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It is shown that there is a close relationship between ideal 
extensions of rings and trusses, that is, sets with a semigroup 
operation distributing over a ternary abelian heap operation. 
Specifically, a truss can be associated to every element of an 
extension ring that projects down to an idempotent in the ex-
tending ring; every weak equivalence of extensions yields an 
isomorphism of corresponding trusses. Furthermore, equiva-
lence classes of ideal extensions of rings by integers are in 
one-to-one correspondence with associated trusses up to iso-
morphism given by a translation. Conversely, to any truss T
and an element of this truss one can associate a ring and 
its extension by integers in which T is embedded as a truss. 
Consequently any truss can be understood as arising from an 
ideal extension by integers. The key role is played by inter-
pretation of ideal extensions by integers as extensions defined 
by double homothetisms of Redei (L. Redei (1952) [24]) or 
by self-permutable bimultiplications of Mac Lane (S. Mac 
Lane (1958) [18]), that is, as integral homothetic extensions. 
The correspondence between homothetic ring extensions and 
trusses is used to classify fully up to isomorphism trusses aris-
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ing from rings with zero multiplication and rings with trivial 
annihilators.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A truss [5], [6] is an algebraic system consisting of a set with a ternary operation 
making it into an abelian heap [23], [2] and an associative binary operation that dis-
tributes over the ternary one. From the universal algebra point of view its composition 
involves less operations, so it is simpler, than that of a ring (which consists of two binary 
operations, one unary operation and one nullary operation) or a (two-sided) brace [27], 
[11], [15], which as a set with two entangled group structures involves six operations and 
whose connection with the set-theoretic Yang-Baxter equation has led to a remarkable 
surge in interest recently. Yet a truss equipped with a specific nullary operation or with 
an element with special properties can be made into a ring; if the binary operation is 
a group operation, then there is a (two-sided) brace associated to a truss. Conversely, 
every ring can be made into a truss in a natural way, by associating the (unique) heap 
operation [a, b, c] = a −b +c to the abelian group operation, and so can every brace. Thus 
trusses are both simpler in architecture and more general than rings. Alas their definition 
involves a ternary operation that is less intuitive and familiar than binary operations, 
and so one is faced with a familiar dilemma of generality versus comprehension.

In mathematics as in any other human endeavour there is a natural tendency to famil-
iarise what is new or unknown by contrasting or comparing it with what is well-known. 
Thus the desire to see how trusses are related to rings or how trusses can be described 
in ring-theoretic terms is most understandable. The key observation of Rump [27] that 
a two-sided brace can be made into a radical ring by modifying one of its operations 
(and vice versa, a radical ring gives rise to a two-sided brace) has been extended to 
trusses in [5], [6] with a caveat that a central element must exist; the resulting ring 
is not necessarily a radical ring. In this paper we show that a ring can be associated 
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to any truss and any element, but we go further than that. We show that a natural 
framework for ring-theoretic studies of trusses is provided by ideal ring extensions (see, 
for example, [22]), in particular those that arise from Redei’s homothetisms [24] or Mac 
Lane’s self-permutable bimultiplications [18]. In short, we show that a truss can be as-
sociated to every element of an extension ring that projects down to an idempotent in 
the extending ring, while every weak equivalence of extensions yields an isomorphism of 
corresponding trusses. Furthermore, equivalence classes of extensions of rings by integers 
are in one-to-one correspondence with the class of associated trusses up to isomorphism 
given by translation. Conversely, to any truss T and an element of this truss one can 
associate a ring together with its extension by integers in which T is embedded as a 
truss (and also as a paragon or an equivalence class of a congruence of rings). Since 
every ideal extension of a ring by integers is equivalent to an extension by Z through 
a double homothetism, any truss can be understood as arising from such a homothetic 
extension, i.e. every truss is a homothetic truss. Note in passing that all (not only those 
by integers) ideal ring extensions arise from families of permutable bimultiplications [22, 
Definition 3.4] or amicable homothetisms [25, §53, p. 196] by the Everett theorem [12]
(see [22] for an elegant presentation and simplification of the proof).

The paper is divided into eight sections. Section 2 contains preliminary definitions, in 
particular basic notions from the theory of heaps and trusses. Section 3 and Section 4
gather main results of the paper. We begin by recalling the definitions of ring exten-
sions and their equivalences. An extension (ϕR, S, ϕZ) consists of a ring monomorphism 
ϕR : R −→ S and a ring epimorphism ϕZ : S −→ Z such that kerϕZ = ImϕR (unless 
stated otherwise, by a ring we mean an associative ring not necessarily with identity). 
Following the terminology of Mac Lane [18] we refer to such an extension as to an ex-
tension of R to S by Z (note that an opposite terminology is often used in homological 
algebra). Two extensions (ϕR, S, ϕZ) and (ϕ′

R, S
′, ϕ′

Z) are equivalent if there is an isomor-
phism between S and S′ that commutes with the identity automorphisms on R and Z. 
Furthermore, we say that (ϕR, S, ϕZ) and (ϕ′

R, S
′, ϕ′

Z) are weakly equivalent, provided 
that they are equivalent up to an automorphism of R. We observe in Proposition 3.2 that 
if there is q ∈ S such that q2 − q ∈ ϕR(R), then q+ϕR(R) is a sub-truss of the standard 
truss associated to the ring S (i.e. S understood as a truss). Furthermore, any weak 
equivalence map for extensions restricts to an isomorphism of corresponding trusses. We 
then proceed to focus on a class of extensions arising from double homothetisms or self-
permutable bimultiplications, i.e. pairs of additive endomorphisms σ = (→σ , ←σ ) of a ring 
R satisfying a number of associativity-like conditions; see Definition 3.3. In Theorem 3.6
we associate an extension of a ring R by integers (or by integers modulo the exponent 
of the abelian group of R if finite) to a pair (σ, s) consisting of a double homothetism 
σ on R and an element s ∈ R such that σs = sσ and σ2 − σ is the bimultiplication by 
s. We term the resulting extension of R, denoted by R(σ, s), a homothetic extension of 
R (infinite in the integral case and cyclic or finite in the modular case). Next we note 
that in fact every ring extension by Z is equivalent to an infinite homothetic extension 
and that every R(σ, s) induces a truss T (σ, s) on the heap corresponding to the abelian 
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group of R. We term T (σ, s) a homothetic truss. In a couple of lemmas leading to Theo-
rem 3.11 we describe isomorphisms of homothetic trusses and connect them with (weak) 
equivalences of homothetic extensions: Two extensions are weakly equivalent if and only 
if corresponding trusses are isomorphic, while equivalences of extensions correspond to 
isomorphisms of trusses given by translations by an element.

In Section 4 we take the opposite route: from trusses to ring extension. The first main 
result of this section is Theorem 4.3, which allows one to associate a ring to any truss T
and an element e ∈ T . We denote this truss by R(T ; e). This ring has addition obtained 
by retracting of the ternary operation in T at e (so it has an abelian group structure 
derived from the heap structure of T ), but with a modified multiplication. There are 
no assumptions on e, and thus Theorem 4.3 provides one with a generalisation of the 
construction presented in [5], which associates a ring to a central element of a truss or 
the construction of Rump [27] connecting two-sided braces with radical rings. The way 
to recover the original multiplication of T is described in Theorem 4.8: e determines a 
homothetic datum (ε, e2) on R(T ; e), and T is the truss embedded in the corresponding 
homothetic ring extension of R(T ; e), denoted by T (e) in the infinite case or T c(e) in 
the cyclic case, that is, T = T(ε, e2). The results of Section 3 and Section 4 thus can 
be summarised as one of two main messages of this paper: every truss is a homothetic 
truss; every ring is a ring associated to a truss with a fixed element.

Section 5 gives a categorical interpretation of the infinite homothetic ring extensions 
T (e) in which a truss T embeds. In Theorem 5.2 we construct a ring isomorphism between 
T (e) and the universal ring T0 obtained from a truss T by adjoining the zero element [8, 
Lemma 3.13]. As a consequence, the infinite homothetic extension T (e) has the following 
universal property: any truss homomorphism from T to a ring R factorises through the 
inclusion T ↪→ T (e) and a unique ring homomorphism T (e) −→ R, i.e. there exists a 
universal arrow from T to the functor T : Ring −→ Trs (see [19, Section III.1]).

The final part of the paper uses its main results, in particular that every truss is a 
homothetic truss, to classify all trusses corresponding to rings with zero multiplication 
(Section 6) and zero annihilators (Section 7). In the first case, in which all the structural 
information is necessarily contained in the abelian group of the ring, we show that there 
is a one-to-one correspondence between isomorphism classes of trusses corresponding to 
rings with zero multiplication on an abelian group A and ordered direct sum decom-
positions of A into four subgroups; Theorem 6.5. In the latter case there is a bijective 
correspondence between isomorphism classes of homothetic trusses on R and equivalence 
classes of idempotents in the ring Ξ(R) of outer bimultiplications on R (with respect to 
the relation defined in Definition 3.5); see Theorem 7.2. In particular, and quite surpris-
ing, there are exactly two isomorphism classes of trusses on one-sided maximal ideals 
in simple rings with identity; see Theorem 7.3. This seems to be a rather unexpected 
application of the theory of maximal essential extensions developed by Beidar [3], [4]. 
All the results of this part are employed to give a full classification of non-isomorphic 
trusses with the heap structure corresponding to the abelian group Zp × Zp.

The paper is completed with a short concluding section.
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2. Preliminaries

We start by gathering in one place key information about heaps and trusses, and by 
establishing the notation. Further details can be found in e.g. [6].

An abelian heap is a set H with a ternary operation [−, −, −] such that, for all hi, 
i = 1, . . . , 5.

[h1, h2, [h3, h4, h5]] = [[h1, h2, h3], h4, h5], (2.1a)

[h1, h1, h2] = h2 & [h1, h2, h2] = h1, (2.1b)

[h1, h2, h3] = [h3, h2, h1]. (2.1c)

Equation (2.1a) expresses the associative law for heaps, equations (2.1b) are known as 
Mal’cev identities, and equation (2.1c) is the heap commutative law. In view of these 
axioms the distribution of brackets in multiple applications of the ternary operation does 
not play any role, and hence we write

[h1, h2, . . . , h2n+1]

for the element of H obtained by any possible application of the ternary operation 
to the (always odd) 2n + 1-tuple (h1, h2, . . . , h2n+1) ∈ H2n+1. Furthermore, equa-
tions (2.1b) and (2.1c) yield the following cancellation and rearrangement rules, for 
all h1, h2, . . . , h2n+1 ∈ H,

[h1, . . . , hi−1, hi, hi, hi+1, . . . h2n] = [h1, . . . , hi−1, hi+1, . . . h2n], (2.2a)

[h1, h2, . . . , h2n+1] = [h�(1), hς(2), h�(3), . . . , hς(2n), h�(2n+1)], (2.2b)

for any permutation � on the set {1, 3, 5, . . . , 2n + 1} and any permutation ς on 
{2, 4, . . . , 2n}.

For any e ∈ H, the set H with the binary operation +e = [−, e, −] is an abelian 
group, known as a retract of H. The chosen element e is the zero for this group and 
the inverse −eh of h is [e, h, e]. We denote this unique up to isomorphism group by 
G(H; e). Conversely, for any (abelian) group G, the operation [a, b, c] = a − b + c defines 
the heap structure on G; we denote this heap by H(G). A homomorphism of heaps is 
a function that preserves heap operations. In particular, any group homomorphism is a 
heap homomorphism for the corresponding heaps so the assignment H : G �−→ H(G) is 
a functor from the category of (abelian) groups to the category of (abelian) heaps.

A truss is a set T together with a ternary operation [−, −, −] and a binary operation ·
(denoted by a juxtaposition of elements and called multiplication) such that (T, [−, −, −])
is an abelian heap, (T, ·) is a semigroup and · distributes over [−, −, −], that is, for all 
a, b, c, d ∈ T ,

a[b, c, d] = [ab, ac, ad] & [a, b, c]d = [ad, bd, cd]. (2.3)
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A morphism of trusses is a function that is a homomorphism of both heaps and semi-
groups. Unless stated otherwise, by a ring we mean an associative ring not necessarily 
with identity. To any ring (R, +, ·) one can associate a truss T(R) with the heap structure 
H(R, +) and the original multiplication. The assignment T : R �−→ T(R) and identity on 
morphisms is a functor from the category of rings to the category of trusses. Conversely, 
if a truss T has an absorber, that is, an element e such that ea = ae = e, for all a ∈ T , 
then R(T ; e) := (G(R; e), ·) is a ring and T = T(R(T ; e)).

An equivalence class of a congruence in a truss T is called a paragon. Equivalently, a 
paragon P is a sub-heap of (T, [−, −, −]) such that, for all p, q ∈ P and a ∈ T ,

[ap, aq, q] ∈ P & [pa, qa, q] ∈ P. (2.4)

A sub-heap satisfying the first of equations of (2.4) is called a left paragon and one that 
satisfies the second of these equations is called a right paragon.

3. From ideal extensions of rings to trusses

This section contains the first main results of the paper. We begin by recalling the 
notions of ideal extensions of rings and (weak) equivalences between such extensions. 
Next we show that one can associate a truss to every element of an extension ring that 
yields an idempotent in the ring by which the extension is achieved. Weak equivalences 
of extensions restrict to isomorphisms of these trusses. In the converse direction we 
construct (infinite and finite) extensions of a given ring by double homothetisms, and 
show that such extensions are weakly equivalent if and only if the associated trusses 
are isomorphic and equivalent if and only if the associated trusses are isomorphic by a 
translation or translationally isomorphic. We also observe that any infinite homothetic 
extension is equivalent to an extension by the ring of integers.

The following definition is taken from [18] (see also [22]).

Definition 3.1. An exact sequence of ring homomorphisms

0 R
ϕR

S
ϕZ

Z 0,

is called an ideal ring extension of R to S by Z or simply a ring extension. We write 
(ϕR, S, ϕZ) for this ring extension.

Two extensions (ϕR, S, ϕZ) and (ϕ′
R, S

′, ϕ′
Z) are said to be equivalent if there exists 

a ring isomorphism Θ : S −→ S′ rendering the following diagram commutative

R
ϕR

ϕ′
R

S

ϕZ

Θ

S′
ϕ′

Z

Z.

(3.1)
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We write (ϕR, S, ϕZ) Θ≡ (ϕ′
R, S

′, ϕ′
Z).

Two extensions (ϕR, S, ϕZ) and (ϕ′
R, S

′, ϕ′
Z) are said to be weakly equivalent if there 

exist a ring isomorphism Θ : S −→ S′ and a ring automorphism ΘR : R −→ R such that 

(ϕR, S, ϕZ) Θ≡ (ϕ′
R ◦ ΘR, S′, ϕ′

Z). In that case we write (ϕR, S, ϕZ) 
Θ∼= (ϕ′

R, S
′, ϕ′

Z)

The reader should be made aware that particularly in the texts in homological algebra 
(see e.g. [28, Section 9.3]) the sequence in Definition 3.1 is referred to as an extension of 
Z to S by R. We have elected here to choose the conventions of Mac Lane [18].

Proposition 3.2. Let (ϕR, S, ϕZ) be an ideal ring extension and let q ∈ S. Then

(1) The set q + ϕR(R) is a sub-heap of H(S) and a paragon of T(S).
(2) The sub-heap q + ϕR(R) is a sub-truss of T(S) if and only if

q2 − q ∈ ϕR(R) (3.2)

This truss is denoted by T (ϕR, S, ϕZ ; q).

(3) If (ϕR, S, ϕZ) 
Θ∼= (ϕ′

R, S, ϕ
′
Z), then the map Θ restricts to the isomorphism of trusses 

T (ϕR, S, ϕZ ; q) ∼= T (ϕ′
R, S

′, ϕ′
Z ; Θ(q)).

Proof. Since ϕR(R) = kerϕZ is an ideal in S, for all q ∈ S, q +ϕR(R) is an equivalence 
class of a congruence relation in S, hence it is a paragon in T(S) by [7, Corollary 3.3]. 
Condition (3.2) is equivalent to the statement that ϕZ(q) = q+ϕR(R) is an idempotent 
in Z, hence (q + ϕR(R))2 = q + ϕR(R) is closed under the multiplication in S.

Since Θ is a ring isomorphism, its restriction to T (ϕR, S, ϕZ ; q) is a monomorphism of 
trusses. We need to show that Θ(T (ϕR, S, ϕZ ; q)) = T (ϕ′

R, S
′, ϕ′

Z ; Θ(q)). For all r ∈ R,

Θ(q + ϕR(r)) = Θ(q) + Θ(ϕR(r)) = Θ(q) + ϕ′
R(ΘR(r)) ∈ T (ϕ′

R, S
′, ϕ′

Z ; Θ(q)).

The commutativity of the diagram (3.1) and the fact that ΘR is an automorphism of 
rings yield the surjectivity of Θ. This completes the proof of the proposition. �

Since weakly equivalent extensions give rise to isomorphic trusses, Proposition 3.2
provides one with a method of constructing (isomorphism classes of) trusses. In fact one 
can look for a statement in the opposite direction, that is, for types of extensions whose 
(weak) equivalence classes are determined by (isomorphism classes of) corresponding 
trusses. To this end we need to focus on extensions of a more specific kind.

Definition 3.3. Let R be a ring and let σ be a double operator on R, that is a pair of 
additive endomorphisms,

→
σ : R −→ R, a �−→ σa,

←
σ : R −→ R, a �−→ aσ.
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(1) The double operator σ is called a bimultiplication [18] or a bitranslation [22] if, for 
all a, b ∈ R,

σ(ab) = (σa)b & (ab)σ = a(bσ), (3.3a)

a(σb) = (aσ)b. (3.3b)

The set of all bimultiplications is denoted by Ω(R).
(2) A bimultiplication σ is called a double homothetism [24] or is said to be self-

permutable [18] provided that, for all a ∈ R,

(σa)σ = σ(aσ). (3.4)

The set of all double homothetisms on R is denoted by Π(R).

In short, conditions (3.3a) mean that →σ is a right and 
←
σ is a left R-module homomor-

phism. A bimultiplication is called simply a multiplication in [16]. In functional analysis, 
in particular in the context of C∗-algebras, bimultiplications are known as multipliers
[17], [10]. The relations (3.4) mean that →σ commutes with 

←
σ in the endomorphism ring 

End(R,+). The set Ω(R) is a unital ring with the addition and multiplication, for all 
σ, σ′ ∈ Ω(R), a ∈ R,

(σ + σ′)a = σa + σ′a, a(σ + σ′) = aσ + aσ′, (3.5a)

(σσ′)a = σ(σ′a), a(σσ′) = (aσ)σ′. (3.5b)

In particular in the context of C∗-algebras, Ω(R) is known as a multiplier algebra. Note 
that the rules (3.5b) mean the composition of right-linear components of bimultiplica-
tions and opposite composition of the left-linear ones. That is,

−→
σσ′ =→

σ ◦
→
σ′ and

←−
σσ′ =

←
σ′ ◦ ←

σ .

It is clear from (3.5) that R is an Ω(R)-bimodule.
In general, Π(R) need not be a subring of Ω(R). The rules of Definition 3.3 mean that 

we need not write any brackets in-between letters of the words composed of elements of 
R and a homothetism on R.

For any a ∈ R, the left and right multiplications by a form a double homothetism, 
which we denote by ā. That is, for all b ∈ R,

āb = ab, bā = ba. (3.6)

Such a double homothetism is said to be inner and the abelian group of all inner ho-
mothetisms is denoted by R̄. The right R-linear and left R-linear components of ā are 
denoted by 

→
a and 

←
a respectively. Note that if σ is a double homothetism, then, for all 
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a ∈ R, σ+ ā is also a double homothetism by equations (3.3). By the same token, for all 
a ∈ R and σ ∈ Ω(R),

āσ = aσ & σā = σa. (3.7)

This implies that R̄ is an essential ideal in Ω(R). The quotient ring Ω(R)/R̄ is called the 
ring of outer bimultiplications and is denoted by Ξ(R) (in context of C∗-algebras, Ξ(R)
might be referred to as a corona algebra). The canonical surjection Ω(R) −→ Ξ(R) is 
denoted by ξ.

The following lemma can be proven by direct calculations.

Lemma 3.4. Let Φ be an automorphism of a ring R. For any bimultiplication σ ∈ Ω(R)
define the double operator Φ∗(σ) on R by

−→
Φ∗(σ): a �−→ Φ(σΦ−1(a)),

←−
Φ∗(σ): a �−→ Φ(Φ−1(a)σ). (3.8)

The assignment σ �−→ Φ∗(σ) defines a ring automorphism Φ∗ on Ω(R). Furthermore, 
Φ∗(Π(R)) = Π(R), Φ∗ maps inner homothetisms to inner ones, and, for all a ∈ R,

Φ(a) = Φ∗(ā). (3.9)

Equation (3.9) implies that Φ∗ : Ω(R) −→ Ω(R) descends to the ring automorphism 
Φ� : Ξ(R) −→ Ξ(R) by the diagram

Ω(R) Φ∗

ξ

Ω(R)

ξ

Ξ(R) Φ�

Ξ(R),

(3.10)

where ξ is the canonical surjection. The following notion will prove particularly helpful 
for discussing trusses associated to rings with trivial annihilators.

Definition 3.5. Two outer bimultiplications σ, σ′ ∈ Ξ(R) are said to be equivalent if there 
exists a ring automorphism Φ : R −→ R such that σ′ = Φ�(σ). In that case we write 
σ ∼ σ′.

With all these notions and notation at hand we are now ready to consider extensions 
of our particular interest.

Theorem 3.6. Let R be a ring, and σ ∈ Π(R) and s ∈ R such that,

σs = sσ, (3.11a)
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σ2 = σ + s̄. (3.11b)

Then

(1) (a) The abelian group R× Z together with the product, for all a, b ∈ R, k, l ∈ Z,

(a, k)(b, l) = (ab + laσ + kσb + kls, kl) , (3.12)

is an associative ring. This ring is denoted by R(σ, s).
(b) The sequence

0 R
ϕR

R(σ, s)
ϕZ

Z 0, (3.13)

where ϕR : a �−→ (a, 0) and ϕZ : (a, k) �−→ k is an exact sequence of rings.
(c) Any ideal ring extension

0 R
ψR

S
ψZ

Z 0, (3.14)

is equivalent to an extension of type (3.13).
(2) If the abelian group (R, +) has a finite exponent N , then:

(a) The abelian subgroup IN = {0} × NZ of R × Z is an ideal in R(σ, s). The 
quotient ring R(σ, s)/IN is denoted by Rc(σ, s).

(b) The sequence

0 R
ϕc

R

Rc(σ, s)
ϕc

ZN

ZN 0, (3.15)

where ϕc
R : a �−→ (a, 0) + IN and ϕc

ZN
: (a, k) + IN �−→ k mod N is an exact 

sequence of rings.

(3) The set {(a, 1) | a ∈ R} ⊆ R(σ, s) (resp. {(a, 1) + IN , | a ∈ R} ⊆ Rc(σ, s) in the 
finite exponent case) is a sub-truss and a paragon of T(R(σ, s)) (resp. T(Rc(σ, s))
in the finite exponent case).

Proof. That multiplication (3.12) makes R×Z into an associative ring can be checked by 
direct calculations that use the double homothetism rules in Definition 3.3 and equations 
(3.11). Explicitly, for all a, b, c ∈ R and k, l, m ∈ Z,
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((a, k)(b, l))(c,m) = (ab + laσ + kσb + kls, kl) (c,m)

= (abc + laσc + kσbc + klsc + mabσ + lmaσ2

+ kmσbσ + klmsσ + klσc + klms, klm)

= (abc + laσc + kσbc + klsc + mabσ + lmaσ + lmas

+ kmσbσ + klmσs + klσc + klms, klm)

= (a, k) (bc + mbσ + lσc + lms, lm) = (a, k)((b, l)(c,m)).

Hence the multiplication is associative. The distributive laws follow from the additivity 
of σ and distributive laws in R and Z. The statement (1b) follows immediately from the 
definition of R(σ, s).

To prove (1c) first note that the sequence (3.14) splits as a sequence of abelian groups, 
and hence there is the following diagram with exact rows,

0 R
ψR

S
ζ

ψZ

π̄

π

Z
κ

0, (3.16)

in which κ, ζ, π and π̄ are additive maps such that

ψZ ◦ κ = idZ, π = κ ◦ ψZ, π̄ = idS − π = ψR ◦ ζ, ζ ◦ ψR = idR.

For any q ∈ ψZ
−1(1), define a double operator σ and s ∈ R, by

σa = ζ(qψR(a)), aσ = ζ(ψR(a)q), s = ζ(q2 − q), (3.17)

for all a ∈ R. Observe that, for all a ∈ R,

π(q2 − q) = π(qψR(a)) = π(ψR(a)q) = 0,

by the exactness of the sequence (3.14). Hence equations (3.17) can be equivalently 
written as

ψR(σa) = qψR(a), ψR(aσ) = ψR(a)q, ψR(s) = q2 − q. (3.18)

Using (3.18) and the fact that ψR is an injective ring homomorphism, one easily finds 
that conditions (3.11) are satisfied for σ and s defined by (3.17), and so there is an exact 
sequence such as (3.13).

Again a simple calculation aided by (3.18) and the ring monomorphism property of 
ψR yields that

Θ : R(σ, s) −→ S, (a, n) �−→ ψR(a) + nq,
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is an isomorphism of rings with the inverse Θ−1(x) = (ζ(x), ψZ(x)), which provides one 
with the required equivalence of extensions.

If (R, +) has a finite exponent N , then, for all a ∈ R and k, l ∈ Z,

(a, k)(0, Nl) = (Nlaσ + klNs, klN) = (0, klN) ∈ IN ,

and similarly for the right multiplication. Hence IN is an ideal in R(σ, s).
In view of the definition of IN , the map ϕc

R is injective. The kernel of ϕc
ZN

consists of 
all elements of the form (a, 0) + IN , i.e. of the whole of the image of ϕc

R. The map ϕc
ZN

is obviously surjective. This proves the exactness of the sequence (3.15).
Finally, since (0, 1)2 = (0, 1) + (s, 0) in both cases (modulo IN in the finite exponent 

case), these extensions satisfy assumptions of Proposition 3.2 with q = (0, 1) (or q =
(0, 1) + IN in the cyclic case). The stated subsets are of the form q + ϕR(R) and hence 
they are trusses and paragons, as claimed. This completes the proof of the theorem. �
Definition 3.7. Let R be a ring.

(1) A pair (σ, s), where σ ∈ Π(R) and s ∈ R satisfying conditions (3.11) is called a 
homothetic datum on R.

(2) Let (σ, s) be a homothetic datum on R.
(i) The extension (ϕR, R(σ, s), ϕZ) given by the sequence (3.13) is called an integral

or infinite homothetic extension.
(ii) The extension (ϕc

R, R
c(σ, s), ϕc

ZN
) given by the sequence (3.15) is called a cyclic

or finite homothetic extension.
(3) The image under the canonical (projection) isomorphism H(R) × {1} −→ H(R) of 

the truss considered in assertion (3) of Theorem 3.6 is called a homothetic truss on 
R and is denoted by T(σ, s).

Note that T(σ, s) is isomorphic to R as a heap and it is a truss since 1 is an idempotent 
in Z (or ZN ). Explicitly, the multiplication 	 in T(σ, s) is given by

a 	 b = ab + aσ + σb + s,

for all a, b ∈ R. In particular, for the trivial homothetic datum (0, 0) on R, T(0, 0) =
T(R), the truss associated to the ring R. Next, we identify isomorphism classes of ho-
mothetic trusses T(σ, s).

Lemma 3.8. For all ring automorphisms Φ of R and all v ∈ R, T(σ, s) ∼= T(σ′, s′), where

s′ = Φ(s + v + v2 − vσ − σv) & σ′ = Φ∗(σ − v̄), (3.19)

where Φ∗ is the induced bijection on Π(R) defined in Lemma 3.4.
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Proof. First we need to show that the pair (σ′, s′) is a homothetic datum on R. Using 
the fact that (σ, s) is a homothetic datum, we can compute,

(s + v + v2 − vσ − σv)(σ − v̄)

= sσ + v2σ + vσ − vσ2 − σvσ − sv − v2 − v3 − vσv + σv2

= σs + v2σ − vs− σvσ − sv − v2 − v3 − vσv + σv2

= σs + v2σ − σvσ − vs− σ2v + σv − v2 − v3 − vσv + σv2

= (σ − v̄)(s + v + v2 − vσ − σv).

Therefore,

s′σ′ = Φ(s + v + v2 − vσ − σv)Φ∗(σ − v̄)

= Φ
(
(s + v + v2 − vσ − σv)(σ − v̄)

)
= Φ

(
(σ − v̄)(s + v + v2 − vσ − σv)

)
= Φ∗(σ − v̄)Φ(s + v + v2 − vσ − σv) = σ′s′.

Hence the condition (3.11a) holds for s′ and σ′. Next, using the fact that Φ∗ preserves 
both addition and multiplication, property (3.9) and that σ and s satisfy (3.11b) we 
compute,

σ′2 = Φ∗(σ − v̄)2 = Φ∗ ((σ − v̄)(σ − v̄))

= Φ∗ (σ + s̄− v̄σ − σv̄ + v̄2)
= Φ∗ (σ − v̄) + Φ∗

(
s− vσ − σv + v + v2

)
= σ′ + Φ(s− vσ − σv + v + v2) = σ′ + s′,

as required. Therefore, there is a homothetic extension R(σ′, s′) and the corresponding 
truss T(σ′, s′).

Consider the map

Φv : R −→ R, a �−→ Φ(a + v).

Since Φ is a ring automorphism Φv is an automorphism of the heap H(R). Furthermore, 
for all a, b ∈ R,

Φv(a)Φv(b) + Φv(a)σ′ + σ′Φv(b) + s′ = Φ(a + v)Φ(b + v) + Φ ((a + v)(σ − v̄))

+ Φ ((σ − v̄)(b + v)) + Φ(s− vσ − σv + v + v2)

= Φ(ab + aσ + σb + s + v) = Φv(ab + aσ + σb + s).

Therefore, Φv transforms multiplication in T(σ, s) into multiplication in T(σ′, s′), and 
hence is the required truss isomorphism T(σ, s) ∼= T(σ′, s′). �
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Note in passing that the second of conditions (3.19) is equivalent to the statement that 
the outer bitranslations ξ(σ), ξ(σ′) ∈ Ξ(R) are equivalent in the sense of Definition 3.5.

Lemma 3.9. Let R(σ, s) and R(σ′, s′) be homothetic extensions of R such that T(σ, s) ∼=
T(σ′, s′). Then there exists a ring automorphism Φ of R and an element v ∈ R such that 
the relations (3.19) hold.

Proof. Let Ψ : T(σ, s) −→ T(σ′, s′) be a truss isomorphism. Define

Φ : R −→ R, a �−→ Ψ(a) − Ψ(0).

Since Ψ is a heap homomorphism, Φ is an additive map, as, for all a, b ∈ R,

Φ(a + b) = Ψ(a− 0 + b) − Ψ(0) = Ψ(a) − Ψ(0) + Ψ(b) − Ψ(0) = Φ(a) + Φ(b).

Clearly, Φ is an automorphism of abelian groups with the inverse Φ−1(a) = Ψ−1(a) −
Ψ−1(0). Set

v = −Ψ−1(0) ∈ R.

Note that, since Ψ respects ternary operations, for all a ∈ R,

Φ(a+v) = Ψ(a−Ψ−1(0)+0)−Ψ(0) = Ψ(a)−Ψ(Ψ−1(0))+Ψ(0)−Ψ(0) = Ψ(a). (3.20)

Since Ψ is an isomorphism of trusses, for all a, b ∈ R,

Ψ−1(a)Ψ−1(b) + Ψ−1(a)σ + σΨ−1(b) + s = Ψ−1(ab + aσ′ + σ′b + s′). (3.21)

Evaluating equality (3.21) at a = b = 0 we obtain,

Ψ−1(s′) = s + Ψ−1(0)σ + σΨ−1(0) + Ψ−1(0)Ψ−1(0)

That is,

s′ = Ψ(s− vσ − σv + v2) = Φ(s− vσ − σv + v + v2), (3.22)

where the last equality follows by (3.20). Therefore, the first of conditions (3.19) holds. 
Next, setting a = 0 in (3.21) and using (3.22) as well as the fact that Ψ is a homomor-
phism of heaps, equation (3.20) and the definitions of Φ, Φ−1 and v we find

σ′b = Ψ
(
σΨ−1(b) + σv − v2 − v − vΨ−1(b)

)
= Φ

(
σΨ−1(b) + σv − v2 − vΨ−1(b)

)
= Φ

(
σΦ−1(b) − vΦ−1(b)

)
= Φ∗(σ − v̄)b.
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In a similar way by setting b = 0 in (3.21) one finds that aσ′ = aΦ∗(σ− v̄). Put together 
these prove that

σ′ = Φ∗(σ − v̄),

as required. The proof that Φ respects multiplication in R follows the same lines as the 
proof that Φv is a truss homomorphism in Lemma 3.8 �

Our next task is to connect the correspondences between ring and truss isomorphisms 
described in Lemma 3.8 and Lemma 3.9 with equivalences of homothetic extensions. 
Before we do this, however, we would like to make the following observation. Any endo-
morphism of abelian groups has zero as a fixed point, so, in particular, any translation by 
an element that is not zero, i.e. the function a �−→ a + e, for a fixed e 
= 0, is not a group 
endomorphism. Consequently, there are no translation ring endomorphisms other than 
the identity. In contrast, given a heap H, for any two elements e, f ∈ H, the translation 
map

τfe : H −→ H, a �−→ [a, e, f ], (3.23)

is a heap automorphism. This leads us to the following definition.

Definition 3.10. Let T and T ′ be trusses on the same heap. We say that T and T ′ are 
translationally isomorphic if there exist elements e, f such that the translation heap 

automorphism τfe is an isomorphism of trusses. In that case we write T
tr∼= T ′.

Translationally isomorphic trusses turn out to play a key role in the study of equiva-
lence classes of homothetic ring extensions.

Theorem 3.11. For any ring R,

(1) Two homothetic extensions of R are weakly equivalent if and only if the corresponding 
trusses are isomorphic.

(2) Two homothetic extensions of R are equivalent if and only if the corresponding 
trusses are translationally isomorphic.

Proof. For statement (1) we observe that if homothetic extensions (ϕR, R(σ, s), ϕZ) and 
(ϕ′

R, R(σ′, s′), ϕ′
Z) are weakly equivalent by Θ and ΘR, then:

Θ ◦ ϕR = ϕ′
R ◦ ΘR implies Θ(a, 0) = (ΘR(a), 0),

ϕZ = ϕ′
Z ◦ Θ implies Θ(0, 1) = (e, 1),

for all a ∈ R and some e ∈ R. Hence



252 R.R. Andruszkiewicz et al. / Journal of Algebra 600 (2022) 237–278
Θ(a, 1) = Θ(a, 0) + Θ(0, 1) = (ΘR(a) + e, 1),

i.e., ring isomorphism Θ induces an isomorphism of trusses

ΘT : T (σ, s) −→ T (σ′, s′), a �−→ ΘR(a) + e.

In the opposite direction, observe that Lemma 3.8 and Lemma 3.9 establish a bijec-
tive correspondence between isomorphisms of trusses T(σ, s) and systems (Φ, v). Let us 
assume that T(σ, s) ∼= T(σ′, s′) and let Φ be the corresponding automorphism of R and 
v the corresponding element of R. Define

Θ : R(σ, s) −→ R(σ′, s′), (a, k) �−→ (Φ(a) + kΦ(v), k).

Clearly, Θ is an isomorphism of abelian groups, so we need to check whether it preserves 
multiplications. Note that, for all a, b ∈ R and k, l ∈ Z,

σ′(Φ(b) − lΦ(v)) = Φ∗(σ − v̄)(Φ(b) − lΦ(v)) = Φ(σb + lσv − vb− lv2),

and, similarly,

(Φ(a) − kΦ(v))σ′ = Φ(aσ + kvσ − av − kv2).

Therefore, in view of the definition of s′ in (3.19),

Θ(a, k)Θ(b, l) = ((Φ(a) + kΦ(v))(Φ(b) + lΦ(v))

+ kσ′(Φ(b) − lΦ(v)) + l(Φ(a) − kΦ(v))σ′ + kls′, kl)

= (Φ(ab + kvb + lav + klv2 + k(σb + lσv − vb− lv2)

+ l(aσ + kvσ − av − kv2) + kl(s + v + v2 − vσ − σv)), kl)

= (Φ(ab + kσb + laσ + kls + klv), kl) = Θ ((a, k) (b, l)) ,

as needed. Finally, setting ΘR = Φ we obtain the required weak equivalence of infinite 
homothetic extensions (in the sense of Definition 3.1).

For statement (2), if (ϕR, R(σ, s), ϕZ) and (ϕ′
R, R(σ′, s′), ϕ′

Z) are equivalent by Θ, then 
we can follow arguments of the proof of (1) with ΘR = idR, to obtain the translational 
isomorphism of trusses

ΘT (a) = a + e = [a, 0, e] = τe0 (a).

Hence T (σ, s) 
tr∼= T (σ′, s′).

If T (σ, s) 
tr∼= T (σ′, s′), then there exists e ∈ R such that τe0 is an isomorphism of trusses 

and so, by the argument of the proof of Lemma 3.9 the corresponding isomorphism of 
rings is Φ(a) = τe0 (a) − τe0 (0) = a, and thus
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Θ : R(σ, s) −→ R(σ′, s′), (a, k) �−→ (a + kv, k),

is the corresponding equivalence of ring extensions.
The cyclic homothetic extension case is treated in exactly the same way. �
We note in passing that statement (2) of Theorem 3.11 can be viewed as translational 

invariance of equivalence classes of ideal ring extensions by Z as modifications of homo-
thetic trusses by a translational isomorphism does not lead one out of the equivalence 
class of the corresponding extension.

We end this section by studying T(σ, s) in some special cases or with additional 
properties.

Proposition 3.12. Let (σ, s) be a homothetic datum on a ring R.

(1) The truss T(σ, s) is commutative if and only if R is commutative and σ is a central 
double homothetism, that is, ←σ=→

σ .
(2) The truss T(σ, s) has an absorber if and only if σ is an inner double homothetism. 

In this case, the ring retract of T(σ, s) is isomorphic to R.
(3) The truss T(σ, s) has an identity if and only if T(σ, s) ∼= T(id, 0).
(4) R has identity if and only if T(id, 0) ∼= T(R). In this case, T(σ, s) ∼= T(R).

Proof. The truss T(σ, s) is commutative if and only if, for all a, b ∈ R,

ab + aσ + σb = ba + bσ + σa. (3.24)

Setting either a = 0 or b = 0 we obtain the centrality of σ and then the commutativity of 
R follows. In the converse direction (3.24) is obviously satisfied. This proves statement 
(1).

An element e ∈ R is an absorber in T(σ, s) if and only if, for all a ∈ R,

ae + aσ + σe + s = e & ea + eσ + σa + s = e. (3.25)

Setting a = 0 in (3.25) we obtain that σe + s = e and eσ + s = e, so plugging these 
back into (3.25) we conclude that σ = −e. Conversely, if σ = b̄ for some b ∈ R, then the 

equality (3.11b) implies that b2 = b̄ + s̄ and using this relation one easily checks that 
equations (3.25) are satisfied with e = −b2 + s.

If e is an absorber then, the map R −→ R, r �−→ r− e is the required isomorphism of 
rings R(T(σ, s); e) ∼= R. This completes the proof of statement (2).

An element u is the identity for T(σ, s) if and only if, for all a ∈ R,

au + aσ + σu + s = a = ua + uσ + σa + s. (3.26)

Setting a = 0 we obtain s = −σu = −uσ, and thus the existence of the identity u implies 
that
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aσ = a− au & σa = a− ua.

In other words, σ = id − ū. Now setting a = u in (3.26), we obtain

0 = s + u2 − u + uσ + σu,

and hence Φ = id and v = −u induce the required isomorphism of trusses T(σ, s) ∼=
T(id, 0). In the converse direction, if an automorphism Φ and element v of R are such 
that

σ = Φ∗(id − v̄) = id − Φ(v)

and

s = Φ(v2 + v − vσ − σv) = Φ(v2 − v),

then u = Φ(v) is the identity in the truss T(σ, s). Therefore, statement (3) holds.
Finally, if R has the identity 1, then every homothetism is inner as σ = σ1 = 1σ. 

Then setting v = σ1 and Φ = id we obtain the required isomorphism of homothetic 
trusses T(σ, s) ∼= T(0, 0) = T(R). In particular, T(id, 0) ∼= T(R). Conversely, if this last 
isomorphism holds, then id = −Φ(v), for some v ∈ R and an automorphism Φ of R, 
which means precisely that −Φ(v) is the identity for R. �
Proposition 3.13. Let A be a ring with identity and B be any ring. Then any homothetic 
truss on the product ring R = A ×B is isomorphic to the product truss T(A) ×T(σB , sB), 
for some homothetic datum on B.

Proof. Let (σ, s) be a homothetic datum on R = A ×B. Then, for all (a, b) ∈ R,

σ(a, b) = (→σ [1](a, b),→σ [2](a, b)), (a, b)σ = (←σ [1](a, b),←σ [2](a, b)),

for some additive functions →σ [1], 
←
σ [1] : A × B −→ A, and 

→
σ [2], 

←
σ [2] : A × B −→ B. 

Since σ is a right operator,

σ(a, 0) = σ(a, 0)(1, 0) = (→σ [1](a, 0),→σ [2](a, 0))(1, 0) = (→σ [1](a, 0), 0).

Hence 
→
σ [2](a, 0) = 0. Furthermore,

(0, 0) = σ(0, 0) = σ(0, b)(1, 0) = (→σ [1](0, b),→σ [2](0, b))(1, 0) = (→σ [1](0, b), 0),

which implies that →σ [1](0, b) = 0. Therefore,

σ(a, b) = σ(a, 0) + σ(0, b) = (→σ [1](a, 0),→σ [2](0, b)).
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In a similar way,

(a, b)σ = (←σ [1](a, 0),←σ [2](0, b)).

We thus conclude that

σ = (σA, σB),

where σA is a double operator on A and σB is a double operator on B given by

σAa =→
σ [1](a, 0), aσA =←

σ [1](a, 0), σBb =→
σ [2](0, b), bσB =←

σ [2](0, b).

Hence the problem of constructing homothetic trusses on R splits into the problems of 
such constructions on A and B separately. Since A has the identity, by statement (4) in 
Proposition 3.12 all homothetic trusses A are isomorphic to T(A), and thus the assertion 
follows. �
4. From trusses to ring extensions

In this section we start with a truss T and first assign a ring to it and then homothetic 
extension of this ring in which the truss is contained as in Theorem 3.6. This is achieved in 
two steps. First we associate a ring R(T ; e) to any truss T (or, more generally a paragon) 
and any element e in this truss (not necessarily an absorber or a central element as in [5, 
Corollary 5.2] or [6, Lemma 3.14]). Next we show that there is a homothetic datum (σ, s)
on R(T ; e) stemming from the internal structure of the truss T such that the induced 
truss coincides with the original T , that is, T(σ, s) = T .

Let (T, [−, −, −], ·) be a truss. Given an element e ∈ T , the induced actions of T on 
itself are defined as follows

a
e
� b = λe(a, b) := [ab, ae, e], (4.1a)

a
e
� b = �e(a, b) := [ab, eb, e], (4.1b)

for all a, b ∈ T . As shown in [6] both λe and �e are heap homomorphisms in both argu-
ments, which means that both 

e
� and 

e
� distribute over the heap operation. Furthermore, 

λe is a left action of the semigroup (T, ·) while �e is a right action. In addition the actions 
commute or satisfy the bimodule associative law, that is, for all a, b, c ∈ T ,

a
e
� (b e

� c) = (a e
� b) e

� c. (4.2)

Indeed,

a
e
� (b e

� c) = a
e
� [bc, ec, e] = [a[bc, ec, e], ae, e] = [abc, aec, e],
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by the distributive law and (2.1a)-(2.1b). On the other hand and by the same token,

(a e
� b) e

� c = [ab, ae, e] e
� c = [[ab, ae, e]c, ec, e] = [abc, aec, e],

as required. Therefore, we can write a 
e
� b 

e
� c for both ways of mixing the actions.

Finally, the Mal’cev identities imply that e absorbs induced actions, that is, for all 
a ∈ T ,

a
e
� e = e

e
� a = e. (4.3)

Definition 4.1. Let (T, [−, −, −], ·) be a truss. A sub-heap S of (T, [−, −, −]) is said to be 
left-closed (respectively, right-closed) if there exists e ∈ S such that

λe(S, S) ⊆ S (respectively, �e(S, S) ⊆ S). (4.4)

Remark 4.2. Note that the existential quantifier in Definition 4.1 can be replaced by the 
universal one. Indeed, if the condition (4.4) is satisfied for all e ∈ S 
= ∅, then such an e
exists. Conversely, if (4.4) is satisfied for some e ∈ S, then for any e′, s, s′ ∈ S,

s
e′

� s′ = [ss′, se′, e′] = [[ss′, se, e], [se′, se, e], e′] = [s e
� s′, s

e
� e′, e′] ∈ S,

and similarly for the right action.

Obviously T is both left and right closed. Similarly, if P is a left paragon in T , then, by 
the definition, λe(T, P ) ⊆ P , for all e ∈ P , and hence it is left-closed. For the symmetric 
reason, right paragon is right-closed.

Theorem 4.3. Let (T, [−, −, −], ·) be a truss. Let S be a left- or right-closed sub-heap of 
T . For any e ∈ S, the binary operation •e on S defined by,

a •e b := [a e
� b, e

e
� b, e] = [a e

� b, a
e
� e, e], (4.5)

for all a, b ∈ S, makes the abelian group (S, +e) into an associative ring. We denote this 
ring by R(S; e).

For all e, f ∈ T , consider the translation heap automorphism τfe : T −→ T , a �−→
[a, e, f ]; see (3.23). Let e ∈ S and let f ∈ T be such that

λe(f, S) ⊆ S (respectively, �e(S, f) ⊆ S). (4.6)

Then τfe (S) is a left-closed (respectively, right-closed) sub-heap of T and τfe restricts to 
an isomorphism of rings R(S; e) −→ R(τfe (S); f).
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Proof. In order to avoid unwieldy expressions that are too hard to read with ease, in 
what follows we will suppress the indices e in expressions for products, sums and actions, 
and keep them only in places where an action induced by a different element appears.

First we check the equality of two expressions for • in equation (4.5). This follows by 
the application of the symmetry rule (2.2b),

[a � b, e � b, e] = [ab, ae, e, eb, e2, e, e] = [ab, eb, e, ae, e2, e, e] = [a � b, a � e, e].

As a consequence of this equality the operation • is a binary operation on S in both 
cases; if S is left-closed we use the left actions and when S is right-closed we use the 
right ones.

The distributive law for • over + follows by the distributive laws of actions, by the 
absorption rules (4.3) and the rearrangement rules (2.2). Explicitly, for all a, b, c ∈ S,

a • (b + c) = a • [b, e, c] = [a � [b, e, c], e � [b, e, c], e]

= [a � b, e, a � c, e � b, e, e � c, e]

= [a � b, e � b, a � c, e, e, e � c, e]

= [a � b, e � b, e, e, a � c, e � c, e] = a • b + a • c.

The right distributive law follows by symmetry through expressing the multiplication •
in terms of the right induced action. Finally, the associative law for • is a consequence 
of the possibility of expressing of this operation in two different ways in (4.5) and the 
bimodule associative law (4.2). Explicitly, for all a, b, c ∈ S,

a • (b • c) = [a � (b • c), e � (b • c), e]

= [a � b � c, a � b � e, a � e, e � b � c, e � b � e, e � e, e]

= [a � b � c, a � b � e, e, e � b � c, e � b � e]

On the other hand,

(a • b) • c = [(a • b) � c, (a • b) � e, e]

= [a � b � c, e � b � c, e � c, a � b � e, e � b � e, e � e, e]

= [a � b � c, e � b � c, e, a � b � e, e � b � e]

= [a � b � c, a � b � e, e, e � b � c, e � b � e] = a • (b • c),

as required.
By [6, Proposition 4.28], τfe is an isomorphism of T -modules (T, �) and (T, 

f
�), as well 

as T -modules (T, �) and (T, 
f
�), that is, it is an isomorphism of heaps such that, for all 

a, b ∈ T ,
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τfe (a � b) = a
f
� τfe (b) & τfe (b � a) = τfe (b)

f
� b. (4.7)

In particular, it is an isomorphism of groups G(T ; e) −→ G(T ; f) and, hence, if e ∈ S, it 
restricts to the isomorphism of groups G(S; e) −→ G(τfe (S); f). We need to show that 
τfe (S) is a closed sub-heap. Assume that f satisfies the first of conditions in (4.6). Then, 
for all a, b ∈ S,

τfe (a) � b = [a � b, e � b, f � b] = [a • b, e, f � b] ∈ S.

Therefore, by the first of equations (4.7),

τfe (a)
f
� τfe (b) = τfe (τfe (a) � b) ∈ τfe (S),

and hence τfe (S) is left-closed. If the other condition in (4.6) is satisfied, then we can use 
the second of the module map properties (4.7) to draw the required conclusion.

To complete the proof we only need to show that τfe preserves the multiplications. To 
this end let us take any a, b ∈ S and compute,

τfe (a) •f τfe (b) = [τfe (a)
f
� τfe (b), f

f
� τfe (b), f ]

= [[a, e, f ]
f
� τfe (b), f

f
� τfe (b), f ]

= [a
f
� τfe (b), e

f
� τfe (b), f

f
� τfe (b), f

f
� τfe (b), f ]

= [τfe (a � b), τfe (e � b), τfe (e)] = τfe ([a � b, e � b, e]) = τfe (a • b),

where we use the cancellation laws (2.2a) and the module map property (4.7) to derive the 
fourth equality. Therefore, τfe restricted to S is an isomorphism of rings as asserted. �

Since T is closed, there is a family of isomorphic rings R(T ; e) labelled by elements 
e ∈ T . These rings are of the main interest in what follows.

Corollary 4.4. (1) If e is an absorber in a truss T , then, for all a, b ∈ T ,

a • b = ab,

in R(T ; e).
(2) For any ring R, R(T(R); 0) = R. Consequently, for all e ∈ R, R(T(R); e) ∼= R.

Proof. The first statement follows immediately from the definition of an absorber and 
the multiplication • (and the Mal’cev identities), while the second one is a consequence 
of the first one and the second statement of Theorem 4.3. �
Definition 4.5. Let (T, [−, −, −], ·) be a truss and let e ∈ T . A subgroup I ≤ G(T ; e)
is said to be left invariant (respectively, right invariant) if λe(e, I) ⊆ I (respectively, 
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�e(I, e) ⊆ I). The set of all left invariant subgroups of G(T ; e) is denoted by Linv(T ; e)
(respectively, Rinv(T ; e) for right invariant subgroups).

Lemma 4.6. Let (T, [−, −, −], ·) be a truss.

(1) For all natural n, if I ∈ Linv(T ; e), then λe(en, I) ⊆ I (resp. if I ∈ Rinv(T ; e), then 
�e(I, en) ⊆ I).

(2) Let I ≤ G(T ; e) be a subgroup such that e2 ∈ I. Then I ∈ Linv(T ; e) (respectively, 
I ∈ Rinv(T ; e)) if and only if eI ⊆ I (respectively, Ie ⊆ I).

Proof. The first statement follows by the fact that λe and �e are actions of the semigroup 
(T, ·). For the second statement, I ∈ Linv(T ; e), if and only if, for all x ∈ I there exist 
y ∈ I such that

e � x = [ex, e2, e] = y,

that is

ex = [ex, e2, e, e, e2] = [y, e, e2] = y + e2 ∈ I,

as required. �
Proposition 4.7. Let (T, [−, −, −], ·) be a truss. Then P 
= ∅ is a left (respectively, right) 
paragon in T if and only if, for all q ∈ P , τeq (P ) is a left ideal in R(T ; e) such that 
τeq (P ) ∈ Linv(T ; e) (respectively, τeq (P ) is a right ideal in R(T ; e) such that τeq (P ) ∈
Rinv(T ; e)).

Proof. Assume first that P is a left paragon. Then, since a left paragon in T is the same 
as an induced submodule of the left regular module T , τeq (P ) is a left paragon in T by [7, 
Proposition 3.4]. Furthermore, since e ∈ τeq (P ) it is a subgroup of G(T ; e). The paragon 
property implies that τeq (P ) ∈ Linv(T ; e), and, for the same reason, for all a ∈ T and 
x ∈ τeq (P ),

a • x = [a � x, e � x, e] ∈ τeq (P ).

Hence, τeq (P ) is an invariant ideal in R(T ; e).
In the converse direction, assume that P ⊆ T is such that, for all q ∈ P , I := τeq (P )

is an invariant left ideal in R(T ; e). Then, for all a ∈ T and x ∈ I,

a � x = [a � x, e � x, e, e, e � x] = [a • x, e � x, e] ∈ I,

so I is a paragon in T . Since P = τ qe (I) = {[x, e, q] | x ∈ I}, it is a paragon as well by 
[7, Proposition 3.4]. �
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Presently, we describe a homothetic extension of R(T ; e) that contains T .

Theorem 4.8. Let T be a truss and e ∈ T . Define the double operator ε on the abelian 
group G(T ; e) by

εa = e � a, aε = a � e, (4.8)

for all a ∈ T . Then

(1) The pair (ε, e2) is a homothetic datum on R(T ; e).
(2) As trusses, T = T(ε, e2).

Proof. Since ε is given by truss actions that preserve e, both maps are group endomor-
phisms of G(T ; e). To prove that ε is a double homothetism the following properties need 
to be checked, for all a, b ∈ T :

e � (a • b) = (e � a) • b, (4.9a)

(a • b) � e = a • (b � e), (4.9b)

a • (e � b) = (a � e) • b, (4.9c)

e � (a � e) = (e � a) � e. (4.9d)

We start by proving equation (4.9a). By the bimodule property (4.2), the definition 
of multiplication •, and the distributivity of actions

e � (a • b) = e � [a � b, a � e, e] = [e � (a � b), e � (a � e), e]

= [(e � a) � b, (e � a) � e, e] = (e � a) • b,

as required. The equality (4.9b) is proven by the same arguments (but using the other 
equivalent definition of the product •). The multiplier property (4.9c) is also proven by 
direct calculations. On one hand,

a • (e � b) = [a � (e � b), e � (e � b), e]

= [ae � b, e2 � b, e] = [aeb, ae2, e3, e2b, e],

where we have used the fact that � is a left action and its definition as well as the 
rearrangement and cancellation properties (2.2). On the other hand, using analogous 
properties of the right action we find

(a � e) • b = [(a � e) � b, (a � e) � b, e]

= [e � eb, a � e2, e] = [aeb, e2b, e3, ae2, e]

= [aeb, ae2, e3, e2b, e] = a • (e � b),
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as required. The final double homothetism condition (4.9d) is a special case of the bi-
module property (4.2).

Directly by the definition of the actions,

εe2 = e � e2 = [e3, e2, e] = e2 � e = e2ε,

hence the first of conditions (3.19) is satisfied. Furthermore, since � is an action, for all 
a ∈ T ,

ε2a− εa = e2 � a− e � a = [e2 � a, e � a, e] = e2 • a.

In a similar way aε2 − aε = [a � e2, a � e, e] = a • e2, hence ε2 = ε + e2 as required for 
the second of conditions (3.19). This proves statement (1).

Since the heap structure of a retract of a heap is equal to the original heap structure, 
T and T(ε, e2) are mutually equal as heaps. Let us denote by ◦ the product in T(ε, e2). 
Then, for all a, b ∈ T ,

a ◦ b = a • b + aε + εb + e2

= [ab, ae, e, eb, e2, e, ae, e2, e, e, eb, e2, e, e, e2]

= [ab, ae, e, eb, e2, e, ae, e2, eb]

= [ab, ae, ae, eb, e, e, e2, e2, eb] = ab,

where the fourth and last equalities follow by a repetitive use of the cancellation rule 
(2.2a), while the fifth equality follows by the symmetry rule (2.2b) under the cyclic 
permutation of odd indices (3, 7, 5). Therefore, the trusses are equal as stated. �
Definition 4.9. Let T be a truss and e ∈ T , then the ring R(T ; e)(ε, e2) is called an infinite 
homothetic extension ring of T and is denoted by T (e). Similarly, the ring R(T ; e)c(ε, e2)
(if it exists) is called a finite homothetic extension ring of T and is denoted by T c(e).

In view of the definition of the multiplication • in R(T ; e) and since aε = ae − e2 and 
εb = eb − e2 in G(T ; e), the product of ring T (e) built on the abelian group G(T ; e) ×Z

has the explicit form

(a, k)(b, l) = (ab + (l − 1)ae + (k − 1)eb + (k − 1)(l − 1)e2, kl), (4.10)

for all a, b ∈ T and k, l ∈ Z.
The results of Section 3 and Section 4 can be summarised as the following two state-

ments:

(1) There is a one-to-one correspondence between isomorphism classes of trusses and 
weak equivalence classes of extensions of rings by Z. Furthermore, up to translational 
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isomorphism infinite homothetic trusses on a ring R are in one-to-one correspondence 
with equivalence classes of extensions of R by Z.

(2) There is a two-way onto correspondence between trusses with a selected element and 
rings with homothetic data given by

(R, σ, s) �−→ T(σ, s), (T, e) �−→ R(T, e). (4.11)

In particular, every truss is a homothetic truss, that is, it is of the form T(σ, s) for 
some ring R and a homothetic datum on R. Conversely, every ring can be understood 
as a ring associated to a truss T with a chosen element e.

5. Universality of homothetic extensions of trusses

It has been explained in [8] that there is a method of embedding of any truss T in 
a ring by appending T with an absorber (zero). This is based on extending the truss 
multiplication T to the coproduct (direct sum) of T with the singleton truss {0}, T �{0}. 
Presently we review this procedure in brief.

The heap T � {0} consists of odd-length words in letters in T and 0 of the following 
form: fix an element e ∈ T ,

0, a, a e 0, a 0 e 0 e . . . 0 e, 0 a 0 e 0 . . . e 0, a ∈ T ; (5.1)

see [8, Proposition 3.6]. Any word is identified with a word obtained by independent 
permutations of elements in odd positions or even positions (in concord with (2.2b)). 
The operation is by concatenation of words followed by the removal of any pairs of 
identical letters placed in consecutive positions and application of the heap operation to 
any triples of consecutive elements of T . The multiplication in T � {0} is defined by the 
rules, for all a, b ∈ T ,

a · b = ab, a · 0 = 0 · a = 0, (5.2)

and extended to the whole of T � {0} by the truss distributivity. The rules (5.2) imply 
that 0 is the absorber in this truss, the multiplication (5.2) makes the abelian group 
G(T � {0}; 0) into a ring. We denote this ring by T0. Observe that any homomorphism 
of rings ϕ : R −→ R′ as a function is the same as a homomorphism of corresponding 
trusses T(ϕ) : T(R) −→ T(R′), therefore, whenever we write a composition of a truss 
homomorphism ψ : T −→ T(R) with ϕ : R −→ R′, ϕ ◦ ψ we think of T(ϕ) ◦ ψ.

Lemma 5.1. Let T be a truss. An extension T0 has the following universal property. For 
any ring R and a homomorphism of trusses ϕ : T −→ T(R) there exists a unique ring 
homomorphism ϕ̂ : T0 −→ R rendering commutative the following diagram
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T
ιT

ϕ

T(T0)

∃! T(ϕ̂)

T(R),

where ιT : T −→ T(T0) is given by t �−→ t. A pair (T0, ιT ) is a universal arrow (see [19, 
Section III.1, Definition]).

Proof. Let us consider the following commutative diagram of morphisms of trusses:

T(R)

T
ιT

ϕ

T(T0)

ϕ̃

{0},
T(ι0)

T(j)

(5.3)

where j and ι0 are unique ring homomorphisms from the zero object {0} in the category 
of rings. The existence of the unique heap morphism ϕ̃ : T(T0) = T � {0} −→ T(R)
follows by the universal property of the coproduct. That ϕ̃ preserves the zeros and 
multiplications and thus ϕ̃ = T(ϕ̂), for a unique ring homomorphism ϕ̂, follows by a 
routine calculation (left to the reader). �

The following theorem allows one to identify the universal ring extension T0 with an 
infinite homothetic ring extension T (e) of Definition 4.9.

Theorem 5.2. Let T be a truss and e ∈ T . For any a ∈ T and n ∈ Z define the following 
elements of T � {0}:

a[n] =

⎧⎪⎪⎨⎪⎪⎩
a 0 e 0 e . . . 0 e︸ ︷︷ ︸

2n−1

, n > 0

a e 0 e 0 . . . e 0︸ ︷︷ ︸
−2n+3

, n ≤ 0.
(5.4)

Then:

(1) T � {0} = {a[n] | a ∈ T, n ∈ Z}.
(2) The map

χe : T0 −→ T (e), a[n] �−→ (a, n),

is a unique isomorphism of rings such that χe(a) = (a, 1).

Proof. (1) Note that e[0] = e e 0 = 0, hence e[0] = 0, a[n], n ≥ 0, describe all the 
elements of the first four types listed in (5.1) (in particular a[1] = a). Finally,
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0 a 0 e 0 . . . e 0 = e e 0 a 0 e 0 . . . e 0

= e a 0 e 0 e 0 . . . e 0

= [e, a, e] e 0 e 0 e 0 . . . e 0 = [e, a, e][n],

for the negative n such that −2n + 1 is equal to the length of the original word. This 
completes the proof of statement (1).

(2) In view of the assertion of statement (1) and since there are no repetitions of 
elements listed as a[n], it is clear that the map χe is a bijection. By the universal property 
of coproduct it is the unique homomorphism of heaps that fits the diagram

H(T (e))

T
ιT

ιT (e)

T � {0}

χe

{0},
ι0

j

(5.5)

where ιT : a �−→ a = a[1], ι0 : 0 �−→ 0 = e[0], j : 0 �−→ (e, 0) and ιT (e) : a �−→ (a, 1) are 
homomorphisms of heaps. Note that the commutativity of the right hand triangle means 
that χe(0) = (e, 0) so the zero of the ring T0 is transformed to the zero of T (e). Hence 
by Lemma 5.1 the map χe is a (unique) homomorphism of rings.

The additivity of χe can also be checked directly by considering the following four 
cases. For positive k, l ∈ Z,

a[k] + b[l] = a 0 e 0 e . . . 0 e︸ ︷︷ ︸
2k−1

0 b 0 e 0 e . . . 0 e︸ ︷︷ ︸
2l−1

= a 0 b 0 e . . . 0 e︸ ︷︷ ︸
2(k+l)−1

= a e e 0 b 0 e . . . 0 e︸ ︷︷ ︸
2(k+l)+1

= a e b 0 e0 e . . . 0 e︸ ︷︷ ︸
2(k+l)+1

= [a, e, b] 0 e 0 e . . . 0 e︸ ︷︷ ︸
2(k+l)−1

= [a, e, b][k + l],

where we have used the symmetry to swap e with b and other rules of operations in 
T � {0}. Therefore,

χe(a[k] + b[l]) = ([a, e, b], k + l) = (a +e b, k + l) = (a, k) + (b, l) = χe(a[k]) + χe(b[l]).

The case of two non-positive indices is treated in a similar way. Now assume that k > 0
and l ≤ 0 are such that k + l > 1. Then, for all a, b ∈ T ,
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a[k] + b[l] = a 0 e 0 e . . . 0 e︸ ︷︷ ︸
2k−1

0 b e 0 e 0 . . . e 0︸ ︷︷ ︸
−2l+3

= a 0 e 0 e . . . 0 e︸ ︷︷ ︸
2k−1

0 0 e 0 e 0 . . . e b︸ ︷︷ ︸
−2l+3

= a 0 e 0 e . . . 0 b︸ ︷︷ ︸
2(k+l)−1

= a 0 b e 0 e . . . 0︸ ︷︷ ︸
2(k+l)−1

= a e e 0 b e . . . 0 e︸ ︷︷ ︸
2(k+l)+1

= [a, e, b] 0 e . . . 0 e︸ ︷︷ ︸
2(k+l)−1

= [a, e, b][k + l],

where the second, fourth and sixth equalities use the freedom of swapping elements in 
positions with matching parities and the remaining equalities use the cancellation of 
repeated letters and the application of the heap operation in T . Therefore,

χe(a[k] + b[l]) = χe(a[k]) + χe(b[l])

also in this case. The case of k+ l ≤ 1 is treated in a similar way. In conclusion, the map 
χe is an isomorphism of abelian groups.

To check directly that χe preserve multiplication observe that in the ring T0, for all 
a, b ∈ T and k, l ∈ Z,

a[1] · b[1] = ab[1], a[k] + b[l] = (a +e b)[k + l], a[k] = a[1] + (k − 1)e[1], (5.6)

since a[1] = a, + = +0 in T0 and by the additivity of χe. Here the concatenation ab
means the product in T . Using (5.6) and with the understanding that + in-between 
elements of T means +e (i.e. the operation in the retract G(T ; e)), while + in-between 
elements of T0 means +0, we can thus compute,

a[k] · b[l] = (a[1] + (k − 1)e[1]) · (b[1] + (l − 1)e[1])

= ab[1] + (l − 1)ae[1] + (k − 1)eb[1] + (k − 1)(l − 1)e2[1]

= (ab + (l − 1)ae + (k − 1)eb + (k − 1)(l − 1)e2)[kl]

= (ab + (l − 1)ae + (k − 1)eb + (k − 1)(l − 1)e2)[kl].

Hence,

χe(a[k] · b[l]) = (ab + (l − 1)ae + (k − 1)eb + (k − 1)(l − 1)e2, kl)

= (a, k)(b, l) = χe(a[k])χe(b[l]),

by (4.10). Therefore, χe is an isomorphism of rings as stated. �
The identification of the homothetic extension ring T (e) with the ring T0 allows one 

to reveal the universality of the former.
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Corollary 5.3. For any truss T and e ∈ T , the infinite homothetic extension ring T (e)
has the same universal property as T0. That is, for any ring R and a homomorphism of 
trusses ϕ : T −→ T(R) there exists a unique ring homomorphism ϕ̂ : T (e) −→ R such 
that T(ϕ̂) ◦ ιT (e) = ϕ.

Lemma 5.4. Given a truss T and an element e of T , the truss homomorphism ιT (e) :
T −→ T(T (e)) has the following cancellation property. For all truss homomorphisms 
ϕ, ψ : T(T (e)) −→ U such that ϕ(e, 0) = ψ(e, 0),

ϕ ◦ ιT (e) = ψ ◦ ιT (e) implies ϕ = ψ.

Thus, if U = T(R) for a ring R, then for all ring homomorphisms f, g : T (e) −→ R,

T(f) ◦ ιT (e) = T(g) ◦ ιT (e) implies f = g.

Proof. Recall that elements of T (e) are of the form (a, k) ∈ T × Z. We will prove the 
lemma by induction on k (separately for positive and negative integers). Let ϕ, ψ :
T(T (e)) −→ U be truss morphisms such that ϕ(u, 0) = ψ(u, 0), for some u ∈ T , and 
ϕ ◦ ιT (e) = ψ ◦ ιT (e). The second condition means that ϕ(a, 1) = ψ(a, 1), for all a ∈ T . 
Assume that ϕ(a, k) = ψ(a, k) for some positive k ∈ Z and all a ∈ T . Then,

ϕ(a, k + 1) = ϕ ([a, u, u], k − 0 + 1) = ϕ ([(a, k), (u, 0), (u, 1)])

= [ϕ(a, k), ϕ(u, 0), ϕ(u, 1)] = [ψ(a, k), ψ(u, 0), ψ(u, 1)] = ψ(a, k + 1),

since both ϕ and ψ are heap homomorphisms. Similarly, for all k ≤ 1, if ϕ(a, k) = ψ(a, k), 
then

ϕ(a, k − 1) = ϕ ([a, u, u], k − 1 + 0) = ϕ ([(a, k), (u, 1), (u, 0)])

= [ϕ(a, k), ϕ(u, 1), ϕ(u, 0)] = [ψ(a, k), ψ(u, 1), ψ(u, 0)] = ψ(a, k − 1).

Therefore, ϕ = ψ. Finally, since (e, 0) is the zero of the ring T (e) the first condition is 
satisfied with u = e and hence the second assertion follows. �

Since, for every e ∈ T , the ring T (e) is isomorphic to T0, the truss homomorphism 
ιT : T −→ T(T0) defined in Lemma 5.1 has a similar cancellation property:

Corollary 5.5. For all trusses T and for all ring homomorphisms f, g : T0 −→ R, if 
T(f) ◦ ιT = T(g) ◦ ιT , then f = g.

Proof. If T(f) ◦ ιT = T(g) ◦ ιT then T(f) ◦ ιT ◦ T(χ−1
e ) = T(g) ◦ ιT ◦ T(χ−1

e ), where 
χe : T0 −→ T (e) is the ring isomorphism constructed in Theorem 5.2. Since ιT ◦T(χ−1

e ) =
ιT (e) by the diagram (5.5), the assertion follows from Lemma 5.4. �
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The universal property of the ring T0 described in Lemma 5.1 gives rise to a func-
tor (−)0 : Trs −→ Ring between categories of trusses and rings, see [19, Section 
IV, Theorem 2(ii)]. For the sake of keeping the presentation self-contained, we add a 
short proof. The functor is given for all trusses T by T �−→ T0, and for all morphisms 
ϕ ∈ HomTrs(T,U) by ϕ �−→ ϕ0 := ι̂U ◦ ϕ, where ̂ denotes the ring homomorphism 
induced from a truss homomorphism via the diagram in Lemma 5.1. Observe that, by 
Lemma 5.1, for all ϕ ∈ HomTrs(T,U) and ψ ∈ HomTrs(U, V ),

T(ψ0 ◦ ϕ0) ◦ ιT = T( ̂ιV ◦ ψ) ◦ T(ι̂U ◦ ϕ) ◦ ιT = T( ̂ιV ◦ ψ) ◦ ιU ◦ ϕ

= ιV ◦ ψ ◦ ϕ = T( ̂ιV ◦ ψ ◦ ϕ) ◦ ιT = T((ψ ◦ ϕ)0) ◦ ιT .

Lemma 5.4 implies that

ψ0 ◦ ϕ0 = (ψ ◦ ϕ)0.

Thus the composition is preserved by the assignment. One can easily check that identity 
morphisms are preserved. Hence, (−)0 : Trs −→ Ring is a functor.

The following proposition follows by [19, Section IV, Theorem 2(ii)], but for the sake 
of the unaccustomed reader, we sketch a proof.

Proposition 5.6. The functor (−)0 is left adjoint to the functor T : Ring −→ Trs.

Proof. For all trusses T and rings R let us consider the functions

αT,R : HomRing(T0, R) −→ HomTrs(T,T(R)), f �−→ T(f) ◦ ιT .

We will show that these functions define a natural isomorphism of bifunctors α :
HomRing((−)0,−) −→ HomTrs(−,T(−)).

The functions αT,R are injective by Corollary 5.5. The universal property in Lemma 5.1
immediately implies that the αT,R are also onto. For naturality, take any rings R, S and 
trusses T , U , and consider homomorphisms f : T0 −→ R, ϕ : U −→ T and g : R −→ S. 
Then

αU,R(f ◦ ιT ◦ ϕ̂) = T(f ◦ ιT ◦ ϕ̂) ◦ ιU = T(f) ◦ ιT ◦ ϕ = αT,R(f) ◦ ϕ,

by Lemma 5.1. Similarly,

αT,S(g ◦ f) = T(g ◦ f) ◦ ιT = T(g) ◦ αT,R(f),

as T(g) = g as functions. Therefore α is a natural isomorphism and the extension to 
rings functor (−)0 is the left adjoint to T. �

Combining Proposition 5.6 with Theorem 5.2 we thus obtain
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Corollary 5.7. For all rings R and trusses T , and for all e ∈ T ,

HomRing(T (e), R) ∼= HomTrs(T,T(R)).

6. Trusses from rings with zero multiplication

The results of Section 3 allow one to associate a truss to a homothetic datum on a ring, 
and thus provide one with a way of constructing trusses. In this and the following section 
we will classify or describe all trusses induced by homothetic data on rings with particular 
properties. We start with the simplest possible rings, those with zero multiplication.

Proposition 6.1. Let R be a ring with zero multiplication. Then:

(1) Any homothetic datum on R consists of an element s ∈ R and a double operator σ
such that

(a) for all a ∈ R, σ(aσ) = (σa)σ,
(b) σ is an idempotent, that is σ2 = σ,
(c) sσ = σs.

(2) Any truss induced by a homothetic datum is isomorphic to T(σ, 0), where σ satisfies 
conditions (a) and (b) above.

(3) Two trusses T(σ, 0) and T(σ′, 0) are isomorphic if an only if there exists an abelian 
group automorphism Φ : R −→ R such that σ′ = Φ∗(σ).

Proof. Since R has zero multiplication, all the bimultiplication conditions (3.3) are au-
tomatically satisfied, so only (3.4) remains, and this is precisely condition (1)(a) in the 
statement of the proposition. For the same reason, s̄ is the zero operation, so the homo-
thetic datum conditions reduce to (1)(b) and (1)(c) above. Any s ∈ R can be reduced 
to zero by choosing Φ = id and v = 2σs − s = 2sσ − s in (3.19). Indeed, in this case,

s′ = s + v + v2 − vσ − σv = s + 2σs− s− 2σsσ + sσ − 2σ2s + σs = 0,

by properties (1b) and (1c) and since R is a ring with zero multiplication. The assertion 
(3) follows immediately from Lemma 3.8 and Lemma 3.9. �

Our aim in this section is to reveal the contents of Proposition 6.1 in a way that could 
lead to the full classification of trusses built on rings with zero multiplication. Recall first 
that a double operator σ : R −→ R can be identified with an ordered pair of additive 
endomaps →σ and 

←
σ on R. Put together, conditions (1a) and (1b) in Proposition 6.1 mean 

that →σ and 
←
σ are commuting idempotents in the endomorphism ring End(R,+). The 

following lemmas are probably well known. We include them for completeness.
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Lemma 6.2. Let S be a ring and e, f ∈ S be idempotent elements. The following state-
ments are equivalent:

(i) ef = fe,
(ii) there exists exactly one triple of orthogonal idempotents (e1, e2, e3) in S such that

e = e1 + e3 & f = e2 + e3. (6.1)

Proof. If the idempotents e and f commute, then setting

e1 = e− ef, e2 = f − fe, e3 = ef,

we obtain a triple of orthogonal indempotent that satisfies (6.1). Suppose (f1, f2, f3) is 
another such triple. Then, since f3 = ef = fe,

f1 = e− ef = e1 & f2 = f − fe = e2,

which proves the uniqueness.
In the converse direction the orthogonality and idempotent property of the ei imply 

that e and f are idempotents and that ef = fe, as required. �
Lemma 6.3. For any abelian group A, there is a bijective correspondence between the 
following sets of data:

(i) ordered pairs (→σ , ←σ ) of commuting idempotents in the ring End(A,+);
(ii) ordered triples (ε1, ε2, ε3) of orthogonal idempotents in End(A,+);
(iii) ordered quadruples (A1, A2, A3, A4) of subgroups of A such that

A = A1 ⊕A2 ⊕A3 ⊕A4.

Proof. The equivalence of statements (i) and (ii) is proven in Lemma 6.2. Given system 
of orthogonal idempotents in (ii) set ε4 = id − ε1 − ε2 − ε3, and then define Ai = Im εi, 
i = 1, . . . , 4. Conversely, given ordered direct sum decomposition of A as in (iii), set the 
εi, i = 1, 2, 3 to be the corresponding projections on the Ai. �
Remark 6.4. There is a freedom in setting up ordering of tuples in Lemma 6.3. In the 
following examples we choose the convention in which

(a) →
σ is a projection on A1 ⊕A3,

(b) ←
σ is a projection on A2 ⊕A3.

As a consequence of this choice:
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(c) →
σ ◦ 

←
σ is a projection on A3,

(d) →
σ − 

→
σ ◦ 

←
σ is a projection on A1,

(e) ←
σ − 

←
σ ◦ 

→
σ is a projection on A2,

(f) A4 = ker →
σ ∩ ker ←

σ .

The identification in (f) follows from the fact that both 
→
σ and 

←
σ are sums of orthogonal 

projections.

With all these results at hand we can now describe all trusses corresponding to rings 
with zero multiplication.

Theorem 6.5. Let A be an abelian group.

(1) For any ordered quadruples A := (A1, A2, A3, A4) of abelian subgroups of A such 
that A = A1 ⊕A2 ⊕A3 ⊕A4, and any elements s ∈ A3 ⊕A4, the multiplication

(a1 + a2 + a3 + a4)(b1 + b2 + b3 + b4) = b1 + a2 + a3 + b3 + s, (6.2)

for all ai, bi ∈ Ai, defines a truss on H(A). We denote this truss by T(A, s).
(2) Any truss T(A, s) is isomorphic to T(A) := T(A, 0), and T(A) ∼= T(B) if and only 

if Ai
∼= Bi, i = 1, . . . , 4.

(3) The product in the homothetic extension T(A)(0) of the truss T(A) is given by the 
following formula,

(a1 + a2 + a3 + a4, k) (b1 + b2 + b3 + b4, l) = (k(b1 + b3) + l(a2 + a3), kl) , (6.3)

for all ai, bi ∈ Ai and k, l ∈ Z.
(4) Any truss arising from or leading to a ring with zero multiplication (in the sense of 

the correspondence (4.11)) is of the form T(A, s).

Proof. If A is equipped with zero multiplication, by Proposition 6.1 and Lemma 6.3 in 
conjunction with Remark 6.4, the pair (A, s) gives a homothetic datum on this ring. The 
truss induced by this datum has multiplication (6.2) since

σ(b1 + b2 + b3 + b4) =→
σ (b1 + b2 + b3 + b4) = b1 + b3,

(a1 + a2 + a3 + a4)σ =←
σ (a1 + a2 + a3 + a4) = a2 + a3.

Hence T(A, s) is a truss, as claimed. The remaining statements follow immediately from 
Proposition 6.1, the product formula (4.10), and the correspondence (4.11). �
Example 6.6. Let A be a nontrivial indecomposable abelian group. Since it cannot be 
written as a direct sum of two non-trivial subgroups, there are four possible ordered 
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quadruples A that necessarily contain one copy of A and three copies of the trivial 
group 0. Multiplications in the corresponding trusses and their homothetic extensions 
are collected in the following table:

A Truss T(A) Extension T(A)(0)
∀a, b ∈ T ∀a, b ∈ T, k, l ∈ Z

(A, 0, 0, 0) ab = b (a, k)(b, l) = (kb, kl)
(0, A, 0, 0) ab = a (a, k)(b, l) = (la, kl);
(0, 0, A, 0) ab = a + b (a, k)(b, l) = (la + kb, kl)
(0, 0, 0, A) ab = 0 (a, k)(b, l) = (0, kl)

Example 6.7. Let p be a prime number and n be any natural number and set A to be 
the abelian group

A = Zn
p = Zp ⊕ Zp ⊕ . . .⊕ Zp︸ ︷︷ ︸

n-times

.

Since Zp is a simple cyclic group all subgroups of A are isomorphic to Zk
p, 0 ≤ k ≤

n. Therefore, up to isomorphism, there are as many ordered partitions of A into the 
direct sum of four subgroups as there are elements n = (n1, n2, n3, n4) ∈ N4 such 
that n1 + n2 + n3 + n4 = n. The corresponding groups are Ai

∼= Zni
p and they are 

uniquely determined by n. Hence, by Theorem 6.5 there are exactly 
(
n+3

3
)

non-isomorphic 
trusses T(A). In view of the formula (6.2) the product in T(A) comes out as, for all 
a = (ai)ni=1, b = (bi)ni=1 ∈ Zn

p ,

ab = (a1 + b1, . . . , an1 + bn1 , bn1+1, . . . bn1+n2 , an1+n2+1, . . . , an1+n2+n3 , 0, . . . , 0)

=
n1∑
i=1

aiei +
n1+n2∑
i=1

biei +
n1+n2+n3∑
i=n1+n2+1

aiei,

where the ei are members of the standard basis for the Zp-vector space Zn
p . Therefore, 

the product in the infinite homothetic extension T(A)(0) is

(a, k)(b, l) =
(

n1∑
i=1

laiei +
n1+n2∑
i=1

kbiei +
n1+n2+n3∑
i=n1+n2+1

laiei, kl
)
.

The ring T(A)(0) can be identified with a particular subring of the ring M2(Zn
p ) of 2 ×2

matrices with entries from the product ring Zn
p as follows. Set

u = (1, . . . , 1︸ ︷︷ ︸
n1 + n2

, 0, . . . , 0︸ ︷︷ ︸
n3 + n4

), v = (1, . . . , 1︸ ︷︷ ︸
n1

, 0, . . . , 0︸ ︷︷ ︸
n2

, 1, . . . , 1︸ ︷︷ ︸
n3

, 0, . . . , 0︸ ︷︷ ︸
n4

).

The collection of all upper-triangular matrices
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U :=
{(

ku a
0 kv

)
| a ∈ Zn

p , k ∈ Z

}
is a subring in M2(Zn

p ), since both u and v are idempotents. The function

T(A)(0) −→ U, (a, k) �−→
(
ku a
0 kv

)
,

is the required isomorphism of rings.
Since the abelian group Zn

p has the exponent p, the cyclic version of the homothetic 
extension exists. Its description is obtained by replacing Z by Zp in the above formulae.

7. Trusses from rings with trivial annihilators

For a ring R we denote by

a(R) = {a ∈ R | ∀r ∈ R, ra = ar = 0},

the annihilator ideal of R. In this section we describe all trusses that can be associated to 
a ring with the trivial annihilator. We start by gathering some properties of homothetisms 
in this case (the first two are well known, see e.g. [1, Section 2]).

Lemma 7.1. Let R be a ring such that a(R) = 0. Then

(1) The map

β : R −→ Ω(R), a �−→ ā,

is injective (a monomorphism of rings).
(2) Π(R) = Ω(R).
(3) For all σ ∈ Ω(R) and s ∈ R such that σ2 = σ + s̄,

sσ = σs.

Proof. If a, c ∈ R are such that ā = c̄, then, for all b ∈ R,

(a− c)b = 0 & b(a− c) = 0,

and thus a = c since a(R) = 0. This proves statement (1). For any σ ∈ Ω(R) and a ∈ R, 
conditions (3.3) imply that

(σa)σ = σ(aσ),

and hence (3.4) follows by assertion (1), and thus every bimultiplication is self-
permutable, i.e. a homothetism, as required.
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Take σ and s such that σ2 − σ = s̄. Then,

σs̄− s̄σ = σ(σ2 − σ) − (σ2 − σ)σ = 0.

The assertion (3) then follows by (3.7) and assertion (1). �
Theorem 7.2. Let R be a ring such that a(R) = 0. There is a bijective correspondence 
between isomorphism classes of homothetic trusses on R and equivalence classes of idem-
potents in the ring Ξ(R) of outer bimultiplications on R (with respect to the relation 
defined in Definition 3.5).

Proof. Let ξ : Ω(R) −→ Ξ(R) be the canonical surjection. By Lemma 7.1, (σ, s) is a 
homothetic datum on R if and only if ξ(σ) is an idempotent in Ξ(R). Let σ, τ ∈ Ω(R) =
Π(R) such that both ξ(σ) and ξ(τ) are equivalent idempotents. This means that there 
exist s, t, v ∈ R and a ring automorphism Φ : R −→ R such that

(a) σ2 − σ = s̄,
(b) τ2 − τ = t̄,
(c) τ = Φ∗(σ − v̄).

The claim (c) follows from the facts that ξ(τ) = Φ�(ξ(σ)), where Φ� is the ring homomor-
phism given by the diagram (3.10), and that Φ∗ is an automorphism of Ω(R) mapping 
inner bimultiplications into inner ones. Therefore,

t̄ = τ2 − τ = Φ∗((σ − v̄)2 − σ + v̄)

= Φ∗(σ2 − v̄σ − σv̄ + v̄2 − σ + v̄)

= Φ∗(s̄− v̄σ − σv̄ + v̄2 + v̄) = Φ(s− vσ − σv + v2 + v).

The last equality follows by the combination of (3.7) and (3.9). By Lemma 7.1,

t = Φ(s− vσ − σv + v2 + v),

and in view of Lemma 3.8, T (σ, s) ∼= T (τ, t) as required.
In the converse direction, in view of Lemma 3.9, if T (σ, s) ∼= T (τ, t) then here exist a 

ring automorphism Φ of R and an element v of R such that

τ = Φ∗(σ − v̄) = Φ∗(σ) − Φ∗(v̄) = Φ∗(σ) − Φ(v),

and hence ξ(τ) = Φ�(ξ(σ)), so that the corresponding idempotents in Ξ(R) are equivalent 
in the sense of Definition 3.5. �

Theorem 7.2 has a quite surprising consequence for one-sided maximal ideals in simple 
rings with identity.
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Theorem 7.3. Let I be a maximal right (resp. left) ideal in a simple ring with identity 
R. Up to isomorphism there are exactly two trusses T on the heap H(I) such that I =
R(T ; 0):

(a) T(I), i.e. the truss with the same multiplication as that in I,
(b) the truss with multiplication given by the formula

I × I −→ I, (a, b) �−→ ab + a + b.

Proof. The proof of this theorem relies on a connection between extensions of rings to 
the ring of bimultiplications and maximal essential ring extensions introduced by Beidar 
[3], [4]. A ring ME(I) is called a maximal essential extension of a ring I if I is an essential 
ideal in ME(I), and for any ring S that contains I as an essential ideal, there exists a 
ring homomorphism ψ : S −→ ME(I) such that ψ(x) = x, for all x ∈ I. Beidar proves 
that if I is any right ideal of a ring R with identity such that RI = R, then

ME(I) = Id(I) := {a ∈ R | aI ⊆ I}, (7.1)

the idealiser of I in R, i.e. the largest subring of R containing I as an ideal. In particular, 
the equality (7.1) holds for any right ideal in a simple ring R with identity.

The notion of an idealiser was introduced by Ore [21] and thoroughly studied by 
Robson in [26]. In particular in [26, Proposition 1.1] Robson proves an extension of [13, 
Satz 1], thus establishing an isomorphism of rings

Id(I)/I ∼= EndR(R/I), a + I �−→ [r + I �−→ ar + I].

On the other hand a theorem of Flanigan [14] (see [1] for an elementary proof) states 
that a ring I admits a maximal essential extension if and only if it has a trivial annihilator. 
In that case I may be identified with the essential ideal I of Ω(I). If S is any ring that 
contains I as an essential ideal, then the map

ψ : S −→ Ω(I), s �−→ [s̄ : (a �−→ sa, a �−→ as)],

is a ring homomorphism such that ψ(a) = ā, for a ∈ I. Therefore ME(I) ∼= Ω(I).
If I is a right ideal in a simple ring R, then putting all this information together we 

obtain the following chain of isomorphisms of rings

Ξ(I) = Ω(I)/Ī ∼= ME(I)/I ∼= Id(I)/I ∼= EndR(R/I).

If, furthermore, I is a maximal right ideal, then R/I is a simple right R-module, hence, by 
the Schur Lemma, EndR(R/I) is a division ring, and so is the ring of outer bimultiplica-
tions Ξ(I). Therefore, I and id+I are the only idempotents in Ξ(I), and by Theorem 7.2, 
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there are precisely two isomorphism classes of homothetic trusses on I. The correspond-
ing rings (with the zero of I as the neutral element of the additive group) come out as 
stated in (a) and (b).

The left ideal case is treated in an analogous way. �
We conclude this section with an extensive example which provides one with the 

full classification (up to isomorphism) of trusses that can be constructed on the heap 
determined by the abelian group Zp ⊕ Zp, where p is a prime number.

Example 7.4. It is well-known that there are eight isomorphism classes of rings built on 
the abelian group Zp ⊕ Zp. These are:

(i) the field of p2-elements, Fp2 ;
(ii) the product ring Zp × Zp;
(iii) the dual numbers ring Zp[x]/(x2);
(iv) the zero ring Z0

p × Z0
p;

(v) the row matrix ring 
(
Zp Zp

0 0

)
;

(vi) the column matrix ring 
(

0 Zp

0 Zp

)
;

(vii) the half-zero ring Zp × Z0
p;

(viii) the quotient ring xZp[x]/x3Zp[x].

Rings (i)–(iii) have identity so by Proposition 3.12 each one of them admits exactly 
one isomorphism class of homothetic trusses. The full classification of homothetic rings 
on the zero ring in (iv) can be obtained from Theorem 6.5. Following this theorem we 
obtain ten such types of rings (the full list is given in the table below). Rings (v) and (vi) 
are maximal right respectively left ideals in a simple ring with identity, and so each one 
of them will admit exactly two non-isomorphic homothetic trusses by Theorem 7.3. The 
ring (vii) is the product of a ring with identity and the zero ring on an indecomposable 
group, hence the classification can be obtained by Proposition 3.13 and Example 6.6, 
and there are four non-isomorphic trusses in this case. Thus it remains only to study the 
final case (viiii).

The ring xZp[x]/x3Zp[x] is a commutative Zp-algebra with a basis x, x2 subject to 
the relation x3 = 0. Let σ be a double homothetism and suppose that

σx = ax + bx2 & xσ = cx + dx2.

Then the module properties imply that σx2 = ax2 and x2σ = cx2, and (xσ)x = x(σx)
implies that a = c. Now, the condition (σx)σ = σ(xσ) is automatically satisfied, and 
hence any homothetism is of the above form with a = c. We thus obtain

σ2x = a2x + 2abx2 & xσ2 = a2x + 2adx2.
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Let s = s1x + s2x
2. Then the condition σ2 = σ + s̄ yields,

a2 = a & s1 = 2ab− b = 2ad− d.

Since Zp is a field, b = d and there are only the following solutions to these equations: 
a = 0, s1 = −b and a = 1, s1 = b. In the first case σ is the inner homothetism σ = bx, 
and so the corresponding truss has the same multiplication as R. In the other case, one 
easily finds that the corresponding truss is isomorphic to T(id, 0) by setting Φ = id
and v = bx − s2x

2. These two trusses are not isomorphic by Proposition 3.12 since 
xZp[x]/x3Zp[x] has no identity.

Since every truss on a given abelian heap is a homothetic truss on the ring on the 
corresponding abelian group, we have obtained a full classification of non-isomorphic 
trusses on the heap H(Zp ⊕ Zp). There are 23 such (classes of) trusses, which we list in 
the following table.

Ring R on Zp ⊕ Zp
Product 	 in the truss T(σ, s),
for all a = (a1, a2), b = (b1, b2) ∈ R

Fp2 a 	 b = ab

Zp × Zp a 	 b = ab

Zp[x]/(x2) a 	 b = ab

Z0
p × Z0

p

a 	 b = 0; a 	 b = b; a 	 b = a; a 	 b = a + b;
a 	 b = (a1, 0); a 	 b = (0, b1); a 	 b = (a1 + b1, b2);
a 	 b = (a1 + b1, a2); a 	 b = (a1 + b1, 0); a 	 b = (a1, b2)(

Zp Zp

0 0

)
a 	 b = ab; a 	 b = ab + a + b(

0 Zp

0 Zp

)
a 	 b = ab; a 	 b = ab + a + b

Zp × Z0
p

a 	 b = (a1a2, b1); a 	 b = (a1a2, b2);
a 	 b = (a1a2, 0); a 	 b = (a1a2, b1 + b2)

xZp[x]/x3Zp[x] a 	 b = ab; a 	 b = ab + a + b

8. Conclusions and outlook

The main aim of this work was to place a novel theory of trusses on the more familiar 
ground of classical ring theory. The results presented here show that trusses can be 
viewed as a different way of dealing with ring extensions, more precisely those that arise 
from Redei’s double homothetisms or ideal extensions of rings by the ring of integers. 
In short one can make the following heuristic statement: up to translations trusses are 
equivalence classes of ring extensions by integers. Despite this closeness of trusses and 
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ideal ring extensions the results of the paper show that trusses cannot be reduced to 
rings. Our final example, which demonstrates that there are 23 different isomorphism 
classes of trusses on the abelian group Zp ×Zp, as opposed to only 8 ring classes on the 
same group, might serve as a justification for this claim.

From a universal algebra point of view trusses are not as complicated algebraic sys-
tems as rings, let alone, ring extensions, hence, in our opinion should hopefully provide 
one with quite an effective way of describing such extensions. On the one hand the re-
sults of this paper point to applications of trusses to ring theory and homological algebra, 
while on the other the vast existing knowledge about ring extensions should feed into the 
theory of trusses. For example, studying all possible (and, specifically, non-trivial) ring 
structures supported on a given abelian group or characterising groups by types of rings 
which they support are long-standing problems in algebra (see e.g. [20]). This can now 
be translated into the classification problem of trusses. Classification of ring extensions, 
normally undertaken by homological methods, can be replaced by classification of homo-
thetic trusses on a given ring. Since all extensions of rings can be understood as arising 
from families of permutable bimultiplications or amicable homothetisms, developing the 
connections described in this paper to families of homothetisms might produce new tech-
niques for studying more general classes of extensions. Trusses arose as an attempt to 
understand connections between braces and rings. Once developments presented here 
are extended to near-rings and their extensions, novel methods of classifying and con-
structing braces and thus solutions of the set-theoretic Yang-Baxter equation might be 
obtained. One of the key obstacles to study categories of modules over trusses, such as 
those encountered in the definition of projectivity [9], arise from the fact that modules 
over trusses are enriched over the category of abelian heaps, which is not an abelian 
category. Employing the ring theoretic language of extensions and thus working over an 
abelian category, might lead to better understanding what modules over a truss really 
are or how they can be defined in the most effective way.

In short, we believe that the structural simplicity of trusses and the richness of their 
connections with other, well-understood, algebraic systems, while allowing one to “play 
gracefully with ideas” (Oscar Wilde, De Profundis), will lead to an enhancement of the 
algebraic landscape.
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