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A B S T R A C T   

Functional principal components define modes of variation in time series, which represent characteristic 
movement patterns in biomechanical data. Their usefulness however depends on the prior choices made in data 
processing. Recent research showed that better curve alignment achieved with registration (dynamic time 
warping) reduces errors in linear models predicting jump height. However, the efficacy of registration in 
different preprocessing combinations, including time normalisation, padding and feature extraction, is largely 
unknown. A more comprehensive analysis is needed, given the potential value of registration to machine 
learning in biomechanics. We evaluated popular preprocessing methods combined with registration, creating 
512 models based on ground reaction force data from 385 countermovement jumps. The models either predicted 
jump height or classified jumps into those performed with or without arm swing. Our results show that the 
classification models benefited from registration in various forms, particularly when landmarks were placed at 
critical points. The best classifier achieved a 5.5 percentage point improvement over the equivalent unregistered 
model. However, registration was detrimental to the jump height models, although this performance variable 
may be a special case given its direct relationship with impulse. Our meta-models revealed the relative contri
butions made by various preprocessing operations, highlighting that registration does not generalise so well to 
new data. Nonetheless, our analysis shows the potential for registration in further biomechanical applications, 
particularly in classification, when combined with the other appropriate preprocessing operations.   

1. Introduction 

Principal Component Analysis (PCA) is a statistical technique that 
preserves variability in a multivariate dataset while reducing dimen
sionality (Jolliffe and Cadima, 2016). In its functional form, PCA ac
counts for the sequential dependence of time series data. Functional 
Principal Components (FPCs) describe independent modes of variation 
that typically have an intuitive appeal (Ramsay and Silverman, 2005). 
The technique also yields scores quantifying the extent to which each 
curve expresses characteristic features described by the FPCs. The 
associated scores can be used as inputs to models to reveal underlying 
relationships in the data that might otherwise have remained obscured 

with traditional statistical methods (Halilaj et al., 2018). 
Functional PCA (FPCA) has become established in biomechanics as a 

valuable tool for identifying characteristic features of kinematic and 
kinetic data (Dannenmaier et al., 2020; Harrison, 2014). Typical ex
amples include using FPCs to discriminate between performance levels 
and identify chronic injury movement patterns (Donà et al., 2009; Ryan 
et al., 2006; Warmenhoven et al., 2017). FPCs represent a more com
plete, continuous description of curve characteristics compared to a 
collection of salient features defined with domain expertise, such as 
maxima or minima, because those methods discard potentially valuable 
information (Dowling and Vamos, 1993; Halilaj et al., 2018; Richter 
et al., 2014a). Some describe variations in magnitude, others reveal 
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comparative differences across the time domain, and a few may repre
sent phase variance (Brandon et al., 2013). The original curves can be 
reconstructed from a weighted sum of FPCs, where the weights are the 
FPC scores. 

FPCA has limitations when the curves are misaligned with one 
another, as may arise from timing differences due to natural variability, 
movement strategies, chronic injury or impaired motor control (Epifanio 
et al., 2008; King et al., 2021; Sadeghi et al., 2003). In those situations, 
FPCA and other cross-sectional statistical measures are likely to under
state amplitude variance at the turning points and overstate it elsewhere 
(Chau et al., 2005; Marron et al., 2015). Consequently, some FPCs may 
represent phase variance whilst also incorporating an element of 
amplitude variance (Brandon et al., 2013). This issue can be addressed 
with a suitable nonlinear transformation of the time domain using dy
namic time warping (Wang and Gasser, 1997). The idea is that time 
advances in a nonlinear fashion unique to each curve rather than at a 
universal constant rate. Thus, jump execution may progress at different 
rates. For functional data, warping functions may be defined using one 
or more curve registration procedures (Ramsay and Silverman, 2005). 
Landmark registration seeks to align salient features (landmarks) at their 
cross-sectional mean positions (Gasser and Kneip, 1995; Kneip and 
Gasser, 1992), while continuous registration aligns the curves over their 
whole length (Ramsay and Li, 1998). FPCA can then be applied to the 
registered curves yielding amplitude FPCs with the time-warping curves 
generating phase FPCs. A model can be built from a linear combination 
of those FPC scores, analogous to the reconstruction of the original 
curves. 

Registering VGRF curves from the countermovement jump (CMJ) 
improved the fit for a model of jump height based on amplitude and 
phase components (Richter et al., 2014b). Moudy et al. (2018) found 
some landmarks could be helpful for the CMJ, although not all landmark 
combinations were considered. However, Marron et al. (2015), in their 
review of registration, concluded that analyses depend on prior choices 
made in data processing. In the two studies cited above, Richter et al. 
(2014b) and Moudy et al. (2018) both employed the Analysis of Char
acterising Phases (ACP) to obtain features derived from PCA (Richter 
et al., 2014a). ACP identifies a key phase using a varimax rotation of the 
FPC that emphasises its most prominent feature, but introduces corre
lations between the FPC scores (Ramsay and Silverman, 2005). In 
addition, both investigations employed time normalisation to stan
dardise curve length, as is often the case (e.g. Godwin et al., 2010; Kipp 
et al., 2012; Ryan et al., 2006). However, padding the data to a fixed 
length (e.g. Page et al., 2006) may be more appropriate for discrete 
movements like the CMJ. More research is needed to investigate the 
different possibilities of data preprocessing and registration concerning 
FPCA models. 

Therefore, this paper aims to extend the understanding of curve 
registration by examining the impact of landmark and continuous 
registration on VGRF data from the countermovement jump, an arche
typal movement in biomechanics. Using padded and time-normalised 
data, we consider the direct effect registration has on the decomposi
tion of amplitude and phase variance and the indirect effects on 
regression and classification models based on PCA or ACP components. 
Our aim is to present a comprehensive analysis to establish the efficacy 
of different data processing combinations. 

2. Methods 

Fifty-five physically active adults (36 males, 19 females: body mass 
71.8 ± 13.1 kg (mean ± SD); age 21.6 ± 3.6 years) volunteered for the 
study, which was approved by the local ethics committee. The partici
pants each performed eight CMJs with maximal effort, with and without 
arm swing (4 CMJA, 4 CMJNA). The order of jumps was randomised to 
minimise potential learning effects. All jumps were performed on two 
portable force platforms (9260AA, Kistler, Winterthur, Switzerland), 
which recorded the vertical component of the ground reaction force 

(VGRF) at 1000 Hz, separately under each foot. 
The unfiltered VGRF data, summed from both platforms, were nor

malised to body weight. The time series were integrated from jump 
initiation to take-off (VGRF < 10 N) to compute the take-off velocity, 
from which the jump height was obtained. Adapting the two-step pro
cedure of Owen et al. (2014), jump initiation was a backwards time 
offset from where VGRF deviated 8% from BW. The detection point was 
moved back to where VGRF passed through BW nearest take-off, pro
vided the VGRF deviation was always < 2.5% BW prior to this point. 
From 440 jumps recorded, 385 met this criterion, 12 were rejected as 
unrepresentative, and a further 43 were excluded as outliers (>1799 ms, 
90th percentile). Longer time series would have unduly biased the 
comparison of time normalisation and padding. Outliers below the 10th 
percentile (<439 ms) were retained because they were close to the 
median valid jump time (1096 ms), reflecting the skewed distribution. 

The cropped VGRF times series were standardised to a fixed length 
using padding (PAD) or linear time normalisation (LTN). The standard 
length for PAD was set to the longest series (CMJA: 1797 ms; CMJNA: 
1773 ms) by padding out each series with 1’s at the start, equivalent to 
bodyweight. The LTN method, based on cubic interpolation, set the 
standard length to the median (CMJA: 1096 ms; CMJNA: 1043 ms), 
thereby minimising temporal shifts. Fourth-order b-spline basis func
tions were fitted, subject to a second-order roughness penalty, λ = 100 (i. 
e. penalising high curvature), determined using Generalised Cross 
Validation (GCV). PAD used 130 b-splines, the minimum required for 
jump height computed from the smoothed PAD series to have an RMSE 
< 0.1% with respect to jump height obtained from the raw data. LTN 
required 105 b-splines, the minimum needed to match PAD’s GCV error. 
This approach reduced the number of basis functions required, lowering 
the computational cost of registration. 

The smoothed curves were processed using multiple combinations of 
landmark registration, followed by continuous registration. For land
mark registration, we used all 16 combinations of the four landmarks 
proposed by Moudy et al. (2018): VGRF minimum, peak negative power, 
the start of the concentric phase, and peak positive power. For contin
uous registration, the alignment criterion was the log eigenvalue ratio 
(Ramsay and Silverman, 2005). There were 32 registration combina
tions, including no change. In reporting, each landmark combination is 
abbreviated in binary notation (1 = landmark included) based on their 
sequential order, e.g. 0000 (no registration), 0100 (negative peak power 
alone), 0101 (negative and positive peak power). An appended letter ‘C’ 
indicates continuous registration. Registrations were performed recur
sively up to four times or until a convergence criterion was met: ΔC <
0.001, where C is the independence constant (Kneip and Ramsay, 2008). 
Cumulative warping functions were updated following each registration 
by warping the previous warp functions. The time-warping functions for 
registration were based on 13 third-order b-splines with λ = 100. 
However, the total warp required fifth-order b-splines, sometimes in 
greater numbers, to maintain monotonicity. Further details on these 
procedures can be found at https://github.com/markgewhite/jum 
psFDA. 

FPCA was applied to the resulting VGRF and time-warped curves, 
retaining 15 amplitude components and eight phase components, which 
accounted for > 99% of curve variances in all cases. Sets of PCA and ACP 
scores were obtained separately from varimax (V) and the original 
unrotated components (U). (Standard ACP uses varimax components.) 
The ACP score was the mean VGRF over the key phase where |FPC| >
90% of its absolute peak value (Richter et al., 2014a). The PCA or ACP 
scores were used as predictors in separate linear regression models to 
estimate jump height using the CMJNA dataset. Logistic regression 
models classified jumps into those with and without arm swing using the 
combined CMJA and CMJNA datasets. The models were fitted using 
repeated 5-fold cross validation (4 × 5), partitioned at the participant 
level. Altogether, there were 512 models: two standardisation methods 
(PAD/LTN), 16 landmark registration combinations, two continuous 
registration options (applied or otherwise), two model types (jump 
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height/classification) and two predictor types (PCA/ACP), each having 
two rotations (unrotated/varimax). 

The effect of each preprocessing operation was determined using 
ANOVA applied to the models’ predictive errors (RMSE for jump height 
and the proportion incorrect for classification). These meta-models used 
the same predictors as above, plus a term for partition (training/vali
dation) and all interactions. Backwards stepwise selection removed 
terms according to the Bayesian Information Criterion. The meta-models 
used a gamma distribution, reflecting the chi-squared distribution of 
predictive errors. All processing was performed in MATLAB R2022a 
(MathWorks, Natick, MA, USA). 

3. Results 

The jump heights attained were 29.0 ± 7.6 cm (mean ± SD) for 
CMJNA and 33.0 ± 7.9 cm for CMJA. The effect of registration brought 
more regularity to the VGRF curves, yielding a mean curve that became 

more noticeably bimodal over the final concentric phase (Fig. 1). The 
warping functions for landmark registrations were typically bowed and 
were made more variable with continuous registration (Fig. 2). Nearly 
half of the 120 registrations involved two iterations (58), 39 took three 
iterations and 22 used the maximum of four. Continuous registration 
was more effective in extracting phase variance whilst reducing ampli
tude variance to an apparent minimum level (Fig. 3). 

The top ten jump height models by RMSE all used PAD datasets 
(Table 1), where the best model (PCA with unrotated FPCs) involved no 
registration (RMSE = 0.92 cm). The second-ranked model employed 
peak power as a landmark (RMSE = 0.99 cm), whilst the best ACP model 
using varimax was third (RMSE = 1.04 cm). Generally, these models 
were less accurate the more extensive the registration became. In 
contrast, the top classification models all relied on registration, 
including continuous registration (Table 2). These models still used 
padding (PAD0011-|PCA(U), RMSE = 16.8%) but three out of the top 
five employed LTN. In comparison, the unregistered ACP(V) and PCA(U) 

Fig. 1. Plots of the VGRF curves for the CMJ without arm swing for PAD data (top row) and LTN (bottom row). The original curves are shown without registration (A 
& D) compared to an exemplar two-stage registration using landmark registration (B & E) with the start of the concentric phase as the single landmark, followed by 
continuous registration (C & F). Take-off is at time zero. The solid black line is the cross-sectional mean. 

Fig. 2. Plots of the cumulative time warping curves for the CMJ without arm swing for the exemplar registrations in Fig. 1. Initially, landmark registration (A, C) 
with the start of the concentric phase as a single landmark (‘0010′), followed by continuous registration (B, D). The dashed black line indicates linear time 
advancement without warping. A steeper gradient indicates that the movement is being executed faster than average, or conversely, a shallower slope reveals a 
slowing in execution. At various times the movement may be further advanced than average (above the dashed line) or less advanced (below the dashed line). All 
timelines begin together but must converge at take-off. 
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models were ranked 22nd and 26th, respectively, with errors of 21.7% 
and 22.3%. Hence, registration improved classification performance by 
up to 5.5 percentage points. The best classification model also relied on 
phase components more than any other (17.8% vs 13.1% for the next 
highest, which was 29th in the error ranking – see Supplementary 
Material). 

Registration changed the shape of the FPCs compared to the unreg
istered PCA components. For instance, padding with only peak power as 
a landmark (PAD0001-) modified the FPCs in minors ways, but padding 
with a landmark at the start of the concentric phase (PAD0010-) had a 
more substantial effect (Fig. 4A–D). FPC1 and FPC4 developed high 
variance around this landmark, whereas FPC2 captured variance more 
in the mid-to-late concentric phase (red lines). Similar characteristics 
can be observed in the LTN curves (Fig. 4E–H). Consequently, the 
explained variance in the outcome variable associated with each 
component could vary substantially (Fig. 5). For the best models, the 
components’ contributions were often outside the interquartile range. 

The meta-models estimated the typical effects of preprocessing op
erations with standard errors ≤ 0.1 cm for jump height models and ≤
0.7% for classification models (Fig. 6). According to the meta-models, 
LTN produced higher errors than PAD (+2.1 cm and +2.1%, respec
tively), and ACP was more error-prone than PCA (+0.8 cm and +1.2%). 
Varimax rotation in general had no effect. Validation errors were larger 
than training errors (+0.4 cm and +5.7%). Landmark registration 
increased jump height model errors (up to 2.8 cm), but its effect on 
classification error varied (–4.7% to +4.9%). Continuous registration 
was detrimental to jump height models (+2.3 cm) but beneficial to 
classification (-0.6%). Some interactions were favourable to several 
classification models, more than offsetting adverse effects, but they 
could not do so fully in jump height models – see Supplementary Ma
terial for the meta-model coefficients. 

4. Discussion 

This paper aimed to extend our understanding of the effects of curve 
registration in a biomechanical context. We analysed the effect of 
registration on amplitude and phase variance, the functional principal 
components and the consequential impact on linear models with a view 
to their future application in machine learning. Our robust methods 
included repeating registration to ensure close alignment (Kneip and 
Ramsay, 2008; Marron et al., 2015). Five-fold cross validation balanced 
model selection (maximising the likelihood of identifying the true best 
model) with model evaluation (producing a low-biased expectation of 
the model’s performance) (Zhang and Yang, 2015). Partitioning at the 
participant level ensured the errors were not biased by models being 
trained and validated on data from the same individual (Halilaj et al., 

Fig. 3. Registration decomposition into amplitude and phase variance for 
different combinations of time normalisation (PAD, LTN), landmark registra
tions (LM: NNNN) and continuous registrations (CT). 

Table 1 
Top ten jump height models ranked by predictive error using the validation data, 
showing the contributions from amplitude and phase components in terms of 
explained variance, R2.  

Top 10 Jump 
Height Models 

Validation 
RMSE (cm) 

Validation R2 

(Amplitude FPCs) 
Validation R2 

(Phase FPCs) 

PAD0000-|PCA 
(U)  

0.92  98.7%  – 

PAD0001-|PCA 
(U)  

0.99  96.8%  1.7% 

PAD0000-|ACP 
(V)  

1.04  98.3%  – 

PAD0010-|PCA 
(U)  

1.63  93.9%  2.5% 

PAD0100-|PCA 
(U)  

1.96  87.2%  7.1% 

PAD0011-|PCA 
(U)  

2.21  83.2%  10.2% 

PAD0010-|ACP 
(V)  

2.41  90.3%  0.4% 

PAD0000-|ACP 
(U)  

2.45  91.5%  – 

PAD1000-|PCA 
(U)  

2.49  79.0%  10.8% 

PAD1011-|PCA 
(U)  

2.54  51.5%  38.6% 

PAD/LTN = Time Normalisation; NNNN = Landmark Registration; -/C =
Continuous Registration; 
PCA/ACP = Component Type; (U)/(V) = Component Rotation (Unrotated/ 
Varimax). 
The binary notation for registration indicates which landmarks were used (in 
order: VGRF minimum, peak negative power, the start of concentric phase, peak 
positive power). 
NB. Models using PCA(V), that is PCA with varimax rotation, were excluded 
because they gave identical results to PCA(U) without rotation to this level of 
precision. 

Table 2 
Top ten classification models ranked by predictive error using the validation 
data, showing the contributions from amplitude and phase components in terms 
of explained variance, R2.  

Top 10 
Classification 
Models 

Validation 
Error (%) 

Validation R2 

(Amplitude FPCs) 
Validation R2 

(Phase FPCs) 

PAD0011-|PCA(U)  16.8  34.3%  17.8% 
LTN0010-|ACP(V)  18.4  42.5%  1.0% 
LTN0010-|ACP(U)  18.7  40.2%  1.9% 
PAD1001C|PCA(U)  19.0  39.9%  2.3% 
LTN0010-|PCA(U)  19.1  39.8%  3.7% 
PAD0010-|ACP(U)  19.3  42.0%  0.8% 
PAD0010-|PCA(U)  19.8  33.6%  9.5% 
PAD0011-|ACP(V)  19.9  42.5%  1.9% 
PAD1010C|PCA(U)  20.1  36.8%  4.5% 
PAD0000C|ACP(V)  20.2  32.2%  8.1% 

PAD/LTN = Time Normalisation; NNNN = Landmark Registration; -/C =
Continuous Registration; 
PCA/ACP = Component Type; (U)/(V) = Component Rotation (Unrotated/ 
Varimax). 
The binary notation for registration indicates which landmarks were used (in 
order: VGRF minimum, peak negative power, the start of concentric phase, peak 
positive power). 
NB. Models using PCA(V), that is PCA with varimax rotation, were excluded 
because they gave identical results to PCA(U) without rotation to this level of 
precision. 
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2018). In addition, since time series length is critical to LTN, we paid 
particular attention to identifying jump initiation. 

Registration was detrimental to the jump height models but benefi
cial to classification. Landmarks at the start of the concentric phase and 
at the instant of peak power were most effective in discriminating be
tween the jump types (PAD0011-PCA(U)). These two landmarks, by 
definition, maximised amplitude variance at these points in jump 
execution (Fig. 4), as captured by the associated FPCs. Previous research 
has reported distinctive differences in VGRF curves between CMJA and 
CMJNA at the start and towards the end of the concentric phase (e.g. 
Feltner et al., 2004). Peak power was a convenient point to place a 
landmark late in the concentric phase, consistently and unambiguously 
across all jumps. The VGRF curves, which could be unimodal or 
bimodal, offered no consistent alternative landmark in this region. The 

success of this model can also be attributed to its reliance on phase 
components, indicating arm swing alters the sequential timing of the 
jump. 

The best jump height model, in comparison to classification, used no 
registration at all. Generally, predictive errors were higher in jump 
height models using more extensive registrations. These detrimental 
effects can be understood by considering impact of registration on the 
area under the curve, which for VGRF data is directly proportional to the 
mechanical impulse. The take-off velocity can be obtained directly from 
impulse using the conservation of momentum since the participant 
initially stood still. This matters for jump height because the linear 
models were effectively a weighted sum of curve areas described by the 
FPCs, plus the intercept, equivalent to the mean curve area. Given these 
relationships, PAD was strongly favoured over LTN by the jump height 

Fig. 4. Key functional principal components for PAD and LTN datasets showing the unregistered components indicating a 2 × SD range (shaded blue) for positive 
and negative PC scores. Overlaid with an outline only (black and red lines) are the components for two registrations ranked in the top ten (Table 1). The landmarks 
employed here are 0001 (peak power only), 0010 (start of the concentric phase) and 0011 (start of the concentric phase and peak power). For reference, FPC3 
explained the highest proportion of variance in jump height, while FPC4 was the most important for classification. 
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model since time normalisation would alter the area under the curve. As 
the meta-model showed, registration improved the LTN models, but it 
could not sufficiently compensate for the distortions first introduced by 
time normalisation. 

Moudy et al. (2018) found a single landmark at the beginning of the 
CMJ concentric phase (LTN0010-|ACP(V) in our notation) yielded the 
best jump height model (R2 = 86%). Our corresponding model also had 
R2 = 85.8% for training, which appears to be the most appropriate 
comparator, suggesting that similar results for registration may be ob
tained from different data collections. When cross validation was 
applied in our study, R2 dropped to 75.4%, placing it 33rd in our 
ranking. The padding-equivalent ACP model was ranked 7th (validation 
R2 = 90.7%), whilst the corresponding PCA(U) model was fourth 
(validation R2 = 96.4%). The validation figures provide reasonable es
timates of how a model is likely to perform when applied to new data. 
These comparisons demonstrate the advantages of padding over time- 
normalisation and PCA over ACP, specifically in this case and more 
generally, as our meta-model showed. In the only other comparison of 
ACP and PCA in the literature, Richter et al. (2014b) reported that ACP 
models explained a higher proportion of variance in CMJ jump height 
than their PCA counterparts (99% vs 78%). In contrast, our results 
showed training R2 was quite similar for ACP and PCA: 99.0% vs 99.2% 
for PAD, respectively, and 84.2% vs 84.6% for LTN. Richter et al. 
(2014b) analysed only the time-normalised concentric phase using only 
four FPCs, whereas we included all jump phases and 15 FPCs in our 
models. 

The decomposition analysis revealed registration reduced the 

amplitude variance while increasing phase variance as intended (Fig. 3). 
Repeating registration was beneficial because phase variance increased 
with every iteration, albeit with diminishing returns. Four iterations 
were sometimes advantageous, although two were often sufficient, as 
Ramsay & Silverman (2005) also noted. We learned that it was essential 
to use fifth-order basis functions to track the overall warp, which was 
more complex than any single warping, otherwise the total warp could 
lose regularity and monotonicity. In the decomposition, some informa
tion was lost in the jump height models because the phase components 
could not fully compensate for the reduced contribution from the 
amplitude FPCs. In these situations, the FPCs ostensibly describing 
phase variance may be preferable even if they also capture an element of 
amplitude variance (Brandon et al., 2013). As our results suggest, this 
interaction may matter less for the classification models and perhaps for 
other models where the outcome measure is not overly time-dependent. 

The spread of component contributions to the models revealed how 
distinct the best models were from their counterparts (Fig. 5). Their 
FPCs’ explained variances typically stood apart from the interquartile 
range. The unregistered PAD model illustrated this well as it relied on 
three components in particular, especially PCA3 which explained 45.7% 
of jump height variance (Fig. 4A). This FPC described a late surge in 
VGRF before take-off, which has been identified previously with ACP 
(Richter et al., 2014a). These observations help explain how jump height 
models are particularly sensitive to registration since any warping 
would precipitate a substantial drop in explained variance. Given jump 
height has a precise relationship with curve area, these models may well 
be the worst-case scenario for registration. In comparison, the 

Fig. 5. Distributions of the variance explained across all PCA registrations for each of the first five PCA amplitude components (PCA1-5) and the first warp 
component (PCAW1). The red dots reveal where the best model sits in each distribution. The ACP models are excluded because they depend on varimax, which 
reallocates variation across the components in an inconsistent fashion. 
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classification models depended on a broader number of components, an 
artefact partly of a logistic model. Registration was beneficial when it 
aligned curves in regions pertinent to the outcome variable, as noted 
above for jump type. It also follows that registration would lead to 
higher errors with validation sets, perhaps because registration attends 
to the peculiarities in the data, which do not generalise so well. 

We had chosen VGRF data to determine how well the models per
formed in ideal circumstances. To consider less favourable situations, we 
re-ran the analysis with jump height computed from the total work done 
instead. It includes the height gain before take-off and has an imperfect 
relationship to impulse (r = 0.979). Although the adjustment was minor, 
in all cases the jump height work-done models had significantly higher 
validation errors than the equivalent take-off velocity models (2.65 cm 
vs 0.92 cm for the best models). However, further analysis revealed peak 
power models had a similar fit to the jump height work-done models 
(validation R2 = 98.2% vs 0.98.8%), despite peak power having a lower 
impulse correlation (r = 0.929). Therefore, the relationship with the 
curve area is not always a critical factor. These findings suggest that 
registration may be helpful in other applications where the curve area 
strongly correlates with the performance outcome. This may well be the 
case with inertial sensor applications in sport or clinical practice. It 
would be reasonable to suppose that the area under an inertial accel
eration curve would in some sense be related to the impulse generated. 

5. Conclusions 

Our analysis shows registration can be advantageous for classifica
tion models, specifically when placing landmarks at critical points in the 
movement. We observed that models based on unrotated PCA compo
nents typically yielded smaller errors than those using ACP. Padding the 
data was often better than time-normalisation, although the classifica
tion models were more tolerant of adjustments to the time domain. The 
most accurate classifier used landmarks at the start and towards the end 
of the concentric phase when instantaneous power reached its peak. 
Maximising curve variance at these points proved pivotal to the model, 
which drew on amplitude and phase components. In contrast, registra
tion was detrimental to the jump height models, owing to their critical 

dependence on impulse – they were otherwise accurate when using 
padded, unregistered curves. Notwithstanding these limitations, regis
tration may be helpful in applications where the outcome is not heavily 
dependent on time-dependent cures. 
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Donà, G., Preatoni, E., Cobelli, C., Rodano, R., Harrison, A.J., 2009. Application of 
functional principal component analysis in race walking: An emerging methodology. 
Sports Biomech. 8, 284–301. https://doi.org/10.1080/14763140903414425. 

Dowling, J.J., Vamos, L., 1993. Identification of Kinetic and Temporal Factors Related to 
Vertical Jump Performance. J. Appl. Biomech. 9, 95–110. https://doi.org/10.1123/ 
jab.9.2.95. 
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