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Abstract

Low energy positron clouds from a buffer gas trap have been characterised and
compressed by a novel double rotating wall (RW) electric field. A theoretical
and experimental study comparing compression due to dipolar single and double
RW electric fields is presented, with details of a custom-built function generator
capable of operating on two sets of four, six, and eight-segment electrodes. The
installation of a cylindrical Penning trap with two sets of six-segment RW elec-
trodes has allowed the implementation of a double RW, which provides a better
approximation to the electric potential in the model for independent charged par-
ticle compression. A reduction in particle heating has been observed with the
double RW, whilst obtaining at least equivalent compression as the single RW,
which may in future allow a reduction in the minimum attainable cloud width.

Without the use of RW electric fields, optimisations to positron ejection and
recapture techniques led to positron clouds being held in a deep, harmonic poten-
tial well for over 100 s, enabling time to study RW electric fields and to perform
resistive cooling experiments.
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Crynodeb

Mae cymylau o bositronau egni isel sy’n dod o drap nwy byffer wedi cael eu
nodweddu a hefyd wedi’u cywasgu gan faes trydanol wal cylchdroöl (RW) dwbl
newydd. Cyflwynir astudiaeth ddamcaniaethol ac arbrofol sy’n cymharu’r cywas-
giad gan feysydd trydanol deupol RW sengl a dwbl, a hefyd cynhwysir manylion
am eneradur ffwythiant a gafodd ei adeiladu’n arbennig gyda’r gallu i weithredu
dwy set o electrodau segmentiedig gyda phedwar, chwech neu wyth segment.
Gosodwyd trap Penning silindrog gyda dwy set o electrodau RW chwe-segment i
weithredu’r RW dwbl, sy’n rhoi brasamcan gwell o’r potensial trydanol sydd yn
y model ar gyfer cywasgu gronynnau gwefredig annibynnol. Gwelwyd gostyngiad
mewn gwresogiad gronynnau gyda’r RW dwbl, tra bod o leiaf cywasgiad sy’n gy-
fatebol â’r RW sengl. Yn y dyfodol, gallai hyn ganiatáu gostyngiad mewn isafswm
lled cwmwl o ronynnau gwefredig.

Heb ddefnyddio meysydd trydanol RW, arweiniodd optimeiddiaeth o’r tech-
negau allyrru ac ail-ddal positronau at gymylau yn cael eu trapio mewn pant
potensial dwfn harmonig am dros 100 s, gan roi amser digonol i astudio meysydd
trydanol RW ac i berfformio arbrofion oeri gwrtheddol.

ii



iii



Contents

Abstract i

Contents iv

Acknowledgements vii

List of Figures ix

List of Tables xv

List of Symbols xvi

1 Introduction 1
1.1 Positrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Positron Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Penning Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Swansea University Positron Beamline 11
2.1 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Gas System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Growing a Moderator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Steering Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Solenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



CONTENTS v

2.5.3 Pancake Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 The 2-Stage Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 The 3rd Stage Accumulator . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Trapped Charged Particle Motion . . . . . . . . . . . . . . . . . . . . . 27
2.10 Particle Trapping Model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 The 3rd Stage Harmonic Potential Well 34
3.1 Penning Trap Electrostatic Potential . . . . . . . . . . . . . . . . . . . 34
3.2 Superposition of the Laplace Equation Solution . . . . . . . . . . . . . 38
3.3 Potential Well Computational Optimisation . . . . . . . . . . . . . . . 38
3.4 Determining Motional Frequencies A Priori . . . . . . . . . . . . . . . 40
3.5 Experimental Recapture and Ejection Optimisation . . . . . . . . . . . 42
3.6 Determining Motional Frequencies Experimentally . . . . . . . . . . . . 45
3.7 Lifetime Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Parallel Energy Measurements . . . . . . . . . . . . . . . . . . . . . . . 49
3.9 Single-shot Temperature Measurements . . . . . . . . . . . . . . . . . . 51

3.9.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9.2 Temperature Measurement Application . . . . . . . . . . . . . . 57

4 Rotating Wall Electric Fields 60
4.1 Single Rotating Wall in the 2-Stage Trap . . . . . . . . . . . . . . . . . 62
4.2 Double Rotating Wall in the 3rd Stage Accumulator . . . . . . . . . . . 63
4.3 Penning Trap Potential in Cylindrical Coordinates . . . . . . . . . . . . 63

4.3.1 Solution in V± Coordinates . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Single vs Double Rotating Wall Electric Field Potential . . . . . 65

4.4 Effective Amplitude Scaling Factor . . . . . . . . . . . . . . . . . . . . 67
4.5 Double Rotating Wall in Cartesian Coordinates . . . . . . . . . . . . . 69
4.6 Double Rotating Wall General Laplace Solution . . . . . . . . . . . . . 72

4.6.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Equations of Motion with Damping . . . . . . . . . . . . . . . . . . . . 77

4.7.1 Compression Model . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.2 Single Particle Motion With Scaled Parameters . . . . . . . . . 81
4.7.3 Simulated Double Rotating Wall Compression Model in a Non-

ideal Potential Well . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.8 Custom-Built Function Generator . . . . . . . . . . . . . . . . . . . . . 89



CONTENTS vi

4.9 Rotating Wall Experimental Data . . . . . . . . . . . . . . . . . . . . . 90
4.9.1 Rotating Wall Amplitude and Frequency Dependence . . . . . . 91
4.9.2 Rotating Wall Applied Time and Frequency Dependence . . . . 94
4.9.3 Rotating Wall Heating . . . . . . . . . . . . . . . . . . . . . . . 95

5 Towards Resistive Cooling of Positron Clouds 99
5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Oscillations Between Parallel Plates . . . . . . . . . . . . . . . . 100
5.1.2 Oscillations in a Cylindrical Penning Trap . . . . . . . . . . . . 102
5.1.3 Non-destructive Particle Detection by a Tuned Circuit . . . . . 104
5.1.4 Tuned Circuit Detection in a Cylindrical Penning Trap . . . . . 104

5.2 Practical Circuit Design Considerations . . . . . . . . . . . . . . . . . . 105
5.3 Resistive Cooling Experiments . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusions 112
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix A Custom-built AD9959 Function Generator 116

Bibliography 123

Publications List 136



Acknowledgements

Most of my thanks go to Dr Aled Isaac who is a great educator and always made time
for me. I enjoyed my studies and learnt a vast amount from him. Not every supervisor
trusts their PhD student to do a live liquid nitrogen show at a youth festival.

A presentation about antimatter by Professor Mike Charlton originally convinced
me to study undergraduate Physics and I have been hooked ever since, so he has a lot to
answer for, and I have a lot to thank him for. His feedback on my work was invaluable
and I invariably learnt something when in his company. In addition, I would like to
thank Dr Chris Baker for thorough discussions about my data and for his mantra that
the beamline should be used as much as possible, as it won’t work for long. He was
right, although even he had not foreseen that a lengthy shutdown could be caused by
a virus. As my internal assessor, Dr William Bryan provided advice from outside my
positron-centric world, for this I was thankful. Some words of wisdom from Professor
Dirk van der Werf also stuck with me throughout: “if it was easy, then everyone would
do it”. I now appreciate why everyone does not do it.

This work was supported by research scholarships from the Coleg Cymraeg Cened-
laethol (YSG17/04) and the College of Science, Swansea University. The Coleg Cym-
raeg Cenedlaethol were unequivocally supportive of me throughout these studies and
the pandemic. I would especially like to thank Dr Dylan Phillips and Lois McGrath
– diolch yn fawr iawn. I have had many opportunities to share my experiences as a
physicist and to hear from researchers in wide-ranging fields, which I believe has made
me a better scientist, communicator, and citizen of Cymru.

The College of Science technical support staff were supportive by both name and na-
ture, these were Julian Kivell, Hugh Thomas, Phil Hopkins, and Jonathan Woodman-
Ralph, who were always nearby to lend their expertise and to put things in perspective.
Visiting the workshop was like going to a sweet shop. Their knowledge was vital to the
experiment and hearing tales from the past ensured I was aware of my finite lifetime as
a student. During the first year, I enjoyed studying alongside Donovan Newson, which

vii



CONTENTS viii

was lucky as we spent a considerable amount of time training together. I would also
like to wish Rob Clayton and Phil John all the best with the remainder of their studies
in the positron group.

The administrative team of Gill Oliver, Liz Kenny, Sian Conti, Carolyn Martin,
and Sara Fenn always endeavoured to help with paperwork and lend an ear – I was
thankful for their patience. There were also many interesting lunchtime discussions
with the rest of the staff in the Physics department, putting the world to rights whilst
overlooking Swansea Bay.

I would like to express my inexpressible thanks to Meg for being so understanding
and supportive throughout my time at university, she saw the highs and the lows –
diolch o galon. Spending time with friends also provided a welcome tonic and their
faith in me often gave me a boost, although they may not have realised it. Finally,
my family gave me the freedom to choose what I wanted to do and only ever tried to
pressure me to work less, for that I am very grateful. These years were the hardest of
my life for many reasons but I always aimed to make you proud.



List of Figures

1.1 The first published image of a positron in 1933 by Carl Anderson [An-
derson, 1933]. The positron came from a cosmic ray and was detected
in a cloud chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Comparison of the typical energy spectrum of β+ particles from a ra-
dioactive sodium-22 source (blue) with the narrow energy distribution
of moderated positrons by a typical neon moderator (orange). Modera-
tion results in an increased positron yield at low energy and a narrower
energy distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Positron interaction with a material. . . . . . . . . . . . . . . . . . . . 7
1.4 Schematic cross-section at the centre of a hyperbolic Penning trap. . . . 9

2.1 Schematic of Swansea University’s positron beamline. . . . . . . . . . . 12
2.2 Pumping diagram schematic for the Swansea University positron beamline. 14
2.3 An example neon moderator growth curve. . . . . . . . . . . . . . . . . 16
2.4 (Top) CAD drawing of the 2-stage trap which comprises of the gold

cylindrical electrodes in their frame. (Middle) Trap cross-section with
the location of the buffer gas inlet and the corresponding pressures in
each stage. The location of a typical positron cloud is shown in red.
(Bottom) The on-axis total electric potential in the 2-stage trap. . . . . 17

2.5 Schematic of the MCP set up for positron detection in X-4 (not to scale),
showing the MCP plates as an array of single channel electron multipliers. 19

2.6 An example of the spatial distribution of the positron cloud, (left) a raw
CCD image of a positron cloud, and (centre) equation 2.1 fitted to the
raw data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Drawing of the cylindrical gold plated aluminium electrodes in the 3rd
stage (side-view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



LIST OF FIGURES x

2.8 Motion of a charged particle in a Penning trap (black), magnetron mo-
tion (blue) and the ‘guiding centre’ combination of the axial bounce and
magnetron motion (red). The total motion is obtained by addition of
the guiding centre and the cyclotron motion. . . . . . . . . . . . . . . . 29

2.9 An example showing the number of positrons after accumulating in the
2-stage trap with an applied rotating wall. . . . . . . . . . . . . . . . . 31

3.1 A schematic of a Penning trap with a cylindrical electrode and two
cylindrical endcaps, which is the geometry used to calculate the resultant
electric potential from an electrode. . . . . . . . . . . . . . . . . . . . . 36

3.2 Schematic of the electrodes in the 3rd stage accumulator and the corre-
sponding numbering system. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 The on-axis electric potential produced by each electrode from table 3.1. 39
3.4 a) The calculated on-axis electric potential, φ(z) (blue), and the ideal

harmonic form (red), which has been centred to the centre of the 3rd
stage. b) The difference between the calculated values and the ideal
form is then plotted as a residual plot. . . . . . . . . . . . . . . . . . . 40

3.5 Calculated axial bounce frequency, fz, in the 3rd stage optimised har-
monic potential as a function of particle parallel energy, E‖ at various
radial positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 The number of retrapped positrons as a function of delay time between
ejection from the 2-stage trap and raising the potential at the entrance
of the 3rd stage accumulator for retrapping. . . . . . . . . . . . . . . . 43

3.7 Positron number as a function of sinusoidal driving frequency, as mea-
sured by a CsI detector, with standard error on four repeats, fitted with
equation 3.15 to give f0 = (10.551± 0.007) MHz and σ = (121± 8) kHz.
The frequency at which the most positrons have been driven out of the
harmonic potential corresponds to a resonance near the axial bounce
frequency of the cloud, thus fz ≈ 10.55 MHz. . . . . . . . . . . . . . 45

3.8 Positron number as a function of sinusoidal driving frequency, as mea-
sured by a CsI detector, with standard error of four repeats, fitted with
equation 3.15 to obtain the resonant frequency at which most positrons
have been driven out of the potential well, f0 = (50.4 ± 0.1) kHz,
with a width of σ = (0.6± 0.1) kHz. The resonant frequency corre-
sponds to a resonance near the magnetron frequency of the cloud, giving
fm ≈ 50.4 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



LIST OF FIGURES xi

3.9 x–y plane positron cloud centre as a function of hold time, from MCP
signal images fitted by a 2D Gaussian from equation 2.1. . . . . . . . . 47

3.10 Natural logarithm of positron number as a function of hold time in the
3rd stage, as measured by a CsI detector, with a linear least squares
fit to highlight the two component lifetime. Fitting equation 2.26 to
the positron number gave a lifetime τ = (101.1 ± 9.7) s in blue for
the first 50 s and τ = (29.9± 2.0) s shown in red afterwards. Radial
expansion eventually causes the positrons to annihilate against the vac-
uum chamber after ≈ 55 s, causing additional loss and a decrease in the
lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 Measurement of the complementary cumulative distribution function for
the positron parallel energies ejected from the 2-stage. . . . . . . . . . . 50

3.12 Measurement of the complementary cumulative distribution function
for the positron parallel energies ejected from the 3rd stage after be-
ing trapped for 5 s in the harmonic potential. . . . . . . . . . . . . . . 51

3.13 The calculated total radial electric potential in the 3rd stage, φ(r), at
the centre of electrode E3 which applies the barrier voltage during the
temperature measurement, obtained from the Laplace equation solver. . 55

3.14 The calculated total electric potential in the 3rd stage harmonic well,
for r = 0 mm (blue) on-axis and at r = 10 mm (orange). . . . . . . . . 56

3.15 An example of the raw signals from a single-shot temperature measure-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.16 An example of the analysed signal from a single-shot temperature mea-
surement. The natural logarithm of detected charge from the MCP is
plotted as a function of exit voltage. . . . . . . . . . . . . . . . . . . . 59

3.17 The temperature in the 3rd stage harmonic potential as a function of
hold time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 The magnetron motion of a charged particle in a Penning trap, consid-
ered as a rotation about the top of a potential hill. . . . . . . . . . . . 61

4.2 Numerical simulation of the on-axis RW potential in the 3rd stage, as a
function of axial position. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Gradient with respect to z of the simulated on-axis potential of the single
and double RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



LIST OF FIGURES xii

4.4 Cross section of the central three electrodes along the z-axis with end-
caps, not to scale, showing the polarity of the double RW applied biases
and defining lengths: z0, which is half of the centre electrode; and z1,
which is z0 plus the length of one set of six-segment electrodes. The
dotted vertical line denotes where z = 0, which is the centre of the
electrode stack of length 2L. . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Radial cross section of six-segment RW electrodes, with the applied bi-
ases as shown on each segment. . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Graphical representation of the boundary conditions a) f(z) for the seg-
mented electrode of length z1 − z0 (blue), with Fourier series truncated
at 40 terms (orange). b) t(θ) for the segmented electrode between −π
and π (blue), with Fourier series truncated at 40 terms (orange). . . . . 76

4.7 Time evolution of the radial cross section of the rotating dipole electric
field due to a six-segment electrode. . . . . . . . . . . . . . . . . . . . . 77

4.8 Fitted Gaussian width of the cloud plotted against applied double RW
time, σ(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 a) Numerical simulation of the particle compression rate as a function
of single RW frequency. b) Numerical simulation of the particle com-
pression rate as a function of double RW frequency. . . . . . . . . . . . 81

4.10 Comparison of the numerical simulation of the particle compression rate
as a function of single RW frequency (blue) and double RW frequency
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Numerical simulation of the particle compression rate as a function of
single RW frequency for various amplitudes. . . . . . . . . . . . . . . . 83

4.12 Positron number as measured by a CsI detector, as a function of single
RW frequency (co-rotating with the particles). . . . . . . . . . . . . . . 84

4.13 a) Numerical simulation of the particle expansion rate as a function of
single RW frequency. b) Numerical simulation of the particle expansion
rate as a function of double RW frequency. . . . . . . . . . . . . . . . . 85

4.14 Simulated width of the charged particle cloud as a function of time, σ(t),
when the double RW is applied. . . . . . . . . . . . . . . . . . . . . . . 86



LIST OF FIGURES xiii

4.15 Simulated double RW compression rate, as a function of double RW
frequency, Γ(fr) with a = 10 e/m. a) Varying particle energy to show
the effects of cooling on the frequency of Γmax, as fz(E‖). b) Varying
RW amplitude with E‖ = 0, to show its effect on the width of the cusp
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.16 Simulated width of the charged particle cloud as a function of double RW
frequency, σ(fr). A realistic initial width of σ0 = 40 mm was chosen.
a) RW applied for various times with a = 10 e/m. b) RW applied at
various amplitudes a, with t = 0.7 s, showing that the amplitude affects
the form of the observed σ(fr). . . . . . . . . . . . . . . . . . . . . . . 88

4.17 Simulated width of the charged particle cloud as a function of double
RW frequency, σ(fr), varying the constant expansion term γ. The RW
effect was computed using an amplitude a = 10 e/m for t = 0.5 s. A
realistic initial width of σ0 = 40 mm was chosen. . . . . . . . . . . . . 89

4.18 Schematic wiring diagram of the set-up to control the two sets of six-
segment electrodes for the double RW in the 3rd stage accumulator. . . 91

4.19 Positron number as measured by CsI signal, as a function of RW fre-
quency for the double and single RW at various applied amplitudes,
Vr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.20 Experimental data for fitted Gaussian width of the cloud as a function
of RW frequency, σ(fr), for single and double RW at various amplitudes
in the 3rd stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.21 Experimental data for fitted Gaussian width of the cloud as a function
of double RW time, σ(t), in the 3rd stage. . . . . . . . . . . . . . . . . 95

4.22 Largest parallel energy of the positron cloud against hold time in the
harmonic potential in the 3rd stage accumulator, with no RW applied. 96

4.23 a) Temperature and b) cloud width σ as a function of RW time for the
double and single RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 A schematic of a charged particle of mass m and charge q oscillating at
ωz between two parallel plates, which are separated by a distance of 2z0

and connected to a resistor R. . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Resistive cooling time constant, τnat, for a positron as a function of

circuit quality factor, QF . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 High pass filter and resistive cooling circuit diagram drawn in NI Multisim.107



LIST OF FIGURES xiv

5.4 Simulated frequency sweep to obtain a resonance curve for the resistive
cooling circuit model in NI Multisim. . . . . . . . . . . . . . . . . . . . 108

5.5 Schematic of the 3rd stage cylindrical Penning trap with the LCR resis-
tive cooling circuit connected to an electrode, where the applied static
bias is not shown. A positron cloud is shown as a yellow sphere at (r,z)
in cylindrical coordinates, not to scale. . . . . . . . . . . . . . . . . . . 109

5.6 Experimental resonance curve, where the signal amplitude as a function
of frequency was measured by a spectrum analyser. . . . . . . . . . . . 110

5.7 Plot of temperature as a function of hold time in the 3rd stage harmonic
well after a 0.5 s initial hold for thermalisation. . . . . . . . . . . . . . 111

A.1 Annotated photograph of the AD9959 evaluation board, taken from the
datasheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Photograph inside the 19” rack-mount box of the AD9959 RW function
generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 a) Top view of the SN74128N line driver from the datasheet, where A
and B are inputs and Y is the output. b) Buffer for the double RW
function generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.4 Schematic of the power distribution board, containing two power supply
units (PSU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



List of Tables

3.1 The 3rd stage accumulator electrodes listed from upstream to down-
stream, with their lengths and applied biases for an electrostatic poten-
tial well which is approximately harmonic in z. The internal radius of
each electrode is r0 = 20.5 mm. . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Parameters for various cooling gases at a pressure of 2 × 10−8 torr
(≈ 2.7× 10−8 mbar): annihilation time, τa; measured cooling time, τc;
and vibrational quanta, Eν . Data from [Greaves and Surko, 2001]. . . . 62

xv



List of Symbols

This list describes several symbols used within the body of the document.

v Vectors are given in bold typeface

ẑ Unit vectors are given using ‘hat’ notation

r The radial vector (r = xx̂ + yŷ)
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Chapter 1

Introduction

“We are obsessed with ourselves, we study our history, our psychology,
our gods. Much of our knowledge revolves around man himself, as if
we were the most important thing in the universe. I think I like
physics because it opens a window through which we can see further.
It gives me the sense of fresh air entering the house.”

Carlo Rovelli [2018]

During the Big Bang, our current understanding is that matter and antimatter
should have been created in equal amounts. Despite this, the observable universe
has more matter than antimatter [Farrar and Shaposhnikov, 1993] and this baryon
asymmetry cannot be explained by the standard model which accounts for the
electromagnetic, weak and strong interactions, nor general relativity which ac-
counts for gravitational interactions. The origin of matter is still one of the great
unanswered mysteries in physics. Dark matter [de Swart et al., 2017] and dark
energy [Peebles and Ratra, 2003] also point towards physics beyond the standard
model, and it is therefore possible that the study of antimatter will further our
understanding of the universe.

1.1 Positrons

Antimatter was predicted in 1931 by Paul Dirac [Dirac, 1931]. When attempt-
ing to unify the theory of special relativity with quantum mechanics, he discov-
ered that there were negative solutions for the electron (e−) energy [Dirac, 1928].
As negative solutions have importance in quantum mechanics and cannot be ig-

1
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Figure 1.1: The first published image of a positron in 1933 by Carl Ander-
son [Anderson, 1933]. The positron came from a cosmic ray and was detected in
a cloud chamber. The positron travelled through a 6 mm thick lead plate from
below to above, with a magnetic field directed into the page. Due to the measured
change in energy from 63 MeV below the plate to 23 MeV above the plate, the
particle’s trajectory proved that it had a positive charge and a mass comparable
to the electron.

nored, Dirac interpreted these negative energy states as holes in a sea of positive
states which are filled by negative charges (electrons) according to Pauli’s exclu-
sion principle [Dirac, 1930]. The ‘hole’ would appear as a new particle with a
positive charge, and would annihilate with an electron. Dirac discussed the pos-
sibility of the proton as an island in the sea, as it was the only known positively
charged particle at the time, but he recognised that its significantly larger mass
was problematic. This idea of the proton being the negative energy solution faced
opposition from Robert Oppenheimer [Oppenheimer, 1930a,b], who argued that
this could not be true due to their mass. Dirac was persuaded by these arguments
and proposed the existence of an anti-electron in 1931.

Only two years later in 1933, Carl Anderson discovered a charged particle
which had comparable mass to the electron but with opposite charge. No link
was initially made between Dirac’s theory and this discovery, so the name for this
positive electron became the ‘positron’, represented by the symbol e+. The first
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image of a positron is shown in figure 1.1. The positron is the anti-electron and
it is therefore also a fermion. It has an intrinsic spin of 1/2 and following the
CPT theorem (charge, parity, and time reversal symmetry), the positron mass is
the same as the electron mass, but as an antiparticle it has opposite charge (+e
instead of −e). A significant feature of positrons is that they are distinguishable
from electrons, which is useful in a variety of cases, such as when studying solids. In
a solid, electrons are lost in a sea of identical electrons, whereas positron diffusion
can be followed until annihilation. The positive charge of a positron also allows
the study of processes which are not possible with electrons, such as being trapped
at negatively charged lattice defects and impurities, which provides new insights.

In modern experimental research, positrons have many uses due to the creation
of low-energy near mono-energetic beams in vacuum [Danielson et al., 2015]. A
positron exists for a finite time within a material before annihilating, dependent
upon many properties including the structure of the material and the number of
voids or defects. Therefore, positron annihilation lifetime spectroscopy (PALS) is
a technique used to study solids [Siegel, 1980]. It allows sensitive characterisation
and importantly is non-destructive to the material. As a result, in materials
science, positrons are used to study lattice defects and the electronic structure of
solids such as metals and semiconductors e.g., [Coleman, 2000; Schultz and Lynn,
1988; Tuomisto and Makkonen, 2013]. They are also used as a sensitive probe in
atomic and molecular physics e.g., [Charlton and Humberston, 2000; Surko et al.,
2005; Gribakin et al., 2010].

The development of new technologies has permitted the control and manip-
ulation of beam properties [Danielson et al., 2015] and positron trapping and
accumulation [Murphy and Surko, 1992; Jørgensen et al., 2005] has allowed the
study of non-neutral positron plasmas. Positron plasmas are used to produce
positronium (Ps) which is an electrically neutral exotic atom, consisting of the
quasi-stable bound state of an electron and a positron. Ps exists in only two spin
states, the S = 0 singlet state and S = 1 triplet state. The singlet state is called
para-positronium (p-Ps) and has antiparallel electron and positron spin, whilst
the triplet state is called ortho-positronium (o-Ps) and has parallel spins. Ps
production has applications in fundamental and applied studies [Rich, 1981; Jean
et al., 2003], and it can be laser excited into Rydberg states, where spectroscopy
allows its structure to be probed [Cassidy, 2018]. Contemporary Ps spectroscopy
is achieved by single-shot positron annihilation spectroscopy (SSPALS) [Cassidy
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et al., 2006b; Deller, 2019], which uses an intense pulse of positrons, in contrast
to the individual positrons used in PALS. The technique is useful for studying
Ps, but it is foreseeable that it will improve the characterisation of solids [Cassidy
et al., 2006b].

Experiments which study the simplest anti-atom, antihydrogen (H), require
an intense positron source [Ahmadi et al., 2017; Aghion et al., 2015; Imao et al.,
2010; Fitzakerley et al., 2016]. Antihydrogen is formed from an antiproton (p)
and a positron, and as the AD (Antiproton Decelerator) at CERN is currently
the only place that can produce slow antiprotons, this is the only place low en-
ergy antihydrogen can be produced and trapped, e.g. by ATHENA [Amoretti
et al., 2002], ATRAP [Gabrielse et al., 2002], ALPHA [Andresen et al., 2010],
and ASACUSA [Enomoto et al., 2010]. Historically, most laboratory antimatter
experiments have been conducted with positrons, as they are easier to obtain than
antiprotons and other antiparticles.

1.2 Positron Sources

There exist three main ways of obtaining positrons in a laboratory environment,
using: radioactive sources, accelerators, and lasers. Generally, devices utilising
pair production of positrons using nuclear reactors [van Veen et al., 1999; Hugen-
schmidt et al., 2008; Hawari et al., 2011; Sato et al., 2015] or large accelerator
facilities [Kurihara et al., 2000; Wagner et al., 2018] generate the largest positron
flux but they involve technical challenges and great expense, thus radioactive
sources are often favoured in a laboratory environment.

Accelerators or nuclear reactors may be used to generate radioactive positron
sources. The radioactive positron source used for most beamline systems is sodium-
22, which is a man-made isotope and has a half-life of 2.6 years. This half-life is
desirable as the specific activity is sufficiently high for experimentation, while not
needing to be replaced often due to fast decay. Sodium-22 emits a positron and an
electron neutrino (νe) by β+ decay, due to the weak force, which has a branching
ratio of ∼ 90%∗, turning into an excited nuclear state of neon-22,

22Na→ 22Ne∗ + e+ + νe. (1.1)
∗The other 10% of the decay’s branching ratio is accounted for by electron capture, in which

a bound inner electron is absorbed by a proton, changing to a neutron and νe.
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This excited state has a lifetime of 3.7 ps, before emitting a gamma ray of 1275 keV
as it decays into the ground state

22Ne∗ → 22Ne + γ(1275 keV). (1.2)

The emitted positron annihilates with an electron to predominantly produce two
511 keV gamma rays, which are back-to-back in the centre-of-mass rest frame due
to the pair annihilation

e+ + e− → 2γ(511 keV). (1.3)

The Swansea University positron beamline uses a sealed sodium-22 β+ emitter
from iThemba LABS. A new radioactive source was installed on the system in
December 2018, with an activity of 1.85 GBq (50 mCi).

Some other experiments choose particle accelerators, which use radio frequency
(RF) fields to accelerate electrons beyond the threshold energy to collide with a
target and produce positrons via pair production [Coleman, 2000]. The threshold
energy in this case is equal to the rest mass energies of a positron and an electron,
2× 511 keV = 1.022 MeV. Bremsstrahlung gamma rays with an energy greater
than the threshold energy are produced as the electron decelerates during the
collision, and the photon energy is converted to mass following Einstein’s mass-
energy equivalence, E = mc2. Increasingly, linear accelerators are chosen for this
purpose as they are more compact than circular accelerators, e.g., in the GBAR
experiment [Niang et al., 2020].

The third method, which is newest, uses lasers to provide positrons. By pulsing
a laser at a thin solid [Chen et al., 2009] or through a gas which is ionised by the
strong electric field [Sarri et al., 2013], a plasma of electrons can be generated.
These electrons may then be accelerated and collided with a target to produce
positrons, in the same way as with an accelerator.

In addition, positrons are formed by pair production without human interven-
tion, such as due to the strong gravitational fields from black holes and neutron
stars [Wardle et al., 1998], which are observed in cosmic rays that travel through
the universe. Extraterrestrial cosmic rays can also cause air showers in the Earth’s
atmosphere [Grieder, 2010]. As a primary cosmic ray collides with the nucleus of
an atom in the air, the production and subsequent decay of energetic hadrons
causes a cascade of ionised particles, known as an air shower, where some of these
secondary particles are positrons. The strong electric fields during lightning storms
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Figure 1.2: Comparison of the typical energy spectrum of β+ particles from a
radioactive sodium-22 source (blue) with the narrow energy distribution of mod-
erated positrons by a typical neon moderator (orange). Moderation results in an
increased positron yield at low energy and a narrower energy distribution.

also produce positrons [Briggs et al., 2011], but they too are highly energetic and
currently untrappable for experimentation.

1.3 Moderation

The β+ particles ejected from a radioactive source have a range of kinetic energies
that is too broad for effective trapping and accumulation. For 22Na the energy
range is 0 – 545.5 keV, which is a problem, as for solid-state and atomic physics
experiments with positron beams, the positrons must be slowed to eV energies
or less and desirably have a narrow energy distribution. To increase the number
of low energy positrons, moderation is required, which decreases both the mean
energy and its spread, as shown in figure 1.2. During moderation, positrons are
implanted into a solid and lose energy until they are near thermal equilibrium
with the crystal lattice [Schultz and Lynn, 1988], which takes ∼ 1 ps [Coleman,
2000]. A diagram showing the interactions between positrons and a material is
shown in figure 1.3.

Two main types of positron moderator exist. The first is a solid foil or mesh,
typically made of annealed tungsten, which as a conductor, causes the positrons
to lose energy primarily through ionisation, thereby causing a relatively short
diffusion length. Due to the dipole caused by the free electron cloud at the surface
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Figure 1.3: Positron interaction with a material: at the surface positrons can
be (1) reflected and diffracted, or (2) cause the emission of secondary electrons.
Nonthermal positrons can be emitted from the solid (3) epithermally or (4) as
positronium. After thermalisation and back diffusion to the surface, positrons may
be emitted (5) as moderated positrons (for materials with a negative positron work
function) with a well-defined energy characteristic of the material or (6) as thermal
positronium. Annihilation from a surface state can cause (7) the emission of Auger
electrons and characteristic X-rays. In the bulk, positrons either annihilate (8)
from a delocalised state in the lattice, or (9) when trapped in a defect.

of the metal, the resultant work function is negative for positrons, which means it
is favourable to emit them and they gain energy when leaving the metal. Positrons
must have reached thermal energy within a diffusion length of the surface, which
is ∼ 100 nm [Charlton and Humberston, 2000], for a chance to be emitted. This
results in an energy distribution full width at half maximum of ∼ 0.3 eV [Canter
and Mills Jr., 1982], but is around 0.1% efficient† [Vehanen et al., 1983]. At the
surface, annihilation and positronium formation limit the moderator efficiency, so
high temperature annealing of the metal prior to its use removes vacancies and
voids, and cleans most contamination from the surface [Liszkay et al., 2002] to
reduce these undesirable effects.

The first successful positron moderator was demonstrated in 1958 by W. H. Cherry
†Moderator efficiency is defined as the ratio of the number of emitted low energy positrons

to the number of incident β+.
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as a PhD student [Cherry, 1958]. β+ bombardment resulted in positrons being
transmitted through a thin layer of chromium coated mica held in vacuum, result-
ing in an increase of particles with an energy < 10 eV. This pioneering positron
moderator was never published in a journal and only had an efficiency of 10−8.

The second type of positron moderator, which is the one implemented in this
system, uses a rare gas solid (RGS) e.g., neon, which causes the positrons to
lose energy via ionisation, excitation and phonon scattering until they become
epithermal, i.e. with an energy slightly greater than the thermal energy. As the
positron mass is much smaller than the mass of an RGS atom, each phonon scat-
tering event causes a small energy loss. Once the positron energy is smaller than
the RGS band gap energy, phonon scattering is the only process that can occur.
Therefore, positrons diffuse through the moderator and as a RGS has a posi-
tive work function, the positrons must be sufficiently energetic to overcome the
potential barrier to be emitted. This results in an energy distribution width of
several eV coming out, as in figure 1.2. Good RGS moderators are only ∼ 1%
efficient [Mills and Gullikson, 1986], therefore most of the positrons produced by
a radioactive source cannot be utilised. Although RGS moderators have a factor
of ∼ 10 greater efficiency compared with metal foils, the resultant energy distribu-
tion is wider, and they rely on expensive (and sometimes unreliable) technology
such as compressors. RGS moderators must also be ‘regrown’ every few weeks, so
many positron research groups instead opt for a tungsten moderator.

1.4 Penning Traps

Earnshaw’s theorem states that it is impossible to confine a static charged particle
in all three dimensions by using a static electromagnetic field [Earnshaw, 1848;
Jackson, 1998]. Paul traps, which are radiofrequency traps, overcome this problem
by using a rapidly oscillating electric field. In contrast, a Penning trap uses a static
electric field with a magnetic field in the axial direction to provide confinement,
and is the type of charged particle trap used in this work.

The Penning trap was first built by Hans Georg Dehmelt. It was named after
Frans Michel Penning, as Dehmelt’s inspiration was the Penning vacuum gauge,
where the current through a discharge tube in a B-field is proportional to pressure.
The trap was simply a central ring electrode with two voltage biased endcaps, as
shown in figure 1.4, which was able to trap electrons for about 10 s [Dehmelt,
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Figure 1.4: Schematic cross-section at the centre of a hyperbolic Penning trap.
Both endcaps are connected and a DC potential is applied between them and the
ring electrode to trap charged particles along the z–axis. The uniform magnetic
field from the solenoid (red) ensures trapping in the x–y plane.

1968, 1969]. The B-field ensured ion confinement in the plane perpendicular to its
field, whilst the E-field applied to the electrodes ensured confinement along the
B-field. Dehmelt shared the Nobel Prize in Physics in 1989 with Wolfgang Paul,
for their development of the ion trap technique [Paul, 1990].

Cylindrical Penning traps, consisting of a series of cylindrical ring electrodes,
were introduced to allow access along the trap axis for particle injection, ejection,
and manipulation [Gabrielse et al., 1989]. In cylindrical Penning traps the B-field
is supplied by a solenoid, whilst the electrostatic fields are produced by an array of
cylindrical electrodes inside the vacuum chamber, which replace the endcaps from
a conventional Penning trap to provide axial confinement [Malmberg and Driscoll,
1980]. Cylindrical Penning traps are the type of charged particle trap used in this
work.

Cylindrical coordinates are typically used to describe Penning traps as they
suit the symmetry of the fields. The z-axis is the axial axis parallel to the B-field,
where z = 0 is at the centre of the ring electrodes. The plane perpendicular to the
z-axis is the radial plane described by the radius, r, and the angular position, θ.

1.5 Thesis Outline

This thesis details the implementation of a harmonic potential well with an in-
novative double rotating wall electric field, as opposed to a conventional single
rotating wall, which provides closer agreement with the model for the rotating
wall compression mechanism in the single particle regime [Isaac et al., 2011; Isaac,
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2013]. Developments towards realising the resistive cooling of low-energy positron
clouds are also reported.

This first chapter provided a brief overview of the history of positron physics
and introduced the type of charged particle trap that will be discussed in the rest
of this text. In the second chapter, the Swansea University positron beamline
used for these studies is described, and practical details of the methodology are
specified. Chapter three presents implementing a harmonic potential well and
characterising a positron cloud, with a temperature measurement method for the
single particle regime. Rotating wall electric fields are the subject of chapter four,
with the novel implementation of a double rotating wall using a custom-built
function generator. In chapter five, work towards resistive cooling of positrons
clouds for the first time using a coupled electronic circuit is disclosed, whilst the
last chapter closes with a summary and an outlook at future work.



Chapter 2

The Swansea University Positron
Beamline

In this chapter, relevant details about the Swansea positron beamline will be out-
lined. The beamline aims to improve techniques for the moderation, trapping,
accumulation and manipulation of low energy positrons, primarily for the excita-
tion of positronium to Rydberg states [Baker et al., 2018], but also in the interests
of fundamental research.

The vacuum system of the beamline comprises of a series of five six-way DN160
conflat stainless steel crosses (X-1, X-2. . . X-5) connected by vacuum tubing, shown
in figure 2.1. Further details about the Swansea beamline and its operation can
be found in [Clarke et al., 2006; Isaac, 2010; Deller, 2013].

2.1 Vacuum System

The system is kept at ultra-high vacuum in order to minimise positron scattering
and annihilation against background gas, and thereby maximise the positron life-
time. Three types of vacuum pumps are used on this system, shown in figure 2.2,
namely: scroll, turbomolecular, and cryogenic pumps. Turbo pumps produce
medium to high vacuum of P ∼ 10−3–10−8 mbar but to avoid them stalling, a
lower grade vacuum is required as backing. For this task, scroll pumps are chosen
as they are mechanical, produce a low vacuum, and are generally quieter and more
reliable than other types of pumps. The third type of pump used on the beamline
is the cryopump, which can produce ultra-high vacuum of below P ∼ 10−9 mbar.
Cryopumps trap gases by condensing them onto a cold surface which is cooled by

11
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compressed helium. Eventually, the cold surface saturates and the pump speed
tends to zero, as more gas cannot condense, but the trapped gas is held until
regeneration has been performed. Regeneration is the process of warming to room
temperature, which allows the trapped molecules to be pumped out and ejected
from the system.

To measure the pressure in the vacuum system, various pressure gauges are
used. The three types of pressure gauges used here are the Pirani, capacitance,
and Penning cold cathode. A Pirani gauge measures the thermal conductivity
through a wire to infer the pressure. Capacitance gauges rely on a mechanical de-
formation due to the pressure which changes the capacitance to infer the pressure
for high vacuum, while Penning cold cathode gauges infer pressure by measuring
the ionisablility of the surrounding gas. Penning gauges are gas dependent, there-
fore it is important to ensure that a conversion factor is taken into account when
using different gases. So-called ‘full range’ gauges also exist in the system, but
they are in fact multiple gauges displaying a single value, with a second gauge
taking over once the pressure departs from the range of the first gauge. These
gauges are located on the beamline as shown in figure 2.2.

2.2 Gas System

Three types of gas are used on the system, a moderator gas (Ne), buffer gas
(N2), and cooling gas (CF4). The type of cooling gas was chosen due to its
efficient positron cooling [Greaves and Surko, 2001], which is further detailed in
chapter 4. Each of these are admitted into the system from a regulated gas bottle
by a piezoelectric valve (PEV) that controls the flow. A proportional-integral-
derivative (PID) controller then monitors the inlet pressure and opens or closes
the valve as appropriate, to ensure that the system pressure remains stable. As
the pump rate out of the system is constant, the pressure in the system reaches an
equilibrium. Capacitance gauges measure the pressure of the buffer and cooling
gases immediately after the PEVs before entering the system, whilst the moderator
gas pressure is measured from the source chamber as only one gas is admitted
there.

Nitrogen buffer gas flows in midway along the first stage of the 2-stage trap,
as shown in figure 2.4, and the physical dimensions of the electrodes form a pres-
sure gradient along its length. A narrow pumping restriction between the source
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chamber and X-1 reduces the amount of nitrogen from the trap that condenses
onto the source. The cooling gas enters X-2 directly, and so sufficient cooling gas
from the 2-stage also drifts along the next pumping restriction to the 3rd stage
accumulator, such that no gas need be directly admitted here.

2.3 Growing a Moderator

The radioactive source of the Swansea positron beamline is attached to a cone
which is mounted directly onto a Sumitomo RDK408 cold-head, at around 7 K
during operation, so that a thin layer of 99.999% pure neon gas can condense to
grow an RGS moderator for β+ moderation. The first solid neon moderator was
implemented by Mills and Gullikson in 1986 [Mills and Gullikson, 1986], where
the moderated positron energies were around 0.6 eV, with an efficiency of 10−2.
A typical low energy e+ beam efficiency from the Swansea beamline is ∼ 0.5%
of the source activity. As studies have shown that a conical source geometry
provides the maximum positron output [Lynn et al., 1989], it is the geometry
employed here. The source capsule holder is mounted on an elkonite rod which is
in thermal contact with the cold finger by use of a thin sapphire disc. This disc is
also important as it provides electrical isolation for the source and the moderator,
which means a bias voltage can be applied to the source to increase the yield and
control the kinetic energy of the emitted positrons. Resultantly this produces a
tuneable low energy positron beam, which also allows a wider tuning range for the
trapping potentials than would otherwise be possible, and is utilised in section 3.3.

To grow an RGS positron moderator on the Swansea beamline, neon is admit-
ted using a piezoelectric valve into the source chamber until the pressure is raised
to 5× 10−3 mbar. A feedback control circuit (as detailed in section 2.2) then keeps
the pressure stable for around 20 minutes, whilst a layer of solid neon is grown
onto the source cone. A typical moderator growth curve is shown in figure 2.3. To
determine when the growth is complete, the annihilation count at a closed gate
valve before X-2 is monitored until a plateau is seen, which indicates the moder-
ated positron count has reached its maximum. Neon gas in the chamber causes
positron scattering and annihilation, probably via Ps formation, so once the neon
supply is closed and pumped out of the chamber, the detected slow positron count
rate quickly increases to around 2× 106 e+/s.

Biasing the source with + 50 V accelerates the positrons towards a free-field
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Figure 2.3: An example neon moderator growth curve. Neon gas was admitted
into the source chamber and the pressure was kept at 5 × 10−3 mbar, until a
plateau in the positron count was seen. The supply of gas was closed after ∼
17 minutes and pumped out of the chamber, causing a sudden increase in detected
number due to a decrease in positron loss. The count rate at this time is ∼ 2.2×
106 e+/s but this decreases by ∼ 10% over the first few hours as the moderator
stabilises.

region before solenoid 1, shown in figure 2.1. An energy selection is performed as
particles travel axially along the beamline, by the magnetic field of a ‘pancake coil’
(described in section 2.5.3) which steers positrons with lower kinetic energies past
a step in the beamline, through solenoid 1, and into the buffer gas trap [Murphy
and Surko, 1992] which is surrounded by solenoid 2. The buffer gas trap is a
2-stage trap, as shown in figure 2.4. Positrons with large kinetic energies cannot
be guided past the step, and instead annihilate with the vacuum chamber. This
bend in the path means that the source is not within direct line of sight with the
rest of the beamline, such that the high energy beam does not form a part of the
main positron beam.

Due to the random nature of radioactive decay, direct current (DC) source-
based positron beams have sufficient intensity for some surface studies [Schultz
and Lynn, 1988] but is too low for many other experiments. A pulsed slow
positron beamline is a prerequisite for contemporary spectroscopic measurements
of positronium. Therefore, by trapping and accumulating, spatial and temporal
bunching methods allow intense pulses of positrons to be achieved with temporal
widths of less than a nanosecond. This is useful for applications such as increasing
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Figure 2.4: (Top) CAD drawing of the 2-stage trap which comprises of the gold
cylindrical electrodes in their frame. (Middle) Trap cross-section with the location
of the buffer gas inlet and the corresponding pressures in each stage. The location
of a typical positron cloud is shown in red. (Bottom) The on-axis total electric
potential in the 2-stage trap. The penultimate electrode has been cut in half
axially and into quarter segments azimuthally for applying a rotating wall electric
field. A cloud of positrons is shown in red at the potential minimum, and the
140 V applied to the final electrode is lowered to eject the positron cloud.
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positronium yield, and improving the SSPALS technique [Cassidy et al., 2006b].

2.4 Detection

For detecting positrons there are generally two measurable quantities: their charge,
and the gamma rays due to their annihilation.

2.4.1 Charge

For a positron, its charge is given by e = +1.6× 10−19 C. This can be measured
directly by ejecting the positron cloud into a plate acting as a Faraday cup and
measuring the charge using the relation Q = CV , where Q is the total charge,
C is the capacitance, and V is the voltage. When a positron hits a conductive
surface, it can cause a secondary electron to be emitted, which is detected as an
extra net positive charge. To avoid this miscounting with Faraday cups, they are
positively biased at a lower potential than the incoming positrons. This attracts
back the emitted electrons, while allowing the incident positrons to strike the
Faraday cup. Faraday cups are very accurate for matter particles, as the charge
is directly related to the number of ions.

For more sensitive charge measurements, amplification by a single channel
electron multiplier (CEM) such as a Channeltron is required. A Channeltron is
a continuous dynode vacuum tube structure that multiplies incident charges, as
a single electron bombards a secondary emissive material, inducing the emission
of one to three electrons [Knoll, 2010]. This process repeats resulting in a large
shower of electrons which are all collected by a metal anode, allowing single ions
entering the Channeltron to be detected.

Micro-Channel Plate

For spatial resolution, a microchannel plate (MCP) detector is used, which is
an array of CEMs. On the Swansea system it is a MCP and phosphor screen
assembly from Lambert Instruments, as shown in figure 2.5, which is located
on a vertical linear manipulator in X-4. The grid in front of the MCP shields
the incident positrons from the high voltage required to bias the front, back and
screen. Within the front and back plates are 10 µm diameter channels, which are
not parallel with the z-axis to ensure incoming positrons impact the CEM wall.
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Figure 2.5: Schematic of the MCP set up for positron detection in X-4 (not to
scale), showing the MCP plates as an array of single channel electron multipliers.
The front and back plates are orientated to create a chevron, to increase number
of particle collisions with the channel walls. Typically the biases follow the hier-
archy VScreen > VBack � VFront. The grounded grid in front of the MCP can be
biased for parallel energy measurements, while the camera is located outside of
the vacuum and images through a viewport.
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The channels within the plates are angled with a 180° offset relative to the other
plate which forms a chevron, and the centre-to-centre hole spacing is 12 µm. The
continuous dynode amplifies on every collision, which can produce a very high
gain. Therefore, the MCP can be used as a charge amplifier to perform charge
measurements.

The MCP is fixed to a P43 phosphor screen which emits yellow-green visible
light upon charged particle implantation. This produces a 2D optical image,
which is then reflected by a 45° mirror and captured by a Hamamatsu Orca-
R2 1.3 megapixel charge-coupled device (CCD) camera. The size of the CCD
images can be scaled knowing the phosphor screen width of 50 mm, and the
corresponding number of pixels in the image, giving a pixel width and height of
(0.350± 0.005) mm.

In section 3.9.1, it is shown that a cloud of trapped charged particles in a
Penning trap has a Gaussian distribution in the radial plane. This allows CCD
images of the particle cloud to be fitted with a 2D Gaussian in Cartesian coordi-
nates centred at (x0, y0), of the form

n(x, y) = N

2πσ2 exp
−(x− x0)

2 + (y− y0)
2

2σ2

+B, (2.1)

where B is the background, and the standard deviation, σ, is related to the peak’s
full width at half maximum, FWHM = 2σ

√
2 ln(2). This allows the width of the

cloud to be quantified. An example fit is shown in figure 2.6. All function fitting
in this thesis was performed using the ‘NonlinearModelFit’ function in Wolfram
Mathematica Version 11.1.1.0.

2.4.2 Annihilation

The gamma rays produced by a positron-electron annihilation can be detected by
many different types of detector [Knoll, 2010]. A germanium detector is sensitive
to single photons and is used to measure their energy, whilst caesium iodide (CsI)
and sodium iodide (NaI) are common examples of scintillators that convert gamma
rays into visible light or UV, and are the types used in these studies. This light
can then either be read out by a photodiode, or a photo-multiplier tube (PMT)
optically coupled to a photocathode to produce electrons. A PMT absorbs the
light emitted by a scintillator and re-emits it in the form of electrons via the
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Figure 2.6: An example of the spatial distribution of the positron cloud, (left)
a raw CCD image of a positron cloud, and (centre) equation 2.1 fitted to the raw
data. The fit gives σ = (1.216± 0.004) mm, N = (68, 900 ± 400) counts, and
B = (388± 1) counts/mm2. Cross sections through the fitted centre along x and
y are shown above and to the right of the central image respectively, where the
raw data are shown in blue and the fit is orange.
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photoelectric effect. It has discrete dynodes, in contrast with a CEM. Coupling a
PMT to a photocathode can provide sub-nanosecond timing information, which
is suitable for these studies.

On this system, typically the annihilation gamma ray flash is registered by a
CsI(Tl) crystal coupled to an avalanche photodiode, which is then recorded by a
digitiser. The detector decay time of hundreds of nanoseconds is appropriate for
this purpose and cross-calibration allows an approximate number of annihilated
positrons to be deduced. The uncertainties of the calibration factors will not
be included, as these studies are only interested in relative numbers. Common
annihilation targets are closed gate valves, the metal plate in X-2, and the MCP
in X-4. The digitiser which records each trace is a NI PCI-6713 card which has
12-bit resolution and a maximum sample rate of 1 MS/s per channel. Traces are
typically processed offline using Wolfram Mathematica notebooks to determine
peak height and perform statistical analyses.

2.5 Magnetic Fields

Radial confinement along the beamline is due to the uniform magnetic field along
the axis. Using axial magnetic fields from a series of coils and a 50 mT transport
solenoid, the positrons can be guided away from the source region and into the
trap. The three types of magnets used on the beamline are steering coils, solenoids
and ‘pancake coils’. The steering coils are air-cooled, whilst the solenoids and
pancake coils are water-cooled by a closed high pressure system at 5 bar.

2.5.1 Steering Coils

There are steering coils in an approximate Helmholtz configuration before and after
each six-way pumping cross, to provide an uninterrupted field along the beamline
and to adjust alignment. From Ampere’s law, the magnetic field strength in the
centre of the steering coils is given by

B = N
µ0I

rin + rout
, (2.2)

where N is the number of loops, I is the current, µ0 is the vacuum permeability,
rin is the inner radius and rout is the outer radius of the coil. They have 400 turns
with an inner and outer radius of 258 mm and 300 mm respectively, giving a field
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of 0.900 mT A−1. They are usually set at a current of 6.6 A, which results in a
field of 5.9 mT.

A second kind of steering coil is the transfer magnet which is located around
the narrow pumping restriction between the 2-stage and the 3rd stage. It has
40 turns at an average radius of 35 mm, resulting in 0.718 mT A−1. At a typical
current of 100 A it produces a stronger field than the others, of 71.8 mT. As a
result, it produces more heat and has a fan to aid its air cooling.

2.5.2 Solenoids

There are three longer solenoids on the system, one surrounds the long pumping
restriction between the source chamber and the trap, the second surrounds the
2-stage trap electrodes, whilst an identical third surrounds the 3rd stage accumu-
lator. These solenoids are wound around brass water jackets, with heat resistant
tape between each layer, directly onto the vacuum tubes. For an infinite solenoid,
the magnetic field due to current flowing through a conductor can be written as

B = NLN
µ0I

L
, (2.3)

where N is the number of turns per layer, I is the current, and NL is the number
of layers of length L. For solenoid 1, NL = 4, N = 220 and L = 890 mm, giving
1.24 mT A−1. At the typical current of 25 A this results in a 31.0 mT field.
Solenoid 2 and 3 are identical and have NL = 4, N = 170 and L = 680 mm, to
give 1.257 mT A−1 and a 37.7 mT field at their typical current of 30 A.

2.5.3 Pancake Coils

The three ‘pancake coils’ are located around the source chamber and differ from
the other magnets, as they are short and have a large radius, so are not considered
using an average radius. They have a flat profile when viewed from the side, with
two narrow tight spirals of wire containing 80 turns each. These are water cooled
by a copper pipe around the outside of the coil, with both parts fixed to a metal
plate. Treating the spiral as a set of concentric loops simplifies the geometry, and
from Ampere’s law, the magnitude of the magnetic field at the centre is then

B =
µ0I

2rL
, (2.4)
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where rL is the radius of a single loop. The approximate total field is then a
summation of all the loops

B = µ0I
N∑
n=0

1
2 (r0 + n δr)

, (2.5)

where δr is the thickness of the wire, r0 is the smallest loop radius and N is the
number of layers in the stack. The values of r0 = 76 mm, δr = 2 mm and N = 80
give 0.722 mT A−1, therefore at the typical current of 15 A this gives a field
strength of 10.8 mT. The third coil furthest downstream is the one slightly tilted
to guide the positrons over the vertical step in the beamline for energy selection,
as described previously.

2.6 Electric Fields

For axial confinement, voltages are applied to cylindrical electrodes to provide
electrical trapping potentials. The DC trapping biases are set using the National
Instruments (NI) graphical programming package LabVIEW™, which controls two
NI-6713 PCI analog output devices capable of eight outputs each of ± 0–10 V,
with a timing resolution of up to 1 MS/s. This sends the desired voltage divided
by 14 to in-house custom-built ‘Llachar’ amplifiers, which have ×14 gain and are
based upon a PA441 operational amplifier. These have typical 90–10% fall times
of ∼ 10 µs with an RMS noise of 10 mV. The amplifiers are connected to the trap
electrodes which can then be biased with ± 0–140 V to trap charged particles.

2.7 The 2-Stage Trap

The 2-stage trap is a variety of the Penning-Malmberg trap, where the axial con-
finement is provided by the electrical potential formed when voltages are applied
to a series of cylindrical electrodes, and the radial confinement is due to the pres-
ence of a uniform axial magnetic field. A 2-stage positron trap was developed
[Clarke et al., 2006; Cassidy et al., 2006a; Sullivan et al., 2008], which consists
of two pressure stages instead of the previously standard three, and at Swansea
University is capable of operating at 10 Hz. For trapping, nitrogen (N2) buffer
gas is let into the trap through a 2 mm diameter hole at the middle of the first
stage (shown in figure 2.4), which is pumped at the source end by a 400 L/s turbo
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pump and at the other end by an 800 L/s cryogenic storage pump (as shown in
figure 2.2).

During inelastic collisions between positrons and nitrogen molecules, three pro-
cesses compete [Murphy and Surko, 1992], alongside negligible direct annihilation
which can still occur. Positrons with an energy < 8.8 eV are unable to lose suffi-
cient energy by rotational and vibrational excitation of a nitrogen molecule during
a collision, and so cannot be trapped. For energies > 8.8 eV, electronic excitation
of a nitrogen molecule results in positron energy loss and therefore trapping. Due
to the Ps formation threshold of 8.8 eV [Marler and Surko, 2005], it was found
that for kinetic energies > 11 eV, the number of positrons lost to Ps formation
is equal to those trapped due to electronic excitation. This results in a energy
window of ∼ 3 eV for efficient positron trapping with nitrogen buffer gas. Alter-
natively, trapping positrons using molecular vibrational transitions is also possible
for a number of gases, but with a significantly lower efficiency than by electronic
excitation [Baker et al., 2020].

Incoming positrons to the 2-stage travel back and forth along the trap axis and
lose ∼ 8.8 eV each during a collision [Murphy and Surko, 1992], mainly due to
electronic excitation of the nitrogen molecule. This means that after one collision,
they will be unable to escape past the potential barrier at the entrance and after
a few further collisions eventually collect in the potential well minimum at an
axial position of ≈ 540 mm along the 2-stage, as was shown in figure 2.4. When
the barrier voltage at an axial position of 600 mm is lowered from ∼ 140 V to
ground, the positron cloud is ejected and annihilates downstream causing a sharp
burst of gamma rays which can be detected. This gamma ray signal can be used
to obtain information about the number of positrons that were held in the trap,
their lifetime, and the time width of the ejected pulse. Accumulating for 1 s at
1 Hz operation means that usually ∼ 105 positrons are trapped, dependent upon
the number of positrons in the DC beam and the gas pressure.

2.8 The 3rd Stage Accumulator

Once the particles are ejected from the 2-stage trap by lowering the exit electric
potential barrier, they are magnetically guided downstream through a pumping
restriction which is 38 mm in diameter and 320 mm long, where the larger magnetic
field of∼ 72 mT minimises losses into the third trapping stage, which is surrounded
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Figure 2.7: Drawing of the cylindrical gold plated aluminium electrodes in the
3rd stage (side-view), where measurements are given in millimetres. The sapphire
spheres between each electrode for electrical isolation are shown, along with some
of the threaded holes for the electrical connections. The internal diameter is
41 mm.

by solenoid 3.
The 3rd stage accumulator was installed to greatly increase the number of

trapped charged particles by stacking multiple clouds from the 2-stage and to
allow new rotating wall studies. For details of the installation of the 3rd stage,
see [Evans, 2014]. The lower pressure in the 3rd stage allows an increase in trapped
charged particle number for increased positronium formation per shot, and enables
the study of particle clouds or non-neutral plasmas.

The cylindrical electrode stack confines the particles axially, with each of their
lengths optimised for trapping potential harmonicity, and these are shown in fig-
ure 2.7. This harmonicity facilitates the study of novel rotating wall techniques
as described in chapter 4. During typical operation, the pressure in X-2 (at the
downstream end of the 2-stage trap) is ∼ 10−5 mbar and so in the molecular
regime some cooling gas flows across into the 3rd stage, resulting in pressures of
≈ 7.0× 10−7 mbar in X-3 and ≈ 0.4× 10−7 mbar in X-4 (at the upstream and
downstream ends of the 3rd stage accumulator, respectively). Prior to the stud-
ies described herein, the 3rd stage electrodes were primarily used for bunching
positron clouds [Edwards, 2019], although this was not their designed purpose.

After ejection from the 3rd stage, if the MCP is raised, then particles can
be passed through another valved pumping restriction (38 mm in diameter and
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220 mm length) into the positronium production region. This region is a six-way
DN160 vacuum cross for laser access, containing a silica sample mounted on a
target, details of which are found in e.g. [Deller et al., 2015; Baker et al., 2018].

2.9 Trapped Charged Particle Motion

Penning traps use an electrostatic field and a uniform magnetic field to confine
charged particles in all three spatial dimensions. The simplest quadrupole poten-
tial in Cartesian coordinates has the form φ ∝ ax2 + by2 + cz2, where a, b, and c

are constants. To satisfy the Laplace equation,

∇2φ = 0, (2.6)

then requires that a+ b+ c = 0, and so for a 3D quadrupole, a = −1, b = −1, and
c = 2 is the solution of interest. The ideal quadrupole electric field in a Penning
trap therefore produces the potential

φ(x, y, z) = U0
2d2

(
−1

2x
2 − 1

2y
2 + z2

)
, (2.7)

where U0 is the endcap electrode voltage and d is a length parameter related to the
trap geometry [Brown and Gabrielse, 1986], which traps the charged particles in a
harmonic potential well along the z-axis. In an electromagnetic field, the motion of
a charged particle with mass m and charge q is described by the Lorentz equation

mẍ = q(E+ ẋ×B), (2.8)

where E and B are the electric and magnetic field respectively, at a point x in
space. Substituting for the uniform magnetic field B = Bẑ, which provides the
radial confinement to allow 3D trapping, and the electric field E = −∇φ, where
φ is from equation 2.7, gives

ẍ =
ω2
z

2 x+ Ωcẏ, (2.9a)

ÿ =
ω2
z

2 y−Ωcẋ, (2.9b)
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and

z̈ = −ω2
zz, (2.9c)

where the free cyclotron frequency and axial bounce frequency are given by

Ωc =
qB

m
(2.10a)

and

ωz =

√
qU0
md2 (2.10b)

respectively. Thus, the axial motion is simple harmonic with an angular frequency
ωz, decoupled from the transverse motion in the x–y plane. Introducing the com-
plex variable u(t) = x(t) + iy(t), equations 2.9a and 2.9b can be combined giving

ü =
ω2
z

2 u− iΩcu̇, (2.11)

describing the motion in the x–y plane. Solving using the ansatz u(t) = u (0) e−iωt

gives the characteristic equation

ω2 −Ωcω+
ω2

2
2 = 0, (2.12)

which has roots of
ω± =

1
2

(
Ωc ±

√
Ω2
c − 2ω2

z

)
. (2.13)

The modified cyclotron frequency is the positive root, ω+ ≡ ωc, whilst the negative
root is the magnetron frequency, ω− ≡ ωm. These roots show that Ωc >

√
2ωz is

a requirement for confinement in the trap.
So the solutions to the equations of motion 2.9a and 2.9b are

x = |A+| sin (ωct+ φ+) + |A−| sin (ωmt+ φ−) (2.14)

and
y = |A+| cos (ωct+ φ+) + |A−| cos (ωmt+ φ−) , (2.15)
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Figure 2.8: Motion of a charged particle in a Penning trap (black), magnetron
motion (blue) and the ‘guiding centre’ combination of the axial bounce and mag-
netron motion (red). The total motion is obtained by addition of the guiding
centre and the cyclotron motion.

whilst the trivial solution to equation 2.9c is

z = |Az| sin(ωzt+ φz). (2.16)

A±,z and φ±,z are the constants of integration, which depend upon the initial
position and velocity of the charged particle.

Now the three frequencies that describe the motion of the charged particle
are known: ωz is the axial bounce frequency due to the electric field, ωc is the
modified cyclotron frequency due to the magnetic field, and ωm is the magnetron
frequency which is due to the crossed electric and magnetic fields in the trap. In
the x–y plane the particle follows an epitrochoid (a particular form of roulette),
which is the superposition of a fast (ωc) circular motion on a slow (ωm) circular
motion, as shown in figure 2.8.

As the hierarchy ωz � Ωc exists, then for the positive root in equation 2.13,
the 2ω2

z term is negligible and so

ωc ≈ Ωc, (2.17)
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while for the negative root, Taylor expansion gives

ωm =
1
2

(
Ωc −Ωc

(
1− ω2

z

Ω2
c
+ . . .

))
≈ ω2

z

2Ωc
. (2.18)

Useful exact relationships between the defined frequencies can be derived as
follows. Using equation 2.13 and summing the two roots gives

ωc + ωm = Ωc, (2.19)

while their multiplication shows that

ωcωm =
ω2
z

2 . (2.20)

The ‘invariance theorem’ [Brown and Gabrielse, 1982] of the three observables

ω2
c + ω2

z + ω2
m = Ω2

c . (2.21)

is significant as it means that in physical traps, first-order frequency shifts due to
trap nonidealities, such as machining imperfections, cancel.

2.10 Particle Trapping Model

To characterise the number of accumulated particles in a trap, a simple model
with only a few variables can be used. The rate equation for trapping N particles
in a trap, at a particle trapping rate R from a DC beam, is given by

dN

dt
= R− λN , (2.22)

where λ is the loss rate due to scattering on gas, imperfections in the electric
and magnetic trapping fields, and annihilation if they are antimatter particles.
Equation 2.22 is a separable ordinary differential equation, and solving this for
N by integration and assuming that no particles are initially trapped, N(0) = 0,
gives

N(t) =
R

λ
(1− e−λt), (2.23)

for t > 0. In practice, the parameters R and λ can be extracted from a fit to
trapped particle number as a function of accumulation time, as shown in figure 2.9.
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Figure 2.9: An example showing the number of positrons after accumulating
in the 2-stage trap with an applied rotating wall. The red line is a fit to equa-
tion 2.23 giving R = (498± 4)× 103 e+/s and τ = (0.155± 0.001) s, which gives
N∞ = (77.2± 0.8)× 103 e+, shown as the orange line. Each point is the mean
of four repeats plotted with the standard error, where the CsI detector signal has
been converted to positron number using a calibration factor.

The lifetime, τ = λ−1, is then the mean time a particle will remain trapped, which
is finite due to particle loss. Looking at equation 2.23 considering long times
(t→∞), the number of particles in the trap saturates at

N∞ = lim
t→∞

N =
R

λ
= Rτ , (2.24)

which occurs when the trapping and loss rates of equation 2.22 become equal
(dN/dt→ 0) and is shown by the orange line in figure 2.9. While looking at short
times (where t� τ),

lim
t�τ

N =
R

λ
(1− (1− λt+ . . . )) = Rt, (2.25)

shown in figure 2.9 by the green line, which would describe the number of trapped
particles if the lifetime was not finite.

If the accumulation is stopped (R = 0), the number of particles left in a trap
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after holding for a time t, assuming a constant loss rate, is given by

N(t) = N0e
−t/τ . (2.26)

The constraint on the number of particles that can be trapped, N∞, can be
circumvented by stacking a number of trapped particle ‘clouds’ into a region where
the gas pressure is much lower and hence the lifetime can be longer. If the number
density increases sufficiently, then a non-neutral plasma may form. In the ‘single
particle’ regime, the motion of the trapped particle cloud is dominated by the
trapping potentials and the single particle equations of motion are valid. If the
particle density is increased, then inter-particle forces can no longer be neglected
and the cloud instead approaches the plasma regime. In the plasma regime there
is a significant self-generated electric field and the density of charged particles
causes Debye screening, where the external trapping fields are weakened within
the plasma by the strong internal field and rearrangement of the charges.

A non-neutral particle ensemble with temperature T is considered to be in the
plasma regime, where inter-particle dynamics are important, if three criteria are
met [Chen, 2016]. To satisfy the first condition, the number density n0 must result
in the Debye length, defined as

λD =

√√√√(ε0kBT

q2n0

)
, (2.27)

being much less than the length of the ensemble, L, where q is the charge of
a particle, ε0 is the permittivity of free space and kB is the Boltzmann constant.
The second condition is that the number of charged particles in a sphere of volume
with radius equal to the Debye length is much much greater than one, ND ≫ 1.
This ensures there are enough charged particles to consider collective behaviour
as a statistically valid concept. The final condition is that for a plasma oscillating
at an angular frequency, ωp, with a mean collision time with neutral atoms, τc,
their product must be greater than one, i.e., ωτc > 1. This ensures the plasma is
dominated by electrostatic interactions, as opposed to behaving like a neutral gas.

In these studies, the 2-stage trap was typically operated with a 1 s accumulation
time, giving a positron cloud of 8× 104 particles in the 3rd stage, occupying an
ellipsoid of radius 2 mm and length 10 mm at temperature 0.2 eV. These values
result in a Debye length of λD ≈ 3.4 mm such that the particles are in the
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single particle regime.



Chapter 3

The 3rd Stage Harmonic
Potential Well

A 1D harmonic potential follows the form φ(z) ∝ z2. In a harmonic potential well,
the axial motion of trapped charged particles exhibit simple harmonic motion, and
so in a Penning trap, the axial bounce frequency is independent of the parallel
energy, E‖, which is the energy of the motion along the z-axis. This is desirable, for
example, when applying a rotating wall electric field for compression at a specific
frequency, as is discussed in chapter 4. A larger harmonic region of a trapping
potential also allows resistive cooling to occur at higher particle energies, as more
particles can oscillate at resonance with the cooling circuit, which is detailed in
chapter 5.

This chapter describes the implementation of a harmonic potential well in
the 3rd stage accumulator. The positron cloud was characterised by measuring
observables such as the number of accumulated particles, motional frequencies,
lifetime, energy, and temperature. These quantities were important to perform
and evaluate rotating wall compression in chapter 4, and cooling by an external
resistive circuit in chapter 5.

3.1 Penning Trap Electrostatic Potential

Trapped charged particles are usually confined in a small volume at the centre
of a trap. The electrostatic potential at the centre of a Penning trap [Brown
and Gabrielse, 1986] can be written as a general solution to Laplace’s equation
(equation 2.6).

34
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As the potential in a Penning trap has rotational symmetry about the z-axis,
i.e. azimuthal symmetry in spherical polar coordinates (r, θ,ϕ), the potential
Φ(r, θ) is not a function of ϕ. To quantify the geometric imperfections in the
potential, as azimuthal symmetry is maintained, it can be expanded in Legendre
polynomials [Gabrielse et al., 1989],

Φ(r, θ) =
∞∑
n=0

Anr
nPn(cos θ), (3.1)

where Pn(cos θ) are Legendre polynomials of the nth degree. An are the geometry
parameters given by

An =
2

(n+ 1
2)π

sin(knz0)

I0(knr0)
, (3.2)

where I0 is the modified Bessel function of the first kind, of order zero, and

kn =
(
n+

1
2

)
π

Lz
, (3.3)

with Lz as half the total axial length of the trap (as illustrated in figure 3.1). As
the electrodes and potentials considered here will also have reflection symmetry at
the centre of the trap (i.e. at z = 0), the potential Φ must be even in z, therefore
for odd values‡ of n, An = 0. Applying a voltage U0 between the endcaps and the
centre electrode, the total electrostatic potential inside the trap is

φ(r, θ) = U0 Φ(r, θ) = U0
∞∑
n=0
even

Anr
nPn(cos θ). (3.4)

As particles are confined within a small volume at the centre of the trap, it is
unnecessary to calculate the potential for a larger volume [Vogel, 2018].

The characteristic trap dimensions are defined by a quantity d, which comprises
of the minimum axial and radial distances from the centre of the accumulator to
the electrodes, z0 and r0 respectively [Brown and Gabrielse, 1986], by

d2 =
z2

0
2 +

r2
0
4 . (3.5)

Then for r � d, near the centre of the trap, the potential from equation 3.4 can
‡Imposing harmonicity is stricter as it also requires that for all n > 2, then An = 0.
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Figure 3.1: A schematic of a Penning trap with a single cylindrical electrode
and two cylindrical endcaps, which is the geometry used to calculate the resultant
electric potential from an electrode using equation 3.12.

be re-written as
φ(r, θ) = U0

2

∞∑
n=0
even

Cn

(
r

d

)n
Pn(cos θ), (3.6)

where the conventional expansion coefficients Cn = 2dnAn have been introduced.
The expansion coefficients, Cn, can be calculated by solving the Laplace equation
with appropriate boundary conditions, and then fitting the potential near the
centre to the series [Brown and Gabrielse, 1986]. The lowest-order terms will
dominate for particles close to the centre of the trap, and so expanding only the
first three non-zero terms, expressed in cylindrical coordinates (r,ϕ, z), gives

φ(r, z) ≈ U0C0
2 + U0C2

(
z2 − 1

2r
2

2d2

)
+ U0C4

(
z4 − 6

2z
2r2 + 3

8r
4

2d4

)
, (3.7)

which when on-axis, reduces to

φ(r = 0, z) ≈ U0C0
2 +

U0C2
2d2 z2 +

U0C4
2d4 z4. (3.8)

The zeroth-order term, C0, is an absolute potential offset and therefore irrelevant
for particle motion, while the odd terms cancel due to the axial symmetry, as
previously stated. The coefficient C2 accounts for the cylindrical electrode geom-
etry and is the desired quadrupole contribution for electrostatic confinement and
hence the depth of the potential well. In an ideal trap, it is the only coefficient
with a contribution to the potential and in cylindrical Penning traps, typically
C2 ∼ 0.5 [Vogel, 2018]. C4 is the octupole component of the electrostatic poten-
tial and the coefficient generally specifying the largest trap imperfection, which is
undesirable and results in the oscillation frequencies being energy dependent. In
cylindrical Penning traps, C4 and C6 are inherently non-zero due to their cylindri-
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Figure 3.2: Schematic of the cylindrical electrodes in the 3rd stage accumulator,
also shown as a CAD drawing in figure 2.7, with the corresponding numbering
system. The numbers correspond to the electrical connections on a BNC breakout
box, where the six-segment rotating wall electrodes upstream from the centre are
E17–12, whilst downstream they are E9–4.§ The red arrows illustrate that the
segmented electrodes wrap around the axis forming two cylinders.

cal geometry but have additional contributions due to misalignment and machining
imperfections which may also introduce odd Cn terms. During electrode design,
C4 can be made approximately zero using mechanical compensation by adjusting
the inner radius to endcap distance ratio such that r0/z0 = 1.203 [Gabrielse and
Mackintosh, 1984]. Choosing a long ring electrode near the centre of the trap can
also be a beneficial design feature, as it enables a greater image signal pick-up,
which is discussed in chapter 5. The length of the centre electrode in the 3rd stage
was not designed to tune out C2, but instead optimised for the linearity of the
double rotating wall, as detailed in chapter 4.

Charged particles with less parallel kinetic energy than the height of the confin-
ing potential become trapped, and their axial oscillation frequency in an imperfect
harmonic well is determined from the solution of the axial equation of motion, as
was shown in section 2.9, but using the non-ideal potential in equation 3.8. To
lowest order this gives

ω2
zz =

q

m

∂φ

∂z
, (3.9)

such that

ωz =

√
qU0
md2C2, (3.10)

§Note that no electrode named E10 exists, due to a historical fault during installation.
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Table 3.1: The 3rd stage accumulator electrodes listed from upstream to down-
stream, with their lengths and applied biases for an electrostatic potential well
which is approximately harmonic in z. The internal radius of each electrode is
r0 = 20.5 mm.

Electrode E20 E19 E18 E17–12 E11 E9–4 E3 E2 E1
Voltage [V] 134.9 103.5 41.5 27.5 23.5 27.5 41.5 103.5 134.9

Length [mm] 37 49 18 19 21 19 18 49 37

which is a modification of the ideal equation 2.10b, that reduces to the ideal
Penning trap case when C2 = 1.

3.2 Superposition of the Laplace Equation Solu-
tion

The electric field for axial containment is found by solving Laplace’s equation
(equation 2.6). For a cylindrical Penning trap of inner radius r0 and total length
2Lz, with endcaps as shown in figure 3.1, the azimuthally symmetric solution [Gabrielse
et al., 1989] in cylindrical coordinates (r,ϕ, z) near the centre of the trap is

φ(r, z) = U0
∞∑
n=0

AnI0 (knr) cos (knz) , (3.11)

substituting for An from equation 3.2, gives explicitly

φ(r, z) = 2U0
∞∑
n=0

I0 (knr) sin (knz0) cos (knz)
(n+ 1

2)π I0 (knr0)
, (3.12)

which is the quantity calculated for each cylindrical electrode. A total axial poten-
tial was then obtained from the superposition of the electric potential from each
of the electrodes in the 3rd stage accumulator. The on-axis distance a particle
with a given parallel energy could travel was calculated, to give the axial bounce
frequency as a function of parallel energy within the potential, fz(E‖).

3.3 Potential Well Computational Optimisation

To obtain a harmonic potential well in the 3rd stage, the electrode voltages were
determined using a computational optimisation routine. Nine DC voltages are
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Figure 3.3: The on-axis electric potential produced by each electrode from ta-
ble 3.1 is shown by the nine smaller peaks in various colours, while the sum of
the potentials is shown as the thicker blue line. The distance, z, is relative to the
entrance of the 3rd stage accumulator.

required to bias the electrodes in the 3rd stage accumulator, as illustrated by
figure 3.2, but as the harmonic potential must be symmetric about the centre
electrode, only five voltages needed to be determined. These were subject to the
constraints that 140 V ≥ VE20 ≥ VE19 ≥ VE18 ≥ VE17–12 ≥ VE11, where the
voltage applied to the entrance electrode is VE20, and VE11 is the voltage applied
to the centre electrode. The limit on the maximum applied voltage of 140 V is the
maximum DC output voltage from the Llachar amplifiers, and the minimum of the
potential well was required to equal the minimum parallel energy of the incoming
positrons which was 26.2 eV, as determined experimentally in section 3.8.

In the computation, each electrode voltage was systematically increased in
50 mV steps over the entire the parameter space and the Laplace equation solved
for each configuration, using the superposition theorem to calculate the total elec-
tric potential. The deviation of the resultant potential from the ideal fitted form
of φ ∝ z2 was calculated for the central 30 mm of the potential, which trapped
particles would occupy presuming a maximum parallel energy spread of ≈ 3 eV,
which was a cautious over estimate. This deviation was minimised to give the
optimal potential well.

In table 3.1, the optimised set of electrode voltages are given along with the cor-
responding lengths, while a plot of the resultant total electric potential, obtained
from the superposition of each electrode, is shown along with the individual elec-
trode potentials in figure 3.3. The total potential is then compared with an ideal
fitted harmonic potential in figure 3.4, showing good agreement with < 4.5% devi-
ation from the quadratic form for the presumed maximum particle energy spread
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a) b)

Figure 3.4: a) The calculated on-axis electric potential, φ(z) (blue), and the
ideal harmonic form (red), which has been centred to the centre of the 3rd stage.
Calculated data were fitted with the ideal harmonic form φ(z) = Az2, giving the
constant A = (1.500± 0.003) V cm−2. b) The difference between the calculated
values and the ideal form for the potential is then plotted as a residual plot.
Resultant shifts in axial bounce frequency, due to the deviation from the ideal
form, are shown in figure 3.5.

of 3 eV.

3.4 Determining Motional Frequencies A Priori

The motional frequencies of a trapped charged particle in the harmonic poten-
tial well could be predicted using theory. From the superposition of the Laplace
equation solution for each electrode (section 3.2), the axial bounce frequency
for a single on-axis particle in this harmonic potential well was calculated to be
fz ≈ 11.04 MHz, and the variation with energy due to the anharmonicity, fz(E‖),
is described using the axial period, Tz, by

fz(E‖) =
1
Tz

=
√

e

2m

 z2∫
z1

dz√
E‖ − φ(z)

−1

, (3.13)

where E‖ is in eV, and z1 and z2 are the solutions of E‖ = φ(z), i.e. the minimum
and maximum axial position of a trapped charged particle of parallel energy E‖.
A plot of fz(E‖) is shown in figure 3.5 where fz on-axis is predicted to vary by
< 300 kHz for a parallel energy spread of 3 eV, which represents a frequency
width of < 3% in fz. The particle axial bounce frequency width is important
when estimating the quality factor of a resistive cooling circuit, as detailed in
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Figure 3.5: Calculated on-axis axial bounce frequency, fz, in the 3rd stage opti-
mised harmonic potential as a function of particle parallel energy, E‖, at various
radial positions. The internal radius of the electrodes is r0 = 20.5 mm. In this
potential, the on-axis value of fz varies by < 3% in the 0–3 eV energy range,
corresponding to a total frequency width of ≈ 300 kHz.

chapter 5. Considering off-axis particles with E‖ ≈ 0 eV, then r = 15 mm gives
fz ≈ 10.3 MHz. An empirical value of fz between around 10.3 MHz and 11.1 MHz
may therefore be accounted for by the radial position of the particles.

To further computationally characterise the stability of the bounce frequency,
the potentials from each electrode were varied slightly about their desired val-
ues. This was to simulate the possible effects of uncalibrated applied biases or
a build-up of space charge in the accumulator, which would change the trapping
potential causing a change to the oscillation frequencies [Jeffries et al., 1983]. The
voltage on the second and penultimate electrodes (E19 and E2 respectively) were
lowered by a worst-case estimate of 1 V, to 102.5 V, causing a calculated shift in
fz of −21 kHz, while lowering by 3 V to 100.5 V caused a −65 kHz shift. In-
creasing the centre electrode voltage by 1 V, to create a more flat-bottomed well
also causes a shift of −21 kHz, while increasing by 0.5 V causes a −13 kHz shift.
These frequency shifts are relatively small, but are large enough to observe when
varying a sinusoidal driving frequency and measuring the number of trapped par-
ticles remaining. Uncalibrated biases would result in a constant offset observed
from the calculated value of fz, provided it would not drift significantly during ex-
perimentation. Such variations would also affect the harmonicity of the potential
and undesirably result in a more energy dependent axial bounce frequency, which
would also cause deviation from the calculated values of fz(E‖).

The cyclotron frequency can be approximated using equation 2.10a, using
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the calculated magnetic field strength in the 3rd stage of 37.7 mT, which gives
fc ≈ 1.06 GHz. Using the calculated axial bounce frequency of fz = 11.04 MHz,
the magnetron frequency can then be computed from equation 2.18 and by sub-
stituting for the free cyclotron frequency from equation 2.10a gives

fm ≈
πmf2

z

eB
, (3.14)

which using the calculated magnetic field strength in the 3rd stage again, provides
fm ≈ 58 kHz. The magnetron and axial bounce motion are both able to be driven
with available hardware, whilst the cyclotron motion is too fast.

3.5 Experimental Recapture and Ejection Opti-
misation

Tuning the static biases for the electric potential during catch, hold, and eject
cycles was an essential part of minimising particle loss and disturbance of the
energy distribution. To minimise changes to the harmonic potential well in the
3rd stage during the catch sequence, the centre electrode and subsequent electrodes
downstream (E11, E10–4, E3, E2 and E1 respectively) were pre-set to the desired
bias.

When transferring positrons from the 2-stage trap to the 3rd stage accumu-
lator, timing is important for maximising the transfer efficiency. The delay time
between ejection from the 2-stage and catching in the 3rd stage was varied whilst
detecting the number of retrapped positrons, as shown in figure 3.6. A mean de-
lay of (0.589± 0.001) µs was found before the positrons were first caught. This is
the time of flight between the 2-stage and the 3rd stage. If the positrons are not
caught, they are retarded back towards the raised exit potential of the 2-stage and
can bounce between these two locations until being trapped later or lost. In fig-
ure 3.6 this is shown by the series of peaks which are a mean of (1.178± 0.002) µs
apart, which is twice the time of flight between the 2-stage and 3rd stage, as ex-
pected due to each additional round trip. It is also seen that the time width of
the peaks increases with delay time due to the parallel energy distribution of the
cloud. Some positrons are lost during the transfer and a decrease in the number of
retrapped positrons is seen with increasing delay time, thus the positrons should
be retrapped at the first opportunity, as this gives the largest positron number
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Figure 3.6: The number of retrapped positrons as a function of delay time
between ejection from the 2-stage trap and raising the potential at the entrance
of the 3rd stage accumulator for retrapping. Data (red) are fitted with a series
of six unconstrained Gaussian peaks, shown as the blue line. The first peak is
seen after (0.589± 0.001) µs with a time width of σ = (51± 2) ns, and the mean
time between each peak is (1.178± 0.002) µs. Positrons are retarded when the
potential at the entrance of the 3rd stage has not been lowered sufficiently, and
bounce between the raised potential at the exit of the 2-stage and the entrance of
the 3rd stage, such that retrapping can occur later.

and therefore maximum transfer efficiency.
The minimum of the trapping potential was set to match the minimum energy

of the incoming parallel energy distribution of the particles, discussed further in
section 3.8. As a result, the bias applied to the centre electrode was 23.5 V, and
all but the first electrode on the entrance side of the centre (E19, E18 and E17–12)
were kept at this value prior to catching. This led to an increase in the detected
number when compared with grounded entrance electrodes, as the incoming par-
allel energy distribution is maximally slowed by the retarding potential, without
blocking any particles and decreasing the trapped particle number.

Fast nanosecond high voltage pulse generators were trialled for both the par-
ticle catch and eject in both the 2-stage and 3rd stage, but their jitter and fast
rise/fall on the gate electrodes was empirically found to retain less particles than a
slower catch/eject. The catch was most effective using the Llachar DC amplifiers
with their ∼ 10 µs 10–90% rise time. Starting the entrance electrode of the 3rd
stage (E20) at a negative potential then allowed finer temporal tuning than was
otherwise possible. Once the entrance potential was sufficiently high to trap the
particles, the remaining potentials (on E19, E18 and E17–12 respectively) were
raised sequentially with the minimum time step of 3 µs between each, for the de-
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sired harmonic well. Raising these remaining potentials simultaneously decreased
the detected particle number, and the mean parallel energy and its spread were
increased, thereby suggesting particles were being undesirably heated. As a result,
the potentials were raised sequentially instead.

For ejection, the optimal sequence was found by sequentially lowering the bar-
rier voltages from the exit inwards, i.e. E1, E2, E3, then E10–4 respectively, with
appropriate time delays. Using the Llachar DC amplifier fall rate of ≈ 10 V/µs,
the electrode biases were timed to reach ground concurrently. This was done by
lowering the bias on E1 3 µs before lowering E2, and lowering E2 6 µs before E3,
before finally lowering E3 and E10–4.

Further improvements in the detected number were found by lowering E10–4,
on the exit side of the central electrode, to 12.3 V as opposed to ground during
ejection. This value was derived using the computation which solved the Laplace
equation, as it maintained the existing harmonic potential well shape fully to
ground, instead of the previous potential minimum value. This meant the potential
well remained harmonic during ejection and reduced anharmonicity on the exit
side.

As a result of these optimisations, a transfer, catch, and eject efficiency of
85% was achieved from the 2-stage to the 3rd stage. Another consequence of the
aforementioned improvements was an increase to the positron lifetime in the 3rd
stage, as it was initially < 50 ms, whilst the largest measured lifetime as a result
of this study was over 60 s, as shown in section 3.7. The lifetime was particularly
dependent upon the alignment of the magnetic field axis with the electrode axis,
and the background gas pressure, which were not necessarily constant during the
entire period of these studies, e.g., following the system being at atmospheric pres-
sure or significant equipment installation, which could affect vacuum quality. The
transfer efficiency and lifetime were therefore routinely checked prior to experi-
mentation, as a diagnostic to ensure that conditions were comparable over many
weeks.
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Figure 3.7: Positron number as a function of sinusoidal driving frequency, as
measured by a CsI detector, with standard error on four repeats, fitted with
equation 3.15 to give f0 = (10.551± 0.007) MHz and σ = (121± 8) kHz. The
frequency at which the most positrons have been driven out of the harmonic po-
tential corresponds to a resonance near the axial bounce frequency of the cloud,
thus fz ≈ 10.55 MHz.

3.6 Determining Motional Frequencies Experi-
mentally

Destructive diagnostic methods were used to determine the motional frequencies
of the positron cloud. As the driving frequency applied to an electrode by a si-
nusoidal function generator approaches a resonant frequency of the cloud motion,
the radius of the particle motion increases which can cause annihilation against
the surrounding electrodes. By iterating over a range of driving frequencies and
detecting the remaining number of particles, the motional frequency is approx-
imately given by the resonant frequency, f0, at which the minimum number of
remaining particles is observed. This is when the driving frequency is resonant
with a motional frequency of the particles. To obtain an approximate value for
f0, a trough in the number of particles, N , provided it is symmetric, can be fitted
by an arbitrary 1D Gaussian of the form

N(f) = B −A exp
−1

2

(
f − f0
σ

)2 , (3.15)

where A is the amplitude of the Gaussian and B is the particle number off-
resonance.

The axial bounce motion was driven by applying a sinusoidally varying signal
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Figure 3.8: Positron number as a function of sinusoidal driving frequency, as
measured by a CsI detector, with standard error of four repeats, fitted with
equation 3.15 to obtain the resonant frequency at which most positrons have
been driven out of the potential well, f0 = (50.4 ± 0.1) kHz, with a width of
σ = (0.6± 0.1) kHz. The resonant frequency corresponds to a resonance near the
magnetron frequency of the cloud, giving fm ≈ 50.4 kHz.

of amplitude 2.5 V to the centre electrode in the 3rd stage (E11) for 0.1 s. This res-
onantly ejected positrons from the trap, and a minimum in the number of particles
provided fz ≈ 10.55 MHz, as seen in figure 3.7. This agrees with the frequency ex-
pected from the electric potential (section 3.2) which was fz = 11.04 MHz on-axis
for E‖ = 0 eV, but dependent upon the radial position (illustrated by figure 3.5)
may be between 10.3 MHz and 11.1 MHz, in agreement with the observed total
frequency width. The empirical value of fz is therefore explained by the radial
position of the particles being between r = 0 mm and r ≈ 15 mm. Some mi-
nor non-idealities may also be present due to driving the axial motion along the
accumulator axis, with imperfect alignment to the magnetic field axis, causing a
change to the radial position of the particles and shifting the resonant frequency
from the ideal case.

Similarly, the magnetron motion of the cloud was driven for 0.5 s with a si-
nusoidal signal of 5 V amplitude, applied to a segmented electrode (E13) giving
fm ≈ 50.4 kHz, as shown in figure 3.8. This estimate is broadly in agreement with
the predicted value of fm ≈ 58 kHz from section 3.4, but instead using the empiri-
cal value of fz in equation 3.14 predicts fm ≈ 53 kHz, providing better agreement
with the observation. The deviation of 5% is most likely due to the predicted value
relying upon a calculated value of the magnetic field strength, B, which is not em-
pirically known. The radial motion of the cloud was also driven asymmetrically
with a relatively large amplitude, using one segment of an off-centre six-segment
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a) b)

Figure 3.9: x–y plane positron cloud centre as a function of hold time, from
MCP images fitted by a 2D Gaussian from equation 2.1. The data represent single
measurements, where the error bars are the uncertainty in position from the 2D
Gaussian fitting. a) x-position as a function of hold time, fitted with equation 3.16a
in red and centred to give the magnetron frequency fm,x = (66.9± 0.5) kHz. b)
y-position as a function of hold time, fitted with equation 3.16b in red to give the
magnetron frequency fm,y = (68.6± 0.3) kHz.

electrode, which would in addition have driven the axial motion and coupled it
with the radial motion, potentially causing a shift in the observed resonant fre-
quency. For a more precise measurement of the magnetron frequency, a second
method was used.

The magnetron frequency was independently verified by imaging the cloud
position and intensity with time, using the MCP and camera, and fitting its 2D
Gaussian centre (x0, y0) using equation 2.1, which gives a time varying sinusoidal
signal. The sinusoidal waves have the form

x(t) = Ax(t) sin(2πfm,xt+ θx) + x0, (3.16a)
y(t) = Ay(t) cos(2πfm,yt+ θy) + y0, (3.16b)

where the oscillation amplitudes, Ax,y(t) = Ax,y (0) exp (−t/τx,y), and magnetron
frequency, fm, in x and y are distinct to allow for elliptical orbits. This gave
fm,x = (66.9± 0.5) kHz and fm,y = (68.6± 0.3) kHz, as shown in figure 3.9,
which is ≈ 18% larger than the calculated value. The discrepancy is explained
by the difference in magnetic field strength at the MCP detector, as fm ∝ 1/B
(from equation 3.14), where B is ≈ 15% smaller than inside 3rd stage accumulator.
Taking this into account implies fm ≈ 58 kHz within the B-field of the 3rd stage,
which agrees with the original calculation. The central position of the magnetron
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Figure 3.10: Natural logarithm of positron number as a function of hold time
in the 3rd stage, as measured by a CsI detector, with a linear least squares fit
to highlight the two component lifetime. Fitting equation 2.26 to the positron
number gave a lifetime τ = (101.1 ± 9.7) s in blue for the first 50 s and
τ = (29.9± 2.0) s shown in red afterwards. Radial expansion eventually causes
the positrons to annihilate against the vacuum chamber after ≈ 55 s, causing
additional loss and a decrease in the lifetime.

orbit radius is shown to slightly drift during this time window, which can be
attributed to the cloud being loaded into the 3rd stage slightly off-axis, due to
a magnetic field misalignment. In addition, the magnetron amplitude decreases
which also suggests a transfer of energy to the radial motion.

The cyclotron frequency was too fast to be driven or imaged by available
hardware, so substituting the empirically obtained values of fm (from figure 3.8)
and fz into equation 2.20 gives fc ≈ 1.09 GHz which is only 3% higher than the
calculated value. Measuring the motional frequencies was important, as it enabled
the frequency tuning of cloud manipulations, such as rotating wall compression
and resistive cooling, which needed to be near fz.

3.7 Lifetime Measurements

For a stable positron number, at least on the timescale of experiments in the
3rd stage, a sufficiently long lifetime was required. This would give ample time to
perform manipulations, such as rotating wall compression (see chapter 4) and cool-
ing measurements (in chapter 5). Observing these effects would require trapping
positrons for a few seconds, and thus a lifetime of & 5 s was sought.

A lifetime measurement was performed by keeping the accumulation time in the
2-stage trap constant at 1 s, and varying the hold time in the harmonic potential
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well in the 3rd stage and measuring the signal on a CsI detector after ejection.
The mean trapping lifetime, τ , was obtained by fitting equation 2.26 to the data.
An example of this is shown in figure 3.10.

Initially the positron lifetime was < 30 ms, partially due to misalignment
between the magnetic field and the axis of the 3rd stage electodes which introduced
non-idealities. Prior to these studies, this was often compensated for by using a
‘magnetron kick’ [Mortensen et al., 2013] to radially offset the cloud during ejection
from the 2-stage trap.

Improving the alignment of solenoid 3 allowed a lifetime of tens of seconds to
be achieved in the harmonic potential, without the use of radial compression, as
shown in figure 3.10. The lifetime shown has two components, as after ≈ 55 s
radial expansion causes additional losses as positrons begin to annihilate against
the electrodes. The use of rotating wall electric fields, described in chapter 4,
can counteract radial expansion and allow a longer lifetime to be obtained but no
rotating wall was wanted for initial resistive cooling measurements, as a driving
force complicates the system, thus a long natural lifetime is important. Positron
signal was still seen for hold times of 100 s, which was sufficient time for resistive
cooling and temperature measurements to be performed, as required.

3.8 Parallel Energy Measurements

Applying a retarding potential U at some point along the axis allows measurement
of the parallel kinetic energy distribution of the cloud. Only particles, n, with
energy E‖ > U can pass the potential barrier, so by scanning the voltage for
successive measurements of accumulated clouds, the integrated parallel energy
distribution can be determined [Eggleston et al., 1992]. If the energy spread is
assumed to be Gaussian, then the signal size against retarding potential is fitted
by the complementary error function,

n(E) =
N√
2πσ

∞∫
E

exp
− (E′ −E0)

2

2σ2

 dE′ = N

2 erfc
(
E −E0√

2σ

)
, (3.17)

thereby quantifying the parallel energy distribution.
A measurement of the parallel kinetic energy distribution for positrons ejected

from the 2-stage trap and arriving at the 3rd stage was performed. A sequence of
measurements, varying the retarding potential on the 3rd stage electrodes, obtains
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Figure 3.11: Measurement of the complementary cumulative distribution func-
tion for the positron parallel energies ejected from the 2-stage. The blocking volt-
age was applied to the 3rd stage electrodes, using the MCP as the annihilation tar-
get. The data are fitted in red by equation 3.17, where E0 = (26.650 ± 0.008) eV,
and σ = (0.147 ± 0.007) eV. The corresponding Gaussian probability density
distribution is plotted in green. Each point is the mean and standard error of
three CsI detector signals.

a cumulative distribution function, as shown in figure 3.11. These measurements
allowed the minimum of the harmonic potential well to be set at 26.2 V to match
the minimum parallel energy of the positron cloud. Applying the maximum retard-
ing potential, without blocking, allows maximal slowing of the incoming particles.
Doing so gives the maximal number of trapped particles. This was verified ex-
perimentally by varying a constant offset on all the electrode biases, which raised
the potential whilst retaining its shape, and optimising for the largest detected
number of particles.

A retarding potential measurement was also performed following a 5 s hold
time in the 3rd stage harmonic potential well. The retarding voltage was ap-
plied to E3 (the third electrode from the exit) as the other exit electrode volt-
ages were lowered during ejection. Fitting equation 3.17 to these data gives
E0 = (18.449 ± 0.003) eV and σ = (0.107 ± 0.003) eV, as shown in
figure 3.12. Therefore, retrapping in the 3rd stage and holding in the harmonic
well for 5 s reduced the energy width σ by ≈ 0.04 eV, which is ≈ 27%. As a result,
a decrease in the total width of the parallel energy distribution of 99.7% of the
positrons (corresponding to ±3σ from the mean) from 0.88 eV to 0.64 eV was also
observed, which is a ≈ 27% reduction. E0 of the positron cloud also decreased by
≈ 8.2 eV compared to when arriving at the 3rd stage, but this is predominantly
attributed to the decreasing potential minimum in the 3rd stage during ejection.
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Figure 3.12: Measurement of the complementary cumulative distribution func-
tion for the positron parallel energies ejected from the 3rd stage after being trapped
for 5 s in the harmonic potential. The retarding voltage was applied to E3 which
has been scaled to on-axis potential, where the MCP was the annihilation target.
The data are fitted in red by equation 3.17, where E0 = (18.449 ± 0.003) eV
and σ = (0.107 ± 0.003) eV. The corresponding Gaussian probability density
distribution is plotted in green. Each point is the mean and standard error of four
CsI detector signal heights.

Quantifying the positron parallel kinetic energy distribution aids optimisation
of the trapping potentials, and provides an estimate for the range of axial bounce
frequencies in the 3rd stage due to that energy distribution. This is important
when understanding the interaction with a rotating wall and for designing a resis-
tive cooling circuit, as will be shown in the subsequent chapters.

3.9 Single-shot Temperature Measurements

Positron temperatures are important as a diagnostic technique to quantify heating
and cooling when manipulating a positron cloud. This is relevant to chapter 4
which discusses rotating wall compression and heating, and chapter 5 which details
experiments to cool positron clouds using an external resistive circuit.

A single-shot ‘high temperature’ measurement method for electron plasmas was
developed by [Beck, 1990] and published with detailed discussions in [Eggleston
et al., 1992] and [Beck et al., 1996]. It is described as a single-shot measurement
as it only requires one accumulated cloud or plasma, which is particularly advan-
tageous if accumulation takes a relatively long time. The justification for using
this technique in the single particle regime will be outlined in this section. The
experimental method is the same, but it is presented with the rationale for non-
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interacting charged particles. In general, the original arguments are simplified
due to the absence of a plasma potential which complicates the model. It has
been shown that a correction factor is needed to modify the temperature model
in the plasma regime, but for a very low number of particles that this factor ap-
proaches 1 [Hart and Peterson, 2006]. This provides support for the validity of
the temperature measurement in the single particle regime.

3.9.1 Assumptions

Listed below are the assumptions that are built into the temperature measurement
model, and which conditions are required for these assumptions to be valid.

1. The parallel velocity distribution is Maxwellian.

2. All particles with a parallel velocity, v‖, such that

mv2
‖

2 + eφ > eVb, (3.18)

escape past the potential energy barrier, eVb, and are collected, in this case
by an MCP which is used as a charge amplifier. The remaining parallel
velocity distribution in the trap is then

f(v‖) =


const× exp

(
−

mv2
‖

2kBT‖

)
, if v‖ <

√
2e(Vb − φ)/m;

0, otherwise,
(3.19)

where φ is the electrostatic potential.

3. T‖ is independent of r, and Vb can be considered independent of r.

4. φ(r) is independent of Vb.

5. Only particles near the axis escape over the potential barrier.

These five assumptions and their importance will be described in further detail
below.

1. Maxwellian parallel velocity distribution

The temperature of the cloud is measured assuming that v‖ is Maxwellian, allowing
T‖ to be measured. For the temperature measurement, the exit potential barrier,
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Vb, on one side of the well is slowly lowered to ground which causes the cloud to
expand axially. For the cloud to remain Maxwellian during this expansion, the
axial bounce period of a particle must be much faster than the rate at which Vb

changes. This condition can be written given the axial bounce time of a thermal
particle, 2lc/vT , where vT is the thermal velocity and lc is the axial length of the
cloud, as ∣∣∣∣∣edVbdt

∣∣∣∣∣� kBT
vT
lc

. (3.20)

This ensures that a particle escapes with an axial energy much smaller than the
thermal energy, kBT , so that all particles at the same radius and axial energy es-
cape at approximately the same Vb. Notwithstanding this condition, the lowering
of the potential barrier must remain faster than the collision and radial transport
time [Beck et al., 1996]. This ensures that the loss of energetic particles during
measurement, which is a forced evaporative cooling process, does not affect the
measured temperature. The subsequent energy redistribution at later times could
also cause a deviation from the expected Maxwellian distribution, prior to rether-
malisation. When the number of particles that have escaped is small, then the
evaporative cooling effect on the remaining distribution will be small and so the
assumption holds.

2. All particles with sufficient parallel velocity escape past the confining
barrier

The condition for a particle to escape past a potential barrier Vb is given by
equation 3.18. If Vb is a function of time, then φ can be further complicated as it
may also depend on t and z. To a good approximation, the t and z dependence
of φ can be ignored if equation 3.20 is satisfied, which ensures that f(v‖) = 0 for
v‖ >

√
2e(Vb − φ)/m. The condition states that the confining barrier potential,

Vb, must be lowered slowly compared to the axial bounce period, to allow the
particles with sufficient energy (according to equation 3.18) travelling towards,
and away from the barrier, to escape. Therefore, particles with sufficient energy
but travelling in the opposite direction to the exit, can take a time of up to 2lc/v‖
to escape, which ensures the assumption is met.
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3. T‖ is independent of r, and Vb can be considered independent of r

For long cylindrical barrier electrodes, the confinement potential φ does not vary
significantly with radius, so to a good approximation φb ≈ Vb. For shorter elec-
trode rings with a smaller aspect ratio, the confinement potential may vary with
radius, i.e. φ(r), but it will be smallest on-axis. This coincides with the most
energetic particles which are also on-axis. Due to these two factors, the on-axis
particles will be first to escape. This means that the barrier potential on-axis is
the important physical quantity and its radial dependence can be ignored. Thus,
the barrier potential Vb and T‖ can both be considered as independent of radius
for the temperature measurement method.

4. φ(r) is independent of Vb

In the plasma regime, lowering the barrier potential and allowing particles to
escape changes the plasma potential, φp, which alters the confining potential.
Therefore, only the energetic tail of the Maxwellian distribution can be used,
before the change in φp significantly affects the measurement. The mapping of
Vb → φ(r) is also complicated by the changing plasma potential and deducing it
requires additional measurements with varying radius.

In the single particle regime, as there is no plasma potential, the loss of particles
does not change the trapping potential, φ. This means a map of Vb → φ(r) is more
straightforward, as it only depends on the aspect ratio of the barrier electrode,
which is constant. Due to the absence of a plasma potential, a larger portion of the
Maxwellian distribution can be used to obtain the cloud temperature, subject to
the timing constraints given in the first assumption. As a result, this may provide
an aid to indicate whether trapped charged particles are in the single particle
regime, or should be considered as a non-neutral plasma. If significantly less of
the parallel velocity distribution is Maxwellian during the measurement, then it
may indicate the presence of plasma effects.

5. Only particles near the axis escape over the potential barrier

Due to the cylindrical geometry of the trapping electrodes, as discussed in assump-
tion 3, the confining potential is smallest on-axis. This is shown in figure 3.13,
thus the v‖ required to escape is smallest on-axis. The difference in axial potential
on-axis and off-axis is shown in figure 3.14, which shows that the potential well is
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Figure 3.13: The calculated total radial electric potential in the 3rd stage, φ(r),
at the centre of electrode E3 which applies the barrier voltage during the tem-
perature measurement, obtained from the superposition of the Laplace equation
solution for each electrode (section 3.2). When the axially confining potential on
the exit is lowered, the first particles to escape will be the most energetic particles
on-axis near r = 0. A confining barrier voltage of Vb = 22 V was chosen here
which corresponds to when positrons begin to escape, and the internal radius of
the cylindrical electrodes is r0 = 20.5 mm.

deeper off-axis.
The perpendicular kinetic energy distribution of a charged particle cloud in

the single particle regime will now be reviewed. Using the guiding centre approx-
imation, the radial motion of a charged particle in a Penning trap comprises of a
magnetron motion, which can be pictured as a rotation about a potential hill. If a
particle at the centre of the potential well loses energy, then the amplitude of the
magnetron motion, Am, increases. The kinetic energy of the magnetron motion
can be given by

Em =
1
2mω

2
mA

2
m. (3.21)

Rearrangement gives the amplitude of the magnetron motion in terms its kinetic
energy,

Am =

√
2Em
mω2

m
. (3.22)

When more than one charged particle is trapped, the statistics of the particle
energy and the rate of thermalisation are affected by collisions between particles,
and interactions with the background cooling gas. These interactions establish a
thermal equilibrium between particles and can be considered as small perturba-
tions to the average particle motion, given that the average energy of a particle is
large compared with the time average of the Coulomb interaction potential. The
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Figure 3.14: The calculated total electric potential in the 3rd stage harmonic
well, for r = 0 mm (blue) on-axis and at r = 10 mm (orange). The axial position,
z, is relative to the entrance of the 3rd stage accumulator, where the centre is at
z = 13.35 cm, and the gridlines denote the edges of each electrode. The potential
well is shown to be deeper off-axis and shallowest on-axis.

particle cloud can then be described as an ideal gas of non-interacting particles in
thermal equilibrium [Major et al., 2005]. Assuming an ensemble of non-interacting
particles at radius r, then the Boltzmann thermal distribution is

Nr(Em) ∝ exp
(
− Em
kBT

)
. (3.23)

Substituting for Em in terms of the magnetron motion amplitude, from equa-
tion 3.21, gives

Nr(Am) ∝ exp
(
−mω

2
mA

2
m

2kBT

)
, (3.24)

and so in the single particle regime, a thermal ensemble has a Gaussian distribution
in the radial plane [Isaac, 2010]. This has been experimentally verified by an MCP
image of the cloud, and is significant as the most radially energetic particles will
be nearest the axis.

As the radial distribution of the cloud is well-described by a Gaussian, this sup-
ports that the velocity distribution is indeed Maxwellian and thus a temperature
can be attributed to the ion cloud [Major et al., 2005]. At the ‘high temperatures’
typically probed, temperature equilibration, where T‖ ≡ T⊥ ≡ T , is expected from
conventional scattering theory [Hyatt et al., 1987]. As clouds are usually held in
the potential prior to measurement for a long time (∼ 0.5 s) compared to the
collision time, equilibration is expected. The equilibrium temperature for a given
confining potential is then determined by the net effect of the heating from sources
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such as electrical noise and rotating wall electric fields, and cooling mechanisms
such as collisions with background gas.

3.9.2 Temperature Measurement Application

Using the assumptions from the previous section, the model for the temperature
measurement will now be derived. The parallel velocity at equilibrium is described
by a Maxwell distribution, given by

f(v‖) ∝ exp
− mv2

‖
2kBT‖

 . (3.25)

At the point of escape from the trap, from equation 3.19, v‖ =
√

2e(Vb − φ)/m,
and the number of particles that escape as a function of barrier potential is

Ne(Vb) ∝ exp
(
−e(Vb − φ)

kBT‖

)
. (3.26)

Therefore, using assumption 4, that dφ/dVb = 0, the gradient from a linear least
squares fit of a plot of the natural logarithm of the number of escaped particles
against barrier potential, i.e.

d ln(Ne)
dVb

= − e

kBT‖
, (3.27)

can be used to extract the temperature. To measure T‖, the linear least squares fit
is used over the most energetic tail of the Maxwell-Boltzmann distribution. This
process is repeated for each individual single-shot temperature measurement and
a weighted mean and standard error calculated. Using this method, small random
fluctuations which deviate from a Maxwellian parallel velocity distribution are
averaged to approximately zero. This is the temperature measurement method
which is already well-established for non-neutral plasmas [Eggleston et al., 1992].

As the gradient of the detected charge plotted against potential is used to
determine the temperature of the cloud, the exit voltage is not converted to on-
axis potential. This is valid provided the voltage decrease during ejection is linear,
as is shown in figure 3.15, as the applied voltage is directly proportional to the
potential. In this experiment, the detected charge from the MCP and the exit
voltage are measured simultaneously and can be plotted as in figure 3.16. As the
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Figure 3.15: An example of the raw signals from a single-shot temperature
measurement. The monitored exit voltage is plotted in blue, and fitted with a
linear least squares in red, to give a exit voltage fall rate of dVb/dt = (−8.524±
0.036) V/µs in the region of interest. The amplified charge from the MCP as a
function of time, after a 0.1 s hold in the 3rd stage, is plotted in yellow. As the
exit voltage is decreased, positrons begin to escape and the detected charge signal
increases until a maximum, at which time all the positrons have been ejected from
the well. The charge signal (yellow) is then plotted against exit voltage (blue) to
obtain the temperature, as shown in figure 3.16.

MCP back plate is biased by using a high pass filter, the charge is detected as an
integrated signal due to the relatively long time constant. A linear least squares
fitting algorithm then takes the largest value from the noise floor and begins the
fit once three sequential values for the detected charge exceed this value. The fit
region is terminated when a fixed amount of charge has been measured, this was
empirically set to an arbitrary level at ∼ 40% of the maximum charge signal. The
measured temperature as a function of time is then shown in figure 3.17, where it
appears stable, such that the mean temperature is T‖ = (0.321± 0.001) eV, which
corresponds to (3730± 10) K.

Positron temperatures will be presented in the following two chapters as a diag-
nostic technique to quantify heating due to rotating wall compression in chapter 4,
and cooling by an external resistive circuit in chapter 5.
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Figure 3.16: An example of the analysed signal from a single-shot temperature
measurement. The natural logarithm of detected charge from the MCP is plotted
as a function of exit voltage. As the exit voltage is decreased with time, positrons
begin to escape and the charge signal increases until all the positrons have been
ejected. From equation 3.27, a linear least squares fit over the region of interest,
shown in red, allows the temperature to be obtained.

Figure 3.17: The temperature in the 3rd stage harmonic potential as a function
of hold time, the temperature is not shown before 0.5 s to ensure the positron
cloud has equilibrated. Each datum is the weighted mean and standard error of
seven repeats. As the temperature appears to be at equilibrium, the weighted
mean and standard error is T‖ = (0.321± 0.001) eV, plotted as a dashed red
line.



Chapter 4

Rotating Wall Electric Fields

As energy is extracted from the magnetron motion of a charged particle in a
Penning trap, the amplitude of the magnetron orbit due to the E ×B rotation
increases. This is illustrated by figure 4.1, and eventually the charged particle will
be lost against the surrounding electrodes.

Ideally, the applied static fields for confinement are cylindrically symmetric,
but in reality have small asymmetries due to, for example, imperfect construc-
tion [Notte and Fajans, 1994]. In principle, physically rotating the trap about
its axis would ensure the asymmetries averaged to zero, but this is a highly im-
practical solution. Instead, the electric field can be rotated in the same direction
as the particle radial motion by applying a time-varying sinusoidal voltage to
split ring electrodes (see e.g. figure 2.7). This is the ‘rotating wall’ (RW) electric
field [Huang et al., 1997; Greaves and Surko, 2000] used for non-neutral plasmas,
which can also control the central density of a cloud of non-interacting charged
particles [Cassidy et al., 2006a; Greaves and Moxom, 2008; Isaac et al., 2011].

By varying the amplitude and frequency of the applied rotating electric field,
charged particle clouds can be compressed, expanded, and manipulated. If the RW
rotates with the direction of the radial motion of the cloud then radial compression
can be observed, whilst if it counter-rotates then expansion is seen [Greaves and
Surko, 2001]. Inducing inward radial transport diminishes radial loss from the
trap, which is an important use for this technique as it increases the particle
lifetime. Positron c1oud compression also has other advantages, such as allowing
increased overlap with the laser system for Ps spectroscopy and excitation on the
Swansea beamline.

Undesirably, RW compression induces heating of the cloud, and the thermal

60
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Figure 4.1: The magnetron motion of a charged particle in a Penning trap can
be considered as a rotation about the top of a potential hill, shown by the dashed
green line. When energy is lost, the particle orbits around the hill with a lower
energy at a larger radius.

pressure then counteracts compression until equilibrium is reached. Equation 3.24
shows that the amplitude of the magnetron motion of trapped charged particles
increases with temperature. If the positron temperature increases such that the
energy exceeds the Ps formation threshold, Ps is formed which then annihilates.
Inducing cooling mechanisms or reducing this heating therefore allows for greater
positron retention, which was an aim of this study.

In a high magnetic field, which is larger than a few Tesla, the emission of
cyclotron radiation may provide significant cooling. This is called radiative cool-
ing and usually requires superconducting magnets, as the energy damping time
constant [Knoop et al., 2016] for the cyclotron motion is

τr =
3πε0m3c3

q4B2 , (4.1)

which is approximately 2.6/B2 seconds for the electron charge and mass, if B is in
Tesla. The energy damping time constant is much longer for heavier charged par-
ticles such as a proton, where τr ≈ 1.6× 1010/B2 seconds. As a result, radiative
cooling is only efficient for cyclotron motion damping of positrons or electrons in
a Penning trap [Knoop et al., 2016]. Such a strong field is often impractical due to
cost or the necessity of a field free region, so cooling can be provided via collisions
with a gas. For an effective cooling gas, the molecule-positron annihilation and
elastic collision cross sections must be small to avoid loss and radial transport
respectively, whilst the inelastic collision cross section, for processes such as vi-
brational and rotational excitation, must be large [Greaves and Surko, 2000]. In
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Table 4.1: Parameters for various cooling gases at a pressure of 2× 10−8 torr
(≈ 2.7 × 10−8 mbar): annihilation time, τa; measured cooling time, τc; and
vibrational quanta, Eν . Data from [Greaves and Surko, 2001].

Gas τa [s] τc [s] Eν [eV]
SF6 2190 0.36 0.076, 0.188
CF4 3500 1.2 0.157
CO2 3500 1.3 0.291, 0.083
CO 2400 2.1 0.266
N2 6300 115 0.292

general, the cooling gases used on the Swansea beamline are CF4, SF6, or CO2 as
they have short cooling times as shown in table 4.1. For these studies, CF4 was
the cooling gas that was used. Inelastic scattering from a cooling gas is the most
common cooling mechanism currently employed on low energy positron accumu-
lators, but chapter 5 details the development of resistive cooling as an alternative.

An unresolved challenge to further develop the RW technique is to overcome
the current experimental maximum particle density limit [Danielson et al., 2015].
The implementation of a double RW endeavours to achieve this.

4.1 Single Rotating Wall in the 2-Stage Trap

The RW technique creates a rotating dipole around the trap axis, which is par-
allel to the axis of the magnetic field. Azimuthally split electrodes allow the
application of a time varying sinusoidal potential to each of the four RW electrode
segments in the 2-stage trap (recall the geometry from figure 2.4), with a phase
shift of 90° between each successive segment. A maximum of two signals with a
phase difference of 90° can be generated by a NF Corporation Wavefactory mul-
tifunction synthesiser (WF146B), which are then split and inverted using passive
180° phase splitters for the four necessary sinusoidal signals. To superimpose the
AC signals for the RW onto the DC trapping biases, passive high pass filters are
used. Further details of the four segment single RW in the 2-stage trap can be
found in [Isaac, 2010], where using the RW during positron trapping increased the
maximum number of trapped particles by a factor of 7.
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4.2 Double Rotating Wall in the 3rd Stage Ac-
cumulator

The electrodes in the 3rd stage accumulator were designed to increase the linear
z term in the expansion of the RW electric potential and reduce the next sig-
nificant term, as suggested by [Isaac, 2010; Deller, 2013], as described further in
section 4.3.2. This linearity is assumed in the compression model [Isaac et al.,
2011; Isaac, 2013], but the single RW potential only provides an approximate
match. The single RW potential also contains a non-zero constant offset in φ(z),
shown in section 4.3.2, which may introduce unnecessary heating of a particle
cloud. Previous studies at Swansea have investigated the loss of positrons due to
single RW heating [Deller, 2013], so quantifying and reducing the aforementioned
heating was the motivation for this study.

Two sets of RW electrodes were installed as part of the 3rd stage accumulator
(recall the geometry from figure 2.7). These are separated by a central compensa-
tion electrode of optimised length and operated with a 180◦ phase offset between
the sinusoidal signals applied to each set, which generates a ‘double’ rotating wall.
This produces an antisymmetric RW electric potential along the z–axis.

Each RW electrode in the 3rd stage accumulator is azimuthally split into six
equal segments, as opposed to the more conventional four segments in the 2-stage
trap. For a rotating dipole at the centre of the 3rd stage accumulator, six sinu-
soidal signals must be applied with a phase shift of 60° between each neighbouring
segment. No cooling gas was admitted directly into the this accumulator, as it
diffused across from the 2-stage trap along a pumping restriction, resulting in
∼ 10−6 mbar of pressure in the X-3 (the pumping cross immediately upstream
from the 3rd stage). More details of the practical implementation of a double RW
are given in section 4.8.

4.3 Penning Trap Potential in Cylindrical Coor-
dinates

When describing the electric potential in a Penning trap, it can be advantageous
to change from expressing the equations of motion in Cartesian coordinates, as was
shown in section 2.9, to cylindrical coordinates, due to the cylindrical symmetry
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of the system. The ideal Penning trap electric potential is quadratic along the
trap axis. Subject to Laplace’s equation, the electric potential of equation 2.7 can
be rewritten in cylindrical coordinates, by defining r2 = x2 + y2 and substituting
ωz from equation 2.10b, as

φ(r, z) = ω2
zm

2q

(
z2 − r2

2

)
. (4.2)

The motion of a charged particle in the non-relativistic limit is described by the
Lorentz force equation, which is equation 2.8. Inserting the electric and magnetic
fields, the radial equation of motion is

r̈ + Ωcẑ× ṙ− ω2
z

2 r = 0 (4.3)

whilst the axial equation of motion, equation 2.9c, is unchanged.

4.3.1 Solution in V± Coordinates

Decoupling of the magnetron and cyclotron motions of a particle in a Penning
trap can be performed by a further change of coordinate system. The magnetron
and cyclotron motions are separated by the use of two vectors V± defined as

V± = ṙ− ω∓ẑ × r, (4.4)

where ω± was defined in equation 2.13. In the literature [Brown and Gabrielse,
1986], the magnetic field lies antiparallel to the trap axis, but the parallel definition
is instead chosen here. Calculating the derivative with respect to time gives

V̇± = r̈− ω∓ẑ × ṙ, (4.5)

which allows substitution for r̈ from equation 4.3 giving

V̇± = − (Ωc − ω∓) ẑ × ṙ +
ω2
z

2 r. (4.6)

Substituting for ṙ from equation 4.4 and using that Ωc − ω∓ ≡ ω± gives

V̇± = −ω±ẑ ×
(
V± − ω∓ẑ × r

)
+
ω2
z

2 r, (4.7)
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and expanding this gives

V̇± = −ω±ẑ ×V± + ω±ω∓ẑ × (ẑ × r) +
ω2
z

2 r. (4.8)

Next, using the vector triple product to expand,

V̇± = −ω±ẑ ×V± + ω±ω∓ ((ẑ · r) ẑ − (ẑ · ẑ) r) +
ω2
z

2 r, (4.9)

but ẑ and r are perpendicular, so ẑ · r = 0 and ẑ · ẑ = 1, making

V̇± = −ω±ẑ ×V± − ω±ω∓r +
ω2
z

2 r. (4.10)

From equation 2.13, ω±ω∓ ≡ ω2
z/2, and so the last two terms cancel, leaving

V̇± = −ω±ẑ ×V±. (4.11)

This has solutions

V± = A±

 sin (ω±t− φ±)
cos (ω±t− φ±)

 , (4.12)

where A± and φ± are amplitudes and phases, dependent on the initial conditions.
Taking the difference of the vectors V+ −V−, and their cross product with ẑ

gives

r =

 x

y

 =
ẑ × (V+ −V−)

ω+ − ω−
. (4.13)

Thus, as was shown in section 2.9 in Cartesian coordinates, the radial motion of
a particle is given by a superposition of two rotations about a circle, with angular
frequencies: ω+ which is the modified cyclotron frequency (ωc), and ω− which is
the magnetron frequency (ωm).

4.3.2 Single vs Double Rotating Wall Electric Field Po-
tential

The radial and axial motions in an ideal trap are decoupled, but can be coupled
by applying a rotating dipole electric field. From equation 4.12, V± resonates at
ω±, so near ωz only the magnetron (V−) motion has a significant contribution.
Therefore the cyclotron motion can be neglected (V+ = 0), which is the so-
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called ‘guiding centre approximation’ [Northrop, 1961], and so one can set V− =

(Vx,Vy).
The electric potential of an axially asymmetric rotating dipole with frequency

ωr, as produced a single set of RW electrodes (where their centre is not at the
centre of the potential well), after introducing an effective distance z0, is given in
Cartesian coordinates by approximately

φr,1 = a
m

q
(z − z0) (x cos (ωrt)− y sin (ωrt)) , (4.14)

near the centre of the trap, where a is the amplitude of the rotating field. Contrast-
ingly, the electric potential due to a double RW, as produced by two sets of RW
electrodes offset in phase from each other by 180°, can be written as approximately

φr,2 = a
m

q
z (x cos (ωrt)− y sin (ωrt)) , (4.15)

near the centre of the trap. The on-axis single and double RW potentials as
a function of z are shown in figure 4.2. The key advantage of the double RW
potential, is the region which is linear as a function of z. Previously published work
elucidated the mechanism for independent charged particle compression [Isaac
et al., 2011; Isaac, 2013], but a rotating dipole from a single RW does not fully
match the model parameters. The double RW uses a rotating dipole potential
which is antisymmetric about z = 0, which in this study is the centre of the 3rd
stage accumulator. This is unlike the single RW, in which there is an axial offset
of z0, as the single RW acts only to one side of the trapping potential minimum,
causing an asymmetry about z = 0. This offset implies that the heating introduced
by a RW should be reduced when using the double RW, as the zero value of the
rotating potential is also at the minimum of the trapping potential.

The superposition of this double RW potential onto the ideal Penning trap
modifies the equations of motion in V± coordinates to

z̈ + ω2
zz = −a (x cos (ωrt)− y sin (ωrt)) , (4.16)

V̇x = ω−Vy − az cos (ωrt) , (4.17)

and
V̇y = −ω−Vx + az sin (ωrt) . (4.18)
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Figure 4.2: Numerical simulation of the on-axis RW potential in the 3rd stage,
as a function of axial position, z, where the RW amplitude is set at an arbitrary
0.33 V, which corresponds to the maximum from the function generator. The
dashed gridlines denote the edges of the cylindrical electrodes. Blue: φr,1(z) for
a single RW, where the potential is non-zero at z = 0. Red: φr,2(z) for a double
RW, where the potential is zero at z = 0 and there is a longer linear region with
a larger effective amplitude, aeff.

4.4 Effective Amplitude Scaling Factor

To compare single and double RW amplitudes, an ‘effective amplitude’ was intro-
duced, defined as

aeff =
∂φr
∂z

∣∣∣∣∣
z=0

, (4.19)

which is the axial gradient of the RW potential at the centre of the accumulator.
It has already been shown that the total double RW electric potential is the linear
combination of two antisymmetric single RW potentials, φr,1a(z) = φr,1(z − z0)

and φr,1b(z) = −φr,1(z + z0), which produce the double RW potential, φr,2(z) =
φr,1(z − z0)− φr,1(z + z0), which is an odd function in z, as shown in figure 4.2.

In general, defining two functions f1(z) = g(z − z0) and f2(z) = −g(z + z0),
where g(z) is even and z0 is a constant, then their linear combination is fc =

f1 + f2 = g(z− z0)− g(z + z0). Evaluating the derivative with respect to z of f1

and f2 at z = 0 gives

aeff1 =
df1
dz

∣∣∣∣∣
z=0

= g′(−z0) (4.20)

and
aeff2 =

df2
dz

∣∣∣∣∣
z=0

= −g′(z0). (4.21)

Thus, the linear combination of the derivatives is f ′c(z = 0) = g′(−z0)− g′(z0).
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Figure 4.3: Gradient with respect to z of the simulated on-axis potential (from
figure 4.2) of the single and double RW at Vr = 0.33 V amplitude. (Blue) φ′r,1
for the single RW where aeff1 = −5 V/m at z = 0. (Red) φ′r,2 for the double
RW where aeff2 = −10 V/m at z = 0, which is double that of the single RW.
The longer central potential region of the double RW is displayed, which has a
constant gradient. Dashed gridlines denote the edges of the three central cylin-
drical electrodes in the 3rd stage and discontinuities in the data at the electrode
boundaries are only an artefact of the computation.

As g(z) is even, then g′(z) must be odd, making −g′(z0) ≡ g′(−z0). This results
in the combination, which is the effective amplitude, being

aeffc = f ′c(z = 0) = 2g′(−z0) = 2aeff1 ≡ 2aeff2. (4.22)

So the effective amplitude of the double RW is double the amplitude of a single
RW at z = 0, and this is independent of radius.

This relation was verified numerically using an arbitrary RW amplitude to
calculate the single and double RW potential, φr,1 and φr,2 respectively. Then
computing dφr/dz specifically for the geometry of the 3rd stage accumulator gives
figure 4.3. φ′r,1 for the single RW gives aeff1 = −5 V/m and φ′r,2 for the double
RW gives aeff2 = −10 V/m, which is double the effective amplitude of the single
RW, confirming the prediction of equation 4.22. The longer linear central RW
potential region (i.e. with constant gradient) is also evident in this plot, which is
one of the key differences of the double RW.
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4.5 Double Rotating Wall in Cartesian Coordi-
nates

To investigate the behaviour of the double RW when applied near the magnetron
frequency, ω−, consider the equations of motion from equation 2.8 in Cartesian
coordinates. After inserting the double RW electric field, the equations of motion
are

ẍ =
ω2
z

2 x− az cos(ωrt) + Ωcẏ, (4.23a)

ÿ =
ω2
z

2 y+ az sin(ωrt)−Ωcẋ, (4.23b)

z̈ = −ω2
zz − a (x cos(ωrt)− y sin(ωrt)) . (4.23c)

Transforming into a coordinate system co-rotating with the electric field, where

x = ξ̃ cos (ωrt) + ψ̃ sin (ωrt) , (4.24a)
y = ψ̃ cos (ωrt)− ξ̃ sin (ωrt) , (4.24b)

then the equations of motion can then be expressed as a set of coupled linear
differential equations

¨̃ξ =
1
2
(
2ω2

r − 2Ωcωr + ω2
z

)
ξ̃ + (Ωc − 2ωr) ˙̃ψ− az, (4.25a)

¨̃ψ =
1
2
(
2ω2

r − 2Ωcωr + ω2
z

)
ψ̃− (Ωc − 2ωr) ˙̃ξ, (4.25b)

z̈ = −aξ̃ − ω2
zz. (4.25c)

Defining

b =
1
2
(
2ω2

r − 2Ωcωr + ω2
z

)
≈ −Ωc

(
ωr −

ω2
r

Ωc
− ωm

)
, (4.26a)

d = Ωc − 2ωr, (4.26b)
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where ωm is introduced from equation 2.18, allow the differential equations to be
recast and denoted in matrix form, ẋ =M· x, as

˙̃ξ
˙̃ψ
ż
¨̃ξ
¨̃ψ
z̈


=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
b 0 −a 0 d 0
0 b 0 −d 0 0
−a 0 −ω2

z 0 0 0


·



ξ̃

ψ̃

z
˙̃ξ
˙̃ψ
ż


. (4.27)

The matrix M has eigenvalues given by the characteristic equation

a2
(
b− λ2

)
+
(
λ2 + ω2

z

) (
b2 − 2bλ2 + λ2(d2 + λ2)

)
= 0. (4.28)

This characteristic equation is a hexic (sixth order) polynomial in λ. Given that
the coefficients of the polynomial are all real, the roots must appear in complex
conjugate pairs. These can be expressed in a closed analytic form but in this
instance contain an inordinate number of terms. To obtain a simpler approximate
solution, a new definition is introduced, ν = λ2, such that

a2(b− ν) + (b2 + (d2 − 2b)ν + ν2)(ν + ω2
z) = 0, (4.29)

which has one real root and two non-real complex conjugate roots. As typically
Ωc � ωz � ωm, considering roots near ωm means ν � ωz and thus (ν+ω2

z) ≈ ω2
z .

As defined in equation 4.26b, d = Ωc − 2ωr, and the RW frequency, ωr, is on the
order of ωm in the region of interest, thus using the frequency hierarchy, ωr � Ωc,
then d ≈ Ωc. Substituting for these leaves

a2(b− ν) + (b2 + (Ω2
c − 2b)ν + ν2)ω2

z = 0. (4.30)

Now introducing a definition g = a2/ω2
z , then rearranging gives

gb+ b2 + (Ω2
c − 2b− g)ν + ν2 = 0. (4.31)

Typically, a ∼ 1014 s−2 [Isaac, 2010] and ωz ∼ 107 s−1, so g ∼ 1014 s−2 and
b ∼ 1014 s−2, whilst Ω2

c ∼ 1018 s−1. Therefore, as Ω2
c � g and 2b, the Ω2

c term
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dominates the linear term in ν, and

gb+ b2 + Ω2
cν + ν2 ≈ 0. (4.32)

The solutions to the quadratic equation in ν are then

ν± =
−Ω2

c ±
√

Ω4
c − 4 (gb+ b2)

2 . (4.33)

Factorising in order to perform an expansion gives

ν± = −Ω2
c

2

1±

√√√√1− 4 (gb+ b2)

Ω4
c

 , (4.34)

and a Taylor expansion of this expression (using
√

1− x ≈ 1− x/2) gives

ν± ≈ −
Ω2
c

2

1±
1−

2
(
gb+ b2

)
Ω4
c

 . (4.35)

Looking at the definition of b from equation 4.26a for ωr ∼ ωm, the second term in
b is negligible due to the frequency hierarchy Ωc � ω2

m, thus b ≈ −Ωc(ωr−ωm) =
−Ωc∆, where ∆ is introduced as the detuning between the RW frequency and the
magnetron frequency. Looking at ν− by substituting for b and g then gives

ν− = −Ω2
c∆2 −Ωc∆a2/ω2

z

Ω2
c

, (4.36)

which can be written as

ν− =
∆(−ω2

zΩc∆ + a2)

ω2
zΩc

. (4.37)

As the denominator is real and positive, consider when the numerator is zero,
which is when ∆ = 0, or

∆ =
a2

ω2
zΩc

. (4.38)

These values correspond to an observed peak in the particle expansion rate when
ωr is between ωm and ωm+∆, and the full frequency width of the peak is approxi-
mately given by ∆. Simulations using the equations of motion show this behaviour
in section 4.7.2, which is seen to apply to both the single and double RW, in good



CHAPTER 4. ROTATING WALL ELECTRIC FIELDS 72

agreement with the approximate expression for ∆ derived here. Using this novel
expression and measuring ∆ experimentally, as a and ωz are commonly known,
also provides a different method to determine Ωc.

Predicting the RW frequencies at which the magnetron orbit of a trapped
particle increases would be useful to avoid ejecting particles when applying a RW,
e.g. in a multi-species trap to selectively separate and eject a species, or conversely
to avoid ejecting a species while manipulating another.

4.6 Double Rotating Wall General Laplace So-
lution

By applying appropriate time-varying voltages, a segmented electrode can form a
rotating wall electric field to compress clouds of non-neutral particles. A general
solution to the Laplace equation for the novel double rotating wall can be derived,
as follows.

The electric potential, φ, due to two sets of segmented electrodes between two
endcap electrodes, as shown in figure 4.4, can be derived by solving Laplace’s
equation (equation 2.6). In cylindrical coordinates (r,θ,z), the Laplace equation
is expressed as

∇2φ =
1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2
∂2φ

∂θ2 +
∂2φ

∂z2 = 0. (4.39)

This equation can be separated into the product of three ordinary differential
equations with respect to each of the three independent variables, r, θ, and z,
alone. Using the method of separation of variables, then the solution is φ(r, θ, z) =
R(r)Θ(θ)Z(z). Substituting for φ in equation 4.39 and dividing by RΘZ, yields

1
R

1
r

d

dr

(
r
dR

dr

)
+

1
Θ

1
r2
d2Θ
dθ2 +

1
Z

d2Z

dz2 = 0, (4.40)

which are all now ordinary derivatives. As each term is a function of one of the
independent variables alone, each term is a constant and their sum must be zero.

As a result of the grounded endcaps shown in figure 4.4, the potential, φ,
should tend to zero within a finite domain, so we choose a negative real constant

1
Z

d2Z

dz2 = −k2, (4.41)



CHAPTER 4. ROTATING WALL ELECTRIC FIELDS 73

Figure 4.4: Cross section of the central three electrodes along the z-axis with
end-caps, not to scale, showing the polarity of the double RW applied biases and
defining lengths: z0, which is half of the centre electrode; and z1, which is z0 plus
the length of one set of six-segment electrodes. The dotted vertical line denotes
where z = 0, which is the centre of the electrode stack of length 2L.

as for the undesirable positive real solution, +k2 → 0 as z →∞. The solution for
Z(z) is then

Z(z) =

 sin(kz)
cos(kz)

. (4.42)

Replacing the last term in equation 4.40 with −k2 leaves

1
R

1
r

d

dr

(
r
dR

dr

)
+

1
Θ

1
r2
d2Θ
dθ2 − k

2 = 0. (4.43)

We can once again separate this by multiplying by r2, giving

r

R

d

dr

(
r
dR

dr

)
+

1
Θ
d2Θ
dθ2 − k

2r2 = 0. (4.44)

The separated Θ term gives
1
Θ
d2Θ
dθ2 = −m2, (4.45)

where the choice of an integer −m2 ensures a periodic solution in θ, where Θ(θ)

has the solution

Θ(θ) =

 sin(mθ)
cos(mθ)

. (4.46)

Finally, after substituting −m2 for the second term in equation 2.24, the equa-
tion for R(r) which remains is

r

R

d

dr

(
r
dR

dr

)
−
(
m2 + k2r2

)
= 0, (4.47)
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Figure 4.5: Radial cross section of one set of six-segment electrodes, with the
applied biases as shown on each segment. There is a phase shift of 60◦ between
each subsequent voltage V1, V2 and V3.

the solution of which are the modified Bessel functions of the first kind of order
m, such that

R(r) = Im(kr). (4.48)

As the Laplace equation is linear, any linear combination of the solutions is also
a solution. The general solution is then

φ(r, θ, z) =
∞∑
m=1

∞∑
n=0

Im(knr)
(
Amn cos(knz) +Bmn sin(knz)

)
×
(
amn cos(mθ) + bmn sin(mθ)

)
.

(4.49)

4.6.1 Boundary Conditions

The general solution in equation 4.49 can be simplified, knowing that the electrodes
for which we want to solve the potential have a cross section as shown in figure 4.4.
The electrode bounded between z0 and z1 has been azimuthally segmented and has
voltages applied as shown in figure 4.5, whilst the segmented electrode between
−z0 and −z1 has a 180° relative phase offset for the double RW. Due to the
symmetry of the system, this makes the potential antisymmetric about z = 0, as
was shown in figure 4.2. This changes the problem into one where we need only
solve for a region bounded by z = 0 and z = L, both of which are grounded
planes, and the potential is defined on the surface of a cylinder φd(r0, θ, z), where
r0 is the inner radius of the cylindrical electrodes. We can therefore set Amn = 0,
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as the potential along z is antisymmetric, and write the solution as

φ(r, θ, z) =
∞∑
m=1

∞∑
n=0

Im(knr)Bmn sin(knz)
(
amn cos(mθ) + bmn sin(mθ)

)
, (4.50)

with
kn =

nπ

L
. (4.51)

The boundary conditions on the surface of the cylinder of radius r = r0 can then
be defined as the product of only two functions, f(z) and t(θ), which are defined
as follows.

The piecewise function of the applied double RW voltages, f(z), is antisym-
metric in z, where

f(z) =


−1 if − z1 < z ≤ −z0,

1 if z0 < z ≤ z1,

0 otherwise.

(4.52)

We can determine the Fourier sinusoidal series of the piecewise function f(z), as
shown in figure 4.6a, giving

f(z) =
∞∑
n=0

βn sin (knz) , (4.53)

where

βn =
1
L

L∫
−L

f(z) sin (knz)

=
2
knL

(cos (knz0)− cos (knz1)) .

(4.54)

This yields

f(z) =
∞∑
n=0

2
knL

(cos (knz0)− cos (knz1)) sin (knz) , (4.55)

and so equating coefficients of sin(knz) with equation 4.49 gives

Bmn =
2
knL

(cos (knz0)− cos (knz1))

Im(knr0)
. (4.56)
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Figure 4.6: Graphical representation of the boundary conditions a) f(z) for the
segmented electrode of length z1 − z0 (blue), with Fourier series truncated at 40
terms (orange). b) t(θ) for the segmented electrode between −π and π (blue),
with Fourier series truncated at 40 terms (orange).

Defining the angular boundary conditions for the six-segment electrodes as
illustrated in figure 4.5 and 4.6b, then

t(θ) =



V1 if − π < θ ≤ −2π
3 ,

V2 if − 2π
3 < θ ≤ −π3 ,

V3 if − π
3 < θ ≤ 0,

−V1 if 0 < θ ≤ π
3 ,

−V2 if π
3 < θ ≤ 2π

3 ,

−V3 if 2π
3 < θ ≤ π.

(4.57)

The Fourier expansion of these piecewise angular boundary conditions is

t(θ) =
∞∑
m=1

(am cos(mθ) + bm sin(mθ)) , (4.58)

but the analysis in the radial plane can be completed using the full boundary
condition as shown in figure 4.5, which results in

am = − 1
mπ

(
sin

(
mπ

3

)
+ sin

(2mπ
3

))
(V1 − V3) (4.59)

and

bm = − 1
mπ

4 sin2
(
mπ

6

)(
2 cos

(
mπ

3

)
+ 1

)(
cos

(
mπ

3

)
(V1 + V3) + V2

)
. (4.60)
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Figure 4.7: (Left to right) The time evolution of the radial cross section of the
rotating dipole electric field due to a six-segment electrode, shown using eight
images. This shows the potential in the x-y plane where blue represents a lower
potential, whilst red represents a higher potential, such that a net zero potential is
white. The black arrows show the direction of the electric field. The initial phase
is arbitrary and the time step size between each image is t = 1/(8ωr).

A simulation of the rotating dipole electric field in the radial plane, as produced
by a six-segment RW, is shown in figure 4.7.

4.7 Equations of Motion with Damping

RW studies at Swansea have elucidated the compression mechanism for the single
particle regime [Isaac, 2010; Isaac et al., 2011; van der Werf et al., 2012; Isaac,
2013], but this model contains a Stokes’ drag term of the form

s̈ = − q

mK
ṡ ≡ −κṡ, (4.61)

where K is the particle mobility in the gas at a certain pressure and temperature
while ṡ is the particle velocity, as an attempt to account for the rotational and
vibrational excitation of the cooling gas. Positron cooling by a gas was modelled
as above, but it was shown empirically that the damping parameter, κ, varies with
RW amplitude [Isaac, 2010], so this form cannot fully encapsulate the physics of
positron-molecule collisions. Therefore, an alternative cooling method following
a Stokes’ form was sought. Resistive cooling in a harmonic potential well is one
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mechanism that provides this desired Stokes’ friction term and resultantly offers
a more suitable test of the compression model [Isaac, 2013], as is discussed in
chapter 5.

The Stokes’ term from equation 4.61 applies to each Cartesian direction and
so alters the equations of motion from equations 2.9 to

ẍ =
ω2
z

2 x+ Ωcẏ− κẋ (4.62a)

ÿ =
ω2
z

2 y−Ωcẋ− κẏ (4.62b)

z̈ = −ω2
zz − κż. (4.62c)

Solving these requires defining u(t) = x(t) + iy(t), which allows the combination
of equations 4.62a and 4.62b to give

ü =
ω2
z

2 u− (κ+ iΩc) u̇. (4.63)

The ansatz u(t) = u (0) e−iωt then yields a characteristic equation with roots of

ω± =
1
2
(

Ωc ± F+ − i (κ± F−)
)
, (4.64)

where

F± =
1√
2

(√
(Ω2

c − 2ω2
z − κ2)2 + 4Ω2

cκ
2 ±

(
Ω2
c − 2ω2

z − κ2
)) 1

2
. (4.65)

By assuming that ωz, Ωc � κ, the terms with κ2 are negligible and so F+ ≈√
Ω2
c − 2ω2

z and F− ≈ 0, thus equation 4.64 simplifies to

ω± ≈
Ωc ±

√
Ω2
c − 2ω2

z

2

1− i κ√
Ω2
c − 2ω2

z

 . (4.66)

The full solution is then

x = |A+| e−α+ cos (ω̃+t+ φ+) + |A−| eα− cos (ω̃−t+ φ−) (4.67a)
y = |A+| e−α+ sin (ω̃+t+ φ+) + |A−| eα− sin (ω̃−t+ φ−) , (4.67b)
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where

α± =
1
2 (F− ± κ) (4.68a)

ω̃± =
1
2 (Ωc ± F+) . (4.68b)

The amplitude of the cyclotron motion decays with a time constant α+, but the
loss of energy from the magnetron motion causes an increase in the amplitude with
a time constant α−. Nevertheless, the magnetron motion is usually considered as
quasi-stable due to α+ � α−.

The axial part from equation 4.62c has the trivial solution

z = Aze
−κt cos (ωzt+ φz) , (4.69)

which means the damped axial motion is described by a damped harmonic oscil-
lator, as expected.

4.7.1 Compression Model

From an analytic solution to the equations of motion in V± coordinates, i.e.
equations 4.16, 4.17 and 4.18, the rate at which particles move to the axis, Γ, due
to an applied RW near ωz in the single particle regime [Isaac et al., 2011; Isaac,
2013] with a Stokes’ friction coefficient, κ, is parametrised by

Γ =
κ

4

1−
√

ω̃2

1 + ω̃2

 , (4.70)

which is a cusp function, with the two definitions

ω̃ =
ωr − (ωz + ωm)

δ
, (4.71)

and
δ =

a√
(ωc − ωm)ωz

, (4.72)

where a is proportional to the amplitude of the RW as defined in equations 4.14
and 4.15, and δ is a measure of the frequency width. Thus, the compression rate,
Γ, is maximal when ω̃ = 0, which is when the RW frequency ωr = ω0 = ωz + ωm.

By including a constant expansion term, γ, along with the compression rate,
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Figure 4.8: Fitted Gaussian width of the cloud, as described in section 2.4.1,
plotted against applied double RW time, σ(t). The cloud was held in the well
for 0.1 s to thermalise prior to application of the RW with Vr = 20 mV and
fr = 10.475 MHz. The mean and standard error of five repeats is plotted and
the red curve is a fit to equation 4.74, giving σ0 = (10.31 ± 0.31) mm, γ =
(5.87± 0.86) mm/s and Γ = (1.17± 0.14) s−1.

then the temporal change of the radial width of the Gaussian cloud, σ(t), is
parametrised by

σ̇ = −Γσ+ γ, (4.73)

which is a differential equation with the solution

σ(t) =
(
σ0 −

γ

Γ

)
exp (−Γt) +

γ

Γ
, (4.74)

where σ0 is the initial width of the cloud.
To measure the compression rate experimentally, the RW is applied for a time

t with a frequency fr and amplitude Vr. When the cloud is ejected, its Gaussian
width in the radial plane, σ, is measured by fitting a 2D optical image of the MCP
signal. Equation 4.74 can then be fitted to a ‘compression curve’, which is a plot
of measured σ(t), an example of which is shown in figure 4.8. These measurements
can be repeated for many RW frequencies around fz + fm, which would allow a
plot of Γ(fr) to be fitted with equation 4.70 to obtain quantitative values of κ, f0

and δ. These measurements are discussed further in section 4.9.2.
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Figure 4.9: a) Numerical simulation of the particle compression rate as a function
of single RW frequency. b) Numerical simulation of the particle compression rate
as a function of double RW frequency. Data are plotted with fitting uncertainty
and joined to guide the eye, with gridlines at −(ωz + ωm), ωm and ωz + ωm. The
resonant expansion near ωm (≈ 0.05 rad/s) is shown in more detail in figure 4.11.

4.7.2 Single Particle Motion With Scaled Parameters

Using the equations of motion for a single charged particle including a Stokes’
friction term (equations 4.62a, b, and c) along with a single or double RW as
described in equation 4.14 or 4.15 respectively, the exponential decrease in particle
radius as a function of time quantifies the axialisation rate, Γ, which is the rate at
which particles move to the axis. Parameters near unity were chosen to reduce the
computational time and investigate differences in general form between the single
and double RW, which were not specific to the electrode geometry and potential.
Varying a parameter and recognising the qualitative response provided insights
for the interpretation of experimental data, as follows.
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Figure 4.10: Comparison of the numerical simulation of the particle compression
rate as a function of single RW frequency (blue) and double RW frequency (red)
from figure 4.9 for ωz = 1 rad/s, Ωc = 10 rad/s, κ = 1 s−1 and a = 1.25 s−2

only. The data are plotted with a fitting uncertainty and joined to guide the eye.
Gridlines are drawn at −(ωz + ωm), ωm and ωz + ωm.

The initial conditions for position and velocity were arbitrarily set to s = 1 m
and ṡ = 1 ms−1 respectively, where times of up to t = 200 s were considered,
and the input parameters were set as ωz = 1 rad/s and Ωc = 10 rad/s, which
allowed ωm ≈ 0.05 rad/s to be calculated using equation 2.13. This maintained
the physical hierarchy in the motional frequencies. Recall that the key difference
in the single RW potential, as compared with the double RW, is the existence of
the arbitrary axial offset term, which was set to be z0 = 10 mm.

Plotting Γ(ωr) for positive and negative values of RW frequency, where by
convention the latter corresponds to a RW counter-rotating with the radial particle
motion, enables a comparison between single and double RW compression rates.
The asymmetry in the simulated single RW resonant compression rate peak at
ωr = ωz + ωm ≈ 1 rad/s in figure 4.9 with κ = 1 s−1 and a ≥ 1 s−2 are a result
of the z0 offset inherent in the single RW. If z0 is shorter, then the local maxima
at ωr ≈ 0.5 rad/s and ωr ≈ 1.25 rad/s both shift closer, towards ωr ≈ 1 rad/s,
providing better agreement with the double RW. The double RW potential of
equation 4.15 is the limit of z0 → 0 in the single RW potential of equation 4.14,
which was shown algebraically but is also displayed by the simulation. Setting
a = 0.5 s−2 or 1 s−2 results in agreement between the compression rates for single
and double RW, thus for small amplitudes experimentally, exact agreement may
be seen between a single and double RW. Differences become visible as the RW
amplitude is increased.

Directly comparing the single and double RW for a single amplitude a, there
is only a significant difference near ωr = ωz + ωm ≈ 1 rad/s, with good agreement
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Figure 4.11: Numerical simulation of the particle compression rate as a function
of single RW frequency near the magnetron frequency for various amplitudes. The
data are plotted with a fitting uncertainty and joined to guide the eye. Gridlines
are drawn at ωm (≈ 0.05 rad/s) and ωm + ∆(a) for each of the four RW ampli-
tudes. This illustrates that the approximations to obtain the expression for ∆(a)
in equation 4.38 are reasonable and predict the frequency range at which a reso-
nant increase in expansion is seen near ωm. Equivalent results for the double RW
are indistinguishable.

seen for all other frequencies. This is illustrated clearly in figure 4.10 where one
configuration with a = 1.25 s−2 has been chosen from the single and double RW
from figure 4.9. At this comparatively large amplitude, the maximal compression
of the single RW is lower by a factor of ≈ 4 compared with the double RW, and
two separate asymmetric peaks are observed.

Looking instead at the resonant expansion near the magnetron frequency, ωr =
ωm ≈ 0.05 rad/s, which is enlarged in figure 4.11, it can be seen that the frequency
at which the particle radius begins to expand is constant at ωm, and the width of
the trough is amplitude dependent and confirms the relationship derived for ∆(a)
in equation 4.38. This allows a prediction for the frequencies near ωm at which a
resonant increase in expansion is seen.

Experimental data obtained from a single RW co-rotating with the radial mo-
tion of the particles near ωm is given in figure 4.12, where a decrease in the
number of particles was seen, obtaining ∆ ≈ 40 kHz. Counter-rotating with the
radial particle motion near fm exhibited slight expansion, as observed by MCP
signal images, but no particles were lost (data not shown), thereby supporting
the prediction that the expansion rate is much larger when the RW is co-rotating
with the particles near fm. The significant asymmetry in the observed form is not
predicted, but investigating the cause would require further experimentation by
varying the RW amplitude. Driving the cloud with the comparatively large am-
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Figure 4.12: Positron number as measured by a CsI detector as a function of
single RW frequency (co-rotating with the particles), at Vr = 3 V after a 1 s
hold in the 3rd stage. Data are plotted with the standard error of four repeats
and joined to guide the eye. The positrons were driven at resonance out of the
potential well for frequencies near the magnetron frequency of the cloud, giving
∆ ≈ 40 kHz.

plitude of 3 V may have caused some particles to travel far from the centre of the
accumulator leading to a significant deviation in the motional frequencies. This
experiment should be repeated with the double RW in order to establish whether
the result would be indistinguishable, as predicted by the simulation.

To examine the dependence on the damping constant, κ, the amplitude was
fixed at a = 0.75 s−2, where agreement was seen between the single and double
RW. The simulated results for varying κ are seen in figure 4.13. Agreement is again
seen between the single and double RW, except for κ = 0.25 s−1 and 0.50 s−1,
where a superimposed trough is again seen on the compression peak at ωr ≈
1 rad/s. Due to this, the maximal compression is around a factor of 2 smaller for
κ = 0.25 s−1, and a factor of 3 smaller for κ = 0.50 s−1. Another feature observed
here is that by decreasing κ, the resonant frequency of the compression maxima
increases and shifts closer to ωz + ωm, and for counter-rotation the frequency of
the minimum decreases towards −(ωz + ωm). Resultantly, Γmax from experiment
will occur at ωr ≤ ωz + ωm, with the magnitude of the frequency shift dependent
on the damping constant. This may account for any discrepancy between fz + fr

and the observed resonant frequency f0.
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Figure 4.13: a) Numerical simulation of the particle expansion rate as a function
of single RW frequency with a = 0.75 s−2. b) Numerical simulation of the particle
expansion rate as a function of double RW frequency with a = 0.75 s−2. Data
are plotted with fitting uncertainty and joined to guide the eye, with gridlines
at −(ωz + ωm), ωm and ωz + ωm. The maximal compression expected at ωr =
ωz + ωm ≈ 1 rad/s for the single RW shows two peaks and is around a factor of 2
smaller for κ = 0.25 s−1, and a factor of 3 smaller for κ = 0.50 s−1.
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Figure 4.14: Simulated width of the charged particle cloud as a function of time,
σ(t), when the double RW is applied with amplitude a = 0.01 s−2 at various
frequencies, fr, around the resonant frequency fz + fm. The frequencies chosen
illustrate the temporal behaviour over the whole frequency range and allows a
compression rate, Γ, to be obtained from fitting equation 4.74. A realistic initial
cloud width of σ0 = 40 mm was chosen.

4.7.3 Simulated Double Rotating Wall Compression Model
in a Non-ideal Potential Well

A simulation with realistic input parameters was created for the double RW, using
the compression model described in section 4.7.1. From the superposition of the
Laplace equation solution for each electrode (chapter 3.2), fz(E‖) can be com-
puted, and to simulate the time dependence of fz, an exponential cooling term is
introduced to decrease the energy with time,

E‖(t) = E0 exp
(
− t

τc

)
, (4.75)

which has a cooling time constant, τc. To model the double RW compression,
σ̇ = −Γσ was solved, which is a simplification of equation 4.73, when the constant
expansion term is negligible (γ ≈ 0 mm/s). This is justified in detail at the end
of this section and illustrated by figure 4.17.

Values of a and κ were estimated from previous results of the single RW in
the 2-stage trap [Isaac, 2010]. There, the RW amplitude of Vr = 2 V resulted
in a ≈ 1 e/m = 1.8× 1011 s−2, thus, as Vr is around 0.02 V here, then a ≈
0.01 e/m = 1.8 × 109 s−2. The damping constant, was predicted to be κ ≈
10, 000 s−1 in the 2-stage trap, at a gas pressure a factor of 100 larger than the
3rd stage accumulator, so κ ≈ 100 s−1 is estimated for the 3rd stage. The free
cyclotron frequency is calculated using the calculated magnetic field strength in the
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Figure 4.15: Simulated double RW compression rate, as a function of double
RW frequency, Γ(fr) with a = 10 e/m. a) Varying particle energy to show the
effects of cooling on the frequency of Γmax, as fz(E‖). b) Varying RW amplitude
with E‖ = 0, to show its effect on the width of the cusp function.

3rd stage of 37.7 mT, giving Ωc ≈ 2π × 2.12 GHz, and the magnetron frequency
is calculated from equation 3.14.

Setting arbitrary values of E0 = 5 eV, σ0 = 40 mm, and τc = 0.5 s, then
plotting the temporal change of the cloud width, σ(t), for a range of frequencies
around the resonant frequency, f0 = fz + fm ≈ 11.10 MHz, allows the compres-
sion rate, Γ, to be calculated. Simulated examples are given in figure 4.14. The
form of σ(t) changes as the frequency is increased above resonance. For lower
frequencies of fr < f0, the compression at short times of t ≤ 0.5 s, is minimal, but
then gradually compresses over a timescale of a few seconds. For higher frequen-
cies of fr > f0, the compression is initially very large but then σ only gradually
decreases over the following seconds, forming a near right angle. The changing
form of σ(t) is a result of fz(E‖), where E‖ is a function of time, and the resultant
coupling between the RW at fr and f0 of the cloud motion near fz + fm.

Fitting σ(t) with equation 4.74 for various RW frequencies, then Γ(fr) can
be plotted which gives the cusp function of equation 4.70. This is plotted in
figure 4.15a. As the energy decreases, it alters the bounce frequency according to
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Figure 4.16: Simulated width of the charged particle cloud as a function of
double RW frequency, σ(fr). A realistic initial width of σ0 = 40 mm was chosen.
a) RW applied for various times with a = 10 e/m. b) RW applied at various
amplitudes a, with t = 0.7 s, showing that the amplitude affects the form of the
observed σ(fr).

fz(E‖), which also causes the resonant frequency to shift. Here, only E‖ on-axis
is considered, resulting in a form in agreement with anharmonic axial resonances
from the literature [Brown and Gabrielse, 1986]. In figure 4.15b, increasing the
RW amplitude whilst keeping the energy fixed, results in a wider cusp function,
which is as expected from equation 4.70.

Plotting σ(fr) for increasing time gives the form shown in figure 4.16a. The
asymmetry stems from the form of fz(E‖) (recall figure 3.5), as if there was no
energy dependence and the potential well was an ideal harmonic, there would be
no asymmetry as the frequency of Γmax would not shift with time. For short hold
times t ≤ 0.1 s, fz(E‖) is linear and so the cooling particle results in a symmetric
trough, whereas for t ≥ 0.2 s, it cools to E‖ ≤ 3.5 eV and an asymmetry begins
to be observed.

Increasing the amplitude changes the form of σ(fr), seen in figure 4.16b, caus-
ing the trough to appear more symmetric and increasing its frequency width, as
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Figure 4.17: Simulated width of the charged particle cloud as a function of
double RW frequency, σ(fr), varying the constant expansion term γ. The RW
effect was computed using an amplitude a = 10 e/m for t = 0.5 s. A realistic
initial width of σ0 = 40 mm was chosen.

expected from figure 4.15b. It shows the frequency corresponding to σmin remains
constant with increasing amplitude, but that the wings exhibit more compression.
One would therefore expect to see a more symmetrical trough in σ(fr) as the RW
amplitude is increased.

The value of the expansion term γ should be approximately constant during
these studies, as it is primarily dependent upon gas pressure and trap field asym-
metries, which both cause expansion in the plasma regime at least [Malmberg and
Driscoll, 1980; Notte and Fajans, 1994]. A previously measured experimental value
from the 2-stage is γ = (118± 19) mm/s [Isaac, 2010], and so scaling according to
the gas pressure difference predicted γ ≈ 10 mm/s in the 3rd stage. This was con-
firmed by the empirical value from figure 4.8, which was γ = (5.87± 0.86) mm/s.
The effect of γ on the simulated σ(fr) is shown in figure 4.17. The effect of γ
on the overall form of σ(fr) is insignificant, as it primarily represents a positive
offset in σ. Therefore, an arbitrary choice of γ = 0 mm/s in the simulated model
is justified. It was seen that increasing γ causes a relatively small increase in σmin,
but a larger offset in the value of σ away from resonance, as in this region there
is no compression to counter the expansion term.

4.8 Custom-Built Function Generator

To implement the double RW in the 3rd stage accumulator, a suitable commercial
off-the-shelf function generator could not be found. This task required the genera-
tion of more than two independent, phase-locked sinusoidal signals at f > 1 MHz,
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which could be gated. Therefore, a 500 M samples per second direct digital syn-
thesis (DDS) function generator was assembled in-house to implement six-segment
rotating wall electric fields on the positron beamline at Swansea University. It uses
an AD9959 evaluation board from Analog Devices and the full details of its design
and operation are given in appendix A. The rudimentary firmware provided with
the AD9959 did not allow modification nor integration with the LabVIEW control
system for the beamline, which required a significant undertaking.

The function generator produces up to four phase-locked sinusoidal waves that
can be gated by a digital pulse. It was used in this study to implement a six-
segment double RW electric field in the 3rd stage accumulator. Three of the
function generator outputs were set with a 60° phase difference between each, then
180° passive phase splitters were used to generate the six phase-locked sinusoidal
waves with phases of 0°, 60°, 120°, 180°, 240°, and 300° required for each set of RW
electrodes. The wiring diagram to appropriately bias the two sets of electrodes is
shown in figure 4.18.

High-pass Filters

Two high-pass filter boxes were built for applying the six AC RW signals and the
DC trapping voltages. 1 kΩ resistors and 10 nF capacitors gave a comparable
time constant to the amplifiers used for the DC voltages, of 10 µs, which resulted
in a filter cut-off frequency of (2πRC)−1 = 15 kHz. There were six filters per box
with six AC inputs for the RW signals, sharing a common DC for axial trapping.
Two filter boxes were built to allow independent control of the DC applied to
the upstream and downstream set of RW electrodes, for trapping and ejecting
particles.

4.9 Rotating Wall Experimental Data

Experimental results were compared with the numerical simulations in order to
gain insights into the RW compression mechanism. In an ideal harmonic poten-
tial, the bounce frequency is independent of particle energy. In reality, particles
with sufficient energy are able to travel to off-axis anharmonic regions of the accu-
mulator potential, which means these particles will have a different axial bounce
frequency, as fz(r,E‖).
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Figure 4.18: Schematic wiring diagram of the set-up to control the two sets of
six-segment electrodes for the double RW in the 3rd stage accumulator (shown in
black). The phases between the signals applied to equivalent electrodes on each
set are 180° out of phase from the other. To assist with clarity, the high-pass
filters which apply the RW AC signals to the DC trapping biases for each set of
segmented electrodes are not shown, but are located between the phase splitters
and the electrode segments.

It was shown that at large RW amplitudes, positrons are lost from trap [Watkeys,
2008], which was attributed to inducing excessive heating. This heating allows en-
ergetic particles to travel into less harmonic regions of the potential, causing non-
ideal behaviour. It also leads to increased broadening of the frequency response
width and an asymmetric form for σ as a function of RW frequency, in agreement
with the simulated results of figure 4.16b, due to the energy dependence of the
axial bounce frequency. The RW will not couple to energetic particles until they
have cooled sufficiently and fz + fm ≈ fr, as discussed in [Deller et al., 2014].

4.9.1 Rotating Wall Amplitude and Frequency Dependence

To determine the maximum applied RW amplitude in the 3rd stage harmonic
potential, frequency scans were performed at various amplitudes, Vr, for both
single and double RW.
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Figure 4.19: Positron number as measured by CsI signal, as a function of RW
frequency, for the double and single RW at various applied amplitudes, Vr. The
positron cloud was held with an applied RW for 3 s. It can be seen that to avoid
losing particles from the 3rd stage, the applied amplitude must be < 50 mV.
Differences in signal far from resonance are accounted for by moderator decay
between the collection of each dataset, which decreases the number of initially
accumulated positrons. The mean and standard error of four repeats are plotted
with points joined to guide the eye.

Figure 4.19 shows that for Vr < 50 mV (yellow), almost no signal was lost
near resonance, therefore this value was identified as the maximum applied RW
amplitude. Good agreement was also seen between the frequency at which most
particles are ejected for both single and double RW, but the frequency width of the
response is more symmetric for the double RW and increases with RW amplitude,
as expected. Agreement is also seen for the minimum signal between both single
and double RW at Vr = 100 mV (blue and orange respectively) of ≈ 0.3 V,
although the effective amplitude of the double RW potential is twice as large as
the single RW (recall section 4.4). These data suggest that the double RW can
be applied with a larger amplitude, aeff, before an equivalent number of particles
is lost from the well. Enabling a reduction in the applied double RW amplitude
results in increased particle retention, whilst conceivably achieving comparable
compression, which is the next topic of investigation.

The resonant frequency, f0, is predicted from equation 4.70 in the compression
model to be independent of RW amplitude, a. This is confirmed by figure 4.20,
as the frequency of the local minimum cloud width at fr ≈ 10.49 MHz is consis-
tent, within uncertainties, for all amplitudes of both single and double RW. The
calculated value of f0 from the on-axis potential and the B-field (section 3.4) was
f0 = 11.1 MHz, but the main cause of the 4.5% discrepancy between the pre-
dicted and measured f0 was discussed in section 3.6, where the radial position of
the particles could result in an f0 between 10.3 MHz and 11.1 MHz. The observed
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Figure 4.20: Experimental data for fitted Gaussian width of the cloud as a
function of RW frequency, σ(fr), for single and double RW at various amplitudes
in the 3rd stage. The positron cloud was held for 100 ms prior to applying the RW
for 3 s, to ensure equilibration in the harmonic potential. The mean and standard
error of five repeats are plotted, where points are joined to guide the eye.

value is therefore in agreement with the theoretical calculations.
Meanwhile, using the empirical values of fz and fm from section 3.6 gives

f0 ≈ 10.6 MHz, and the difference of 110 kHz between it and the measured value
of f0 may also be due to the magnitude of the damping coefficient κ, as discussed
in section 4.7.2, where an increasing value for κ decreases the observed resonant
frequency from fz + fm.

The general form of σ(fr) is similar to the equivalent plot from the simulation,
which is figure 4.16b. There is a similar asymmetry, where for fr > f0 a relatively
gradual increase in width is seen as frequency increments away from f0 over an
≈ 200 kHz range. For fr < f0, the increase in width is larger with decrements in
frequency, and at ≈ 150 kHz below f0, the width has returned to its equilibrium
value. The simulation reproduces many of the qualitative features seen in the
experimental results, although the relative increase in radius at fr ≈ 10.46 MHz
may only be expected for a single RW and not a double RW. Figure 4.13 from the
simulation for the scaled parameters near unity showed that only one minimum
in σ is observed for a simulated double RW, whilst certain configurations of a and
κ may cause a double minimum in σ for the single RW. This feature is therefore
unexplained for the double RW and a subject of future work, but non-idealities in
the 3rd stage which are not considered by the modelling, such as a magnetic field
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axis misalignment causing additional harmonics and resonances, may result in the
similar features for both RW configurations.

Looking at the smallest amplitudes of Vr = 10 mV (green and black), close
agreement is seen between single and double RW. When the applied amplitude
is increased to Vr = 20 mV (dark green and orange), a significant difference is
seen between the single and double RW for fr of 10.34 MHz to 10.42 MHz. σmin

for the single RW is seen at 10.37 MHz, as opposed to at fr = f0 as predicted.
The value of σmin is also near the size of two pixels of the CCD detector image,
which is 0.7 mm, thus future experiments may benefit from a camera with higher
resolution. The largest amplitude of Vr = 40 mV causes significant fluctuations
in σ for the double RW (yellow), which is not seen for the single RW, but is most
likely an effect of the greater difference in effective amplitude.

The population of particles which show compression below fr = fz + fm at
larger RW amplitudes can be explained by the form of fz(E‖) off-axis, from fig-
ure 3.5, which predicted that f0 for each particle may be between 10.3 MHz and
11.1 MHz, dependent upon radial position. Increasing the RW amplitude allows
interaction with more of these off-axis particles at larger radial positions, which
deviate from the simulated model behaviour of section 4.7.3 and occupy less har-
monic regions of the electric potential. A larger Vr also induces additional heating
of the particles [Deller et al., 2014], which changes E‖ and resultantly fz, caus-
ing an added complication. Further investigation of this feature is the subject of
future work.

4.9.2 Rotating Wall Applied Time and Frequency Depen-
dence

Fitting σ(t) with equation 4.74 allows compression rates to be obtained. Some
examples are given in figure 4.21, showing similar behaviour to the simulated
values in figure 4.14. It was seen that for RW frequencies below the resonant
frequency of the cloud, fr < f0, that the compression rate is smaller, whilst
near resonance at fr = 10.5 MHz, maximal compression is observed. When the
frequency is increased higher, fr > f0, then there is less compression seen at later
times and the compression curve resembles a right angle, akin to the simulation
as was discussed in section 4.7.1. The form of the simulated compression curves
provide qualitative agreement with the experiment.
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Figure 4.21: Experimental data for fitted Gaussian width of the cloud as a
function of double RW time, σ(t), in the 3rd stage with Vr = 20 mV and three
example frequencies. The blue, orange and green data correspond to fr < f0,
fr ≈ f0 and fr > f0 respectively. The positron cloud was held for 100 ms prior to
applying the RW. Plotted are the mean and standard error of five repeats which
are fitted with equation 4.74 as a solid line.

Obtaining sufficient data for a reliable fit of Γ(fr) from equation 4.70 was
attempted many times, for various single and double RW amplitudes, but were all
hampered due to repeated hardware problems. The data acquisition time required
around 24 hours worth of data to be collected in one attempt, without a PC or
power failure. Successfully performing this experiment would enable a quantitative
comparison for values of Γ, alongside enabling κ and δ to be measured. Those
values could then be used in the simulation, to better understand the parameters
of the compression mechanism.

4.9.3 Rotating Wall Heating

From the single and double RW potentials, it was predicted that the non-zero
potential at z = 0 for the single RW causes more heating of the charged particles
than for an equivalent amplitude with the double RW, whose potential offset is
zero. The difference between single and double RW heating of a positron cloud
was therefore investigated, where the temperature was measured as described in
section 3.9.

For short hold times of t < 0.5 s, in the harmonic well, it was seen that the cloud
was not yet equilibrated and showed a rapid decrease in E‖ during this time. This
is shown in figure 4.22, where the maximum measured E‖ of the cloud was used
as an example. It was therefore difficult to deconvolve the effect of equilibration,
cooling in the well due to background gas, and RW heating during these short
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Figure 4.22: Largest parallel energy of the positron cloud against hold time in
the harmonic potential in the 3rd stage accumulator, with no RW applied. The
mean and standard error of eight repeats are plotted, which are joined to guide
the eye. After t ≈ 0.5 s, the cloud has equilibrated.

times. To overcome this, a 0.5 s hold was introduced prior to applying the RW.
This allowed heating from an equilibrium to be observed and comparisons to be
drawn between the different RW amplitudes and configurations.

Figure 4.23a shows heating effects due to single and double RW at amplitudes of
Vr = 10 mV, 20 mV, and 40 mV. Increasing the RW amplitude, Vr, clearly shows an
increase in heating for both single and double RW, as expected. After around 5 s, it
is notable that the temperature appears to have stabilised at around the same value
for each configuration and amplitude, although the corresponding radial width, σ,
can be a factor of ≈ 3 smaller. Comparing both Vr = 40 mV configurations (green
and dark blue), after 5 s the double RW achieved a radial width, σ, which was
around half that of the single RW but at the same temperature. The double RW
therefore allowed a reduction in the radial width of the positron cloud, without
causing a difference in temperature. Relatively good agreement is seen between
both configurations for equivalent Vr, but this does not take into account the
effective amplitude, aeff. Thus, aeff of the double RW is in fact twice as large as
the single RW for the same Vr, but it induces no significant additional heat in
the positron cloud. It is therefore more appropriate to compare data at Vr of the
double RW with 2Vr for the single RW.

A minimum width of σmin = 0.8 mm was obtained by the double RW at 40 mV,
which is the lowest at the chosen RW frequency, also exhibiting the largest rate of
change in σ, which decreased by ≈ 3 mm in 100 ms (between 0.9 s and 1.0 s). The
same experimental procedure was performed for frequencies away from fz + fr,
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but the absence of compression resulted in no observed difference in temperatures.
In summary, the novel implementation of a double RW electric field has suc-

cessfully compressed positron clouds. The data are in broad agreement with the
single RW, supporting that double RW mechanism also follows the previously pub-
lished compression model described in section 4.7.1, as anticipated. It has been
shown that a double RW with the same applied amplitude as a single RW induces
less heating of a positron cloud, although there was no clear improvement in the
absolute minimum radial width attainable at any frequency, at least when applied
to present experiments on the Swansea beamline. Work towards further reducing
the positron temperature using an external resistive cooling circuit is detailed in
the next chapter.



CHAPTER 4. ROTATING WALL ELECTRIC FIELDS 98

a)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time [s]

T
||
[e
V
/a
rb
.]

b)

0 1 2 3 4 5
0

1

2

3

4

5

6

Time [s]

σ
[m
m
]

Figure 4.23: a) Temperature as a function of RW time and b) cloud width σ
as a function of RW time, for the double and single RW with fr = 10.4 MHz,
at amplitudes of 10 mV, 20 mV, and 40 mV, with one dataset which had no RW
applied (black). The positron cloud was held for 0.5 s prior to applying the RW,
ensuring thermalisation in the harmonic potential. The mean and standard error
of eight repeats are plotted, which are joined to guide the eye.



Chapter 5

Towards Resistive Cooling of
Positron Clouds

The use of the term ‘cooling’ in this context corresponds to reducing the kinetic
energy of a particle, and an overview of different charged particle cooling tech-
niques is given in many texts, e.g. [Itano et al., 1995]. One technique is resistive
cooling, and it occurs when charged particles oscillate near an electrode coupled
to an electrical resistance. The particle oscillation induces a varying image charge
and as current flows, the ohmic resistance of the circuit dissipates energy and
damps the amplitude of the particle motion.

Image currents were studied by Shockley in 1938 and led to the Shockley-Ramo
theorem [Shockley, 1938; Ramo, 1939] which allows a calculation of the induced
current in a nearby electrode. Resistive cooling has been used for electrons in
e.g. [Wineland and Dehmelt, 1975], heavy ions e.g. [Vogel et al., 2014; Ebrahimi
et al., 2018], protons e.g. [Ulmer et al., 2013], antiprotons e.g. [Smorra et al.,
2017], and single positrons in a hyperbolic Penning trap e.g. [Schwinberg et al.,
1981; Haarsma et al., 1995], but not utilised for positron clouds in cylindrical
Penning traps. As a result, resistive cooling was not included in a comprehensive
review article discussing positron cooling techniques [Danielson et al., 2015].

There is a need to improve antiparticle cooling techniques, as an increase in
cooling efficiency would advance many manipulations and their applications [Daniel-
son et al., 2015]. Developing more efficient cooling mechanisms for antiparticles
would allow the creation of beams with lower energy and greater energy resolution,
and improve the efficiency of the RW technique. Alternate cooling mechanisms
could permit reducing the cooling gas pressure, which decreases the antiparticle

99
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annihilation rate and could lead to studying denser non-neutral plasmas. This
would also improve the signal-to-noise ratio of the Ps spectroscopy experiments
on the Swansea beamline [Deller, 2013]. Therefore, the viability of resistive cooling
for positron clouds was investigated.

5.1 Theory

5.1.1 Oscillations Between Parallel Plates

A Single Charged Particle

In the simplest case, one can consider a charged particle of mass m and charge
q oscillating at ωz between two infinite parallel plates, which are separated by a
distance of 2z0, and connected to a resistor R, as illustrated by figure 5.1. When
the particle is at a distance z from the centre, it induces an image charge q′, where

q′ =
(z0 ± z)q

2z0
, (5.1)

then the current flowing through the resistor R, from the Shockley-Ramo theorem
is

I(t) =
dq′

dt
=
dq′

dz

dz

dt
=

q

2z0
ż, (5.2)

where ż is the particle velocity. The resistor dissipates a power of P = I2R

through Joule heating and therefore, from P = dE/dt, damps the motion by

−dE
dt

= 〈I2R〉 = q2〈ż2〉R
4z2

0
, (5.3)

where the angled brackets denote a time average. For a harmonic potential
ż = vz0 cos(ωzt), where vz0 is the initial z-velocity, then

〈ż2〉 = v2
z0〈cos2(ωz0t)〉 =

1
2v

2
z0 =

E

m
, (5.4)

in terms of kinetic energy. Substituting for 〈ż2〉 in equation 5.3 results in

−dE
dt

=
q2RE

4mz2
0

, (5.5)
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Figure 5.1: A schematic of a charged particle of mass m and charge q oscillating
at ωz between two parallel plates, which are separated by a distance of 2z0 and
connected to a resistor R. The oscillating charge induces a time-varying image
charge which flows through the resistor as an image current, as shown by the plot
of V (t).

which gives the damping of the particle energy. The trivial solution to this equa-
tion is an exponential decay with a time constant for the ‘natural’ process of

τ1 =
4mz2

0
q2R

. (5.6)

So resistive cooling is most effective for particles with a large charge to mass ratio,
such as an electron or a positron.

Charged Particle Cloud

For the case where a number N of charged particles are moving with arbitrary
phases between two infinite plates, the time averaged total current will be zero,
but the mean squared value of the current is non-zero and is given by

〈I2
N (t)〉 =

N∑
j=1
〈I2
j (t)〉+

N∑
j,k=1,
j 6=k

〈I2
j (t) I

2
k(t)〉. (5.7)

Let us suppose that the currents due to the jth and kth ion are given by

Ij,k(t) =
qvz0

2z0
sin(ωt+ θj,k) (5.8)
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hence the first term in equation 5.7 is

N∑
j=1
〈I2
j (t)〉 =

q2v2
z0

4z2
0

N∑
j=1
〈sin2(ωt+ θj)〉 =

Nq2v2
z0

8z2
0

. (5.9)

The second term in equation 5.7 is

N∑
j,k=1,
j 6=k

〈I2
j (t) I

2
k(t)〉 =

q2v2
z0

4z2
0

N∑
j,k=1,
j 6=k

〈sin(ωt+ θj) sin(ωt+ θk)〉, (5.10)

using trigonometric identities, then

N∑
j,k=1,
j 6=k

〈I2
j (t) I

2
k(t)〉 =

q2v2
z0

8z2
0

N∑
j,k=1,
j 6=k

(
〈cos(θj − θk)〉 − 〈cos(2ωt+ θj + θk)〉

)
= 0,

(5.11)
as the time average of a cosine is zero. So the induced current for N particles is

〈I2
N (t)〉 = N

q2v2
z0

8z2
0
≡ N

q2〈ż2〉
4z2

0
= N〈I2(t)〉, (5.12)

where I(t) is the single particle current from equation 5.2, so the root-mean-
squared induced current for many particles increases with

√
N . The effect of this

on the cooling time constant will be detailed in the next section.

5.1.2 Oscillations in a Cylindrical Penning Trap

A Single Charged Particle

In general, the induced current due to a single charged particle’s axial motion is
given by equation 5.2, but in a cylindrical Penning trap it is modified, such that

I(t) =
q

D
ż, (5.13)

where the effective trap size D is obtained from the electrode geometry. It is given
by

D =
2z0
C1

, (5.14)

close to the trap centre, where C1 is the first coefficient from the expansion of the
trap potential [Vogel, 2018]. Infinite parallel plates separated by a distance 2z0
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have C1 = 1, such that D = 2z0 and equation 5.13 is equivalent to equation 5.2.
Modelling the resistive cooling as a friction force, then using the axial equation of
motion with a non-ideal potential, equation 3.9 now becomes

ω2
zz −

q

m

dφ

dz
− κż = 0, (5.15)

where the cooling rate is κ. For a single particle, the induced current due to the
axial motion from equation 5.13 in terms of axial kinetic energy is

I(t) =
q

D

√
Ez(t)

m
. (5.16)

The instantaneous power in a resistive circuit is given by P (t) = I2(t)R, whilst
in general, P (t) = dE/dt, so equating these two expressions and substituting for
I(t) from equation 5.16 gives

P (t) = −dEz(t)
dt

=
q2R

mD2Ez(t). (5.17)

Resistive cooling therefore follows an exponential decay of the form

Ez(t) = Ez(0)e−κt, (5.18)

where Ez(0) is the initial axial energy, with a cooling time constant of

τz = κ−1 =
mD2

q2R
. (5.19)

Charged Particle Cloud

For a number N of charged particles moving incoherently in a cylindrical Pen-
ning trap, the discussion in section 5.1.1 for parallel plates is still valid, and so
equation 5.12 holds for this geometry. The cooling time constant for N particles
oscillating with random phases is then again identical to the single particle value
τ1, i.e.

τN =
mD2

q2R
. (5.20)

Thus, to obtain a small cooling time constant, τN , the resistance, R, must be as
large as possible.
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5.1.3 Non-destructive Particle Detection by a Tuned Cir-
cuit

A charged particle induces charges on nearby electrodes, and its motion results
in a time-varying signal through an LCR non-destructive detection and cool-
ing circuit [Dehmelt, 1968], which was originally called the ‘bolometric tech-
nique’ [Dehmelt and Walls, 1968]. The inductance is usually supplied by a tradi-
tional inductor coil, but a crystal resonator has also been proposed as an alterna-
tive, to produce a high quality factor circuit [Kaltenbacher et al., 2011]. From the
Shockley-Ramo theorem [Shockley, 1938; Ramo, 1939] (also detailed by a review
article [He, 2001]), the induced charge on an electrode j, Qj , depends on the radial
position of the particle by

Qj(r) = qWj(r), (5.21)

where Wj(r) is a weighting potential, calculated from the ratio between the po-
tential at r due to a unit electric potential applied to electrode j, with all other
electrodes grounded and charges removed.

The induced current is then given by

Ij = qv · ∇Wj(r), (5.22)

where v is the instantaneous particle velocity and ∇Wj(r) gives the weighting
field. The weighting field allows easier calculation of the induced charge, Q, as it
is independent of the moving charge. To consider the problem as electrostatic at
each moment of charge movement, as above, the Shockley-Ramo theorem assumes
that the electric field propagates instantaneously and that magnetic effects are
negligible. Such a calculation has been performed for electron plasmas in open-
ended cylindrical Penning traps [Di Domizio et al., 2015]. The induced current for
harmonically oscillating charged particles will be discussed in the next section.

5.1.4 Tuned Circuit Detection in a Cylindrical Penning
Trap

The case of a harmonically confined cloud of charged particles in a cylindrical
Penning trap will now be described. For an LCR resistive cooling circuit comprised
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of an inductance L, capacitance C and resistance R, the resonant frequency is

f0 =
1

2π
√
LC

. (5.23)

This frequency must be in the neighbourhood of the axial bounce frequency, fz,
for axial cooling to occur, as the ohmic resistance then damps the coupled ax-
ial motion. A tuned detection circuit also allows non-destructive diagnostics of
particles in equilibrium with the circuit. By measuring the power spectral den-
sity, a trough should be seen on the thermal noise signal of the circuit, at the
frequency corresponding to the motion of the resonant particle. The trough is a
short-circuit due to the particle motion being colder than the temperature of the
circuit [Vogel, 2018]. From this measurement, the number of trapped particles can
be deduced [Malmberg and Degrassie, 1975; Feng et al., 1996].

Due to the symmetry of the electrodes, the weighting potential Wj only de-
pends on the radial and axial cylindrical coordinates, (r, z). As nearly all the
velocity is axial, the expression for the induced current from equation 5.22 can be
simplified by neglecting any radial velocity components, giving

Ij(t) ≈ qż
∂Wj(r, z)

∂z
. (5.24)

The current induced by the cloud is then the sum of the current induced by each
particle.

5.2 Practical Circuit Design Considerations

Simulating the trajectories of confined ensembles, as opposed to single particles, is
significantly complicated when considering a frictional force. For realistic results,
the interaction of the cooling circuit with the particle ensemble must be included,
which is not readily obtained [Vogel, 2018]. For a more accurate prediction of the
expected behaviour, experimental non-idealities must be considered.

Thus far, ideal cases have been discussed using theory, but in reality there are
practical complications when implementing the cooling circuit. In equation 5.6, it
was shown that to decrease the cooling time, a large resistance R is required. This
resistance is modified when it is part of a tuned LCR circuit, where an external
inductance, L, is used along with the trap capacitance, C. This gives an effective
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Figure 5.2: Resistive cooling time constant for a positron as a function of circuit
quality factor, from equation 5.26. The constants are z0 = 38.5 mm, U0 = 1 V
and C = 1 nF. To obtain a sufficiently short cooling time, as compared with the
positron lifetime which is on the order of tens of seconds, necessitates τnat . 1 s,
which requires QF & 0.07. A quality factor of this magnitude should enable the
temperature change due to the resistive cooling of positrons to be observed during
experiments in the 3rd stage harmonic well.

resistance of Reff = QF/(ω0zC), where the quality factor is defined as the ratio
of stored to dissipated energy per cycle,

QF =
f0
BW

, (5.25)

and BW is the −3 dB bandwidth of the circuit, which allows QF to be obtained
from a resonance curve. Resistive cooling is effective only within the bandwidth
of the external circuit [Winters et al., 2006]. To calculate the exponential cooling
natural time constant as a function of quality factor, τnat(QF ), substituting for R
and ω0z =

√
eU/ (mz2

0) in equation 5.6 gives

τnat =

√
mU0
e3

4z0C

QF
, (5.26)

where U0 is the height of the confining electric potential. From figure 3.7, the
bandwidth of the axial bounce frequency of the positron cloud is < 800 kHz, and
a plot of τnat(QF ) is given in figure 5.2. This shows that provided QF > 0.07
then τnat < 1 s, which is much shorter than the positron lifetime in the 3rd stage
accumulator, as desired. Resistive cooling experiments in this set-up are therefore
viable. Some cooling is already present due to the diffused cooling gas from the
2-stage. An estimate for the gas cooling time constant, using that the pressure in
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Figure 5.3: High pass filter and resistive cooling circuit diagram drawn in NI
Multisim. The parallel LCR resistive cooling circuit has L = 230 nH, C = 451 pF
and R = 1 GΩ. Induced positron current is modelled as an AC source with
f = fz ≈ 10.5 MHz and an arbitrary amplitude of 1 V peak-to-peak. The DC
bias on the high pass filter is arbitrarily grounded and ‘PR1’ denotes the location
of the probe which measures the frequency sweep response, to produce a resonance
curve as shown in figure 5.4.

the 3rd stage is ∼ 10× lower than the 2-stage and scaling linearly, gives τgas ∼ 10 s.
The quality factor of a parallel LCR circuit can also be expressed in terms of

the electrical components [Pozar, 2011], as QF = 2πf0RC, thus for a short cooling
time, the resistor and capacitor should be as large as possible. A constraint
on the capacitance comes from the resonant frequency of an LCR circuit from
equation 5.23. This resonant frequency must be as close as possible to the axial
bounce frequency of the cloud, fz ≈ 10.5 MHz, for maximal cooling. Thus the
capacitance must be large, whilst the inductance is as small as possible, keeping
f0 ≈ 10.5 MHz. A limiting factor is the inductance of an RG-58 BNC cable,
which is used to connect the circuit and is around 340 nH/m, with a capacitance
of 100 pF/m [Shi and Kanoun, 2015], thus the minimum inductance was set at the
nearest purchasable inductor value of 230 nH (Bourns 9230-04-RC), as measured
by a Wayne Kerr 4300 LCR meter. As the parasitic capacitance of each electrode
was measured to be around 180 pF, the capacitance of the circuit was chosen as
large as possible to dominate over this, whilst keeping f0 at the desired frequency,
thus a capacitor with a measured value of 451 pF was chosen.

The quality factor in a real detection system is affected by the coupling with
external circuitry [Pozar, 2011], which lowers the ideal resonator quality factor to
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Figure 5.4: Simulated frequency sweep to obtain a resonance curve for the resis-
tive cooling circuit model in NI Multisim. From the simulation, f0 = 3.246 MHz
and BW = 45 kHz giving QF = 72, but the parasitic capacitances of the real
physical system and its connections were found to cause a shift to f0 ≈ 11 MHz
and a significant increase in the bandwidth.

an overall ‘loaded’ quality factor of QL, where

1
QL

=
1

QResonator
+

1
QElectrode

+
1

QConnectors
+

1
QAmplifier

+ . . . (5.27)

is the inverse sum for all the detection components. In more sophisticated detec-
tion systems there may be more components which require consideration [Vogel,
2018]. Therefore, to maximise QL for a detectably strong signal, the resonator
should be as close as possible to the 3rd stage accumulator pickup electrode. It is
also clear that QL may be severely limited by only one small quality factor in the
chain of detection components. First, considering only QInductor = 33 from the
inductor datasheet maximum, this limits QL ≤ 33, and accounting for the other
components will only decrease this value. The final temperature of a resistively
cooled ion is also limited by the temperature of the cooling circuit [Werth et al.,
2009], which in this case is room temperature, but if further cooling is required,
can be kept in liquid helium, e.g. [Ebrahimi et al., 2018].

A resistive cooling model circuit was built in NI Multisim software, and is
shown in figure 5.3. Using the software, a simulated frequency sweep was per-
formed on the circuit and resonance curve obtained, seen in figure 5.4, which
predicted f0 ≈ 3 MHz. Initially the model was set such that f0 ≈ fz ≈ 10.5 MHz,
but upon connecting the circuit to the system, there was a significant increase of
a few MHz in the resonant frequency, most likely caused by unaccounted parasitic
capacitances. Therefore, the values shown in figure 5.3 were chosen, as they gave
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Figure 5.5: Schematic of the 3rd stage cylindrical Penning trap with the LCR
resistive cooling circuit connected to an electrode, where the applied static bias
is not shown. A positron cloud is shown as a yellow sphere at (r,z) in cylindrical
coordinates, not to scale.

an experimental f0 which was near fz ≈ 10.5 MHz.

5.3 Resistive Cooling Experiments

The LCR circuit was connected directly onto the BNC breakout box from the 3rd
stage accumulator electrodes, as to minimise parasitic capacitances. A schematic
diagram of the setup is shown in figure 5.5. The circuit, connected to a Tek-
tronix RSA 3303A spectrum analyser, successfully detected RW signals from the
2-stage and the 3rd stage at 9.3 MHz and 10.5 MHz respectively. Applying white
noise from a function generator to the circuit gave the resonance curve shown in
figure 5.6, where the bandwidth was significantly broader than from the simula-
tion, showing that the model did not account for some non-idealities. The resonant
frequency was f0 = 14.2 MHz, and the −3 dB bandwidth BW = 9.8 MHz, so
substituting these values into equation 5.25, gave QF = 1.44. This value of QF
corresponds to τnat = 50 ms, from figure 5.2, which was sufficiently short to enable
the observation of a temperature difference on the timescale of the temperature
measurements (∼ 5 s).

A low-noise preamplifier was used to amplify the detected signal from the LCR
circuit, but no positron image current was observed. By varying the potential
applied to the centre electrode, the axial bounce frequency was scanned, to test
whether the positron signal then became resonant with the circuit, but no signal
was observed. The centre of the trapping potential was also shifted off-centre to
attempt detection using the longer centre electrode which should have resulted
in a larger signal, but this was also unsuccessful. To obtain high sensitivity, the
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Figure 5.6: Experimental resonance curve, where the signal amplitude as a
function of frequency was measured by a spectrum analyser. The resistive cooling
circuit was connected to a white noise source, disconnected from the system, with
the DC input grounded. The resonant frequency f0 = 14.2 MHz is denoted by
a purple dashed gridline, and the −3 dB bandwidth, BW = 9.8 MHz, is shown
by green dashed gridlines. Substituting these values into equation 5.25, gives
QF = 1.44 (to 2 decimal places).

thermal noise power of the circuit should be kept as low as possible [Werth et al.,
2009], and in this instance was kept at room temperature. The temperature of the
laboratory was around T ≈ 300 K, corresponding to 25.9 meV, which was therefore
the lowest temperature attainable by resistive cooling in this configuration, and
was around a factor of ∼ 10 smaller than the measured positron temperature at
equilibrium, shown in blue in figure 5.7. This temperature difference should not
have prevented resistive cooling from being observed.

Although no positron image current was detected, it was nevertheless possi-
ble that resistive cooling was occurring, and so the temperature, as described in
section 3.9, was monitored. The temperature was measured with and without
the cooling circuit, but no difference was observed. When applying a single RW
in the 3rd stage on the set of segmented electrodes downstream, with the cool-
ing circuit connected to the segmented electrode set on the other side of the 3rd
stage (upstream), a temperature difference was seen, albeit an increase, as shown
in figure 5.7. As the RW was applied near fz, this heating is attributed to the
RW coupling to the LCR circuit and driving the motion of the cloud, instead of
damping as intended. The interaction shows that the natural frequency of the
LCR circuit was tuned near the correct range, and that parasitically picking up
the (relatively large) RW signal was enough to affect the detected positron cloud
temperature. This suggests that although f0 and fz were aligned, the image cur-
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Figure 5.7: Plot of temperature as a function of hold time in the 3rd stage
harmonic well after a 0.5 s initial hold for thermalisation, with: no RW (blue),
single RW with Vr = 300 mV and fr = 10.2 MHz (yellow), single RW with Vr =
40 mV and fr = 10.4 MHz and the LCR resistive ‘cooling’ circuit connected
(green). Significant positron cloud heating was observed when the rotating wall
was applied with the LCR circuit connected. No temperature difference was seen
when the LCR circuit was connected/disconnected with no RW. The mean and
standard error of eight repeats are plotted and points are joined to guide the eye.

rent was too small to couple with the circuit and change the detected temperature
in this configuration.



Chapter 6

Conclusions

“Doing science means coming up hard against the limits of your
ignorance on a daily basis – the innumerable things which you don’t
know, and can’t do . . . A scientist is someone who lives immursed in
the awareness of our deep ignorance, in direct contact with our own
innumerable limits, with the limits of our understanding.”

Carlo Rovelli [2018]

6.1 Summary

A harmonic potential well in the 3rd stage accumulator, with an electrostatic min-
imum near to the incoming parallel energy has been determined, implemented and
characterised, as suggested by [Savage, 2019]. Optimisations to the particle ejec-
tion and recapture techniques increased the positron lifetime from around 50 ms
to over 60 s, which is a significant improvement, allowing time to study RW and
cooling techniques.

This work has built and implemented a function generator that can operate
a single and double RW on four, six, and eight-segment electrodes. Applying a
double RW in the 3rd stage allows a closer match to the electric fields in the
single particle compression model [Isaac, 2013]. Enabling a RW in the 3rd stage
accumulator also allows a further increase to the positron lifetime, which is par-
ticularly advantageous with long anharmonic potentials wells which are used for
other applications, such as positron cloud ‘stacking’, which allows the study of
non-neutral plasmas. A larger number of positrons, compressible by a RW, will
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also improve the signal-to-noise ratio of the Ps spectroscopy studies, as identified
by [Deller, 2013].

Further understanding the heating process caused by a RW might allow a re-
duction in the minimum attainable cloud width. A single-shot temperature mea-
surement model has been justified and presented. The temperature measurement
method has been reported on the system for the first time and will provide new
insights into how manipulations affect the energy distribution.

A simulation of the RW compression model was developed, incorporating an
exponential cooling term, which can be compared with experimental results and
used for predictions. By obtaining experimental values for the model parameters,
the simulation can be further improved. Incorporating further non-ideal features,
as observed empirically, will aid in further understanding the mechanism for single
particle compression.

The approximate RW frequency range near ωm where expansion is seen, ∆,
can now be predicted, knowing a, ωz, and Ωc. By measuring ∆ experimentally,
a different method for determining Ωc has also been identified. Predicting the
RW frequency range for radial expansion of charged particles may be important,
e.g. in a multi-species trap where a particle species could be manipulated without
ejecting another, or to purposely eject one species only.

Circuit design and testing has been performed to attempt image current mea-
surements of the axial motion, and although unsuccessful, work has been per-
formed towards realising the first resistive cooling of positron clouds. Obtaining a
cooling mechanism which follows a Stokes’ viscous drag term was a goal identified
by [Isaac, 2010], to allow a more precise test of the compression model and remains
a future goal.

6.2 Future Work

During this work, a relatively long electrode which may be used as an accelerator
was installed below the MCP in X-4 (immediately downstream from the 3rd stage
accumulator). This will allow retarding potential analysis measurements after
ejecting particles from the 3rd stage, as opposed to leaving a barrier electrode
raised. Experiments retarding positrons by biasing a metal grid upstream from the
MCP did not follow the expected form and were disregarded, so using a cylindrical
electrode instead would provide direct comparison with cloud energies from the 2-
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stage trap. Doing so allows the effect of manipulations on the energy distribution
of the particles to be quantified and compared.

Compression and expansion due to a rotating wall was measured but obtaining
an estimate for the damping coefficient κ is difficult. Obtaining enough data for
a reliable fit from Γ(fr) is not straightforward, as many unsuccessful attempts
to collect a complete dataset for the single and double RW were performed but
repeatedly failed due to hardware issues. These studies should be repeated to
quantify κ, δ, and f0, but another method to determine κ could also be used,
as follows. A systematic study varying gas pressure and measuring the radial
expansion of the cloud would give κ(P ), to better understand the expansion term.
It would also allow more realistic parameters to be chosen for simulating the
behaviour.

As the magnitude of the RW frequency response width near ωm, ∆, is pre-
dicted to scale linearly with amplitude, a, from equation 4.72, this relationship
should be experimentally verified. It could be achieved by varying the ampli-
tude and measuring the frequency width where the expansion rate increases and
leads to particle loss. These data should also be collected for the double RW to
verify whether the results would be indistinguishable from the single RW, as the
simulation in section 4.7.2 forecasted.

Unpredicted behaviour was seen in section 4.9 for RW frequencies below fz +

fm, where a double minimum in cloud width was seen. The experiment could be
repeated with smaller RW frequency increments and more amplitudes, for a more
comprehensive comparison. Some suggestion of its source was given, but further
work is required to probe and understand its origin.

The double RW could be used in the 3rd stage accumulator with electrons,
as the number of particles can be significantly increased and may form a plasma.
An electron gun allows the number of electrons to be nearly arbitrarily chosen
and their kinetic energy controlled. The interaction with the double RW may
change in a different particle number or energy regime, leading to new insights.
Monitoring the fraction of the cloud which remains linear during the temperature
measurement, may indicate when plasma effects become important. Experiments
monitoring this fraction whilst increasing the particle number may be of interest
to identify the onset of significant plasma effects.

Realising a function generator capable of controlling a six-segment RW elec-
trode has enabled a rotating quadrupole electric field to be implemented, as op-
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posed to the rotating dipole used in this work. This has advantages, at least in the
plasma regime, as it can control single species plasmas, in contrast to the dipole
field [Hasegawa et al., 2005]. A double RW quadrupole electric field can also now
be performed, which has not previously been studied.

Installing a pre-amplifier inside the vacuum system would enable low-noise
amplification of the image current signals, without amplifying the thermal noise
from the external wiring, connectors, and BNC cables of the 3rd stage accumulator.
This would also assist with live non-destructive diagnostics, as the magnetron and
axial bounce frequencies could be monitored and the RW frequency chirped to
track shifts in the cloud frequencies as described in chapter 4. Live RW frequency
tuning could minimise the radius of the cloud and keep the particle loss to a
minimum, which is particularly advantageous when stacking particles where the
hold time may be many seconds.

To identify whether resistive cooling of positron clouds is attainable in the
current system, a large number of electrons could be used instead. This would
indicate whether the electrode geometry allows such a measurement with a realistic
signal, and confirm whether the image charge was too small to couple with the
circuit. If this is unsuccessful, then an inductor with a larger quality factor could
be used.

Implementing resistive cooling in the 2-stage trap would decrease the need
for cooling gas, which is a major source of trapped particle loss. Buffer gas free
positron trapping has been demonstrated in a hyperbolic Penning trap using mul-
tiple electrodes [Haarsma et al., 1995], and with negative feedback [Schwinberg
et al., 1981]. Active negative feedback, by amplifying the detected image current
and applying it with opposite phase to an opposite electrode, allows a reduction
in the cooling time constant and final temperature as compared to the passive
case [Dehmelt et al., 1986]. Achieving resistive cooling with negative feedback
could realise lower temperatures for charged particle clouds and plasmas, to en-
able larger numbers of trapped particles.



Appendix A

Custom-built AD9959 Function
Generator

“We are all in the depths of a cave, chained by our ignorance, by
our prejudices, and our weak senses reveal to us only shadows. If
we try to see further, we are confused: we are unaccustomed.
But we try. This is science. Scientific thinking explores and
redraws the world, gradually offering us better and better images
of it, teaching us to think in ever more effective ways.”

Carlo Rovelli [2018]

To generate more than two synchronised sinusoidal signals at > 1 MHz in burst
mode, a new function generator was assembled in-house. The AD9959 evaluation
board from Analog Devices (figure A.1) has four DDS cores which share a com-
mon clock, so they are inherently synchronised. DDS devices offer fine frequency
resolution and fast switching between output frequencies, as they generate a time
varying digital signal prior to a 10-bit digital-to-analog conversion (DAC) here.
Each of the four channels also has a phase offset for setting their relative phases.
It is capable of outputting sinusoidal waves with a frequency of up to 200 MHz
and a tuning resolution of 0.12 Hz.

The outputs from the device are set such that all channels can be enabled or
disabled simultaneously by a single trigger on one input. Using amplifiers, the
maximum amplitude produced around 10 MHz is 6.72 V peak-to-peak.
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Figure A.1: Annotated photograph of the AD9959 evaluation board, taken from
the datasheet. The manual I/O control headers are the interface for AD9959
communication when under manual control from an external controller.

Parts List

• AC/DC power supply (3.3 V, 5 V, 12 V) [ECM40UT34]

• Power distribution board:

– AC/DC converter (± 15 V) [ECL15UD02]
– DC/DC converter (5 V to 1.8 V) [MEZD71202A-D]

• 1×AD9959 (4 channel DDS evaluation board) [Serial number: 3D50DAF53580]

• 2 × Amplifiers with + 21 gain [THS4022EVM]

• 500 MHz oscillator [RFPRO33-500.000]

• Yellow LED (12 V DC)

• 4 × SMA to BNC cables

• SMA to SMA corner joint (for clock)
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Figure A.2: Photograph inside the 19” rack-mount box of the AD9959 RW
function generator. The AD9959 is blue and the amplifiers are green, where they
are powered from the power distribution board which is at the centre in brown
and shown schematically in figure A.4.

• 4 × 0.25 m SMA to SMA cables (from AD9959 output to amplifiers)

• 2 × 0.25 m SMA to fly leads (for powering clock and AD9959)

• Fan (12 V DC)

• 19” steel rack-mount box [20860-126]

• IEC fused inlet (1.25 A fuse) [BVA01/Z0000/01]

• 3 × 50 Ω line drivers [SN74128N] (for gated mode trigger buffer)

• 1 × USB type B male to female cable

• Heat sink (for DC/DC converter)

The total cost of the parts was < £500, and the function generator is shown in

figure A.2.
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a) b)

Figure A.3: a) Top view of the SN74128N line driver from the datasheet, where
the 2-input NOR gates are A and B and Y is the output. b) Buffer for the double
RW function generator, comprised of three 50 Ω line drivers [SN74128N] (only the
mounts are shown here) with each A & B logic input shorted.

Triggering

For the digital output trigger from the FPGA to have sufficient drive, a TTL

(transistor-transistor logic) buffer uses three 50 Ω line drivers, with each 2-input

NOR (A & B) shorted (figure A.3). A signal to RESET places the DAC output

to a known state for the synchronisation of multiple AD9959 boards. A high-level

voltage on pin P1U on the AD9959 enables the output, while a low-level voltage

disables the output.

AD9959 Configuration

The DDS core is powered by a 1.8 V supply, whilst the serial I/O interface requires

3.3 V. The AD9959 has its W7 jumper on PC control and W10, W1 W2, W3 and

W9 are all connected for PC control. W4, W5, W6 are all disconnected. For

operation, an IEC cable must be connected from mains electricity to the IEC inlet

to power the power distribution board (figure A.4), and it must be connected via

USB to a Windows PC.
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Figure A.4: Schematic of the power distribution board, containing two power
supply units (PSU).

Control

Rudimentary firmware was provided with the AD9959 for GUI control, but it did

not allow simple modification and could not be integrated into the beamline’s

existing sequencer system. To overcome this, Dynamic Link Library (DLL) wrap-

pers were written in C++ to allow USB communications and hardware control

via LabVIEW™. The USB 2.0 (480 Mb/s) programmable microcontroller on the

board side is the Cypress EZ-USB® FX2LP™ [CY7C68013A]. To communicate

with the microcontroller, wrappers were built on the Microsoft Visual C++ plat-

form, using the Cypress SuiteUSB C# library ’CyUSB.dll’. The corresponding

USB development tool for Microsoft Visual Studio is CySuiteUSB 3.4.7, which

provides a programming interface from Windows to the driver.

There are two compiled versions of the code for use in either Windows 7 or

Windows 10 operating systems (OS), compilation required the installation of the

software development kit (SDK) and ‘.NET framework’ for each OS. This then al-

lows identification, initialisation and closing of the device, while the registry of the

AD9959 can be updated using LabVIEW to set amplitude, frequency, phase, and
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gated mode. During initialisation, the on-board random-access memory (RAM)

is flashed with the new firmware, which is necessary each time the device is pow-

ered. LabVIEW programs allow the aforementioned functions to be completed

along with toggles for: four or six segment RW; RW direction, i.e. clockwise and

counter-clockwise (as viewed from the source end); and a toggle for the amplitude

calibration with or without the amplifiers.

Software requirements:

• EZ-USB® FX2LP™ drivers

• CySuiteUSB 3.4.7

• LabVIEW™

Calibration

Amplitude calibration was performed following thermalisation, which is achieved

after ∼ 4 hours, as the temperature had an effect on the output characteristics.

Amplitude

Using the amplifiers, the maximum amplitude is 6.72 V peak to peak. The ampli-

fiers are not required for RW compression at frequencies around fz ≈ 10.5 MHz,

in which case the maximum amplitude is 0.65 V peak to peak. The amplitude cal-

ibration was performed twice: at ∼ 50 kHz with the amplifiers, which is near fm,

and at ∼ 10.5 MHz without the amplifiers. The amplitude deviates as a function

of frequency from the desired value by < 1% between 5–15 MHz. The amplitude

was found to scale linearly at any frequency.
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Timing

The external clock oscillator frequency was measured as 500.01 MHz, which was

stable as monitored for a month. Using the amplifiers, there is a ≈ 90 ns delay

between trigger HIGH and output ON at the maximum amplitude of 6.72 V peak

to peak at 10 MHz. The delay between trigger LOW and output OFF is ≈ 125 ns

at the maximum amplitude of 6.72 V peak to peak at 10 MHz. No significant

deviation was seen from these timings for a frequency range of 0.1–30.0 MHz. The

sinusoidal signal shows negligible distortion when the output is switched on or off.
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