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Abstract

Hard-magnetic soft materials (HMSMs), as a sub-class of magneto-active polymers, consist of a
polymeric matrix filled with particles of high remnant magnetic induction. The application of
external magnetic flux on HMSMs induces a moment on its material particles. From the angular
momentum balance law, it is deduced that the Cauchy stress tensor in these materials cannot
be symmetric. Therefore, the micropolar continuum theory, with inherent asymmetric stress
tensor, is a rational candidate for modeling the deformation of these materials. In the present
contribution, an HMSM is modeled as a three-dimensional micropolar continuum body, which is
subjected to external magnetic stimuli. The moment resulting from the interaction of the internal
and external magnetic fluxes plays the role of a body couple in the micropolar formulation.
After developing the main formulation, due to the highly nonlinear nature of the governing
equations, the weak form of the equations and its linearization to perform numerical simulations
is presented. To demonstrate the capability and performance of the developed formulations,
several examples are provided. It is shown that the present formulation can successfully predict
the deformation of HMSMs under various loading and boundary conditions.
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1. Introduction

Magneto-active polymers (MAPs), as a subgroup of magneto-rheological elastomers (MREs),
are a class of smart materials that consist of magnetizable particles embedded into an elastomeric
matrix and undergo large mechanical deformations when subject to magnetic loading. These
materials can be used in, e.g., soft and flexible electronics, sensors, actuators, soft robots, and
vibration absorbers (Bastola and Hossain, 2021; Bose, 2007; Boczkowska and Awietjan, 2009;
Bica, 2012; Ivaneyko et al., 2012; Lucarini et al., 2022; Hu et al., 2018; Ren et al., 2019; Yarali
et al., 2022; Wu et al., 2020). Due to the importance of these materials in modern applications,
it is of particular importance to develop proper theoretical formulations for predicting their
deformations, which helps engineers for optimum and effective design of various devices made
of MAPs.

Depending on the type of field-responsive magnetic particles, two sub-classes, known as
magnetically-soft MAPs and magnetically-hard soft materials (MHSMs), have been manufac-
tured. The former subclass is composed of particles with low coercivity, namely their magneti-
zation vector changes by applying external magnetic flux. A huge amount of research works on
the mathematical formulation and constitutive modeling of these materials, particularly, in the
past two decades (e.g., Dorfmann and Ogden (2004), Saxena et al. (2013), Ethiraj and Miehe
(2016), Mehnert et al. (2017), Mukherjee et al. (2020), Zabihyan et al. (2020), Bustamante et al.
(2021), Hu et al. (2022)). The latter subclass consists of particles, such as CoFe;O4 or NdFeB,
that exhibit considerably large coercivity, so that their magnetization vector remains constant
for a wide range of magnetic stimuli (Zhao et al., 2019; Schiimann et al., 2020; Lee et al., 2020).
Besides this property, the 3D printing technologies allow one to program the local orientation
of the magnetized particles. Therefore, HMSMs can experience quick and complex large defor-
mations under relatively small values of external magnetic induction (Lum et al., 2016; Kim et
al., 2018; Wu et al., 2019; Alapan et al., 2020; Kuang et al., 2021; Wang et al., 2021; Wu et al.,
2021; Yan et al., 2021).

In recent years, a flood of research articles on the theoretical modeling of HMSMs has been
published. Some of the most notable articles are cited here. Continuum theories for the elastic
deformation of HMSMs have been developed by Kalina et al. (2017) and Zhao et al. (2019)

while their viscoelastic effects have been proposed in Garcia-Gonzalez (2019) and Mukherjee et
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al. (2021). In contrast to the aforementioned continuum-based macroscopic models, microme-
chanical and lattice models have been investigated by Zhang et al. (2020), Garcia-Gonzalez and
Hossain (2021a,b), and Ye et al. (2021). Moreover, some research works have focused on the
finite elastic deformation analysis of two- and three-dimensional beams made of HMSMs, e.g.,
Wang et al. (2020), Wang et al. (2021), Chen and Wang (2020), Chen et al. (2020a,b), Chen et
al. (2021), Rajan and Arockiarajan (2021), Sano et al. (2021), and Yan et al. (2021).

An important property to be pointed out is that the interaction between residual and external
magnetic fluxes induces a body couple on the continuum body (e.g., Dorfmann and Ogden
(2014)). On the other hand, it is a well-known result from the angular momentum balance law
that the Cauchy stress tensor cannot be symmetric in the presence of body couples. A natural
conclusion is that the Cauchy stress in HMSMs is asymmetric, see Zhao et al. (2019). Therefore,
for the theoretical formulation of HMSMs; it is logical to employ a generalized continuum theory
that takes into account the asymmetry of the Cauchy stress. Definitely, micropolar and couple
stress continuum theories are two natural candidates for this purpose. It is known that the couple
stress theory leads to higher-order derivatives of the displacement field, and hence, requires C*
continuity of interpolation functions in a standard finite element (FE) formulation. However,
micropolar continuum theory, despite adding additional degrees of freedom (DOFs), can be
tackled by C%-continuous functions (e.g., Ramezani et al. (2008, 2009)). Accordingly, the main
purpose of this work is to develop a formulation that models the finite deformation of continuum
bodies made of HMSMs based on micropolar theory.

Mathematical foundations of the micropolar continuum theory have been laid down by Erin-
gen and his coworkers (e.g., Kafadar and Eringen (1971), Eringen and Kafadar (1976), Eringen
(1999)). In micropolar continuum theory, each material particle is associated with a micro-
structure that can undergo only rigid rotations independently from the surrounding medium.
Therefore, each particle contains six degrees of freedom, three translational which are assigned
to the macro-element, and three rotational ones which are referred to the micro-structure. From
the kinetic point of view, the interaction between two adjacent surface elements is considered
via a couple vector in addition to the traditional traction vector, which leads to the definition
of couple stress tensor (e.g., Eringen (1999)). The micropolar theory has been successfully used

in modeling the elastoplastic deformation patterns obeys a highly localized zone (e.g., Stein-



mann and Willam (1991); Borst (1993); Iordache and Willam (1998); Tejchman and Wu (2007).
Modern formulations of the micropolar elastoplasticity have been developed by, e.g., Steinmann
(1994), Grammenoudis and Tsakmakis (2001, 2007), Grammenoudis et al. (2007), Bauer et al.
(2012a), and Altenbach and Eremeyev (2014). Moreover, numerical formulations for the finite
elastic deformation of micropolar media have been provided by Bauer et al. (2010, 2012b) and
Erdelj et al. (2020). The micropolar continuum theory has been also used to formulate crystal
plasticity ( Mayeur et al., 2011), chiral auxetic lattices (Spadoni and Ruzzene, 2012), vertebral
trabecular bone (Goda et al., 2014), lattice structures (Yoder et al., 2018), phononic crystals
(Guarin-Zapata et al., 2020), and phase field fracture mechanics (Suh et al., 2020). Further-
more, micropolar formulations of the peridynamic theory have been developed for describing the
localized deformations and the fracture of brittle and quasi-brittle materials (Chowdhury et al.,
2015; Yu and Chen, 2021).

Zhao et al. (2019) has also pointed out that the optimal effective media for a magnetically
responsive material, such as HMSMs, may be polar media. However, they state that further ex-
periments are required to see if size-effects are observed or whether a more complex non-classical
continuum is necessary. It is noted that the constitutive equation for stress tensor in Zhao et
al. (2019) is a function of external magnetic load. In traditional continuum formulations, at the
constitutive level, the stress tensor is a function of kinematic tensors rather than external loads.
In this work, it is shown that, due to the dependency of the stress tensor on external magnetic
load, their theory cannot solve the problems in which the residual and external magnetic induc-
tions are constant vectors and the boundaries are fixed. Therefore, the main objective of this
work is to develop a novel formulation, in the micropolar framework, that can capture the defor-
mation of HMSMs for all types of loading and boundary conditions. Moreover, the dependency
of the constitutive equation of stress on the external loading is circumvented. Furthermore, the
present research demonstrates a new application of the micropolar continuum theory, namely
predicting the deformation of HMSMs as an important class of smart materials.

This paper is structured as follows: In Section 2, the basic properties of hard-magnetic
soft materials are introduced. In Section 3, the kinematics, kinetics, linear momentum, and
angular momentum balance equations of micropolar continua are presented. In Section 4, the

variational formulation of the problem and the corresponding linearization are developed. To



assess the capability and performance of the developed formulation, several numerical examples

are provided in Section 5. Finally, the paper is closed with some concluding remarks in Section 6.

Notation: Throughout this work, all lower-case and upper-case Latin indices range over
{1,2,3}. The summation convention holds over all repeated Latin indices. The notations R",
trR, det R and R~ are the transpose, trace, determinant and inverse of the second-order tensor
R. For the two second-order tensors R and S, the fourth-order tensors A =R®S, B=R®S,
and C = R XS are defined so that their components are given by A;ju = Ri;jSu, Biju =
R;;.Sji1, and Cjji = Ry Sk, respectively. The double contraction operation on tensors of different
orders is defined by R:S = R;;S;; and (A:R);; = AijpeRp,. Two coincided, fixed, Cartesian
coordinate systems {X7, Xo, X3} and {x1, 22, x3}, with the associated basis vectors {e1, ey, €3}

and {E;, Ey, E3}, to describe, respectively, the material and spatial quantities are considered.

The standard right gradient and right divergence operators, namely Grad{e} = gg;l} ® Ey,

Div{e} = g‘g;]} -Ej, grad{e} = %{;} ® e, div{e} = ‘?9{;} - @; are employed in this work.

2. Basic relations of hard-magnetic soft materials under magnetic loading

A body made of hard-magnetic soft materials is modeled as a (micropolar) continuum body
in this work. As usual, the notations By and B denote the reference and current configurations
of the body at the times t = 0 and ¢ > 0, respectively. At each material point in By, a macro-
element with center at X is considered, which is mapped to the new position vector x as the
center of the deformed macro-element in B via the bijective deformation ¢, namely x = ¢(X, t).

Local deformation of the macro-element is governed by the deformation gradient tensor
F =Grad¢ =1+ Gradu =z, ;6e; ® E;, J=detF >0, (1)

where m = x — X is the macro-displacement field, a comma followed by an index denotes
differentiation with respect to the coordinates, and I is the identity tensor.
The residual magnetic flux density at the reference and current configurations are denoted

by B’ and B, respectively. The relations between B* and B are as follows (Zhao et al., 2019):
B'=J 'FB' or B'=JF 'B" (2)

The external magnetic flux density B®* is applied to the body. At each material point, the

interaction between B®* and B* manifests itself as a body couple exerted on the material points.



The magnetic body couple per unit current volume ¢, and the magnetic body couple per unit

reference volume ¢* are given by

=SB x B = —JUFB) x B, o = Je = —(FBY) x B, (3)
Ho Ho Ho

where g = 41 X 10_7% is the magnetic permeability of the free space. It is known that the
presence of body couples on a continuum body results in an asymmetric Cauchy stress tensor.
Accordingly, from Eq. (3), the existence of body couple in HMSMs is the main motivation of
the present research to use the micropolar continuum theory for the deformation analysis of this

class of smart and active materials.
Following Zhao et al. (2019) and Chen et al. (2020a,b), it is assumed that the external

magnetic flux density is uniform in space. Under this assumption, Zhao et al. (2019) showed

that the Maxwell equations of the form (e.g., Dorfmann and Ogden (2014))
CurlH =0, DivB =0, (4)

are satisfied in HMSMs. Here, H and B are the referential magnetic field and the magnetic flux

density, respectively. Moreover, ”Curl” is the curl operator in the reference configuration.

3. Kinematics and kinetics of micropolar media

In this section, some basic relations of the micropolar continuum theory are presented. For
more details and discussions, the fundamental works of Eringen and Kafadar (1976), Eringen

(1999), and Steinmann (1994) are suggested.

3.1. Basic kinematic quantities

As was mentioned in the previous section, the local deformation of a macro-element is de-
scribed by the deformation gradient tensor F given in Eq. (1). In the micropolar continuum
theory, a micro-structure inside each macro-element is considered, which can undergo indepen-
dent rigid rotations, which is denoted here by the pseudo-vector field 8. The relation between

0 and its corresponding skew-symmetric tensor © is as follows:

1 1
@ = Spn9 = —89, 0 = aXl@ = —5836, @ij = _Eijkgkv 01 = _§€ijk®jk‘a (5)



where € is the alternating symbol and e;;, are its components. Using the Euler-Rodriguez
formula, the finite micro-rotation tensor R corresponding to € is given by (e.g., Steinmann

(1994), Ramezani et al. (2009))

~ sin ¢ 1 —cost sin 0 1— 0089@2

R =exp® = cos Al + 7 O+ 7 0260 =1+ 7 O + 0z ; (6)

where 6 is the magnitude of the rotation pseudo-vector 6.

From the polar decomposition theorem, the deformation gradient tensor is uniquely decom-
posed as F = RU = VR. Here, U is the right stretch, V is the left stretch, and R is the
macro-rotation tensor. Motivated by the classical polar decomposition, in the micropolar con-
tinuum theory the deformation gradient may be decomposed as F = RU = VR.. Accordingly,

the micropolar deformation measures U and V are defined as follows (e.g., Steinmann (1994)):

U=R'F, V=FR", U;;=R.,F,, Vi=FnRyy, detU=detV = (7)

REMARK. It is noted that the right and left stretch tensors U and V resulting from
the classical polar decomposition of the deformation gradient tensor F are both symmetric.
However, the micropolar deformation tensors U and V defined in Eq. (7) are not symmetric,
in general. Basically, U and V coincide, respectively, with the classical stretch tensors U and
V, if the micro-rotation tensor R and the macro-rotation R are identical. As is described in
the next subsection, the stress tensor in micropolar theory is also asymmetric, in general. From
the constitutive point of view, the stress tensor depends on U and V in material and spatial
formulations, respectively. Therefore, the asymmetry of U and V leads to the asymmetry of the

micropolar stress measures in constitutive equations.

In addition to the deformation measures U and V, the material and spacial wryness tensors,
denoted respectively by I' and -, are defined by (Eringen and Kafadar, 1976; Pietraszkiewicz
and Eremeyev, 2009)

1. = - S LRI -
T = —§SZ(RTGradR)7 v = RI'R", Ty, = —§€IKLR1KR1'L,J- (8)

It is noted that the relation F = I + Gradm holds true for both finite and infinitesimal regimes

of deformation. On the other hand, a single coordinate system, say {xi, z2, x5}, is sufficient to



describe the small deformations of a continuum body. Therefore, for infinitesimal deformations,

the deformation gradient F and the micro-rotation tensor R may be written as

Fi =I+gradu, Riyy=1+0O, (9)
where the abbreviation ”"inf” stands for the infinitesimal. Accordingly, from Eqs. (7)—(9), the

infinitesimal micropolar strain € and the infinitesimal wryness k are given by

€ = trinf —I= me —I= gradm — O or éij = ’U/i,j + eijkﬁk ( )
10
K = Dinf = Yine = grad@, or k;; =0,

It is noted that m and @ and their spatial derivatives are assumed to be sufficiently small in

Egs. (9) and (10).

3.2. Kinetic quantities and balance of linear and angular momentum

In the classical continuum theory, the interaction between two adjacent surface elements is
modeled via a traction vector, which is defined as the force per unit area of the elements. In
the micropolar theory, a couple vector has been also taken into account. More precisely, an
infinitesimal area element dSy with the outward unit normal N in the reference configuration is
considered, which is deformed into the area element dS with the outward unit normal m in the
current configuration. The traction vector and the couple vector on dS are denoted by t™ and
n)

z™) | respectively. There exist the non-symmetric Cauchy stress o = 0;;€; ® e; and the couple

stress tensor m = m;;e; ® €; so that the following relations hold:

ﬂ:(m) = on, Z(m) = mmn, tgm) = oyny, Zl(m) = My;N;. (11)

Similarly, let T™ and Z™ be, respectively, the traction and couple vectors on the undeformed
area element dSy. Accordingly, there exist the first Piola—Kirchoff type stress P = P, e; ® E;
and the couple stress M = M, ;e; ® [E; with the following properties:

™™ =PN, Z®™ =MN, P=JoF ', M=.JmF '

(12)
™ = PyN;, Z0 = MyNy, Py =JoyXy, My=JmyX,,

3 K3

It is emphasized that the index i in {oy;, mi;, Pij, M;;} denotes the direction at which the

stress/couple stress component acts. Moreover, the indices j or J indicate the plane on which
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the stress/couple stress component is applied. This is in agreement with the standard notation
in the textbooks on continuum mechanics. It is noted that & and m are spatial tensors, while
P and M are two-point tensors. For later use, the following stress P and the couple stress M,

which are material tensors, are defined:
P=RP=JR6F ', M=R'M=JR'mF " (13)

Next, let £ and f* = Jf be the body force per unit current and reference volume, respectively.
Similarly, ¢ and ¢* = Jc are considered to be, respectively, the current and the referential
body couples per unit volume. For the case of hard-magnetic soft materials under the magnetic
loading described in Section 2, the expressions for ¢ and ¢* are exactly those given in Eq. (3).
By neglecting inertia effects, standard arguments lead to the following expressions for the linear

and angular momentum balances in spatial setting:

leO’—l-ﬁ.:O or Uij,j+fi =0

(14)
divm—gia'—l—@:O or mim—eijkojkjtci:O
Moreover, the the balance equations in material form are given by
DivP+f*=0 or Py;+f =0
(15)

DivM - &:P+c¢ =0 or M,;;—exPix+c =0

REMARK. The strain components €;; and the wryness ones ;; in this work are the trans-
pose of those defined by Eringen (e.g., Eringen and Kafadar (1976), Eringen (1999)). However,
the mentioned components in this work are, respectively, consistent with the stress and cou-
ple stress components o;; and m;;, so that the pairs (£;;,0;;) and (k;;, m;;) are work-conjugate
quantities. The definitions of the components of various second-order quantities in this work,
besides the standard right gradient and right divergence operators, circumvent using an extra
transpose sign in many relations. Moreover, some of the relations, e.g., those in Eq. (14); 2 and

(15)1,2, will be the same as those frequently used in the classical continuum theory.

4. The weak form and the linearization of equilibrium equations

It is well known that the weak form of the equilibrium equations is equivalent to the principle

of virtual work, which may be written of the form U/ — oW = 0 (Wriggers, 2008). Here, 64 and

9



OW are the virtual internal energy and the virtual work of external loads, respectively. In the
following subsections, the expressions for 60U/ and WV, and their linearization to perform numer-
ical simulations are provided. Additionally, a nonlinear finite element formulation is developed

and a simple extension of the neo-Hookean material model to micropolar media is proposed.

4.1. Virtual internal energy and its linearization

Let 6u and 00 be the virtual displacement and virtual rotation pseudo-vector, respectively.
Using Egs. (1) and (6), the variations of the deformation gradient tensor F and the micro-rotation

tensor R may be written as

6F = Gradéu = 0LF with oL % graddu = %ei ® e;

L : (16)
SR =00R with 6Q =spndgp and d¢ = A0

Here, A is the following second-order tensor:

sinf_ cosf — 1 6 —sinf
91— 7 ® + 03 O0®0. (17)

It is noted that the definition of L in Eq. (16), is similar to the velocity gradient tensor

A:

L = gradn = 4, je; ® ;. From Egs. (7)1, (8), and (16), it is possible to write the expressions
for 6U and 6T in the following forms:

SU=R"(0L — 6Q)F, 0T = R"Graddé¢ = R gradd¢F. (18)

Next, let U be the internal energy per unit reference volume of the micropolar continuum body.
The expression for the material time derivative of ¥ for purely mechanical deformations is
available in the literature (e.g., Eringen (1999), Ramezani and Naghdabadi (2007)). Following

the same lines, the expression for the virtual form of W is obtained to be
o0 = Jo: (6L — 6Q) + Jm:grad . (19)

In the sequel, it is assumed that the material is hyperelastic. In this case, the internal energy
density is of the form U = ¥(U,T') = U(V,5). The dependency of ¥ to the material tensors
U and T is of particular interest, which leads to the following expression for the virtual internal

energy density:

5m:alzéﬂ+a£:5r
510) or 20
220 P (0L — 59) + (RZZF) grad s o
—(R%F)-( —69) + ( ar ):gradde,
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where use has been made of Eq. (18). By comparing Eqs. (19) and (20), and using Eqs. (12)
and (13), the relations between various stress and couple stress measures with the strain energy

density function is obtained, namely

(9111 - OV OV ~ - 0¥ - OV OV

In particular, in terms of the first Piola—Kirchhoff type stress P and couple stress M the expres-

(0.p.P) = { IR

sion for ¥ may be rewritten as
S0 =P:6YW + M:5Y®, (22)
where Y™ and §Y® are defined by

sYW ¥ RST = 6F — 6QF, 5Y® ¥ R6T = Gradde. (23)

To perform numerical simulations, the linearized form of the virtual strain energy density is
needed. To do so, it is just sufficient to calculate the increment of §¥ under the incremental
displacement Au and the incremental rotation A@. From Egs. (20) and (22), the increment of
the virtual strain energy density, AdWV, is calculated as follows:

AT =YD : AW AYD £ 5YPD: A@:AYD L 57yD: 4G AY @
(24)
+5YP: AW AYD L P:AQY + M:ASQWP.
Here, the expressions for the incremental quantities, e.g., AY (" are the same as the variational
counterparts except that the operator ¢ is replaced by A. Moreover, the components of the

fourth-order tensors A®) (v =1,2,3,4) are given by

0*U 0*U 0*W 0*v
A ) 2) ) A(3) ) A(4) = Rz { ~ ~ ) ) AT ) ~ }7 25
{ iJkL ka;L iJkL kaL} PEQ Up, 8UQL ol p, 3FQL Up, 3FQL ol p, 8UQL ( )

where R;prg = RikaQ. Furthermore, the quantities denoted by AdQM and ASQ® are defined

as follows:

ASQW L Z[(AQSQ + GQAQ)F — 2(SQAF + AQSF))

[\Dll—l

(26)
AsQA ¢ —%(AQGrad 5 + 6QGrad Ad)

11



4.2. Virtual work of external magnetic loading and the numerical solution procedure

In this subsection, the expression for the virtual external work, resulting from the external
magnetic flux B®* on a hard-magnetic soft material, is presented. It was mentioned the body
couple per unit reference volume, ¢*, is given by Eq. (3)2. Therefore, the virtual work per unit
reference volume expended by the external magnetic flux on the continuum body, denoted here
by 0P, is given by

6P = c* - 60 = i[(Fﬂéf) x B - 60, (27)
Ho
indicating that the magnetic body couple ¢* is work-conjugate to the micro-rotation 8. The
increment of d® is then calculated to be
ASD = ¢* - 60 = iaa - [(AFBY) x B™, (28)

from which the components of the load stiffness matrix are extracted.

REMARK. In the present formulation, the magnetic effect is just observed in the virtual
external work in Eq. dWext. Therefore, the magnetic and mechanical problems are not coupled.
The same holds for the model proposed by Zhao et al. (2019). It has been assumed that due
to the large value of the remnant magnetic flux B', the change in the magnetic internal energy
of HMSMs is negligible. Therefore, an internal energy term involving magnetic effects has
not been considered in the formulation. It is also noted that an internal energy term due to
magnetic effects plays a crucial role in magnetically-soft materials. However, the comparison of
our results with experimental data in Section 5 indicates that such an assumption is acceptable,
at least for the cases considered in the present work. On the other hand, if the change in the
internal magnetic flux density of the material due to the effect of external magnetic loading
is considerable, extra energy density terms due to magnetic effects (similar to magnetically-
soft MAPs) have to be added to the mechanical part of the strain energy density function.
Extension of the present work to that including internal magnetic energy terms will be made in

future contributions.

4.3. Finite element formulation

In this subsection, a nonlinear finite element formulation in the material framework is devel-

oped. The displacement and rotation components, over a typical element, are interpolated as

12



follows:
Ny ne 3 B B B
{wi, oug, Ay}t = Z NoAUai, 0Usis AUsi},  {0:,00;, A0} = Z N5{Opi, 004, ABg;}, (29)
a=1 B=1
where n, and ng are the number of nodes with displacement and rotational DOF's, respectively.
Moreover, N, (o = 1,...,n,) and N3 (8 = 1, ...,ng) are the interpolation functions. Furthermore,
U, and é,Bi are the nodal values of u; and 6;, respectively. By integrating Eqs. (22) and (27)
over the reference volume Vi of the typical element and using Eqgs. (23) and (29), the virtual
internal energy of the element, 0U¢, and the virtual work of external magnetic loading on the
element, 0V, may be written as
Moy ne no
U= FoUni+ Y F3604, oW =) F5t6, (30)
a:1 [’321 6:1
where the internal forces F%* and F| é‘gta, and the external force F5*, are defined as follows:

\

Fint / Ny y PV
OE

Fit = / [€mir NoAviFig Prg + (NgAi) g Mg ]dVy S (31)
Vg

1 _ -
Fg = — | €imjNgF By Bt dVy
Ho Voe )

On the other hand, the linearized equilibrium equations resulting from Eq. (24) and (28) may

be written as
AU — ASW® = —(U* — SWVF), (32)

from which the following system of algebraic equations, for the unknown nodal values of the

typical element, is obtained:

( Ny ng
(uu) (ud) A & _ intu
SO KUIAUL + S KA, = —Fi
a=1 pA=1

(33)

wjBi

Ny ng
D KaAlai + 3 K385 = —(F = F33¥)
L a=1 ps=1

where the expressions for Kf]uu) KUY g0 and K@) (with a,n = 1,2,...,m, and B,w =

joud ) njpL? wjat? wjBi

1,2, ...,ny), are as follows:

njoi

K — /V Naa Ny AjgdVy. (34)
0
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K(UG) / { n,J €ququN/3 I-A igsi T (ASZNB) IA§J)SI] + EmeA iNnJNBPmI}dVOe’ (35)

njpi

ngz)z = / [EmkerNa,IAerkJASL?]U + Na,I(Aijw),JAgi?]U + €mipAija,INmeI
" (36)

1 L
— —EiijaJNwBLr]Bth]d‘/oe,
Ho

ij,Bz / {EkaGSPQAWAqZN NBFkJ IAf’}l?]S[ + (ASiN,3>7I(Am]‘Nw)aJA£§()]sI

mJsl T esmAqiNBFpl (AijW)J-Agi?IsI (37)

1.
+ §NwNﬁPmIFrI(AriAmj + A,«jAmi — 2ApiApj5mr)

+ emk’rAr]N Fk:J(AszN,B) I-/4

1 _ _ _ _
+ éemprMmI[AriN,B(Aijw),I + AT]'NW(APiN,B)J}}d%e'

It is noted that the terms containing Afy;; (o = 1,2,...,4) construct the material part of the
element stiffness matrix, while the terms having P,,; and M,,; form the geometric part of it.
Moreover, the latest term in Eq. (36) involving Bg** is the building block of the load stiffness
matrix. Finally, the assembled system of equations may be written of the form KAU = —R.
Here, AU is the incremental generalized displacement vector that contains the nodal incremental
displacements and micro-rotations. Moreover, KK is the assembled stiffness matrix, and R is the
assembled residual vector. After finding AU, the displacement vector at a node is updated via
the relation u+Au — u. To update the rotation pseudo-vector, it is first noted that the rotation

tensor R corresponding the rotation  is given by (e.g., Argyris (1982) and Steinmann (1994))

. 2 0 7
R = exp(spnf) =1+ 7 (spn@* +spn?0*) with 6% = 7 tan 7 (38)
Here, 6" is the normalized rotation pseudo-vector, and 6* = |8*| = tan£. A similar relation

holds under the incremental rotation pseudo-vector A@, and the incremental rotation tensor
AR = exp(spnA@) may be defined. It is noted that both 6 and A@ are described in the
{21, 9, 13} coordinate system. The compound rotation tensor is given by Reomp = (AR)R.
However, as has been emphasized by Argyris (1982), it is important to notice that

exp(spn @) exp(spn A@) # exp(spn A@) exp(spn @) # exp(spn (6 + AB)). (39)
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As has been proven rigorously by Argyris (1982), the normalized compound rotation pseudo-
vector resulting from the two subsequent rotations @ and A@ is given by

g O A0+ (spn A6’
comp 1— 0* . AH* )

(40)
from which the compound rotation 6o, is obtained with the aid of Eq. (38)s.

4.4. Micropolar neo-Hookean constitutive model

The theory of constitutive equations for micropolar hyperelastic materials has been devel-
oped in the literature (Kafadar and Eringen, 1971; Eringen and Kafadar, 1976; Steinmann, 1994;
Eringen, 1999; Ramezani et al., 2009). The purpose of this subsection is to extend the classical
neo-Hookean material law to micropolar elasticity. A simple extension with spatial represen-
tation has been proposed by Ramezani et al. (2009). Here, a similar constitutive equation in
material framework is developed. To do so, it is first noted that the constitutive equation for

the asymmetric stress tensor o in linear elastic isotropic micropolar materials is of the form
o=Mre+ (u+n)e+ (p—nk’, (41)

where A and p are the usual Lame’ constants, and 7 is a new material parameter. Clearly, by
setting nn = 0, the classical generalized Hooke’s law for linear isotropic solids is retrieved. Next,

the following form for the free energy function per unit reference volume is proposed:
- . 1 1
U = kytr (UUT) + kotr (U?) + 5A(ln J)? —plnJ + §Mz%r(rﬁ), (42)

where k; and ko are the unknown constants to be determined, and [ is a material length-scale
parameter. It is first noted that from det U = J it follows that 9.J/0U = JU~". The material

stress P and the couple stress M are then calculated to be

.o OU

P &=+ k)04 kU + g = U7, M= o5 =T, (43)

Next, from Egs. (9) and (10) it is deduced that the following relations at the infinitesimal regime

of deformations hold:

Piur=0o, U =1+¢, (UiT)inf =1- éT, (ln J)inf = tre. (44)
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By substituting the relations from Eq. (44) into (43); and comparing the result with (41) it
follows that k; =n + % 1 and ky = —n. Consequently, the expression for P furnishes

P=(u+nU—-nU +A\nJ—p)U". (45)
It is noted that Eqgs. (42) and (45) are the extensions of the well-known compressible neo-
Hookean material model of Simo and Pister (1984) to the micropolar continuous media. Now,

from Egs. (43)y and (45), the fourth-order tensors ,A® and A® are defined by

2
_ \\ ~ ~ ~ ~
A a%% — (IO —PIRI+ AT QU + (u— A J)UT RO
o , (46)
A% = = 1ol
A” = Grar ~ MO

where use has been made of the relation JU~7/dU = —U~"KU". It is noted that the tensors
AD and A®? are used in Eq. (25) to calculate the components of the fourth-order tensors AW
and A | respectively. Obviously, the fourth-order tensors A® and A® are identically zero in

the present constitutive model.

4.5. A brief review of the theory of Zhao et al. (2019)

An elegant continuum theory for the deformation analysis of HMSMs has been developed
by Zhao et al. (2019). Despite having an asymmetric Cauchy stress tensor, their theory is very
similar to the classical continuum theory in the sense that it neither needs non-classical material
parameters nor additional degrees of freedom. Moreover, it satisfies the angular momentum
balance law identically. The main assumption is that the free energy per unit reference volume
is the summation of two parts, namely the mechanical part U™" and the magnetic one ™28,
namely (Zhao et al., 2019)

U = ymech(F) 4 gmeg(F, B, B with  0mee = —MLFJBT Bt (47)
0

The first Piola—Kirchhoff stress resulting from Eq. (47) is as follows:

a\l,mech a\pmag 1 N
g and Pt o = —%]BeXt®]Br. (48)

P= Pmech + P™¢ with Pmech —

Obviously, if B* and B are constant vectors, then the magnetic stress P™% will be constant

at all material points of the body. It is noted that in the traditional formulations of continuum

16



mechanics, the constitutive equation of stress depends only upon kinematic tensors. However,
in the theory of Zhao et al. (2019), the external loading B®** contributes directly in the internal
energy density W. Accordingly, the constitutive equation for the stress tensor P in Eq. (48) is
a function of external loading besides the kinematic deformation gradient tensor F. In other
words, the work of external loads manifests itself in the stress P, which is intrinsically an internal
quantity. Therefore, if the magnitude and the direction of the vectors B and B are constant,
and if all the boundary points of the body are fixed, then the theory of Zhao et al. (2019) states

that no deformation takes place in the body. This point is elaborated in the following example:

Example In one-dimensional case, as shown in Fig. 1, a hard-magnetic soft beam of the
length L, the constant undeformed cross-sectional area Ay, the constant B = |]]j3‘>’"|e1, and
subjected to the constant B™* = |B***|e3 is considered. In this case, the shear stress component

P = B*<||B*|, which is a known quantity, is obtained. After integrating over the cross-

_%|
sectional area of the beam, and moving the resulting expression to the right hand side of the
governing equations, an equivalent external shear force of the form

Q= [ Pt = AP = —_ AalB|BY (49)

Ag Ho

is obtained, which is a constant quantity in this example. In other words, the magnetic part of
strain energy density W™ generates external shear force on the beam. If the beam is decomposed
into several elements, immaterial of finite or infinitesimal elements, the shear forces between two
adjacent areas are in the opposite directions. Therefore, the assembled force on the beam
manifests itself as the shear force —() at X; = 0 and the shear force +Q at X; = L. Now, if
both boundaries of the beam are fixed to move in the X3 direction, e.g., for the case of clamped
or hinged supports, no deformation in the beam is predicted by this theory. It is noted that the
condition uz = 0 at both ends is a Dirichlet boundary condition while considering the shear force
@ is a Neumann condition. It is impossible to have both types of conditions at a boundary point.
Moreover, the theory of Zhao et al. (2019) allows for just enforcing the condition uz = 0 for the
case of clamped or hinged supports. Therefore, the shear force at X; = L cannot generate any
deformation in the mentioned beams. In other words, if B” and B¢ are constant vectors in a

straight beam, the theory of Zhao et al. (2019) works only for the case of cantilever boundary

condition. It is noted that this conclusion is independent of the method of solution, and holds
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true for all analytical and numerical techniques.

Figure 1: The magnetic shear force Q = tA0|IBeXt||I]~3r| in adjacent elements for B" = ||B*||e; and Bt =

B |e3

To investigate another difference between the present formulation and that of Zhao et al.
(2019), suppose that both B" and B®* are in the same directions. For instance, similar to Fig. 1,
consider a rod in the X;-direction. Let B* = |B*|e; and B®* = [B**|e; be along the length of
the rod. In this case, from Eq. (48)s, the magnetic stress component P[}*® = —|B*||B**|/u is
obtained, which can cause axial extension in the rod. This is because the known force P A
goes to the right-hand side of the governing equation and plays the role of an extensional force
on the rod. On the other hand, the magnetic body couple c¢* is zero in this case, because the
internal and external magnetic fluxes are parallel to each other. In other words, according to
the present formulation, which has been constructed based upon the cross product (FBT) x Bext,
no deformation occurs in the rod. Zhao et al. (2019) have solved this problem numerically as
well as analytically based on their model to validate the accuracy of their FE formulation. Since
reliable experimental data are not available yet, it is not possible to validate or reject the results
predicted by the two formulations in the mentioned problem. However, it is obvious that the

two formulations lead to completely different responses.

5. Numerical examples

In this section, several examples are solved to examine the performance of the developed
formulation. To do so, a home-written FE code based on the formulation presented in the

previous sections has been developed. In all simulations, three-dimensional cubic elements with
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20 nodes are employed. All 20 nodes of the element have displacement DOFs,; and the eight
nodes located at the corners of the element have rotational DOFs, as well. A standard 2 x 2 x 2
Gauss integration rule has been employed to evaluate all integrals. Moreover, in all examples,

the value of Poisson’s ratio is considered to be v = (0.48.

5.1. Bending of cantilever beams

In this example, the elastic bending of four cantilever beams made of HMSMs and subject
to an external magnetic flux is investigated. This example has been previously studied, both
numerically and experimentally, by Zhao et al. (2019). The length and height of the beams are
given by the sets L € {11,19.2,17.2,17.2} (mm) and h € {1.1,1.1,0.84,0.42} (mm), respectively.
Accordingly, the aspect ratio ”AR = L/h” of the beams will be AR € {10,17.5,20.5,41}. The
width of all beams is 5 mm. Following Zhao et al. (2019), the shear modulus is considered to be
= 303 (kPa). The referential residual magnetic flux density is along the undeformed centreline
and is of the form B" = 0.143 @; (T). The beams are subjected to the external magnetic flux
density B®** = 0.05e3 (T) perpendicular to the undeformed centreline. The tip deflection of the
beams is calculated for various values of the micropolar parameters n and [, and the results are
compared with the data reported by Zhao et al. (2019). Numerical simulations reveal that for
n = 0.1p and [ = 0.1h, with p and h as, respectively, the shear modulus and the thickness of
the beams, the present results are in good agreement with the available data. It is noted that
the relations n = 0.1y and [ = 0.1h will be also used for the next examples in this present work.

Variation of the nondimensional tip deflection u3 'Y /L against the nondimensional load pa-
rameter ﬁﬂBeXtH]}%ﬂ x 10% is displayed in Fig. 2(a). It is observed that the results based on the
present formulation are in good agreement with the experimental and numerical data obtained by
Zhao et al. (2019). The final deformed shapes of the beams are demonstrated in Fig. 2(b). The
maximum tip deflection at the four beams is given by the set uill € {8.18,16.61,15.24,16.26}

5.2. An H-shaped geometry under magnetic loading

In this example, the large deformation of an initially-flat H-shaped geometry is investigated.
The geometry is composed of 15 cubic blocks of dimensions 6 x 6 x 0.9 (mm) as displayed

in Fig. 3(a). The blocks are welded together by the procedure elaborated in Kuang et al.
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Figure 2: Cantilever beams with B* = 0.143e; (T) under the magnetic flux Bt = 0.05e, (T), (a): load-deflection

curves, (b): final deformed shapes with the contour plots of ug

(2021). Therefore, the overall dimensions of the geometry in the X; X5 plane is 42 x 30 (mm),
and the thickness is h = 0.9 (mm). Following Kuang et al. (2021), the shear modulus is
considered to be u = 135 (kPa). The magnitude of the referential residual magnetic flux density
is |B*| = 0.094 (T). However, the direction of B' is not constant and has been shown by the
arrows on the geometry. The external magnetic flux density B™* = —0.05e; (T) is applied
to the body. Due to symmetry, it is sufficient just to discretize one-quarter of the geometry.
The displacement component us for several material points versus the nondimensional loading
parameter |B®||B| x 103 /(up) is displayed in Fig. 3(a). The maximum lateral displacement
of about 24.7 mm at the material point A is observed. Moreover, the final deformed shape of
the body is illustrated in Fig. 3(b), which is qualitatively in agreement with the experiment of
Kuang et al. (2021) in Fig. 3(c).

5.8. An square annuls under magnetic loading

In this example, the deformation of a square annulus geometry is investigated. The geometry
is composed of 12 cubic blocks as displayed in Fig. 4(a). The block dimensions and material
properties are the same as those given in the previous example. The external magnetic flux den-
sity B®** = —0.1e3 (T) is applied to the body. Due to rotational symmetry around the Xjz-axis,
one-quarter of the geometry is discretized. Fig. 4(a) displays the displacement component ug for

several material points against the nondimensional loading parameter |B*||B*| x 10%/(j10). It
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Figure 3: Deformation of an H-shaped geometry, (a): lateral deflection us at some material points, (b): deformed

shape with the contour plot of ug, (c): experiment (Kuang et al., 2021)

is noted that the lateral deflection at the material point B, located at the distance 7 mm from
the point A in Fig. 4(a) is zero. In other words, all lateral deflections are calculated relative to
the point B. The maximum lateral displacement of about 3.5 mm at the material point D is
observed, where the distance between D and the corner point C'is 4.5 mm. The final deformed
shape of the body is demonstrated in Fig. 4(b). The present result is qualitatively in agreement
with the deformed shape in Fig. 4(c), obtained in the experiments of Kuang et al. (2021).

5.4. A cross-shaped geometry under magnetic loading

The large deformation of a cross-shaped body is studied in this example. As shown in
Fig. 5(a), the geometry is composed of 9 cubic blocks. The block dimensions and material
properties are the same as those in the previous two examples. The external magnetic flux
density B®™* = 0.04e;3 (T) is applied to the body. Due to symmetry in the X;X, plane, it is
sufficient to discretize one-quarter of the geometry. Variations of the displacement component ug
for several material points versus the nondimensional loading parameter [Be||B"| x 103 /(j/10)
is displayed in Fig. 5(a). The maximum lateral displacement of about 22.8 mm at the material
point A is observed. The final deformed shape of the body is demonstrated in Fig. 5(b), which
is qualitatively very similar to the experiment conducted by Kuang et al. (2021) and displayed
in Fig. 5(c).
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Figure 4: Deformation of an square annuls geometry, (a): the nondimensional lateral deflection uz/h at some

material points, (b): deformed shape with the contour plot of us, (c): experiment (Kuang et al., 2021)
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Figure 5: Deformation of a cross-shaped geometry, (a): lateral deflection us at some material points, (b): final

deformed shape with the contour plot of us, (c): experiment (Kuang et al., 2021)
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5.5. Buckling of hard-magnetic soft beams under magnetic loading

The purpose of this example is to show that, in contrast to the theory of Zhao et al. (2019), the
present micropolar formulation can capture the deformation of structures even if the boundaries
are fixed to move in the desired direction. It is known that the application of magnetic loading on
the structures made of magnetically soft materials, depending on the directions of the external
magnetic induction and internal magnetization vectors, can cause the buckling of the structure
(e.g., Moon and Pao (1968), and van de Ven (1978)). In this example, the beams with the
aspect ratios AR = 20.5 and AR = 41, as introduced in the first example, are considered.
All mechanical and magnetic properties are the same as those mentioned previously. The only
difference is that two new boundary conditions, namely clamped-clamped (CC) and clamped-
simply supported (CS) are considered, and the buckling behavior of the beams under a magnetic
loading of the form B®™* = |B*!|e; is investigated. From the computational point of view, the
buckling occurs when the assembled stiffness matrix of the system, after applying the boundary
conditions, becomes singular. The load at which this behavior is observed is the buckling load
of the beam. The maximum lateral deflection of the beams, along their centrelines, against the
nondimensional loading parameter |B®*||B*| x 10%/(u0) is depicted in Fig. 6(a). It is observed
from the figure that, for a specific beam, and similar to the buckling under axial compressive
forces, the magnetic buckling load is greater in the case of CC boundary conditions. However, as
usual, the lateral deflection for the case of CS boundaries is always greater than that of the CC
ones. The deformed shapes of the beam centrelines, in nondimensionalized form, are illustrated
in Fig. 6(b). It is noted that the deformed shapes for the case of CC and CS boundary conditions
are completely different. For the case of CC boundaries, the deformation is skew-symmetric with

respect to the line x; = L/2. However, for CS conditions, the deformed shape is asymmetric.

6. Summary

In this work, a nonlinear formulation for finite deformation analysis of three-dimensional
continuum bodies made of hard-magnetic soft materials was developed. Since the external
magnetic load induces a body moment on the body, the micropolar theory was employed as
the basic continuum model to capture the asymmetric property of the Cauchy stress tensor.

To perform numerical solutions, variational formulation of the problem and the corresponding
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Figure 6: Buckling of two HMS beams, (a): the maximum lateral deflection |uz|™**/h, (b): nondimensionalized

deformed shapes along the centrelines

linearization were presented. Several numerical examples were solved, and it was observed
that the present formulation can capture the numerical and experimental results available in
the literature. Moreover, the present formulation, in contrast to the existing theories available
in the literature, can successfully predict the deformation of HMSM bodies even when the
remnant magnetic induction vector is constant and the boundaries are fixed. Therefore, the
present formulation is more versatile that can be used for the optimum design of devices made
of HMSMs. The generalization of the present research to include viscoelastic and thermal effects

will be made in the forthcoming contributions.
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