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Abstract. We review numerical results for models with gauge group Sp(2N),
discussing the glueball spectrum in the large-N limit, the quenched meson spec-
trum of Sp(4) with Dirac fermions in the fundamental and in the antisymmetric
representation and the Sp(4) gauge model with two dynamical Dirac flavours.
We also present preliminary results for the meson spectrum in the Sp(4) gauge
theory with two fundamental and three antisymmetric Dirac flavours. The main
motivation of our programme is to test whether this latter model is viable as
a realisation of Higgs compositeness via the pseudo Nambu Goldstone mecha-
nism and at the same time can provide partial top compositeness. In this respect,
we report and briefly discuss preliminary results for the mass of the composite
baryon made with two fundamental and one antisymmetric fermion (chimera
baryon), whose physical properties are highly constrained if partial top com-
positeness is at work. Our investigation shows that a fully non-perturbative
study of Higgs compositeness and partial top compositeness in Sp(4) is within
reach with our current lattice methodology.

1 Introduction

Sp(4) gauge theory with two fundamental and three antisymmetric Dirac fermion flavours
has been suggested as a possible template [1–3] for beyond the standard model strong in-
teractions that can give rise to a composite Higgs boson through the breaking of the global
fundamental flavour symmetry [4] and at the same time to a partial composite top quark state
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that explains why the observed mass of the latter particle is at the electroweak scale [5]. Par-
tial top compositeness results from the mixing of the standard model top quark with a chimera
baryon, i.e. a baryonic state formed with two fermions in the fundamental and one fermion
in the antisymmetric representation. A necessary ingredient for partial top compositeness is
the generation of a large anomalous dimension for the chimera baryon. Lattice gauge theory
can be used as a framework to study non-perturbatively these phenomena, in order to assess
their viability beyond semi-quantitative arguments.

In this work, we shall discuss our previous and current lattice investigations of the com-
posite Higgs mechanism and of partial top compositeness using Sp(4) gauge theory as a
concrete realisation (for studies involving SU(4), see, e.g., [6–8]), starting from special cases
of the target action and approaching the latter in a crescendo of complexity. The work is or-
ganised as follows. In Sect. 2 we introduce the lattice model. Numerical results are presented
in Sect. 3. Finally, we draw our conclusions and we give a brief outlook of forthcoming
numerical investigations in Sect. 4.

2 Lattice formulation and observables

The lattice action we have used in our calculations in Sp(2N) gauge theories with fermions
in multiple representations R can be written as

S = β
∑

x

∑

µ<ν

(
1 − 1

2Nc
"TrPµν

)
+

NR
f∑

j=1

∑

x,y

Ψ
R
j (x)DR(x, y)ΨR

j (y) . (1)

The first term is the Wilson plaquette action, with β = 2Nc/g2, where Nc = 2N is the number
of colours and g is the gauge coupling, Pµν(x) is the path exponential of the link variables
Uµ(x) ∈ Sp(2N) around the elementary plaquette stemming from point x in directions µ, ν
and "Tr indicates the real part of the trace. The second term is the fermionic part of the
action. This term includes a sum over the representations R and over the flavours NR

f at fixed
representation. For the Dirac operator D(x, y) we use the Wilson discretisation, given by

DR(x, y) = (4 + amR
0 )δx,y −

1
2

∑

µ

{
(1 − γµ)UR

µ (x)δx+µ̂,y + (1 + γµ)UR†
µ (y)δx−µ̂,y

}
, (2)

where UR
µ (X) is the gauge link variable in the representation R, a is the lattice spacing and mR

0
is the bare mass of the NR

f degenerate flavours in representation R.
The path integral of the theory can be expressed as

Z =
∫

(DU)
(
DΨR

) (
DΨR

)
e−S , (3)

where the integral is performed over all fields and the action, S , is given by Eq. (1). In this
work, we consider two flavours of fermions in the fundamental representation R ≡ F and
three flavours of fermions in the antisymmetric representation R ≡ A.

Given an operator O(x1, . . . , xn), which is a function of fields at points x1, . . . , xn, its
vacuum expectation value is computed as

〈O(x1, . . . , xn)〉 = 1
Z

∫
(DU)

(
DΨR

) (
DΨR

)
O(x1, . . . , xn)e−S , (4)

where the path integral is calculated using Monte Carlo importance sampling.
We shall consider the following observables:
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Figure 1. The Sp(2N) glueball spectrum in the large-N limit (boxes, with ground states in each channel
depicted in black and excitations in red) compared with SU(N) data extrapolated to the same limit
(circles with error bars). See text for further details.

• Glueball correlators, which take the form

Ci j(x1, x2) = 〈Oi(x1)O†j (x2)〉 − 〈Oi(x1)〉〈O†j (x2)〉 , (5)

where Oi(x1) and Oj(x2) are combinations of Wilson loops transforming in an irreducible
representation of the octahedral group, at zero momentum and with defined parity;

• Meson correlators, which are expressed as

CR
Γ1Γ2

(x1, x2) =
〈
Ψ

R
(x1)Γ1Ψ

R(x1)
(
Ψ

R
(x2)Γ2Ψ

R(x2)
)†〉
, (6)

with Γ1 and Γ2 combinations of Euclidean Dirac matrices, whose specific form determines
the JPC quantum numbers of the states that saturate the propagator;

• Chimera baryon correlator, written as

CFFA
T (x1, x2) =

〈(
TΨF(x1)ΨF(x1)ΨA(x1)

) (
TΨF(x2)ΨF(x2)ΨA(x2)

)†〉
, (7)

where T is a tensor contracting flavour and colour indices, which, for the sake of con-
ciseness, will be left implicit. More details on this construction will be provided in a
forthcoming publication.

3 Numerical Results

Before tackling the full theory, relevant operators have been studied in notable limits of the
latter. Since the properties of the model in these limits are better known, the simplified
calculations have enabled us to develop the methodology and at the same time to provide a set
of safe reference measurements against which to check the complete calculations. Here, we
report a selection of our numerical results. For additional measurements and their discussion,
we refer to the quoted original papers.
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Figure 2. Quenched spectrum for Sp(4) gauge theory with fermions in the fundamental and in the
antisymmetric representation extrapolated to the continuum limit as a function of the pseudoscalar mass
squared (in black). The bands account for the statistical errors. The fundamental spectrum is drown
in blue, while the antisymmetric spectrum is represented in red. Observables are labelled in the right
vertical axis. Glueball masses are also reported (boxes), with quantum numbers labelled on the top
horizontal axes. Note that, while there is a dependency of mesonic quantities from the pion mass, since
the theory is quenched, the glueball spectrum is constant as a function of the constituent fermion mass.

The first model we have considered is the pure gauge system (first investigated in [9]). In
this case, relevant observables are glueball masses and the string tension. These are extracted
from correlators of the type given in Eq. (5), looking at the asymptotic behavior

Ci j(x1, x2) !
|x1−x2 |→∞

Ce−M|x1−x2 | , (8)

where M is the mass of the lowest-lying state carrying the quantum numbers of the source
operators. In practice, the calculation of single correlators is very noisy. The bad signal-to-
noise ratio can be overcome with a thorough variational calculation. The methodology we
have used is explained in [10]. The string tension can be extracted similarly, considering
correlators of Polyakov loops.

We have computed in [10] the lowest-lying glueball spectrum in units of the string ten-
sion in the continuum limit for Sp(2N) models with N = 2, 3, 4 and we have extrapolated the
latter to N → ∞. For the large-N extrapolation, we have found that the leading expected 1/N
correction provides a good description of the data. Our results are displayed by the boxes of
Fig. 1. The black boxes indicate the masses of the groundstate in each channel, with the red
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Figure 18: Meson masses squared from quenched (blue) and dynamical (red) calculations,
in the continuum limit obtained by considering all the ensembles with m̂2

PS
<∼ 0.6, as in

Section 4.3. The coloured bands illustrate the fit of the measurements used in the massless
extrapolations, with the width of the bands representing the statistical error in the fit.

details and results of this quenched calculations are presented in Ref. [83].

In Figs. 18 and 19, we show together the continuum extrapolated data both for quenched
and dynamical fermions, restricted to the linear-mass regime—to m̂2

PS
<∼ 0.4 for the pseu-

doscalar decay constant and to m̂2
PS

<∼ 0.6 for masses and decay constants of all other
mesons. As seen in the figures, f̂2

PS and m̂2
S are significantly affected by quenching, and

the differences become more substantial as the fermion mass decreases. We estimate the
discrepancies to be δf̂2

PS
/f̂2

PS ∼ 20% and δm̂2
S
/m̂2

S ∼ 25%, in the massless limit. The mass of
the V meson shows a somewhat milder discrepancy, at the level of ∼ 10%. For other quan-
tities, quenching effects are not visible: the corresponding discrepancies are smaller than
the uncertainties associated with the fits. Interestingly, the resulting values of m̂V/

√
2f̂PS

for the dynamical and quenched simulations, which may be used to estimate the coupling
gVPP via the second KSRF relation, are found to be consistent with each other in the
massless limit [83]. The general conclusion of the comparison with the quenched results
is quite encouraging, although at present we do not know whether this conclusion is an
indication that the quenched approximation adequately captures the information encoded
in the two-point functions—possibly because of the proximity to large-N—or whether it is
just a trivial consequence of the large fermion masses we studied.

– 41 –

Figure 3. Squared masses of the vector (top left), the axial vector (top right) and the isotriplet scalar
meson (bottom) as a function of the squared mass of the pseudoscalar for the fundamental representation
in the continuum limit. We plot in red dynamical data and in blue quenched data, with the corresponding
bands representing the chiral extrapolation.

boxes representing masses of the excited states (for the channels for which the latter turned
out to be measurable on our samples). The quantum numbers refer to the irreducible represen-
tations of the octahedral group. The continuum JP quantum numbers1 can be reconstructed
following the method described, e.g., in [11].

It is worth remarking that, since the large-N limit of SU(N) and Sp(2N) coincide, for the
majority of the glueball states, our work is the first extrapolation of the glueball spectrum
to N = ∞. Indeed, the only states whose SU(N) large-N mass had been determined before
our calculations are the groundstate and the first excitation in the spin zero channel (in our
notation, the A1 channel) and the spin two (which appears in both the E and the T2 chan-
nel) [12, 13] (see also [14]). We report in Fig. 1 the more constraining measurements of [13]
(in cyan for the groundstates and in green for the excitation in the A+1 channel), which are
in full agreement with ours. After our work was published, a comprehensive study of the
large-N SU(N) glueball spectrum was published [15]. This enables us to perform a broader
comparison of the two extrapolations. The results of [15] are also reported in Fig. 1 (in ma-
genta for the groundstates, and in yellow for the excitations). While we notice that the authors
of [15] quote significantly smaller errors, the agreement with our measurements is within the
error bars (as measured on our own data) in most of the cases, with the largest discrepancies
being at most around two standard deviations. This comparison provides evidence of the
universality of the large-N glueball spectrum across the SU(N) and the Sp(2N) series.

We now discuss the quenched spectrum of the Sp(4) gauge theory, comparing masses of
glueballs and mesons, the latter studied as the mass of the constituent fermions is decreased.
We consider a mesonic correlators of the form (6). Its asymptotic behaviour is given by

CF
Γ1Γ2

(x1, x2) " A
(
e−Mt + e−M(T−t)

)
, (9)

1We remind the reader that, since Sp(2N) groups are pseudoreal, the charge conjugation quantum number of
glueballs in Sp(2N) is always +1.
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Figure 4. Left: The lowest-lying meson spectrum in Sp(4) with three dynamical antisymmetric
fermions. Taking quenched fundamental sources in this model, we also show the pseudoscalar and
the vector meson masses in the fundamental representation, the chimera baryon (CB) and its U(1)A

partner. The lattice parameters are discussed in the text. Right: The meson spectrum for both represen-
tations and the chimera baryon in the Sp(4) gauge theory with two fundamental dynamical flavours and
three antisymmetric dynamical flavours, at the lattice parameters discussed in the text.

where the second term (due to waves travelling across the antiperiodic boundary of our lattice)
has now been inserted explicitly, as, unlike in the glueball case, neglecting it would give a
measurable systematic error. In the previous formula, T is the temporal extension of the
lattice. Points x1 and x2 have spacial coordinates summed over |!x1 − !x2| at fixed !x2 (i.e., the
correlator has zero net momentum). The temporal coordinates are respectively τ and t + τ
at fixed τ < T . The decay constant of the considered states can be extracted from A, either
directly or (in the case of the pseudoscalar meson) considering two appropriate combinations
of correlators. We refer to the quoted original works for the details, including renormalisation
of decay constants and how the choice of the Γ matrices identifies the JPC quantum numbers.

The continuum quenched meson spectrum (in both the fundamental and antisymmetric
representation), originally discussed in [16], is reported in Fig. 2, together with a selection
of glueball states taken from [17]. The scale is set using the gradient flow derived quantity
w0, as described in [18]. The meson spectrum in both representations is plotted as a function
of the pseudoscalar mass in that representation. Glueball states are also reported for the
same model. The data show some clear indications: (1) in both representations, the general
features of the quenched spectrum are qualitatively similar to those of QCD; (2) while the
meson spectrum has the same behaviour in both representations, at fixed pseudoscalar mass
antisymmetric states are around 10-20% heavier than the corresponding fundamental states,
with the percent difference increasing towards the light fermion regime; (3) glueballs are
generally significantly heavier than mesons, but the lightest glueball states have masses that
are comparable with masses of states in the heaviest mesonic channels.

We have then studied the theory with fermionic matter, comparing the two-flavour dy-
namical model [19] to the quenched case [18] for fundamental representation fermions in the
continuum limit. The masses of the vector, axial vector and isotriplet scalar meson are plotted
in Fig. 3. With the exception of the latter, typically unquenching effects are very small, and
hardly visible in the range of the obtained pion masses.

In the subsequent stage of our investigation programme of Sp(4) gauge models, we have
studied the system in a partially quenched setup, considering three dynamical antisymmet-
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features of the quenched spectrum are qualitatively similar to those of QCD; (2) while the
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antisymmetric states are around 10-20% heavier than the corresponding fundamental states,
with the percent difference increasing towards the light fermion regime; (3) glueballs are
generally significantly heavier than mesons, but the lightest glueball states have masses that
are comparable with masses of states in the heaviest mesonic channels.

We have then studied the theory with fermionic matter, comparing the two-flavour dy-
namical model [19] to the quenched case [18] for fundamental representation fermions in the
continuum limit. The masses of the vector, axial vector and isotriplet scalar meson are plotted
in Fig. 3. With the exception of the latter, typically unquenching effects are very small, and
hardly visible in the range of the obtained pion masses.

In the subsequent stage of our investigation programme of Sp(4) gauge models, we have
studied the system in a partially quenched setup, considering three dynamical antisymmet-

ric fermions and two static fundamental flavours. This gives us an opportunity to perform a
first study of the chimera baryon in a model that is less complicated to simulate than the tar-
get mixed-representation system. Figure 4 (left) displays our preliminary results for the two
lowest-lying mesonic states (the pseudoscalar and the scalar) in both representations, together
with the chimera baryon and its parity partner. Results have been obtained on a 48×243 lattice
at gauge coupling β = 6.65, antisymmetric fermion bare mass amA

0 = −1.07 and quenched
fundamental mass amF

0 = −0.734. Statistical noise has been reduced using Wuppertal smear-
ing [20]. The data show that in our theory and for the used lattice parameters, chimera baryons
are heavier than the antisymmetric vector meson. Beyond the (not unimportant) numerical
details, likely to be dependent on our particular setup, the main conclusion of our investi-
gation is that the technology we have developed enables us to determine masses of chimera
baryons. Note in particular the visible splitting between the chimera baryon and its U(1)A
partner.

Finally, we are now performing calculations in Sp(4) gauge theory with two dynamical
fundamental fermions and three dynamical antisymmetric fermions. A preliminary plot the
meson spectrum and of the chimera baryon is reported in Fig. 4, right. The lattice parameters
are β = 6.5, amA

0 = −1.01 and amF
0 = −0.71, and the lattice size is 48 × 243. The results

show that for our choice of parameters the chimera baryon has a mass comparable to that of
the axial vector and of the isotriplet scalar mesons in the antisymmetric representation.

4 Conclusions and outlook
Following the programme we started in [18], we have performed a set of extensive sim-
ulations aimed to assess the viability of Sp(4) gauge theory with two fundamental and
three antisymmetric fermions as a realisation of the composite Higgs and of the partial top
compositeness mechanism. So far we have developed the needed technology by studying
the glueball spectrum [17], the quenched meson spectrum [16] and the dynamical theories
respectively with two fundamental [19] and three antisymmetric fermion flavours. A
selection of the results is reported in this work. A more systematic calculation in the target
phenomenological model, which includes dynamical fermions in both representations, is
now within reach. We have presented some preliminary results for the latter model. A
more detailed account of its features will be reported in a forthcoming publication. Another
interesting direction, pursued by the authors of [21], is to explore an Sp(4) gauge models
with two non-degenerate fundamental fermions in the context of SIMP dark matter.
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