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Abstract: Gridded satellite-based rainfall products have not been so far evaluated for flood hazards 24 

monitoring through empirical methods, especially over large areas. Therefore, the main aims of this study 25 

are (i) to assess the quality of satellite-based precipitation products for identifying extreme rainfall events 26 

able to produce flood events, and (ii) to evaluate the use of satellite-based precipitation products for creating 27 

rainfall thresholds to support decision making for issuing flood warnings. Eight products fully based on 28 

satellite data (i.e., uncorrected) and six gauge-corrected products were evaluated based on ground-based 29 
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data obtained from 583 sub-daily rainfall gauges and considering a catalogue of 551 flood occurrences in 30 

the state of São Paulo, Brazil, for a period of five years (2015-2019). The gauged values were compared 31 

with the precipitation products for six different time steps (3 h, 6 h, 12 h, 1 d, 3 d, and 10 d) and considering 32 

rainfall-duration thresholds for six non-exceedance probabilities (5%, 10%, 20%, 30%, 40%, and 50%). 33 

Results show that all analysed products tend to large underestimate the extreme rainfall events (i.e., when 34 

and where flood events were registered), mainly for sub-daily scales, with the best results found for two 35 

uncorrected products (i.e., PDIR-Now and GPM+SM2RAIN) considering 10-days accumulated 36 

precipitation. Considerable underestimations were also identified for the rainfall thresholds delineated by 37 

the satellite-based products, with the best performances obtained by CHIRP V2.0 (uncorrected) and 38 

IMERG-F (corrected) considering tolerance levels of 20%. Based on our findings, the rainfall satellite-39 

based products dataset, even less accurate than the ground-based observations, can be applied, when multi-40 

daily accumulated data are considered, as an alternative source of data for determining precipitation 41 

thresholds in some regions that present low-density of rain gauges but not replace the gauged data in regions 42 

with a high-density of rain gauges with sub-daily data available. 43 

 44 

Keywords: extreme rainfall events, empirical rainfall thresholds, flood hazards. 45 

 46 

1. Introduction 47 

Floods occur every year in almost all countries, causing thousands of deaths, considerable 48 

structural damages, and significant economic losses worldwide (Dinis et al., 2021; Hallegatte et al., 2013; 49 

Sampson et al., 2015). According to the United Nations Office for Disaster Risk Reduction (UNDRR), the 50 

number of flood occurrences increased 2.3 times between 2000 and 2019 compared to the previous twenty 51 

years (i.e., from 1980 to 1999). This growing number of flood events over the years is mainly attributed to 52 

the extreme weather conditions, high urbanisation rate, and inadequate response to disasters (Du et al., 53 

2015; Špitalar et al., 2014; Tsakiris, 2014). These flood events accounted for approximately 44% of all-54 

natural disasters that occurred from 2000 to 2019 and affected more than 1.5 million people in almost all 55 

countries in the world, causing more than 104,600 deaths and US$ 651 billion of economic losses (UNDRR 56 

and CRED 2020). 57 

Great efforts have been made during the last few decades to develop and improve methods for a 58 

better prediction and warning of flood events (Getirana et al., 2020; Young et al., 2021). Such methods for 59 
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predicting and warning of hydrological disasters are aimed to reduce the damages and deaths caused by 60 

floods(Froidevaux et al., 2015; Jang, 2015). Complex computer models, such as hydrodynamic models, are 61 

among the most widely used tools to simulate detailed flood dynamics. These hydrodynamic models are 62 

undergoing progress both in accuracy and computational efficiency, however, they require a set of detailed 63 

input data or a high computation cost (Teng et al., 2017). Therefore, empirical methods still prevail as an 64 

alternative approach for flood monitoring (Ramos Filho et al., 2021; Yang et al., 2016), especially in regions 65 

where the detailed input data, used to run the aforementioned hydrodynamic models, are scarce or 66 

unavailable. For these regions, the rainfall threshold approaches represent a popular tool used to study the 67 

relationship between rainfall and hydrological disasters (e.g., floods, flash floods, debris flows and 68 

landslides) (Aleotti, 2004; Berti et al., 2012; Glade et al., 2000; Mirus et al., 2018; Santos and Fragoso, 69 

2016; Scheevel et al., 2017). 70 

To support the decision-making processes, several rainfall threshold-based approaches have been 71 

developed and they commonly employ two thresholds (upper and lower) that are determined by the 72 

properties derived from rainfall events (e.g., intensity, duration, antecedent precipitation), to define the 73 

rainfall conditions that are likely to trigger flood events (Diakakis, 2012; Papagiannaki et al., 2015). 74 

Recently, the study carried out by Ramos Filho et al. (2021) improved the rainfall threshold identification 75 

process that reduces the uncertainties and minimises the number of false alarms for issued flood events. 76 

The same study also observed that a considerable amount of flood information could not be used to create 77 

and improve further the rainfall threshold method due to the low quality of the observation data and/or the 78 

low density of the rain gauges in some areas of São Paulo State, in Brazil.  79 

The use of accurate and spatially well-distributed sub-daily rainfall data, alongside the knowledge 80 

about its properties (e.g., depth, duration, intensity, frequency, dry time), is recognised by the scientific 81 

community as an essential step to create robust hydrological disaster early warning systems (Chikoore et 82 

al., 2021; Dunkerley, 2019; Shrestha et al., 2019). However, obtaining sub-daily rainfall data over large 83 

areas from in-situ observations is still a hard task because this type of data records sparsely only covers the 84 

global landmass (Hegerl et al., 2015; Lewis et al., 2019). The number of in-situ sub-daily rainfall records 85 

is even lower for tropical regions, probably due to the higher installation and operation costs for sub-daily 86 

measurements than those at daily timescale (Freitas et al., 2020; Hegerl et al., 2015; Kidd et al., 2017). For 87 

instance, Blenkinsop et al. (2018) identified that countries from Africa and Latin America have the lowest 88 
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availability of sub-daily rainfall data. Consequently, empirical methods that rely on the use of sub-daily 89 

rainfall data cannot be properly applied in these data-sparse areas.  90 

 The cutting-edge satellite-borne remote sensing technology has played a key role over the recent 91 

decades in providing sub-daily rainfall data (Levizzani et al., 2018; Sungmin and Kirstetter, 2018; Tan et 92 

al., 2014). Currently, a plethora of promising recently released and revised gridded satellite-based products, 93 

providing valuable distributed information of sub-daily rainfall data, are available to be used for many 94 

applications (Llauca et al., 2021; Yuan et al., 2019). The characteristics of these remote sensing rainfall 95 

products differ in spatial and temporal resolutions (from 0.04º to 2.5º and from 30 minutes to monthly, 96 

respectively), spatial coverage (from continental to fully global), and latency (from 15 minutes to several 97 

years), among others (Beck et al., 2017b). During the last few decades, several studies have assessed the 98 

accuracy of one or a set of satellite-based rainfall data at various spatial and temporal scales, most of which 99 

from independent gauge or radar observations (e.g., Tan and Duan, 2017; Gadelha et al., 2018; Wang et al., 100 

2018; Beck et al., 2019a). Some of these studies evaluated the performance of the satellite-based rainfall 101 

products regionally or globally for some specific hydrological applications, such as water resources 102 

management (e.g., Ranghetti et al., 2018; Sheffield et al., 2018), groundwater storage and depletion (e.g., 103 

Vasco et al., 2019; Singh and Saravanan, 2020), hazard monitoring (e.g., Pandey and Srivastava, 2019; 104 

Parker et al., 2021), and streamflow modelling (e.g., Su et al., 2019; Camici et al., 2020; Kha et al., 2020; 105 

Almagro et al., 2021). However, applications of satellite-based rainfall data for hydrological disasters 106 

warning purposes through the use of empirical methods have been scarce, mainly, because: 1) the bias in 107 

near real-time rainfall estimates, 2) the latency of products, and 3) insufficient spatial and temporal 108 

resolutions (AghaKouchak et al., 2015; Brocca et al., 2017). Based on a literature review, we identified that 109 

only a few studies evaluated the capability of the satellite gridded rainfall datasets in detecting landslide 110 

events with the use of empirical rainfall thresholds (e.g., Nanda Pratama et al., 2017; Brunetti et al., 2018, 111 

2021; Monsieurs et al., 2019; Chikalamo et al., 2020; He et al., 2020), with no similar analysis for flood 112 

events, especially over large areas. A study carried out by Brunetti et al. (2018), for instance, showed that 113 

the four analysed precipitation satellite-based products were able to identify landslides occurrences in Italy 114 

by adjusting the rainfall thresholds, but with less accuracy than ground-based rainfall observations. More 115 

recently, a study performed by Brunetti et al. (2021) in India, also using empirical rainfall thresholds derived 116 

from the analysis of historical landslide events, found that the two analysed satellite-based rainfall products 117 

outperformed the ground observations thanks to their better spatial and temporal resolutions.  118 
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Clearly, satellite-based data are an important data source for improving the spatial 119 

representativeness of rainfall-threshold approaches and, consequently, providing tools to create more robust 120 

warning systems for flood occurrences, especially in many parts of the world with low-density sub-daily 121 

rain gauge networks. Therefore, we commissioned this study to addresses the following scientific questions: 122 

(a) How do the currently available rainfall satellite-based products perform for flood events detection? (b) 123 

Which satellite-based product performs better in defining empirical rainfall-threshold methods for floods?  124 

The main aims of this study are: (i) to assess the quality of satellite-based precipitation products 125 

for identifying extreme rainfall events able to produce flood events, and (ii) to evaluate the use of satellite-126 

based precipitation products to create rainfall thresholds for flood hazards. To achieve the proposed 127 

objectives, we used detailed information on flood occurrences available for the São Paulo State in Brazil 128 

for a period of five years (2015-2019). In addition, we used a ground-based sub-daily rainfall dataset 129 

obtained from a network of around 730 rain gauges and 14 satellite-based precipitation products with 130 

different temporal and spatial resolutions. This study is intended then to provide a valuable tool for flood 131 

warning systems using satellite-based rainfall products in tropical regions. 132 

 133 

2. Study area 134 

This study is the Brazilian state of São Paulo, which has an area of 248,200 km2 and is located 135 

between 19°55'58''S-25°00'53''S and 50°32'15''W-47°55'36''W (Fig. 1). São Paulo is the most populated 136 

state of Brazil with approximately 46.6 M inhabitants (IBGE, 2021). According to Alvares et al. (2013), 137 

the state has two Köppen’s climate zones (tropical and humid subtropical). The tropical climate zone has a 138 

mean annual air temperature above 22 °C and an average annual rainfall above 2,000 mm. Meanwhile, the 139 

humid subtropical climate has a mean annual air temperature of 20 °C and an average annual rainfall equal 140 

to 1,400 mm year-1. The rainfall in this state is more concentrated during the austral spring-summer (i.e., 141 

from October to March).  142 

INSERT FIG. 1 HERE 143 

Fig. 1. (a) Map of the São Paulo State showing (a) the 583 rain gauges with the elevation for the state of 144 

São Paulo and (b) the 551 flood occurrences with the Köppen’s classification map according to Alvares et 145 

al. (2013). 146 

 147 
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São Paulo State is a global hotspot frequented by many hydrological disaster problems arising 148 

from prolonged or intense rainfall events (e.g., landslides, soil erosion, floods, and flash floods), mainly 149 

because the natural characteristics of the region, associated with the high level of urbanisation (Tominaga 150 

et al., 2015). From 2000 to 2015, the number of natural disasters recorded in São Paulo surpassed 10,800, 151 

causing 534 deaths and affecting more than 971,500 people (Brollo and Ferreira, 2016). 152 

 153 

3. Materials and methods  154 

3.1 Flood dataset 155 

Information of floods that occurred between January 2015 to December 2019 in the São Paulo 156 

State was obtained from the following four sources: (1) The Integrated Storm Monitoring, Forecasting and 157 

Alerting System for the Brazilian South-Southeast Regions (SIMPAT); (2) the Brazilian National Centre 158 

for Monitoring Early Warning of Natural Disasters (CEMADEN); (3) The Civil Defence of São Paulo 159 

State; and (4) press news. Overall, the information obtained from these four sources includes: the disaster 160 

type, location (addresses or coordinates), day of occurrence, and the number of affected people, including 161 

deaths. Therefore, the information about the extension of the floods was not available in these data sources 162 

(i.e., only punctual information), which makes challenging a more complex analysis considering, for 163 

instance, many gauges/pixels in a river basin scale. Moreover, the occurrences with (1) daily rainfall less 164 

than 10 mm registered near to the flood events or (2) the nearest rain gauge located more than 20 km from 165 

the flood events were excluded for further analyses. We identified 762 occurrences of floods in the São 166 

Paulo State during the studied period. After the restrictions mentioned above, a total of 551 occurrences of 167 

floods were used for further analyses (Fig. 1a). The mean distance between the occurrences and the nearest 168 

rain gauge was ~7 km. Most of the 211 flood events were excluded from the analyses because of the lack 169 

of rain gauges distant less than 20 km from the occurrences. This exclusion is a consequence of the uneven 170 

distribution of rain gauges over the region, which is more concentrated in larger cities. 171 

3.2 Gauged rainfall dataset 172 

This study began by considering ground-based sub-daily rainfall data from 730 automated rain 173 

gauges operated by CEMADEN over the period between January 2015 and December 2019.  CEMADEN 174 

has a national-wide ground-based rainfall network consisting of tipping bucket gauges with a 10-min 175 

temporal resolution when it rains and 60-min over no-rain periods. The gauged rainfall data used in this 176 

study underwent the same quality control measure as that used by Freitas et al. (2020) to detect possible 177 
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rain gauge inconsistencies and select only high-quality data. Therefore, only those rain gauges with less 178 

than 30 days of missing data along each civil year were considered in this study. Moreover, the gauges that 179 

met this criterion were visually inspected as follows: 1) comparing the monthly and sub-daily rainfall data 180 

with the five nearest stations to verify large discrepancies between them, and 2) analysing the range of 181 

values and changes over subsequent measurements of each rain gauge to identify constant or null rainfall 182 

records that probably indicate gauge clogging. After the quality control procedure adopted in this study, a 183 

total of 583 gauges were selected to define the rainfall events and calculate their respective rainfall 184 

thresholds (Fig. 1b).  185 

3.3 Satellite-based rainfall products 186 

The performance of the 14 (sub-) daily satellite-based rainfall products was evaluated in this study 187 

based on a point-to-cell analysis comparison between these estimated datasets and the rain gauges. Table 1 188 

provides objective-focused tabular information of all estimated rainfall datasets considered in this 189 

evaluation. All analysed products are global or quasi-global, with data available to cover the entire study 190 

period, except the GPM+SM2RAIN that provides rainfall data only until 2018. The spatial resolution of 191 

the evaluated rainfall products ranges from 0.04º to 0.5º, while the temporal resolution varies between 30-192 

min and daily. Among the 14 rainfall products, eight of them are fully based on satellite data (hereafter 193 

referred to as the uncorrected products, which includes CHIRP V2.0 (Funk et al., 2015), IMERG-E 194 

(Huffman et al., 2019), IMERG-L (Huffman et al., 2019), PDIR-Now (Nguyen et al., 2020), PERSIANN 195 

(Sorooshian et al., 2000), PERSIANN-CCS (Hong et al., 2004), SM2RAIN-ASCAT V1.2 (Brocca et al., 196 

2019), and GPM+SM2RAIN (Massari et al., 2020)) and six products combine gauge and satellite data 197 

(hereafter corrected products, which includes CMORPH-CRT V1.0 (Joyce et al., 2004; Xie et al., 2017), 198 

IMERG-F (Huffman et al., 2019), PERSIANN-CDR V1R1 (Ashouri et al., 2015), CHIRPS V2.0 (Funk et 199 

al., 2015), MERRA-2 (Gelaro et al., 2017), and MSWEP V2.2 (Beck et al., 2019b, 2017a)). Some of them 200 

also use (re)analysis data to generate the products (e.g., CHIRP V2.0, CHIRPS V2.0, MERRA-2, and 201 

MSWEP V2.2). A rainfall depth threshold of 0.1 mm day-¹ was established to define rain/no-rain and to 202 

exclude daily events deemed insignificant, following Li and Liu (2020).  203 

Table 1. Summary of 14 precipitation estimates products evaluated in this study, similar to as presented by 204 

Beck et al. (2019a). The symbols * and ** highlight the uncorrected (solely satellite data) and corrected 205 

(satellite and gauge data) products, respectively. 206 

INSERT TABLE 1 HERE 207 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 
 

3.4 Rainfall events and threshold definition 208 

The delineation of the thresholds was based on an empirical model that evaluates the amounts of 209 

precipitation that may or may not lead to flooding events through the analyses of the exceedance or not of 210 

a certain threshold. Six aggregation periods (3 h, 6 h, 12 h, 1 d, 3 d, and 10 d) were considered to determine 211 

the accumulated precipitation. For the sub-daily aggregations, we considered the maximum moving sum of 212 

the accumulated precipitation. The daily precipitation was classified according to CEMADEN into light 213 

rain (< 10 mm), moderate rain (≥ 10 mm and < 30 mm), heavy rain (≥ 30 mm and < 70 mm), and severe 214 

rain (≥ 70 mm). 215 

The rainfall thresholds were determined for the gauged data and each satellite-based rainfall 216 

product separately by applying the adapted empirical methodology used by Diakakis (2012) and 217 

Papagiannaki et al. (2015). Specifically in this study, we used the accumulated rainfall-duration thresholds 218 

for detecting the occurrence of floods, i.e., by plotting the cumulated rainfall of various time intervals 219 

against their respective durations. An analysis of the graph based on the following three criteria was 220 

performed to define the time interval of the cumulated rainfall that better represents the flood events: (1) 221 

the higher number of occurrences above the threshold, (2) the higher amount of non-occurrence below the 222 

threshold, and (3) the values of the metrics presented in the next section of this manuscript. Multiple 223 

rainfall-duration thresholds were defined from the application of 5%, 10%, 20%, 30%, 40%, and 50% non-224 

exceedance probability aiming to reduce the uncertainties of false alarms. 225 

3.5 Comparison and evaluation procedures 226 

The first evaluation step was to apply the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) scores to 227 

assess the performance of the satellite-based rainfall products in characterising the rainfall events that are 228 

able to trigger floods. KGE is an objective performance metric combining correlation (CC, represented by 229 

the Pearson’s correlation coefficient), BIAS (represented by the ratio of estimated and observed means), 230 

and variability (VAR, represented by the ratio of the estimated and observed coefficients of variation): 231 

KGE =  1 − √(CC − 1)2 + (BIAS − 1)2 + (VAR − 1)2                                                                                   (1) 232 

BIAS =  
μe

μo

                                                                                                                                                                     (2) 233 
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CC =  
∑ (Oi − O̅)n

i=1 (Ei − E̅)

√∑ (Oi − O̅)2n
i=1 . √∑ (Ei − E̅)2n

i=1

                                                                                                               (3) 234 

VAR =  
CVe

CVo

=
σe μe⁄

σo μo⁄
                                                                                                                                                  (4) 235 

 236 

where O is the value observed by the rain gauges, Ō is the mean gauged values, E is the value estimated by 237 

satellite-based products, Ē is the mean estimated values, 𝜇 is the distribution mean and 𝜎 is the standard 238 

deviation. The subscripts e and o correspond to the estimated and gauged data, respectively. KGE values 239 

range from -∞ to 1, with desirable values close to 1 and negative values representing worse performances. 240 

A second evaluation step was to verify the performance of the rainfall threshold determined by 241 

each rainfall product to identify true or false alarms using a binary classifier of the rainfall conditions that 242 

do or do not lead to floods occurrences. The same contingency matrix applied by Ramos Filho et al. (2021), 243 

consisting of four components, was used for each threshold, including: 1) true positive (TP) when the 244 

threshold is exceeded and the flood occurs, 2) false negative (FN) when the threshold is not exceeded and 245 

the flood occurs, 3) false positive (FP) when the threshold is exceeded and the flood does not occur, and 4) 246 

true negative (TN) when the threshold is not exceeded and the flood does not occur. The following three 247 

metrics were then applied using the above-mentioned contingency matrix to assess the skill score of the 248 

floods thresholds: 1) probability of detection (POD), which measures the fraction of events that are correctly 249 

predicted by the satellite-based products; 2) false alarm ratio (FAR), which exhibits the fraction of events 250 

incorrectly detected by the satellite-based products; and 3) Hanssen-Kuiper (HK) skill score, which 251 

measures the applicability/quality to identify the usability and accuracy of the threshold: 252 

POD =  
TP

TP + FN
                                                                                                                                        (3) 253 

FAR =  
FP

FP + TN
                                                                                                                                        (4) 254 

HK = POD − FAR                                                                                                                                       (5) 255 

The values of these three metrics range from 0% to 100%. The perfect values for POD and HK 256 

are close to 100%, while the desirable values for FAR are close to 0%. 257 

4. Results and discussion 258 

4.1 Characterisation of rainfall events that trigger floods 259 
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Figure 2 presents the classifications of the daily rainfall considering the values registered by the 260 

rain gauges and the analysed products only for the days where floods events were registered. The results 261 

show that the ground-based data presented only heavy (45%) and severe (55%) rain records during the 262 

analysed period. Conversely, all satellite-based rainfall products presented light rain and moderate rain 263 

records ranging from 19% (CHIRPS V2.0) to 53% (SM2RAIN-ASCAT V1.2) and from 36% (MERRA-2) 264 

to 62% (GPM+SM2RAIN). This indicates an underestimation of the daily accumulated precipitation by all 265 

analysed products. Among the dataset able to detect daily heavy and severe rains when flood occurrences 266 

were registered, the following products stand out: 1) PDIR-Now, represented by 31% of heavy rain and 6% 267 

of severe rain; 2) CMORPH-CRT V1.0, characterised by 32% of heavy rain and 5% of severe rain; 3) 268 

PERSIANN-CCS, which presented 26% of heavy rain and 6% of severe rain; and 4) IMERG-F, showing 269 

25% of heavy rain and 5% of severe rain. 270 

INSERT FIG. 2 HERE 271 

Fig. 2. Daily precipitation classification that leads to flood occurrences in São Paulo State. The symbols * 272 

and ** highlight the uncorrected (solely satellite data) and corrected (satellite and gauge data) products, 273 

respectively. 274 

Satellite-based underestimations of these extreme precipitation events, when compared with the 275 

rain gauge observations, were also reported by other researchers previously for a variety of products (e.g., 276 

Mayor et al., 2017; Solakian et al., 2020; Xuan et al., 2020). Thus, it is important to analyse the performance 277 

of multiple precipitation products over the region of interest instead of relying on randomly chosen products 278 

(Masunaga et al., 2019), because the performance of these products in capturing the spatiotemporal 279 

variability of extremes rainfall depends on season, regions, time period, and inexistence or scarcity of rain 280 

gauges to bias-correct products (Chen et al., 2020). 281 

Figure 3 presents the mean KGE scores of the 14 satellite-based rainfall products considering the 282 

six accumulated rainfall periods. The results of the KGE show that all products presented negative mean 283 

scores for time steps ranging from 3 h to 1 day (-0.64 to -0.41, on average). The best and worst performances 284 

of the mean KGE scores for the sub-daily dataset, considering these first four aggregation periods (from 3 285 

h to 1 day), were identified to be the IMERG-F (i.e., -0.38) and MERRA-2 (i.e., -1.28) products, 286 

respectively. When only the daily datasets are considered, the best and worst performances of the daily 287 

mean KGE scores were observed as the GPM+SM2RAIN (i.e., -0.08) and PERSIANN-CDR V1R1 (i.e., -288 

0.44) products, respectively. Overall, it is noticeable an improvement in the KGE values when longer 289 
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rainfall accumulation times are considered. Null to positive mean KGE scores were observed for the time 290 

steps of 3 and 10 days (-0.02 to 0.18, on average). Variability was the main responsible for the poor 291 

performance for time steps varying between 3 hours and 1 day (2.12 to 1.87, on average) presenting values 292 

far from the ideal (1). Moreover, the BIAS (0.25 – 0.27, on average) and CC (0.08 to 0.19, on average) also 293 

presented their worst results for such time steps. For longer time steps (3 days and 10 days), the variability 294 

presented results closer to ideal (1.45 – 1.18, on average), while the BIAS (0.39 – 0.57, on average) and 295 

CC (0.34 – 0.35, on average) remained furthest from the desirable values for all products. 296 

 297 

INSERT FIG. 3 HERE 298 

Fig. 3. Graph showing the (a) KGE, (b) CC, (c) BIAS, and (d) VAR scores for the 14 satellite-based rainfall, 299 

considering only extreme precipitation events for time steps ranging from 3 hours to 10 days. The red lines 300 

represent the perfect values. The symbols * and ** highlight the uncorrected (solely satellite data) and 301 

corrected (satellite and gauge data) products, respectively. 302 

Overall, the best values of the analysed metrics were found for all products when the rainfall was 303 

accumulated over 10 days. Two gauge-based uncorrected products (PDIR-Now and GPM+SM2RAIN) 304 

presented the highest values of KGE (i.e., 0.36) for the time step equal to 10 days. However, PDIR-Now 305 

presented the highest BIAS (i.e., 076), indicating that this product better represents the total precipitation 306 

compared to GPM+SM2RAIN (BIAS = 0.54). On the other hand, the data from GPM+SM2RAIN better 307 

linearly correlates with the gauged data (CC = 0.55) when compared to the PDIR-Now product. The 308 

performance of these two above-mentioned uncorrected products was followed by the following corrected 309 

products: CHIRPS V2.0 (KGE = 0.34), MSWEP V2.2 (KGE = 0.28), and IMERG-F (KGE = 0.27). 310 

4.1.1. Overall analysis of the uncorrected dataset  311 

Among the eight uncorrected satellite products (i.e., PERSIANN, PERSIANN-CCS, PDIR-Now, 312 

SM2RAIN-ASCAT, GPM+SM2RAIN, IMERG-E, IMERG-L, and CHIRP V2.0), the GPM+SM2RAIN 313 

product performed better for extreme precipitations when considering the daily time step onwards, with a 314 

mean KGE value of 0.15, followed by PDIR-Now and CHIRP V2.0, with KGE values equal to 0.03 for 315 

both. PDIR-Now is a product, intended to replace the PERSIANN-CCS datasets, which considers the errors 316 

and uncertainties resulting from the use of infrared images (Nguyen et al., 2020). Nevertheless, 317 

PERSIANN-CCS performed slightly better than PDIR-Now for sub-daily time steps, reversing the position 318 
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for daily time steps onward. The PERSIANN product presented the lowest values of KGE among the 319 

uncorrected analysed products, ranging from -0.60 (3 hours) to 0.04 (10 days). All sub-daily uncorrected 320 

products presented extremely low values of KGE for time steps below 1 day, with means ranging from -321 

0.76 (PERSIANN) to -0.45 (PERSIANN-CCS). Overall, the GPM+SM2RAIN product performed 322 

noticeably better than SM2RAIN-ASCAT V1.2 (mean KGE = -0.11), i.e., the other product that also uses 323 

satellite-based soil moisture data. The two microwave-based datasets (IMERG-E and IMERG-L) showed 324 

similar results for all analysed time steps, with mean KGE values equal to -0.05 when considering daily 325 

onward time steps, i.e., slightly worse than that observed for CHIRP V2.0 (KGE = 0.03).  326 

4.1.2. Overall analysis of the corrected dataset  327 

The products corrected by ground observations use daily, 5-day, 10-day, and/or monthly 328 

precipitation data in their algorithms. Among the gauged corrected products, CHIRPS V2.0 presented the 329 

higher values of KGE for extreme precipitations, varying for daily time step onwards between -0.28 (1-330 

day) and 0.34 (10-days). The performance of this product was followed by MSWEP V2.2 and IMERG-F, 331 

with KGE values ranging from -0.65 (3-hours) to 0.28 (10-days) and from -0.45 (3-hours) to 0.27 (10-332 

days), respectively. The CMORPH-CRT V1.0 product presented a similar performance to those observed 333 

for MSWEP V2.2 and IMERG-F, with KGE values varying between -0.47 (3-hours) and 0.26 (10-days). 334 

MERRA-2 and CMORPH-CRT V1.0 exhibited the lowest values of KGE among the products corrected by 335 

ground observations, with overall performances even worse than all those observed for the uncorrected 336 

products. The performance of these products may be affected by some factors in rain gauges, such as 337 

miscellaneous technical errors, different reporting times, different quality control procedures, network 338 

density, among others (Beck et al., 2019a; Derin and Yilmaz, 2014; Shen et al., 2021; Sun et al., 2018). 339 

4.2 Rainfall thresholds 340 

4.2.1 Evaluation for different tolerance levels 341 

Figure 4 shows the heatmaps with the main values of POD, FAR, and HK for the six considered 342 

tolerance levels. The values of POD are set by the adopted tolerance levels, with values varying between 343 

0.95 and 0.50 for the no-exceedances probabilities of 5 and 50% for all satellite-based and the gauged data, 344 

respectively (Fig. 4a). On the other hand, the FAR values presented reductions as the tolerance levels 345 

increased, with the worst performance observed for CHIRPS V2.0, PERSIANN and PERSIANN-CDR 346 
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V1R1 (FAR≈0.75) adopting a tolerance level of 5% tolerance (Fig. 4b). The rainfall products CMORPH-347 

CRT V1.0, IMERG-F, and GPM+SM2RAIN exhibited the lower values of FAR (0.11) when a tolerance 348 

level of 50% was considered, i.e., like the gauged data but with a tolerance level of 5% only (FAR = 0.13).  349 

The product that performed better overall in the number of false alarms (IMERG-F) showed values varying 350 

between 0.50 (5%) and 0.11 (50%), i.e., much higher than those observed for the rain gauges, which ranged 351 

from 0.13 to 0.02, respectively.  352 

INSERT FIG. 4 HERE 353 

Fig. 4. Heatmap of the mean values of (a) POD, (b) FAR, and (c) HK using different no-exceedance 354 

probability. The symbols * and ** highlight the uncorrected (solely satellite data) and corrected (satellite 355 

and gauge data) products, respectively. 356 

 357 

Overall, all analysed products showed similar patterns in HK, with an increase in the values until 358 

a certain peak value, mostly between the application of tolerance levels of 10% and 30%, before a decline 359 

in the values of this metric for higher tolerance levels. The difference is that the CHIRPS V2.0, PERSIANN, 360 

PERSIAN-CCS, and PERSIAN-CDR V1R1 products exhibited peak values of HK for tolerance levels 361 

varying between 30 and 40%. The HK values indicate better performance for the gauged data utilising a 362 

tolerance level of 5% (HK = 0.83), followed by the CHIRP V2.0 and IMERG-F products, which presented 363 

HK values equal to 0.51 and 0.52, respectively, for tolerance levels of 20%. Although presenting the highest 364 

values of HK, these two mentioned products still exhibited a considerable rate of false alarms, around 28%. 365 

Moreover, CHIRPS V2.0 and PERSIANN-CDR V1R1 also had the worst performance for this metric, as 366 

expected, with the highest HK values equal to 0.29 and 0.36 for a tolerance level of 30%, respectively. The 367 

study carried out by Brunetti et al. (2018), which analysed 4 satellite products for delimitation of landslide 368 

thresholds in Italy, showed that the SM2RAIN-ASCAT V1.2 product presented the highest values of HK 369 

equals to 0.42 for exceedance limits between 20-25%, while the PERSIANN product performed worse, 370 

with HK value equals to 0.31 for a tolerance level of 25%. Jia et al. (2020) also analysed 4 rainfall products 371 

for landslide thresholds on a global scale, including CMORPH, which better performed among the 372 

evaluated, presenting an HK value equal to 0.43 for a tolerance level of 22%. The same global scale study 373 

identified that PERSIANN presented the lowest values of HK among the analysed products, with the best 374 

result (HK = 0.14) found for a tolerance level equal to 9%. 375 

4.2.2 Determination of rainfall thresholds 376 
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Figure 5 presents the six precipitation thresholds obtained from the tolerance limits of 5, 10, 20, 377 

30, 40, and 50% for the gauged data and all analysed precipitation products. It is possible to observe a 378 

considerable underestimation of the thresholds delineated by the satellite-based products compared to those 379 

elaborated by the gauged data, with larger differences noticed for shorter time steps (3h–1d), which were 380 

smoothed for longer considered periods (3–10 days). For instance, the CHIRPS V2.0, GPM+SM2RAIN, 381 

and PDIR products presented, respectively, values for 10-days accumulated rainfalls equal to 54.6, 53.0, 382 

and 67.0 mm considering a tolerance level of 20%, which correspond, respectively, to biases of 0.6, 0.58, 383 

and 0.72 (Figure 6) when compared to the thresholds using the gauged data (i.e., 91,8 mm). This behaviour 384 

was expected as it is difficult for the satellite-based rainfall products to capture the precipitation peaks, 385 

resulting in values with more space in time compared to those identified for the gauged dataset. The worst 386 

performances of the satellite-based products for longer time steps (i.e., daily onwards) were verified for 3 387 

days accumulated rainfall considering tolerance levels of 5%, with PERSIANN (2.71 mm) and MSWEP 388 

V2.2 (3.73 mm) presenting the largest differences to the gauged data (42.6 mm), i.e., biases of 0.06 and 389 

0.09, respectively. For shorter time-steps ranging from 3h to 1d, the worst results were found for tolerance 390 

levels of 5%, where almost all products presented BIAS values equal to or lower than 0.1. An exception, 391 

considering a tolerance level of 5%, was observed for the CHIRPS products, with a BIAS value equal to 392 

0.17 for accumulated rainfall of 1 day (6.41 mm, i.e., still much lower than the 37 mm obtained with the 393 

gauged data). The best results found for shorter time-steps were verified for 1-day accumulated rainfall 394 

considering tolerance levels of 50% tolerance level. For this combination of accumulated rainfall and 395 

tolerance level, for instance, the products CMORPH-CRT V1.0, IMERG-F V06, and PDIR presented 396 

values equal to 22.75, 20.17, and 20.0 mm, while the gauged data, for the same time-step and non-397 

exceedance probability, exhibited a value of 73.5 mm. Overall, it is noticed in Figure 6 that the time steps 398 

presented greater relevance in the improvement of the BIAS values compared to the tolerance limits.  399 

 400 

INSERT FIG. 5 HERE 401 

Fig. 5. Accumulated precipitation versus duration applying the tolerance levels of 5, 10, 20, 30, 40, and 402 

50% for the (a) rain gauges, (b) CHIRP V2.0, (c) CHIRPS V2.0, (d) IMERG-E V06, (e) IMERG-L V06, 403 

(f) IMERG-F V06, (g) CMORPH-CRT V01, (h) MERRA-2, (i) MSWEP V2.2, (j) PERSIANN, (k) 404 

PERSIANN-CCS, (l) PERSIANN-CDR V1R1, (m) PDIR-Now, (n) SM2RAIN-ASCAT V1.2, and (o) 405 
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GPM+SM2RAIN. The symbols * and ** highlight the uncorrected (solely satellite data) and corrected 406 

(satellite and gauge data) products, respectively. 407 

 408 

INSERT FIG. 6 HERE 409 

Fig. 6. BIAS values for the estimated rainfall thresholds, using rain gauge as a reference, for tolerance 410 

levels of (a) 5, (b) 10, (c) 20, (d) 30, (e) 40, and (f) 50%. The red lines represent the perfect values. The 411 

symbols * and ** highlight the uncorrected (solely satellite data) and corrected (satellite and gauge data) 412 

products, respectively. 413 

 414 
 415 
5. Conclusions 416 
 417 

In this study, sub(daily) rainfall data from 14 different satellite-based products were evaluated to 418 

characterise rainfall events that trigger floods. A collection and filtering of observed information from 583 419 

rain gauges and 551 flood occurrences were also used for this evaluation. The gauged values were compared 420 

with the precipitation products for 6 different time steps (3 h, 6 h, 12 h, 1 d, 3 d, and 10 d). The applicability 421 

of a methodology for determining precipitation thresholds using satellite-based products was also 422 

evaluated. The two main findings of this study are summarised as follows:  423 

(1) Overall, all analysed products tend to largely underestimate the extreme rainfall events (i.e., 424 

when and where flood events were registered) observed by the rain gauges, mainly at sub-daily scales. This 425 

underestimation primarily occurred due to the difficulty of the estimated products to capture precipitation 426 

peaks, as their values are more distributed over time with longer durations. The point-to-pixel analysis used 427 

in this study tended to contribute more to the underestimation of the gauged peak intensity due to the 428 

representation of a spatial average of precipitation at the pixel scale. The best results evaluating the extreme 429 

rainfall events were expected for products corrected by ground-based rainfall stations, but they were found 430 

for the PDIR-Now and GPM+SM2RAIN products considering 10-days accumulated precipitation, 431 

followed by the corrected CHIRPS V2.0, MSWEP V2.2, and GPM IMERG-F, although the results (i.e., 432 

KGE values ranging from 0.36 to 0.27) indicate that all products are far from ideal (KGE=1). 433 

(2) Large underestimations were also identified for the rainfall thresholds delineated by the 434 

satellite-based products. Despite the large underestimations, the delineation of rainfall thresholds using 435 

satellite-based products is possible but with lower precipitation values and a greater probability of false 436 

alarm occurrences. The gauged rainfall data, considering tolerance limits of 5%, presented mean HK and 437 
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BIAS values for daily rainfall data ~60 and 65%, respectively, higher than the two products that better 438 

delineated the rainfall thresholds (e.g., CHIRP V2.0 and IMERG-F) but considering tolerance levels of 439 

20%. 440 

Based on our findings, the rainfall satellite-based products dataset, even less accurate than the 441 

ground-based observations, can be applied, when multi-daily accumulated data are considered, as an 442 

alternative source of data for determining precipitation thresholds in some regions that present low-density 443 

of rain gauges. PDIR-Now showed to be an interesting source of data to characterise flood events since this 444 

product provides near-real-time information, followed by the SM2RAIN products, which correct the 445 

satellite rainfall data without the use of ground-based information. For regions with a high density of rain 446 

gauges with sub-daily data available, the use of ground-based data will still provide a much better source 447 

of information to characterise events that trigger floods. Therefore, the use of new approaches (e.g., merging 448 

of products or improvement of algorithms) must be explored to enable better identification and 449 

characterisation of extreme rainfall events over areas with low availability of in-situ sub-daily data and, 450 

consequently, improve the delineation of thresholds for monitoring flood hazards. Also, some sources of 451 

uncertainties in the analysis of this study (e.g., the biases toward the rain gauges, as the event's selection is 452 

done by considering the rainfall amount and the distance from rain gauges) require a better assessment, 453 

which includes the performance of: (1) different analysis (i.e., a different set of events) when rain gauge 454 

and satellite data are used, and (2) bias correction of satellite data as they represent area-averaged rainfall 455 

not directly comparable with point measurements from the rain gauge. 456 
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Name Description 
Spatial 

resolution 

Spatial 

Coverage 

Temporal 

Resolution 

Temporal 

Coverage 
Reference 

CHIRP V2.0 * 
Climate Hazards group InfraRed Precipitation 

(CHIRP) V2.0 
0.05º 50º/S Daily 

1981- 

present 
Funk et al. (2015) 

IMERG-E V06 * 
Integrated Multi-satellitE Retrievals for GPM 

(IMERG) early run V06 
0.1º 60º N/S 30 min 

2000- 

present 

Huffman et al. 

(2019) 

IMERG-L V06 * 
Integrated Multi-satellitE Retrievals for GPM 

(IMERG) late run V06 
0.1º 60º N/S 30 min 

2000- 

present 

Huffman et al. 

(2019) 

PERSIANN * 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks (PERSIANN) 

0.25º 60º N/S Hourly 
2000- 

present 

Sorooshian et al. 

(2000) 

PERSIANN-CCS * 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks (PERSIANN) Cloud Classification 

System (CCS) 

0.04º 60º N/S Hourly 2003-Present Hong et al. (2004) 

SM2RAIN-

ASCAT V1.2 * 

Precipitation Estimation from the application 

of the SM2Rain algorithm to the ASCAT soil 

moisture data 

12.5km Global Daily 2007-2019 Brocca et al. (2019) 

GPM+SM2RAIN * 

Integration of IMERG-E with SM2RAIN-

based rainfall estimates derived from three 

different satellite Soil Moisture products 

0.25º 60º N/S Daily 2007-2018 
Massari et al. 

(2020) 

PDIR-Now * 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks - Dynamic Infrared Rain Rate near 

real-time (PDIR-Now) 

0.04º 60º N/S Hourly 
2000- 

present 

Nguyen et al. 

(2020) 

CHIRPS V2.0 ** 
Climate Hazards group InfraRed Precipitation 

with Stations (CHIRPS) V2.0 
0.05º 50º N/S Daily 

1981- 

present 
Funk et al. (2015) 

CMORPH-CRT 

V1.0 ** 

CPC MORPHing technique (CMORPH) 

bias corrected (CRT) V1.0 
0.07º 60º N/S 30 min 1998-2019 

Joyce et al. (2004); 

Xie et al. (2017) 

IMERG-F V06 ** 
Integrated Multi-satellitE Retrievals for 

GPM (IMERG) final run V06 
0.1º 60º N/S 30 min 

2000- 

present 

Huffman et al. 

(2019) 
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MERRA-2 ** 
Modern-Era Retrospective Analysis for 

Research and Applications 2 
~0.5º Global Hourly 

1980- 

present 
Gelaro et al. (2017) 

MSWEP V2.2 ** 
Multi-Source Weighted-Ensemble 

Precipitation (MSWEP) V2.2 
0.1º Global 3-hourly 

1979- 

present 

Beck et al. (2017a, 

2019b) 

PERSIANN-CDR 

V1R1 ** 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks (PERSIANN) Climate Data 

Record (CDR) V1R1 

0.25º 60º N/S Daily 
1983- 

present 

Ashouri et al. 

(2015) 

 




