 we present the work published in [7]. Here we focus on super-
gravity multifield models and we show how, while in the literature seems
to be quite difficult to find models which present large turning rate, it is
actually possible to construct strongly non-geodesic trajectories when two
fields are orthogonal.

4. In Chapter 5 we introduce the ADM formalism, the Hamiltonian formula-
tion of the dynamics, we briefly comment on the Wheeler-DeWitt equation
and we present the Vilenkin approach to the wave function of the Universe.
In the second part we review the generic cosmologies: the Bianchi models,
which are homogeneous and anisotropic, and the more general inhomoge-
neous and anisotropic models.

5. In Chapter 6 we present the work published in [8]. Here we analyse the
dynamical evolution of the Bianchi IX model in the “corner configuration”
applying the Vilenkin approach. We show that, depending on the specific
case analysed, the corner configurations can act as an attractor, can remove
the singularity or can suppress the anisotropies.

6. In Chapter 7 we present the work published in [9], which is a follow-up
of [8]. Here we develop a scenario for the emergence of a non-singular
generic cosmological solution using the Vilenkin approach in the “corner
configuration”.

In Appendix A we present a brief summary for the computation of primordial
fluctuations in single field models. Appendix B contains a table related to the re-
sults presented in Chapter 4 and in Appendix C we formulate the General Kasner
solution for the inhomogeneous Mixmaster model. Finally, Appendix D contains
a summary of the work done during the industrial placement at Mobileum. This
is not related to the research done but it is an integral part of the PhD.

In this thesis we work in natural units, i.e h̄ = c = 1, unless otherwise stated,
and we use the reduced Planck mass MPl ≡ 1/

√
8πGN .
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Chapter 2

Inflationary Cosmology

In this chapter we review the state of modern cosmology discussing the Standard
Cosmological Model (SCM) and the Inflationary paradigm. In particular, we start
by reviewing the SCM and we show how, while it seems to perfectly describe the
Universe and account for Hubble discovery of the cosmic expansion, it presents
three major shortcomings. In the second part of the Chapter we introduce the
inflationary paradigm, giving a brief historical overview, presenting its main fea-
tures and showing how this exponential expansion can solve the problems of the
SCM. We then discuss single field models, introducing the slow-roll conditions
and describing how inflation proves to be a suitable mechanism to explain the
origin of the Large Scale Structures.
After explaining some of the reasons which lead us to extend our studies behind
the vanilla single field models, we introduce multifield models of inflation. The
slow-roll conditions in this case prove to be more complex than in the previous
case, and we analyse in detail the reason behind that. To conclude this discussion
we show how these models can solve recently proposed consistency conjectures.
In the last part of the Chapter we quickly review how to embed multifield models
in a supergravity framework and we discuss the η-problem in both field theory
and supergravity.
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2. INFLATIONARY COSMOLOGY

2.1 Standard model of cosmology and its short-
comings

The Standard Cosmological Model (SCM), is the most widely accepted cosmo-
logical model of the Universe: it accounts for the evolution of the Universe from
few moments after the Big Bang up to today.
This model is based on two main assumptions:

• the cosmological principle, which asserts that the Universe is homogeneous
and isotropic at large scales1.

• the universality of the physical laws.

According to this model the Universe expanded from a very hot and dense state
13.8 billion years ago.
However, this seemingly perfect cosmological model fails to provide an explana-
tions for the almost perfect homogeneity and isotropy of the Universe at early
times, the initial density perturbation and the incredibly small value of the flat-
ness constant that we measure today. These open problems are what we refer to
as the shortcoming of the SCM, and they are the reasons that brought scientists,
between the end of the ’70s and the early ’80s, to develop the idea of an early
phase of inflationary expansion.

In this section we briefly review the SCM model, introducing the Hubble law
and the Friedmann equations and we discuss the main shortcomings mentioned
above.

2.1.1 The expanding Universe and Friedmann equations

A turning point for the establishment of Cosmology as the science that we know
today, has been the realization that the Universe is, contrary to what Einstein
thought, not static.
In 1929 [10] E.Hubble was able to derive a relation between the spectral shifts

1One of the reason for its introduction was the Copernican Principle, according which the
Earth does not occupy a special place in the Universe.
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2.1 Standard model of cosmology and its shortcomings

and the distances of a sample of 50 galaxies; in particular he observed that there
is a linear relation between the recession period of a galaxy and its distance from
us. This result, which today is known as Hubble law, can be written simply as

v = H(t)d (2.1)

where v is the recession velocity of the galaxy, d is its distance and H(t) is
a proportional parameter called Hubble parameter. This equation, which since
then has been tested with improved accuracy, established once and for all that
we live in a dynamical Universe where distances increase with time. In particular,
it tells us that not only galaxies and other astronomical objects recede from us,
but the further away they are, the fastest they recede. This discovery led to
the development of The Big Bang theory, which describes the evolution of the
Universe from few instants after its birth until now.
The exact value of the Hubble parameter today, H(t0) = H0, is still object of
discussion, and there are numerous experiments at work to solve this puzzle, see
e.g.[11–14] and others and see [15] for a review. The current estimation, according
to the last data from Planck [16] is given by H0 = (67.4± 0.5)Km/s/Mpc.

When Hubble published his paper, the only known solution for the Einstein
Equations for a non-empty expanding Universe was the one already found inde-
pendently by Friedmann in 1922 [17] and Leimatrè in 1927 [18] (for the english
version see [19]). Both these solutions relied on two assumptions: an expanding
and matter-filled cosmological model and the cosmological principle.
A decade later, in 1935 and 1937, Robertson and Walker demonstrated, respec-
tively in [20] and [21] that the solution proposed by Friedmann was the most
general possible in a spacetime with the symmetries imposed by the cosmolog-
ical principle. Today we refer to this solution of the Einstein Equations as the
Friedman-Laimatrè-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin θ2dϕ2

)]
. (2.2)

where a(t) is the scale factor, which describes how the spatial directions evolve in
time, K denotes the spatial curvature and (r, θ, ϕ) are the spherical coordinates.
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2. INFLATIONARY COSMOLOGY

Note that, given the assumption of isometry, a(t) is the same for all the spatial
directions while the value of K determines the geometry of the Universe, that is
open, flat or closed respectively for K = 1, K = 0 and K = −1.
The equations which describe the dynamics of the Universe, thus the change of
the scale factor a(t) in time, are the Friedmann equations, and they have been
derived by Friedmann in 1922 [22] from the Einstein Equations for a perfect fluid1

and for the line element in eq.(2.2):

H2 =
ȧ2

a2
=

8πGρ

3
− K

a2
(2.4)

H2 + Ḣ =
ä

a
= −8πG

ρ+ 3P

6
(2.5)

Here H = ȧ
a
is the Hubble parameter andMPl =

√
h̄/(8πG) = 1 is the reduced

Planck mass.

The above equations, derived respectively from the component 00 − th and
ii− th of the Einstein equations, can be combined into the continuity equation

ρ̇+ 3H(P + ρ) = 0. (2.6)

If a cosmological fluid satisfies
P = ωρ (2.7)

then the continuity equation describes the evolution of the energy density

ρ ∼ ρ0a
−3(1+ω). (2.8)

Here ω is called equation of state parameter and assumes different values for
1Note that under the conditions of homogeneity and isotropy the stress energy tensor Tµν

takes the form of a perfect fluid

Tµν = (ρ+ P )UµUν − Pgµν , (2.3)

.
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2.1 Standard model of cosmology and its shortcomings

different forms of energy sources
ω = 0, matter (or when the kinetic energy is negligible)
ω = 1/3, radiation (or when the kinetic energy dominates)
ω = −1, cosmological constant.

(2.9)

Plugging eq.(2.8) in the first Friedmann equation (2.4), gives the evolution of
the scale factor a(t) as a function of time{

a(t) ∝ t
2

3(1+ω) , if ω ̸= −1

a(t) ∝ eHt, if ω = −1
(2.10)

Note that, when ω = −1, the density of energy is constant ρ ∼ ρ0: this
cosmological fluid is called dark energy. When the Universe is matter or radiation
dominated, the scale factor has a power law time dependency a(t) ∝ tα.

Using eq.(2.8) above, the Friedmann equation (2.4) can be rewritten in terms
of the density parameters: Ωi ≡ ρi

ρc
, where ρc ≡ 3M2

PlH
2 and ρi is the energy

density for each different species i, i.e

Ω ≡ ΣiΩi = 1 +
K

a2H2
. (2.11)

As discussed above, the equations derived by Friedmann describe an Universe
which expands in time. Not long after the Friedmann equations were published,
scientists realized that, as a direct consequence of the Universe’s expansion, at
the very beginning of time all the matter and radiation which today are scattered
through the space were concentrated in a hot and dense initial state. In 1948
Gamow and Alpher published a paper [23] arguing that this “thermal soup”
of particles was the perfect ground for the synthesis of the chemical elements
present in the Universe nowadays; they also realized that, after the temperature
of Universe dropped below T ∼ 0.23 − 0.28eV , i.e. when electrons were able to
combine with protons to form hydrogen atoms, the photons would have been able
to start travelling in straight line. They concluded that, as a consequence, the
Universe should be filled by a blackbody radiation field.
This field, known as the Cosmic Microwave Background (CMB), was measured
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2. INFLATIONARY COSMOLOGY

for the first time in 1965 [24].

Figure 2.1: The anisotropies of the CMB as measured by Planck and WMAP.
This image is taken from [1].

The CMB, as can be see in Fig.2.1 is an almost perfect black body with
a temperature of T = 2.72548 ± 0.00057K, and is considered one of the most
important observational evidence in support of the Big Bang theory.
The SCM accounts also for the existence of large scale structures, the abundance
of primordial elements (Big Bang nucleosynthesis) and most of the observational
data coming from experiments such as COBE [25] and Wilkinson Microwave
Anisotropy Probe (WMAP) [26, 27], are in agreement with this model predictions.
However, as we show in the next section, this cosmological model cannot explain
some important features present the Universe today.

2.1.2 Problems of the Standard Cosmological Model

After the discovery of the CMB, the interest in the Big Bang model grew expo-
nentially, and while the observations agreed with the theoretical predictions of
the model, it became clear that it was impossible for this theory to explain the
current state of the Universe without choosing extremely specific initial condi-
tions.
In other words, the SCM can explain some characteristic of the Universe today
only if we fine-tune the model parameters in the early stage of the Universe; but
this goes against the Copernican Principle, according which the human specie

10



2.1 Standard model of cosmology and its shortcomings

should not occupy a special place in the Universe.

The biggest issues faced by the Big Bang theory are: the horizon problem, the
flatness paradox and the relics problem.

All these problems find a solution thanks to the inflationary mechanism, see
Sec.2.2.

2.1.2.1 Horizon problem

The horizon problem arose immediately after the discovery of the CMB and of
its high degree of isotropy.
If on one side the isotropy and homogeneity of this radiation were crucial proofs
for the Big Bang theory, on the other this spatial uniformity was problematic. To
understand why it is necessary to relate the isotropy of the CMB to the notion
of causality.

In cosmology one of the most important concept is the comoving particle
horizon dH , which represents the maximum (comoving) distance light can travel
between two times t and t = 0. In particular, if the comoving distance between
two particles is greater than dH , these particles have never been in causal contact,
hence they never could have communicated:

dH =

∫ t

0

dt′

a(t′)
=

∫ a

0

(a′H)−1d(ln a′) (2.12)

from which, using eq. (2.10)

dH ∝ a
1
2
(1+3ω) ∼ (aH)−1 (2.13)

Note that in the last step it has been considered that for most part of its his-
tory, the Universe is dominated by matter or radiation, therefore ω > −1/3 and
a(t) ∝ tα.

The quantity (aH)−1 is called comoving Hubble radius and determines the
limiting distance of causal communication.
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2. INFLATIONARY COSMOLOGY

Note that to get from dH the physical horizon (hence the measurable one) rH ,
it is necessary to rescale dH for the scale factor,

rH = a(t)

∫ t

0

dt′

a(t′)
, (2.14)

hence eq.(2.13) can be rewritten as

rH ∼ H−1 (2.15)

In the SCM, the Hubble radius and the particle horizon have the same evo-
lution, as can be seen from eq. (2.13), and they both only increase in time.
As a consequence, we can expect that scales beyond the Hubble horizon today
(a0H0)

−1 are not in direct causal contact and have never been, since the particle
horizon dH has never been bigger than the Hubble one. Since the particle horizon
at the CMB time (trec) is much smaller than the CMB we see today (t0), we can
conclude that different regions of the CMB were not in causal contact at trec, see
Fig.2.2

Figure 2.2: Conformal diagram of Big Bang cosmology. At the time of the
recombination τrec A and B had never been in causal contact before (their past
light-cone did not intersect).

Furthermore, it is possible to roughly estimate the number of causal discon-
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2.1 Standard model of cosmology and its shortcomings

nected patches in the CMB comparing the comoving horizon volume today V0 to
that at trec, Vrec.
Using the definition of the redshift z + 1 = a0

a
, from eq.(2.13) it is possible to

compute the ratio V0/Vrec:(
dH0

dHrec

)3

=

(
a0
arec

) 3
2
(1+3ω)

= (1 + zrec)
3
2
(1+ω). (2.16)

At trec the redshift has been estimated to be z ∼ 1100, and assuming that the
matter component dominated between trec and t0, i.e ω = 0, we obtain:

V0
Vrec

∼ 104. (2.17)

To summarize, the CMB spectrum, where the anisotropies in temperature are
as small as 10−5, is constituted by ∼ 104 casually independent patches (each of
which has a size of ∼ 2 degrees).
“Why do these regions have such a fine-tuned temperature if they have never been
in thermal contact?” is the question at the origin of the horizon problem.

A possible answer could be that homogeneity and isotropy were part of the
initial conditions, but computing the energy density fluctuation δρ/ρ needed at
the beginning in order to have today a δT/T ≤ 10−4 (as required by the CMB
data), it results that, at the very beginning, the Universe had to have to be
δρin/ρin ∼ O(10−61). This value is too small and to fine-tuned to be physi-
cally acceptable1, therefore this possibility cannot be considered a solution to the
problem.

2.1.2.2 Flatness paradox

The geometry of the Universe can be described by the value of the parameter Ω,
introduced in eq. (2.11). The most recent Planck observations [16], combined
with the BAO (Baryon Acoustic Oscillations) data suggest that the value of the
spatial curvature of the Universe is

|Ω− 1| = 0.0007± 0.0019. (2.18)
1See again the Copernican principle.
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2. INFLATIONARY COSMOLOGY

which suggest that the Universe is very close to being flat.
The flatness paradox arises once we compute the value of the curvature parameter
in the very early stages of the Universe needed to have a (almost) flat Universe
today.
Recalling eq. (2.11),

Ω− 1 =
K

a2H2
∝ K

a2ρ
(2.19)

and eq.(2.8), it is possible to write (Ω−1) in terms of the redshift z, in particular,
when the Universe is dominated by matter (MD) or radiation (RD), the curvature
parameter is proportional to

MD (Ω− 1) ∝ (1 + z)−1, (2.20)
RD (Ω− 1) ∝ (1 + z)−2. (2.21)

Using the above equation, and knowing the value of the redshift parameter at
the recombination and at the Planck time, it is possible to evolve the curvature
parameter back in time. If today (Ω0 − 1) ∼ 10−3, at the recombination time
(zrec ∼ 1100), we have

Ω0 − 1

Ωrec − 1
=

(1 + z0)
−1

(1 + zrec)−1
→ (Ωrec − 1) ∼ O(10−7) (2.22)

and, at the Planck scale, where zPl ∼ 1031,

(ΩP − 1) =
(1 + zPl)

−2

(1 + zrec)−1
(Ωrec − 1) ∼ O(10−65) (2.23)

Again, as in the previous subsection, the initial value for the curvature param-
eter requested by the SCM to explain the flatness of the Universe today requires
an extremely fine-tuned value.

2.1.2.3 The relics problem

Lastly, it is worth mentioning the unwanted relics problem.
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In the very early stage of its history the Universe was incredibly hot so much
that we talk about hot Big Bang and it is possible that the temperature and the
energy scale reached the Planck scale. If this is the case, than it is possible to
have new, and very heavy, degrees of freedom which obey UV theories, as for
example new particle species predicted by supersymmetry .
All these new particles are massive, hence should be diluted slower than the ra-
diation during the Universe; if ΩX is their density parameter, since very heavy
particles have a small annihilation section, ΩX ≪ 1, i.e. they should have over-
close the Universe.

In particular, there should be enough of them for us to detect; however this
is in contrast with the observations.
Examples of these exotic objects are the magnetic monopoles. These are heavy
particles with an isolated magnetic pole. It has been showed that they are in-
evitable prediction of grand unification of elementary particle interactions [28].
Unfortunately, even if they are thought to interact through the electromagnetic
field and therefore they should be relatively easy to experiment on, they have
never been detected.

2.2 Inflation
The theory of inflation, formulated between the end of the ’70s and the beginning
of the’80s, has been introduced to give an answers to the numerous problems af-
fecting the SCM.
In the early ’70 Zeldovich noticed that the problems of the SCM (see Sec.2.1.2)
could be avoid if one assumes that the primordial Universe underwent a phase of
accelerated (quasi-exponential) expansion.
After the model proposed by Starobinksy in [29], which still assumed a perfectly
homogeneous and isotropic Universe as initial condition, the first “real” inflation-
ary model was formalized by Guth, in 1981 [30]. Unfortunately, according to his
model, quoting Guth himself, “the inflationary scenario seems to lead to some
unacceptable consequences”, called graceful exit. In the following year, A.Linde,
A.Albrecht and P.Steinhardt independently proposed a new scenario, called new
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inflation [31], which does not suffer from the graceful exit problem. In their mod-
els inflation is driven by the energy of a scalar field ϕ rolling down a potential
hill.
The fundamental idea behind both these models is that this new phase of quasi-
exponential expansion can change the causal structure of the spacetime, hence
the way the information propagates. In the following years numerous inflationary
models have been proposed, and still today this is a very active field.
In this section we introduce the inflationary dynamics, the concept of slow-roll
and we analyse the easiest realizations of inflation, i.e. the single field models. In
the last part we focus on the observable predictions of single field models and we
discuss how the experimental data collected in the last years compare to them.

2.2.1 How does Inflation work?

To avoid the horizon and flatness problem, inflation has to allow for the different
CMB regions to be casually connected; this would explain not only the homo-
geneity of the CMB but also and the incredibly small value of the curvature
parameter |Ω− 1| without having to impose any fine-tuned initial condition.

From eq.(2.13), it is clear that the comoving particle horizon can never be
larger than the Hubble radius; these quantities are proportional and they strictly
increase with the expansion of the Universe. Therefore, to have dHCMB

≫
(a0H0)

−1, it is necessary an epoch of decreasing Hubble radius in the very early
Universe:

d

dt
(aH)−1 < 0 (2.24)

An epoch characterized by a shrinking Hubble radius is known as inflation.
Using the Friedmann equations eq.(2.4) and eq.(2.5), the condition of a shrinking
Hubble radius can be expressed in terms of the acceleration and the pressure of
the universe. This allows to write the following equivalent conditions for inflation:

• Inflation is a period of an accelerated expansion: using the 2nd Friedmann
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eq.(2.5), eq.(2.24) can be written as

− ä

a2H2
< 0 which implies ä > 0. (2.25)

• Inflation is a period where a type of matter with negative pressure dominates:
the condition (2.24) implies that 1 + 3ω < 0, i.e.

ρ+ 3P < 0 (2.26)

From eq.(2.24), it can been seen that the inflationary period is also characterized
by a slowly changing Hubble parameter. Introducing the parameter ϵ1 as

ϵ ≡ − Ḣ

H2
(2.27)

the rate of change of the Hubble radius, can be written as

d

dt
(aH)−1 = −1

a
(1− ϵ) . (2.28)

It follows that having a slowly shrinking Hubble radius requires

ϵ≪ 1. (2.29)

The parameter ϵ can also be written as

ϵ = − Ḣ

H2
= −d lnH

dN
(2.30)

where N is the number of e-folds, defined as

dN ≡ d ln a = Hdt (2.31)

which indicates the number of expansion times of the Universe.
The limit of constant Hubble parameter, for which ϵ = 0, is called de Sitter
solution and it results in a pure exponential expansion of the scale factor: a(t) ∼

1In the rest of the thesis the parameter ϵ will be indicated as ϵ or ϵH indistinctly.
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eHt (in this case ω = −1).
However, since the mechanism of inflation needs to end in order for an apparent
Big Bang to take place, we require ϵ ≪ 1, which describes a quasi de Sitter
solution.
In order for inflation to last long enough to solve the problems of the SCM, it is
possible to define a second parameter, η, which indicates if the condition ϵ ≪ 1

lasts for a sufficient amount of time. This is defined as1:

η ≡ d ln ϵ
dN

=
ϵ̇

Hϵ
. (2.32)

and it quantifies the rate of change of ϵ over time.
To ensure that inflation lasts long enough |ϵ̇| ≪ ϵ, hence

|η| ≪ 1. (2.33)

The duration of an inflationary period is measured in e-folds, introduced in
eq.(2.31), and, as we explain in the next subsection Sec.2.2.2, a successful in-
flationary model has to last at least N ∼ 60− 70.
Eq.(2.29) and eq.(2.33) are referred to as slow-roll conditions, and they both need
to be satisfied in order to build a successful inflationary model.

2.2.2 Solution of the SCM problems
Horizon problem

During the de Sitter phase the Hubble length H−1 and the physical scale dH have
completely different evolution: the first one remains constant, while the second
increases exponentially.

In particular, the value ae of the scale factor at the end of the inflation is
related to ai, the scale factor’s value at the beginning of the inflation, by the
relation

ae = aie
H(te−ti) ≡ aie

N (2.34)
1As for the parameter ϵ, the parameter η will be indicate with η or ηH indistinctly.
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where N = ln ae/ai is the number of e-fold introduced in eq. (2.31).
The physical distance rH that the light could have traveled just after the end of
the inflation is rHe

rHe = ae

∫ ae

ai

1

(a′)2H
da′ =

ae
Hinf

(
a−1
i − a−1

e

)
∼ ae
aiHInf

∼ eN

HInf

(2.35)

where we used that ae ≫ ai and eq.(2.34). Here HInf is the value of the Hubble
parameter during inflation, hence it is constant.
Comparing the above equation with eq.(2.13) and eq.(2.15) it is clear that the
presence of an inflationary period allows for the particle horizon to be exponen-
tially larger than the comoving Hubble radius, hence rHe ≫ H−1.
This means that, even if at the recombination time different Hubble spheres were
outside the respective Hubble radius, they were inside the respective particle hori-
zons. Thus they had the possibility to be in causal contact in the early Universe,
see Fig.2.3.

Figure 2.3: Conformal diagram of inflationary cosmology. Inflation stretches
conformal time dτ = dt/a(t) to τ = −∞. This allows for the points A and B to
have been in causal contact in the past.
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To solve the horizon problem it is necessary that inflation lasts enough for all
the points on the CMB to have been in casual contact before. In the following
we compute the amount of inflation needed for the CMB to have been in casual
contact at te.
Let us assume that inflation took place at the Planck time tP , to give the most
restrictive constraint.
At ti, the maximum causal distance was roughly the Planck length lP ∼ 10−33cm.
After inflation, at te, this length has been stretched, as seen above, by a factor
eN

d(te) = eN lP . (2.36)

The same length computed today, at t0, becomes

d(t0) =
a0
ae
d(te) =

TP
T0
eN lP = 1032eN lP ∼ 10−1eNcm (2.37)

where it has been used Te ∼ TP
1, T0 = 10−13Gev, as estimated from the CMB,

and TP = 1019Gev.
Finally, requiring that this distance is at least as large as the of the Hubble radius
today

10−2eNcm ≥ 1028cm (2.38)

gives the following condition for the number of efolds

N ≳ ln 1029, → N ≳ 67. (2.39)

Flatness problem

Inflation solves the flatness problem by means of the same mechanism used to
solve the horizon one.
During inflation, since the Hubble parameterH = HInf is constant, from eq.(2.19)
it follows that Ω − 1 ∝ 1/a2. The spatial curvature after the inflation can be
written as

Ωe − 1 = (Ωi − 1)

(
ai
ae

)2

= (Ωi − 1) e−2N . (2.40)

1The temperature at the end of the inflation can be estimated as TP if the reheating is
maximally efficient, so that the Universe is reheated to the Planck energy.
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Recalling eq.(2.20), the spatial curvature today can be written as

Ω0−1 =
Tequiv
T0

(Ωequiv − 1) =
Tequiv
T0

(
TP
Tequiv

)2

e−2N ≃ 1060 (Ωi − 1) e−2N (2.41)

where Tequiv = 104K is the temperature at the matter and radiation equivalence.
Knowing that Ω0 − 1 ∼ 10−4, it follows

N ≥ ln 1032 + 1

2
ln (Ωi − 1) ∼ 73 +

1

2
ln (Ωi − 1). (2.42)

If at Planck time the initial deviation from flatness is not too large, the amount
of inflation needed to solve the horizon problem is enough to solve the flatness
problem as well.

2.2.3 Slow roll single field inflation

In Sec.2.2.1 we showed how inflation is an epoch characterized by a shrinking
Hubble radius or, equivalently, where by a type of matter with a negative pres-
sure dominates, see eq.(2.26).
The simplest way to realize either of these scenarios is assuming that the primor-
dial Universe is filled with one scalar field, called inflaton, which is minimally
coupled to gravity:

S =

∫
d4x

√
−g
[
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (2.43)

In this equation V (ϕ) is the potential of the scalar field, R is the Ricci scalar and
g is the determinant of the metric, which is assumed to be the flat FLRW metric
in eq.(2.2).
In a FLRW metric ϕ(x, t) = ϕ(t), and the equation of motion for the scalar field,
obtained varying the action above, becomes

ϕ̈+ 3Hϕ̇+ Vϕ = 0. (2.44)

where Vϕ = dV /dϕ. This equation describes a particle rolling down a potential
V (ϕ) and subjected to a friction 3Hϕ̇.
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To rewrite the Friedmann equation eq.(2.4) as a function of ϕ, let’s start by
computing the energy density ρϕ and the pressure Pϕ of the inflaton. From the
action eq.(2.43), the energy-momentum tensor is

T ϕ
µν = ∂µϕ∂νϕ− gµν

(
1

2
∂τϕ∂τϕ+ V (ϕ)

)
. (2.45)

from which

ρϕ ≡ T00 =
1

2
ϕ̇2 + V (ϕ), Pϕ ≡ Tii =

1

2
ϕ̇2 − V (ϕ) (2.46)

As a consequence, equations (2.4) and (2.5) can be written as

H2 =
1

3M2
Pl

(
ϕ̇2

2
+ V (ϕ)

)
(2.47)

Ḣ = − ϕ̇2

2M2
Pl

(2.48)

where it has been assumed K ∼ 01.

Since inflation is supported by a scalar field with negative pressure, ωϕ =

Pϕ/ρϕ < 0, and the potential energy dominates over the kinetic term:

ϕ̇2 ≪ V (ϕ) (2.49)

Note that this condition is equivalent to impose the first slow-roll condition,
eq.(2.29). This can be understood by writing ϵ explicitly in terms of the scalar
field:

ϵH ≡ − Ḣ

H2
=

3ϕ̇2(
ϕ̇2 + 2V (ϕ)

) ≪ 1 ⇒ ϕ̇2 ≪ V (ϕ) (2.50)

From the second slow-roll condition, eq.(2.33), we obtain a condition on the
1This can be done given the experimental data on the flatness of the Universe.
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second derivative of ϕ

ηH ≡ ˙ϵH
HϵH

= 2

(
ϕ̈

Hϕ̇
+ ϵH

)
≪ 1 ⇒ ϕ̈≪ Hϕ (2.51)

where we used ϵH ≪ 1.
Equations (2.49) and (2.51) define the slow-roll regime: if a scalar field satis-

fies both these conditions, then inflation can happen, eq.(2.49), and lasts enough
to solve the SCM problems, (2.51).
The parameters ϵH and ηH are called Hubble slow-roll parameters 1.
Under the slow-roll conditions, the equation of motion for ϕ (2.44) and the Fried-
mann equation (2.47) can be simplified as

3Hϕ̇ ≃ −Vϕ, H2 ≃ 1

3M2
Pl

V (ϕ) (2.52)

From the first of these equations it is possible to see that, in order to have the
required small kinetic energy, the potential has to be flat enough. When this
is the case, H ∼

√
V /(3M2

Pl) is almost constant, and the scale factor increases
exponentially, a(t) ∼ eHt.

In the single field scenario it is possible to define the potential slow-roll pa-
rameters ϵV and ηV , which express the slow-roll conditions (2.50) and (2.51) in
terms of the potential shape:

ϵV ≡ M2
Pl

2

(
Vϕ
V

)2

≪ 1 ηV ≡M2
Pl

(
Vϕϕ
V

)
≪ 1. (2.53)

From these equations, again, it is evident that inflation requires a rather flat
potential.

An example of a suitable potential for inflation is

V (ϕ) = V0

(
1− e

−
√

2
3

ϕ
MPl

)
(2.54)

1In the following sections these will be referred to as slow roll parameters except when
indicated and will be indicated as ϵ and η.
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which is called Starobinsky potential, and is represented in Fig.2.4.

Figure 2.4: Starobinsky potential with V0 = 1. The flat part of the potential, on
the right side, allows for inflation to take place. The scalar field ϕ starts its journey
at ϕin and then slowly rolls down until the potential becomes to steep to sustain a
slow-roll, ϕend.

The inflaton, represented by the red circle, starts rolling down the flat part of
the potential until it reaches ∼ ϕend where its velocity ϕ̇ increases. This change
spoils the first slow-roll condition eq.(2.49) and causes the end of inflation, which
happens when ϵ = 1.

2.2.4 Cosmological perturbations, observations and Planck
data

One of the biggest success of inflation, besides the resolution of the SCM problems,
see Sec.2.1.2, is that it provides a suitable mechanism to explain the small pri-
mordial fluctuations, which are held liable for the origin of the CMB anisotropies,
see Fig.2.1, and large scale structures, such as galaxies, stars and so on.
During the inflation these primordial fluctuations are generated as quantum vac-
uum fluctuations of the scalar field, δϕ, in a subhorizon regime (i.e when their
scales are smaller than the Hubble scale). As the exponential expansion proceeds
these small fluctuations are stretched to very large scales and once the Hubble ra-
dius 1/(aH) drops below their scales, i.e. they become superhorizon, they freeze.
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2.2 Inflation

When inflation is over and the Hubble horizon expands faster than the physi-
cal scales, they re-enter the horizon and eventually become the initial density
fluctuations that seed all structures in the Universe, see Fig.2.5.

Figure 2.5: Quantum fluctuations produced during the inflation are created sub-
horizon (k ≫ aH) (left side). They freeze once they exit the horizon, hence ζ̇ ∼ 0
and they re-enter the horizon after the end of inflation becoming the seed for all
the structures in the Universe (right side).

To be sure that the Universe remains homogeneous and isotropic at large
scales, it is necessary that these perturbations are small relatively to the back-
ground dynamics analysed in the previous section.
In Appendix A we briefly sketch the computations for the quantum fluctuation
generated during inflation in a pure de Sitter and massless case. A more extensive
derivation can be found in [32–36] and in references therein.

Two of the most important results derived from the study of the primordial
fluctuations are the expressions for the scalar and tensor power spectrum, derived
in eq.(A.18) and eq.(A.19), i.e.

∆2
R(k) =

H2

8π2ϵ

∣∣∣
k=a∗H∗

, ∆2
t (k) =

2H2

π2

∣∣∣
k=a∗H∗

. (2.55)

To derive these equation we assumed a de Sitter and massless approximation
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which lead to a scale-invariant spectrum.
However, as seen in Sec.2.2.1 inflation takes place in a quasi de Sitter space,
therefore the results obtained requires small corrections, of order slow-roll. Be-
cause during inflation the Hubble parameter is nearly constant, different modes
crossing the horizon at different times, are “subject” to slightly different H; this
can be taken into account introducing the scalar spectral indices ns, defined as

ns − 1 ≡ d ln∆2
R

d ln k (2.56)

Using this parameter the scalar power spectrum can be parameterized as

∆2
R(k) = AR(k

′)

(
k

k′

)ns−1

(2.57)

where k′ is the reference scale.
Analogously, it is possible to introduce a tensor spectral index nt to parameterize
the tensor power spectrum

nt ≡
d ln∆2

t

d ln k , ∆2
t (k) = At(k

′)

(
k

k′

)nt

. (2.58)

The ratio between the amplitude of the tensor perturbations respect to the scalar
perturbations is called tensor-to-scalar-ratio, is indicated by r and is defined as

r ≡ ∆2
t (k

′)

∆2
R(k

′)
(2.59)

Using the slow-roll parameters definition, eq.(2.50) and eq.(2.51), the above
parameters can be written as

ns = 1− 2ϵ− η, nt = −2ϵ, r = 16ϵ. (2.60)

An other important parameter is the running of the spectral index αs defined as

αs =
dns

d ln k (2.61)

The majority of cosmological data that we have today have been deduced
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studying the power spectrum of the temperature fluctuations in the CMB, see
Fig.2.1. Since this provides us with a picture of the Universe when it was only
380’000 years old, its study is our best possibility to determine the inflationary
parameters introduced above.
The Planck satellite in particular has mapped the Universe with incredible pre-
cision and the data provided by the Planck collaboration [1, 2] can be used to
make a selection of inflationary models, see Fig.2.6.

Figure 2.6: Planck 2018 results [2] for ns and r combined with the theoretical
predictions of different inflationary models. The predictions are calculated for
k′ = 0.002Mpc−1.

The scalar power spectrum’s amplitude A2
R(k), see eq.(2.57), which has been

detected for the first time by COBE [25], has been determined to be

A2
R(k

′) = (2.14± 0.10)× 10−9, k′ = 0.05Mpc−1 (2.62)

and the scalar spectral index ns and αs have been measured to be

ns = (0.9649± 0.0042) (68%CL) , αs = (−0.005± 0.013) (95%CL) (2.63)

These values suggest that the inflationary power spectrum is nearly scale invari-
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ant.
The value of r has also been tested studying the CMB’s polarization. Light com-
ing from the CMB has two polarization, called E-modes and B-modes and, while
the E-mode polarization can be sourced by both tensor and scalar perturbations,
the B-mode one is only characteristic of the tensor fluctuations. Since no B-mode
has been detected as of now, the current Planck data [2] set an upper limit for r,
which strictly depends on the sensitivity of the satellite

r0.002 < 0.1 (95%CL) . (2.64)

Here they assumed that nt = −r/8 and the subscript indicates that the value has
been calculated at the pivot scale k′ = 0.002Mpc−1.
However, combining this result with the data collected by the BICEP2-Keck
experiment [37], a tighter limit is obtained

r0.002 < 0.056 (95%CL) . (2.65)

In [38] the authors provided an upper bound for r for k′ = 0.05Mpc−1 adding to
the Planck data to the Keck Array data taken during the observational season
ended in 2018:

r0.05 < 0.036 (95%CL) . (2.66)

In Fig.2.6 we can see which are the predictions for ns and r for different infla-
tionary models and how they compare respect to the different Planck constraints.
In this case ns and r are evaluated at the pivot scale of k′ = 0.002Mpc−1 which
corresponds to a horizon crossing between 50 and 60 e-folds.

To conclude this paragraph, it is worth mentioning that, measuring the power
spectrum amplitude A2

R (eq.(2.62)) it is possible to set an upper bound on the
value of the inflationary energy. In particular, using the definition of r

r =
A2

t

A2
R

=
1

A2
R

2

3π2M4
Pl

V ⇒ V 1/4 ≃
(
3

2
π2rA2

R

)1/4

MPl (2.67)
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from which, using MPl =
√
1/(8πG) = 2.45× 1018GeV , we obtain

V 1/4 ≃ 3.2× 1016 (r)1/4GeV. (2.68)

This result suggests that inflation should happen at very high energy scale,
slightly below the Planck scale, around 1015 − 1016GeV .

2.2.4.1 Primordial non-Gaussianities

In the previous subsection it was shown how the observational data from the CMB
agree with the predictions of many single field inflationary models, see Fig.2.6. In
particular these vanilla models agree with two well tested observations: a nearly
scale invariant spectrum (ns ∼ 1) and a small tensor to scalar ratio r < 0.1.
However, there are some physical observables which, if detected, would rule out
most of the singlefield models. One of these observables are Non-gaussianities.
The power spectra computed in Appendix A can capture the properties of Gaus-
sian statistics, however non-gaussian statics could present new interesting infor-
mation [39–44].
In particular, they could provide new insights into inflationary dynamics which
cannot be present in the scalar or tensor power spectra, as explained in [45].

To study deviation from the Gaussian distribution we need to look into higher
order correlation functions. The bispectrum of the curvature perturbation, i.e the
Fourier transform of the three-point correlation function, is defined by

⟨R(k1)R(k2)R(k3)⟩ ≡ (2π)3δ(3) (k1 + k2 + k3)BR (k1, k2, k3) (2.69)

where the delta function denotes the momentum conservation, hence the three
momenta are bounded to form a triangle in k-space.
The bispectrum can have many possible shapes depending on the three momenta
and the overall factors. It is therefore convenient to introduce a shape func-
tion, S(k1, k2, k3), to represent the different triangular shapes and a non-linear
parameter fNL to describe the size of the non Gaussian signal:

BR(k1, k2, k3) =
18

5
fNLS(k1, k2, k3)∆

2
R. (2.70)
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Note that the shape function is scale-dependent while the the amplitude does not
depend on k.

The most studied templates for the bispectrum are three: local, orthogonal
and equilateral. See [46] for a detailed review.
In Table 2.1, it is possible to find a summary of the characteristic of these tem-
plates and the data collected by Planck for each of them [47].

Shape Relationship between momenta Planck data (CL 68%)
Local k1 ≪ k2, k3 f loc

NL = −0.9± 5.130
Equilateral k1 = k2 = k3 f eq

NL−26± 47
Orthogonal k1 = k2 + k3 f orth

NL = −38± 24

Table 2.1: Shapes of non-gaussianity and Planck constraints [47] for each of them.

But which information can we derive from fNL for the different templates?
The behavior of the bispectrum for different triangle configurations encodes in-
formation about various physical effects that took place during the inflation.
The most famous exaple in this sense, is the consistency relation derived by Mal-
dacena in [39]. In the squeezed configuration, where one of the wavenumbers is
much smaller than the others, he showed that the amplitude of the bispectrum
is proportional to the tilt of the power spectrum, i.e

lim
k1≪k2=k3

BR(k1, k2, k3) ∝
d ln∆2

R(k3)

d ln k3
(2.71)

Since d ln∆2
R/d ln k ∼ (ns − 1) in the vanilla models, this quantity is of order

slow-roll. As a consequence, any detection of a signal in the squeezed limit would
rule out all single field models of inflation.
Similarly, in [48] the author demonstrated that single field models of inflation
produce f equil

NL < 1, hence any detection of f equil
NL > 1 would imply that the inflation

becomes strongly coupled or it is realized by a multifield scenario, [49, 50].

The Planck collaboration has tested non-gaussianity through CMB measure-
ments providing us with very accurate data, see Table 2.1, which helped to rule
out many multifield models with more than one light fields.
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Given the complexity and the limitations that these type of measurements
on the CMB are subject to, today the experimental attention is shifting toward
the study of large scale structures (LLS) where it is possible to use the galaxies
distribution to infer statistics of the primordial perturbations. Using LLS it is
possible to use a three-dimensional dataset (the distribution of matter) which is
much larger the two dimensional one from the CMB. Experiments working in this
direction, which can help shedding light on the driving interactions during the
inflationary era [45] include DESI [51], LSST [52], Euclid [53] and SKA [54].
It is thus essential to understand, from a theoretical point of view, what scenarios
and observables we may expect from models which go beyond the simple single
field vanilla model. This is one of the main reasons (as we are going to see in the
next section) which brought us to focus on the study of more general multifield
models of inflation.

2.3 Multifield Inflation
After more than 40 years from Guth’s paper [30], inflation has revealed to be so
successful that, still today, it is the most widely accepted theory for the explana-
tion of the Big Bang. Over the decades, however, the vanilla single field models
described in the previous section, have showed some weakness and shortcomings
which brought the scientific community to start investigating more general and
complex inflationary scenarios: multifield models.
In this section we describe the main reasons for which it is important to study
more general inflationary dynamics, we describe their dynamics and show how
their slow-roll conditions differ from the single field case, Sec.2.3.3.1. We also
introduce multifield inflationary models in supergravity; we explain why it is
natural to embed multifield models in a high-energy theory and we derive their
equations of motion in such setting.
Finally we introduce the η-problem for both field theory models and supergravity
embedded ones.
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2.3.1 Why should we consider multifield inflation?

Cosmological inflation, introduced as a natural explanation for the homogeneity
and flatness problem, has been validated by the most recent observations from
the Planck, COBE and WMAP satellites.
All these observations, including the near scale invariance of the power spectrum
of the primordial density fluctuations, are consistent with the single field slow-
roll inflationary model described in the previous section, which is the simplest
inflationary scenario, see Sec.2.2.4.
However, there are good reasons to think that a more complex model might be
needed:

• Single field models are not always natural, especially considering the very
high energy scales involved during inflation, see eq.(2.68). Many high energy
theories, which aim to extend the Standard Model of particle physics, e.g.
string theory or supergravity, require the presence of multiple scalar fields.
Hence it is important to understand how the dynamics of the inflation
would change if we consider multiple scalars coupled to the inflaton. In
particular it is interesting to explore how the observational predictions (ns,
r, Non-gaussianities, etc.) would change following the presence of these
extra degrees of freedom.

• Recently proposed consistency conjectures [55, 56] on the low energy ef-
fective theories derived from quantum gravity imply that the simple single
scalar field inflation belongs to the swampland, a set of effective field theo-
ries which cannot be consistently embedded in a theory of quantum gravity.
However, in [57] it was shown that multifield models of inflation, which can
follow curved, non-geodesic trajectories, are instead not ruled out by the
swampland conditions.

• The vanilla single field model inflationary paradigm is well supported by the
observations, however the data collected until now are not able to give us an
explanation of how inflation happened. In particular, they do not provide a
definitive answer to the question: “How many fields were involved?”, since
also many multifield models of inflation lead to very similar predictions.
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However, major experimental efforts are being pursued in this direction hop-
ing to get some anwers in the next decades thanks to experiments such as
the stage four CMB-S4 [58] or CLASS [59], LiteBIRD [60], the Simons Ob-
servatory [61] and Probe Inflation and Cosmic Origins (PICO [62]), which
aim to detect the B-mode polarization in the CMB induced by primordial
gravitational waves.
Moreover, Large Scale Structure observations by forthcoming experiments,
such as DESI [51], LSST [52], Euclid [53] or SKA [54], may also find the
existence of primordial non-Gaussianities, see Sec.2.2.4.1, shedding light on
the driving interactions during the inflationary era [45].
Therefore it is essential to have a deep theoretical knowledge of what sce-
narios and observables we may expect from models which go beyond the
simple single field slow-roll.

• One of the criticisms moved to the theory of inflation is that it requires an
incredibly flat potential, almost fine-tuned.
However, as it will be shown in Sec.2.3.3.1, there are multifield models
which can evade this problem allowing for the inflation to take place with
potentials that would be too steep for a slow-roll.

Given the above reasons, recent years have seen a surge in the study of mul-
tifield models of inflation.

2.3.2 Generalities

In this section we will present the basic aspects of multifield inflation following
the formalism developed in [63], [64], [65] and [66].
Considering a set of n scalar fields ϕa = (ϕ1, ϕ2, ..., ϕn) minimally coupled to
gravity, with possible non canonical kinetic terms, the action S equivalent to
(2.43) can be written as

S =

∫
d4x

√
−g
[
M2

Pl

2
R− 1

2
Gab∂µϕ

a∂µϕb − V (ϕa)

]
(2.72)
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where Gab is the field space metric, which accounts for non trivial coupling be-
tween the n fields, and V (ϕa) is a function of the n scalar fields.
As in the single field case, the spacetime metric can be assumed to be homoge-
neous and isotropic, hence we consider a flat FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj. (2.73)

With this setup, the equations of motion and the Friedmann equations become

ϕ̈a+3Hϕ̇a + Γa
bcϕ̇

bϕ̇c +Gab ∂V

∂ϕb
= 0 (2.74)

H2 =
1

3M2
Pl

(
1

2
φ̇2 + V (ϕa)

)
(2.75)

Ḣ = − 1

2M2
Pl

φ̇2. (2.76)

where
φ̇2 = Gabϕ̇

aϕ̇b (2.77)

and the Christoffel symbols Γa
bc are the ones associated with the field space metric

Gab:
Γa
bc =

1

2
Gas (∂bGas + ∂cGbs − ∂sGbc) . (2.78)

Note that eq.(2.76) can easily be obtained by combining the previous two,
therefore specifying Gab and the shape of the potential V (ϕa), equations eq.(2.74)
and eq.(2.75) can be solved.

The above system, written in the field basis, is not particularly helpful in
providing an intuition for the system evolution. It is difficult to understand how
the fields interact, making it hard to know how the different δϕa combine to give
the curvature perturbations and which is the field hierarchy if the mass-matrix is
not diagonal.
It is therefore preferable to study multifield inflation using the basis which is
actually induced by inflationary trajectory itself, the kinematic basis: in this case
the equations of motion eq.(2.74) are projected onto the tangential and normal
directions to the inflationary trajectory.
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In this dissertation we focus on two-fields models, hence we will consider only one
vector normal to the trajectory, for a generalization to more fields see [67].

If a curve is parameterized as ϕa(t), the square root of eq.(2.77) defines a field
speed along the curve, and can be used to define the tangent vector T a:

T a =
ϕ̇a

φ̇
(2.79)

which is automatically normalized, T aTa = 1.
The normal vector Na is defined such that TaNa = 0:

Na ≡ sN(t)

(
Gbc

DT b

dt

DT c

dt

)−1/2
DT a

dt
= ±DtT

a

|DtT |
(2.80)

where sN(t) = ±1 denotes the orientation of Na respect to the vector DtT
a. Also

in this case the vector is normalized, NaNa = 1. Na is well defined only where
DtT

a ̸= 0, but since DtT
a can become zero for finite values of t, sN(t) is allowed

to flip signs each time this happens, so that Na is a continue functions of t.
An equivalent definition of the vector Na, the one which will be predominantly
be used in this thesis, is the following

Na =
√
GϵabT

b, Na = GabNb. (2.81)

To have a clearer understanding of the vectors T a and Na see Fig.2.7.
Projecting the equations of motion eq.(2.74) along T a and Na yields respec-

tively the following equations:

φ̈+ 3Hφ̇+ VT = 0 (2.82)

DtT
a = −VN

φ̇
Na (2.83)

where VT = T aVa, VN = NaVa and DtT
a = Ṫ a + Γa

bcT
bϕ̇c.

Eq. (2.82) is the multifield generalization of eq.(2.44), while eq.(2.83) describes
the deviation of the inflationary trajectory from a geodesic. In particular, using
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Figure 2.7: Relative orientation of the tangent vector field T a and the normal
vector field Na with respect to the background solution ϕa0(t).

eq.(2.80), eq.(2.83) can be written as

|DtT | = −VN
φ̇

⇒ |DNT | = − VN
Hφ̇

≡ Ω

H
(2.84)

where Ω/H is the dimensionless turning rate of the trajectory: it describes how
fast the tangent vector T a rotates in time, i.e. how much the inflationary trajec-
tory departs from a geodesic.

In particular, if Ω/H = 0, the trajectory follows a geodesic and the inflationary
dynamics is not really different from a single field one, while, when Ω/H ̸= 0, the
second field involved plays an important role. The parameter Ω is the turning
parameter and is defined as

Ω =
VN
φ̇

(2.85)

Mass Matrix

To study the masses of the scalar fields we need to compute the eigenvalues of
the Mass Matrix, defined as:

Ma
b ≡M2

Pl∇a∇bV. (2.86)
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In the specific case of two fields inflation it is useful to write the above expres-
sion in different basis: the field base and the kinetic one. The two expressions
are clearly equivalent, but, as we will see later in the thesis (chapter 3 and 4) in
some cases one of them might be preferred to the other.
In the field base, assuming that ϕa = (ρ, θ), eq.(2.86) becomes

M =M2
Pl

(
V;ρρ V;θρ
V;ρθ V;θθ

)
=M2

Pl

(
∂ρVρ − Γk

ρρVk ∂θVρ − Γk
θρVk

∂ρVθ − Γk
ρθVk ∂θVθ − Γk

θθVk

)
(2.87)

where the Christoffel can be computed using the field space metric Gab.

Introducing the kinetic frame, M can be written as

M =M2
Pl

(
VTT VTN

VNT VNN

)
(2.88)

where VTT = T aT b∇a∇bV , VTN = T aN b∇a∇bV , etc.., and its eigenvalues result
to be:

λ± =M2
Pl
1

2

[
VTT + VNN ±

√
(VTT − VNN)

2 + 4V 2
TN

]
=

1

2

[
TrM±

√
TrM2 − 4detM

]
(2.89)

To write the eigenvalues of the mass matrix explicitely in terms of slow-roll
parameters and Ω/H, it is sufficient to take the time derivative of eq.(2.82), which
provides an expression for the tangent projection VTT [3], [66], [68] :

VTT

3H2
=

Ω2

3H2
+ ϵ− δφ − ξφ

3
(2.90)

where
δφ ≡ φ̈

Hφ̇
ξφ ≡

...
φ

H2φ̇
(2.91)

Next, taking the time derivative of eq.(2.85), it is possible to obtain an expression
for the diagonal element of the mass matrix, VTN (see [68], [66]):

VTN

H2
=

Ω

H
(3− ϵ+ 2δφ + ν) , (2.92)
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where ν describes the variation of the dimensionless turning rate

ν ≡ ω′

ω
(2.93)

where ω ≡ Ω/H and the prime ′ denotes a derivative respect to N .
Note that the above expressions for VTT and VTN are exact since they have

been derived without using any slow roll approximation.

2.3.3 Slow roll conditions

Using the equations of motion, the slow roll conditions, eq.(2.29) and eq.(2.33),
can be written as

ϵ = − Ḣ

H2
= − φ̇2

2M2
plH

2
≪ 1 ⇒ φ̇2 ≪ V (2.94)

η =
ϵ̇

Hϵ
= 2

φ̈

Hφ̇
+ 2ϵ≪ 1 ⇒ δφ ≪ 1. (2.95)

and it can easily be noticed that they have exactly the same form of eq.(2.49)
and eq.(2.51).
However in multifield inflation, given the possibility for the different scalar fields
involved to interact and give rise to non geodesic-trajectories, there is a third
condition which needs to be satisfied in order to have a long sustained period of
inflation.
In [69] it has been shown that, to ensure that ∂tϕ̇a ∼ O

(
ϵHϕ̇a

)
, i.e that the

acceleration terms are negligible compared to the fields’ velocities, the parameter
ν introduced in eq.(2.93) has to be small, hence the dimensionless turning rate
has to vary slowly along the inflationary direction:

ν ≪ 1. (2.96)

Using the slow-roll conditions, the equations of motion can be simplified. In
particular from the first equation

H2 ≃ V

3M2
Pl

(2.97)
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while δφ ≪ 1 implies that eq.(2.82) becomes

3Hφ̇+ VT ≃ 0. (2.98)

Going back to eq.(2.95), this condition is satisfied if

φ̈

Hφ̇
=

2ϕ̇aDt(ϕ̇
a)

Hφ̇2
≪ 1 ⇒

∣∣∣ϕ̇aDt(ϕ̇
a)
∣∣∣ = 1

2

∣∣Dt(φ̇
2)
∣∣≪ Hφ̇2 (2.99)

While this equation, in the single field case, can be satisfied only if ϕ̈2 ≪ Hϕ̇, in
the multifield models there are two possible options:

1. Slow-roll, Slow-turn inflation (SRST) when
∣∣∣Dt(ϕ̇

a)
∣∣∣≪ Hφ̇. This condition

is equivalent to the single field ϕ̈≪ Hϕ̇.

2. Slow-roll, Rapid turn inflation (SRRT) when Dt(ϕ̇
a) is almost orthogonal

to ϕ̇a. In this case
∣∣∣ϕ̇aDt(ϕ̇

a)
∣∣∣ ≪ 1 is satisfied, but it is not necessary for

Dt(ϕ̇
a) to be small.

Before going into detail on the differences between SRSR and SRRT models,
let us introduce two new slow-roll parameters which will be used in Chapter 3
and 4. From eq.(2.97) and eq.(2.98) it is possible to define ϵT , which expresses
the first slow-roll condition in terms of the potential shape:

ϵ ∼ V 2
T

9H2(2H2)
⇒ ϵT ≡ M2

Pl
2

(
VT
V

)2

≪ 1. (2.100)

Note that, while in the single field case the slow-roll parameter ϵV was written
in terms of the gradient flow of the potential Vϕ, in the multifield case the slow-roll
parameter ϵT depends only on the projection of the potential along the tangent
direction. As we will show later in this section, ϵV can no longer be used as a
slow-roll parameter when there is more than one scalar field involved.
Similarly, it can be noticed that the physical interpretation of ηV in multifield
inflation differs from that of the single field one, eq.(2.53).

In particular in multifield inflation ηV is defined as

ηV ≡ |min.eigenvalue{M}|, (2.101)
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which is not equivalent to the second slow-roll parameter defined in eq.(2.95).
However, analogously to ϵT it is possible to define a parameter ηT in terms of the
derivative of the potential along the tangent direction and which can be used to
ensure the slow-roll condition:

ηT ≡ −M2
Pl
VTT

V
. (2.102)

The η parameter, defined as in eq.(2.95) becomes

η = 2M2
Pl

(
−VTT

V
+

(
VT
V

)2
)

= −2ηT + 4ϵT (2.103)

2.3.3.1 SRST and SRRT

To distinguish between these two regimes, it is necessary to write explicitly the
expression of ϵV in the multifield case.
In two fields models, ϵV is defined as

ϵV ≡ 1

2

VaV
a

V 2
, a = 1, 2 (2.104)

or, equivalently,
ϵV =

1

2

(
V 2
T + V 2

N

V 2

)
. (2.105)

The first part of the above equation can be derived using eq.(2.82) and eq.(2.95):

VT = −φ̈− 3Hφ̇, φ̈ = (η − 2ϵ)
Hφ̇

2
(2.106)

which, if combined, lead to

1

2

V 2
T

V 2
= ϵ

[
1 +

η

2(3− ϵ)

]2
. (2.107)

Note that this result has been obtained without assuming any slow-roll.
The second part of eq.(2.105) can be written in terms of the dimensionless
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turning rate, see eq.(2.83):

VN =
Ω

H
(Hφ̇) ⇒ 1

2

V 2
N

V 2
=

Ω2

9H2

ϵ

(1− ϵ/3)2
. (2.108)

As a result,

ϵV = ϵ

[(
1 +

η

2(3− ϵ)

)2

+
Ω2

9H2

ϵ

(1− ϵ/3)2

]
. (2.109)

Assuming the slow-roll conditions ϵ ≪ 1 and η ≪ 1, this can be reduced to
[68].

ϵV ≃ ϵ

[
1 +

Ω2

9H2

]
. (2.110)

This expression is key to understand the difference between SRST and SRRT
models:

1. When
Ω/H ∼ 0 ⇒ ϵV ∼ ϵ, (2.111)

we have a SRST inflation. In this case the parameter ϵV can be used to
determine if the inflationary model admits a slow roll regime, as in the
single field case, and it is possible to solve the system simply solving the n
equations of motion for the fields

3Hϕ̇a + V a ≃ 0. (2.112)

2. When

Ω/H ≳ O(1) ⇒ ϵV > ϵ (2.113)

we have a SRRT inflation. In this case VN ≫ VT , therefore the inflationary
trajectory is aligned mostly on the direction orthogonal to Va and does not
follow a geodesic. As a consequence, the slow roll condition ϵT ≪ 1 can
remain true even if ϵV is too big for slow roll slow turn inflation.
The peculiarity of this type of models is that they do not require a very
flat potential to realize inflation. As a consequence, SRRT models “solve”
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the conceptual problem discussed in Sec.2.3.1 of having to fine tuned the
inflationary potential to solve the problems of the SCM.

In Chapter 3 and 4 we mainly focus on two fields models which present a
rapid turn.

2.3.4 Adiabatic and entropic perturbations

In this section we derive the linear perturbations for multifield models. For a
comprehensive review see [70].
To study the dynamics of scalar linear fluctuations, the first step is to derive the
second-order action S(2), [71–75]

S(2) =

∫
dtd3xa3

(
GabDtQ

aDtQ
b − 1

a2
Gab∂µQ

a∂µQb −MabQ
aQb

)
. (2.114)

In the above equation Qa are the field fluctuations, i.e. ϕa = ϕa
0 + Qa, and the

squared mass matrix Mab is given by

Mab = V;ab − Racbdϕ̇
cϕ̇d + (3− ϵ)ϕ̇aϕ̇b (2.115)

with V;ab = V,ab − Γc
abVb.

The equations of motion for the linear fluctuations can be deducted from eq.(2.114)
and, in Fourier space, they are:

DtDtQ
a + 3HDtQ

a +
k2

a2
Qa +Ma

bQ
b = 0 (2.116)

We see, from the above equation, that the field fluctuations are coupled to each
other through the mass matrix Mab.

To gain a better insight of the equations above, eq.(2.114) and eq.(2.116),
these can be rewritten using the local orthonormal vielbein frame eIa [70], which
in the specific case of two-fields can be defined as

eaT = T a, eaN = Na. (2.117)
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Doing so, eq.(2.116) can be rewritten as the following system (see also [74]):

Q̈T + 3HQ̇T +

(
k2

a2
+m2

T

)
QT = (2ΩQN)

˙−

(
Ḣ

H
+
VT
φ̇

)
2ΩQN (2.118)

Q̈N + 3HQ̇N +

(
k2

a2
+M2

)
QN = −2Ω

φ̇

H
Ṙ (2.119)

where QN = NaQ
a and QT = TaQ

a are respectively the entropic and adiabatic
mode1 and R is the comoving curvature perturbation which, in the spatially flat
gauge, is defined as

R =
H

φ̇
QT . (2.120)

The adiabatic mass m2
T is given by

m2
T

H2
≡ −3

2
− 1

4
η2 − 1

2
ϵη − 1

2

η̇

H
(2.121)

and the entropy mass M2 is given by

M2

H2
=
VNN

H2
+M2

PlϵR− Ω2

H2
(2.122)

In multifield inflation, besides defining R as in eq.(2.120), it is possible to define
an equivalent quantity for the adiabatic mode, the isocurvature perturbation S:

S =
H

φ̇
QN . (2.123)

This can be used to write the first integral for ζ on super Hubble scales
k ≪ aH as [76]

R ≈ 2ΩS. (2.124)

Substituting the definition of S in the last equation, and replacing the result
obtained in eq.(2.119), this becomes

Q̈N + 3HQ̇N +
(
M2 + 4Ω2

)
QN ≈ 0, (2.125)

1In the single field case the entropy perturbations vanish on large scale, see [76].
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which can be used to define the effective entropic mass as

M2
eff =M2 + 4Ω2. (2.126)

If there is no turning rate, hence the inflationary trajectory follows a geodesic,
M2

eff =M2.
The relative size of M2 and M2

eff plays a crucial role as it is related to the speed
of sound for the adiabatic perturbation [66, 77, 78]:

c−2
s =

M2
eff

M2
(2.127)

Looking closely at eq.(2.122), the dynamics of the linear perturbations and there-
fore the cosmological predictions will depend on the hierarchies of the adiabatic
and entropy modes’ masses relative to each other, the Hubble parameter and the
turning rate Ω. Moreover, the curvature of the field space manifold R might play
a role, if negative and large enough, to compensate the smallness of ϵ, as this can
trigger geometric destabilization of entropy modes, as described in [79].

2.3.5 Multifield inflation and Swampland conjectures

In Sec.2.3.1 we mentioned that one of the reasons for which it is important to
move on from the vanilla single field models to focus on the realization of mul-
tifield models of inflation is because of the possibility to avoid the swampland
conditions, as demonstrated in [57].
In this section we give a brief review of the swampland conjectures, and we show
how multifield models can successfully satisfy them according to [57].
Firstly, what is the swampland?
By definition [80] this is the set of apparently consistent effective field theories
(EFTs) which, however, do not have a UV completion. In other words, the EFTs
belonging to the swampland meet the consistency requirements for low energy
observers, but result inconsistent with a quantum gravity theory. Theories which
instead can be UV completed belong to the landscape.
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Over the years people proposed different guidelines to discern between swamp-
land and landscape ETFs, however most of these criteria are conjectures, not being
supported by rigorous proofs.

The conjectures we are concerned about for the rest of the thesis, given their
consequences for a possible inflationary scenario, are the Swampland distance
conjecture (SDC), presented in [81], and de Sitter swampland conjectures (dSCs),
presented in [55] and then revisited in [56]:

1. The SDC states that the field range traversed by the fields in field space
has to be smaller of a constant ∆ of order 1

∆ϕ < ∆ ∼ O(1). (2.128)

If this condition is not satisfied the low energy description of the theory
can no longer be a valid approximation for the theory itself due to quantum
gravity effects.

2. The dSCs suggest that, given the difficulty in constructing meta-stable dS
vacua in string theory, all dS solutions belong to the swampland. In [55],
this idea is formalized conjecturing that the scalar potential V of any low
energy theory of a consistent quantum gravity origin, has to satisfy:

|∇V |
V

≥ c

MPl

(2.129)

where c ≥ 0 and it is of order 1 in Plank units. This condition restricts
both de Sitter minima and maxima to be in the swampland.
In [56] the authors proposed a refined version of this conjecture using the
SDC (eq.(2.128)) and the covariant entropy bound [82]:
a potential V for scalar fields in a low energy effective theory with a con-
sistent UV completion has to satisfy either

|∇V | ≥ c

MPl

V (2.130)
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or
min(∇i∇jV ) ≤ − c′

M2
Pl

V (2.131)

where c, c′ > 0 and of order 1.
Note that, using the definition for the second slow-roll parameter ηV =

V ′′/V , eq.(2.131) implies that ηV ≤ −c′/M2
Pl, hence the redefined version

accepts dS maxima.

The cosmological implications of the conjectures in eq.(2.128) and eq.(2.129)
have been studied in [83], where the authors proved that inflationary models are
generally in tension with these criteria:

1. The field displacement ∆ϕ can be written as

∆ϕ ∼
√
2ϵNend ∼

√
2N

1−k/2
end (2.132)

where Nend ≥ 60, ϵ = r/16 ∼ 1/Nk
end and k = 1, 2 depending on the

inflation potential1. Therefore, assuming the minimum number of efolds
Nend ∼ 60, it results ∆ϕ ≥ 5, already in contrast with the SDC.

2. From eq.(2.53), eq.(2.129) becomes

√
2ϵV ≥ c

MPl
, (2.133)

but ϵV ≥ O(1) violates the first slow-roll condition.

However in [84] and [57] the authors showed that, while the analysis con-
ducted in [83] argues that single field model of inflation are in tension with the
swampland criteria (2.128) and (2.129), multifield models can circumvent them.
In [84] the authors focused on solving the SDC conjecture. Eq.(2.128) has been de-
rived for single inflation model, when the inflationary trajectory follows a geodesic.
However, in presence of more than one field, the inflationary trajectory can be
non geodesic, and in [84] the authors derived a relation between the geodesic and
non-geodesic field displacements. In particular they showed that there exists, for

1k = 1 if the potential scale roughly like an exponent or a power-law to leading order in ϕ,
k = 2 if V (ϕ) is nearly constant during inflation.
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non-geodesic inflationary trajectories, a set of parameters which can simultane-
ously satisfy both the SDC and the Lyth bound.
In [57], the authors focused on the original dSC conjecture.
In multifield models, as seen in Sec.2.3.3.1, it is possible to have SRST or SRRT
inflation, depending on the value of the turning rate parameter Ω/H, which allows
to discern between ϵ and ϵV , as can be seen in eq.(2.110):

ϵV ≃ ϵ

(
1 +

Ω2

9H2

)
(2.134)

In particular, in the SRRT case Ω/H ≫ 1 and it is possible to have ϵ ≪ 1

and ϵV ∼ O(1).

Furthermore, considering eq.(2.132) and eq.(2.134), it follows that both the
conjectures are satisfied if

Ω

H
≥ 3

√(
cNend

∆

)2

− 1, (2.135)

which can be satisfied by having Ω/H ≥ 180, considering c/∆ ∼ 1 and Nend ∼ 60.

2.4 Multifield inflation in supergravity
The Standard Model of particle (SM) summarizes, as of today, our best under-
standing of elementary particle physics.
However it is now well known that the SM is an incomplete theory: it does not
account for gravity and it does not give an explanation for dark matter nor dark
energy and for neutrino oscillations.
Moreover, the SM presents additional problems: the cosmological constant prob-
lem [85], the Higgs mass hierarchy problem [86] and the strong CP problem, see
[87] for a review. All of these problems arise as we cannot explain the magnitude
of coefficients of relevant and marginal operators involved in the renormalization
process.
In particular, the cosmological constant problem and the Higgs mass hierarchy
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one, are related to the concept of naturalness: this asks for the value of the cos-
mological constant and the bare Higgs mass to be “natural” and not fine-tuned.

Supersymmetry (SUSY) is an extension of the SM which can provide an an-
swer to some of these problems. SUSY postulates a new symmetry in the theory,
which relates bosons and fermions introducing new particles: in particular, in
this theory each particle from one class has an associated particle in the other.

The supersymmetric particles are the key to solve the hierarchy problem as
explained in [88, 89]. At loop level the Higgs mass receives contributions from self
interactions, gauge loops and fermion loops, especially the heaviest, i.e the top
quarks, which are divergent and proportional to a cut-off scale Λ2. Considering
Λ ∼ MPl, the Higgs mass comes to be incredible heavy, but the mass measured
by LHC is “only” ∼ 125Gev. To explain this discrepancy, the Higgs bare mass is
required to be (almost) exactly as large as the mass corrections, which would be
“unnatural”.

However, if we include the supersymmetric particles in this computation, the
quantum corrections due by the fermions are (almost) exactly canceled by those
of their superpartners; in this way the Higgs bare mass does not need to be fine
tuned. Moreover, supersymmetric partners include some electrically neutral and
light particles (LSPs) which are good candidates for dark matter.

Combining principles of SUSY and general relativity, which is not included in
the SM, Freedman, Ferrara and Nieuwenhuizen constructed the minimal version
of 4D Supergravity (SUGRA), a gauged local version of SUSY, [90, 91]. SUGRA,
which can be embedded in a UV complete theory and includes gravity, would
govern the dynamics of the early Universe and therefore it seems quite natural
to extend the idea of inflation in the context of SUGRA.
The inflationary models developed in this context will naturally be multifield
models of inflation, and this is the subject of the next subsection.

2.4.1 Generalities

To build an inflationary model from a high-energy theory it is necessary to derive
the Lagrangian for N = 1 D = 4 supergravity theory.
The scalar part of the Lagrangian is determined by three functions: the Kähler
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potential K(Φi, Φ̄i), which provides the kinetic term, the superpotential W (Φi),
which describes the interactions of the scalar fields, and a gauge kinetic function
f(Φi), which provides the coupling between the scalars and the gauge fields. Note
that W and f are holomorphic functions of the complex scalar fields Φi, while K
depends on both Φi and their conjugate Φ̄i.
The action of complex scalar field minimally coupled to gravity is [92]

S =

∫
d4x

√
−g
[

1√
−g

LΦ − V (Φi, Φ̄i)

]
(2.136)

where
LΦ√
−g

= −Kij̄∂µΦ
i∂µΦ̄j̄. (2.137)

and i, j = 1, ..., n. In the above equation Kij̄ is the Kähler metric, which can be
defined as

Kij̄ =
∂2K

∂Φi∂Φ̄j̄
(2.138)

From the properties of the Kähler manifolds, see [93],

Kīj = Kj̄i, Kij = Kīj̄ = 0 (2.139)

The scalar potential V (Φi, Φ̄i) is given by

V = VF + VD (2.140)

VF = eK
(
Kij̄DiWDj̄W̄ − 3|W |2

)
(2.141)

VD =
1

2

∑
a

1

Re(fa(Φi))
g2aD

2
a (2.142)

where Kij̄ is the inverse of the Kähler metric, DiW and its conjugate are defined
as

DiW =
∂W

∂Φi
+
∂K

∂Φi
W, Dj̄W̄ =

∂W̄

∂Φ̄j̄
+
∂K

∂Φ̄j̄
W̄ , (2.143)

ga is a gauge coupling constant and Da is a Killing potential.
In the following chapters we will take into account only the VF term, hence the
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total potential V reduces to

V = eK/M2
Pl

(
Kij̄DiWDj̄W̄ − 3|W |2M2

Pl

)
(2.144)

To study inflation in this framework, we consider a FLRW spacetime, see eq.
(2.2), and the equations of motion for the scalar fields can be written, in analogy
with eq.(2.74), as

Φ̈i + 3HΦ̇i + Γi
jkΦ̇

jΦ̇k +Kij̄Vj̄ = 0 (2.145)
¨̄Φī + 3H ˙̄Φī + Γī

j̄k̄Φ̇
j̄Φ̇k̄ +K ījVj = 0. (2.146)

The only Christoffel symbols in the above equations are Γi
jk and Γī

j̄k̄
since

they are the only non-null Christoffel for a Kähler manifold [93]:

Γi
jk = Kil̄∂jKkl̄, Γī

j̄k̄ = K īl∂j̄Kk̄l (2.147)

The simplest realization of inflation in a SUGRA framework is the sGoldstino
inflation [94–96], a minimal inflationary scenario which involves a single super-
field Φ, hence two real scalar fields. The sGoldstino is the scalar partner of the
goldstino and belongs to the chiral superfield which F-term breaks SUSY, thus
it can be identified with the sGoldstino field, meaning that the inflaton and the
sgoldstino are aligned. However this type of inflation is not easy to realize and in
[97, 98] the authors showed that the model proposed in [96] is only possible with
severe restrictions. An example of this will be studied in Chapter 4.
To avoid these restrictions, the next possibility is to introduce a second super-
field. The pioneering model in this sense is presented in [99] where the authors
included next to Φ a second superfield S. Adding a term proportional to (SS̄)2 to
the Kähler potential it is possible to stabilize Im(Φ) and S, so that inflation can
take place along Φ− Φ̄ = S = 0 direction. In this model the superfield S, which
belong to the sGoldstino direction, is orthogonal to the inflationary direction.
Building on this model, in [100] the authors proposed a new class of models of
chaotic inflation in SUGRA, which included previous work presented in [101–104],
where the inflaton potential can be modified defining W = Sf(Φ) and choosing
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arbitrarily the function f(Φ).
The same authors, in [105], proposed a strategy to realize single field inflation in
SUGRA with an arbitrary inflaton potential V (ϕ), along the direction orthogonal
to the sGoldstino. As in the previous case the inflaton is Re(Φ) = ϕ. The Kähler
potential and the superpotential are generalized to

K = K((Φ− Φ̄)2, SS̄, S2, S̄2), W = Sf(Φ) (2.148)

so that K is separately invariant under

S → −S, Φ → −Φ, Φ → Φ + a, a ∈ R (2.149)

and inflaton potential V (ϕ) has always the form

V (ϕ) = |f(ϕ)|2 (2.150)

They also show that, in this class of models, the other three scalar fields, Im(Φ)

and S, can be stabilized at the inflationary trajectory with a suitable choice of
Kähler potential.
Another possibility is presented in [106] where the sGoldstino was eliminated by
introducing a nilpotent condition to the goldstino superfield.
Finally, it is worth mentioning that an additional possibility to build an inflation-
ary model in SUGRA using two superfields, is to combine two real (or imaginary)
fields from two different superfields, e.g. using Re(Φ) and Im(S) or any other
combination. In this case the inflationary model would be a two-field inflation.

In chapter 4 we focus on the orthogonal models of inflation, introducing the
nilpotent condition to set S = S̄ = 0.

2.5 η problem
In the standard scenario, to have a successful inflationary model, the inflaton has
to be light, i.e

M2
Inf ≪ H2. (2.151)
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This condition applies to both single and multi-fields models.
In single field inflation, Sec.2.2.3, this constraint is a direct consequence of

the second slow-roll condition eq.(2.53)

ηV ≡M2
Pl

∣∣∣∣V ′′

V

∣∣∣∣ ∼ M2
Inf

3H2
≪ 1 (2.152)

which directly implies
M2

Inf ≪ H2. (2.153)

Therefore, to realize inflation, the following inequality has to hold

MInf < H < Mheavy. (2.154)

Note that the above equation has to hold also for tachyonic model of inflation.

In an EFT theory of inflation however the inflaton mass is subject to corrections
produced by higher dimension operators [107].

To understand this, let us write the EFT Lagrangian minimally coupled to
gravity

Seff (ϕ) =

∫
d4x

√
−g

[
M2

Pl

2
R + Lc +

∑
i

ci
Oi(ϕ)

Λδi−4

]
(2.155)

where Lc includes canonical terms and renormalizable interactions while the sum-
mation includes all the operators Oi consistent with the considered symmetries
of the UV theory, which parameterizes the effects of massive fields on the EFT of
light ones. Usually these terms are irrelevant corrections to the leading dynamics
of the system which we are considering, however when realizing EFTs of inflation
some of these operators become incredibly important: they can change the zero-
th order dynamics, bringing a correction to the inflaton mass and no symmetry
prohibits their appearance [108–111].
In particular, the flatness of the potential V (ϕ), is particularly sensitive to Planck-
suppressed operators with dimension δi ≥ 6

Oδi≥6 = cV (ϕ)

(
ϕ

MPl

)δi−4

. (2.156)
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If c ∼ O(1) this correction modifies the potential of a small quantity ∆V ≪ V .
However, provided that ϕ < Λ since its vev is smaller than the cut-off energy, the
variation for ηV , ∆η, is anything but negligible and it reads as:

∆η ∼ c (δi − 4) (δi − 5)

(
MPl

Λ

)2(
ϕ

Λ

)δi−6

∼ O(1). (2.157)

This can be neglected only if δi ≫ 6. Therefore, for c ∼ O(1) and Λ < MPl the
theory suffers from the eta problem.

2.5.1 η problem in SUGRA

In N = 1 SUGRA the Lagrangian for inflation can be written as [112]

L ≈ −Kij̄∂Φ
i∂Φ̄j̄ − eK/M2

Pl

(
Kij̄DiWDj̄W̄ − 3

M2
Pl

|W |2
)
. (2.158)

where Φi = (Φ1,Φ2, ...,Φn). It is always possible, at any point in the scalar
fields space, make a field redefinition such that the scalar fields have canonically
normalized kinetic terms at that point [112]. In the specific case of a single
complex field Φ, expanding the Kähler potential in a neighborhood of that point,
this can be written as

K = |Φ|2 + ... (2.159)

It follows that the F-term potential can be written as1

V = e|Φ|2+..
[
(1 + ...)

(
WΦ +W

(
Φ̄ + ...

)) (
W̄Φ̄ + W̄ (Φ + ...)

)
− 3WW̄

]
= V0

(
1 + ΦΦ̄ + ...

)
(2.160)

and computing the slow-roll parameter ηV , we obtain

ηV ∼ V ′′

V
= 1 + ... (2.161)

1Here we are not explicitly showing MPl.

53



2. INFLATIONARY COSMOLOGY

Thus the second slow-roll condition |V ′′/V | ≪ 1 is not satisfied. This compu-
tation can be easily generalized to n superfields, see [92], therefore any generic
inflationary model in N = 1 SUGRA seems to inevitably suffer from the η prob-
lem.

Different approaches have been proposed to evade this problem thus far: tun-
ing in W , see for example [113–115], or using particular choices for K [116, 117]
or impose some symmetries on both K and W to guarantee the flatness of the
potential [99, 100, 105] and the use of D-term potential [118, 119].

In chapter 4 we give a further interpretation and possible solution to this
problem.
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Chapter 3

Fat inflation, Large Turns and
the η problem

This chapter is based on part of the work published in [6].

As mentioned in Sec.2.5, it is commonly believed that a successful period of
inflation, in both single field and multifield models, requires a specific hierarchy
of masses, that is

MInf ≪ H ≪Mheavy (3.1)

whereMInf can correspond to several or a single light field andMheavy corresponds
to any heavy field which can be integrated out if it satisfies suitable conditions.
In this chapter however, we show that, while this is an unavoidable conclusion
in single field inflation, in multifield inflation, heavy fields as defined above, may
be fully responsible for a successful period of inflation which we refer to as fat
slow-roll inflation. This can be proven starting from the multifield equations of
motion in the kinetic base, eq.(2.82) and (2.83), and simply implementing the
slow-roll conditions.
As we see in Sec.3.2 this type of inflationary attractor requires for the dimension-
less turning rate to be larger than 1, i.e. Ω/H > 1, hence fat slow-roll inflation
follows highly non-geodesic trajectories.

The chapter is organized as follow. In sec.3.1 we introduce the reasons which
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3. FAT INFLATION, LARGE TURNS AND THE η PROBLEM

bring us to focus on rapid-turn multifield models and present the main question
we attempt to answer in [6].
In Sec.3.2 we introduce the new fat inflationary attractor, show how it requires
large turning rates and discuss its consequences on the dynamics of the linear
perturbations. In Sec.3.3 we describe how to construct such a model in the
two fields case and we present some field theory models already appeared in the
literature which happen to belong to the fat inflationary attractor. In Sec.3.4 we
comment on the connection between fat inflation and the swampland conjecture.
Finally we end by discussing our findings and future directions in Sec.3.5.

3.1 Introduction
In Sec.2.2.1 it has been discussed how cosmological inflation [30, 31, 120] has
been introduced to solve the problems of the SCM and it was shown, see Fig.2.6,
how some of the most studied inflationary models agree with the most recent
observations performed by the Planck satellite [1, 2, 47].
Observations are fully consistent with the simplest inflationary scenario, i.e the
single field model, as the leading mechanism to account for the origin of the
anisotropies in the CMB radiation and, thus, the formation of the large scale
structures. In particular, they agree with two robust predictions of inflation, that
is, a nearly scale invariant spectrum of density perturbations, i.e ns ∼ 1, and a
stochastic background of gravitational waves.
However, there are several reasons to study more complex inflationary models
involving more than one scalar field, as described in Sec.2.3.1. Therefore, it
becomes essential to move on from the vanilla single field models, both from
theoretical and experimental points of view, to understand what scenarios and
observables we may expect from more complex models.

In this chapter we take a further step in understanding multifield inflation 1 in
view of forthcoming experimental efforts as well as recently proposed theoretical
constraints.

1Multifield inflation has been extensively studied over the last 20+ years. Thus the existing
literature is vast and it would be impossible to include every reference in the present chapter.
We therefore only refer to those papers which are most relevant for our present discussion.
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Our starting discussion is motivated by the following simple question: given a
multiscalar Lagrangean, what are the conditions that the parameters and fields
need to satisfy in order to drive a period of successful slow-roll inflation?
We show that contrary to usual belief, a long period of slow-roll inflation does
not require any of the scalar fields’ masses to be light (w.r.t. the Hubble scale),
that is Minf < H < Mheavy. On the contrary, we show that slow-roll inflation
is possible also when the masses of all scalar fields are heavier than the Hubble
scale, that is

H ≪Ma
Inf , for all fields, a = 1, .., n (3.2)

We call this new type of inflationary attractor fat inflation to stress the fact that
it is the mass of the scalar fields themselves which is heavy (w.r.t. the Hubble
scale)1. As we will show, fat inflation belongs to the recently discussed rapid-turn
attractors [121] since it requires large dimensionless turning rates

Ω

H
≫ 1. (3.3)

Summarising, our most important finding is that the existence of a fat inflation
attractor suggests that the η-problem, which arises when large contributions to
the masses of the scalar fields spoil standard slow-roll inflation, can be evaded
thanks to the large turning rates 2.

3.2 Fat Inflatons and large turns
The general framework for multifield models of inflation is described in Sec.2.3.2,
therefore in the first part of this section we simply review the main equations.

1A lot of work was been done regarding the hierarchy of the fluctuations’s masses, which
can be classified into adiabatic and entropic. Depending on the masses of the perturbation
modes, heavy fields (with respect to the Hubble scale) may, or not, have a strong effect on the
cosmological predictions [66, 67, 77, 78]

2For an example of single field inflation where the η-problem is avoided with a fat inflaton
in the framework of warm inflation see [122, 123].
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3. FAT INFLATION, LARGE TURNS AND THE η PROBLEM

Assuming a FLRW metric the equations of motion are

H2 =
1

3M2
Pl

(
φ̇2

2
+ V (ϕ2)

)
ϕ̈a + 3Hϕ̇a + Γa

bcϕ̇
bϕ̇c +GabVb = 0

where φ̇2 ≡ Gabϕ̇
aϕ̇b and Gab is the field space metric.

The same equations, projected onto the kinematic base {T a, Na}, see eq.(2.79)
and (2.80), can be written as

φ̈+ 3Hφ̇+ VT = 0 (3.4)

DtT
a = −VN

φ̇
Na ≡ −ΩNa. (3.5)

where the turning rate Ω has been defined in terms of the potential projection
onto Na, VN . Note that at this point we are focusing on the two field case.

Starting from the last two equations, in this section we aim to answer to the
question presented in the introduction and to show how, in doing that, it can be
proven that heavy fields can give rise to slow-roll inflation without incurring in
the η problem.
The first step is to carefully analyse the conditions that a multifield scalar theory
needs to satisfy to drive a successful period of inflation 1.
In Sec.2.2.1 we introduced the slow-roll conditions, which ensure that the phase of
nearly exponential expansion has a slowly changing Hubble parameter and that
it lasts enough time for the SCM problems to be solved. From Sec.2.3.3, these
conditions read as

ϵ ≡ − Ḣ

H2
=

φ̇2

2M2
PlH

2
≪ 1 ⇒ φ̇2 ≪ V (3.6)

η ≡ ϵ̇

ϵH
=

Ḧ

HḢ
+ 2ϵ = 2

φ̈

Hφ̇
+ 2ϵ≪ 1 ⇒ φ̈≪ Hφ̇ (3.7)

1See [124] for related work.
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An additional slow-roll parameter, ξ, can be defined as

ξ ≡ η̇

Hη
=

...
H

H2Ḣ
+ O(ϵ, η) ∼ 2

...
φ

H2φ̇
≪ 1 ⇒ ...

φ ≪ H2φ̇ (3.8)

From the slow-roll conditions, the Friedmann equation and eq.(3.4) reduce to the
following expressions, see Sec.2.3.3:

H2 ≃ V

3M2
Pl

(3.9)

3Hφ̇+ VT ≃ 0, ⇒ φ̇ = − VT
3H

(3.10)

Therefore, the slow-roll equations to solve at the background level are eq.(3.9),
(3.10), and (3.5).
Before moving forward, let us briefly recall why in the single field case, the slow-
roll conditions imply that the mass of the inflaton has to be much smaller than
the Hubble scale, see Sec.2.5. For the single field case, we simply consider φ as
the inflaton, VT = Vφ = V ′ and there is no third equation eq.(3.5). The slow-roll
conditions eq.(3.6) and eq.(3.7) simplify to the potential slow-roll conditions

ϵV ≡ M2
Pl

2

(
V ′

V

)2

≪ 1, ηV ≡M2
pl

∣∣∣∣V ′′

V

∣∣∣∣≪ 1 (3.11)

thus the smallness of the η parameter implies M2
Inf ∼ V ′′ ≪ H2.

In the following we are going to show how, only using the slow-roll approxi-
mation, this conclusion can be avoided in the multifield case.
First, as seen in Sec.2.3.3.1, in multifield inflation it is possible to define ϵT and
ϵV as

ϵT ≡ M2
Pl

2

(
VT
V

)2

, ϵV ≡ M2
Pl

2

VaV
a

V 2
(3.12)

where the slow-roll condition eq.(3.6) implies that ϵT ≪ 1.
The next step is to use the slow-roll-approximation to relate the dimensionless
turning rate Ω/H with the scalar fields’ masses to study their scale w.r.t H2.
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Taking the time derivative of eq.(3.10), this becomes:

3Ḣφ̇+ 3Hφ̈+ (VT )
˙ ≃ 0 → (3.13)

3Ḣφ̇+ 3Hφ̈+ Ṫ aVa + T aVabϕ̇
b ≃ 0 (3.14)

which, knowing that T aVabϕ̇
b = T aT bVabφ̇, gives the following expression for φ̈:

φ̈ ≃ − 1

3H

[
3

2

φ̇2

M2
pl

φ̇+ T aT bVabφ̇+
(
DtT

a + Γa
bcT

bϕ̇c
)]

(3.15)

where we also used that DtT
a = Ṫ a + Γa

bcT
bϕ̇c and Ḣ = −φ̇2/(2M2

Pl).
To rewrite this expression in terms of the projection of the potential onto the
tangent trajectory, let us define

VTT ≡ T aT b∇a∇bV = T aT bVab − T aT bΓk
abVk. (3.16)

Substituting this expression in eq.(3.15), and using the definition of Ω =

VN/φ̇, from eq.(3.7)

φ̈ = − φ̇

3H

[
3

2

φ̇2

M2
Pl

+ VTT − ΩVN
φ̇

]
≪ Hφ̇ (3.17)

⇒ −M2
Pl

VTT

V
+

Ω2

3H2
+ ϵ≪ 1 (3.18)

where we also used eq.(3.9).
Since ϵ≪ 1 we arrive at the first important result, that is :
slow-roll multifield inflation implies1:∣∣∣∣−M2

Pl

VTT

V
+

Ω2

3H2

∣∣∣∣≪ 1 (3.19)

which means
M2

Pl

VTT

V
≃ Ω2

3H2
. (3.20)

Before moving further it is worth to highlight that the only simplifications used
1A similar expression appeared in footnote 9 of [3] without derivation. In this paper, large

turn models were not discussed.
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3.2 Fat Inflatons and large turns

to obtain this result are the slow-roll conditions. In particular there has been no
assumptions on the fields masses.

Clearly eq.(3.20) can be satisfied when both terms on the left hand side are
small. However, a much more interesting possibility arises when the two terms
on the left hand side are large and cancel each other. This of course requires that
VTT > 0. In the following we analyse the physical implication of having a large
value of VTT/H

2.
Let us call the minimal eigenvalue of the field’s mass matrix λ, i.e

λ ≡ min (∇a∇bV ). (3.21)

where we used the general definition of the mass matrix provided in eq.(2.86).
Given any unit vector Ua, the following relation holds

λ ≤ Ua (∇a∇bV )U b (3.22)

Taking Ua = T a, which is legit since the tangent vector defined in eq.(2.79) is
normalized, the above equation can be rewritten as

λ ≤ VTT . (3.23)

Suppose now that H2 ≪ λ, meaning that all the scalar fields are heavier than
the Hubble scale. It follows

H2 ≪ λ ⇒ H2 ≪ VTT ⇒ M2
Pl

VTT

V
≫ 1. (3.24)

Therefore, when the lightest scalar field is heavier than the Hubble scale
λ≫ H2, the slow-roll condition eq.(3.19) can be satisfied when the dimensionless
turning rate is large, i.e

H2 ≪ λ ⇒ Ω2

H2
≫ 1 (3.25)

which is our second important result.
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Let us summarize: the multifield slow-roll condition eq.(3.19), which again,
has been obtained simply applying the slow-roll conditions to the equations of
motion eq.(3.4), can be satisfied when all the scalar fields are heavy, λ≫ H2.
We call this fat slow-roll inflation, and as we show above, this type of inflationary
attractor requires large dimensionless turning rates Ω/H.
Note that this new inflationary attractor is also possible for tachyonically fat field,
see Sec.3.3.2 hence ∣∣∣∣ λH2

∣∣∣∣≫ 1. (3.26)

Notice that eq.(3.19) implies a cancellation between VTT/V and Ω/H, when
VTT > 0. Thus, it is possible that VTT/V > 1 thus having large turns, while
λ < 0 and small (see Sec.3.3.2 for an example of this (AAW2)). However our
point is that even when all fields are heavy, slow-roll is possible and it requires
large turns1. Let us also point out that when more than two fields are present,
one can define a turning rate associated to every normal direction and they will
all contribute to the total turning rate (see Sec.3.3.2 for an example (APR)).
Note that large turning rates Ω/H do not imply large Ω. Indeed, since Ω has
dimensions of mass, it is measured in Planck units and thus we expect Ω ≲MPl in
a consistent model. Let us finally note that the geodesic displacement is measured
by |DtT | = 0. The departure from a geodesic can be thus measured by the
dimensionless Ω/H through |DNT | = Ω/H, where we have changed to derivatives
w.r.t. the number of efolds dN = Hdt. We therefore see that fat inflation
trajectories follow highly non-geodesic trajectories2. In table 3.1 in Sec.3.3.2 we
list a multifield inflationary example of this type (racetrack).

1Recent multifield inflation investigations have pointed out that small turning rates are
not necessary for a successful period of slow-roll inflation [74, 121, 125–128], as we showed
explicitly above. Most of these studies focus on the case of non-zero negative curvature of the
scalar manifold. As we have shown above, large turning rates do not require a non-zero scalar
curvature (see Sec.3.3.2 for explicit field theory examples). Moreover, as we discuss in the
main text, large turning rates are possible even when the standard hierarchy of masses holds
(Minf < H < Mheavy), which is not fat slow-roll inflation.

2In fact geodesic inflationary trajectories require very small turning rates Ω/H ≪ 1.
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3.2 Fat Inflatons and large turns

3.2.1 Dynamics of linear perturbations

As seen in Sec.2.3.4, in multifield inflation it is standard to decompose the linear
perturbations Qa in terms of the adiabatic and entropic modes QT , QN , defined
as the projection of Qa onto Ta and Na in spatially flat gauge [64, 72, 73, 76].
Summarising, the dynamics of the primordial linear perturbations for QT and QN

is given by the equations: [64, 72, 73]:

Q̈T + 3HQ̇T +

(
k2

a2
+m2

T

)
QT = (2ΩQN)

˙−

(
Ḣ

H
+
VT
φ̇

)
2ΩQN , (3.27)

Q̈N + 3HQ̇N +

(
k2

a2
+M2

)
QN = −2Ω

φ̇

H
Ṙ (3.28)

and the adiabatic mass squared m2
T and the entropy mass M are given by

m2
T

H2
≡ −3

2
η − 1

4
η2 − 1

2
ϵη − 1

2

η̇

H
, (3.29)

M2

H2
=
VNN

H2
+M2

Pl ϵR− Ω2

H2
. (3.30)

At superhorizon scales, eq.(3.28) becomes

Q̈N + 3HQ̇N +
(
M2 + 4Ω2

)
QN ≈ 0 , (3.31)

and it is possible to define an effective entropy mass as M2
eff =M2 +4Ω2, which

can be used to write the speed of sound cs for the adiabatic perturbations as
[66, 77, 78]

c−2
s =

M2
eff

M2
. (3.32)

The dynamics of the linear perturbations and cosmological predictions will de-
pend on the hierarchies of the adiabatic and entropy modes’ masses relative to
each other, the Hubble parameter and the turning rate Ω. The curvature of the
scalar manifold R may also play an important role if negative and large, as it
may trigger geometric destabilisation of the entropy modes [79].

Notice that the adiabatic mode will be light (w.r.t. H) as long as slow-roll is
satisfied (see (3.29)), which is the case in the fat field inflation scenario we are

63
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discussing. On the other hand, the mass of the entropic mode will depend on the
size of Ω/H, the curvature of the scalar manifold R and VNN/H

2. For example, if
besides M ≫ H, the hierarchy Meff ≫M holds, the speed of sound in eq.(3.32)
can be reduced, with observable consequences [66, 77, 129]. Other possibilities
can arise as discussed in sidetracked inflation [74] and orbital inflation [130, 131]
where the mass of the entropic modes is (much) smaller than H.

Let us see what possibilities may arise in the heavy inflation model. Note first
that we can take Na as a unit vector, instead of T a as we did above, to write an
analogous inequality to eq.(3.23) in terms of VNN , that is λ ≤ VNN . Imposing
eq.(3.24) also implies that H2 ≪ VNN , which could dominate or not over the
other terms in the entropic mass (3.30).

If the scalar manifold curvature is negative and very large,M may in principle
become small or even tachyonic. On the other hand, note that for the effective
entropic mass to be much larger thanM , (Meff ≫M) thus having a smaller than
unity speed of sound, it is necessary that Ω2 be larger than M2, which implies
that 5Ω2 ≫ VNN +H2ϵR.

3.2.2 Fat inflation and the η-problem

Let us briefly comment on the relevance of the heavy field inflationary attractor
we have discussed for the so called η-problem, see Sec.2.5. As we have shown,
fat inflation has the unusual hierarchy of masses H ≪ MInf , where MInf corre-
sponds to the mass of the “lightest” field driving inflation. As seen in Sec.2.5,
such hierarchy of masses cannot drive a period of successful inflation, since large
contributions to the masses of the inflatons might spoil the required flatness and
therefore slow-roll conditions required for inflation. However, we have seen that
fat inflation works with large masses when the turning rates are large. There-
fore, previous statements on inflation bases on light inflatons need to be revisited.
In particular, in supergravity inflationary constraints were discussed long ago in
[132], assuming the need for light fields. We leave for future work (see [7] dis-
cussed in Chapter 4) a detailed analysis of these constraints and more generally
of fat inflation and large turns in supergravity.
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3.3 Field theory models of fat inflation
In the first part of this section we describe how to construct the simplest field
theory model for two fields leading to the fat inflation attractor with large turning
rate. We then collect some field theory multifield inflation examples present in
the literature which happen to be fat field inflation models. We analyse some
of them in details, heightening their most important properties, and we compare
them with some “light field” (that is where Minf < H) examples also in the
literature.

3.3.1 Constructing a simple two fields model of fat infla-
tion

As discussed in Sec.3.2, when the minimal eigenvalue of the mass matrix λ is
larger than the Hubble parameter, the multifield slow-roll condition is satisfied
and the turning rate is large, indicating a non-geodesic trajectory, see eq.(3.19)
and eq.(3.20).
It is thus clear that some interaction between the scalar fields is necessary, which
can either come from the kinetic terms or the scalar potential.
To illustrate this idea, we consider a toy model in flat field space, i.e R = 0, in
polar coordinates ϕa = (ρ, θ). The Lagrangian and the field metric describing
this model are respectively

L = −1

2

(
(∂ρ)2 + ρ2 (∂θ)2

)
− V (ρ, θ) (3.33)

Gab =

(
1 0
0 ρ2

)
(3.34)

and the only non-vanishing Christoffel symbols for Gab are:

Γρ
θθ = −ρ, Γθ

ρθ = Γθ
θρ =

1

ρ
(3.35)
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The eigenvalues of the mass matrix eq.(2.87) take the simple form1

λ± =
1

2

Vρρ + Vρ
ρ

+
Vθθ
ρ2

±

√(
Vρρ −

Vρ
ρ

− Vθθ
ρ2

)2

+
4

ρ2

(
Vθρ −

Vθ
ρ

)2
 (3.36)

where Va, Vab denote partial derivatives of V with respect to the scalar fields.
If we now consider a scalar potential of the form

V =
1

2
M2ρ2 +W (θ), (3.37)

the eigenvalues simplify to

λ± =M2 +
Wθθ ±

√
W 2

θθ + 4W 2
θ

2ρ2
. (3.38)

As we mentioned, the fat inflationary attractor occurs when λ− > H2 ∼ V /3.
Therefore, the fat inflation condition can be satisfied when

M2 +
Wθθ −

√
W 2

θθ + 4W 2
θ

2ρ2
>

1

6
M2ρ2 +

1

3
W (3.39)

which is satisfied when ρ is close to its minimum, hence ρ ∼ 0 and for a sufficiently
large value of the parameter M . Moreover, the potential for θ, W (θ), is taken
such that successful inflation does indeed occur. The simplest possibility is to
take W (θ) as an even monomial function of θ, for example

W (θ) =
m2θ2

2
, M ≫ m (3.40)

W (θ) =
Λ4θ4

4
, M ≫ Λ (3.41)

or, an other possibility includes

W (θ) = Λ4 (1 + cosmθ) , M ≫ Λ. (3.42)

This last example is listed in the next section in Table 3.1 as AAW2.
1Here we set MPl = 1 for simplicity.
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3.3.2 Examples of fat inflation present in the literature

In Table 3.1 we collect some examples of field theory multifield inflation models
present in the literature which happen to be fat inflation models. We list the
model’s name, the value of Ω/H at ∼ 60 efolds before the inflation ends, the
mass hierarchy and scalar curvature R (note that in these models Ω < MPl).
In the same table we also include a multifield supergravity “light field” inflation-
ary example, in which the fields follow an almost geodesic trajectory, that is,
where Ω/H ≪ 1.
The first models in 3.1, Orbital Inflation [130], Spiral Inflation [133] and Race-
track inflation [134], together with AAW2 [129] have all the usual mass hierarchy
1. Compared to the other models, racetrack inflation has a very small turning
rate Ω/H ∼ O(10−4) and thus follows an almost geodesic trajectory. Example
AAW2, on the other hand, is characterized by Ω/H ∼ 2; this is possible when
VTT/V > 1 even when λ < 0 and thus smaller than H2.
As fat inflation models with large turning rates, we show an example of two-field
natural inflation model discussed in [129] (AAW1), the recent three field model
in [135] (APR) and the sidetrack models in [74]. These all have large Ω/H and
only the sidetrack models have a non-zero negative curvature R. In table 3.2 we
show the ratio between the masses and the Hubble parameter for AAW1, APR
and the sidetrack models (both the minimal an hyperbolic examples have similar
mass hierarchies).
The AAW1 model has a reduced speed of sound as in this case it holds that
Meff > M , that is Ω > M with both M,Meff ≫ H . It has a relatively mild
hierarchy of masses, comparable with the hyperbolic sidetrack models. The hier-
archy of masses results to be way more dramatic in the APR three-field model,
where it is worth noticing that the potential does not have a minimum and there-
fore inflation does not end.

1For AAW2 we use the Lagrangean presented in [129], which is a two field model
with a flat scalar manifold (R = 0) written in polar coordinates with a potential V =
V0
[
M2/2(ρ−ρ0) + (1 + cosmθ)

]
. For the values we give in tables 3.1, 3.2, we use the fol-

lowing parameters (m = 0.002 , ρ0 = 0.0001) and M = 100 for AAW1 while M = 0.15 for
AAW2 in Planck units (V0 can then be adjusted to match the amplitude of the power spectrum.
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In Fig.3.1 it is possible to see the ratio between the eigenvalues and the Hubble
parameter for the AAW1 model and the value of Ω/H. In Fig.3.2 we also plotted
the slow-roll parameters to show that, even if MInf > H, both the slow-roll
conditions are still valid.
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Figure 3.1: On the left: Plot of ratio between the scalar fields masses λ± and the
Hubble parameter H2 for AAW1 in 3.1. On the right: Plot of the dimensionless
turning rate Ω/H for the same model.
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Figure 3.2: Plots of the slow-roll parameters for the example AAW1 in Table 3.1.
On the left we plot the first SR parameter ϵH and ϵV . ϵH ≪ 1, hence inflation
is possible, and it remains smaller than ϵV for all the inflationary period. On the
right side we plotted ηH , which, being ηH ≪ 1 ensures that inflation lasts long
enough.

The sidetrack model is the only one among these three to have a negative
Ricci scalar R < 0, and this determines a particular behavior.
In Fig.3.3 it is possible to see that, during the inflationary evolution, there is a
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change of attractor. For N ≲ 90, one of the the field is light, hence λ−/H2 < 1,
while it becomes fat for N ≳ 90. In this model the negative scalar curvature
triggers an instability which sends the light field inflationary attractor (for which
MInf < H) to the heavy field inflationary attractor we introduced in Sec.3.2.
Comparing the plot of λ−/H2 with the plot of Ω/H, it is clear that they have the
same behavior; in particular Ω/H is small during the light field attractor while
it becomes large when the fields settle into the fat field attractor.

Figure 3.3: Plot of the ratio of the lightest scalar field’s mass and the Hubble
parameter (λ−/H)2 (upper) and plot of the dimensionless turning rate Ω/H (lower)
for the minimal sidetrack (NI) model during the first part of inflation (inflation for
this model ends for N ∼ 990).

The plot of the the ratio λ2±/H
2 for the last 70 efolds of inflation for this

model is presented in Fig.3.4. As it is possible to see, λ±/H2 present a similar
behavior to the one shown in Fig.3.1, but the values of the ratio are much higher,
as noted also in Table 3.1.
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Finally, in Fig.3.5 we plotted the full inflationary trajectory on the potential,
to highlight when, along the trajectory, the instability which causes a change in
the attractor appears.

Figure 3.4: Plot of ratio between the scalar fields’ masses λ± and the Hubble
parameter H for the minimal Sidetrack (NI) model for the last 70 e-folds.

Figure 3.5: Inflationary trajectory for the minimal sidetrack (NI) model. The
blue point represents the initial conditions while the black one shows where the
instability due to the Ricci scalar appears.
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Summarizing, for the sidetrack models, when the mass hierarchy changes from
the standard m1 < H < m2 to the fat hierarchy H < m1 < m2, the Ω/H changes
from Ω/H < 1, to Ω/H > 1. When there is this change of attractor there is also
an abrupt change of direction in the inflationary trajectory, see Fig.3.5.

Finally, it is worth to briefly analyse the Angular Inflation model [3]. This
is a supergravity inspired α-attractor and, as for the minimal sidetrack model
analyzed above, has a negative curvature R = −4/(3α), where α > 0, and shows
a change in attractor.
The potential is relatively simple being the sum of two quadratic potential:

V (ϕ, χ) =
α

2

(
m2

ϕϕ
2 +m2

χχ
2
)
. (3.43)

The plot of the evolution of the fields can be seen in Fig.3.6. The instability
which causes a change in attractor appears for N ∼ 50 .
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Figure 3.6: Evolution of the trajectories for the fields ϕ(N) and χ(N) in the
angular inflation model [3]. Note that NInf ∼ 150. Values of the parameter used:
mχ = mϕ

√
10, mϕ = 10, α = 1/600, ϕi = r0 cos θ0, χi = r0 sin θ0, r0 = 0.99997,

θ0 = π/4.

The Ω/H parameters behaves consistently, and changes drastically at N ∼ 50

going from Ω/H < 1 to Ω/H ∼ 3.
The evolution of the ratio λ±/H2 can be seen in Fig.3.7. In this case both fields
are light in the first part of the inflationary evolution, however, when the attrac-
tor changes, both of them become fat in module, hence H < |M |.
This example shows that fat inflation can be realized also in models which present
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tachyonic fields.

Figure 3.7: Plot of ratio between the scalar fields masses λ± and the Hubble
parameter H for the model presented in [3]. The plot on the left shows the change
of attractor at N ∼ 50. For N > 50 both the fields are fat. On the right we show a
zoomed plot of the first 50 e-fold. The dotted red lines represent +1 and −1. Here
it is clear that both the fields are lighter than H.

3.4 Fat Inflation and the Swampland
In this section we make a connection between fat inflation and the recently pro-
posed dSCs1, see Sec.2.3.5, that require

∇V
V

≥ c

MPl

or (3.44)

min(∇a∇bV )

V
≤− c′

M2
Pl

(3.45)

where ∇V ≡
√
GabVaVb and c, c′ are some O(1) constants. It was shown in [57]

that in multifield inflation, the first condition can be satisfied, so long as Ω/H is
sufficiently large, as showed in Sec.2.3.5 and in particular eq.(2.134). From this

1One should keep in mind that these conjectures have not been proved, and should therefore
be considered with care.
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Model Ω/H mass spectrum R(M−2
Pl )

Orbital Inflation [130] ∼ −0.2 m1 < m2 < H 0

Spiral Inflation [133] ∼ −0.12 m1 < H < m2 0

Racetrack [134] ∼ 6× 10−4 m1 < H < m2 −2
3

AAW2 [129] ∼ 2 m1 < H < m2 0

Minimal sidetrack (NI) [74] ∼ 70 H < m1 < m2 − 4M2

(M2+2χ2)2

Hyperbolic sidetrack (NI) [74] ∼ 163 H < m1 < m2 − 4
(M)2

Minimal sidetrack (Staro) [74] ∼ 16 H < m1 < m2 − 4M2

(M2+2χ2)2

Hyperbolic sidetrack (Staro) [74] ∼ 150 H < m1 < m2 − 4
(M)2

AAW1 [129] ∼ 12 H < m1 < m2 0

APR [135] ∼ 61 H < m1 < m2 < m3 0

Angular Inflation [3] ∼ −2 H < m1 < m2 −4/(3α)

Table 3.1: Inflationary models illustrating fat and light field inflation. Here M is
the curvature scale and χ is one of the fields. For all the models (except APR) we
give the value of Ω/H at the start of the last 60 e-folds before the end of inflation
(where ϵ ∼ 1), after which these parameters increase). In the APR model inflation
does not end, so the values of the parameters are given at the start of inflation. In
this example, Ω decreases, while Ω/H remains almost constant (see [135]).

Model m3/H m2/H m1/H

Sidetrack (NI-Staro) – ≳ 35 ≳ 30
AAW1 – ≳ 13 ≳ 10
APR ≳ 4500 ≳ 632 ≳ 60
Angular – ≳ 8 ≳ 8

Table 3.2: Ratio of masses to the Hubble parameter for the fat inflationary models
as indicated. Again, we give the value of the masses at the start of the last 60 e-
folds before the end of inflation (and at the start of inflation for APR). For the
angular model, we considered the absolute value of the ratio for the tachyonic field.
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one sees that in a multifield inflationary model, where Ω ̸= 0, for sufficiently large
turning rate Ω/H (and suitable values of ϵ), ϵV can be of order one1.
However, eq.(2.134) does not tell us how to achieve large turns given a multifield
model of inflation. We have provided an answer above in eq. (3.24) and (3.19):
in order to get large turns, a sufficient condition is to consider models where

H2 ≪ λ ≤ VTT , (3.46)

that is, multifield fat field inflation. Clearly in this case, the second condition
(3.45) is not satisfied.
Let us also comment on another conjecture, the SDC [81], already presented in
eq.(2.128), which claims that, in Planck units, ∆ϕ ≲ ∆MPl (with ∆ ∼ O(1)) has
to hold. A recent discussion on multifield inflation and the SDC has appeared
in [84]. So here we simply stress that inflationary trajectories with large turning
rates Ω/H ≳ 1 differ strongly from a geodesic and thus (2.128) does not apply.
Moreover, an almost geodesic trajectory requires a very small turning rate value
Ω/H ≪ 1. (See Sec.3.3.2 for a concrete example).

3.5 Conclusion
In this Chapter we have shown that a successful period of slow-roll inflation can
be achieved in multifield scenarios even when the masses of the scalar fields are
heavier than the Hubble scale, that is, H < Minf , where Minf is the mass of
the “lightest” field. We call this attractor fat inflation to stress that it is the
masses of all the scalar fields which are heavier than the Hubble scale, rather
than the masses of the quantum fluctuations. Indeed, in terms of the masses of
the fluctuations, the mass of the adiabatic mode eq.(3.29) is given in terms of the
slow-roll parameters, and therefore it is always smaller than H during slow-roll,
while the isocurvature mass(es) eq.(3.30) might be heavy or light, with different
cosmological implications [66, 67, 74, 77, 130].

1Since there is no calculation of the constant c an order one parameter can fall in a large
range of values.
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This is a non-trivial result, as it is commonly believed that large contributions
to the masses of the inflatons causes the η-problem, see Sec.2.5, which might spoil
slow-roll inflation. However, in Sec.3.2 we have seen that this can be avoided in
fat inflation. In particular we showed that the slow-roll conditions, expressed as
(3.19), can still be satisfied even if all the fields are fat. This scenario unavoidably
requires large turning rates Ω/H and therefore non-geodesic trajectories.
In Sec.3.3 we provided a recipe to construct a fat field model in the simple setting
of a flat field space in polar coordinates. In particular we showed how to fine-tune
the potential and its parameters so that the smaller eigenvalues λ− results to be
λ−/H

2 > 1.
Moreover, in Sec.3.3.2, we collected examples of field theory multifield models
in the literature, which happen to belong to the fat slow-roll attractor. These
include a recently discussed three field model in [135] (APR) where the lightest
field is sixty times the Hubble scale, m1/H ≳ 60, while the heaviest is thousand
times heavier m3/H ≳ 4500. Other interesting models are the sidetrack models;
they show where there is a transition from a standard slow-roll trajectory with
a light and a heavy field, to a fat slow-roll trajectory, with both scalar fields
having larger masses than the Hubble scale. This change of attractor during the
inflationary trajectory is present also in the angular inflation. However for this
model one of the field is fat but tachyonic.
In conclusion, fat inflation thus evades the η-problem with large turns in multi-
field scenarios. Moreover, this type of attractor opens up a new possibility for
multifield inflation in which large turns and thus non-geodesic motion are un-
avoidable, with interesting implications for the dS swampland conjectures and
possible cosmological implications that may be testable in the forthcoming years.
More generally, in view of our present results, it would be interesting to inves-
tigate the existence of fat multifield inflation in a UV complete setting, such as
SUGRA or string theory. This will also be important in view of the recent theo-
retical constraints on standard slow-roll inflation and forthcoming experiments.
In the next chapter, Chapter 4, we partially investigate this problem focusing on
the realization of large-turn inflationary models.
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Chapter 4

Rapid-turn inflation in
supergravity is rare and
tachyonic

This chapter is based on the work published in [7].

Strongly non-geodesic, or rapidly turning, trajectories in multifield inflation
have attracted much interest recently from both theoretical and phenomenological
perspectives. Most models with large turning rates in the literature are formu-
lated as effective field theories. In this chapter we investigate rapid-turn inflation
in supergravity as a first step towards understanding them in string theory. We
find that large turning rates can be generated in a wide class of models, at the
cost of high field space curvature. In these models, while the inflationary trajec-
tories are stable, one Hessian eigenvalue is always tachyonic and large, in Hubble
units. Thus, these models satisfy the de Sitter swampland conjecture along the
inflationary trajectory. However, the high curvatures underscore the difficulty of
obtaining rapid-turn inflation in realistic string-theoretical models. In passing,
we revisit the η-problem in multifield slow-roll inflation and show that it does not
arise, inasmuch as the inflatons, ϕi, can all be heavier (in absolute value) that
the Hubble scale: |mi|/H > 1, ∀i.
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The chapter is organized as follow. In Sec.4.1 we give a brief summary of
the SRRT inflationary models, highlighting how most of the literature focuses on
field theory models, leaving out SUGRA based models. We conclude the section
presenting the question we intend to answer in the rest of the chapter. In Section
4.2.1, we expand on the result obtained in the previous chapter, showing how
the η-problem does not arise. That is, the masses of all the inflaton fields do not
need to be smaller than the Hubble parameter for a sustained period of inflation
when more than one scale field is present. In Section 4.2.2, we discuss possible
two-field trajectories in detail, and we apply these results to the supergravity case
in Section 4.3. Before doing that, in Sec.4.3.1 we present a survey of broad set
of SUGRA models in the literature, showing that, with the exception of only one
model, these seem to present neither large turning rates nor fat fields. Finally
in Sec.4.3.3 we show how to construct rapid-turn trajectories in a large class
of supergravity models, in which the inflaton superfield does not mix with the
supersymmetry breaking direction, that is the inflaton and Goldstino superfields
are orthogonal. We finish with a summary and discussion in Sec.4.4

4.1 Introduction
Cosmological inflation is the leading mechanism for explaining the origin of
primordial perturbations which seeded the large-scale structures that we ob-
serve today as seen in Sec.2.2. Multifield models of inflation with strongly non-
geodesic trajectories have received recent interest, motivated by theoretical and
phenomenological constraints. Strongly non-geodesic inflationary trajectories in-
fact can satisfy the recently proposed consistency conjectures on the inflationary
scalar potential, see Sec.2.3.5 and [55–57, 68, 136]. Moreover, rapid-turn models
can admit fat fields, which are heavier than the Hubble scale thus avoiding the
η-problem, as seen in Chapter 3, based on [6].
Phenomenologically, strongly non-geodesic motion can have interesting observa-
tional implications such as breaking single field consistency relations between
observables [3, 127, 137, 138], leaving signature features in the primordial power
spectrum [139–143], producing primordial black holes [144–147], and sourcing a
stochastic background of gravitational waves [148–151].
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In an effective derivative expansion, multifield physics is characterized by a field
space metric, a potential, and couplings to the spacetime metric via the Ricci
scalar. The true multifield nature of the trajectory manifests when the trajectory
strongly deviates from geodesic motion in field space. This deviation is measured
by the dimensionless turning rate Ω/H, where H is the Hubble parameter. For
minimally coupled scalars, one finds, see Sec.2.3.3.1, that along solutions to the
equations of motion, eq.(2.109) holds:

ϵV = ϵ

{(
1 +

η

2(3− ϵ)

)2

+
Ω2

9H2

1

(1− ϵ/3)2

}
, (4.1)

where, again, the slow-roll and gradient parameters are defined as:

ϵ ≡ − Ḣ

H2
, η ≡ ϵ̇

Hϵ
, ϵV ≡ M2

Pl
2

|∇V |2

V 2
. (4.2)

As discussed in Sec.2.3.3.1, slow-roll inflation, with ϵ ≪ 1 and η ≪ 1, can
happen in different regions of the Ω/H and ϵV plane. In particular, potentials and
metrics for which ϵV ≪ 1 allow for an effective single-field, slow-roll trajectory,
whereas steep potentials (ϵV ≳ 1) can feature rapid-turn, slow-roll trajectories
(SRRT) (Ω/H ≫ 1, ϵ ≪ 1) [57, 68]. The conditions for rapid-turn, slow-roll
trajectories are known in the two-field case [121, 126], see also Chapters 3, while
the conditions for three or more fields in the low-torsion limit1 are discussed in
[135].

Moreover, in Chapter 3, it was shown that a sufficient condition for strongly
non-geodesic trajectories is to have all fields heavier than the Hubble scale, i.e.
fat inflation. This is a remarkable result, as it effectively evades the η-problem
in multifield inflation, see Sec.2.5. As we show in section 4.2.1, more generally,
multifield inflation does not have an η-problem, in as much as all the inflatons can
be heavier than the Hubble parameter (|mi|/H ≪ 1). In Chapter 3 it was also
shown that fat inflatons are sufficient, but not necessary for rapid-turn inflation.
An example of this is orbital inflation [131], which produces rapid-turn inflation
with a large negative mass-squared along the inflationary trajectory [135] (se also

1See also [152] for a discussion on multifield inflation with any number of fields.
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[130]). Note that the tachyons along the inflationary trajectory do not imply an
instability1. Indeed, the trajectory can be stable in that the Lyupanov exponents
contain a compensating term from the turn rate [128, 138].

As seen in Sec.2.4, multifield models of inflation arise naturally in SUGRA
and string theory compactifications. Thus, it is sensible to ask how common
is strongly non-geodesic, slow-roll behavior in supergravity, being a low energy
effective theory description of string theory. In this chapter we aim at addressing
precisely these two questions.

4.2 Slow-roll multifield in kinetic base
In this section we focus on multifield inflation in field theory, see Sec.2.3.2.
In the first part we show how these type of models do not present the η-problem.
In sec.4.2.2 we analyse in detail the different types of multifield inflationary mod-
els and derive the expressions for ϵ, η, Ω/H and λ± as a function of the scalar
fields potential.

4.2.1 No η problem in multifield inflation

In Sec.2.3.3, we derived the conditions for long lasting slow-roll multifield infla-
tion, i.e. eq.(2.94), eq.(2.95) and eq.(2.96).

When these inequalities are satisfied the equations of motion and the expres-
sions for Ω/H, VTT and VTN , derived in eq.(2.90) and (2.92), can be simplified.
In particular, as already seen, the equations of motion become:

H2 ≃ V

3M2
Pl

3Hφ̇+ VT ≃ 0

and the expressions for the dimensionless turning rate and the projection of the
1This is standard for concave potentials, such as in single field Starobinsky inflation [29].
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potential onto T a and Na can be written simply as

Ω

H
≃ −3

VN
VT

(4.3)

VTT

3H2
∼ Ω2

3H2
(4.4)

VTN

3H2
∼ Ω

H
(4.5)

In the previous chapter we noticed that the slow-roll conditions do not impose
any constraint on ηV , defined in eq.(2.101). Indeed, the minimal eigenvalue of M

satisfies the condition seen in eq.(3.22), hence:

λmin ≤ UaV
a
bU

b . (4.6)

Taking Ua = T a, we have that λmin ≤ VTT . Thus, there arises the possibility of
fat inflation, see Chapter 3. In Chapter 3 we showed that a sufficient condition
to obtain large turns is to have the minimal eigenvalue of M much larger than
one, that is λmin ≫ H2, which thus implies VTT/V ≫ 1. From eq.(4.4) this
implies Ω/H ≫ 1. As a consequence it is possible to have all fields heavier
than the Hubble scale, without spoiling long lasting slow-roll. Moreover, one can
also check that this also holds when the minimal eigenvalue is negative. That
is, slow-roll inflation with fat tachyonic fields, |λmin| ≫ H2, and large turning
rates, Ω/H > 1. Note that these models satisfy the dSCs [55, 56, 136], since
λmin ≤ −O(1). An example of this type of inflationary attractor, is angular
inflation [3], see Sec.3.3.2. More generally, we see that ηV can be either large
or small, without affecting the inflationary attractor. In particular, it is not
necessary to fine tune the masses of the inflatons to be small (in Hubble units)
to ensure a successful period of multifield inflation.

Using the slow-roll expressions for the mass matrix elements VTT and VTN ,
we can express the eigenvalues purely in terms of Ω and VNN , see Sec.4.2.3. If all
the eigenvalues, eq.(2.89) are positive, as in the case of fat inflation, we have that
0 < detM < TrM2/4. Since detM ≃ Ω2(VNN − 9H2), positive eigenvalues require

VNN > 9H2. (4.7)

81



4. RAPID-TURN INFLATION IN SUPERGRAVITY IS RARE
AND TACHYONIC

In the opposite case, VNN < 9H2, the minimal eigenvalue will be negative1. This
condition will be further analysed in Sec.4.4.

4.2.2 Two-field inflation in field theory

Starting with the generic multifield Lagrangian as in eq. (2.72), in this section we
focus on the two field case ϕa = (r, θ). In anticipation of examining inflation in
supergravity, we refer to these fields as the saxion and axion fields, respectively.
For a broad class of highly symmetric field space geometries, the kinetic term can
be written as 2

Lϕ ⊃ −f
2(r)

2

[
(∂r)2 + (∂θ)2

]
. (4.11)

Note that the field space metric is independent of the coordinate θ, indicating an
isometry direction. The equations of motion (2.74) and (2.75) in terms of r and
θ take the form

r′′ +

(
3− φ′2

2M2
Pl

)
r′ − fr

f

(
θ′2 − r′2

)
+

Vr
H2f 2

=0 (4.12)

θ′′ +

(
3− φ′2

2M2
Pl

)
θ′ + 2

fr
f
θ′r′ +

Vθ
H2f 2

=0 , (4.13)

1Recall that a tachyon along the inflationary trajectory does not indicate an instability.
The criteria for the stability of the trajectory are discussed e.g. in [128].

2Note that this metric can be written in several other equivalent forms by suitable redefi-
nition of the field r:

Lϕ ⊃ −1

2

[
(∂R)2 + f2(R)(∂θ)2

]
(4.8)

⊃ −f
2(ρ)

2

[
(∂ρ)2 + ρ2(∂θ)2

]
. (4.9)

Hence, we focus on (4.11) and transform to either (4.8) or (4.9) by a simple redefinition of the
radial coordinate. Note further that in some cases [3], the scalar metric allegedly depends on
both scalar fields. However, it only depends on a single combination of them:

gab = f(ϕ, χ)diag(1, 1) = 1

1− (ϕ2 + χ2)
diag(1, 1) . (4.10)

Therefore, it is possible to change coordinates to ϕ = r sin θ and χ = r cos θ, such that the
metric takes the form of (4.9), which in turn is equivalent to (4.11).
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where primes denote e-fold derivatives, f = f(r), fr = ∂rf(r) and φ′ reduces to

φ′2 = f 2(r)(r′2 + θ′2). (4.14)

Inflationary Solutions

We now consider the possible inflationary solutions to (4.12) and (4.13).

1. Saxion inflation. Single field saxion inflation can occur for θ′ ≃ 0, with θ
fixed at θ0 such that Vθ(r, θ0) = 0 ∀ r. In this case (4.13) is automatically
satisfied, while (4.12) admits slow-roll solutions given a suitable potential.
An example in supergravity is discussed in [98, 105].

2. Axion inflation. A more interesting possibility occurs for solutions with
r′ ≃ 0 1. In this case, imposing slow-roll in θ on the equations of motion
yields:

−fr
f
θ′2 +

Vr
H2f 2

= 0 (4.15)

(3− ϵ) θ′ +
Vθ

H2f 2
= 0 . (4.16)

These two equations give independent constraints on θ′, which must coin-
cide along the inflationary trajectory. Demanding them to be equal gives
the following consistency condition:

(θ′)2 =
V 2
θ

(3− ϵ)2H4f 4
=

Vr
H2ffr

, (4.17)

⇒ V 2
θ

(3− ϵ)2H2Vr
=
f 3

fr
. (4.18)

This relationship vastly restricts the regions of field and parameter space
satisfying slow-roll, and can be used to identify the inflationary trajectory.
We can also have different scenarios depending on the initial conditions for
the saxion:

1While θ = θ0 (i.e. θ′ = 0) is always a geodesic, r = r0 (r
′ = 0) is only a geodesic when

(fr/f) |r0 = 0.
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(a) Single field axion inflation. Single field axion inflation occurs when
the saxion is fixed to r0 such that Vr(r0, θ) = 0 and (fr/f)|r0 = 0 so
as to satisfy (4.15).

(b) Multifield axion inflation. Multifield inflation will occur whenever
(4.15) is satisfied with both terms non-vanishing. This can happen in
two scenarios: either Vr(r0, θ) ̸= 0 and (fr/f)|r0 ̸= 0, or Vr(r0, θ) = 0

and (fr/f)|r0 = 0 with r = rshift ̸= r0. The minimal sidetrack models
of [74] are an example of this case. In this situation, one can in prin-
ciple compute the value of rshift during the multifield evolution. Note
that in this case the axion follows slow-roll inflation assisted by the
saxion, which can give rise to large turning rates. These are the type
of solutions we examine in the next sections.

3. Multifield inflation. By appropriately choosing the initial conditions and
potential, it is possible to have double inflation without substantial turning
(see e.g. Sec.3.3.2 and [153] for an example in supergravity) or genuinely
multifield evolution where both axion and saxion act as inflatons with in-
teresting phenomenology.

In the rest of the chapter we will focus on the multifield axion inflation mod-
els. Note that it is not possible to have a similar “assisted saxion” multifield
inflation. Note also that all two-field rapid-turn models described by the actions
(4.11), (4.8), and (4.9) exhibit multifield axion inflation (e.g. supergravity in-
spired angular inflation [3], orbital inflation [131], hyperinflation [125], sidetrack
inflation [68]).

4.2.3 Rapid-turn, multifield axion inflation

In this section we build the foundations to study the multifield axion models in
the SUGRA framework.
In order to do that, we are going to derive the expressions for the slow-roll pa-
rameters, the dimensionless turning rate and the mass matrix’s eigenvalues as a
function of the scalar fields potential V and the field space metric Gab.
As mentioned above, in the multifield axion case, the inflationary trajectory is
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mostly aligned with the axion direction, while the saxion stays approximately
constant and constitutes the direction normal to the trajectory.

From eq.(4.11), the field space metric is

Gab =

(
f 2 0
0 f 2

)
⇒ Gab =

1

f 2

(
1 0
0 1

)
(4.19)

Using the kinematic basis description in Sec.2.3.2, we can express the trajec-
tory’s unit tangent and normal vectors as:

T a =
1

φ′ (r
′, θ′) , Na =

1

φ′ (θ
′,−r′) . (4.20)

Since r′ ∼ 0 in multifield axion inflation, the field velocity simplifies as

φ′ ∼ fθ′ (4.21)

, which reduces the unit vectors to

T a ∼ (0,
1

f
), Na ∼ (

1

f
, 0). (4.22)

Using these expression, the first slow-roll parameter ϵT eq.(2.100) can immediately
be written as a function of the derivative of the potential along θ:

ϵT =
M2

Pl
2

(
T aVa
V

)2

=
M2

Pl
2f 2

(
Vθ
V

)2

≪ 1 (4.23)

The computation for η is slightly more complicated:

η =
˙ϵT

HϵT
=

=
1

ϵTH

[
VθVθθθ̇

f 2V 2
− V 2

f 2

(
Vθθ̇

V 3

)
− V 2

θ

V 2

(
frṙ

f 3

)]
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where θ̇ can be obtained from eq.(4.16). Finalizing the computations, we have

η =
1

ϵTH

[
−2ϵT

Vθθ
3Hf 2

+ 4ϵ2T
V

3H
− 2ϵT

frṙ

Hf

]
≃ −2ηT + 4ϵT (4.24)

where ṙ ≃ 0, since we are focusing on axion models and where

ηT ≡ M2
Pl
f 2

Vθθ
V

(4.25)

which should be ηT ≪ 1 during inflation. The last two equations are respectively,
eq.(2.103) ad eq.(4.24), in the specific case of a two field model with Gab given
by (4.19).

Using the same procedure it is possible to rewrite Ω/H. Using eq.(4.16) and
the definition of the tangent vector, eq.(4.22), one can show that [74]

Ω

H
≃ Vr
H2f 2θ′

≃ −Vr
Vθ

(3− ϵ) . (4.26)

Using equation (4.18), we can further write:

Ω

H
≃ − Vθ

H2

fr
f 3

1

(3− ϵ)
≃ −MPl

√
2ϵT

fr
f 2
. (4.27)

This expression for Ω/H explicitly shows that a change in the kinetic term, hence
in the function f(r) in which define the field space metric, directly affects the
turning rate. We will later make use of this when showing how to generate large
turning rates in supergravity.
It is also possible to give an expression of Ω/H as a function of the Ricci scalar.
Given the field space metric in eq.(4.19), the scalar of curvature is

R = 2
f 2
r

f 4
− 2

frr
f 3

(4.28)
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and, substituting this expression into eq.(4.27), Ω/H becomes

Ω

H
≃ −3

Vθ
V

1

3− ϵ

±
f

√
R

2
+
frr
f 3
. (4.29)

From this equation it is possible to say that a scalar manifold with negative curva-
ture is a priori not required for large turning rate, as seen in the previous chapter
(see the examples in Table 3.1).

As mentioned in Sec.2.3.3, in multifield inflation, ν ≪ 1. Also this condition
can be re-written in term of the potential derivative. Expanding eq.(2.93) or,
equally, using equation eq.(2.92), this becomes

ν =
ω̇

Hω
∼ −3

V;rθ
Vθ

f

fr
− 3 + O(ϵ, η). (4.30)

If ϵT ≪ 1 and ηT ≪ 1, then the slow-roll condition for ν requires that

V;rθ
Vθ

≃ −fr
f
. (4.31)

Lastly, recalling that the eigenvalues of the mass matrix are given by eq.(2.89),
we note that, to have both the scalar fields positive masses, the following inequality
has to be satisfied:

VTT + VNN >

√
(VTT − VNN)

2 + 4V 2
NT (4.32)

Substituting eq.(4.4) and eq.(4.5), this translates in

VNN > 9H2. (4.33)

For negative eigenvalues, following a similar computation,

VNN < 9H2. (4.34)

In terms of the derivative of the potential respect to the scalar fields involved,
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r and θ, VNN can be written as

VNN = NaN bV;ab =
1

f 2

(
V,rr − Γk

rrVk
)

(4.35)

which simplify to

VNN =
1

f 2

(
V,rr − Vr

fr
f

)
. (4.36)

Equally, given eq.(2.87), the eigenvalues can be written as

λ± =
1

2f 2

(
Vrr + Vθθ ± (Vrr − Vθθ)

√
1 + β2

)
, where β ≡ 2Vrθ

Vrr − Vθθ
(4.37)

From here it is possible to see that one possibility for the eigenvalues to be both
positive and large is to have Vrr ∼ Vθθ and Vrθ small.

4.3 Large turning rates in supergravity
In this section we are going to investigate the viability of rapid-turn inflation in
supergravity. For a review of multifield inflation in SUGRA see Sec.2.4.

Our starting point was the observation that numerical scans of supergravity
models in the literature failed to find trajectories with large turning rates as we
show in the next Section. However, in Sec.4.3.3 we show how to understand the
small turning rates of most models and we provide a method to increase the
turning rate using the formulas obtained in Sec.4.2.3. As we will discuss, these
rapid-turn examples have consistently a fat tachyonic direction, (that is |λmin| >
H2, λ < 0) along the inflationary trajectory1. We therefore conjecture that
rapid-turn inflationary trajectories in supergravity always occur in the presence
of tachyonic directions, potentially satisfying the dSCs, Sec.2.3.5.
As mentioned in Sec.2.4, the simplest SUGRA inflationary setup involves a single
superfield, i.e. two real scalar fields, however inflation is generally difficult to
realize with only a single superfield. In Sec.4.3.2 we explore this possibility to

1Recall that this does not indicate an instability, similar to concave potential inflation, such
as Starobinsky inflation [29].
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understand the viability of large turning rates analytically. In Sec 4.3.3 we focus
instead on models with two superfields.

4.3.1 Results from survey of supergravity models

To study the possibility of rapid-turn inflation in supergravity models, we sur-
veyed several models from the literature ([4, 100, 154–158]), as well as studied
several ad-hoc models of our own creation.
After constructing the potential and field space metric in terms of real fields, we
scanned a wide region of allowed field and parameter space for each model. This
was achieved using an efficient differential-evolution optimizer in BlackBoxOptim.jl1,
assuming “good” initial inflationary points minimized one of several cost func-
tions. We performed several scans with each choice of cost function, first assuming
the initial velocities to follow the rapid-turn solution [69, 121]. This cost function
can be written

costrapid−turn(ϕ⃗,parameters) = (4.38)

=
ϕ̈v

3Hϕ̇v

+ Aϵ+B|η|+ C|ν|+D(Ω/H)−2, (4.39)

where va is the potential gradient unit vector and ϕ̇v = vaϕ̇a
2. This expression is

small when the solution admits both slow-roll and rapid-turn, and with A,B,C,D
chosen to weight each term’s relative contribution. Typical values chosen were
A = 100, B = 10, C = D = 1, though small changes in these values did not affect
the result. For details on our numerical method of constructing the zero-torsion
rapid-turn inflationary solution at a given point in parameter space, see [69].

As alternatives, we also examined cost functions to prefer high masses, with
1https://github.com/robertfeldt/BlackBoxOptim.jl
2This notation has been introduced in [126] and it relies on the so called “potential gradient

basis” where the basis vectors are va = V ,a/
√
V ,bV,b and wa a second unit vector orthogonal

to va.

89

https://github.com/robertfeldt/BlackBoxOptim.jl


4. RAPID-TURN INFLATION IN SUPERGRAVITY IS RARE
AND TACHYONIC

no inflationary considerations:

costfat(ϕ⃗,
˙⃗
ϕ, parameters) = 1010(# negative eigvals of V a

b ) +
1

|min. eigval of V a
b |
,

(4.40)

and an empirical cost function, with no assumptions about the initial conditions
other than the velocities were small enough to allow inflation to begin, i.e. the
initial ϵ < 1:

costempirical(ϕ⃗,
˙⃗
ϕ, parameters) = 1

Nend
+

J

ωend
, (4.41)

where J = 106ωend if the total number of efolds Nend < 60 and J = 1 otherwise,
and ωend is the lowest value of ω recorded during the final 10 e-folds of evolution.
Numerical integration was paused when ϵ = 1 or after 60 e-folds, whichever oc-
curred first. The empirical and high-mass scans treated the fields’ initial velocities
as free parameters, rather than determining them with the rapid-turn solution.

For each choice of cost function, at several hundred of its minimizing field
and parameter values, we evolved the classical equations of motion using the
publicly-available multifield inflationary dynamics code Inflation.jl [159] and
recorded the number of e-folds as well as the lowest turn rate recorded during
the final 10 e-folds, ωend. The empirical cost function proved to be the most
successful at finding inflationary points with slow-turn inflation, while the rapid-
turn cost function was comparably effective at finding rapid-turn inflation. The
fat cost function was the least effective at finding inflationary initial conditions,
suggesting the correlation between high mass points and inflationary points is
not a strong one in these models.

In Appendix B we present each scanned model’s Kähler and superpotential,
its reference when available, and the best solution as ranked by the empirical cost
function, even if found in a scan using one of the other cost functions. Many pub-
lished models restrict the field space to the regime with S = 0, but in these scans
we have avoided that limitation when possible, rendering some of these models
non-inflationary. Because the scale of the inflationary potential does not affect
the background evolution, coefficients common to all terms in the superpotential
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have been neglected when possible. Although not indicated in the table, none of
the found rapid-turn phases were fat inflation. In each model, its real fields are
defined from the complex fields as Φ = ϕ1 + iϕ2, S = ϕ3 + iϕ4. We denote the
initial e-fold velocities by πa ≡ ϕ̇a/H. For notational convenience we setMPl = 1.
We report in Fig.4.1 an example of the plots obtained for the various models anal-
ysed. In particular, we report the values of ω2 = Ω2/H2 for the EGNO model,
which we analyse in detail in Sec.4.3.5.2, for different values of the parameter p.
We can see that the larger turning rates are obtained whenever p ∼ Kπ, with
K ∈ N.

Figure 4.1: Behaviour of ω2
end for different values of p in the EGNO model in

Table B.1.

4.3.2 Single superfield model

In order to understand the viability of large turning rates analytically, we start
by examining models consisting of a single superfield Φ, i.e. multifield sGoldstino
inflation. We consider model with a Kähler potential given by

K = −3α log[(Φ + Φ̄)/MPl]. (4.42)
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For simplicity, we take the superpotential to be a monomial in Φ,

W =M3−nΦn, (4.43)

where n is an integer. Expanding the superfield into real and imaginary parts,
Φ = r + iθ, the resulting scalar potential is

V = 3M2(3−n) (θ
2 + r2)

n−1

23αr3α

[(
(α− 2n/3)2

α
− 1

)
r2 + (α− 1)θ2

]
, (4.44)

and the metric on real fields takes the form of eq.(4.11) with f =
√

3α
2r2

.
Axion inflation solutions require the consistency of both θ′ expressions in

eq.(4.15) and eq.(4.16). Denoting these expressions as θ′1 and θ′2 respectively, we
find them to be

θ′1 =

√
2

α (θ2 + r2) (9α2 (θ2 + r2)− 3α (3θ2 + (4n+ 3)r2) + 4n2r2)
(4.45)

×
[
r2
(
− 27α2

(
θ2 + r2

) (
θ2 + (2n+ 1)r2

)
+ 27α3

(
θ2 + r2

)2
+ 6αnr2

(
θ2(2n+ 7) + (6n+ 3)r2

)
− 8n2r2

(
θ2 + nr2

))]1/2 (4.46)

θ′2 =− 4θnr2 (9α2 (θ2 + r2)− 9αθ2 + 3α(1− 4n)r2 + 4(n− 1)nr2)

3α (θ2 + r2) (9α2 (θ2 + r2)− 3α (3θ2 + (4n+ 3)r2) + 4n2r2)
. (4.47)

When these expressions are equal, slow-roll trajectories are constrained to be of
the form

r = cnθ, (4.48)

where cn is a proportionality constant depending on the order n of the monomial
superpotential and α. Although the expressions are unwieldy for n ≥ 2, we
present the proportionality constant for the n = 1 case below:

c1=±
√
3α3/4

√√
α(−81α3 + 297α2−303α+87)+

√
3
√
(−405α3 + 1242α2−933α + 288)(α−1)2

(3α− 2)(9α2 − 21α + 4)2
.

(4.49)
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These solutions are only real-valued for 1 < α < 7+
√
33

6
, which corresponds to a

negative potential. Hence, we can exclude slow-roll axion inflation from models
with an n = 1 monomial superpotential. For higher order monomials with n =

2, 3, 4, 5, our numerical scans similarly find that the potential is either negative
or complex wherever the solutions are real-valued. We therefore expect slow-
roll axion inflation to be forbidden in this entire class of models with monomial
superpotentials.

4.3.3 Rapid-turn attractor in supergravity

We saw in Section 4.2.3 that slow-roll in the r′ ∼ 0 attractor implies ϵT ≪ 1

which can be written in terms of Vθ as in eq.(4.23), and ηT ≪ 1, see eq.(4.25).
In supergravity inflationary models, where we deal with Φ and Φ̄, we can use the
information in the previous section on the large turn attractor solutions to write
eq.(4.23), (4.25) and Ω/H in terms of the derivative of the Kähler potential and
superpotential. Part of the aim of this and the next section is to understand if
it is possible to find an expression for Ω/H and the scalar fields eigenvalues such
that we can constraint K and W to obtain a large turning rate and a fat model.

For this, let us introduce the real scalar fields r and θ defined as:

Φ = r + iθ, Φ̄ = r − iθ → r =
Φ+ Φ̄

2
, θ =

Φ− Φ̄

2i
(4.50)

From the above system it follows that

∂V

∂θ
=
∂Φ

∂θ

∂V

∂Φ
+
∂Φ̄

∂θ

∂V

∂Φ̄
,

∂V

∂r
=
∂Φ

∂r

∂V

∂Φ
+
∂Φ̄

∂r

∂V

∂Φ̄
. (4.51)

In SUGRA models of inflation, the field space metric can be written from the
Kähler potential, see Sec.2.4, thus eq.(4.19) becomes:

Gab =

(
2KΦΦ̄ 0
0 2KΦΦ̄

)
. (4.52)

Substituting eq.(4.51) and (4.52) into the expression of ϵT and ηT . these can
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be written as

ϵT ≃ M2
Pl
2

1

2KΦΦ̄

(
i(VΦ − VΦ̄)

V

)2

(4.53)

ηT ≃ M2
Pl

2KΦΦ̄

(2VΦΦ̄ − VΦΦ − VΦ̄Φ̄)

V
(4.54)

Using the same substitution, ν in eq.(4.30) becomes

ν ≃ 1

2V (VΦ + VΦ̄)KΦΦ̄

· (4.55)

· [(VΦ − VΦ̄) (VΦΦKΦΦ̄ − VΦ̄Φ̄KΦΦ̄ + VΦ̄KΦΦ̄Φ̄ − VΦKΦΦΦ̄)] . (4.56)

Transforming the expression for Ω/H in eq.(4.27) to complex coordinates and
neglecting factors of order ϵ, we obtain two equivalent expressions:

Ω

H
≃ −3

VΦ + VΦ̄
i(VΦ − V ¯̄Φ)

(4.57)

Ω

H
≃ −M2

Pl
i(VΦ − VΦ̄)

V

(
KΦΦ̄,Φ +KΦΦ̄,Φ̄

)
(2KΦΦ̄)2

. (4.58)

Using eq.(4.53), Ω/H can be written in terms of the first slow-roll parameter
and eq.(4.58) becomes

Ω

H
≃ −MPl

√
2ϵT

(
KΦΦ̄,Φ +KΦΦ̄,Φ̄

)
(2KΦΦ̄)3/2

. (4.59)

From this equation it is evident that large turning rates can be adjusted by
tuning the expression of Kähler potential. Meanwhile, the superpotential can be
tuned to ensure slow-roll, i.e. ϵT ≪ 1, see eq.(4.53). In Sec.4.3.4 this is used in a
concrete example. Note that the above equations for the turning rate are general:
there was no assumption on either K or W .
In Sec.4.3.4, we consider large turning rates in specific supergravity models. As
we have identified above, tuning the Kähler potential and superpotential suitably
can in principle generate strongly non-geodesic inflationary trajectories. In all
these examples, we find fat tachyonic fields along the trajectory.
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4.3.4 Orthogonal inflation

As described previously, we consider two “orthogonal” chiral superfields: the
goldstino and inflaton superfields S and Φ, respectively. We can eliminate S
by either introducing a suitable Kähler potential to stabilise it to S = 0, or by
introducing a nilpotent condition S2 = 0 [105, 106].

Consider a general Kähler potential and a superpotential of the form

K(Φ, Φ̄;S, S̄) , W = SF (Φ) , (4.60)

where the Kähler potential is separately invariant under the transformations

S → −S. (4.61)

This ensures that the Kähler potential is a function of S2 + S̄2 and SS̄; in par-
ticular, if S is nilpotent,

K
(
Φ, Φ̄, S, S̄

)
= K

(
Φ, Φ̄, SS̄

)
. (4.62)

In this section we make assumption on the superfield S but we do not impose
any symmetry for Φ. Under the assumptions for S, KS = KS̄ = 0 at S = 0, and
derivatives of the superpotential reduce to:

DSW = F (Φ) , DΦW = 0 , (4.63)

and the scalar potential then takes the simple form:

V = eK(Φ,Φ̄,0,0)/M2
PlK−1

SS̄
(Φ, Φ̄, 0, 0) |F (Φ)|2 . (4.64)

Without any further assumption on the Kähler potential, ϵT becomes:

ϵT = − M2
Pl

4KΦΦ̄


(
FΦF̄ − FF̄Φ̄ + FF̄ (KΦ −KΦ̄) +

FF̄
KSS̄

(
KSS̄,Φ −KSS̄,Φ̄

))
FF̄

2

(4.65)
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and eq.(4.57) and eq.(4.58), respectively, can be written as1

Ω

H
≃ 3i

FΦF̄ + FF̄Φ̄ + FF̄ (KΦ +KΦ̄)− FF̄
KSS̄

(
KSS̄,Φ +KSS̄,Φ̄

)
FΦF̄ − FF̄Φ̄ + FF̄ (KΦ −KΦ̄) +

FF̄
KSS̄

(
KSS̄,Φ −KSS̄,Φ̄

) (4.66)

Ω

H
≃ −i

(
FΦF̄ − FF̄Φ̄ + FF̄ (KΦ −KΦ̄)− FF̄

KSS̄

(
KSS̄,Φ −KSS̄,Φ̄

))
FF̄

KΦΦ̄,Φ +KΦΦ̄,Φ̄

(2KΦΦ̄)
2

(4.67)
The main purpose of these computations is to use the expressions of ϵT and

Ω/H to constraint the Kähler potential and the superpotential, hence F (Φ), such
that inflation an take place (ϵT ≪ 1) and Ω/H > 1. However the above equation
are unwieldy to work with and do not provide any clear indication in that sense.

For this reason in the next section we impose additional symmetries on the
Kähler potential.

Mass Matrix for SUGRA inflationary models

Here we are going to write the expression for the eigenvalues of the mass matrix
along the inflaton direction Φ, similarly to what we did in eq.(4.37). The full 4x4
mass matrix is given by

M I
J =

(
M I

J M I
J̄

M Ī
J M Ī

J̄

)
(4.68)

where in the particular case in which we have two complex superfields, ϕ and s,
each element of M is a 2x2 matrix.
In detail:

M I
J =

(
Mϕ

ϕ Mϕ
s

M s
ϕ M s

s

)
, M I

J̄ =

(
Mϕ

ϕ̄
Mϕ

s̄

M s
ϕ̄

M s
s̄

)
(4.69)

M Ī
J =

(
M ϕ̄

ϕ M ϕ̄
s

M s̄
ϕ M s̄

s

)
M Ī

J̄ =

(
M ϕ̄

ϕ̄
M ϕ̄

s̄

M s̄
ϕ̄

M s̄
s̄

)
(4.70)

Each of the above matrices can be written using the Kähler potential K and
1neglecting again factors of order ϵ, η
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the Hessian of the potential V as:

M I
J = KIL̄∇L̄∇JV = KIL̄(VJL̄ − Γk

L̄JVk) (4.71)
M I

J̄ = KIL̄∇L̄∇J̄V = KIL̄(VJ̄L̄ − Γk
J̄L̄Vk) (4.72)

M Ī
J = K ĪL∇L∇JV = K ĪL(VJL − Γk

LJVk) (4.73)
M ĪJ̄ = K ĪL∇L∇J̄V = K ĪL(VJ̄L − Γk

LJ̄Vk) (4.74)

where Γk
L̄J
Vk = ΓK

L̄J
VK + ΓK̄

L̄J
VK̄ and so on.

As a consequence, it is possible to check that the original 4x4 matrix becomes
block diagonal at S = 0 under the nihil condition assumption, eq.(4.62) and the
mass matrix takes the simple form

∇a∇bV =

(
KΦΦ̄VΦΦ̄ KΦΦ̄VΦ̄Φ̄

KΦ̄ΦVΦΦ KΦ̄ΦVΦΦ̄

)
(4.75)

where all the derivatives are covariant. The eigenvalues thus can be written as

λ± = K−1
ΦΦ̄

(
VΦΦ̄ ±

√
VΦΦVΦ̄Φ̄

)
(4.76)

It is possible to compute the expressions for λ±, however they are complicated
and do not provide additional information.

4.3.4.1 Shift symmetric Kähler potential

In this section we impose an additional symmetry on the Kähler potential. In
particular we assume that it is shift symmetric in Φ, such that it is a function of
(Φ + Φ̄) only. This gives the following simplifications

KΦ = KΦ̄ KSS̄,Φ = KSS̄,Φ̄, ...., . (4.77)

Within this framework the expressions for ϵT in eq.(4.53) reduces to:

ϵT = − M2
Pl

4KΦΦ̄

(
FΦF̄ − FF̄Φ̄

FF̄

)2

, (4.78)
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and the expressions for Ω/H, eq.(4.57) and (4.58) become:

Ω

H
≃ 3i

FΦF̄ + FF̄Φ̄ + 2FF̄
(
KΦ − KSS̄,Φ

KSS̄

)
FΦF̄ − FF̄Φ̄

(4.79)

Ω

H
≃ −M2

Pl
i
(
FΦF̄ − FF̄Φ̄

)
FF̄

(
2KΦΦ̄,Φ

)
(2KΦΦ̄)2

≃ −MPl
√
2 ϵT

(
2KΦΦ̄,Φ

)
(2KΦΦ̄)3/2

, (4.80)

while ν, eq.(4.55), can be written as:

ν = {(F̄F ′ − FF̄ ′)·

[F̄ (F ′′KSS̄KΦΦ̄ + F ′(−2KΦSS̄KΦΦ̄ +KSS̄(2KΦKΦΦ̄ −KΦΦ̄Φ̄)))+

F (F̄ ′′KSS̄KΦΦ̄ + F̄ ′(+2KΦSS̄KΦΦ̄ +KSS̄(−2KΦKΦΦ̄ +KΦΦ̄Φ̄)))]}·

[2FF̄ (FF̄ ′KSS̄ + F̄ (F̄ ′KSS̄ + 2F (KSS̄KΦ −KΦSS̄)))K
2
ΦΦ̄]

−1 (4.81)

From eq.(4.78) it is clear that the first slow-roll parameter can be fine-tuned
acting only on the superpotential W , hence on F (Φ), while, from eq.(4.80) we
observe that large turning rates can be obtained by tuning the Kähler potential.
Unfortunately the expression for ν, again, is too complicated to provide any
insights.
Following the above expressions, we wrote explicitly the eigenvalues in terms
of derivatives of K and W , making use of the slow-roll conditions, hoping to
understand how to obtain fat inflationary model. However these expressions
were not useful.

Trying to simplify the expressions for λ± we made further assumptions on
both the Kähler and the superpotential:

• F is a first order monomial, hence FΦΦ = F̄Φ̄Φ̄ = 0

• K is separable in Φ and S, hence K = K1(Φ, Φ̄) +K2(S, S̄) so that mixed
derivatives are null KΦΦ̄SS̄ = .... = 0.
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Using these simplification, the expanded expression for λ± is given by

λ± =
KΦΦ̄

KSS̄

eK
[
FΦF̄Φ̄ +

(
F̄FΦ + F̄F̄F

)
KΦ + FF̄

(
K2

Φ −KΦΦ̄

) ]
(4.82)

±KΦΦ̄e
K
√
FF̄
[ (

2KΦKΦΦ̄ +K2
ΦΦ̄ −KΦKΦΦΦ̄

) (
FΦF̄ + FF̄Φ̄

)
+ (4.83)

+ FΦF̄Φ̄ (2KΦKΦΦ̄ −KΦKΦΦΦ̄)
2 + FF̄

(
K2

ΦKΦΦ̄ +K2
ΦΦ̄ −KΦKΦKΦΦΦ̄

) ]1/2
.

(4.84)

Also with the additional constraints it is difficult to have a clear picture on how
to choose K and W to have fat inflation.

Before moving on to the next section and analyse two specific SUGRA model,
it is interesting to write eq.(4.33) as a function of K, W and their derivatives.
Imposing the shift symmetry for K and the additional constraints listed above,
VNN > 9H2 becomes(

FF̄Φ̄ + F̄FΦ

FF̄

)(
2

3
− 1

KΦΦ̄

)
+

1

3
KΦ

(
2KΦ + 2KΦΦ̄ − 1

KΦΦ̄

)
> 1 (4.85)

Summarizing, in order to have a SUGRA inflationary model which presents
large turning rate and positive fields masses, eq.(4.79) (or equivalently eq.(4.80))
has to be larger than 1, and eq.(4.85) and eq.(4.78) have to be satisfied.

However, all the models presented in Table B.1 do not satisfy eq.(4.85), hence
they present a tachyonic mass.

4.3.5 Generating large turning rates in supergravity

In this section we discuss two models where it is possible to demonstrate how to
implement the results obtained in the previous section to generate large turning
rates. Both of these models are stable and they always feature a fat tachyonic
Hessian element along the inflationary trajectory.
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4.3.5.1 No-scale inspired model

Let us consider eq.(4.60) with the following Kähler potential:

K = − 3αM2
Pl log[(Φ + Φ̄)/MPl] + SS̄ , (4.86)

which corresponds to no-scale supergravity for α = 1 [160]. For a general α > 0,
the field space curvature is given by R = −4/(3α). The potential (4.64) becomes

V =
M3α

Pl |F |2

(Φ + Φ̄)3α
, (4.87)

and the turning rate in eq.(4.80) is

Ω

H
≃

2
√
ϵT√
3α

. (4.88)

As anticipated, choosing an appropriate Kähler potential allows us to generate
large turning rates. In this example, this requires a sufficiently small α ≪ 1, which
consequently yields a large negative curvature. We have checked that this is the
case for a wide variety of superpotentials F (Φ).1. For clarity we now concentrate
on the simple choice2:

F (Φ) = p0 + p1Φ . (4.89)

In terms of real fields Φ = r + iθ, the field space metric and the scalar potential
are given by

Gab =
3αM2

Pl
2r2

δab, V =M3α
Pl

[p21θ
2 + (p0 + p1r)

2]

8αr3α
. (4.90)

Before examining inflationary solutions, we first consider the masses of the in-
flatons studying the quantity VNN , see eq.(4.33). As seen in Sec.4.2.3, for the
attractor with r′ ∼ 0, VNN can be written as in eq.(4.36).

1However, as we show in the next subsection, this is not always the case: it is possible to
have large turning also for non-negative curvature.

2The exact form of F (Φ) is unimportant for supporting inflation, as can be seen in several
of the families of models in Table B.1.
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In particular, from eq.(4.90), VNN/H
2 becomes:

VNN

H2
= 18α +

4p1r (p0 + 2p1r − 6 (p0 + p1r)α)

α
(
(p0 + p1r)

2 + p21θ
2
) (4.91)

To write this expression in terms of the ϵT , it is possible to use that ϵT ≃
ϵV

1+Ω2/(9H2)
= 1

2

(
VaV a

V 2

)
(1 + Ω2/(9H2))

−1, which, in the small α limit, leads to:

ϵ ≃ −3
p1r

p0
+ O(α) ⇒ p1 = −p0ϵ

3r
(4.92)

Moreover, from eq.(4.88), it follows that

Ω

H
=

4

3α

√
2

3

√
p41r

2θ2

α
(
(p0 + p1r)

2 + p21θ
2
)2 ⇒ 4

√
2p21rθ

3Ω/H
= α

(
(p0 + p1r)

2 + p21θ
2
)2
.

(4.93)
Substituting eq.(4.93) into eq. (4.91), expanding at first order in α and finally

substituting p1 as in eq.(4.92), we obtain that, in the small-α limit VNN/H
2 − 9

simplifies to

VNN

H2
− 9 ≃ 3 rω

θ

(√
2− 3

ϵ

)
− 9 + O(α). (4.94)

where ω = Ω/H.
The sign of the expression (4.94) determines the sign of the determinant, and
the number of positive eigenvalues. When ϵ is small as required for inflation,
eq.(4.94) is manifestly negative. Additionally, whenever ϵ is small, ω is large, and
α is small, we find that VNN < 9H2. This fixes the Hessian’s eigenvalues to have
opposite signs, implying the existence of a tachyonic direction, which, as we will
see, is large in Hubble units.

In Figure 4.2, we show the turning rate for different values of α; these agree
with the prediction of eq.(4.88), hence Ω/H increases as α → 0. For all the values
of α shown, inflation lasts at least 60 e-folds and in Fig.4.2 we plot the turning
rate in the last 60 e-folds. For values of α ≳ 10−2, inflation lasts less than 60
e-folds for the same values of the parameters (p0, p1), therefore they have not be
plotted.
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Figure 4.2: We plot the value of the dimensionless turning rate Ω/H for different
values of α. In all these cases, inflation lasts at least 60 e-folds and we plot the
turning rate in the last 60 e-folds. For α ≳ 10−2, inflation lasts less than 60-folds
for the same values of the parameters p0 = 47.4 and p1 = −8.4).

As discussed previously, it is possible to generate strongly non-geodesic tra-
jectories by tuning α, which changes the field space curvature, R = −4/(3α). In
particular, the values of α which produce a large turning rate are those related
to large field space curvature. On the other hand, one of the masses is always
tachyonic and large along the inflationary trajectory. We show in Figure 4.3 the
minimal eigenvalue of (2.101), which satisfies the dSCs.

4.3.5.2 The EGNO model

We now discuss the only supergravity model we are aware of with a dimensionless
turning rate larger than one: the EGNO model of [4]. The original Lagrangian
obeys the symmetries of K(S, S̄) discussed previously in Sec.(4.62) and in princi-
ple there is not necessarily a shift symmetry in Φ. However, the parameters that
yield turning rates larger than one and long-lasting inflation do admit a shift
symmetry. In this region of parameter space, we can make use of the expressions
found in our above analysis of rapid-turn inflation in supergravity, see 4.3.4.1.
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Figure 4.3: We show here the plot of λ− for different values of α for the no-scale
inspired model, eq.(4.90). They are always fat and tachyonic and they increase (in
absolute value) as the turning rate increases. We see also that these models satisfy
the dSSC along the inflationary trajectory.

The Lagrangian

Setting MPl = 1 in this subsection for simplicity, the Kähler potential and super-
potential for the EGNO model are

K = −3α log
[
Φ + Φ̄− c

[
(Φ + Φ̄− 1) cos (p)− i(Φ− Φ̄) sin (p)

]4]
+

SS̄

(Φ + Φ̄)3
,

(4.95)

W = SF (Φ) , F (Φ) =

√
3

4

M

a
(Φ− a) . (4.96)
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Following our previous discussion, we introduced the parameter α1, which allows
for tuning to obtain large turning rates. The parameters p, c, a, and M are
arbitrary constants.

For p = 0, the Kähler potential and superpotential satisfy the symmetries
discussed previously2. The scalar potential is given by eq.(4.64):

V =
3

4

M2

a2
(Φ + Φ̄)3 (a− Φ)(a− Φ̄)(

Φ + Φ̄− c
[
(Φ + Φ̄− 1)

]4)3α
=

6M2r3 (2r − c(1− 2r)4)
−3α

((a− r)2 + θ2)

a2
, (4.97)

where, again, the superfield Φ is expanded as Φ = r + iθ. We observe that the
potential has a minimum at (rmin, θmin) = (a, 0) for any value of α.

This model, contrary to the simpler model of the previous section, has a non-
trivial field space curvature, R, along S = S̄ = 0; it is not constant because it
change with r and it depends on the value of α and c. When c = 0 we have
R = −4/3α, while for c → ±∞ the curvature is R = −1/3α. Additionally,
R → −1/3α as r → ∞. Interestingly, the curvature can be very large and
positive or negative depending on the values of c and α. In particular, the α = 1

inflationary trajectory in [4] has R > 0 (see Figure 4.5). Note that although the
curvature changes sign, the metric is always positive.

The EGNO model has α = 1, a = 1/2, c = 1000, and p = 0, which sets
the dimensionless turning rate Ω/H ≃ 1.5 (see the left panel of Figure 4.7). For
p ̸= 0, our scan described in Sec.4.3.1 found smaller turning rates whenever p is
far from a multiple of π (see Fig. 4.1).

We emphasize that Ω/H can be increased or decreased by tuning the Kähler
potential as in (4.80). Since it depends on c, we may increase or decrease Ω/H

by increasing or decreasing c. For example, when c = 10, the turning rate drops
below one, Ω/H ≲ 1. In Figure 4.4 we show the potential and inflationary
trajectory for the example in [4] with α = 1, a = 1/2, M = 10−3, c = 1000,
p = 0, and initial conditions as indicated in the figure. The evolution of the fields
r and θ for this example is shown in Figure 4.6.

1In [4] α = 1.
2In Sec 4.3.1 we scan over p as a free parameter.
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Figure 4.4: EGNO potential and inflationary trajectory for the parameters α = 1,
a = 1/2, M = 10−3, c = 1000, and p = 0 as in the original model [4]. The initial
conditions are rini = a, θini = 5a

√
2/3, yielding Ntot = 87.

Figure 4.5: Curvature around the inflationary region (right) and during the last
60-efolds of inflation (left) in the EGNO model for the parameter values given in
Figure 4.4.
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Figure 4.6: Trajectories for r and θ in the original EGNO model for the param-
eters and initial conditions given in Figure 4.4.

Figure 4.7: Turning rate in the original EGNO model for two sets of parameters
for the last 60 efolds. On the left, we use the parameters and initial conditions
given in Figure 4.4 and find ω(N∗) ≃ 1.3, where N∗ is (Nend − 60). On the right,
we use α = 10−3, c = 105 to increase the turn rate up to ω(N∗) ≃ 3.
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Figure 4.8: On the left, we show the Hessian eigenvalues on the trajectory of the
EGNO model for the parameters and initial conditions of Figure 4.4. On the right,
for the same initial conditions, we show the kinematic-basis Hessian elements during
the evolution and compare them to their dynamical equivalents when available (i.e.,
eq.(4.4) and eq.(4.5)).

It is now evident that in the EGNO model, we can turn on α to generate
rapidly turning trajectories. As a concrete example, in the right panel of Figure
4.7 we show the value of Ω/H for a smaller value of α and a larger value of c.
The field space curvature increases for these values, but as in the original model
the metric is always positive. This is consistent with what we found in the pre-
vious subsection for the no-scale inspired model; we conclude that it is possible
to obtain large turning rate at the price of large (in absolute value) field space
curvature R.
Moreover, in the original EGNO model, the minimal eigenvalue is negative and
of order λ− ∼ −0.4 (see Figure 4.8), while for the modified EGNO model with
larger turning rate (left panel, Figure 4.7), the smallest eigenvalue is larger in ab-
solute value, λ− ∼ −3 thus satisfying the dSSC along the inflationary trajectory.
Nevertheless the potential does not satisfy it globally. Away from the trajectory,
the potential has neither a large gradient parameter ϵV nor a large tachyonic
direction.
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4.4 Conclusions
Strongly non-geodesic inflationary trajectories in multifield inflation have at-
tracted revived interest recently from theoretical and phenomenological perspec-
tives. However to date, rapid-turn multifield models in supergravity and string
theory are scarce. On the supergravity side, the only model we are aware of with
an order one turning rate Ω/H ≳ 1 is the EGNO model [4] that we discussed
in Section 4.3.5.2. On the string theory side, the only available model is the
multifield fat inflation D5-brane model introduced in [6].

In the present work we have systematically analysed rapid-turn inflation in
supergravity as a first step toward understanding multifield inflationary attractors
in string theory. In Section 4.2.1, we showed that light inflatons (in Hubble units)
are not required to ensure sustained inflation. That is, the ηV parameter (2.101)
does not need to be small in multifield inflation as commonly assumed. We further
discuss in detail the large turn inflationary attractor in effective field theory and
study the forms of two-field inflation that may occur in supergravity Lagrangeans
and focus on multifield axion inflation for its relation to well-known rapid-turn
inflationary models in the literature.

In Section 4.3 we then introduce multifield inflation in supergravity. For
concreteness, we focus on a large class of two-superfield supergravity models,
in which the inflaton is orthogonal to the sGoldstino direction [98, 105, 106].
In this class of models, inflation occurs along a single superfield direction, i.e.
along two real directions. Using our discussion in effective field theory, we find
expressions for the slow-roll parameter ϵ and dimensionless turning rate Ω/H in
terms of derivatives of the Kähler potential (4.78) and the superpotential (4.80).
From these expressions we observe that one can tune the superpotential F (Φ) to
ensure a small ϵ, while independently tuning of the Kähler potential to increase
the turning rate.

We find a large class of models with a high turn rate, a large field space cur-
vature and a fat tachyonic mass. This class matches all instances of rapid-turn
inflation found in our survey of supergravity models in Sec.4.3.1. We study in
detail two of these models: a no-scale-inspired model and the EGNO model. In
both cases, we show that the turn rate increases as the field space curvature
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increases. In particular to obtain Ω/H > 1, we found that it is necessary to
finetune the Kähler potential’s parameter which is related to the field space cur-
vature (α in the cases analysed in the Chapter) such that R increases in absolute
value. Moreover we observed that one of the masses is always tachyonic when
slow-roll and rapid-turn are valid approximations, however this tachyon does not
destabilize the trajectory.
In both these models we tuned by hand the parameters need to get strongly non-
geodesic inflationary trajectories1. However, these can only be considered as toy
models, as such small values of α do not occur in theoretically motivated models
of supergravity or string theory. Interestingly, tuning of the superpotential and
Kähler potential to achieve long lasting inflation and large turns, gives rise to fat
tachyonic fields.

In the main text, we focused on a large class of supergravity models that were
useful to illustrate our findings. We expect however that similar arguments apply
to more general models2. In Sec. 4.3.2, we also discuss a single superfield example
where we can see that inflation with large turns cannot be achieved.

These results, together with our survey of a wide variety of supergravity mod-
els, lead us to conjecture that rapid-turn inflation is rare in theoretically moti-
vated supergravity constructions. This is the primary conclusion of this chapter.
When allowing for large field space curvature, rapid-turn inflation becomes pos-
sible with ηV ≲ −O(1). This appears to be a ubiquitous feature of rapid-turn
inflation in supergravity; tachyons are also a feature of de Sitter constructions in
supergravity [165]. The models we have examined in Section 4.3 do not satisfy
the refined de Sitter conjecture globally as they have points with positive masses
and ϵV ∼ O(10−4); however, rapid-turn inflationary trajectories do not exist in
that region.

1Non-geodesicity constraints were recently studied in [161] for trajectories that asymptote
to infinity, which therefore cannot be applied to inflation where all trajectories end at the
minimum of the scalar potential.

2For example, Kähler inflation [162] is a small turn attractor with a light tachyonic inflaton
(that is, ηV ≪ 1) in the two field case [163, 164]. Following our discussion, tuning the Kähler
potential by hand, it should be possible to find a strong non-geodesic inflationary attractor.
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Chapter 5

Canonical quantization and
general cosmologies

In this Chapter we introduce different topics which play a fundamental role in
both Chapter 6 and 7. In the first part we review the ADM formalism and
the Hamiltonian formulation of General Relativity (GR). We then define the
synchronous reference system, which is the one we are going to adopt throughout
the remaining part of the thesis, and we use the Dirac approach to derive the
Wheeler-DeWitt equation. This equation, considered a fundamental step towards
a theory of quantum gravity, is key to understand the Vilenkin approach to the
wave function of he Universe, which we discuss in detail. In the second part of the
Chapter we introduce the Bianchi Universes, hence homogeneous and anisotropic
cosmological models, focusing in particular on the Bianchi I and the Bianchi IX
(or Mixmaster) ones. After having analysed in detail the dynamical evolution of
the Mixmaster, introducing the Misner variables and showing that its dynamics
resembles that of a point-particle in a potential well, we discuss the particular
case of the Taub Universe. In the last part of the Chapter we review the extension
of the Bianchi IX model dynamics to the inhomogeneous sector and we present
the Generic Cosmological Solution. Finally, we conclude this Chapter describing
the fragmentation process.
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5.1 Hamiltonian formulation of the dynamics

5.1.1 ADM formalism

The ADM formalism has been introduced in 1959 [166] in the wake of the nu-
merous 3+1 formalism of GR which started to be developed in the 1920’s as a
procedure to reduce the Einstein-Hilbert action SEH to its canonical form.
This particular formalism, proposed by R.Arnowitt, S.Deser and C.W. Misner is
based on a foliation of the spacetime manifold M, with metric gij, by a family
of three dimensional spacelike hypersurfaces Σ parameterized by a time function
t ∈ R:

M = R × Σ. (5.1)

The hypersurfaces Σ have timelike normal vectors and spacelike tangent ones
and each of them is equipped with its own Riemannian structure; we define the
induced metric on Σ as hij. Note that while gij is the spacetime metric, hij is a
spatial metric, hence it is three-dimensional.
The foliated spacetime can be characterized introducing the lapse function N and
the shift vector N i, see Fig.5.1 which can be defined using the four-dimensional
spacetime metric as

N ≡
(
−(4)g00

)−1/2
, Ni ≡ (4)g0i (5.2)

Let ni be the unit normal vector field to Σt and yi a general vector field on the
spacetime manifold, yi can be decomposed into its normal and tangential part
with respect to Σt:

yi = Nni +N i. (5.3)

In the above equation N measures the proper time separation between two adja-
cent hypersurfaces Σt and Σt+δt in the direction ni, while N i quantifies how much
the local coordinate system shifts tangentially passing from Σt to Σt+δt.

The spacetime line element ds2, adapted to the ADM foliation, can be written
as

ds2 = N2dt2 − hαβ(dx
α +Nαdt)(dxβ +Nβdt) (5.4)
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Figure 5.1: ADM foliation of the spacetime.

where we introduces Greek indices in hαβ to indicate that the spatial metric has
three spatial component, hence α, β = 1, 2, 3. The spatial metric hαβ can be
related to the spacetime one as follows:

g00 = hαβN
αβ −N2, g0α = hαβN

β, gαβ = hαβ,
√
g = N

√
h. (5.5)

The importance of the ADM formalism relies on the fact that the hαβ metric
on Σt plays the role of the fundamental configuration variable in the canonical
analysis of GR as we can see in the following subsection. In the following section
we use the Greek indices to indicate three dimensional components.

5.1.2 Canonical general relativity

In this section we discuss the Hamiltonian formulation of GR following [167].
Canonical gravity is a reformulation that puts the Einstein Equations in the

form of a constrained Hamiltonian system, so that General Relativity can be
realized as an initial value problem. The theory, once written in the canonical
form, is written without any redundant variables and it contains only the true
dynamical information.
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The Hamiltonian formulation of a field theory requires to choose a preferred
time variable; thus to write GR in the canonical form, we separate the spacetime
in a 3+1 foliation.

Therefore the first step to derive the Hamilton’s equations is to recast the
Einstein-Hilbert action SEH in the ADM formalism. Introducing the extrinsec
curvature tensor Kαβ and using the Gauss-Codazzi relation, SEH becomes

SEH(h,N,N
α) =

∫
R×Σ

L3+1dtd
3x = − 1

2k

∫
R×Σ

N
√
h
(
(K)2 −KαβK

αβ − 3R
)
dtd3x.

(5.6)
where k = 8πG.

The Hamiltonian density is then recovered performing a Legendre transfor-
mation of the Lagrangian density L3+1.

In Hamiltonian mechanics, given a configuration variable q, its canonically
conjugate momentum density π is defined as the partial derivative of the La-
grangian density respect to q̇, so in this case

Παβ ≡ δL3+1

δḣαβ
, Πα ≡ δL3+1

δṄα
, Π ≡ δL3+1

δṄ
(5.7)

Since eq.(5.6) does not depend on Ṅ and Ṅ i and 3R does not contain time
derivatives it follows that not all the conjugate momenta are independent, and

Cα(x, t) ≡ Πα(x, t) = 0, C(x, t) ≡ Π(x, t) = 0. (5.8)

These are called primary constraints.

According to the theory of constrained Hamiltonian system, it is possible to
introduce λ and λα as Lagrange multipliers for the primary constraints in order
to make the Legendre transformation invertible. The action is given by

SEH =

∫
R
dt

∫
Σ

d3x
[
ḣαβΠ

αβ + ṄΠ+NαΠα − (λC + λαCα +NH −NαHα)
]

(5.9)
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where

H ≡ GαβγδΠ
αβΠγδ −

√
h

2k

3

R (5.10)

Hα ≡ −2hαγ∇βΠ
βγ (5.11)

Gαβγδ ≡
k√
h
(hαγhβδ + hβγhαδ − hαβhγδ) . (5.12)

H is the Super-Hamiltonian, Hα is the Super-momentum and Gαβγδ is the Super-
metric, which are defined on the space of the three-metrics.
The Hamiltonian of the system therefore is

H ≡
∫
Σ

(λC + λαCα +NαHα +NH) d3x (5.13)

The fundamental Poisson Brackets (PB) are

{hαβ(x, t), hγδ(x′, t)} = 0 (5.14)
{Παβ(x, t),Πγδ(x′, t)} = 0 (5.15)
{hαβ(x, t),Πγδ(x′, t)} = δα(γδ

β
δ)δ

3(x− x′). (5.16)

To ensure the consistency of the dynamics it is necessary preserve the primary
constraints in eq.(5.8) during the evolution, i.e

Ċ = {C(x, t), H} = 0, Ċ i = {Cα(x, t), H} = 0. (5.17)

The above PB do not vanish, but are equal to H and Hα respectively, hence
eq.(5.17) leads to the secondary constraints:

H = 0, Hα = 0. (5.18)

These constraints are going to be key in the next Chapters.
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5.1.3 Synchronous reference system

The synchronous reference system, which is used in Chapter 6 is one of the most
interesting reference system. It is defined by

g00 = 1, g0α = 0 (5.19)

and, in the canonical framework, leads to the following line element

ds2 = dt2 − hαβ(x, t)dx
αdxβ. (5.20)

Comparing the last equation with eq.(5.4), we notice that in the synchronous
reference system N = 1, Nα = 0.
This is easily explained looking at the relation between the synchronous time and
the lapse function:

ts =

∫
N(t′)dt′. (5.21)

Note that the first condition in eq.(5.19) can be set since the time variable t
can be rescaled as √g00dt to reduce g00 to unity.
It is always possible to define such a reference system, however its choice is not
unique.

5.2 Canonical quantization and Vilenkin approach
Quantum cosmology is based on the idea that quantum physics should apply to
everything in nature, including the whole Universe.
While this might seem a bizarre idea, since quantum physics seems to be appli-
cable only at microscopical scales while cosmology deals with large scale objects,
this is not the case. If the SCM, modified in such a way to include inflation, is the
correct description of the beginning of the Universe, and there is an overwhelming
number of evidence in this sense as we saw in Chapter 2, then at the very start
the Universe was incredibly small and it should be treated like a quantum object
as a whole.
Since gravity is the dominant interaction at large scales it is natural to think

116



5.2 Canonical quantization and Vilenkin approach

that a realistic formulation of quantum cosmology should be based on a quantum
theory of gravity.
In this Section we describe how to use the Dirac approach to quantize the canoni-
cal variables obtained in the previous section (Sec.5.1.2) in the metric formalism.
We derive the Wheeler-DeWitt (WdW) equation and we introduce the concept
of wave function of the Universe, Ψ, and the idea of minisuperspace, a restriction
to a finite dimensional subspace of the Wheeler infinite dimensional superspace.
Finally, we discuss the semi classical approximation of the wave function of the
Universe introduced by Vilenkin in 1989.

5.2.1 Wheeler-DeWitt equation and its implementation in
cosmology

The configuration space on which quantum dynamics is defined is called Super-
space. This can be defined starting from the Riemannian three-metric and matter
configurations on the hypersurfaces Σ introduced in 5.1.1

Riem(Σ) ≡ {hαβ(x),Φ(x)|x ∈ Σ}. (5.22)

This is an infinite-dimensional space on account of x = {xi}, but with a finite
number of degrees of freedom in each x ∈ Σ.
The Superspace is then defined as the set of all the Riem(Σ) related by a diffeo-
morphism:

{hαβ} =
Riem(Σ)

Diff(Σ) (5.23)

The canonical quantization is performed taking the wave function of the Universe
Ψ(hαβ) as a functional on the superspace eq.(5.23). Note that Ψ does not depend
explicitly on time, since this is contained implicitly in hαβ.

To implement the quantization of a constrained system, see eq.(5.8) and
eq.(5.18), it is possible to use the Dirac approach, where the quantum theory
is constructed without solving the classical constraints. The first step is to re-
place the canonical momenta

Παβ → −i δ

δhαβ
, Πα → −i δ

δNα
, Π → −i δ

δN
(5.24)
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and demand that, following eq.(5.8),

Π̂Ψ = −i δΨ
δN

= 0, Π̂αΨ = −i δΨ
δNα

= 0. (5.25)

The above result implies that Ψ is independent of N and Nα.
To select the physically allowed states, we impose the constraints in eq.(5.18) in
their operators version, i.e:

Ĥ(ĥ, Π̂)Ψ = 0 (5.26)
Ĥα(ĥ, Π̂)Ψ = 0 (5.27)

From eq.(5.26), eq.(5.27), and writing the above system in a Schröedinger-like
equation, i.e.

i
∂

∂t
Ψt = ĤΨt = 0 (5.28)

we can see that Ψt results independent of time.
Note that eq.(5.26) is the scalar constraint equation, which generates the dynam-
ics. Recalling eq. (5.10), eq.(5.26) explicitly reads as:

ĤΨ = Gαβγδ
δ2Ψ

δhαβδhγδ
−

√
h

2k
3RΨ = 0. (5.29)

which is the famous Wheeler-DeWitt equation, derived by Wheeler in 1967. It
is worth mentioning that eq.(5.29) is not a single equation, but one equation for
each space point x ∈ Σ.

Once the WdW equation is derived, it is possible to apply the quantum frame-
work to cosmological models. These arise when spatially homogeneous (or homo-
geneous and isotropic) space times are taken into account. Imposing this symme-
try (or these symmetries) allows to “freeze” a number of the degrees of freedom
in the original superspace, leaving a finite dimensional configuration space known
as minisuperspace. In this case one deals with a constrained quantum mechanical
system described by a single WdW equation.
In a generic n-dimensional homogeneous minisuperpsace we can assume that the
three metric hαβ is described by n functions of t, qA(t), which conjugate momenta
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are pA(t), and that the lapse function is space independent, i.e. N = N(t), and
that Nα = 0.
The action for this model becomes

S =

∫
dt(pAq̇

A −NH) =

∫
dt
[
pAq̇

A −N(GABpApB + U(q))
]

(5.30)

where U(q) denotes the potential term and GAB is the the reduced version of
Gαβγδ, is called minisupermetric and its components run over the independent
components of hαβ.
The WdW equation of this system becomes

ĤΨ =
(
−∇2 + U

)
Ψ = 0 (5.31)

where Ψ = Ψ(q) is the wave function of the Universe and ∇2 = ∇A∇A =

1/
√
G∂A(

√
GGAB∂B).

5.2.2 Vilenkin interpretation of the wave function of the
universe

In this subsection we discuss the semiclassical approximation of the wave function
of the Universe, proposed by Vilenkin in [168], which leads to a probabilistic
interpretation of the wave function of the Universe Ψ.
Conventionally, in quantum mechanics, the probability to find a system, described
by Ψ(x, t), in a configuration-space element dΩx is given by

dP = |Ψ(x, t)|2dΩx (5.32)

from which dP ≥ 0.
In quantum cosmology the wave function of the Universe, as seen in the previous
section, depends only on the three-metric hαβ (and on matter fields if considered)
but not on the time, as seen in eq.(5.28). Therefore, the analogue of eq.(5.32) in
this case would be:

dP = |Ψ(q)|2
√
Gdnq, (5.33)
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where q are the coordinates as described in the last part of the previous section.
However, it is easy to see that eq.(5.33) is not normalizable since, integrated on
the minisuperspace, it diverges.
In 1967, in order to avoid this problem, DeWitt proposed an alternative approch
based on the use of the conserved current jA [169], defined as:

∇Aj
A = 0, jA = − i

2
GAB (Ψ∗∇BΨ−Ψ∇AΨ∗) (5.34)

Using these definitions he obtained the following probability definition:

dP = jAdΣA. (5.35)

Here the current’s conservation guarantees the conservation of the probability,
but unfortunately, this can still be negative.
In 1989 Vilenkin proposed an alternative approach, following DeWitt’s idea,
which is illustrated in [168] and partly based on an early work [170].
The main new ingredient is the idea that in quantum cosmology it is possible to
obtain a semidefinite probability if we divide the space variables in semiclassical
and quantum ones. The m quantum variables are indicated as ρI , (I = 1, ...,m)
and the n−m semiclassical variables as qA, (A = 1, ..., n−m).

Vilenkin’s work is based on two fundamental assumptions:

1. WKB approximation of Ψ:

Ψ(q, ρ) = A(q)e
i
h̄
S(q)χ(q, ρ), (5.36)

2. Adiabatic approximation of Ψ. This requires that the semiclassical evolu-
tion is principally contained in the semiclassical part of the wave function,
i.e:

|∂A(q)| ≫ |∂χ(q, ρ)|. (5.37)

In the following we show how Vilenkin demonstrates that the probability
distribution for Ψ can be written as the product of the probability distribution
for the semiclassical part of the wave function with the probability distribution
for the quantum one.
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Given the adiabatic approximation the effects of the quantum variables on the
dynamics of the semiclassical ones is negligible, which suggests that ρI correspond
to a small subset of the Universe.
The WdW equation in this case can be written as

(
∇2

0 − U0 −Hρ

)
Ψ(q, ρ) = (H0 −Hρ)Ψ(q, ρ) = 0. (5.38)

The operator H0 ≡ ∇2
0 − U0 is the semiclassical operator and it is obtained

neglecting ρI and their momenta while Hρ is the quantum operator, and given
the smallness of the quantum subsystem, it is true that

HρΨ

H0Ψ
= O (h̄) (5.39)

so that Hρ ∝ O(h̄−1). 1

The wave function of the Universe can be written as in (5.36)

Ψ ≡ Ψ0χ = A(q)e
i
h̄
S(q)χ(q, ρ) (5.40)

where χ(q, ρ) depends only parametrically from the qA.
The semiclassical wavefunction Ψ0 satisfies the semi classical WdW equation
(∇2

0 − U)Ψ0 = 0. This leads to the following two equations

GAB (∇AS) (∇BS) + U = 0 (5.41)
2∇AA∇AS + A∇A∇AS = 0 (5.42)

which are, respectively, the Hamilton-Jacobi equation for S and the continuity
equation for the amplitude A, which expresses the conservation of the current
jA = |A2|∇AS. The equation that the quantum part of the wave function has to
solve is

∇2
0χ+ 2 [∇0 (logA)]∇0χ+ 2i (∇0S)∇0χ−Hρχ = 0. (5.43)

1Eq.(5.39) does not invalidate eq. (5.38). H0Ψ includes terms of different order in h̄, hence
eq.(5.39) simply states that HρΨ is O(h̄) with respect to the larger terms of H0Ψ.
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Neglecting all terms which are not order O(h̄) this becomes

2i (∇0χ) (∇0S) = Hρχ. (5.44)

Redefining the time variable and using that q̇A = 2N∇AS, the above equation
can be rewritten as a Schröedinger equation

i
∂χ

∂t
= NHρχ. (5.45)

Vilenkin proved that the probability distribution for Ψ, defined as in eq.(5.40),
can be obtained with a first order WKB expansion of eq.(5.34) which, for the
semiclassical variables, lead to:

jA = |χ|2|A|2∇A
0 S ≡ jA0 ρχ (5.46)

Vilenkin showed that, in the last part of his paper, the probability distribution
for the wave function can be written as the product of the probability distribution
for Ψ0 and the probability distribution for the variables ρI , hence:

σ(q, ρ, t) = σ0(q, t)σρ(ρ, q, t) = σ0(q, t)|χ(ρ, q(t), t)|2. (5.47)

Both these probability distributions can be normalized if the surface element dΣ =

dΣ0dΩρ, where dΣ0 is the surface space defined in the semiclassical subspace, is
represented on the equal-time surface. In this case:∫

σ0dΣ0 = 1,

∫
σρdΩρ = 1, (5.48)

where dΩρ = |detGAB|1/2dmρ and GAB is the spacetime metric.
To conclude this subsection it is worth mentioning that the above computa-

tions are still valid if Ψ is a superposition of the form

Ψ(q, ρ) =
∑
k

Ψk(q)χk(q, ρ) (5.49)

where each Ψk(q) is given by Ψ(q) = A(q)e
i
h̄
S(q). In this case the probability
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distribution for Ψ becomes

σ(q, ρ, t) =
∑
k

σ0k(q, t)|χk(q, ρ, t)|2. (5.50)

Vilenkin results are the main ingredients used in Chapter 6 and 7 to study
the probability distribution of the Bianchi IX Universe.

5.3 Homogeneous cosmological models
The study of homogeneous models arise from breaking the hypothesis of space
isotropy and, as seen in the Introduction 1, this is very well motivated. In this
section we follow the description of these models as in [171–173].

The set of homogeneous but anisotropic cosmological models has been clas-
sified by Bianchi in 1898 [174] into 9 different types, corresponding to the inde-
pendent groups of isometries for the three-dimensional space.
The dynamics of these models is characterized by the presence of three different
scale factors associated to the evolution of the three independent spatial directions
[175, 176]; they contain, as a subclass, the standard isotropic FLRW Universe.
The solution of the Einstein Equations for the simplest of this model, the Bianchi
I, has been derived by Kasner in 1921 [177] (see also [175]), and takes the name
of Kasner solution. This plays a key role in the understanding of the dynamical
evolution toward the singularity not only for the Bianchi I model, but for all the
9 Bianchi Universes.

The Bianchi IX model, or Mixmaster, is the most general homogeneous model,
together with the Bianchi VIII, and has an extremely important role in the study
of the cosmological dynamics. Indeed, despite its spatial homogeneity, it pos-
sesses typical feature of the generic cosmologial solution [178–180], like a chaotic
time evolution of the cosmic scale factors near the cosmological singularity, see
also [181] and [182]. Providing the Hamiltonian formulation for the Mixmas-
ter model, and introducing the so-calles Misner variables [183], it can be shown
that its dynamics resembles the one of a two-dimensional point-particle in a time
dependent potential [176]. Furthermore, it has been shown in [184], and later
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reviewed in [178], that in its approach toward the singularity, the Mixmaster’s
dynamics exhibits an oscillatory regime represented by an infinite sequence of
bounces of the point-particle against the potential wall.
In particular, in the asymptotic limit towards the singularity the potential term
of the Bianchi IX dynamics resembles an infinite well with the morphology of an
equilateral triangle with three open corners; these correspond to the non-singular
Taub cosmology [185], which defines the limit when the Bianchi dynamics is as-
sociated to two equal scale factors of the three possible independent ones.
In the following we present the Kasner solution and study the dynamics of the
Bianchi IX model toward is the singularity using both the canonical and the
Misner variables.

5.3.1 Bianchi classification

As a general definition, a space is said to be homogeneous if its metric tensor
admits an isometry group that maps the space onto itself, i.e a group of trans-
formation which leaves the metric invariant. This group results to be generated
by Killing vector fields.
Applying this concept to cosmology, a spacetime is said to be homogeneous in
space and time, if the spacetime metric gij is the same in all points of space and
time. Therefore under the isometry τ : x→ x′, the line element

dl2 = hαβ(t, x)dx
αdxβ (5.51)

has to be invariant, meaning that

dl2 = hαβ(t, x
′)dx′αdx′β (5.52)

with the same functional dependence of hαβ on the new coordinates x′.
The metric tensor for a homogeneous spacetime is obtained choosing a basis of
dual vector fields ωa which are preserved under the isometries. In the general case
of a non-Euclidean tridimensional homogeneous space there are three independent
forms which are invariant under the transformation of the group of motions, which
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can be written as
ωa = eaαdx

α, (5.53)

where {ea} are the left-invariant basis vectors under the action of the Killing
vectors. The line element dl2 can be re-expressed as dl2 = ηab(t)e

a
αdx

αebβdx
β.

Following the computation in [175, 181], it can be shown that the condition for
the homogeneity of the spacetime becomes:

eαa
∂eγ

∂xα
− eβb

∂eγa
∂xβ

= Cc
abe

γ
c (5.54)

where Cc
ab are called structure constants of the group and for construction Cc

bc =

−Cc
ba. Using this property, the last equation can be written as

Cf
abC

d
cf + Cf

bcC
d
af + Cf

caC
d
bf = 0. (5.55)

To solve the problem of the classification of homogeneous spaces it is sufficient to
identify all the nonequivalent sets of structure constants which satisfy eq.(5.55),
which can be done using the tensor property of Cc

ab.
The structure constants Ca

bc can be written as the sum of a symmetric and a
antysymmetric part

Ca
bc = ϵbcdn

da + δacab − δabac → Cab = nab + ϵabcac (5.56)

where nab = nba and ac = Cb
bc.

The homogeneity condition in eq. (5.55) therefore can be expressed as

nabab = 0 (5.57)

and it is possible to determine the nine independent three-dimensional isometry
groups assigning a dual vector ac = (a, 0, 0) and a symmetric matrix nab, which
can be reduced in its diagonal form nab = diag(n1, n2, n3) without loss of gener-
ality.
This classification, reported in Table 5.1, has been derived by Bianchi in 1898.
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Type a n1 n2 n3

I 0 0 0 0
II 0 1 0 0

VII0 0 1 1 0
VI0 0 1 -1 0
IX 0 1 1 1

VIII 0 1 1 -1
III 1 0 1 -1
V 1 0 0 0
IV 1 0 0 1
VIIa a 0 1 1
VIa a 0 1 -1

Table 5.1: Bianchi classification of inequivalent structure constants.

Bianchi type IX is the most general model in which the topology of the spatial
surface is given by the three-sphere S3 and it contains as special case the closed
FLRW Universe.
Considering the basis of dual vector field ωa, preserved under the group transfor-
mation (see eq. (5.53)), the spacetime metric tensor for a homogeneous spacetime
can be written as

ds2 = N(t)2dt2 − ηabω
aωb (5.58)

where ηab(t)eaα(xγ)ebβ(xγ) = hαβ, see above.
In a synchronous reference system, see Sec.5.1.3, it is possible to parameterize ηab
in such a way that is easier to understand how the above line element describes
the properties of the Universe, i.e the expansion and anisotropies, in particular

ηab = R2
0e

2α
(
e2β
)
ab

(5.59)

where α and β are function of time only and Trβ = 0, so that VUniv ∝ R3
0e

3α.
This will be explained in more details in 5.3.5.

The Einstein Equations (EE) for an homogeneous spacetime, written in the
tetradic basis ωa, reduce to a system of ordinary differential equations which
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involve function of time only (see [171] and [181]):

R0
0 =

∂

∂t
Ka

a −Kb
aK

a
b = k

(
T 0
0 − 1

2
T

)
R0

a = Kc
b

(
Cb

ca − δbaC
d
dc

)
= kT 0

a (5.60)

Ra
b =

1
√
η

∂

∂t
(
√
ηKa

b )−3 Ra
b = k

(
T a
b − 1

2
δabT

)
where Kab = −∂tηab/2 and

3Rab = −1

2

(
Ccd

bCcda −
1

2
C cd

b Cacd − Cc
cdC

d
ab + Cc

cdC
d

ba

)
(5.61)

5.3.2 Bianchi I model and the Kasner solution

The Kasner solution, which has been obtained by Kasner [186], is the simplest
solution of the EE and solves them in the specific case of the vacuum Bianchi I
Universe where, as can be seen in Table 5.1, Ca

bc = 0, a = 0 and, as a conse-
quence, 3Rab = 0.
Solving the system (5.60) (see [175, 181]), the resulting system of ordinary differ-
ential equations for ηab is:

η̇ab =
2

t
ξcaηcb. (5.62)

Denoting the eigenvalues of ξca as (pl, pm, pn) ∈ R and its eigenvectors as l, m, n,
ηab can be written as

ηab = t2pllalb + t2pmmamb + t2pnnanb. (5.63)

Choosing the direction of l, m and n as the direction of {ea}1 (where the co-
ordinates can be labeled as x1, x2, x3), the space metric for the Bianchi I model
becomes:

ds2 = N2(t)dt2 − t2pl(dx1)2 − t2pm(dx2)2 − t2pn(dx3)2. (5.64)
1Recall that eaα = δaα.
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Here pm, pl, pn are called Kasner indices and satisfy

p2l + p2m + p2m = 1, pl + pm + pn = 1. (5.65)

These indices are ordered according to

p1 ≤ p2 ≤ p3 (5.66)

and the variation range for each of them is

−1

3
≤ p1 ≤ 0, 0 ≤ p2 ≤

2

3
,

2

3
≤ p3 ≤ 1. (5.67)

As can be seen from the above inequalities, the Kasner indices are never equal to
each other, except in the case p1 = p2 = 0, p3 = 1 and p1 = −1/3, p2 = p3 = 2/3.
Moreover one is always negative and the other two positive. It is important
to notice that the value t = 0 is a non-eliminable singularity for the metric in
eq.(5.64) except for the peculiar case pl = pm = 0, pn = 1 where it is possible to
reduce the metric to a Minkowskian form using the transformation t sinhx3 = ξ,
t coshx3 = τ .
The Kasner indices can be parameterized in terms of the Khalatnikov-Lifschitz
parameter u:

p1(u) =
−u

1 + u+ u2
, p2(u) =

1 + u

1 + u+ u2
, p3(u) =

u(1 + u)

1 + u+ u2
(5.68)

which holds for 1 ≤ u < ∞. Note that the parameter u can be uniquely defined
as

u = − p1
(1− p3)

. (5.69)

For u < 1, as we explain more in detail in the next section, the Kasner indices
transform as:

p1

(
1

u

)
= p1(u), p2

(
1

u

)
= p3(u), p3

(
1

u

)
= p2(u). (5.70)

The line element in eq.(5.64) corresponds to a flat homogeneous but anisotropic
space where volume grows with time while linear distances grow along two direc-
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tions and decrease along the third one.

5.3.3 Dynamics of the Bianchi IX model

The Kasner solution is an exact solution for the EE when the Ricci tensor is of
order higher than 1/t2 and therefore negligible. However this solution is unstable
near the singularity since 3Rαβ has additional terms dominant respect to t−2.
In what follows we focus on the dynamical evolution of the Bianchi IX model for
t→ 0.

Taking ηab(t) in eq.(5.63) to be diagonal and denoting the three frame vec-
tors satisfying the homogeneity conditions as {l,m, n}, the spatial metric can be
written as :

hαβ = a2(t)lαlβ + b2(t)mαmβ + c2(t)nαnβ, (5.71)

and the Einstein equations become:

−Rl
l =

(ȧbc)˙

abc
+

1

2a2b2c2

[
λ2l a

4 −
(
λmb

2 − λnc
2
)2]

= 0 (5.72)

−Rm
m =

(aḃc)̇

abc
+

1

2a2b2c2

[
λ2mb

4 −
(
λla

2 − λnc
2
)2]

= 0

−Rn
n =

(abċ)˙

abc
+

1

2a2b2c2

[
λ2nc

4 −
(
λla

2 − λmb
2
)2]

= 0

−R0
0 =

ä

a
+
b̈

b
+
c̈

c
= 0.

where (λl, λm, λn) = (1, 1, 1) being the structure constants of Bianchi IX.
The last terms on the rhs on all the above equation play the role of the perturba-
tions to the Kasner solution. Note that, for the Bianchi I model λl = λm = λc = 0,
hence there are no perturbation terms and the Kasner regime can continue indef-
initely.
Before addressing the perturbation to the Kasner regime, note that comparing
eq.(5.71) and eq.(5.64) when the Kasner solution is a valid approximation for the
dynamics of the system, the scale factors can be approximated a

a(t) ∼ tpl , b(t) ∼ tpm , c(t) ∼ tpn . (5.73)
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Let us now address how the rhs terms invalidate the Kasner regime.
If pl = p1, hence pl is the smallest among the Kasner indices, it follows that
it has to be the negative one, i.e pl < 0, see eq.(5.67). Assuming that pm =

p2, pn = p3, we can see that the terms on the rhs of the system in eq.(5.72)
which are proportional to a4, thus proportional to t4pl given eq.(5.73), grow for
t → 0. Therefore, they are no longer negligible when solving the EE toward the
singularity.
The solution of the full system in eq.(5.72) with this assumption is

a(t) = tp
′
l , b(t) = tp

′
m , c(t) = tp

′
n (5.74)

where the new Kasner indices are related to the old ones through the so-called
BKL map:

p′l = − p1
1 + 2p1

, p′m = −2p1 + p2
1 + 2p1

, p′n =
p3 + 2p1
1 + 2p1

. (5.75)

Clearly these new coefficients satisfy the Kasner relations in eq.(5.65).
From the above result we can see that the effect of the terms a4 in eq.(5.72) on the
Kasner regime is to replace a Kasner epoch with another one1 where the negative
Kasner index changes direction: if originally pl < 0, now p′m < 0.
In particular, looking at eq.(5.72), the perturbation to the Kasner regime caused
by a4 vanishes while that associated with b4 grows until a new transition between
a and b occurs with the same law.
To understand how long this process lasts, we can rewrite eq.(5.75) in terms of
the parameter u introduced in eq.(5.68):

pl = p1(u)

pm = p2(u)

pn = p3(u)

→


p′l = p2(u− 1)

p′m = p1(u− 1)

p′n = p3(u− 1)

(5.76)

Here it is clear that the exchange of the negative sign happens between the l and
1A Kasner epoch is defined as the period of time during which the solution of (5.72) is well

approximated by (5.64).
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m direction1, while the n one remains unchanged.
Writing the parameter u as

u0 = k0 + x0 (5.77)

where k0 = [u0] is the integer part and x0 < 1 is the fractional, which can be
rational or irrational, we can see that, given eq.(5.68) and eq.(5.70), the exchange
between the l direction and the m one continues k0 time. The collection of the
total k0 epochs is called Kasner era; during an era one of the three cosmic scale
factors decreases monotonically towards the singularity.
After k0 epochs, a new era starts: when u becomes u < 1 at the end of a Kasner
epoch, according to eq.(5.70), the Kasner index along the n direction (which is
p3 in this case), becomes the smaller positive index, i.e pn = p2. Thus in the
new Kasner epoch the exchanges of values is l → n or m → n, depending on
which one between pl and pm was the negative index during the k0-th epoch of
the previous era.
Let us notice that in terms of u, the BKL map (eq.(5.75)) becomes

u′ =

{
u− 1 for u > 2
1

u−1
for u ≤ 2,

(5.78)

which also explain eq.(5.70). When an era ends the new value of u is u′ = 1/x0.
To summarize, the Bianchi IX model evolves toward the singularity with an
infinite series of successive Kasner eras: in each era the distances oscillate along
two axes oscillates (in the case above these are l and m) and decrease along the
third one (n).

5.3.3.1 Stochasticity of the Bianchi IX model

Belinsky, Kahlatnikov and Lifshitz, in [184] and [178] , showed that, for an arbi-
trary irrational initial value of u, the transition from a Kasner era to another is
repeated infinitely many times up to the singularity.
They also demonstrated that the order in which the pair of axes are interchanged
and the order in which eras of different length follow each other has a stochastic

1We are always considering the specific case where pl < 0 when the dynamics evolution
starts.
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character.
To every s-th era corresponds a decreasing sequence of values for u, see eq.(5.78),
which starts from u

(s)
max, u(s−1)

max , ..., and arrives to u(s)min where

u(s)max = k(s) + x(s), u
(s)
min = x(s) < 1. (5.79)

The next era starts when u(s)min is reached, and starting value of the parameter u
for this era, u(s+1)

max , is given by

u(s+1)
max =

1

x(s)
, k(s+1) =

[
1

x(s)

]
. (5.80)

If the sequence begins with u(0) = k(0) + x(0), then the lengths of the successive
eras, k(1), k(2), k(3), ... appear in the expansion for x(0) in the following way:

x(0) =
1

k(1) + 1
k(2)+ 1

k(3)+...

(5.81)

The above sequence is infinite if u is an irrational number, while it has a finite
number of iteration if u is rational. In this last case, the space of possible initial
conditions would correspond to sets of zero measure and this, as we discuss in
Chapter 7 brought the Belinskii, Kahlatnikov and Lifshitz to exclude rational
values of u.

The map presented in eq.(5.80) is known to be stochastic in the sense that,
in the limit s→ ∞, any initial probability distribution w(1)(x(1)) develops into a
stationary distribution w(x) which does not depend on the initial data.
As explained in [187], the distribution of x(s) in the interval (0,1), formulated by
Gauss, but rigorously derived only in 1928 by R.O. Kuzmin [188] is:

w(x) =
1

(1 + x) log (2) . (5.82)

Note that this probability distribution, computed in the interval (0, ϵ), with ϵ≪ 1,
gives a very small number, which suggests that the probability to have small
values of x, needed for u≫ 1, is small, but not null.
From eq.(5.82), noticing that x and k are not independent but admit a stationary
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joint probability distribution

w(x, k) =
1

(k + x)(k + x+ 1) ln (2) (5.83)

we can write
w(u) =

1

u(u+ 1) ln (2) . (5.84)

In [189] the authors pointed out for the first time that the map in eq.(5.80) is the
source of stochasticity in the cosmological oscillatory regime near a singularity.
From a practical point of view, since the map in eq.(5.80) is stochastic and infinite
it is possible to observe arbitrary small values x(s) and, accordingly, large lengths
k(s) and therefore u(s+1).
The case of large values of u, u ≫ 1, is called small-oscillation regime and
produces, the following Kasner exponents:

p1 ∼ −1

u
, p2 ∼

1

u
, p3 = 1− 1

u2
(5.85)

which, in the limit considered, approach the values (0, 0, 1). In [189] the authors
proved that, starting from a generic u(0) the small oscillation regime is always
reached.

5.3.4 Hamiltonian formulation of the Mixmaster model

The Hamiltonian formulation of the Bianchi IX dynamics allows to understand
how the infinite sequence of Kasner epochs described in Sec.5.3.3, takes the form
of a two-dimensional point particle performing an infinite series of bounces within
a potential well.

To obtain the Hamiltonian of the system, the first step is to write the Einstein-
Hilbert action (EH) in the specific case of a homogeneous model. To do that, we
notice that the line element in eq.(5.58) can be rewritten in terms of 1-forms ωa

[181] as
ηabω

aωb = eqaδabω
aωb (5.86)
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where qa = qa(t) and ωa, in the specific case of the Bianchi IX Universe, are

ω1 = sinψ sin θdϕ+ cosψdθ
ω2 = − cosψ sin θdϕ+ sinψdθ (5.87)
ω3 = cos θdϕ+ dψ

with θ ∈ [0, π), ϕ ∈ [0, 2π) and ψ ∈ [0, 4π) are Euler angles, see [181] [176]
1 Eq.(5.86) is valid in the case of absence of matter, when R0α = 0 and it is
possible to choose a diagonal hαβ.
Carrying out the space integration of the EH action, using∫

ω1 ∧ ω2 ∧ ω3 = 4π2, (5.88)

the dynamical evolution of the Bianchi IX model is given by the variational
principle2

δSB = δ

∫ t2

t1

LB(qa, q̇b)dt = 0, (5.89)

The Lagrangian LB can be written explicitly, and it reads as

LB =
√
−gR = N

√
η (3R +KabK

ab −K2) (5.90)

as already seen in eq.(5.6), where η = det(ηab), 3R is the spatial curvature, Kab

is the extrinsec curvature tensor and K is its trace.
Using the metric in eq.(5.86), the Lagrangian density becomes

LB = −
8π2√η
k

[
1

N
(q̇lq̇m + q̇lq̇n + q̇mq̇n)−N 3R

]
(5.91)

and we can write the Hamiltonian HB for the Bianchi IX model performing a
Legendre transformation.

1The simply connected covering space is obtained by extending the range of ψ to 4π, see
[176].

2The subscript B here indicates that the action S and the Lagrangian density L are those
of the Bianchi IX model.
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Defining pa as the conjugate to the generalized coordinates qa, 1

pl ≡ −
4π2√η
kN

(q̇m + q̇n), pm ≡ −
4π2√η
kN

(q̇l + q̇n), pn ≡ −
4π2√η
kN

(q̇l + q̇m),

(5.92)
and knowing that

NHB =
∑

a=l,m,n

paq̇
a − LB, (5.93)

the Hamiltonian density HB and the action SB become

HB =
k

8π2
√
η

∑
a

(pa)
2 − 1

2

(∑
a ̸=b

pb

)2

− 64π4

k2
η 3R

 (5.94)

SB =

∫
dt (paq̇

a −NHB) . (5.95)

Note that HB = 0 is the scalar constraint for these models.

5.3.5 Dynamics of the Mixmaster model in the Misner
variables

In 1969 Misner introduced the Misner variables [5], α, β+, and β−, to better un-
derstand how the evolution of both the expansion and anisotropies of the Bianchi
IX model evolve as the Universe approaches the singularity.
He showed that using these coordinates the dynamics of the Mixmaster model
can be reduced to the simple and very intuitive picture of a two-dimensional point
particle moving within a closed potential domain. .

The variables qa, introduced in eq.(5.86), can be written in terms of these new
variables as 

q1 = 2(α + β+ +
√
3β−)

q2 = 2(α + β+ −
√
3β−)

q3 = 2(α− 2β+).

(5.96)

and also the null-trace matrix βab, recalling eq.(5.59), can be re-expressed in
1These are not the Kasner indices introduced in the previous section.
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terms of the Misner variables:

β11 = β+ +
√
3β−

β22 = β+ −
√
3β− (5.97)

β33 = −2β+.

As mentioned above, these coordinates have a clear physical meaning: the variable
α is related to the Universe volume, in particular we have that V ∼ e3α, while β±
describe the anisotropies in the different spatial directions.

Using the Misner variables HB in eq.(5.94) becomes:

HB =
k

3(8π)2
e−3α

(
−p2α + p2+ + p2− + V

)
(5.98)

where
V ≡ 32π4

k2
e4αVIX(β±) (5.99)

and

VIX(β±) = e−8β+ − 4e−2β+ cosh
(
2
√
3β−

)
+ 2e4β+

[
cosh

(
4
√
3β−

)
− 1
]

(5.100)

is the potential for the Bianchi IX model.
In eq.(5.98), pα and p± are the conjugate momenta to the respective Misner
variables and, contrary to eq.(5.94), the kinetic term is diagonal, suggesting that
it is possible to have a description resembling that of a point-particle.
It is also worth noticing that V is a function of both α, therefore time, and β±,
therefore the anisotropies.

The EE in the Misner variables are obtained using eq.(5.98) and imposing

δSB = δ

∫ (
pαα̇ + p+β̇+ + p−β̇− −NHB

)
dt = 0. (5.101)

for arbitrary independent variations of pα, p±, α, β±, N .
The variation respect toN provides the super-Hamiltonian constraint, see eq.(5.18),

HB = 0. (5.102)
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The momenta pα and p± are obtained varying eq.(5.101) respect to pα and p±
and inverting the results obtained:

pα = −6(4π)2

Nk
α̇e3α, p± =

6(4π)2

Nk
β̇±e

3α. (5.103)

Analogously, the equations of motions can be written as

α̇ = N
∂HB

∂pα
, ṗα = −N ∂HB

∂α
, (5.104)

β̇± = N
∂HB

∂p±
, ṗ± = −N ∂HB

∂β±
.

Note that for the Kasner solution, the variables β+ and β− can be written in
terms of α and the parameter u, introduced in eq.(5.68), as

β+ =
1

2
α

(
1− 2u− 2u2

1 + u+ u2

)
, β− = −

√
3

2
α

(
2u+ 1

1 + u+ u2

)
(5.105)

Focusing on the potential V in eq.(5.99), this is a positive definite “potential
well”, which has the same symmetries as an equilateral triangle in the (β+, β−)

plane and presents three open corner, see Fig.5.2.
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Figure 5.2: Equipotential lines for the Bianchi IX potential eq.(5.100) in the
(β−, β+) plane. Plot from [5].

Near the origin, when β± = 0, the equipotential lines are approximately
circles, and the potential can be written as

V (β±) = 24
(
β2
− + β2

+

)
, (5.106)

while for large values of |β+| one finds:

VIX(β±) =

{
e−8β+ , β+ → −∞, |β−| ≪ 1

48β2
−e

4β+ , β+ → +∞, |β−| ≪ 1
. (5.107)

In the last part of Sec.5.3.4 we showed that the dynamical evolution of the Bianchi
IX model toward the singularity is characterized by an infinite succession of Kas-
ner epochs. Introducing the Misner variables and considering the set of equations
(5.104), with the explicit form of the potential (5.99) and its simplified expres-
sions (5.106) and (5.107), it is possible to see how this infinite succession of epochs
can be interpreted as a point particle performing an infinite sequence of bounces
against the potential well, see [181].
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In [189] the authors used the equations presented above and the stochastic
behavior of the parameter u discussed in Sec.5.3.3.1 to show that the Bianchi
IX Universe enters at least one time deeply in one of the potential corners (see
Fig.5.2) during its dynamical evolution.
The corner configuration is described by u ≫ 1 and given the random character
of the sequence of k(s), the parameter u assumes a very large value ≫ 1 at least
one time, see [189].
This configuration takes the name of small oscillation regime, see Sec.5.3.3.1, and
lasts for many epochs, since k, as well as u, is ≫ 1. Thus, the small oscillation
regime is a long regime for the dynamics of the Mixmaster model.
However, the Universe always leaves this configuration. Despite the Universe
spends a long time in the corner, it is a known result, see for example [181],
that sooner or later it escapes the corner to restore the standard dynamics in the
central region of the potential

Note that in the formulas presented in this section the Hamiltonian density
HB describes an empty Universe. In Chapter 6 we generalize it adding a scalar
field ϕ and a cosmological constant Λ in order to obtain an inflationary scenario.

5.3.6 Taub Universe

The Taub Universe, introduced by Taub in [190], is an homogeneous cosmological
model which presents a SO(3) symmetry group. This Universe is considered an
intermediate step between FLRW and the Mixmaster model since two of the three
scale factors (which are all different in the Bianchi IX model) are the same.
Recalling the definition of the one forms in eq.(5.87), its line element can be
written as [191] :

ds2 = l2
[
F (dt2)− A

(
(ω1)2 + (ω2)2

)
− B(ω3)2

]
(5.108)

where l is a constant length, F , A and B are function of the time variable t.
The field equations Rij = 0 can be satisfied choosing F = AmBn and, given
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Taub’s choice m = 2 and n = 1, the functions A and B obtained are:

A =
cosh (t)

2 (1 + cosh (t+ a))
, B =

1

cosh t . (5.109)

Therefore the model is no longer singular for t → 0, but the singularity is at
t→ ±∞. For further detail see [172].

Introducing the Misner variables, to get a better understanding of the model,
the line element (5.108) can be rewritten as in (5.59)

ds2 = N(t)2dt2 − e2α
(
e2β
)
ab
ωaωb (5.110)

where the anisotropy matrix βab only contains the anisotropy β+

βab = diag(β+, β+,−2β+). (5.111)

Therefore the Taub model is a particular case of Bianchi IX model once β− ≡ 0.

5.4 The generic cosmological solution
Since the first years of the ’60s, the Landau School started investigating the
dynamical characterization of the generic cosmological solution of the EE.
The first work in this direction was conduncted by Khalatnikov and Lifshits in
1963 [192] where they focused on the generalization of the Kasner solution to
anisotropic and inhomogeneous cosmologies. In their derivation it was concluded
that the asymptotic behavior of a generic inhomogeneous Universe towards the
singularity is Kasner like. However, in order for this regime to survive up to the
initial singularity, they had to impose an additional constraint on the metric.
Hence, they reduced the number of physically arbitrary functions to three, one
less than those necessary for the solution to be considered general.

In the following years Belinsky, Kalathnikov and Lifshitz, starting from the
analysis of the dynamical evolution of the homogeneous Mixmaster model (see
for example[184, 193]), showed that, even relaxing this additional constraint, it is
possible to implement the idea of the infinite sequence of Kasner epochs towards
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the cosmological singularity (see Sec. 5.3.3) to the dynamics of a generic inho-
mogeneous model [178], see Appendix C. See also [181] and [194] for a review.
They discussed the idea that the generic cosmological solution dynamics resem-
bles the one of the homogeneous indices of types VIII and IX also in [195, 196].
Interesting review papers on these findings are [187, 197–199].
This result is referred to as BKL conjecture.
Note that in [178], the inhomogeneous dynamics was described assuming the ex-
istence of a single relevant spatial scale of homogeneity and the standard time
evolution was recovered on a small spatial scale, roughly identified with the av-
erage horizon size.
However, in [180] and [200] it was shown that the coupling between the space and
time dependence of the metric tensor implies that smaller and smaller inhomoge-
neous scales are generated approaching the singularity (see [201] for a discussion
on the impact that such a phenomenon can have on the primordial Universe
turbolence, see also [202]). This phenomenon takes the name of fragmentation
process.
In [179], Kirillov demonstrated that the spatial gradients growth can not destroy
the standard oscillatory regime because they growth only logarithmically in time,
and therefore they grow slower than the terms which induce the instability of the
Kasner regime and the transition to a new one. Hence, despite the fragmentation
process and the intrinsic inhomogeneity, the dynamical evolution of general cos-
mological models is still appropriately described by a sequence of Kasner regimes
.
On how to reconcile the generic mixmaster Universe with the highly symmetric
isotropic model, at least on a local spatial regime, see [203], where the role of
an inflationary regime is modeled via the effect of a massless scalar field plus a
cosmological constant.

In this section we go trough the derivation of the BKL conjecture, and we
present the Hamiltonian formulation for the inhomogeneous Universe, as formu-
lated in [204]. Finally we introduce the concept of the fragmentation process,
[180, 200] which is used in Chapter 7.
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5.4.1 Generic cosmological solution in Misner variables

In Appendix C we review the derivation of the generalized Kasner solution done in
[192] and [178], where the authors showed that the BKL map for inhomogeneous
and anisotropic cosmologies retains in each space point the same form of the one
valid for the homogeneous case, eq.(5.75). In this section we study the dynamics
of this general cosmological model in the Misner variables.
In the ADM formalism the line element of a generic inhomogeneous cosmological
model reads as

ds2 = N(t, x)2dt2 − hαβ(dx
α +Nαdt)(dxβ +Nβdt) (5.112)

where hαβ = eqa(t,x)laαl
b
β and the vectors laα are linearly independent and have

generic space-dependent components.
The dynamics of this system is given by the action

S =

∫
Σ×R

d3xdt(pa∂tqa −NH −NβHβ) (5.113)

which can be rewritten in terms of Misner-like variables α(t, x) and β±(t, x), via
a transformation analogous to the one in eq.(5.96)1 as:

S =

∫
d3xdt(pα∂tα + p+∂tβ+ + p−∂tβ− −NH −NβHβ). (5.114)

The super-Hamiltonian H admits the simplified expression

H =
k

12
e−3α

(
−p2α + p2+ + p2− + e4αVG(β+, β−)

)
(5.115)

where VG is obtained neglecting the spatial gradients of the Misner variables.
This simplification is justified by the results presented in [179] by Kirillov, where
he showed that these gradients increase slower towards the singularity (in a log-
arithmic way) than the time derivatives of the configuration variables. See also
[181] for a simplified derivation of this result.

1Note that being in the inhomogenous case the Misner variables, as for the qa, depend on
the spatial coordinates.
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The potential VG is given by

VG =
1

4

(
λ21e

4β++4
√
3β− + λ22e

4β+−4
√
3β− + λ23e

−8β+

)
+ (5.116)

− 1

2

(
λ1λ2e

4β+ − λ1λ3e
−2β++2

√
3β− − λ2λ3e

−2β+−2
√
3β−
)

(5.117)

where λa(xγ) ≡ la · ∇ ∧ la.
The equipotential lines associated to this potential form, in each space point,
a equilateral triangle with three open corners reaching infinity, exactly as in
Fig.5.2. These three corners are equivalent. This can be seen simply rotating
the coordinate plane (β+, β−) by an angle of π/3 to map one into another.
Using the Misner variables, the classical evolution of the system is summarized
by the Hamilton-Jacobi equation

−
(
∂S

∂α

)2

+

(
∂S

∂β+

)2

+

(
∂S

∂β−

)2

+ VG(α, β+β−) = 0 (5.118)

where we used that pa = ∂S
∂qa

.

Close to the cosmological singularity, when α → −∞, the potential term
becomes negligible and the solution of eq.(5.118) reads as

S = −
(√

k2+ + k2−

)
α + k+β+ + k−β− (5.119)

where k± = k±(x
γ) are functions of the space coordinates only.

For the Jacobi prescription, the functional derivative of S respect to k± has to
be equal to a stationary quantity, which we indicate with β±(x

γ), therefore

β± = π±(x
γ)α + β±(x

γ) (5.120)

where
π± ≡ p±

pα
=

k±√
k2+ + k2−

. (5.121)
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Since the function π± must satisfy by definition π2
+ + π2

− = 1, it is possible to set

π+ = cos θ, π− = sin θ. (5.122)

In conclusion, the generic cosmological solution toward the Big Bang is isomorphic
to the one of the Mixmaster model. This comes as a consequence of the fact that
the spatial coordinates are involved in the problem only as parameters.

5.4.2 Fragmentation process

At the end of the 1990, Kirillov and Montani, in two different papers, respectively
[200] and [180], introduced the idea of the fragmentation process, a peculiar mech-
anism, specific of the inhomogeneous Mixmaster model, taking place in the limit
towards the singularity.
See [181] and [204] for a qualitative discussion. 1

Deriving the generalized Kasner solution, see Appendix C, Belinskii, Khalat-
nikov and Lifshitz extended the BKL mechanism to inhomogeneous cosmologies
under the assumption of local homogeneity [178]. To do that they assumed that
the spatial variations of all spatial metric components possess the same charac-
teristic length k, which can be considered as the average wave number.
However, in [201] the same Belinskii suggested that this hypothesis could cease
to be valid as a natural consequence of the evolution of the system towards the
singularity, and this is where the fragmentation process comes into play. This
mechanism describes the effect produced by the iterative action of the BKL map,
eq.(5.78), on the spatial dependence of the Kasner index functions.
Let us start by noticing that eq.(C.3) does not require for the three Kasner indices
pa(x

γ) to have the same ordering in all points of space: as long as the conditions
in eq.(C.3) are satisfied, the different Kasner indices can vary their ordering an
infinite number of time through space, in agreement with the oscillatory-like be-
havior of their spatial dependence.2

Given that the BKL map in the inhomogeneous case has the same form of the
1In this section we use the terminology and notation introduced in [180]
2This behavior is a consequence of the iteration of the BKL map (5.75).
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BKL map for the homogeneous Mixmaster , see eq.(5.78), point by point, this
has also the same general properties; in particular, it shows a strong dependency
on the initial conditions.
Assuming that, as initial condition, u = u(0)(xγ), the Kasner index functions
p0a(x

γ) assume close values if computed in two very close points, x1 and x2, i.e
p
(0)
a (x1) ∼ p

(0)
a (x2).1 However, given the strong dependence of the map from

the initial conditions, the trajectories emerging from these two space points re-
sult to be exponentially different after few steps of the map! Moreover, since
pa(x

γ) ∈ [−1/3, 1], which is quite a restricted interval, the spatial dependence
acquires an oscillatory-like behavior.

Let us now study the iterative effect of the BKL map on the manifold.
In the simplest case, it is possible to assume, as initial condition at a fixed instant
of time t0, that

1. All the space points are described by a generalized Kasner metric

2. The Kasner index functions have the same ordering in all the manifold and
that they are described by a narrow interval of u values, i.e u ∈ [K,K +1],
where K is an integer.

When both these conditions are satisfied, the manifold is said to be composed of
only one “island”.
Using the notation introduced in Sec.5.3.3, at t0 the u parameter can be written
as u0(xγ) = K0 +X0(xγ), where X0(xγ) takes all values in [0, 1).2

As the system evolves towards the singularity, its dynamics is controlled by the
ihomogeneous BKL map, which point by point is given by eq.(5.78), so the Uni-
verse evolves for n Kasner epochs, where n is such that K−n = 0. After the last
epoch, the integer part of u goes to zero, and u < 1; the Kasner era ends and a
new one starts.
The new u parameter, given eq.(5.78), starts from u1(xγ) = 1/X0(xγ) and takes
all the values in the interval [1,∞). Hence only space points which are very close

1This is due to the continuity of the three-manifold.
2Note that in this section we indicating the fractional part of u with X and not x, to not

generate confusion with the space coordinates.
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at the end of the first era will be in the same island when the new era starts (i.e.
they have the same K1) while space points which are further part will find them-
selves different islands. Therefore, in the new era, the manifold can be separated
in many islands, according to the value of the integer K1 in the different regions,
see Fig.5.3.

Figure 5.3: Diagram for the fragmentation process.

For each of these islands, the parameter u(xγ) has the form

u1(xγ)s = s+X1
s (x

γ), s ∈ N,X1(xγ) ∈ [0, 1), (5.123)

where s indicates the different islands.
As the system continues its evolution toward the singularity, the scheme just
illustrated can be iterated: each of these islands is decomposed into an infinite
number of new islands according to the scheme

u(2)s (xγ) =
1

X
(1)
s (xγ)

. (5.124)

This scheme can be repeated indefinitely and produce, progressively, the fragmen-
tation of space into smaller and smaller subregions corresponding to the formation
of new islands.
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This phenomenon is called fragmentation process.

Therefore, summarizing, the fragmentation process is responsible for the for-
mation of smaller and smaller “local patches” when the inhomogeneous model is
studied in the limit towards the singularity. Note that all the points in the sam
patch are causally connected and therefore follow the same evolution.

To conclude this section is worth mentioning that, while it might seem that
the presence of the fragmentation process could deform the BKL map because of
the progressive increase of the spatial gradients, it has been demonstrated by a
qualitative analysis that this is not the case. [180, 181].
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Chapter 6

Quantum dynamics of the corner
of the Bianchi IX model in WKB
approximation

This chapter is based on the work published in [8].

In this chapter we analyse the Bianchi IX Universe dynamics within the corner
region, see Fig.5.2. The study is done in two cases: in the vacuum and in the
presence of both a massless scalar field ϕ and a cosmological constant term Λ.

We investigate the dynamics in terms of WKB scenario for which the isotropic
Misner variables (the volume) and one of the two anisotropic ones (and ϕ when
present) are treated on a semi-classical level, while the remaining anisotropy de-
gree of freedom, the one trapped in the corner, is described on a pure quantum
level. We show that the quantum dynamics always reduces to the one of a time-
dependent Schr’́oedinger equation for a harmonic potential with a time dependent
frequency. The vacuum case is treated in the limits of an expanding and a col-
lapsing Universe, hence for t → ∞ and t → 0 respectively, while the dynamics
in presence of ϕ and Λ is studied only for t→ ∞. In both analysis the quantum
dynamics of the anisotropy variable is associated to a decaying standard devi-
ation of its probability density, corresponding to a suppression of the quantum
anisotropy associated. In the vacuum case, for t → 0, the corner configuration
becomes an attractor for the dynamics and the evolution resembles that one of
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a Taub cosmology. This suggests that if the Bianchi dynamics enters enough in
the potential corner, then the initial singularity is removed and a Taub picture
emerges.
The case when ϕ and Λ are present is studied since it mimics well the de Sitter
phase of an inflationary Universe. Here we demonstrated that both the classical
and quantum anisotropies are exponentially suppressed, so that the resulting dy-
namics corresponds to an isotropic closed Robertson-Walker geometry.

The chapter is organized as follow. In Sec.6.1, after reviewing some of the main
results obtained by the Landau school for the Bianchi IX model, we describe the
aim of our study and we quickly summarize the results obtained. In Sec.6.2,
we apply the Vilenkin approach, introduced in Sec.5.2.2, to the dynamics of the
Bianchi IX model and we separate the Misner variables into a semi-classical and
a quantum subsets. In Sec.6.2.1 we describe how to solve a Schr’́oedinger-like
equation for an harmonic oscillator with a time dependent frequency and we use
these results in the both Sec.6.2.2 and 6.2.3. In these section we compute the
probability density for the quantum subset of the wave function of the Universe
to understand the dynamics of the point-Universe in the vacuum and in presence
of Λ and ϕ. Finally, in Sec.6.3 we summarize the conclusions.

6.1 Introduction
The Bianchi IX model, as mentioned in Sec.5.3, has been the subject of numerous
studies since the ’60s, for two main reasons:

1. It possess some of the features of the generic cosmological solution, like a
chaotic time evolution of the cosmic scale factors near the cosmological sin-
gularity. Hence people hoped that a deeper understanding of its dynamics
could help them shed some light on more general cosmologies.

2. Its dynamics, given the introduction of the Misner variable, see Sec.5.3.5,
becomes incredible simple: the Mixmaster model can be described as a two
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dimensional point-particle in a time dependent potential. In this repre-
sentation, the chaotic features mentioned above correspond to an infinite
sequence of bounces of the point particle against the potential walls.

In particular there have been numerous studies which focused on the dynam-
ics of the Bianchi IX model toward the singularity. In the asymptotic limit to the
cosmological singularity, the potential term of the Bianchi IX dynamics resem-
bles an infinite well having the morphology of an equilateral triangle with three
open corners in the vertices of such a triangular configuration, see Fig5.2; they
correspond to the non-singular Taub cosmology [185], described in Sec.5.3.6.
In [189] the authors showed that for t → 0 there is always a situation where the
point-Universe is deeply inside one of the potential corners and the two very close
scale factors rapidly oscillate. This regime takes the name of ”small oscillations”
[184]. However, despite the Bianchi IX model spends a long time in this config-
uration, it is a well known result [181] that sooner or later it escapes this regime
to restore the standard dynamics in the central region of the potential well and,
furthermore, the probability that small oscillations take place again is strongly
suppressed, see also Sec.5.3.5.
These results have been obtained assuming that all the variables involved (the
Misner variables) are classical.

In the present chapter we study the peculiar situation in which the Bianchi
IX dynamics is trapped in a corner of the potential and the small degree of
anisotropy, which is oscillating, is in a quantum regime. In particular our aim is
to understand if, once the point-Universe is deeply inside the corner and one of
the anisotropy variables is small enough to be considered quantum, the Universe
escapes, as in the classical case described above, or something different might
happen.
We chose the initial conditions such that the point-universe finds itself deeply in-
side the right corner of the potential, hence we consider the corner configuration
for which |β−| ≪ 1 and β+ → ∞. As mentioned, we study two different cases:
Bianchi IX in the vacuum, and in presence of a massless scalar field ϕ and a cos-
mological constant Λ, able to mimic an inflationary-like paradigm. The paradigm
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we address corresponds to the WKB proposal of Vilenkin (see [168] and Sec.5.2.2)
for the interpretation of the wave-function of a small quantum subsystem of the
Minisuperspace.
The idea is that a part of the primordial Universe (the volume, the macroscopic
anisotropies and ϕ when present) has reached a quasi-classical limit and can
therefore play the role of a clock for the small quantum subsystem, which cor-
responds to the small anisotropy variable trapped in the corner, close to a zero
value. In particular, since the point-Universe dynamics starts in the right corner
of the potential, in our example β− is the quantum variable while α and β+ are
the semi-classical ones. A similar scenario has already been implemented when
both β− and β+ are treated as quantum variables. This framework, reffered to as
quasi-isotropic Universe, has been studied in the case of the Bianchi IX Universe
and of the Taub Universe, see [205] and [206] respectively. In both cases, it has
been shown that the small quantum degrees of freedom are naturally suppressed
by the Universe exponential expansion during the de Sitter phase. For a better
characterization of the concept of smallness of the quantum subsystem in the
Vilenkin BKL scenario, see [207].

In the vacuum case, we study the evolution of the Bianchi IX model in two
different situations

1. for an expanding Universe, therefore t→ ∞

2. for a collapsing Universe, i.e. t→ 0.

In the first scenario we shown that when the volume expands and the classical
anisotropy increases towards larger values, the standard deviation of the proba-
bility distribution associated to the small quantum anisotropy degree of freedom
is damped to zero. If we consider this picture in the direction of a collapsing
Universe instead, we get that the frequency of the harmonic oscillator associated
to the quantum anisotropy takes a constant value. Therefore, the classical com-
ponent of the Universe takes the form of a Taub Universe, possessing a small
fluctuating additional anisotropy. It is known [185] that the Taub model has a
singularity in the future, but is a non-singular finite Universe volume in the past.
Thus if we start with a point Universe entering the corner for t→ 0, the approach
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to the initial singularity would be stopped.
In this respect, differently from the pure classical behaviour (see [181, 184]), using
the Vilenkin approximation, i.e considering the small anisotropy as a quantum
degree of freedom, the existence of the initial singularity could be removed. The
backward extension of a Mixmaster dynamics sooner or later would deeply enters
the corner and the limiting initial configuration of the Universe would be a finite
volume Universe, endowed with a small stationary distribution for the relic quan-
tum anisotropy. This conjecture could offer a more general paradigm if we recall
that the Bianchi IX model is the prototype for the generic cosmological solution
[181], [178].
When ϕ and Λ are included in the dynamics, we consider the limit of an asymp-
totic exponentially expanding Universe, i.e t → ∞, according to a de Sitter
phase of an inflationary paradigm. We show that both the classical macroscopic
anisotropy, and the small quantum one are exponentially suppressed as the vol-
ume expands. By other words, we are implementing a new dynamical scheme for
the isotropization of the Bianchi IX dynamics. This issue completes the analysis
in [205], where the depicted scenario corresponds to the case of two small quan-
tum anisotropies, i.e. the case when the point-particle is close to the potential
center.

The results showed in this chapter seem to be of more cosmological interests,
since we expect, due to the time reversibility of the Einsteinian dynamics, that
also in the expanding picture the Bianchi IX Universe spends long time in the
corner configuration. This consideration makes plausible that, on one hand the
small anisotropy degree of freedom is in a quantum regime, and on the other
hand, the cosmological constant term has time to grow, and therefore the de
Sitter phase has time to start.

6.2 Application of the Vilenkin approach to the
Bianchi IX Universe

In this section we apply the Vilenkin approach to the Bianchi IX model. In partic-
ular, following the computation presented in Sec.5.2.2, we derive the Schröedinger-
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like equation for the Mixmaster model and we write the full expression for the
probability density of the wave function of the Universe.

The starting point for our computation is the Hamiltonian of the system
expressed in terms of the Misner variables:

HIX =
Nk

3(8π)2
e−3α

(
−p2α + p2+ + p2− + p2ϕ +

32π4

k2
e4αVIX + Λe6α

)
. (6.1)

This Hamiltonian is obtained from eq.(5.98) and includes a scalar field ϕ and a
cosmological constant Λ. The massless scalar field ϕ well approximated the slow-
rolling dynamics, i.e ϕ̇2 ≪ V (ϕ), when the potential term is essentially constant,
therefore its presence, as discussed in the introduction, makes our analysis more
interesting, from a cosmological point of view.
In the following we set N(t) = 1, preferring to work in a synchronous reference
frame, see Sec.5.1.3.

To implement the Vilenkin approach on the Mixmaster model it is necessary to
separate dynamical variables of the system, hence the Misner variables α, β+ and
β−, into semi-classical and quantum. Since our aim is to study how the system
evolves starting from the corner configuration, we chose α and β+ as semi-classical
variables, and β− as the quantum one. Thus, the anisotropic Misner variables are

β+ → ∞, |β−| ≪ 1. (6.2)

Assuming these initial conditions, the point-Universe starts its dynamics from a
specific region of the (β+, β−) plane, the right corner of the potential, see Fig.5.2.
Given eq.(6.2), the potential VIX in eq.(6.1) can be approximated as:

VIX ≃ 48e4β+β2
−. (6.3)

Note that the potential level surfaces for a fixed value of the variable α are
invariant under a rotation of π/3. Thus we can choose a specific corner without
any loss of generality: it is in fact possible to map each corner into another one
through a π/3 rotation in their plane, of the anisotropy variables coordinates β+
and β−.
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6.2 Application of the Vilenkin approach to the Bianchi IX Universe

Recalling eq.(5.40), the wave function of the Universe Ψ can be written explicitly
including the scalar field ϕ as:

Ψ = Ψ0χ = A(α, β+, ϕ)e
i
h̄
S(α,β+,ϕ)χ(α, β+, ϕ, β−). (6.4)

and following the same steps highlighted in [168], the WdW equation for the
Bianchi IX wave function of the Universe becomes:

ĤIXΨ =
k

3(8π)2
e−3α

(
h̄2∂2α − h̄2∂2+ − h̄2∂2− − h̄2∂2ϕ

)
Ψ+ (6.5)

+
k

3(8π)2
e−3α

(
32π4

k2
e4αVIX + Λe6α

)
Ψ = 0. (6.6)

where we used that pa = −ih̄∂/∂qa. In the following VIX ≡ 32π4

k2
e4αVIX =

24π2β2
−e

4(α+β+).
The total Hamiltonian HIX can be written in terms of a semi-classical and quan-
tum Hamiltonian, respectively H0 and Hq, as in eq.(5.38):{

H0 = Ke−3α
(
h̄2∂2α − h̄2∂2+ − h̄2∂2ϕ + Λe6α

)
Hq = Ke3α(−h̄2∂2− + VIX)

→ ĤIXΨ = (H0 +Hq)Ψ (6.7)

where K = k/(3(8π)2).
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Expanding the conjugate momenta pa in their operator form, eq. (6.5) becomes:

ĤIXΨ = Ke−3αh̄2
[
(∂2αA)χ+

i

h̄
(∂αA)(∂αS)χ+ (∂αA)(∂αχ) +

1

h̄
(∂2αS)Aχ (6.8)

+
1

h̄
(∂αS)(∂αA)χ+

(
i

h̄
∂αS

)2

Aχ+
i

h̄
(∂αS)(∂αχ)A+ (∂αA)(∂αχ)+

i

h̄
(∂αS)(∂αχ) + A∂2αχ− (∂2+A)χ− i

h̄
(∂+A)(∂+S)χ− (∂+A)(∂+χ)+

− 1

h̄
(∂2+S)Aχ− 1

h̄
(∂+S)(∂+A)χ−

(
i

h̄
∂+S

)2

Aχ+

− i

h̄
(∂+S)(∂+χ)A− (∂+A)(∂+χ)−

i

h̄
(∂+S)(∂+χ)− A∂2+χ+

− (∂2ϕA)χ− i

ϕ
(∂ϕA)(∂ϕS)χ− (∂ϕA)(∂ϕχ)−

1

h̄
(∂2ϕS)Aχ

− 1

h̄
(∂αS)(∂ϕA)χ−

(
i

h̄
∂ϕS

)2

Aχ− i

h̄
(∂ϕS)(∂ϕχ)A− (∂ϕA)(∂ϕχ)+

− i

h̄
(∂ϕS)(∂ϕχ)− A∂2ϕχ+

1

h̄2
Λe6αA+ AHqχ

]
= 0.

Considering the equation order by order in h̄, we obtain the following three
equations:

O(1) →− (∂αS)
2 + (∂+S)

2 + (∂ϕS)
2 + Λe6α = 0 (6.9)

O(h̄) →2i (∂αS∂αA− ∂+S∂+A− ∂ϕS∂ϕA) + Ai
(
∂2αS − ∂2+S − ∂2ϕS

)
+

2Ai (∂αS∂αχ− ∂+S∂+χ− ∂ϕS∂ϕχ) + AHqχ = 0 (6.10)
O(h̄2) →− 2 (∂αA∂αχ− ∂+A∂+χ− ∂ϕA∂ϕχ) + A

(
∂2αχ− ∂2+χ− ∂2ϕχ

)
(6.11)

The first equation, as expected, is the Hamilton-Jacobi equation for the action S
and involves only the semiclassical variables.
Before focusing on eq.(6.10), let us note that the Hamiltonian of the quantum
subsystem Hq appears in this equation since one of the hypothesis of the Vilenkin
approach is that HqΨ/H0Ψ ∼ O(h̄).

Using the adiabatic approximation (see eq.(5.37)), eq.(6.10) can be separated
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in its semi-classical and its quantum components:

2 (∂αS∂αA− ∂+S∂+A− ∂ϕS∂ϕA) + A
(
∂2αS − ∂2+S − ∂2ϕS

)
= 0 (6.12)

2i (∂αS∂αχ− ∂+S∂+χ− ∂ϕS∂ϕχ) +Hqχ = 0. (6.13)

Eq.(6.12) is the continuity equation for the amplitude A, which can be used
to determine its explicit expression, while (6.13) can be used to compute the
probability distribution for χ.
Knowing that pa = ∂S

∂qa
and deriving the semiclassical variables and their momenta

from equations (5.104)

α̇ = −2pαe
−3αK, → pα = −e

3αα̇

2K
(6.14)

β̇+ = 2p+e
−3αK, → p+ = −e

3αβ̇+
2K

(6.15)

ϕ̇ = 2pϕe
−3αK, → pϕ = −e

3αϕ̇

2K
(6.16)

eq.(6.13) can be rewritten as

2i
e3α

2K

(
α̇
∂χ

∂α
+ β̇+

∂χ

∂β+
+ ϕ̇

∂χ

∂ϕ

)
= Hqχ. (6.17)

where χ = χ(α(t), β+(t), ϕ(t), β−), as highlighted in (6.4)1.
Finally, the above equation becomes

i
dχ

dt
= Ke−3αHqχ, (6.18)

which can be written as a Schröedinger-like equation introducing a new time
variable τ :

τ = K

∫
e−3αdt. (6.19)

Following this substitution, (6.18) becomes:

i
dχ

dτ
= Hqχ. (6.20)

1Note that χ depends on time through the semi-classical variables.
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Solving this equation provides us with the form of χ, which is key to write
the probability density of the full wave function Ψ:

σ(α, β+, ϕ, β−) = σ0(α(τ), β+(τ), ϕ(τ))|χ(β−, τ)|2. (6.21)

Here σ0 = |A(α(τ), β+(τ), ϕ(τ))|2 and |χ|2 is indeed the solution of eq.(6.20), see
Sec.5.2.2.

6.2.1 Resolution of the Schröedinger equation for an har-
monic oscillator with time dependent frequency

In this section we focus on solving eq.(6.20) in order to derive the expression for
|χ|2 .
Eq. (6.20) written explicitly, resembles the Schröedinger equation of a harmonic
oscillator with a time-dependent frequency ω2(τ) ≡ 24π2e4(α+β+) and unitary
mass1:

i
dχ

dτ
=

(
p2−
2

+ 12π2e4(α+β+)β2
−

)
χ. (6.22)

In [208–210], the authors developed a technique to solve this particular type
of equations which, as summarised by Pedrosa in [211], is based on the invariant
method.
According to this, the general solution of an equation of the form (6.22) is given
by:

χ =
∑
n

cne
iαn(τ)ϕn(β−, τ) =

∑
n

cnχn(β−, τ), (6.23)

where

• cn are constants that weight the different χn(β−, τ),

• αn(τ) is a phase function given by

αn(τ) = −
(
n+

1

2

)∫ τ

0

1

ρ

2

dτ ′ (6.24)
1We redefined τ as τ ′ = 2τ
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• ϕn is the eigenfunction of the invariant I(τ) for the Hamiltonian Hq

ϕn (β−, τ) = Ωnexp

[
i

2h̄

(
ρ̇

ρ
+

i

ρ2

)
β2
−

]
Hn

[(
1

h̄

)1/2
β−
ρ

]
. (6.25)

Here Ωn =
[

1√
πh̄ n! 2n

]
, Hn is the Hermite polynomial of order n and ρ is a

complex quantity which satisfies the auxiliary equation

ρ̈+ ω2(τ)ρ− 1

ρ3
= 0. (6.26)

Note that ˙ indicates the differentiation respect to the time variable ρ de-
pends to, hence τ .

Eq.(6.26) can be really difficult to solve analitycally since ω2(τ) is a general
function, but in [209] and [210] the authors gave an alternative way to obtain
the explicit expression for ρ, according to which ρ can written be as a linear
combination of f(τ) and g(τ), solutions of

d2q

dt2
+ ω2(τ)q = 0. (6.27)

In the following we use this last possibility, when the above equation can be
solved analytically, or we compute ρ numerically solving eq.(6.26).

6.2.2 Bianchi IX in the vacuum

In this Section we are going to study the dynamical evolution of the Mixmaster
model in the simplest case, the vacuum, for both an expanding and a collapsing
Universe. In particular, we compute |χ|2 to understand if, during its dynamical
evolution, the point-Universe leaves the corner region.

The Hamiltonian of the system is simpler than the complete one presented in
eq.(6.1) and is given by

H = e−3αK
(
p2α + p2+ + p2− + VIX

)
(6.28)
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where, again, the quantum part of the Hamiltonian is the one defined in eq.(6.8),
i.e Hq = e−3αK

(
p2− + 24π2β2

−e
4(α+β+)

)
and H0 = e−3αK(−p2α + p2+).

To compute the solution of (6.20) we need to write the time-dependent frequency
ω2(τ) explicitly as a function of the time variable τ . This can be done using the
Hamiltonian above and eq.(5.104).

In particular, the time derivative of the variable α and its conjugate momenta
become

α̇ =
∂α

∂pα
=
∂H0

∂t
= −pαKe−3α (6.29)

ṗα =
∂pα
∂t

= −∂H0

∂α
= −3H0 = 0 (6.30)

Note that the time variable in the above equations is the synchronous time t
and not the new time variable τ , eq. (6.19).
The last equality in eq. (6.30) has been derived from the semiclassical Super-
Hamiltonian constraint (5.18) H0 = 0 and its immediate consequence is that

pα = const. (6.31)

The sign of pα can be deduced from eq.(6.29). As mentioned in Sec.5.3.5, α is
the Misner semi-classical variable which characterizes the volume of the Universe
(V ∼ e3α), hence α̇ indicates how V changes in time, and from eq.(6.29), the sign
of α̇ depends on the sign of pα. Our analysis is based on an expanding Universe,
where α̇ > 0, thus it is possible to impose, without loss of generality, pα < 0 .
With this in mind, eq.(6.29) can be integrated obtaining

e3α = 6|pα|Kt (6.32)

which gives

α(t) =
1

3
log 6|pα|K +

1

3
log t → α(t) ∝ 1

3
log t. (6.33)

To write ω2 as a function of τ , the next step is to write t as a function of this
time variable.
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Substituting eq.(6.33) in eq.(6.19) we can write τ(t) and therefore t(τ) as:

τ(t) =
1

6|pα|
log t → t(τ) = e6|pα|τ (6.34)

Finally, using the last equation in eq.(6.33) we obtain the expression for α(τ):

α(τ) =
1

3
log 6|pα|K + 2|pα|τ. (6.35)

Let us note that, from eq.(6.34):

t→ 0, τ → −∞ (6.36)
t→ +∞, τ → +∞. (6.37)

The next step is to use the above results to compute β+(τ) to have the full expres-
sion of the time-dependent frequency ω(τ)2 necessary to solve the Schröedinger-
like equation, eq.(6.20).

In the following subsection we compute β+(τ) in two cases: for an expanding
Universe, see Sec.6.2.2.1, and for a collapsing one, see Sec.6.2.2.2.

6.2.2.1 Bianchi IX in the vacuum: expanding Universe

In this section we consider the dynamical evolution when the semi-classical anisotropy
variable β+ increases in the direction of an expanding Universe, hence β̇+(t) > 0.
Physically this means that, while the Universe expands, therefore α(t) grows, the
point-particle Universe moves deeper into the corner.
To find the explicit expression for β+(t), and consequently for β+(τ), we follow
the same arguments presented in the previous subsection for the computation of
α(t).
From the system in eq.(5.104),

β̇+ =
∂H0

∂p+
= 2p+Ke

3α (6.38)

ṗ+ = −∂H0

∂β+
= 0 → p+ = const (6.39)
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and integrating the first equation,

β+(t) =
1

3

p+
|pα|

log t+ β0 (6.40)

where β0 is an integration constant.
The ratio p+/|pα| can be simplified using the Hamilton-Jacobi equation:(

∂S

∂α

)2

−
(
∂S

∂β+

)2

= 0, (6.41)

which leads to
pα = ±p+ → p+ = ±|pα|. (6.42)

As mentioned above, in this section we are interested in studying the dynamical
evolution for t → ∞ (hence α̇ > 0) when the point-Universe moves deeper into
the corner, β̇+ > 0, and, given eq.(6.38), this condition is satisfied if p+ > 0.
Finally, imposing p+ = |pα|, using eq.(6.34), β+(t) can be written as:

β+(τ) = β0 + 2|pα|τ. (6.43)

Comparing the above equation with eq.(6.35), it is interesting to notice that both
the semiclassical Misner variables have the same time-dependency.

Substituting eq.(6.35) and eq.(6.43) into the expression of the time-dependent
frequency ω(τ)2, we obtain

ω2(τ) = 24π2e4(α(τ)+β(τ)) = 24π2e4(α0+β0)e16|pα|τ ∝ Cekτ , (6.44)

with C and k constants.

The last step to compute |χ|2 is to solve the Schröedinger-like equation,
eq.(6.22) which, in the specific case of an expanding Bianchi IX Universe in the
vacuum, can be written as

ih̄
∂χ

∂τ
=

(
p2−
2

+ Cekτβ2
−

)
χ. (6.45)
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In Sec.6.2.1 we see how the expression for χ depends on the c-number quantity
ρ(τ), which can be computed either from eq,(6.26) or from eq.(6.27). Given the
expression for ω2(τ), we did not find any analytical solution for eq.(6.26), hence
we determined an expression for ρ(τ) as a linear combination of f(τ) and g(τ),
solutions of

d2q

dτ 2
+ Cekτ = 0. (6.46)

In particular,

f(τ) = J0

[
2
√
C
√
ekτ

k

]
(6.47)

g(τ) = N0

[
2
√
C
√
ekτ

k

]
(6.48)

where J0 and N0 represent the Bessel functions of the first and second kind. It
follows that

ρ(τ) =
π

2k

√√√√√J2
0

[
2
√
C
√
ekτ

k

]
+

64k2N2
0

[
2
√
C
√
ekτ

k

]
π2

+
8
√
3J0

[
2
√
C
√
ekτ

k

]
N0

[
2
√
C
√
ekτ

k

]
π

(6.49)
At this point we can to solve eq.(6.45) substituting eq.(6.49), ϕn(τ) and αn(τ),

in eq.(6.23).
Once χ is known, the resulting probability density |χ|2 can be written as:

|χ(τ, β−)|2 =

(∑
n

cnχn(τ, β−)

)(∑
m

cmχm(τ, β−)

)∗

. (6.50)

where cn are constants.
Using the property of the inner product and the orthogonality of the different
wavefunctions χn

1,
cn =

∫
χ(τ0, β−)χ

∗
n(τ0, β−)dβ− (6.51)

1This expression for cn is true for every τ because the cn are time independent.
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where χ(τ0) = χ0 is the function χ at the initial time τ0. We choose χ0 such that

|χ0|2 =
1

2π
e−

β2−
2σ2 . (6.52)

which is in agreement with our assumption that initially the system is deeply in-
side the right corner of the potential: at τ0 the probability density of the quantum
part of the wave function has a Gaussian shape peaked around β− = 0.

To study the dynamical evolution in time of the probability density for χ, we
report the plots |χ|2 at different time as a function of the quantum anisotropy
variable β− in Fig.6.1.
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Figure 6.1: Probability density function for different values of the synchronous
time variable for Bianchi IX in the vacuum in the case β+ = 2|pα|τ , for an expand-
ing Universe.

From this plot, we see that as β+ grows in time, i.e the point-Universe moves
deeper in the corner, |χ|2 peaks even more around β− = 0.

To write the full expression of σ, as in eq.(6.21), we compute the probability
density of the semiclassical variables α and β+, i.e. σ0 = |A(α, β+)|2. Assuming

164



6.2 Application of the Vilenkin approach to the Bianchi IX Universe

that the amplitude A(α, β+) can be factorize as

A(α, β+) = A1(α)A2(β+), (6.53)

it can be computed using eq.(6.9) and eq.(6.12).
From (6.9)

(∂αS0) = − (∂+S0) (6.54)

and assuming that S0 = S0(α) + S0(β), this leads to{
S0(α) = Wα

S0(β+) = −Wβ+
→ S0(α, β+) = W (α− β+). (6.55)

where W is a constant.
Substituting this expression into (6.12) we obtain:

2

A1

∂A1

∂α
(W ) +

∂W

∂α
− 2

A2

∂A2

∂β+
(W )− ∂W

∂β+
= 0. (6.56)

which, since A is separable, can be solved solving the following system

2

A1

∂A1

∂α
(W ) +

∂W

∂α
=

2

A1

∂A1

∂α
(W ) = c1

2

A2

∂A2

∂β+
(W ) +

∂W

∂β+
=

2

A2

∂A2

∂β+
(W ) = −c1.

Recognizing that W = pα, the final expression for the amplitude A is:

A(α, β+) = ec1/(2pα)(α−β+). (6.57)

To summarize, in this section we show that if the initial probability density
for χ is a Gaussian packet peaked in β− = 0, namely |χn(τ0)|2, as β+ grows in
time (thus the point-Universe moves deeper in the corner) the Gaussian packet
tends to peak even more around β− = 0. This result is shown in Fig.6.1.
As a straightforward consequence the right corner in Fig.5.2 becomes an attractor
for the global system dynamics. Therefore the Universe models a Taub cosmo-
logical model, see Sec.5.3.6, to a greater degree.
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6.2.2.2 Bianchi IX in the vacuum: collapsing Universe

In this section we consider the Bianchi IX model in vacuum when β+ decreases
for t→ ∞. In this case the point-Universe enters deeply in the corner for t→ 0,
hence for a collapsing Universe. The equations of motion and the Hamilton-Jacobi

equation do not change compared to those of the previous case, hence

β+(t) = β0 +
1

3

p+
|pα|

log t, p+ = ±pα. (6.58)

However, the initial assumption that β̇+ < 0 translates in p+ < 0; from the above
equation this means that p+ = −|pα|.
The semi-classical anisotropic variable becomes:

β+(τ) = β0 − 2pατ (6.59)

from which
α(τ) + β+(τ) = β0. (6.60)

and the frequency ω2(τ) reads as

ω2(τ) = 16e4(α(τ)+β+(τ)) = 16e4β0 (6.61)

which is a constant.

Given the simple expression for ω2(τ), in this case we can solve eq.(6.26)
analytically as in [210], and it results:

ρ(τ) =
1√
ω(τ)

=
1

2
e−β0 = const. (6.62)

It follows that the eigenfunctions χn, which depend on time through ρ(τ), see eq.
(6.25), which is constant, are now time independent; hence the probability density
distribution |χ|2 does not evolve in time, but it is defined simply by choosing its
shape at the initial time.
As in the previous case, we compute A to have the full expression for σ, and given
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that pα = p+, we obtain:

A(α, β+) = ec1/(2W )(α+β+). (6.63)

In summary, the standard deviation of the initial Gaussian |χ|2 remains un-
changed during the evolution when we evolve the point-Universe toward the singu-
larity. This reflects the fact that, evolving the system for t→ 0, the Schröedinger
equation for the quantum variable is that of a harmonic oscillator with constant
frequency.

6.2.3 Bianchi IX model in presence of cosmological con-
stant and scalar field

Finally we study the Bianchi IX model in an expanding scenario in the presence
of a cosmological constant Λ and a scalar field ϕ in order to mimic the slow-rolling
phase of an inflationary scenario [212].
As mentioned before, the scalar field is such that ϕ̇ ≪ V (ϕ), and V (ϕ) ∝ α, so
this can be neglected compared to the cosmological constant and the V term.

In this case the Hamiltonian takes the form:

H = e−3αK
(
−p2α + p2+ + p2ϕ + p2− + VIX + Λe6α

)
. (6.64)

and while Hq does not change respect to the previous case,
H0 = e−3α

(
−p2α + p2+ + p2ϕ + Λe6α

)
.

The equations of motion for the semi-classical variables are:

α̇ = −2pαKe
−3α, β̇+ = 2p+Ke

3α (6.65)

where pα can be obtained from the Hamilton-Jacobi equation (6.9):

pα = ±
√
p2+ + p2ϕ + Λe6α. (6.66)

Again, since α̇ > 0 in an expanding Universe, pα < 0, i.e pα = −
√
p2+ + p2ϕ + Λe6α.
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Substituting this expression in eq.(6.65) and solving the the differential equation,
we obtain

α(t) =
1

3
log

√p2+ + p2ϕ
Λ

sinh
(
3
√
Λ (2Kt+ J)

) (6.67)

where J is an integration constant. and it follows that the new time variable τ ,
introduced in eq.(6.19), becomes

τ(t) =
1

6
√
p2+ + p2ϕ

log
[
tanh

(
3

2

√
Λ(2Kt+ J)

)]
, −∞ < τ < 0. (6.68)

To write down the explicit expression for the semi-classical variables α(τ) and
β+(τ) we substitute eq.(6.68) into eq.(6.65) obtaining:

α(τ) =
1

3
log

√p2+ + p2ϕ
Λ

sinh
[
2 tanh−1

(
e6τ

√
p2++p2ϕ

)], (6.69)

β+(τ) = β0 + 2p+τ (6.70)

where

−∞ < α <∞

−∞ < β+ < β0.

We can now write explicitly the time-dependent frequency ω2(τ), which results
to have a much more complicated expression than the previous cases:

ω2(τ) = 16e4(β0+8p+τ)

√p2+ + p2ϕ
Λ

sinh
[
2 tanh−1

(
e6τ

√
p2++p2ϕ

)] . (6.71)

Given the complexity of this equation, were not able to solve analytically neither
eq.(6.26) nor the simpler eq.(6.27), and eq.(6.26) has been solved numerically for
different values of t. In Fig.6.2 we report the plots of |χ|2 obtained.

We notice that, as in the case analyzed in Sec.6.2.2.1, the probability density
of the quantum part of the wavefunction peaks around β0 as the Universe ex-
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Figure 6.2: Probability density function for different values of the synchronous
time variable for Bianchi IX in presence of a scalar field ϕ and a cosmological
constant Λ.

pands.
It is worth mentioning that we realized different plots of |χ|2 changing the stan-
dard deviation σ in eq.(6.52) and the numerical value of Λ, but in all cases
analyzed the results are consistent with those proposed in Fig.6.2.
Finally, we compute the semi-classical probability distribution assuming that

A(α, β+, ϕ) = A1(α)A2(β+)A3(ϕ). (6.72)
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Following the same computation as in Sec.6.2.2.1, we obtain:

A1(α) =

Exp

 c1 tanh−1

(√
p2++p2

ϕ
+Λe6α

p2++p2
ϕ

)
6
√

p2++p2ϕ+Λe6α


(
p2+ + p2ϕ + Λe6α

)1/4
A2(β+) = Exp

[
c2
2p+

β+

]
A3(ϕ) = Exp

[
−c1 + c2

2pϕ
ϕ

]
with c1 and c2 constants. Looking at Fig.6.2, we conclude that, unlike for the

Bianchi IX in the vacuum, there is not a well defined trend of the probability
density evolution in time.
However, as the Universe evolves in time, the variable β+ leans to a constant
value β0, and the variable β− tends to peak around the value β− = 0; thus the
presence of the cosmological constant tends to isotropize the Universe.

6.3 Conclusion
In this chapter we analysed the Bianchi IX cosmology in both vacuum and when
ϕ and Λ are present, in the situation in which the point-Universe is trapped in
a corner of the scalar curvature potential. Our aim was to understand how its
dynamics changes compared to the results obtained by the Landau Scool, see e.g
[189], if one of the anisotropies is in a quantum regime.

To study the dynamical evolution of the system we adopted the WKB de-
coupling of the quasi-classical degrees of freedom, the Misner variables α and
β+ (and ϕ when present), from a microscopic fully quantum degree of freedom,
the small anisotropy variable β−, trapped in the corner. Then, we computed the
probability density of the wave function of the Universe, focusing on its quantum
part, to understand if the point-Universe escapes the corner configuration as in
the classical regime or the presence of a quantum degree of freedom changes the
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dynamics substantially.
To answer this question, we had to solve a time dependent Schröedinger equation
with a quadratic potential, which resembled the equation of a harmonic oscillator
with time-dependent frequency.
We demonstrated that, both with and without matter, the solution of this equa-
tion suggests that the small quantum anisotropy β− is strongly suppressed via
the dynamics of the quasi-classical variables.

In the vacuum case, considering the situation when the point-Universe enters
the corner with an expanding Universe (Sec.6.2.2.1), we find a suppression of
the quantum variable β−, as its standard deviation decays in time. We therefore
concluded that the corner of the potential is an attractor for the point-particle
Universe; once the Universe enters in the corner, it cannot escape any more.

Following this analysis, we also studied the limit in which the system ap-
proaches the cosmological singularity, see Sec.6.2.2.2. In this case we found that
the variance associated to the anisotropic variable has a constant character, hence
the probability density of the quantum anistropy variable does not change in time.
This conclusion has a very deep meaning on the whole structure of the Bianchi
IX dynamics. When β− ≃ 0, the resulting cosmology is indistinguishable from a
Taub Universe (Sec.5.3.6), which is not a singular model in the limit α → −∞.
Since the emergence of a long regime of the classical Bianchi IX dynamics within
the a corner has been convincingly established [181], if the proposed picture is
applicable, i.e. the smallness of the β− values justify its quantum treatment, then
the singular behaviour of the Bianchi IX Universe can be removed.
This result, in view of the prototype character of the Bianchi IX cosmology ver-
sus the generic cosmological solution [178], [182] could have a deep implication
on the notion of the cosmological singularity as a general property of the Einstein
equations, under cosmological hypotheses.

Finally in the last section, Sec.6.2.3, we studied the Bianchi IX dynamics in
presence of ϕ and Λ, again in an expanding picture, i.e. for α → ∞. The aim
of this analysis was to mimic the behavior of the Bianchi IX Universe if the de
Sitter phase, which is associated to the inflationary paradigm for the primordial
Universe, takes place when a corner evolution is performed by the point-Universe.
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In this case we demonstrated that, in the limit of applicability of the WKB pro-
posed scheme, the Universe naturally isotropizes since the classical anisotropy
degree of freedom β+ is suppressed while the fully quantum variable, i.e. β−, is
characterized by a decaying standard deviation. In other words, starting with
a Gaussian distribution for β−, its natural evolution in the future is towards a
Dirac delta-function around the zero value.
Thus, this study offers a new paradigm for the Bianchi IX cosmology isotropiza-
tion, based on the idea that the de Sitter phase is associated with a corner regime
of the model.
To conclude, the study conducted in this chapter, generalizes and completes the
results discussed in [205], where the Bianchi IX isotropization is faced in the same
WKB scenario, but starting with two very small quantum anisotropy variables,
i.e. assuming that the de Sitter phase starts when the point-Universe is in the
center of the potential, already near to an isotropic configuration.
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Chapter 7

A scenario for a singularity free
generic cosmological solution

This section is based on the work published in [9].

We develop a scenario for the emergence of a non-singular generic cosmolog-
ical solution based on the a WKB characterization of one of the two anisotropy
degrees of freedom. We investigate the dynamics of the so-called inhomoge-
neous Mixmaster in the “corner” configuration and inferring that one of the two
anisotropic variables becomes small enough to explore the uncertainty principle.
Then, we apply a standard WKB approximation to the dynamics of the Universe
which has macroscopic volume, one macroscopic anisotropy and one microscopic
quantum degree of freedom.
Our study demonstrates the possibility that the Universe acquires a non-singular
classical behavior, retaining the quantum degree of freedom as a small oscillating
ripple on a stationary Universe. The role of the so-called “fragmentation pro-
cess” is also taken into account in outlining the generality of such a behavior in
independent local space regions.

The Chapter is organized as follow. In Sec.7.1, we motivate our study, provide
the hyphotesis on which it is based and we give a brief overview of the results.
In Sec.7.2 we review the main equations presented in Sec.5.4 and then we investi-
gate more in detail the structure of the generic inhomogeneous model Hamiltonian
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in the corner configuration. In Sec.7.3 we prove that it is possible to apply the
Vilenkin paradigm to the corner configuration, and we investigate the structure
of the inhomogeneous Mixmaster in this setup showing how the cosmological sin-
gularity can be removed. In Sec.7.4 we show how the corner configuration can
statistically be reached in each point of the space, and finally, in Sec.7.5 we draw
the conclusions.

7.1 Introduction
Following the results obtained in [8], presented in Chapter6, in this chapter we
apply a similar idea to the inhomogeneous Mixmaster Universe, see Sec.5.4. The
idea is to challenge the result, present in the works of Belinskii, Khalatnikov
and Lifshitz, that the singularity is always present in the generic inhomogeneous
solution.
The results of this study are presented in [9].

One of the most important constribution of the Landau School to theoretical
cosmology consisted of the dynamical characterization of the generic cosmological
solution in the vicinity of a singularity, as showed in [178, 184] (see also [181] and
Sec.5.4). These studies, together with Hawking and Penrose theorem [213], seem
to suggest that the presence of a singular point in the past of our actual universe
should be regarded as a general feature of the Einsteinian cosmology and not as
a consequence of the high symmetry of the isotropic Universe geometry.
The same conclusion was reached by Misner in [214] and Montani and Benini in
their studies on the generic cosmological solution conducted using the canonical
quantum gravity in the metric approach [215]. Ashtekar, on the other hand,
showed that, if the canonical quantization scheme is riformulated in Loop Quan-
tum cosmology, the situation is different, see the work in [216].

Also in [217] the authors constructed a singularity-free generic cosmological
solution; in this case they used the semi-classical Polymer dynamics, which could
be considered as a quasi-classical behavior of Loop quantum Cosmology for the
evolution toward the singularity.
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Given the amount of studies questioning the presence (or absence) of the sin-
gularity in the generic cosmological model, we decided to examine the possibility
of a singularity free inhomogeneous Mixmaster also in the peculiar scenario of
the long era, see the end of Sec.5.3.5.
In particular, we investigate the possibility that, when such configuration is ad-
dressed (according to the analysis in [8]), one of the two anisotropic degrees of
freedom is small enough to approach a quantum behavior since it can explore the
uncertainty principle in its own phase space. Then, we apply the WKB scenario
proposed in [168] and we demonstrate that the resulting Universe is a classical
non-singular one, plus a small quantum anisotropy.
Using the language of the standard Hamiltonian formalism we outline how, when
the universe performs a long era in any corner of the potential term, there is
a separation taking place between the classical macroscopic components of the
inhomogeneous Mixmaster and a small quantum subset, made up of one of the
two anisotropic variable.

The assessment of this scenario relies on two known results mentioned in Sec.
5.4:

• There always exists a non-null probability, as showed in [189], that the
parameter u, which characterizes a Kasner regime, acquires large values
such that the system dynamics evolves deeply in the corner configuration,
where one of the anisotropy variable is very small.

• The existence of the fragmentation process discussed in [180, 200]. Accord-
ing to this, rational values taken by the function u(xi) across space can not
be excluded from the evolution of the BKL map, therefore even few steps of
the BKL map ensure the existence f large values of u in the neighborhood
of certain space surface.

Note that, while our analysis is developed toward the singularity, we can
consider a time reversed picture which is able to connect the standard inhomo-
geneous Mixmaster to a primordial non-singular generic solution as soon as the
small quantum anisotropy degree of freedom is able to become a classical variable,
i.e. as soon as the Universe escapes the corner.
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7.2 Inhomogeneous Mixmaster in the corner con-
figuration

In the ADM formalism the line element for a generic inhomogeneous cosmological
model, written in terms of the Misner variables, reads as

ds2 = N2dt2 − e2α
(
e2β
)
ab
laαl

b
β, (7.1)

where βab is given by eq.(5.97), and the action SG and the super-Hamiltonian for
this generic model are given by eq.(5.114), and eq.(5.115):

SG =

∫
d3xdt(pα∂tα + p+∂tβ+ + p−∂tβ− −NH −NβHβ) (7.2)

H =
k

12
e−3α(−p2α + p2+ + p2− + e4αVG(β+, β−)) (7.3)

The potential VG(β+, β−) is obtained neglecting the spatial gradients of the Misner
variables in the spatial curvature, which is justified by the work of Kirillov [179].
This scenario leads to the inhomogeneous Mixmaster model where, within each
smooth spatial scale (roughly the horizon scale), the dynamics is isomorphic to the
homogeneous Mixmaster, [184, 214]. However, as seen in Sec.5.4.2 for this model
the chaotic time evolution couples to the spatial dependence and increasingly
small scales are generated for the space variation of the Misner variables, but
without destroying the dynamical scheme of infinite sequence of Kasner regimes.

The classical dynamics of a generic cosmological model is described by the
Hamilton equations associated to the Misner variables and by the secondary con-
straints, see eq.(5.18), obtained varying the action SG respect to N and N i,
namely:

H = Hi = 0. (7.4)

These can be written explicitly as

−p2α + p2+ + p2− + e4αVG = 0 (7.5)

pα∂iα + p+∂iβ+ + p−∂iβ− = 0, (7.6)
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where in the super-momentum constraint we kept only the dominant contribution.
The potential VG is given by eq.(5.116): the equipotential lines associated to this
potential form, in each space point a curvilinear equilateral triangle having three
open corner reaching infinity.

If the initial singularity is identified with the instant of time when the spatial
volume of the Universe (i.e. the three-metric determinant) vanishes, then we can
fix that singularity with the limiting value α → −∞. In this limit VG tends to
become an infinite well in which center β+ ∼ β− ∼ 0 (actually for an increasing
region as the singularity is approached) the potential term can be neglected.
The dynamics of the system is described by the generalized Kasner solution, see
AppendixC, during which pα and p± are constant in time and:

dβ±
dα

=
p±
pα

≡ π±(x̄
i),→ β± = π±(x̄

i)α + β̄±(x̄
i), (7.7)

where β̄± denote generic space functions and it is possible to identify

π+ = cos θ, π− = sin θ (7.8)

since by definition they have to satisfy π2
+ + π2

− = 1. The function θ(xi) is angle
of incidence of the particle off the potential wall and changes at each bounce, see
Fig.7.1

In this chapter, as in [8], we are interested in the dynamics of the inhomo-
geneous Mixmaster Universe in the corner configuration, i.e. when the point-
Universe is deeply inside the corner of the potential. As mentioned in Sec.5.4.1,
the three corners, see Fig.7.1, are equivalent since it is possible to map one into
another simply by rotating the coordinate plane {β+, β−} by π/3. Hence, without
loss of generality, in the following we are going to consider the corner along side
the axis β− = 0.
This configuration, from a physical point of view, corresponds to deal with the
long oscillations regime, see Sec.5.3.5, where two space directions scale almost
with the same oscillating time law and the remaining one decays monotonically
toward the singularity.
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Looking at the plot in Fig.7.1, it is possible to see that if the system reaches
a configuration deeply inside the corner, such that β− ∼ 0, then θ is small and it
follows that

π− = sin θ ≃ θ ≃ ϵ≪ 1 (7.9)

Choosing a space coordinate system x̄i such that λ1(x̄i) = λ2(x̄
i) = λ3(x̄

i) ≡
λ(x̄i), the potential VG becomes

VG =
1

4
λ2
(
2e4β+ cosh

(
4
√
3β−

)
+ e−8β+

)
− 1

2
λ2
(
e4β+ − 2e−2β+ cosh

(
2
√
3β−

))
(7.10)

which matches with the expression of the potential for the homogeneous Mixmas-
ter, see eq.(5.100).
Inside the corner, where β+ ≫ 1, |β−| ≪ 1, it is possible to expand VG to O(β2

−),
which results in

VG = 12λ2e4β+β2
−. (7.11)

In this configuration, the super Hamiltonian constraint in eq.(7.4) reads as

−p2α + p2+ +H− = 0 (7.12)

where H− = p2− + 12λ2e4(α+β+)β2
− is a small contribution.

7.3 Quantum small oscillation
In order to use Vilenkin approach [168], we have to show that one of the Misner
variables can be small enough to approach a quantum behavior.
To understand why this is possible, let us fix α to a finite value. In the corner
configuration, as said in the previous section, |β−| ≪ 1, hence the coordinate
interval for this variable ∆β− is of order

∆β− ∼ 2β+θ = 2β+ϵ. (7.13)

where the last equality comes from eq.(7.9). This can be understood looking at
Fig.7.1.
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Δβ-θ β+

β-

Figure 7.1: Equilateral triangle formed by the equipotential lines in each space
point. The segment ∆β is in green, while the angle θ is represented in red.

Moreover, according to the general Kasner solution (see Appendix C), and
to the first equality in eq.(7.7), comparing the kinetic and potential term in H−

defined above, it results

H−

p2α
∼ H−

p2+
∼ π2

− ∼ θ2 = ϵ2. (7.14)

In the first part we used that, since H− is a small contribution to H, from the
super-Hamiltonian constraint in eq.(7.12) p2α = p2+, while in the last part we used
eq.(7.7). The function θ(x̄i), as mentioned before, changes at every bounce of the
point-Universe against the potential wall and, being generated by the BKL map,
rapidly acquires a random behavior.
The stochasticity of the BKL is what gives us the possibility to decouple the
system: if the point-Universe is reflected such that θ, and therefore ϵ, is of order√
h̄, then the Hamiltonian constraint in eq.(7.12) can be decoupled into a classical

part and a quantum one, according to the analysis in [168]. The classical part is
associated to the variables α and β+, while the small quantum subsystem, which
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lives on the space-time defined by the classical components, is constituted by the
anisotropy degree of freedom β−.

In other words, we are inferring that, when ϵ ∼ O(
√
h̄), the variable β− is

small enough to explore the uncertainty principle with

∆β− ≤ 2
√
h̄β+, ∆p− ≥ 1

4

√
h̄

β+
. (7.15)

According to what we just said, the quantum subsystem shows to have the small-
ness requirement postulated in [168] and precised in [207]. Therefore, in analogy
with the wave function of the Universe for the homogeneous case (eq. (5.40)),
the Universe wave function can be written as

Ψ = ei
Σ(α,β+)

h̄ Φ(α, β+, β−), (7.16)

where Σ is associated to the classical system and depends on the semi-classical
variables α and β+, while Φ describes the quantum sub-component. Note also
that Ψ is a functional
According to the scheme developed in [168], the functional derivative of Φ with
respect to the space field β−(x̄i) are of order 1/h̄, hence H−Φ ∝ O(h̄).

To obtain the dynamical implication of the state functions eq.(7.16), we need
to apply the canonical version of the super-Hamiltonian and super-momentum
constraint, respectively (7.12) and (7.6), i.e:[

h̄2
δ2

δα2
− h̄2

δ2

δβ2
+

+ Ĥ−
]
Ψ = 0 (7.17)

ih̄

(
∂iα

δ

δα
+ ∂iβ+

δ

δβ+
+ ∂iβ−

δ

δβ−

)
Ψ = 0 (7.18)

where the symbol δ denotes functional derivatives. Note that eq.(7.17) is the
analogous of the eq.(6.5) written for the homogeneous Mixmaster case.
Following the same steps presented in Sec.6.2 it is possible to separate the above
equation according to the order of h̄ of the various terms. At the zero-th order
in h̄ the equations obtained are the classical Hamilton-Jacobi super-Hamiltonian
and super-momentum equations for the semi-classical Misner variables α and β+,
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i.e:

−
(
δΣ

δα

)2

+

(
δΣ

δβ+

)2

= 0 (7.19)

δΣ

δα
∂iα +

δΣ

δβ+
∂iβ+ = 0. (7.20)

From the above system, the classical component is associated to the reduced
action

SClass =

∫
dtdx3

(
pα∂tα + p+∂tβ+ − N

12
e−3α

(
−p2α + p2+

)
−N i (pα∂iα + p+∂iβ+)

)
.

(7.21)
Expanding eq. (7.17) ad eq. (7.18) at 1st order in h̄, it is possible to write a
Schröedinger-like equation for the quantum functional Φ.
The equation of order O(h̄) from eq.(7.17) and eq.(7.18) are respectively

i

(
δ2Σ

δα2
− δ2Σ

δβ2
+

)
Φ + 2i

(
δΣ

δα

δΦ

δα
− δΣ

δβ+

δΦ

δβ+

)
+H−Φ = 0 (7.22)

i

[
∂iα

δΦ

δα
+ ∂iβ+

δΦ

δβ+
+ ∂iβ−

δΦ

δβ−

]
= 0, (7.23)

and the last one can be separated into an equation for the semi-classical
variables and one for the quantum one:

∂iα
δΦ

δα
+ ∂iβ+

δΦ

δβ+
= 0 (7.24)

∂iβ−
δΦ

δβ−
= 0. (7.25)

where eq.(7.24) states the invariance of the wave functional Φ respect to the space
coordinates in the classical line element.

From eq.(7.22) it is possible to see that the functional Φ obeys the equation:

ih̄∂tΦ =

∫
dx3

N

12
e−3α

(
Ĥ− + ih̄

(
δ2Σ

δα2
− δ2Σ

δβ2
+

)
Φ

)
, (7.26)
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where
∂tΦ ≡

∫
dx3

[(
∂tα

δ

δβ+
+ ∂tβ+

δ

δβ+

)
Φ

]
. (7.27)

In the last equation, ∂tα and ∂tβ+ can be computed from the reduced action
eq.(7.21) and via the identification of the momenta with the corresponding func-
tional derivatives of Σ.

This analysis differs slightly from the approach presented in chapter 6 because
we are dealing with a functional formalism, due to the inhomogeneity of the model
considered and we are taking the variables α and β+ as strictly classica. This
last difference result in the last term of eq.(7.26). Assuming that Σ(α, β+) is
separable in the variables α and β+, it is easy to check that eq.(7.19) admits the
following solution:

Σ =

∫
d3xK(xi)(α + β+). (7.28)

According to the Hamilton Jacobi method, this yields to the classical relation

α + β+ = β0(x
i) (7.29)

which is the analogous in the inhomogeneous case of the result found in eq.(6.60).
Substituting the last equation into the quantum Hamiltonian Ĥ−, this becomes

Ĥ− = p2− + 24C2e4β0β2
−. (7.30)

Note that, in order for Σ in eq.(7.28) to satisfy the super-momentum equation
(7.20) it is enough to require that β0 is constant.

Before using eq. (7.28) and eq (7.30) to solve the dynamics of the quan-
tum subsystem of the inhomogeneous Mixmaster, let us write explicitly the line-
element of the system.
Following the computation presented in Sec.6.2, we can write the relation between
the variable α and the synchronous time variable t. From eq.(7.21) and from the
semi-classical Hamiltonian H0 = k/12e−3α(−p2α + p2+), it follows that

α(t) =
1

3
log t

t0
, (7.31)
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where t0 is a generic instant.
Substituting eq.(7.29) in the transformation analogous to eq.(5.96), we obtain
that 

q1(x
i, t) = 2β0 + 2

√
3β−

q2(x
i, t) = 2β0 − 2

√
3β−

q3(x
i, t) = 2(α− 2β0 + 2α).

(7.32)

In the specific case we are analyzing, where β− ≪ 1, it follows that q1(t, x) =

q2(t, x) = 2β0.
Choosing without any loss of generality −→

l 3 along the coordinate x3, using the
transformation for q3(xi, t) in eq.(7.32) and substituting the solution for α(t) (see
eq.(7.31)), the line element in eq.(7.1) becomes:

ds2 = dt2 −
(
t

t0

)2

e−4β0(dx3)2 − (dl2)
2 (7.33)

where (dl2)
2 is a static two-dimensional line element on the plane {x1, x2}.

The line element above, as well known [178, 184], is Taub-like, therefore it is
associated to a non-singular cosmological model. Moreover this becomes static
after changing coordinates : t′ = (t/t0) coshx3 and (x3)′ = (t/t0) sinhx31.

Now let us go back to eq.(7.26).
Using the expression of Σ in eq.(7.28) and introducing the time variable τ defined
via the lapse function N = 12e3α, eq.(7.26) reduces to the simpler form:

ih̄∂τΦ =

∫
d3xĤ−Φ (7.34)

where Ĥ− is defined in eq.(7.30).
The dynamical decoupling of the space points, i.e of each space region sufficiently
smooth (so that the spatial gradient can be considered negligible), allows to
reduce the Superspace on which the wave function Φ is defined, to the collection
of local Minisuperspace, one for each point xi.
Thus we can write

Φ = Πxiϕxi(τ, β−). (7.35)
1This is true if e2β0 = t0.
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where the local wave functions ϕxi satisfy the equations obtained from (7.34):

ih̄∂τϕxi = {−h̄2∂2β− + 24C2(xi)e4β0β2
−}ϕxi . (7.36)

At O(h̄) the functional Φ has to satisfy, at the same time, eq.(7.34) and
eq.(7.25). However, taking Φ as the product of local wavefunctions ϕxi , it already
satisfies the supermomentum constraint in eq.(7.25); eq.(7.35) in fact corresponds
to deal locally with the condition ∂iβ− ≃ 0.
Here we are implementing the BKL conjecture based on the idea that the scale
of spatial gradients is larger than the quantum correlation length. The concept
of quantum causality is therefore introduced, according to which space regions
evolving independently are not in causal contact.

Going back to solving eq.(7.36), this has the same morphology as eq.(6.20)
obtained in the homogeneous case. Hence, also in this case, the different local
wave functions ϕxi are solution of a Schröedinger-like equation for a quantum
harmonic oscillator with a frequency constant in time, each in each space point.
It is well known that the solution of such equations can be localized non spreading
wavefunctions, see Sec.6.2.2.2. In particular, for each localized ϕxi at τ0, where
τ0 is a generic instant of time,

|ϕxi(τ)|2 = |ϕxi(τ0)|2 (7.37)

for every τ .
Therefore, if ϕxi(τ0) is such that its probability density is Gaussian, Φ, defined
as a superposition of ϕxi in eq.(7.35), has the morphology of non spreading and
localized quantum harmonic oscillators, each in each space point.
We expect that the variable β− can be represented by localized state because
when it enters the corner is a classical degree of freedom and its available domain
remains of order h̄β+ in that configuration.

Thus, we can conclude that, if our scheme is reliably applicable to the Universe
dynamics deeply entering the corner, the cosmological singularity is removed in
every local Minisuperspace. The line-element describing the model, see eq.(7.33),
is the one of a classical non-singular space time on which very small quantum
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fluctuations of the variable β− live.
This intriguing picture is well-established when referred to the single spatial point
(causal region), but to understand how it works for the Universe as a whole, it is
necessary to develop some consideration on the BKL map [178, 184] and on the
fragmentation process [180], see also [200]. These considerations are the focus of
the next section.

To conclude this section it is worth to emphasize that the picture proposed
above can be reversed in time. Hence it would be possible to start with a non-
singular Universe with a small quantum anisotropy and, as the space volume
increases (i.e. α increases), this degree of freedom becomes classical; in this way
the dynamics comes out of the corner configuration and the full configurational
domain is restored . This means that, in this scenario, the generic inhomogeneous
cosmological solution can emerge from a non-singular initial configuration and
evolves toward the standard oscillatory regime discussed in [184], [178].

7.4 Inhomogeneous BKL map
Introducing the parameter u(xi) as in [184], which, again, is the generalization
to the inhomogeneous case of the parameter u introduced in eq.(5.68) for the
homogeneous Mixmaster, and using eq.(5.105) in the definition of π±(xi), see
eq.(7.7), these can be written as [176]:

π+ =
1

2

(
1− 2u− 2u2

1 + u+ u2

)
, π− =

√
3

2

(
2u− 1

1 + u+ u2

)
. (7.38)

Since we are focusing on the limit in which θ ≪ 1 (Fig.7.1) so that the point-
Universe is deep inside the potential corner, we can restrict the expressions in
eq.(7.38) to the limit u≫ 1 (note that θ ≃

√
3/u).

To understand when such large value appears we have to consider the BKL
map, presented in [184], which provides the values u′ generated from the value u
via the effect of the potential wall in the standard oscillatory regime, i.e;

for u > 1, u′ = u− 1, for u ≤ 1, u′ =
1

u− 1
. (7.39)

185



7. A SCENARIO FOR A SINGULARITY FREE GENERIC
COSMOLOGICAL SOLUTION

As mentioned in Sec.5.3.3.1, the evolution of the map depends on the initial value
u0.
All the initial rational values of the parameters u = u0 are evolved for a finite
number of the BKL map steps; after this u→ ∞ is recovered (i.e θ = 0 is reached
and the point-Universe is deeply inside the corner).

Irrational values of u0, instead, evolve indefinitely and the BKL map outlines
a strong (exponential) instability with respect to the initial condition: hence,
modifying the value of an irrational u0 by a very small amount, the sequence of
values generated by the map iteration becomes uncorrelated with respect to the
sequence associated to u0 just after a few steps.
Note that in [184] and [178], the authors excluded the rational values of u0 in
their analysis of the map, see Sec.5.3.3.1, because being of zero measure on the
real axis, they turn out to be non general conditions.
However, in the following years, the idea of excluding some specific points (the
rational u0 initial values) has been revisited.
Firstly because, from a purely logical point of view, it does not make much sense
to exclude only some specific values for the parameter u since this itself is not an
exact ”concept”. This parameter has in fact been introduced to approximately
describe the Kasner solution which, again, is an approximate regime which can
be obtained only by neglecting the potential wall.
Furthermore, assigning over the inhomogeneous space the initial condition u =

u0(xi), it is not possible to exclude the rational values of u simply for continuity
reason.

Thus, each spatial region containing surfaces on which u is rational, enters
deeply in the corner after a certain number of iterations of the map and the
corner scenario can be implemented close enough to one of such regions. As a
direct consequence, both rational and irrational u values, in this picture, can reach
the corner configuration.

Actually, when the parameter u is thought as a physical parameter, we have
to assign its values with a given uncertainty; this consideration, together with
the instability of the BKL map, leads to think of u as a statistically distributed
variable. As seen in Sec.5.3.3.1, it can be shown that it admits the following
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steady probability density:

w(u) =
1

ln 2
1

u(u+ 1)
. (7.40)

The BKL map has, especially when is expressed in terms of the fractional
part of the parameter u, ”strong mixing” properties [218]; starting from a generic
irrational u all the other irrational values (including very large one), sooner or
later, are generated.
This ensures that, also from a statistical point of view, in each point of the space
it is possible to reach the conditions needed for the system to enter in the corner.
This can also be noticed recalling the inhomogeneous Mixmaster is subjected to
the fragmentation process, see Sec.5.4.2.
According to this the iteration of the BKL map towards the singularity causes
the fragmentation of space in a series of smaller and smaller ”islands” in which
the points are causally connected.
Without any loss of generality, but simply using the general knowledge that the
irrational numbers are dense in reals, each irrational ui belongs to the neigh-
borhood of a rational value ur “nearby”, i.e. belongs to the same causal region.
As a consequence, for α → −∞, since the rational value ur reaches the corner
(ur → ∞), all the irrational values ui in its local patch reach the corner as well,
being causally connected.
To summarize, the fragmentation process allows for each spatial region containing
surfaces on which u is rational, to enter deeply in the corner.

This is extremely important because it provides an additional method for the
ui to reach the corner configuration.

In [180] it has also been argued how the iteration of the BKL map in two close
space points gives uncorrelated values of the parameter u just after few steps and
thus is at the ground of the progressive increasing of the spatial gradients towards
the singularity. As a consequence of this result, the proposed scenario takes place
in different instant of time in dynamical independent regions of space.
However this does not change the analysis presented above since once the system
enters in the corner, the BKL map is no longer applicable. Furthermore, once we
can separate semi-classical and quantum variables, the increasing behavior of the
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spatial gradients is naturally stopped.
Each smooth space region is characterized by a non-singular static space-time
and the statistical properties of the BKL map are reflected only on the specific
initial conditions at which the corner dynamics is implemented.

7.5 Conclusion
In this section we investigated the possibility to obtain a non-singular generic
cosmological solution as a results of a quantum behavior of the small anisotropy
β− within a deep corner configuration.
In other words, the Universe’s dynamics has been separated into a classical non-
singular one, plus a quantum effect. The dynamics of the quantum variable β−
is obtained solving a Schröedinger-like equation for an harmonic oscillator with
time-independent frequency, and it results in a simple small oscillation of β−
itself.
To establish this configuration we inferred that, for a large values of the parameter
u, the variable β− is extremely small and well inside the corner of the potential,
so that it explores the uncertainty principle, see eq.(7.15).
To characterize the generality of this scheme, we used two effects:

1. In each assigned space point the iteration of the BKL map is associated to
a significant probability for a very long era, i.e. the system dynamics can
be trapped in the potential corner, see [189].

2. The existence of the fragmentation process [180] in the inhomogeneous Mix-
master, i.e. the impossibility to exclude rational values of u in a continuous
representation u(xi), contrary to what was done in [184] and [178].
This process generates on all the corresponding space surfaces exactly the
limit β− ≡ 0, with associated neighborhoods where a long era must take
place.

The analysis presented completes and generalizes the consideration made in
[8], where the WKB approach was used in the the homogeneous case. Related
topics have been discussed in [205, 206].
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The basic motivation for such generalization consists in the natural character that
the corner configuration acquires in the inhomogeneous picture, as effect of the
fragmentation process. This means that few iterations of the map can be enough
to generate very high values of u in correspondence of all the rational values of
the initially assigned function u0(xi).

In conclusion, the present analysis revives, on a slightly different level, the
original (pre-“BKL map”) Lifshit and Khalatnikov idea that the anisotropy of
the Universe could resolve its singularity.
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Chapter 8

Final remarks

The formulation of the Inflationary theory opened the door to a series of new
questions concerning the beginning of the Universe. In this thesis we focused on
the following: How can inflation be realized? What was the Universe like before
this exponential expansion?
In particular, the first part of this work focused on a particular subgroup of
inflationary models, the multifield models.
After explaining some of the reasons that brought people to investigate multifield
models, and after giving a brief description of their dynamics in Chapter 2, in
Chapter 3 we looked at conditions the masses of the scalar fields must satisfy to
drive a successful period of inflation.
We developed a new type of inflationary attractor, which we called fat inflation,
that can be achieved when all the scalar fields’ masses are heavier than the Hubble
scale, i.e H < MInf .
In particular, we showed that fat inflation avoids the η-problem, which would
prevent inflation to happen; this type of attractor in fact satisfies the slow-roll
conditions. Moreover, unavoidably requiring a curved non-geodesic trajectory,
fat inflation can also have interesting implications for the dS conjectures.

Hoping to derive similar results for the interesting case of multifield infla-
tionary models in a SUGRA framework, we noticed that rapid-turn models in
supergravity are rare. In Chapter 4, after describing different forms of two-field
inflation which may occur in SUGRA, we focused on finding a way to build highly
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non-geodesic multifield inflationary models in supergravity. For concreteness we
concentrated in particular on multifield axion inflation. We observed that by
tuning the superpotential and the Kähler potential it is possible to construct a
successful multifield inflationary model (hence ensuring a small ϵ) with a large
turning rate. We studied in detail the EGNO model and a no-scale inspired
model and, for both of them, we demonstrated how to appropriately fine-tune
the models’ parameters to increase Ω/H.

These results lead us to conjecture that large dimensionless turning rates are
rare in (theoretically motivated) supergravity constructions, however they can
easily be achieved by introducing an additional parameter in the Kähler potential.
In the cases we analysed we obtained large turning rates as a consequence of large
field space curvature.

To conclude the review of the first part of this thesis it is worth mentioning
some future prospects of the work presented in Chapter 3 and 4.
In the second part of [6] my collaborators showed how it is possible to construct
an explicit fat inflation model in string theory, in particular a D5-brane model,
which is consistent with the Planck data. In light of this, it would be interesting
to revisit D-brane models, e.g. D3-brane multifield inflation, which have been
studied in the standard inflationary attractor with small turns. This would also
be important in view of the recent theoretical constraints on standard slow-roll
inflation.
Focusing on the results discussed in Chapter 4, it would be interesting to under-
stand if it is possible to have theoretically motivated SUGRA multifield models
which present large turning rates. Moreover, we found that tachyons appear to be
a ubiquitous feature of rapid-turn inflation in supergravity, however more study
in this sense might be needed.

In the second part of this thesis we focused on the understanding of the dy-
namics of the Universe before inflation. As we mentioned in the introduction,
since inflation smooths and homogenises the Universe just few moments after its
beginning, it is possible to consider more general cosmologies near the singularity.
In Chapter 6 we analysed the Bianchi IX Universe within the corner region of its
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potential using the Vilenkin approach introduced in Chapter 5. Our intent was to
understand how the dynamics of this model changes compared to the “classical”
one derived by the Landau Schools when we treat one of the anisotropic variables
on a quantum level. We studied this model in two cases: first in the vacuum, and
secondly in the presence of a scalar field ϕ along with a cosmological constant Λ.
In the first case, considering an expanding Universe (t→ ∞), we found that the
presence of a quantum anisotropic variable makes the corner of the Bianchi IX
potential an attractor for the point-particle Universe. For a collapsing Universe
(t → 0), instead, we concluded that the resulting cosmology is indistinguishable
from a Taub Universe, which suggests that the singular behavior of the Bianchi
IX Universe can be removed. Finally, analysing the dynamics of the Mixmaster
model in the presence of ϕ and Λ in an expanding picture we demonstrated that
the Universe naturally isotropizes.
In Chapter 7, following the result obtained in Chapter 6 for an empty collapsing
Universe, we investigated the possibility to obtain a non-singular generic cosmo-
logical solution adopting the same configuration used in the previous chapter, i.e.
the Vilenkin WKB approximation. To establish this configuration, we inferred
that one of the anisotropic variables is extremely small and well inside the poten-
tial’s corner, where the uncertainty principle applies. We motivated this scheme
recalling that there is a significant probability for the Universe to be trapped in
the corner and that the inhomogeneous Mixmaster is subjected to the fragmen-
tation process (as motivated in Chapter 5).
Once we proved that the Vilenkin approach can be implemented to the inhomo-
geneous Mixmaster, we demonstrated the possibility that the Universe acquires
a non-singular classical behavior simply following the steps already implemented
for the homogeneous case.

Summarising, in the last two Chapters of this thesis we showed that the
dynamics of general cosmologies near the singularity differ deeply from those
proposed by the Landau School in the ’80s when it is possible to separate variables
into semiclassical and quantum ones. In particular, this framework allows us
to obtain a non-singular (in)homogeneous Mixmaster model and it provides an
isotropization mechanism for the Bianchi IX model.
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An interesting follow-up to this work would be the study of a quantum Bianchi
IX model, or inhomogeneous Mixmaster: how would the dynamics of these models
change near the singularity if all the variables can be considered quantum? In
particular, it would be interesting to understand if it is still possible to remove
the singularity (for a collapsing Universe) and isotropize the Universe (for an
expanding Universe).
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Appendix A

Primordial fluctuations for single
field models

In the rest of this section we will briefly sketch the computations of the quantum
fluctuation generated during inflation in a pure de Sitter and massless case. A
more extensive derivation can be found in [32–36] and in references therein.

Let’s start by noticing that a perturbation in the scalar field produces in-
evitably a fluctuation in the energy momentum tensor, hence in the metric gµν :

ϕ(t, xi) = ϕ0(t) + δϕ(t, xi) → g0µν(t) + δgµν(t, x
i) (A.1)

The most general scalar-tensor decomposition of the metric is

ds2 = −(1 + 2Φ)dt2 + 2a∂iBdx
idt+ a2 [(1− 2Ψ)δij + Eij] dx

idxj. (A.2)

where Eij is a traceless symmetric tensor and can be decomposed as Eij = ∂i∂jE−
1
3
δij∇2E + hij. Here Φ, Ψ and E are the scalar degrees of freedom and hij is the

tensor one.
The spatial metric perturbation, together with the field perturbation, can be split
into two vector, two scalar and one tensor mode. However not all of these are
physical degrees of freedom and one scalar and one vector mode can be removed
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with the following reparametrization invariance

xµ → ξµ(t,x). (A.3)

This leaves us with one scalar and one tensor mode.
The scalar perturbations, coupling to the energy density, lead to the inhomo-
geneities and anistropies that we see today in the CMB, while the tensor ones
induce polarization in the CMB spectrum, see e.g. [219–221].
In the following we will focus exclusively on the scalar perturbations.
For the purpose of the computation, it is useful to fix a gauge. The most used
in literature are: comoving gauge, where the inflationary perturbation is zero,
δϕ = 0, and the spatially flat gauge where instead the metric perturbation is set
equal to zero.
In the following we will use the comoving gauge, following [39]1, where

δϕ = 0, gij = a2(t) ((1 + 2R)δij + hij) . (A.4)

Here R and h are the physical degrees of freedom, R parametrizes the scalar
fluctuations and hij parametrizes the tensor fluctuation.
In particular, hij is a traceless matrix which contains the two tensor degrees
of freedom and R is the comoving curvature perturbation, which measures the
curvature of the spatial hypersurfaces in the gauge, and it is defined as 2

R ≡ Ψ. (A.5)

Focusing only on the scalar fluctuations, the scalar part of the second order action
SR, derived in [36, 39], is given by

SR2 =

∫
d4xa3

[
ϵ

(
Ṙ2 − 1

a2
(∇R)2

)]
(A.6)

where ϵ is the slow-roll parameter defined in eq.(2.50).
1In sec 2.3.4 we will use the spatially flat gauge following [79]
2The general expression for R is R ≡ Ψ + H

ϕ̇
δϕ. In the spatially flat gauge, defined by

Ψ = 0, R is defined as R = H
ϕ̇
δϕ.
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To perform the quantization of the curvature perturbations, it is convenient to
introduce a new variable z, the canonically normalized Mukhanov-Sasaki variable
[222–224],

v = zR, z2 ≡ a2
ϕ̇2

H2
= 2a2ϵ (A.7)

and move to the conformal time τ = (aH)−1.
The action becomes

Sv2 =
1

2

∫
dτd3x

[
(v′)

2
+ (∂iv)

2 +
z′′

z
v2
]
. (A.8)

To quantize the theory v has to be promoted to a quantum operator [225]

v̂(t,x) =
∫

d3k
(2π)3

[
vk(τ)âke

ik·x + v∗kâ
†
ke

−ik·x
]

(A.9)

where âk and â†p satisfy

[
âk, â

†
p
]
= (2π)3δ(k − p), [âk, âp] =

[
â†k, â

†
p

]
= 0. (A.10)

and the quantum zero-point fluctuation is given by

⟨v̂†(τ,k)v̂(τ,k′)|0⟩ = |vk(τ)|2δ3(k − k′) (A.11)

The mode functions vk satisfy a modified Klein-Gordon equation in conformal
time

v′′k +

(
k2 − z′′

z

)
vk = 0 (A.12)

which, assuming true de Sitter (H ′ = 0, a = −1/(Hτ)) becomes

v′′k +

(
k2 − 2

τ 2

)
vk = 0. (A.13)

One can prove that the solution of the above equation is:

vk(τ) = α
e−ikτ

√
2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
(A.14)
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where α and β can be fixed selecting the Bunch-Davies vacuum initial condition.
Finally, eq.(A.14) becomes

vk =
e−ikτ

√
2k

(
1− i

kτ

)
(A.15)

In the super-horizon limit, when k ≫ aH, that is kτ → 0, recalling that τ =

−1/(aH), corresponds to

lim
kτ−→0

vk = − i√
2k3τ

, → Rk ∝
1

k3/2
. (A.16)

This results implies that once the perturbations exit the Hubble radius they freeze
R ∼ const, as it can be seen in Fig.2.5. When inflation ends and the Hubble radius
starts to grow, the super-horizon mode k re-enters inside the horizon and starts
oscillating; its oscillating amplitude, initially, is as big as it was when k crossed
the Hubble radius during the inflation. This explains how the small fluctuations,
which source the large scale structures, derive from the inflationary dynamics.

Finally, we compute the power spectrum of R defined as [39, 107, 226]

k3

2π2
⟨R(k)R(k′)⟩ ≡ (2π)3δ3 (k + k′)∆2

R(k). (A.17)

Recalling that R = v/(a
√
2ϵ) and using eq. (A.11), the dimensionless power

spectrum ∆2
R can be evaluated at horizon crossing k = a∗H∗

∆2
R(k) =

H2

8π2ϵ

∣∣∣
k=a∗H∗

. (A.18)

Note that k = a∗H∗ is usually taken to be 60-70 e-folds before the end of inflation,
when ϵ→ 1.
A direct consequence of eq.(A.18) is that it constraints the slow-roll parameter ϵ
relatively to the scale of the potential V ∼ H2.

Tensor perturbation

The above computations have been done focusing on the scalar perturbations
only. However, as mentioned at the beginning of this section, the inflaton quan-
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tum fluctuations generate metric perturbations which include both scalar tensor
degrees of freedom where the tensor ones are associated to the polarization of
gravitational waves (h+ and h×). Following the same step used to determine
the scalar power spectrum, it can be proven that the dimensionless tensor power
spectrum is

∆2
t (k) =

2H2

π2

∣∣∣
k=a∗H∗

(A.19)
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Appendix B

Results from survey of
supergravity models

In this Appendix we display various Supergravity inflationary models we found
in the literature. For each model we report: Kähler potential K, Superpotential
W , initial conditions (ICs), wheter the inflation ends or not (Inflation ends if
Nend = 60), largest value for the dimensionless turning rate ω2

end and the param-
eters’ range analysed.
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Appendix C

Kasner solution for
inhomogeneous cosmologies

In [192] the Kasner solution was extended, for the first time, to the inhomogeneous
and anisotropic case. In this paper the authors showed that, near the singularity,
this can be written as:{

dl2 = hαβdx
αdxβ

hαβ = a2lαlβ + b2mαmβ + c2nαnβ

(C.1)

where, as in the Mixmaster model (see Sec.5.3.3)

a ∼ tpl , b ∼ tpm , c ∼ tpn . (C.2)

Dealing with inhomogeneous model, in this case both pi and the reference vectors
l,m,n are functions of the spatial coordinates xγ and the Kasner indices, which
in the homogeneous case have to satisfy eq.(5.65), in this case satisfy

pl(x
γ) + pm(x

γ) + pn(x
γ) = p2l (x

γ) + p2m(x
γ) + p2n(x

γ) = 1. (C.3)

The Kasner indices can be parametrized as in eq.(5.68), where, analogously to
eq.(5.69),

u(xγ) = − p1(x
γ)

1− p3(xγ)
(C.4)
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COSMOLOGIES

Assuming without loss of generality pl(x
γ) = p1(x

γ), pm(xγ) = p2(x
γ) and

pn(x
γ) = p3(x

γ), going from one Kasner epoch to another, the indices trans-
form as in eq.(5.75).
The result presented in [192], was obtained from the gravitational field equations
R00 = 0 and Rαβ = 0 keeping only terms with time derivatives and neglecting
all of those containing spatial derivatives and, to be valid up to the singularity,
required an additional constraint1:

l · ∇ ∧ l = 0. (C.5)

Eq.(C.5) reduces the number of arbitrary functions to formulate the Cauchy
problem to three, one less that those needed to to deal with a general case. In

[178] the authors investigated the implication of removing the constraint (C.5).
The Kasner behavior in eq.(C.1) is obtained, as mentioned above, neglecting the
triadic projection of 3Ra

b in the vacuum EE. This can be done if

Rl
l, R

m
m, R

n
n ≪ t−2. (C.6)

These conditions can be written in terms of the 3-metric diagonal and off-diagonal
projection as

ηlm ≪ √
ηllηmm, ηln ≪ √

ηllηnn, ηmn ≪ √
ηnnηmm. (C.7)

These inequalities allow to write down the following conditions for the off-diagonal
Ricci tensor’s terms

3Rlm ≪ ab/t2, 3Rln ≪ ac/t2, 3Rmn ≪ bc/t2. (C.8)

Therefore, if it is true that we can neglect the off diagonal term in the metric
projection, it is possible to neglect the off diagonal component of the Ricci tensor
in the EE.
Finally, computing the diagonal terms 3Rl

l,
3Rm

m,
3Rn

n, these show the following
1Without this condition, if pl(xγ) = p1 < 0, the Kasner dynamics ceases to be valid for

t→ 0.
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proportionality:

3Rl
l ∝ k2a4/(Λ2t2), 3Rm

m ∝ k2b4/(Λ2t2), 3Rn
n ∝ k2c4/(Λ2t2) (C.9)

where Λ = abc and 1/k denotes the order of magnitude of spatial distances oever
which the metric changes.
Hence, eq. (C.6) give the following inequalities

a
√
k/Λ ≪ 1, b

√
k/Λ ≪ 1, c

√
k/Λ ≪ 1 (C.10)

which are the sufficient conditions for the existence of the generalized Kasner
solution (C.1). It is important to notice that these conditions do not impose any
restrictions on the degree of the spatial inhomogeneity.
When, for t = tr → 0, one of the above condition does not old anymore (for
example a|t=tr

√
k/Λ ∼ 1) the Kasner solution, as in homogeneous model (see

Sec5.3.3), it is not valid anymore, and in the EE it is necessary to take into
account perturbation terms, which are the analogous of those appearing in eq.
(5.72) on the rhs.
In the case chosen above, in which the perturbation is on the l direction, the
equations for the Ricci tensor become

−Rl
l =

(ȧbc)˙

abc
+

ν2

2b2c2
a2 = 0 (C.11)

−Rm
m =

(aḃc)˙

abc
− ν2

2b2c2
a2 = 0 (C.12)

−Rn
n =

(abċ)˙

abc
− ν2

2b2c2
a2 = 0 (C.13)

−R0
0 =

ä

a
+
b̈

b
+
c̈

c
= 0 (C.14)

where ν is no longer a constant, but a function of the space-coordinates

ν(xγ) =
l · ∇ ∧ l
l · [m ∧ n]

. (C.15)

The system of equation obtained, eq.(C.11), is a system of ordinary differential
equations respect to time. The space coordinates enter only parametrically, hence

215



C. KASNER SOLUTION FOR INHOMOGENEOUS
COSMOLOGIES

the solution is not affected by this change, and also in the inhomogenous model
it remains valid the law of alternation of the Kasner exponents.
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Appendix D

Internship

In this Section we briefly summarise some of the work done during the industrial
placement at Mobileum.

D.1 What is a GT?
A Global Title (GT) is an address used in a telecommunication protocol to route
signaling messages on telecommunications networks. It is a unique identifier of
each physical component of the network.
Whenever a person sends an SMS, starts a call or browses the internet, his mobile
device exchanges an enormous amount of encrypted messages with the network to
ensure that all these actions can be done and are done in the right way. All these
encrypted messages contain the GT number of both the network’s part which
sends and which receives the messages.
To clarify this idea we can use a practical example. In Fig.D.1 we show the
Location Update procedure, which is done by our mobile phone every couple of
minutes (or every time we send a message or do a call).

Every arrow in the Fig.D.1 is an encrypted message sent by a GT to another
GT.
But why do we care so much about GTs and the way they encode their messages?
Learning how to recognize a legitimate encoded message from a ”fake” one would
prevents numerous hackers’ attacks! It is quite common in fact that hackers try
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D. INTERNSHIP

Figure D.1: How the Location Update procedure is performed. Each arrow is an
encrypted message sent from a GT to another. MS, VLR and HLR are the three
GTs involved in this exchange. MS is the subscriber.

to infiltrate into the telecommunication networks to try to steal sensitive data.
For example, returning to the example above, if an hacker pretends to be the GT
named VLR, he would be able to receive from HLR all the data of the subscriber.

D.1.1 Encoding of messages

The encoding of a signalling message is split into several layers. Here we decided
to split the layers into two groups:

1. Group 1: features that change over the short life of the message from
source to destination. They are rigidly defined, therefore all the GTs have
to encode these according to the same protocols.

2. Group 2: these features are constant over the life of a message. In this
case different GTs can encode them in slightly different ways, i.e. there is
a possibility for ”individual expression”.

If we examine the features in Group 2, we further see that there are 4 classes
of features:
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D.1 What is a GT?

1. Application meaningful data – e.g. IMSI, MSISDN, Calling Party, Called
SSN. These are useful fields for the application (whether it is an SEP or
STP)

2. Protocol level data – e.g. TCAP OTID, Calling Party Encoding Scheme, Ap-
plication Context Name and Version, TCAP invoke ID. These are explicit
parameters in the message but used for decoding the message correctly.
They are of no real interest to the end application.

3. Low level encoding data – e.g. type of TLV tag encoding, type of TLV
length encoding, order of SCCP mandatory parameters, use of XUDT, use
of SCCP class. These are hidden in most decodes of a message.

4. Statistical data – e.g. length of SCCP over time, length of TCAP User
Info over time. These features are numeric and so are possibly treated with
stochastic methods.

The first layer is what the hacker wants to fake; he also has to make sure that
layers 2 and 3 are sufficiently correct to transmit the message across the network.
4 is observable over a sample.

In Fig.D.2 we report an example of an encoded message (it’s only a part of
the full message). Each couple of bit has a specific meaning and represents a
layer of the message. The one highlighted in this case is the GT identifier of the
network component which is receiving the message. Note that in the following

Figure D.2: Example of an encoded message using Wireshark.

we refer to these messages’ layers as features.
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The encoding method of these messages is defined in ITU X.690 ASN.1. The
TCAP layer in particular, which is in the protocol level data, consists of a hierarchy
of tag-length-values (TLVs) and it is described as a hierarchy because each value
can itself consist of other TLVs. A TLV construction is a byte array which contain
a tag indicating the role of the parameter (called identifier), a length specifying
the tag’s length in bytes and the values itself, which is the parameter of interest.
The tag and the length values reveal, indirectly, some elaborations of encoding,
hence they can be important as well.

The tag can be encoded with specific bits set, to mean different things:

1. If bit 6 is set, the tag is treated as a constructor, otherwise is treated it as
a primitive.

2. If tag < 31, the tag is treated as short form, so bits 1-5 define the tag.

3. If tag bits 1-5 > 30, the tag is treated as long form and subsequent bytes
are needed to define the tag.

A constructor does not have much value or use. It just means that there is a
group of TLVs following. A primitive however is a useful thing: it is an important
parameter, such as an IMSI (international mobile subscriber identity, it identifies
uniquely every user of a cellular network). Programmers of stacks can decide
whether to use constructors or not. Some use them a lot, others not at all.

Once the tag has been decoded, we move onto (typically) the second byte, to
get the length:

1. If bit 8 == 0, the length is in short form, i.e. the length occupies this byte
only

2. If bit 8 == 1 and bits 1-7 != 0, the length is long form, i.e. the length is
given over multiple following bytes, all connected to make a more capacious
integer.

3. If bit 8 == 1 and bits 1-7 are 0, the length is given in indefinite form. If
this is the case, no length is given.
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The enormous flexibility here has allowed some advanced hackers to manage
to hide shellcode in messages to attack the signalling stacks directly.
However, this flexibility is also useful for us, because it requires programmers to
make choices, and many of those choices are visible in the coding of the message.

D.1.2 Purpose of the study

The question we hope to answer is: can we use all this information to judge
whether a message is really coming from a specific GT and not from an hacker?
In other words, can we “fingerprint” a message from a GT?
We hope that, if this is the case, we are able to discern between real GT’s sig-
nalling messages and messages sent by hackers who ”fake” to be a GT and aim
to interfere in the telecommunication networks.

A perfect fingerprint is a pattern of features that:

• is forever always present in the encoding of messages from a GT.

• is never seen in messages from other GTs

We immediately concede that in this analysis we are likely to see, instead,
families of GTs which present the same fingerprint because they are written by
the same programmer.
Therefore, in our study we are likely to see families of GTs, each sharing the same
fingerprint.

An anomaly, on the other hand, has two meanings here:

• A message from a GT that has some outrageous values for various features,
as in a specially crafted packet by an advanced hacker. E.g. suddenly seeing
a value of 100 for tcap− user − info− len when normally its value is 0.

• A message that looks normal within the entire sample of all GTs, however,
is clearly written in a different style to the usual one for that specific GT.

This distinction caused confusion for about half the study because different
approaches can be taken to each. While both can be approached by unsuper-
vised learning, classifiers, and statistical analysis, the second one can also be
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approached with supervised learning, and this ultimately gave superior results,
as we show later.1.

During the internship our main goal has been to use Machine Learning algo-
rithms to understand if different GTs could be clustered into families, hence they
do encode messages in a similar way, and to train ”anomaly detectors” which aim
was to isolate anomalous messages among a dataset.
All the studies have been conducted on datasets containing messages sent by
numerous GTs.

In the following we describe the final part of the data analysis carried out
during the placement.

D.2 Data analysis - First part
The dataset used for this analysis is data_original, and it comprises of 86030
messages (rows) sent from 6001 different GTs, and 56 features (columns) which
are both numerical and categorical. These features represent some of the couple
of bit present in Fig.D.2. The features’ selection has been done by Mobileum’s
engineers.
We are not going in detail about the different features, however it is worth men-
tioning the following ones: op_code and the pointers p1, p2 and p3. As mentioned
above each GT sends encrypted messages for a variety of reasons: op_code en-
codes the ”reason” for the relative message.
This is important because one of the assumption we do is that each GT encrypts
messages with the same op_code in the same way.
We comment on the importance of p1, p2 and p3 later in the study.

D.2.1 Statistical analysis

The first step is to manipulate the dataset such that it contains only numerical
features: this allows us to do some basic statistical analysis on it.
The dataset with only numerical feature is referred to as data_num. From Fig.D.3

1Another important problem faced during the project was to understand how to correctly
identify the important features (i.e. layers) in a .pcap message, see Fig.??.
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we can see that none the numerical features seem to follow any evident distribu-
tion. Applying a PowerTransform function to the dataset, which applies a power

Figure D.3: Histograms representing the distribution of the numerical features
of data_num.

transform featurewise to make data more Gaussian-like, we obtain the histograms
in Fig.D.4

Also in this case, after ”forcing” the data to assume a gaussian distribution,
the features cannot be considered gaussian at all and it seems that there is no

223



D. INTERNSHIP

Figure D.4: Histograms representing the distribution of the numerical features of
data_num. Note that the title of the single picture is not a feature name anymore
since the powertransformation modifies the features themselves.

hidden correlation among the features. Hence a more in depth analysis is neces-
sary.
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D.2.2 Can we talk about GTs’ families?

In this section we try to give an answer to the question introduces above Can
GTs be clustered into families?

Correlation

Knowing, as showed in the previous subsection, that the numerical features do
not follow any specific distribution, the first step to answer this question is to
understand if there is any correlation among the different features.
The correlation is a statistical parameter used to determine when a change in a
variable causes a change in another variable, therefore we aim to understand if
there is any dependence among some of the features.
Correlation can be computed only for the numerical features and its most common
formulation, the Pearson one, is given by:

ρX,Y =
cov(X,Y )

σXσY
(D.1)

where X and Y are the considered features, σX/Y is the standard deviation of X
or Y and cov(X,Y ) is the covariance matrix.
In our case, however, we decide to use the Spearman correlation. In fact, Pear-
son’s correlation assesses only linear relationships, while Spearman’s correlation
assesses monotonic relationships (whether linear or not) hence it is more general.

The correlation matrix has been plotted using the seaborn package. We
computed the correlation matrices for 4 different GTs ( we only used GTs for
which we have more than 500 messages in order to have a good sample size) and
we plotted the results obtained on a heatmap; colors on the map indicate the
value of the correlation among two particular features. The heatmaps can be
found at the end of the document, in Sec.D.6.

Each line and each column refers to a numerical feature, and the values in
the squares represent the correlation value among the 2 features intersecting in
that square. A value ∼ 0 indicates that there is almost no correlation among the
features for that GT, while a value ∼ 1 (or ∼ −1) indicates that the features are
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highly correlated (or anti-correlated).
All the heatmaps present some blank rows/columns; this represent features which
present only one value for a specific GT.
Looking carefully at the different heatmaps, it is possible to notice that two of
them are more similar than the others. In particular, the correlation matrices for
GT = 351930000133 and for GT = 351930000433 (Fig.D.29 and Fig.D.31) are
almost identical, while they present more differences with the correlation matrix
of GT = 22376000066 (Fig.(D.28)) and of GT = 447937113433 in Fig.(D.31).
This suggests that it might actually be possible to cluster GTs into families, since
some of them present a similar behavior. In particular GT = 351930000133 and
for GT = 351930000433 might belong to the same family.
We only presented four heatmaps here, but plotting heatmaps for other GTs we
had confirmation of this hypothesis.

Clustering algorithms

To confirm the idea that GTs can be grouped into families, we use the DBSCAN
and KMeans algorithms on a new dataframe built starting from the correlation
values. 1.
We construct the new dataframe considering only the GTs for which we have
more than 50 messages each. Moreover, for each of these GTs, we compute the
correlation matrix, as explained before, which returns a 30x30 matrix2. We then
transformed this 2D matrix in a dataset’s raw (hence we transformed the matrix
in a 1 dimensional array).
The final dataset, correlation, contains 365 entrances with 901 of features: one
is the GT identifier, while 900 derive from the correlation matrix.
As said previously the correlation matrices contain null values when a certain
features remain constant for all the dataset; eliminating these constant features,
correlation comprises of ”only” 717 features.
After a little bit of data manipulation we reduce the number of features imple-
menting a Principal Component Analysis (PCA) algorithm. We go from 717 to

1We implemented both the clustering algorithms using scikit-learn methods and functions
in python.

2There are 30 numerical features in data_original
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only 12, after proving that these 12 features explain the 95% of variance in the
dataset.
Now we can apply the KMeans and DBSCAN clustering algorithm.
Let us start with the KMeans algorithm.
The most important hyperparameter to set when using this algorithm is the num-
ber of clusters (k) that we want our data cluste into. This is also the only one
we actively focus on during this study while we leave the other hyperparameters
with their default values.
To choose a correct number of clusters to fit the data we use both the elbow
method and the silhouette method. We fit the KMeans algorithm on the data 19
times, each time setting a different number of clusters (from 2 to 20). Both the
mentioned methods give the best results when the number of clusters is 8.
Therefore, we chose k = 8 for KMeans, and running the algorithm on correlation,
this assigns a label to each GT. The assigned label identifies the cluster (or family)
to which the GT belongs to.

We use the DBSCAN algorithm to check the labels assigned by the KMeans
method.
DBSCAN does not require the number of clusters as hyperparameter, differently
from KMeans, but it requires the parameter ϵ, defined as “the maximum dis-
tance between two samples for one to be considered as in the neighborhood of
the other”.
To provide a reasonable value for ϵ we compute the distances in the 12 dimensional
features space among the GTs data point, and we chose an ϵ value compatible
with them, in particular ϵ = 5.
As for the KMeans method, we use the default values for the other hyperaparam-
eters.
Fitting the data using DBSCAN, we obtain a second set of labels for each GT.
The biggest difference between KMeans and DBSCAN is that the latter does
not assign all the data to a cluster; thus not all the GTs are labelled using this
algorithm. In this case we manually set the GT’s label as −1.
We report part of the results obtained in Table 1.
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GT Label KM Label DB
22899999797 6 0
351930000433 6 0
351930000133 6 0
41789310020 0 1
41789310003 0 1
41789310204 0 1
41789310206 0 1
33689002650 4 2
33689002190 4 2
33689002620 4 2
34656000233 0 1
41789310205 0 1
34656000235 0 1
34656000226 0 1
34656000216 0 1
41789310322 1 2

GT Label KM Label DB
34656000213 0 1
22376000066 0 1
41789310321 1 2
41789310311 1 2
34656027000 6 0
34656000212 0 1
22507939831 0 1
22376000067 0 1
34656000243 0 1
41789310312 1 2
22507939832 0 1
22507939833 0 1
22376000064 0 1
3519330000111 1 3
351930003441 5 4
34656073000 6 0

Table D.1: GTs’ labels obtained running KMeans and DBSCAN.

We can see from this table that in most cases the two clustering algorithms
agree on the which GTs belong to the same cluster.
This is a further proof which supports the idea that there are different GT’s
families.

To provide a visual interpretation of the results obtained, we encode the mes-
sages sent by the GTs in color boxes, as in Fig.D.5.

We refer to particular square as [number of raw, number of columns].
Square [5,5] (in yellow in the example plot Fig.D.5) does not contain any infor-
mation, and it has been added to set the color scale; similarly [5,0], [5,1], [5,2]
and [5,3] are manually set to 0.
Square [5,4] is probably the most important: it encodes the feature op_code
(hence which type of message is the one analysed). All the other squares, in
order from [0,0] to [4,5], represent numerical features1.

In the following we present 20 color boxes (i.e. 20 messages) for 4 different
1to provide this graphical encoding, we scaled and normalized the data.
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Figure D.5: Colour box example of a random message sent by GT = 22899999797

GTs and 2 different values of op_code. Two of these GTs have been classified
as belonging to the same clusters by both KMeans and DBSCAN, see Table 1,
while the others belong to different clusters. From the plots we can see how GTs
belonging to the same cluster encode the same type of messages (messages with
the same op_code) almost always in the same way.
The GTs selected for these plots all sent messages with operation code = 56, and
three of them send also messages with operation code = 2.

The GTs which belong to the same family, GT=22899999797 and GT=351930000133,
present the same sort of patterns for the messages they sen, see Fig.D.6 and
Fig.D.7 while both the others GTs show different patterns (they share some, but
some are different), see Fig.D.8 and Fig.D.9.
The same kind of study can be done for the same GTs but a different operation
code, in particular, op_code = 2.

Also in this case GT = 22899999797 and GT = 351930000133 show the same
pattern, see Fig.D.10 and D.11 while GT = 41789310204 shows a different one,
see Fig.D.12. It was not possible to show GT = 351930003441 since it sent less
than 20 messages with operation code = 2.
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Figure D.6: Colour boxes for GT = 22899999797 and operation code = 56

Figure D.7: Colour boxes for GT = 351930000133 and operation code = 56
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Figure D.8: Colour boxes for GT = 351930003441 and operation code = 56

Figure D.9: Colour boxes for GT = 41789310204 and operation code = 56
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Figure D.10: Colour boxes for GT = 22899999797 and operation code = 2

Figure D.11: Colour boxes for GT = 351930000133 and operation code = 2
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Figure D.12: Colour boxes for GT = 41789310204 and operation code = 2
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D.2.3 Is a GT always consistent within itself?

Using the same colour box graphs used in the previous subsection, we want to
examine how many patterns a single GT uses to send messages with the same
op_code.
The plots presented in the previous subsection, Fig.D.6, Fig. D.7, Fig. D.8, etc..,
show how these GTs are consistent in the way they encode messages with the
same op_code: all the 20 color boxes look very similar among them.
As an additional proof, we chose a different GT which sends mostly messages
with different operation code and analyse its ”color boxes”. We chose GT =
33689002190 and operation code = 7,3.
Also in this case we can see that the 20 messages sent are encoded in incredibly
similar way.

Figure D.13: Colour boxes for GT = 33689002190 and operation code = 7
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Figure D.14: Colour boxes for GT = 33689002190 and operation code = 3

D.3 First Outlier study
In this section we present the first study we carried to study and analyse possible
outliers. This study is done on the dataset 1515155608A

In this case we transform the values of op_code into a numerical feature (in
fact even if its value is a number, it is a categorical feature since each value rep-
resents a type of message). To do that we use the get_dummies method which
realizes a one hot encoding; the feature (op_code in this case) is encoded using
a dummy encoding scheme that creates a binary column for each category and
returns a sparse matrix or a dense array (depending on the sparse parameter).
Here is a small example:

GT op_code
22899999797 56
351930000433 2
351930000133 56
41789310020 23
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→
GT op_code_56 op_code_2 op_code_23

22899999797 1 0 0
351930000433 0 1 0
351930000133 1 0 0
41789310020 0 0 1

We focus our attention on 12 GTs, each of which sent more than 500 messages.
The dataset containing only these 12 GTs and the numerical features is called
data_num.
data_num is composed of 7509 total messages (rows) and 73 features (columns).
We, again, apply a PCA algorithm to data_num reducing the number of fea-
tures to 2 and 3. The dataset created are, respectively data_num_PCA2 and
data_num_PCA3. This allows us to represent the messages in a 2D and 3D space.

Figure D.15: In this plot we present a plot of the data in data_num_PCA2. a
and b are the features obtained from the PCA reduction. The different color of the
points represents different GTs.

It is worth mentioning that, even if this dimensional reduction induces a
substantial change of dimension in the feature space, the new features (a and b
in the 2D case, a, b and c in the 3D case) account for the 90% (and above) of
variance among the data, hence we are quite confident that the results obtained
in these reduced spaces are general enough.
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Figure D.16: In this plot we present a plot of the data in data_num_PCA3. a, b
and c are the features obtained from the PCA reduction. The different color of the
points represents different GTs.

Looking at Fig.D.15 and Fig.D.16 we can see that messages sent by some
GTs lie consistently on the same line, while messages sent by different GTs can
lie on different lines. An example of this are GT_identifier 0 (dark blue) and
GT_identifier 3 and 4 (lighter blue). We can see that they lie on total different
line (Fig.D.15) or, better, on total different planes (Fig. D.16).

In the following we are going to use this information to create a dataset which
can be used to train an anomalies detection ML algorithm.
The idea is to build a dataset containing messages coming from 2 GTs which lie
onto different planes (which we call GT1 and GT2), and to consider messages
coming from GT1 as ”normal” and messages coming from GT2 as ”outliers”
(respect to those sent by GT1).
To realize this dataset we follow the following steps:

• We define GT1 = GT = 22899999797 ( GT_identifier = 0) and GT2 = GT
= 33689002620 ( GT_identifier = 2).

• From data_num_PCA3 we extract 5% of GT2’s messages and we add them
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to a dataset comprising only of the messages sent by GT1; in this way we
create a dataset which contains 5% of outliers.

The final dataset data_num_PCA3_outlier is composed of 760 rows, 38 of which
are outliers, and 4 columns (one contains the GT number, the other three are the
a, b and c features obtained using the PCA).

To try to solve the outlier problem, thus to correctly identify as outliers the
38 messages sent by GT2, we use the Isolation Forest (IF) algorithm.
The IF algorithm used is the built-in algorithm in the scikit-learn package.
We set the hyperparameters for this algorithm as following:
RANDOM = 42

#i s o l a t i o n f o r e s t
i s_ f o r = I s o l a t i o nF o r e s t (max_samples = 256 ,
contaminat ion = 0 . 05 , max_features = 1 , n_est imator = 100 ,
random_state = RANDOM )

where

• max_samples: in the original paper it has been defined as min(256,n_samples).
Here it has been choose as 256.

• max_features: it is the number of features to drawn from the train dataset
to train each base estimator. Its default value is 1.

• n_estimator: it is the number of base estimator in the ensemble. Its default
value is 100.

• contamination_rate: it is defined as n_outlier/total_data; in this case it
is 0.02.

• random_state : it controls the pseudo-randomness of the selection of the
feature and split values. I fixed it to be random_state = RANDOM.

Note that we fixed random_state to guarantee the reproducibility of the results.
The IF is an unsupervised learning algorithm, therefore we removed the GT
column from the data before running the algorithm, but we use this information
to check the accuracy of the results. The confusion matrix obtained using IF is
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cX =

[
16 22
22 700

]

The IF recognizes as outlier 16 of the 38 outliers present in the dataset, and
it wrongly classifies as outlier 22 of the 760 legitimate messages.

D.4 Second outliers study
In this section we describe a study realized on 2 datasets, namely 1515155608A,
the same used in the previous section with 86030 messages and 1482233452_722272,
with more than 1 million messages. Both of them contain the same features de-
scribed above.
Also in this study we aim to use the IF algorithm to detect outliers in both the
datasets.

In this section we focus on the following features: p1, p2 and p3 which show
an important correlation in both datasets. This can be seen in Fig.D.17 where
we present a small sample of 1515155608A.

Figure D.17: Small sample of data from 1515155608A . It is possible to see a
pattern for p1, p2 and p3.
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Studying the data closely, we identified two main patterns:

1. When p1 = 3, p2 and p3 vary, but they remain correlated. In particular, if
p2 = 14 → p3 = 25, if p2 = 16, p3 = 27, if p2= 16, p3 = 27.

2. If p1 ̸= 3, hence it varies, p2 and p3 are always related (e.g. p2 = 2 → p2
= 13).

As a consequence the pointers values can be easily predicted, which makes easier
to detect a ”suspicious” pointer’s value.

In both datasets, we add two features depending on the pointers values:

1. p_order: This is a categorical feature that expresses the numerical order
of the pointer, i.e if: p1 = 3, p2 = 14, p3 = 27, p_order = 123.

2. pointers_PCA: we apply the PCA analysis to p1, p2, p3 in order to ”collect”
them in only one feature, which is a numerical feature.

As mentioned at the beginning, the main purpose of this section is to study
how to implement and optimize the IF to detect outliers, however both the
1515155608A and 1482233452_722272 are ”outliers free”, since they only con-
tain legitimate messages, hence we introduce some1.

Once the anomalies are introduced we create 5 different sets of data which
differ for the features they contain.
In particular:

1. X : it contains p1,p2,p3 and p_order, plus all the features not related to
the pointers’ values.

2. X2: it contains only p1, p2, p3, plus all the features not related to the
pointers’ values.

3. X3: it contains only p_order, plus all the features not related to the point-
ers’ values.

1In doing so we kept in mind that the number of anomalies in a dataset has to been
very small compared to the total number of instances (in the previous section we used 5% of
contamination in a valid dataset).
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4. X4:it contains only pointers_PCA, plus all the features not related to the
pointers’ values.

5. X5 : it contains both pointers_PCA and p1,p2,p3, plus all the features
not related to the pointers’ values.

Before entering in the details of the study of both the datasets, we briefly
summarize the steps we are going to take:

1. We select a single GT from the dataset and we reduce the initial dataset
to messages sent only by this GT.

2. We manually modify a small portion of this new dataset to create outliers.

3. We transform op_code and p_order in numerical features using the get_dummies
method.

4. We manipulate and preprocess the data scaling them.

5. We implement the IF algorithm and report the results.

6. We optimizing the IF algorithm’s hyperparameters.

D.4.1 Analysis on 1515155608A

For this dataset, we chose the following GT:

GT = 33689002650 ncounts = 557 (D.2)

where ncounts is the total number of the GT’s messages present in the dataset.
This GT’s p1’s value is always p1= 3, hence, from what we said above, we expect
a certain correlation among p2 and p3 as follows:

1. p1 = 3, p2 = 14, p3 = 25 in 531 cases.

2. p1 = 3, p2 = 16, p3 = 27 in only 2 cases.

3. p1 = 3, p2 = 13, p3 = 24, in 24 cases.

241



D. INTERNSHIP

We decide to create outliers in two different ways:

1. We abruptly change the pointers’ values , so that the pointers order changes
as well.

2. We slightly change the pointers’ values, so that the modifies values are sim-
ilar to the original ones. In this case the pointers order does not necessarily
change.

Random changing of the pointers values

Here we modify randomly some pointers’ value. In particular, we modify 12
data out of a total of 557 as shown in Fig.D.18b creating the new dataset
data_num_outlier. This dataset contains the 12 anomalies and 545 normal
inputs. In Fig.D.18a we present some of the original data.

(a) Small sample of the GT’s original
pointers values. (b) Modified pointer’s values.

Figure D.18: Example of original and modified pointers’ values for 1515155608A.
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Plotting the values of the three pointers in a 3D space for all the instance in
data_num_outlier, we obtain Fig.(D.19).

Figure D.19: Scatter plots of the pointers values. The points in yellow are
outliers, while points in purple are normal points.

Before preprocess the data, we add a label column (hence a new feature) to
data_num_outlier. The value of this feature is +1 is the message is a normal
one, while it is −1 if the instance to which it refers it is an outlier. We are going
to use this to evaluate the performance of the ML algorithm we use to fit the
data. As mentioned, we use IF, which is an unsupervised ML algorithm. We
preprocess the data using the MinMaxScaler function of sklearn: this allow us to
scale the data to a given range; we chose to scale every feature in the range (0, 1).
Before using IF we need to define the contamination rate, i.e. the percentage
of expected outliers; since we modified 12 instances over the 557 total ones,
contamination = 0.02.
Thus, the IF used is:
RANDOM = 0

#i s o l a t i o n f o r e s t
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i s_ f o r = I s o l a t i o nF o r e s t (max_samples = 256 ,
contaminat ion = 0 . 02 , max_features = 1 ,
n_est imator = 100 , random_state = RANDOM )

To avoid possible overfitting, and considering the deeply skewed nature of the
data, we decide to use the stratified cross-validation method with k = 6. The
number of folds has been choose such that it is possible to have 2 anomalous
messages in every fold .
We use the stratified version of the cross-validation since outliers and normal
instances are not present with the same proportion in the dataset.

To check the IF performance we compute the f1_score for every fit. We fit
each of the 5 datasets described above six times with the IF algorithm and in
Table (D.2) we report the average f1_score for each dataset.

dataset f1 score
X 0.7272
X2 0.1818
X3 0
X4 0.1666
X5 0.8333

Table D.2: Average f1_score computed over 5 fit of the data for the 5 datasets
introduced above. This is obtained using the cross_val_score function. Pa-
rameters used: max_samples =256, contamination = 0.02, max_features = 1,
random_state = 0, n_estimator = 100

The confusion matrices for the datasets are:

cX =

[
8 4
2 543

]
, cX2 =

[
7 5
3 542

]
, cX3 =

[
0 12
16 529

]

cX4 =

[
2 10
12 533

]
, cX5 =

[
10 2
2 543

]
From Table D.2 and the confusion matrices above, we can see that the datasets
which give better results are X and X5.

Why do we think that these dataframes have the best f1_score?
The anomalies we manually introduced are very different from the ”normal” in-
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stances, therefore p_order and pointers_PCA, being derived features (derived
from the original three features p1, p2, p3), are completely different as well.
Both X and X5 include pointers values p1, p2, p3 and the derived features; hence
they do contain more features which are sensitive to the anomalies.
We think that this might be one of the reasons for which the IF algorithm per-
forms better on X and X5.

To optimize the f1_score, hence to have a better anomalies detector, we use
the GridSearchCV function.
This function scans over a specified range of hyperparameters for a given estima-
tor (IF in this case) and tries to find the hyperparameters which can optimize
the algorithm. To use this function we have to indicate an estimator, a set
of parameters and a scoring function: in this specific case the estimator is the
IF algorithm, the parameters are max_samples, max_features, n_estimator and
contamination_rate, while the scoring function choose is the f1_score.
From Table D.2, the highest f1_score was 0.83 for the X5 dataset, thus we decide
to optimize the IF’s hyperparameters over this dataframe. The GridSearchCV
function suggests to keep most of the hyperparameters as the one indicated in
the code above but to use max_samples = 200.
The f1_score for the X5 dataset after the IF’s optimization is

f1_score = 0.88 (D.3)

while the confusion matrix returns:

c =

[
11 1
2 543

]
We also try to optimize the f1_score changing the PCA function used in X4

and X5.
As mentioned in the introduction of this section, the feature pointers_PCA has
been obtained applying the PCA transformation, which is one of the most com-
mon and immediate dimensional reduction technique. The PCA is a linear di-
mensionality reduction technique that uses the single value decomposition of the
data to project it to a lower dimensional space. Therefore it does not always
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perform as expected when data are not linearly separable.
The generalized version of PCA for data which are non linearly separable is called
Kernel PCA, which is a non-linear dimensional reduction technique. The kernel
shape can be set by the user and we chose a gaussian kernel.
We substitute the pointers_PCA values in X4 and X5 with the pointers_Kernel_PCA
values obtained with this new dimensional reduction technique and we run IF on
the new datasets. Using again GridSearchCV function to optimize IF on the
dataset, we obtain the same confusion matrices presented above. Thus, we con-
clude that in this case the possible non-linearity of the pointers’ values does not
influence the algorithm.

Finally, we create a new dataset X6, which contains only pointers values and
pointers_PCA.
Applying the IF algorithm used before, we obtain a perfect confusion matrix

c =

[
12 0
0 545

]
The f1_score in this case is 1, thus the IF algorithm recognizes all the outliers in
X6, as we would have expected.

Small changes of the pointers values

In this section we study what happens if we modify the pointers values so that,
except in one case, the pointers order stays the same, see Fig. (D.20).

In Fig.(D.21) we can see the 3D plot for pointers values in this case.
We also provide a second graph which helps to visualize how the feature

pointers_PCA can be representative of p1, p2, p3, see Fig.D.22. Here we can
see that, even reduced the dimensionality space from three (the three pointers’
values) to one (pointers_PCA) , the outliers stand out respect to the normal
instances.

Following the same steps of the previous section, we use the StratifiedKFold
function, with k = 6 folds, and the IF algorithm with the following hyperparam-
eters
#i s o l a t i o n f o r e s t w i th i n i t i a l parameter
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Figure D.20: Outliers realized modifying slightly the pointers’ values. The point-
ers order does not change.

Figure D.21: Scatter plots of the pointers values. The points in purple are
outliers, while points in yellow are normal points.
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Figure D.22: Scatter plots of the pointers_PCA values. In purple we have the
outliers, in yellow we have the real instances.

i s_ f o r = I s o l a t i o nF o r e s t (max_samples = 256 ,
contaminat ion = 0 . 03 , max_features = 1 ,

random_state = RANDOM , n_est imators =100)

Applying this algorithm to the 5 different datasets, we compute confusion
matrices and f1_scores. We report the f1_scores’ values in Tab (D.3) and the

confusion matrices are The confusion matrices for the datasets are:

cX =

[
2 10
15 530

]
, cX2 =

[
8 4
7 538

]
, cX3 =

[
0 12
20 525

]

cX4 =

[
1 11
16 529

]
, cX5 =

[
8 4
10 535

]
From both the confusion matrices and Table D.3 we see that X2 and X5 are

the datasets where the IF was most successfull.
In general, comparing the results presented in Table D.2 and Table D.3, we can
notice that the f1_score is lower in the second case.
Moreover, when we modify the pointers’s values only slightly, X does not present
a high f1 score. We think that this might be the case since the additional feature
present in X ( p_order) does not bring any additional information in this case: we
did not modify the pointers order for the outliers, hence it is not an informative
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dataset f1 score
X 0.095
X2 0.5896
X3 0
X4 0.0476
X5 0.5420

Table D.3: Average f1_score on 6 fit with IF for 5 datasets. Parameters used:
max_samples =256, contamination = 0.03, max_features = 1, random_state =
42, n_estimator = 100

feature.

The highest f1_scores are associated to X2 and X5. To optmize the results for
both dataframes, we use the GridSearchCV function on each of the dataframe.
For the dataframe X2 the best hyperparameters results to be :
I s o l a t i o nF o r e s t ( behav iour= ’ deprecated ’ , boo t s t rap=False ,
contaminat ion =0.025 , max_features=1,
max_samples=350 , n_est imators =100 ,
n_jobs=None , random_state=0,
ve rbose =0, warm_start=Fa l s e )

Using them we obtain

f1_score = 0.6923, cX2 =

[
9 3
5 540

]
(D.4)

Optimizing the hyperparameters for X5 we obtain the following hyperparam-
eters
I s o l a t i o nF o r e s t ( behav iour= ’ deprecated ’ ,
boo t s t r ap=False , contaminat ion =0.035 ,
max_features=1, max_samples=300 ,
n_est imators =100 , n_jobs=None ,

random_state=0, ve rbose =0, warm_start=Fa l s e )

which leads to
f1_score = 0.6, cX5 =

[
9 3
9 536

]
(D.5)

It is possible to see that also optimizing the hyperparameters, X2 seems to
be the dataframe that better describes the data in this case.
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As in the previous case we also run IF on a dataset containing pointers_Kernel_PCA
we do not obtain any improvement in either f1_score or the confusion matrix.

Lastly, we apply the IF to datasets containing only the parameters of interest,
thus we create the following datasets considering only the features p1, p2, p3,
p_order and pointers_PCA. The new dataframe are the analogous of X, X2, ...
but containing only pointers’ related features.
In particular:

• Xp_1 : it contains p1, p2, p3 and p_order (as a numerical features)

• Xp_2: it contains p1 p2, p3.

• Xp_3: it contains p_order.

• Xp_4: it contains pointers_PCA.

• Xp_5: it contains p1, p2, p3 and pointers_PCA.

Using IF with the same initial hyperparameters of above, we obtain the
f1_score reported in Table D.4 and the following confusion matrices:

cXp_1 =

[
10 2
2 543

]
, cXp_2 =

[
10 2
2 543

]
, cXp_3 =

[
0 12
0 545

]

cXp_4 =

[
12 0
0 545

]
, cXp_5 =

[
10 2
2 543

]

dataset f1 score
X_p 0.8278
X2_p 0.8278
X3_p 0
X4_p 1
X5_p 0.8278

Table D.4: Average f1_score on 6 run of the IF algorithm for 5 datasets.

From these we conclude that X3 does not contain enough information for
the IF to correctly identify the anomalies, while X, X2 and X5 correctly classify
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10 out of 12 anomalies. The anomalous pointers values which have not been
recognized are reported in Table D.5. Note that all of these are very similar to
the original (non modified) pointers’ values.

p1 p2 p3
3 14 20
3 20 25

Table D.5: Pointers’ value not recognised by the IF algorithm.

The Xp_4, which checks only the PCA values, is the only one to have a
f1_score = 1.

D.4.2 Analysis on 1482233452_722272

From this dataset we isolate the messages sent by the following GT

GT = 34656000235 ncounts = 20254 (D.6)

This GT presents the following pointers values:

1. p1 = 3, p2 = 14, p3 = 25 , for 5027 messages

2. p1 = 3, p2 = 15, p3 = 26, for 1076 messages

3. p1 = 3, p2 = 16, p3 = 27, for 13701 messages

In this case we modify 102 of the total 20254 messages, some of which are
shown in Fig.(D.23). The outliers in this case are a mix: in some cases we do not
modify the pointers order, in other cases we do.
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Figure D.23: Some of the outliers present in this study.
The dataset containing the outliers is called data_num_outlier_big. From

this, exactly as in the previous section, Sec.(D.4), we create X1, X2, X3, X4, X5,
and we add the label column.

Plotting p1, p2 and p3 in a 3D space for all the instance in data_num_outliers,
we obtain the plot presented in Fig.D.24.

The 1D scatter plot obtained plotting pointers_PCA is reported in Fig.D.25.
To apply the IF to the 5 different datasets, we set the contamination_rate as:

contamination_rate = 102/20254 = 0.005 (D.7)

Also in this case we use the StratifiedKFold function, and the code we run
to fit the data with the IF is the following:

s k f o l d = St r a t i f i e dKFo ld ( n_sp l i t s =10)

i s_ f o r = I s o l a t i o nF o r e s t (max_samples = 256 ,
contaminat ion = contamination_parameter ,
max_features = 1 , random_state = 42 , n_est imators =100)

The f1_score’s values obtained for the different datasets are reported in Table.
(D.6)

The confusion matrices are:
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Figure D.24: 3D plot of the pointers values in the dataset big_dataset. Points
in purple are putliers, points in yellow are legitimate.

Figure D.25: Scatter plot of the pointers_PCA values. Purple points are outliers,
yellow point are legitimate data.

cX1 =

[
2 101
0 20151

]
, cX2 =

[
2 101
0 20151

]
, cX3 =

[
0 102
0 20151

]
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dataset f1 score
X 0.0348
X2 0.0348
X3 0
X4 0.0182
X5 0.0825

Table D.6: Average f1_score on 6 fit with IF for 5 datasets. Parameters used:
max_samples =256, contamination = 0.005, max_features = 1, random_state =
42, n_estimator = 100

cX4 =

[
1 98
0 20151

]
, cX5 =

[
5 98
0 20151

]
From these results we can see that the IF does not produce a satisfactory

outlier detection, at least with its standard hyperparameters.
We use the GridSearchCV function to optimize the IF fit on X5, which from
Table.?? is the most promising dataset.
The best f1_score for X5 is obtained with the following IF function:

is_for_GSCV_X5 = I s o l a t i o nF o r e s t ( behav iour= ’ deprecated ’ ,
boo t s t r ap=False , contaminat ion =0.015 ,
max_features=5, max_samples=350 , n_est imators =200 ,
n_jobs=None , random_state=42 , ve rbose =0, warm_start=Fa l s e )

which gives
f1score = 0.25, cX5 =

[
15 88
1 20151

]
. (D.8)

With the new hyperparameters there is a large improvement of the anomaly
detection ability of the IF, however this is not still good enough. On 102 outliers,
only 15 were detected.

Finally, we construct 5 new datasets Xp_1, ..., Xp_5 (defined in the previous
subsection) and we compute their f1_scores and confusion matrices using the
standard IF hyperparameters. The results of the f1_score are presented in Table.
(D.7), while the confusion matrices are:

cXp_1 =

[
75 28
0 20151

]
, cXp_2 =

[
39 64
0 20151

]
, cXp_3 =

[
58 45
0 20151

]
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cXp_4 =

[
93 10
0 20151

]
, cXp_5 =

[
35 68
0 20151

]

dataset f1 score
X 0.8427
X2 0.5493
X3 0.7205
X4 0.9499
X5 0.5072

Table D.7: Average f1 score for 5 dataset containing only features related to the
pointers values.

Comparing these matrices with those of the datasets X1, ..., X5 we can see
see that there is a substantial improvement, as expected.

D.5 Supervised Learning approach - Random For-
est

In this section we try to use a Supervised Learning approach to detect outliers.
The idea is to combine in a single dataset messages sent by a specific GT, which
we refer to as GT1, and messages coming from other random GTs.
We plan to use a Random Forest (RF) algorithm.

The datasets used for this study are feature_small_v3 and feature_small_v4,
which have features very similar to those described in the Sec. D.2, with only
few differences:

• sccp_class_handling is removed. It is substituted with 2 categorical fea-
tures sccp_class, which can assume values in the range [0,1] and sccp_handling
with values [0,8].

• sccp_ptr_order is introduced: this describes the order of the pointers in
the message.

• A feature tcap_user_comp_length was added. This is a numerical feature
not often used in messages.
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D.5.1 Study done on feature_small_v3.csv

This dataset contains 85966 messages sent by 6001 different GTs.
The main idea is to train a supervised machine learning algorithm (Random

Forest) to distinguish between messages sent by different GTs looking at their
features patterns.

D.5.1.1 First case with only 2 GTs

We consider two GTs:

1. GT1 = 22899999797 , which sent 760 messages.

2. GT2 = 351930000433, which sent 748 messages.

and we create a dataset containing all the messages coming from GT1 and GT2.
We include ad additional column labeled label, which takes different values ac-
cording to which GT the messages are sent. If GT = GT1 → label = 1, if
GT = GT2 → label = 0.

The final dataset, GT_tot comprises of 1508 messages and 56 features (includ-
ing label and GT), see Fig.(D.26).

Figure D.26: Some data from GT_tot

We use the get_dummies function of pandas to convert all the categorical
features into numerical ones.
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feature importance
sccp_calling_es 0.75

sccp_len 0.030
tcap_comp_tag_short_count 0.027

p1 0.025
tacp_comp_length 0.022

Table D.8: Features importance in the case of GT1 = 22899999797 and
GT_outliers = GT2

We also eliminate the GT column, leaving the label column as identifier on which
GT sent the message. As final result, GT_tot has 92 columns (features).

We train the RF on 1206 data (80% of the total) and test it on the remaining
302 (20% of the total)
We obtain the following results:

accuracy_score = 1.0, cXp_4 =

[
150 0
0 152

]
(D.9)

All the messages coming from GT1 and GT2 were correctly classified.

To have a better understanding of which features mostly influenced the RF
classification, we compute the feature_importance using a property of the
RandomForestClassifier in scikit-learn. The results are reported in Table.D.8.

D.5.1.2 Multiple GTs

Following the success of the previous study, we decide to create a dataset GT_tot2
containing messages sent form GT1 and other 148 messages (which are our outliers
in this case) coming from 5 different GTs:

1. GT3 = 447802000257, 29 messages

2. GT4 = 628112907133, 29 messages

3. GT5 = 201059969650, 19 messages

4. GT6 = 48501999945, 39 messages

5. GT7 = 33609009700, 32 messages
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feature importance
p1 0.153

sccp_ptr_order 0.246
p2 0.120
p3 0.092

sccp_calling_ssn 0.104

Table D.9: Features importance in the case of GT1 = 22899999797 and
GT_outliers = GT3/GT4/GT5/GT6/GT7.

The final dataset has a total of 908 messages, 70% of which are legitimate
(coming from GT1).
Again, we transform all the categorical features into numerical ones. As a result,
GT_tot2 has 908 rows and 100 columns.
We train the RF on 80% of the dataset (726 data) and test it on the remaining
182 instances. The split between train and test dataset is done in a stratified
way to take into account that there is a misproportion between legitimate and
outliers messages.
Using the standard hyperparameters for the RF, we obtain the following results:

accuracy_score = 1, cXp_4 =

[
30 0
0 152

]
(D.10)

Running feature_importance we obtain the results shown in Table D.9.

D.5.2 Study done on feature_small_v4.csv

In this section we extend the study realized on feature_small_v3.csv on a much
larger dataset, feature_small_v4.csv.

We create a dataset containing messages sent by GT1 and we randomly add
messages sent by other GTs. This is done using a function outlier:
def o u t l i e r ( datase t , GT_list , n_out l i e r , max_rep ) :

where

• dataset contains the data from which the outliers messages are drown.

• GT_list is the list of GTs whose messages are outliers
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• n_outlier is the total number of outliers we want in the dataset.

• max_rep is the maximum number of outliers sent from the same GT that
we want in the dataset.

We chose
GT1 = 256771101050, ncounts = 95316 (D.11)

The dataset containing only the messages sent by GT1 is gg256771101050.csv
while the one including GT1 and the outliers is data.

Using the function outlier we apply the RF algorithm on data and we com-
pute its accuracy. We create three different data datasets modifying each time
the number of outliers messages.
In particular, for the three datasets we use the following n_outliers and max_reps:

1. n_outliers 10000, max_rep = 30

2. n_outliers 1000, max_rep = 12

3. n_outliers 50, max_rep = 3

For each study we iterate the following steps 200 times:

1. Call the function outliers to generate a dataset containing the desired
number of outliers.

2. Concatenate this with gg256771101050.csv to create data.

3. Split data into a training dataset and a testing dataset, taking into account
the different proportion of legitimate-outlier messages.

4. Fit a RF with standard hyperparameters over the train data and run this
on the test data.

5. Compute the confusion matrix, the f1_score and the accuracy.
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n outliers accuracy f1 score
10000 0.998± 5 · 10−7 0.998± 6 · 10−7

1000 0.996± 1 · 10−5 0.996± 1 · 10−5

50 0.958± 0.002 0.954± 0.003

Table D.10: Table reporting the averaged values of f1 score and accuracy obtained
from the studies on random_forest_small_v4.csv

(a) Histogram of the
accuracy values when
n_outliers=10000.

(b) Histogram of the
accuracy values when
n_outliers=1000.

(c) Histogram of the
accuracy values when
n_outliers=50.

Figure D.27: Histograms of the accuracy values for the three cases described
.

Each run provides an accuracy value and a f1_score value, hence running RF
200 times, we can compute and average and a standard deviation for them. This
are reported in Table D.10.

We can also plot the accuracy values in histograms for the three cases anal-
ysed, see Fig.D.27.

From Table D.10 we can see that when there is a big imbalance among mes-
sages (3rd case, when there are only 50 outliers) RF does not perform as well as
in the previous two cases.

We repeat the same study comparing two Supervised Learning algorithms:
RF and XGBOOST (XG).
In this case we repeat the same steps described above, but we iterate them for
only 10 times instead than 200. The results are shown in Table.D.11.

From TableD.11 it results that, using the standard hyperparameters for both
the algorithms, RF performs better: it has a better accuracy and f1_score.
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metric RF_1 XG_1 RF_2 XG_2 RF_3 XG_3
accuracy 0.9983 0.9979 0.9955 0.9933 9826 0.9442
f1 score 0.9979 0.9974 0.9955 0.9932 0.9817 0.9401

Table D.11: Table of the accuracy and f1 score values for Random Forest (RF)
and XGBOOST (XG) for different number of outliers (_1 means 1st case, _2 2nd
case and so on).
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D.6 Heatmaps

Figure D.28: Correlations for GT1 = 22376000066 prova plot
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D.6 Heatmaps

Figure D.29: Correlations for GT2 = 351930000133
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Figure D.30: Correlations for GT3 = 351930000433
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Figure D.31: Correlations for GT4 = 447953713433
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