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Abstract. In this paper, we are concerned with regularity of nonlocal sto-

chastic partial differential equations of parabolic type. By using Campanato

estimates and Sobolev embedding theorem, we first show the Hölder continuity
(locally in the whole state space Rd) for mild solutions of stochastic nonlo-

cal diffusion equations in the sense that the solutions u belong to the space
Cγ(DT ;Lp(Ω)) with the optimal Hölder continuity index γ (which is given

explicitly), where DT := [0, T ] × D for T > 0, and D ⊂ Rd being a bounded
domain. Then, by utilising tail estimates, we are able to obtain the estimates

of mild solutions in Lp(Ω;Cγ
∗
(DT )). What’s more, we give an explicit formu-

la between the two indexes γ and γ∗. Moreover, we prove Hölder continuity

for mild solutions on bounded domains. Finally, we present a new criterion to
justify Hölder continuity for the solutions on bounded domains. The novelty of
this paper is that our method is suitable to the case of space-time white noise.
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1. Introduction. Given T > 0 andD ⊂ Rd, letDT := [0, T ]×D. Let (Ω,F , {Ft}t≥0,P)
be a given filtered probability space. In papers [13, 24], the authors obtained reg-
ularity of singular stochastic integrals in the following space (see section for the
definition)

L p,θ((DT ; δ);Lp(Ω))

for p > 1, θ > 0, δ > 0. Further, by virtue of the celebrated Sobolev embedding
theorem L p,θ(D; δ) ↪→ Cγ(D̄; δ) for θ > 1, we succeeded in obtaining estimates of
solutions in the Hölder space

Cγ(DT ;Lp(Ω)),

where γ = (d+2)(θ−1)
p . In the present paper, we aim to obtain the estimates of

solutions in the space

Lp(Ω;Cγ(DT )).

The fundamental difficulty is the fact that usually

E sup
t,x
≤ sup

t,x
E.

Therefore, the space Lp(Ω;Cγ(DT )) is a subspace of Cγ(DT ;Lp(Ω)). Comparing
with the result given in [13, 24], we shall establish a new regularity of nonlocal
diffusion equations. In order to overcome the fundamental difficulty, we are going
to use the tail estimates and the equivalence between the Holder space and Cam-
panato Space to overcome the above mentioned difficulty. The idea is fairly easy to
explicate. In fact, note that

E(|X|p) =

∫
Ω

|X|pdP(ω)

= p

∫ ∞
0

P{|X| > a}ap−1da

= p

∫ M

0

P{|X| > a}ap−1da+ p

∫ ∞
M

P{|X| > a}ap−1da

≤ Mp + p

∫ ∞
M

P{|X| > a}ap−1da

for any arbitrarily fixed constant M > 0. In order to obtain the Lp-boundedness,
by the above inequality, we only need to show that the second integral is bounded.
Further, by utilising Chebyshev’s inequality, one can derive the desired results by
means of the estimates in L p,θ((DT ; δ);Lp(Ω)).

Let us recall some regularity results about stochastic partial differential equations
(SPDEs). The earliest results about the Lp-theory of SPDEs appeared in the works
of Krylov [20, 21]. Recently, Kim-Kim [14] considered the Lp-theory for SPDEs
driven by Lévy processes, also see [7, 15, 17, 23]. In papers [29, 28], van Neerven
et al. obtained the Lp-theory of SPDEs by means of the semigroup approach, also
see [18]. There are many papers about the regularity of SPDEs on non-smooth
domains, see [5, 22]. Zhang [32] obtained the Lp-theory of semi-linear SPDEs on
general measure spaces. Let us also mention Zhang [33] where very interestingly Lp-
maximal regularity of (deterministic) nonlocal parabolic PDEs and Krylov estimate
for SDEs driven by Cauchy processes are proved.

The Hölder estimate of SPDEs has been studied by many authors. Let us men-
tion a few. Hsu-Wang-Wang [10] established the stochastic De Giorgi iteration and
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regularity of semilinear SPDEs and in our paper [25], we generalized the result-
s of [10] by using similar method. Du-Liu [8] obtained the Schauder estimate for
SPDEs. Combining the deterministic theory and convolution properties, Debussche-
de Moor-Hofmanová [6] established the regularity result for quasilinear SPDEs of
parabolic type. Kuksin-Nadirashvili-Piatnitski [19] obtained Hölder estimates for
solutions of parabolic SPDEs on bounded domains. Most recently, Tian-Ding-Wei
[27] derived the local Hölder estimates of mild solutions of stochastic nonlocal diffu-
sion equations by using tail estimates [19]. Wang [30] generalized the results of [24]
to nonlocal diffusion equation. The results on Hölder estimate of PDEs with space-
time white noise are few. Fortunately, our method is suitable for the space-time
white noise case.

There are two methods to deal with the Schauder estimate for SPDEs. One is
using the smoothing property of the kernel, the other is using the iteration tech-
nique. In this paper, we use the Morrey-Campanato estimates and tail estimates
to obtain the desired results. The advantage of Morrey-Campanato estimates is to
use the properties of kernel function and Sobolev embedding theorem. Comparing
with other methods to obtain the Hölder estimate, it is clear that this method is
relatively simple.

The rest of this paper is organized as follows. Section 2 presents some prelimi-
naries. In section 3, we state and prove our main results on Hölder estimate over
the whole spatial space. Section 4 is concerned with Hölder estimate on bounded
domains. Section 5 is devoted to some applications of our main results.

2. Preliminaries. Set, for X = (t, x) ∈ R × Rd and Y = (s, y) ∈ R × Rd, the
following

δ(X,Y ) := max
{
|x− y|, |t− s| 1

2α

}
.

Let Qc(X) be the ball centered in X = (t, x) with radius c > 0, i.e.,

Qc(X) := {Y = (s, y) ∈ R× Rd : δ(X,Y ) < R} = (t− c2α, t+ c2α)×Bc(x).

Fix T ∈ (0,∞) arbitrarily. Denote

OT := (0, T )× Rd.

For a bounded domain D ⊂ Rd, we denote DT := [0, T ] × D. For a point X ∈
DT , D(X, r) := DT ∩ Qr(X) and d(D) := diam(D) (that is, the diameter of D).
The following definitions are introduced in [3]. Let us first give the definition of
Campanato space.

Definition 2.1. (Campanato Space) Let p ≥ 1 and θ ≥ 0. A function u belongs
to the Campanato space L p,θ(D; δ), which is a subspace of Lp(D), if u satisfies the
following condition

[u]L p,θ(DT ;δ) :=

(
sup

X∈DT ,d(D)≥ρ>0

1

|D(X, ρ)|θ

∫
D(X,ρ)

|u(Y )− uX,ρ|pdY

)1/p

<∞, u ∈ Lp(DT )

where |D(X, ρ)| stands for the Lebesgue measure of the Borel set D(X, ρ) and

uX,ρ :=
1

|D(X, ρ)|

∫
D(X,ρ)

u(Y )dY.
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For u ∈ L p,θ(DT ; δ), we define

‖u‖L p,θ(DT ;δ) :=
(
‖u‖pLp(DT ) + [u]p

L p,θ(DT ;δ)

)1/p

.

Next, we recall the definition of Hölder space.

Definition 2.2. (Hölder Space) Let 0 < γ ≤ 1. A function u belongs to the
Hölder space Cγ(D̄T ; δ) if u satisfies the following condition

[u]Cγ(D̄T ;δ) := sup
X∈DT ,d(D)≥ρ>0

|u(X)− u(Y )|
δ(X,Y )γ

<∞.

For u ∈ Cγ(D̄T ; δ), we define

‖u‖Cγ(D̄T ;δ) := sup
DT

|u|+ [u]Cγ(D̄T ;δ).

Definition 2.3. Let DT ⊂ Rd+1 be a domain. We call the domain DT an A-
type domain if there exists a constant A > 0 such that ∀X ∈ DT and ∀ 0 < ρ ≤ d(D),
it holds that

|DT (X, ρ)| = |DT ∩Qρ(X)| ≥ A|Qρ(X)|.

Recall that given two sets B1 and B2, the relation B1
∼= B2 means that both

B1 ⊆ B2 and B2 ⊆ B1 hold. The notation f(x) ≈ g(x) means that there is a
number 0 < C <∞ independent of x, i.e. a constant, such that for every x we have
C−1f(x) ≤ g(x) ≤ Cf(x). We have then the following relation of the comparison
of the two spaces defined above

Proposition 2.1. Assume that DT is an A-type bounded domain. Then, for
p ≥ 1 and for 1 < θ ≤ 1 + p

d+2α (Recall that d is the dimension of the space),

L p,θ(DT ; δ) ∼= Cγ(D̄T ; δ)

with

γ =
(d+ 2α)(θ − 1)

p
.

By using [3, Lemmas 2.2 and 2.3], Chen [3] proved the Proposition 2.1 with
α = 1. It is easy to generalize the results to the case of 0 < α < 1. We only note
that |Qc(X)| ≈ cd+2α and let the details to readers.

We want to use the tail estimate to derive the following boundedness results

E‖u‖pCγ([0,T ]×D) ≤ C, ∀p ≥ 1

for solutions u of SPDEs. To this end, we need the following proposition.

Proposition 2.2. [27, Lemma 2.1] Let u0 ∈ Lp(Rd×Ω). Consider the Cauchy
problem

∂tu(t, x) = ∆αu(t, x), t > 0, x ∈ Rd; u(0, x) = u0(x). (2.1)

Then, for any 0 < β < 1, the following estimates for the unique mild solution of
(2.1)

‖u(t, ·)‖Cβ(Rd) ≤ Ct−
β
2α−

d
2pα ‖u0‖Lp(Rd), P− a.s. ω ∈ Ω, (2.2)

and for τ > 0

|u(t+ τ, x)− u(t, x)| ≤ Ct−β−
d

2pα τβ‖u0‖Lp(Rd), P− a.s. ω ∈ Ω. (2.3)
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We end this section with the following properties of kernel function K satisfying
Kt = ∆αK (the reader is referred to [1, 2, 4, 11] for more details)

• for any t > 0,

‖K(t, ·)‖L1(Rd) = 1 for all t > 0.

• K(t, x, y) is C∞ on (0,∞)× Rd × Rd for each t > 0;
• for t > 0, x, y ∈ Rd, x 6= y, the sharp estimate of K(t, x) is

K(t, x, y) ≈ min

(
t

|x− y|d+2α
, t−d/(2α)

)
;

• for t > 0, x, y ∈ Rd, x 6= y, the estimate of the first order derivative of K(t, x)
is

|∇xK(t, x, y)| ≈ |y − x|min

{
t

|y − x|d+2+2α
, t−

d+2
2α

}
. (2.4)

The estimate (2.4) for the first order derivative of K(t, x) was derived in [1,
Lemma 5]. Xie et al. [31] obtained the estimate of the m-th order derivative of
p(t, x) by induction.

Proposition 2.3. [24, Proposition 5.2] For any m ≥ 0, we have

∂mx K(t, x) =

n=bm2 c∑
n=0

Cn|x|m−2n min

{
t

|x|d+2α+2(m−n)
, t−

d+2(m−n)
2α

}
,

where bm2 c means the largest integer that is less than m
2 .

3. Hölder estimate in the whole space. In this section, we establish the Morrey-
Campanato estimates under different assumptions on stochastic term. Set

Kg(t, x) :=

∫ t

0

∫
Rd
K(t− r, y)g(r, x− y)dydW (r),

which is a mild solution of (3.1). The first result is similar to the deterministic case.
We consider the following equation

dut = ∆αudt+ g(t, x)dWt, u|t=0 = 0, (3.1)

where ∆α = −(−∆)α and Wt is a standard Brownian motion on a filtered proba-
bility space (Ω,F , {Ft}t≥0,P).

Theorem 3.1. Let D be an A-type bounded domain in Rd+1 such that D̄ ⊂ OT .
Suppose that g ∈ L∞loc(R+;Lp(Ω×Rd)) for p > d/α is Ft-adapted process, and that
0 < β < α satisfies (α− β)p− d ≥ 0. Then, there is a mild solution u of (3.1) and
u ∈ L p,θ((DT ; δ);Lp(Ω)) ∩ Lp(Ω;Cβ(DT )). Moreover, it holds that

‖u‖L p,θ((DT ;δ);Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×Rd)), (3.2)

‖u‖Cβ(DT ;Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×Rd)), (3.3)

where θ = 1 + βp
d+2α . Moreover, taking 0 < ε < βp/2 and q > (d + 2α)/ε, we have

for 1 < r < q

‖u‖Lr(Ω;Cβ∗ (DT )) ≤ C‖g‖L∞([0,T ];Lpq(Ω×Rd)), (3.4)

where β∗ = β − 2ε/p.
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Proof. The existence of mild solution of (3.1) is a classical result under the
above assumptions. Now we prove the inequality (3.2). Due to the definition of
Companato space, it suffices to show that

[u]L p,θ((DT ;δ);Lp(Ω)) <∞.

Direct calculus shows that

[u]p
L p,θ((DT ;δ);Lp(Ω))

≤ sup
D(X,c),X∈DT ,0<c≤d(D)

1

|D(X, c)|1+θ

×E
∫
D(X,c)

∫
D(X,c)

|u(t, x)− u(s, y)|pdtdxdsdy

≤ sup
D(X,c),X∈DT ,0<c≤d(D)

1

|D(X, c)|1+θ

×E
∫
D(X,c)

∫
D(X,c)

∣∣∣ ∫ t

0

∫
Rd
K(t− r, x− z)g(r, z)dzdW (r)

−
∫ s

0

∫
Rd
K(s− r, y − z)g(r, z)dzdW (r)

∣∣∣p
:= sup

D(X,c),X∈DT ,0<c≤d(D)

1

|D(X, c)|1+θ

∫
D(X,c)

∫
D(X,c)

EΥdtdxdsdy.

Set t ≥ s. We have the following estimates

EΥ ≤ CE
∣∣∣ ∫ s

0

∫
Rd

(K(t− r, x− z)−K(s− r, y − z))g(r, z)dzdW (r)
∣∣∣p

+CE
∣∣∣ ∫ t

s

∫
Rd
K(t− r, x− z)g(r, z)dzdW (r)

∣∣∣p
≤ CE

∣∣∣ ∫ s

0

(∫
Rd

(K(t− r, x− z)−K(s− r, y − z))g(r, z)dz

)2

dr
∣∣∣ p2

+CE
∣∣∣ ∫ t

s

(∫
Rd
K(t− r, x− z)g(r, z)dz

)2

dr
∣∣∣ p2

:= C(H1 +H2).

Estimate of H1.
Take β > 0 satisfying (α − β)p − d ≥ 0. We first recall the following fractional

mean value formula (see (4.4) of [12])

f(x+ h) = f(x) + Γ−1(1 + β)hβf (β)(x+ θh),

where 0 < β < 1 and 0 ≤ θ ≤ 1 depends on h satisfying

lim
h↓0

θβ =
Γ2(1 + β)

Γ(1 + 2β)
,



REGULARITY OF STOCHASTIC DIFFUSION EQUATIONS 7

By using the Propositions 2.2 and 2.3, the above fractional mean value formula and
Hölder inequality, we have

H1 = E
∣∣∣ ∫ s

0

(∫
Rd

(K(t− r, x− z)−K(s− r, y − z))g(r, z)dz

)2

dr
∣∣∣ p2

≤ CE
∣∣∣ ∫ s

0

(∫
Rd
|K(t− r, x− z)−K(s− r, x− z)| · |g(r, z)|dz

)2

dr
∣∣∣ p2

+CE
∣∣∣ ∫ s

0

(∫
Rd

(K(s− r, x− z)−K(s− r, y − z)) · g(r, z)dz

)2

dr
∣∣∣ p2

≤ C(t− s)
βp
2 E
∣∣∣ ∫ s

0

(∫
Rd
|
∫ 1

0

∂
β
2K

∂t
β
2

(ξ − r, x− z)dθ|qdz

) 2
q

‖g(r)‖2Lp(Rd)dr
∣∣∣ p2

+C|x− y|βpE
∣∣∣ ∫ s

0

(s− r)−
β
α−

d
pα ‖g(r)‖2Lp(Rd)dr

∣∣∣ δ2
≤ C(t− s)

βp
2 ‖g‖p

Lp(Ω;L∞([0,T ];Lp(Rd)))

∫ s

0

(∫
Rd
|
∫ 1

0

∂
β
2K

∂t
β
2

(ξ − r, x− z)dθ|qdz

) 2
q

dr


p
2

+C|x− y|βp‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

[∫ s

0

(s− r)−
β
α−

d
pα dr

] p
2

≤ C((t− s)
βp
2 + |x− y|βp),

where q = p/(p− 1), ξ = θt+ (1− θ)s, and we used the following fact

∫ s

0

(∫
Rd
|
∫ 1

0

∂
β
2K

∂t
β
2

(ξ − r, x− z)dθ|qdz

) 2
q

dr

≤ C

∫ s

0

∫ (ξ−r)
1
2α

0

(ξ − r)−
dq+2qαβ

2α |z|qαβ+d−1d|z|

+

∫ ∞
(ξ−r)

1
2α

(ξ − r)q|z|−(qd+2qα+2qαβ)|z|qαβ+d−1d|z|

) 2
q

dr

≤ C
[
(θ(t− s))

d−dq+qα(1−β)
qα + ξ

d−dq+qα(1−β)
qα

]
≤ C

because using q = p/(p− 1), we have

d− dq + qα(1− β) > 0⇔ p(α− αβ) > d⇐ p(α− β) > d.

Similarly, we have∫ s

0

(s− r)−
β
α−

d
pα dr =

pα

(α− β)p− d
s

(α−β)p−d
pα ≤ C

provided that (α− β)p− d ≥ 0.
Estimate of H2.
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Similar to the estimate of H1, we have

H2 = E
∣∣∣ ∫ t

s

(∫
Rd
K(t− r, x− z)g(r, z)dz

)2

dr
∣∣∣ p2

≤ ‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

[∫ t

s

(∫
Rd
|K(t− r, x− z)|qdz

) 2
q

dr

] p
2

≤ C‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

(t− s)
qα−(q−1)d

qα × p2

provided that αp > d. Indeed, by using 1/p+ 1/q = 1, we have

qα− (q − 1)d > 0 ⇐⇒ αp > d.

Combining the assumption of p, we have

H2 ≤ C(t− s)
pα−d
2α .

Assume thatD(X, c) = DT∩Qc andQc = Qc(t0, x0). Noting that (t, x) ∈ Qc(t0, x0)
and (s, y) ∈ Qc(t0, x0), we have

0 ≤ t− s ≤ 2c2α and |x− y| ≤ |x− x0|+ |y − x0| ≤ 2c.

By using the definition of A-type bounded domain, we have

[u]L p,θ((DT ;δ);Lp(Ω)) ≤ sup
D(X,c),X∈DT ,0<c≤d(D)

1

|D(X, c)|1+θ
E
∫
D(X,c)

∫
D(X,c)

EΥdtdxdsdy

≤ C‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

,

where θ = 1+ βp
d+2α . This yields the inequality (3.2). Applying Proposition 2.1, one

can obtain the inequality (3.3).
Next, we prove the inequality (3.4). In order to use the technique of tail estimates,

we first consider the following estimates. Let (t0, x0) ∈ DT ⊂ OT and

Qc(t0, x0) = (t0 − c2α, t0 + c2α)×Bc(x0).

Then we have D̄T ⊂ Qd(D)(t0, x0). Set (t1, x1), (t2, x2) ∈ DT , Qi := DT ∩
Qci(ti, xi), i = 1, 2 and

F (ti, xi, ci) =
1

|Qi|1+θ

∫
Qi

∫
Qi

|u(t, x)− u(s, y)|pdtdxdsdy

=
1

|Qi|1+θ

∫
Qi

∫
Qi

|Kg(t, x)−Kg(s, y)|pdtdxdsdy.

Notice that

F (t1, x1, c1)− F (t2, x2, c2) = [F (t1, x1, c1)− F (t2, x1, c1)]

+[F (t2, x1, c1)− F (t2, x2, c1)]

+[F (t2, x2, c1)− F (t2, x2, c2)]

:= I1 + I2 + I3.
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Estimate of I1:

I1 = F (t1, x1, c1)− F (t2, x1, c1)

=
1

|Q1|1+θ

∫
Q1

∫
Q1

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

− 1

|Q12|1+θ

∫
Q12

∫
Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

=
1

|Q1|1+θ

{∫
Q1\Q12

∫
Q1\Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

+

∫
Q12\Q1

∫
Q12\Q1

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

}

+

[
1

|Q1|1+θ
− 1

|Q12|1+θ

] ∫
Q12

∫
Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

:= I11 + I12,

where Q12 = DT ∩ Qc1(t2, x1). For simplicity, we assume that |Q1| ≥ |Q12|. Oth-
erwise, we can chance the place of Q1 and Q12. And thus I12 ≤ 0 almost surely.
Now, we consider the term I11. Before giving the estimates of I11, we first recall
our aim. In order to apply the tail estimate, we want to obtain the estimates of I11

like the followings:

EI11 ≤ C(t1 − t2)ε for some ε > 0.

It is easy to see that

|Q1 \Q12| ≤ C(t1 − t2)cd1 and |Q1| ≈ cd+2α
1 .

So we must put some assumption on g in order to get some help from it.
Set t > s. Denote

E
∫
Q1\Q12

∫
Q1\Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

=

∫
Q1\Q12

∫
Q1\Q12

EΥdtdxdsdy.

Similar to the proof of inequality (3.2), we have

EΥ ≤ Ccβp1 .

Noting that (t, x) ∈ Q1 and (s, y) ∈ Q1, we have

0 ≤ t− s ≤ 2c1
2α and |x− y| ≤ |x− x1|+ |y − x1| ≤ 2c1.

Using the above inequalities and the properties of A-type domain, we deduce

E
∫
Q1\Q12

∫
Q1\Q12

EΥdtdxdsdy

≤ C(p, T )cβp1 |Q1 \Q12|2‖g‖pLp(Ω;L∞([0,T ];Lp(Rd)))
.

Since DT is a A-type bounded domain, we have for 2c1 ≤ diamD,

A|Qc1(t1, x1)| ≤ |Q1| ≤ |Qc1(t1, x1)|
A|Qc1(t1, x1) \Qc1(t2, x1)| ≤ |Q1 \Q12| ≤ |Qc1(t1, x1) \Qc1(t2, x1)|.
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We remark that

|Qc1(t1, x1)| ≈ cd+2α
1 ,

|Qc1(t1, x1) \Qc1(t2, x1)| ≤ Ccd1[c21 ∧ (t1 − t2)],

where C is a positive constant which does not depend on c1. Noting that Q1\Q12 ⊂
Q1 and taking 0 < ε < βp/2, we have

E
∫
Q1\Q12

∫
Q1\Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

≤ C(C0, D, d, T )‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

|Q1|2+ βp−2ε
d+2α |t1 − t2|ε.

Similarly, we can get

E
∫
Q12\Q1

∫
Q12\Q1

|u(t, x)− u(s, y)|pdtdxdsdy

≤ C(D, d, T )‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

|Q1|2+ βp−2ε
d+2α |t1 − t2|ε.

Due to the fact that I12 ≤ 0, we have

EI1 ≤ C(D, d, T )‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

|t1 − t2|ε,

where θ = 1 + βp−2ε
d+2α .

Next, we estimate I2. By using the fact that∣∣∣[D ∩Qc1(t2, x1)] \ [D ∩Qc1(t2, x2)]
∣∣∣ ≤ Ccd−1+2α

1 |x1 − x2|,

similar to the estimates of I1, we can take 0 < ε < βp/2 such that

EI2 = E[F (t2, x1, c1)− F (t2, x2, c1)]

≤ C(D, d, T )‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

|x1 − x2|ε,

where θ = 1 + βp−ε
d+2α .

Next, we estimate I3. By using the fact that∣∣∣[D ∩Qc1(t2, x2)] \ [D ∩Qc2(t2, x2)]
∣∣∣ ≤ Ccd−1+2α

1 (c1 − c2), if c1 ≥ c2,

similar to the estimates of I1, we can estimate

EI3 = E[F (t2, x2, c1)− F (t2, x2, c2)]

≤ C(D, d, T )‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

|c1 − c2|ε,

where θ = 1 + βp−ε
d+2α .

Therefore, we have

E|F (t1, x1, c1)− F (t2, x2, c2)|q

≤ C(D, d, T )‖g‖pq
Lpq(Ω;L∞([0,T ];Lpq(Rd)))

(|t1 − t2|+ |x1 − x2|+ |c1 − c2|)εq,

where θ = 1 + βp−2ε
d+2α , (ti, xi) ∈ DT and 0 < ci ≤ d(D), i = 1, 2.

For simplicity, we set DT = [0, 1]d+1 and c ∈ [0, 2]. One introduces a sequence of
sets:

Sn = {z ∈ Zd+2| z2−n ∈ (0, 1)d+1 × (0, 2)}, n ∈ N.

For an arbitrary e = (e1, e2, · · · , ed+2) ∈ Zd+2 such that

|e|∞ = max
1≤j≤d+2

|ej | = 1,
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and for every z, z + e ∈ Sn, we define vn,ez = |F ((z + e)2−n)− F (z2−n)|. From the
above discussion, we have

E|vn,ez |q ≤ C(β,C0, D, d, T )‖g‖pq
Lpq(Ω;L∞([0,T ];Lpq(Rd)))

2−nεq := Ĉ2−nεq.

For any τ > 0 and K > 0, one sets a number of events

An,ez,τ = {ω ∈ Ω|vn,ez ≥ Kτn, z, z + e ∈ Sn},

which yields that

P(An,ez,τ ) ≤ E|vn,ez |q

Kqτ qn
≤ Ĉ2−nεq

Kqτ qn
.

Noting that for each n, the total number of the events An,ez,τ , z, z + e ∈ Sn is not

larger than 2d+23d+2. Hence the probability of the union

Anτ = ∪z,z+e∈Sn(∪‖e‖∞=1An,ez,τ )

meets the estimate

P(Anτ ) ≤ Ĉ2−nεq

Kqτ qn
2(d+2)n ≤ ĈK−q

(
2d+2

(2ετ)q

)n
.

Let τ = 2−νε, where ν > 0 satisfies (1− ν)εq ≥ d+ 2. Then the probability of the
event A = ∪n≥1Anτ can be calculated that

P(A) ≤ CĈK−q. (3.5)

For every point ξ = (t, x, c) ∈ (0, 1)d+1×(0, 2), we have ξ =
∑∞
i=0 ei2

−i (‖ei‖∞ ≤ 1).

Denote ξk =
∑k
i=0 ei2

−i and ξ0 = 0. For any ω /∈ A, we have |F (ξk+1)− F (ξk)| <
Kτk+1, which implies that

|F (t, x, c)| ≤
∞∑
k=0

|F (ξk+1)− F (ξk)| < K

∞∑
k=1

τk ≤ K(2νε − 1)−1. (3.6)

Set v1 = sup(t,x,c)∈(0,1)d+1×(0,2) |F (t, x, c)|, then v1 = sup(t,x,c)∈[0,1]d+1×[0,2] |F (t, x, c)|
since F has a continuous version. For 1 < r < q, we have

Evr1 = r

∫ ∞
0

ar−1P(v1 ≥ a)da = r

∫ γK

0

ar−1P(v1 ≥ a)da+ r

∫ ∞
γK

ar−1P(v1 ≥ a)da.(3.7)

If one chooses γ ≥ (2νε − 1)−1, using (3.5), (3.6) and (3.7), we get

Evr1 ≤ (γK)r + CĈqr

∫ ∞
γK

ar−1−qda

≤ (γK)r + CĈr(cK)r−q,

which yields that

Evr1 ≤ C(D, d, T )‖g‖pr
Lpq(Ω;L∞([0,T ];Lpq(Rd)))

,

if we choose ‖g‖p
Lpq(Ω;L∞([0,T ];Lpq(Rd)))

. By using the following embed inequality

Lp(Ω; L p,θ(DT ; δ)) ∼= Lp(Ω;Cγ(D̄T ; δ)),

we obtain the inequality (3.4). The proof is complete. �
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Remark 3.1. It follows from Theorem 3.1 that the index β and β∗ satisfy
β > β∗, which implies that if we want to change the places of E and supt,x, we must
pay it on the index.

Comparing with the earlier results of [27] (Tian et al. obtained the Hölder esti-
mate to equation (3.1) locally in Rd), we find the Hölder continuous index in this
paper is larger than that in [27]. More precisely, we obtain the index of time variable
is closed to 1/2. Since the index of Hölder continuous of Brownian motion is 1

2−,
maybe the index obtained in this paper is optimal.

Next, we consider another case. If g is a Hölder continuous function, the following
theorem shows that what assumptions should be put on the kernel function K.

Theorem 3.2. Let u = K ∗ g and DT be an A-type bounded domain in Rd+1

such that D̄T ⊂ OT . Suppose that g ∈ Cβ(R+ × Rd), 0 < β < 1, is a non-random
function and g(0, 0) = 0. Assume that there exists positive constants γi (i = 1, 2)
such that the non-random kernel function satisfies that for any t ∈ (0, T ]

∫ s

0

(∫
Rd
|K(t− r, z)−K(s− r, z)|(1 + |z|β)dz

)2

dr ≤ C(T, β)(t− s)γ1 ,(3.8)∫ s

0

(∫
Rd
|K(s− r, z)|dz

)2

dr ≤ C0, (3.9)∫ t

s

(∫
Rd
|K(t− r, z)|(1 + |z|β)dz

)2

dr ≤ C(T, β)(t− s)γ2 , (3.10)

where C0 is a positive constant. Then we have, for p ≥ 1 and β < γ,

‖u‖L p,θ((DT ;δ);Lp(Ω)) ≤ C‖g‖Cβ(R+×Rd)),

‖u‖Cβ(DT ;Lp(Ω)) ≤ C‖g‖Cβ(R+×Rd)), (3.11)

where θ = 1 + γp
d+2 and γ = min{γ1, γ2, β}. Moreover, taking 0 < δ < γp/2 and

q > (d+ 2)/δ, we have for 0 < r < q

‖u‖Lr(Ω;Cβ∗ (DT )) ≤ C‖g‖Cβ(R+×Rd)), (3.12)

where β∗ = γ − 2δ/p.

Proof. The proof of the (3.11) is contained in our paper [24]. And we only focus
on the proof of (3.12).
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Similar to the proof of Theorem 3.1, we need to estimate Ii, i = 1, 2, 3. Estimate
of I1:

I1 = F (t1, x1, c1)− F (t2, x1, c1)

=
1

|Q1|1+θ

∫
Q1

∫
Q1

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

− 1

|Q12|1+θ

∫
Q12

∫
Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

=
1

|Q1|1+θ

{∫
Q1\Q12

∫
Q1\Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

+

∫
Q12\Q1

∫
Q12\Q1

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

}

+

[
1

|Q1|1+θ
− 1

|Q12|1+θ

] ∫
Q12

∫
Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

:= I11 + I12,

where Q12 = D ∩Qc1(t2, x1). For simplicity, we assume that |Q1| ≥ |Q12|. Other-
wise, we can chance the place of Q1 and Q12. And thus I12 ≤ 0 almost surely.

It is easy to see that

|Q1 \Q12| ≤ C(t1 − t2)cd1 and |Q1| ≈ Ccd+2
1 .

So we must put some assumption on g in order to get some help from it.
Set t > s. By the BDG inequality, we have

E
∫
Q1\Q12

∫
Q1\Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

= E
∫
Q1\Q12

∫
Q1\Q12

∣∣∣ ∫ t

0

∫
Rd
K(t− r, z)g(r, x− z)dzdW (r)

−
∫ s

0

∫
Rd
K(s− r, z)g(r, y − z)dzdW (r)

∣∣∣pdtdxdsdy
≤ 2p−1E

∫
Q1\Q12

∫
Q1\Q12

∣∣∣ ∫ s

0

∫
Rd

(K(t− r, z)−K(s− r, z))g(r, x− z)dzdW (r)
∣∣∣p

+2p−1E
∫
Q1\Q12

∫
Q1\Q12

∣∣∣ ∫ s

0

∫
Rd
K(s− r, z)(g(r, x− z)− g(r, y − z))dzdW (r)

∣∣∣p
+2p−1E

∫
Q1\Q12

∫
Q1\Q12

∣∣∣ ∫ t

s

∫
Rd
K(t− r, z)g(r, x− z)dzdW (r)

∣∣∣pdtdxdsdy
≤ C(p)

∫
Q1\Q12

∫
Q1\Q12

(∫ s

0

|
∫
Rd
|K(t− r, z)−K(s− r, z)||g(r, x− z)|dz|2dr

) p
2

+C(p)

∫
Q1\Q12

∫
Q1\Q12

(∫ s

0

|
∫
Rd
|K(s− r, z)||g(r, x− z)− g(r, y − z)|dz|2dr

) p
2

+C(p)

∫
Q1\Q12

∫
Q1\Q12

(∫ t

s

|
∫
Rd
K(t− r, z)g(r, x− z)dz|2dr

) p
2

=:

∫
Q1\Q12

∫
Q1\Q12

(J1 + J2 + J3)dtdxdsdy.
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Estimate of J1. By using the Hölder continuous of g, i.e.,

|g(r, x− z)− g(0, 0)| ≤ Cg max
{
r

1
2 , |x− z|

}β
≤ C(g, β)(T

β
2 + |x− x1|β + |x1|β + |z|β)

≤ C(g, β)(T
β
2 + cβ1 + |x1|β + |z|β),

and (3.8), we have

J1 = C(p)

(∫ s

0

|
∫
Rd
|K(t− r, z)−K(s− r, z)||g(r, x− z)|dz|2dr

) p
2

≤ C(p, β, T )

(∫ s

0

|
∫
Rd
|K(t− r, z)−K(s− r, z)|(1 + |z|β)dz|2dr

) p
2

+cβp1 C(p, β)

(∫ s

0

∫
Rd
|K(t− r, z)−K(s− r, z)|dr

) p
2

≤ C(p, β, T )(1 + cβp1 )(t− s)
γ1p
2 .

Here and in the rest part of the proof, we write the constant depending on ‖g‖Cβ(R+×Rd))

as C(β) for simplicity. The condition (3.9) and

|g(r, x− z)− g(r, y − z)| ≤ Cg|x− y|β

imply the following derivation

J2 = C(p)

∫
Q

∫
Q

(∫ s

0

|
∫
Rd
|K(s− r, z)||g(r, x− z)− g(r, y − z)|dz|2dr

) p
2

≤ C(p, g)

∫
Q

∫
Q

(∫ s

0

|
∫
Rd
|K(r, z)||x− y|βdz|2dr

) p
2

≤ C(N0, p, g, β)|x− y|βp.

Estimate of I3. By using the property g(0, 0) = 0 and (3.10), we get

J3 = C(p)

(∫ t

s

|
∫
Rd
K(t− r, z)g(r, x− z)dz|2dr

) p
2

≤ C

(∫ t

s

∣∣∣ ∫
Rd
|K(r, z)|(T + |x− x1|β + |x1|β + |z|β)dz

∣∣∣2dr) p
2

≤ C(p, T, β)

(∫ t

s

∣∣∣ ∫
Rd
|K(t− r, z)|(1 + |z|β)dz

∣∣∣2dr) p
2

+C(p, T, β)|x− y|βp
(∫ t

s

∣∣∣ ∫
Rd
|K(t− r, z)|dz

∣∣∣2dr) p
2

≤ C(p, T, β)(t− s)
γ2p
2 (1 + |x− y|βp).

Noting that (t, x) ∈ Q1 and (s, y) ∈ Q1, we have

0 ≤ t− s ≤ 2c1
2 and |x− y| ≤ |x− x1|+ |y − x1| ≤ 2c1.
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Using the above inequality and the properties of A-type domain, we deduce∫
Q1\Q12

∫
Q1\Q12

J1dtdxdsdy ≤ C(p, T, β)(1 + cβp1 )c1
γ1p|Q1 \Q12|2;∫

Q1\Q12

∫
Q1\Q12

J2dtdxdsdy ≤ C(C0, p, g, β)c1
βp|Q1 \Q12|2;∫

Q1\Q12

∫
Q1\Q12

J3dtdxdsdy ≤ C(p, T, β)|Q1 \Q12|2c1γ2p(1 + c1
βp).

Combining the estimates of J1, J2 and J3, we get

E
∫
Q1\Q12

∫
Q1\Q12

|u(t, x)− u(s, y)|pdtdxdsdy

≤ C(β,C0, T, p)|Q1 \Q12|2(cβp1 + 1)(cβp1 + cγ1p1 + cγ2p1 ).

Since D is a A-type bounded domain, we have for 2c1 ≤ diamD,

A|Qc1(t1, x1)| ≤ |Q1| ≤ |Qc1(t1, x1)|
A|Qc1(t1, x1) \Qc1(t2, x1)| ≤ |Q1 \Q12| ≤ |Qc1(t1, x1) \Qc1(t2, x1)|.

We remark that

|Qc1(t1, x1)| ≈ Ccd+2
1 ,

|Qc1(t1, x1) \Qc1(t2, x1)| ≤ Ccd1[c21 ∧ (t1 − t2)],

where C is a positive constant which does not depend on c1. Noting that Q1\Q12 ⊂
Q1 and taking 0 < δ < 1, we have

E
∫
Q1\Q12

∫
Q1\Q12

|Kg(t, x)−Kg(s, y)|pdtdxdsdy

≤ C(β,C0, D, d, T )|Q1|2+ γp−2δ
d+2 |t1 − t2|δ,

where γ = min{γ1, γ2, β}.
Similarly, we can get

E
∫
Q12\Q1

∫
Q12\Q1

|u(t, x)− u(s, y)|pdtdxdsdy

≤ C(β,C0, D, d, T )|Q1|2+ γp−2δ
d+2 |t1 − t2|δ.

Due to the fact that I12 ≤ 0, we have

EI1 ≤ C(β,C0, D, d, T )|t1 − t2|δ,

where θ = 1 + γp−2δ
d+2 .

Next, similar to the proof of Theorem 3.1, one can estimate I2 and I3 as followings

EI2 = E[F (t2, x1, c1)− F (t2, x2, c1)] ≤ C(β,C0, D, d, T )|x1 − x2|δ,
EI3 = E[F (t2, x2, c1)− F (t2, x2, c2)] ≤ C(β,C0, D, d, T )|c1 − c2|δ,

where θ = 1 + γp−δ
d+2 .

Therefore, we have

E|F (t1, x1, c1)− F (t2, x2, c2)|q

≤ C(C0, D, d, T )‖g‖q
Cβ(R+×Rd))

(|t1 − t2|+ |x1 − x2|+ |c1 − c2|)δq,



16 GUANGYING LV, HONGJUN GAO, JINLONG WEI AND JIANG-LUN WU

where θ = 1 + βp−2δ
d+2 , (ti, xi) ∈ DT and 0 < ci ≤ d(D), i = 1, 2. The rest proof

of this theorem is exactly similar to that of Theorem 3.1 and we omit it here. The
proof of Theorem 3.2 is complete. �

Next, we consider the following equation

∂

∂t
u(t, x) = ∆αu(t, x) + g(t, x)Ẇ (t, x), u|t=0 = 0, (3.13)

where ∆α = −(−∆)α and W (t, x) is a standard space-time white noise.

Theorem 3.3. Let D be an A-type bounded domain in Rd+1 such that D̄ ⊂ OT .
Suppose that g ∈ L∞loc(R+;Lp(Ω × Rd)) is Ft-adapted process. Set d = 1. Assume
that 1

2 < α ≤ 1, p > 2
2α−1 . Let β > 0 be sufficiently small such that p(2α−2β−1) >

2. Then, there is a mild solution u of (3.13) and u ∈ L p,θ((DT ; δ);Lp(Ω)) ∩
Lp(Ω;Cβ(DT )). Moreover, it holds that

‖u‖L p,θ((DT ;δ);Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×R)), (3.14)

‖u‖Cβ(DT ;Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×R)), (3.15)

where θ = 1 + βp
3 . Moreover, taking 0 < ε < βp/2 and q > 3/ε, we have for

1 < r < q

‖u‖Lr(Ω;Cβ∗ (DT )) ≤ C‖g‖L∞([0,T ];Lpq(Ω×R)), (3.16)

where β∗ = β − 2ε/p.

Proof. The existence of mild solution of (3.13) is a classical result under the
above assumptions. Now we prove the inequality (3.14). Due to the definition of
Companato space, it suffices to show that

[u]L p,θ((DT ;δ);Lp(Ω)) <∞.

Direct calculus shows that

[u]p
L p,θ((DT ;δ);Lp(Ω))

≤ sup
D(X,c),X∈DT ,0<c≤d(D)

1

|D(X, c)|1+θ

×E
∫
D(X,c)

∫
D(X,c)

|u(t, x)− u(s, y)|pdtdxdsdy

≤ sup
D(X,c),X∈DT ,0<c≤d(D)

1

|D(X, c)|1+θ

×E
∫
D(X,c)

∫
D(X,c)

∣∣∣ ∫ t

0

∫
R
K(t− r, x− z)g(r, z)W (dr, dz)

−
∫ s

0

∫
R
K(s− r, y − z)g(r, z)W (dr, dz)

∣∣∣p
:= sup

D(X,c),X∈DT ,0<c≤d(D)

1

|D(X, c)|1+θ

∫
D(X,c)

∫
D(X,c)

EΥdtdxdsdy.
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Set t ≥ s. We have the following estimates

EΥ ≤ CE
∣∣∣ ∫ s

0

∫
R

(K(t− r, x− z)−K(s− r, y − z))g(r, z)W (dr, dz)
∣∣∣p

+CE
∣∣∣ ∫ t

s

∫
R
K(t− r, x− z)g(r, z)W (dr, dz)

∣∣∣p
≤ CE

∣∣∣ ∫ s

0

∫
R

(K(t− r, x− z)−K(s− r, y − z))2g2(r, z)dzdr
∣∣∣ p2

+CE
∣∣∣ ∫ t

s

∫
R
K2(t− r, x− z)g2(r, z)dzdr

∣∣∣ p2
=: C(H1 +H2).

Estimate of H1.
Take β > 0 satisfying (2α− 2β − 1)p− 2 ≥ 0. By using the Proposition 2.3, and

Hölder inequality, we have

H1 = E
∣∣∣ ∫ s

0

∫
R

(K(t− r, x− z)−K(s− r, y − z))2g2(r, z)dzdr
∣∣∣ p2

≤ CE
∣∣∣ ∫ s

0

∫
R
|K(t− r, x− z)−K(s− r, x− z)|2 · |g2(r, z)|dzdr

∣∣∣ p2
+CE

∣∣∣ ∫ s

0

∫
R

(K(s− r, x− z)−K(s− r, y − z))2 · g2(r, z)dzdr
∣∣∣ p2

=: H11 +H12.

For H11, we have

H11 ≤ C(t− s)
βp
2 E
∣∣∣ ∫ s

0

(∫
R
|∂

β
2K

∂t
β
2

(ξ − r, x− z)|qdz

) 2
q

‖g(r)‖2Lp(R)dr
∣∣∣ p2

≤ C(t− s)
βp
2 ‖g‖pLp(Ω;L∞([0,T ];Lp(R)))

∫ s

0

(∫
R
|∂

β
2K

∂t
β
2

(ξ − r, x− z)|qdz

) 2
q

dr


p
2

,

where q = 2p/(p− 2), ξ = θt+ (1− θ)s, 0 < θ < 1 and we used the following fact∫ s

0

(∫
R
|∂

β
2K

∂t
β
2

(ξ − r, x− z)|qdz

) 2
q

dr

≤ C

∫ s

0

∫ (ξ−r)
1
2α

0

(ξ − r)−
q+2qαβ

2α |z|qαβd|z|

+

∫ ∞
(ξ−r)

1
2α

(ξ − r)q|z|−(q+2qα+2qαβ)|z|qαβd|z|

) 2
q

dr

≤ C
[
(θ(t− s))

1−q+qα(1−β)
qα + ξ

1−q+qα(1−β)
qα

]
≤ C

because using q = 2p/(p− 2), we have

1− q + qα(1− β) > 0⇔ p(2α− 2αβ − 1) > 2⇐ p(2α− 2β − 1) > 2.
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For H12, by using the fractional mean value formula again, we have

H12 ≤ C|x− y|βp‖g‖pLp(Ω;L∞([0,T ];Lp(R)))

∣∣∣ ∫ s

0

(∫
R

[K(β)(s− r, ξ − z)]qdzdr
) 2
q

dr
∣∣∣ p2

≤ C|x− y|βp‖g‖pLp(Ω;L∞([0,T ];Lp(R)))

[∫ s

0

(s− r)−
d(q−1)+βq

qα dr

] p
2

≤ C|x− y|βp,

where q = 2p/(p− 2), ξ = θx+ (1− θ)y and we used the following inequality∫ s

0

(s− r)−
d(q−1)+βq

qα dr =
qα

q(α− β)− (q − 1)
s
q(α−β)−(q−1)

qα ≤ C

provided that (2α− 2β − 1)p− 2 ≥ 0.
Estimate of H2.
Similar to the estimate of H1, we have

H2 = E
∣∣∣ ∫ t

s

∫
Rd
K2(t− r, x− z)g2(r, z)dzdr

∣∣∣ p2
≤ ‖g‖p

Lp(Ω;L∞([0,T ];Lp(Rd)))

[∫ t

s

(∫
Rn
|K(t− r, x− z)|qdz

) 2
q

dr

] p
2

≤ C‖g‖p
Lp(Ω;L∞([0,T ];Lp(Rd)))

(t− s)
qα−(q−1)d

qα × p2

provided that p(2α− 1) > 2. Indeed, by using q = 2p
p−2 , we have

qα− (q − 1) > 0 ⇐⇒ p(2α− 1) > 2.

Combining the assumption of p, we have

H2 ≤ C(t− s)
p(2α−1)−2

2α .

The rest proof is similar to that of 3.1 and we omit it here. �

4. Hölder estimate on a bounded domain. In this section, we consider the
SPDEs of the following form du = Audt+ g(t, x)dWt, (t, x) ∈ (0,∞)×D,

u|∂D = 0,
ut=0 = 0,

(4.1)

where D is a smooth bounded domain in Rd, Wt is standard one-dimensional Brow-
nian motion, and g is progressively measurable L∞- or Lp-function.

Throughout this section, we assume that A is a uniformly elliptic second-order
differential operator of the form

A = aij
∂

∂xi

∂

∂xj
+ bi(x)

∂

∂xi
+ c(x)

with smooth coefficients. Furthermore, we assume that at least one of the following
two assumptions holds:

B∞ : ‖g‖L∞([0,T ];Lp(Ω;L∞(D))) <∞,
Bp : ‖g‖L∞([0,T ];Lp(Ω×D))) <∞.
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In order to obtain the Hölder estimate, we need the following Lemma. Consider the
following initial-boundary problem:

∂v

∂t
−Av = 0, v|t=0 = F (x), v|∂D = 0, (4.2)

and denote by St the corresponding semigroup:

v(t, ·) = (StF )(·), F = F (·).

Lemma 4.1. [19, Lemma 1] Let |F (x)| < M . Then, for any θ < 1, the
following estimates hold with c > 0 and τ > 0:

‖v(t, ·)‖Cθ(D) ≤ c(θ)Mt−θ/2 exp(−ct),
|v(t+ τ, x)− v(t, x)| ≤ c(θ)Mt−θτθ exp(−ct).

Moreover, if ‖F‖Lp(D) ≤M and p > 1, then for τ > 0

‖v(t, ·)‖Cθ(D) ≤ c(θ)Mt−θ/2−d/(2p) exp(−ct),

|v(t+ τ, x)− v(t, x)| ≤ c(θ)Mt−θ−d/(2p)τθ exp(−ct).

Theorem 4.1. Let DT be an A-type bounded domain in Rd+1.
(i) Suppose that Bp holds for p > d and that 0 < β < 1 satisfies (1 − β)p −

d ≥ 0. Then, there is a mild solution u of (4.1) and u ∈ L p,θ((DT ; δ);Lp(Ω)) ∩
Lp(Ω;Cβ(DT )). Moreover, it holds that

‖u‖L p,θ((DT ;δ);Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×D)),

‖u‖Cβ(DT ;Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×D)),

where θ = 1 + βp
d+2 . Moreover, taking 0 < ε < βp/2 and q > (d+ 2)/ε, we have for

1 < r < q

‖u‖Lr(Ω;Cβ∗ (DT )) ≤ C‖g‖L∞([0,T ];Lpq(Ω×Rd)),

where β∗ = β − 2ε/p.
(ii) Suppose that B∞ holds for p > 1. Then, there is a mild solution u of (4.1)

and u ∈ L p,θ((DT ; δ);Lp(Ω)) ∩ Lp(Ω;Cβ(DT )). Moreover, it holds that

‖u‖L p,θ((DT ;δ);Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×D)),

‖u‖Cβ(DT ;Lp(Ω)) ≤ C‖g‖L∞([0,T ];Lp(Ω×D)),

where θ = 1 + p
d+2 . Moreover, taking 0 < ε < βp/2 and q > (d+ 2)/ε, we have for

1 < r < q

‖u‖Lr(Ω;Cβ∗ (DT )) ≤ C‖g‖L∞([0,T ];Lpq(Ω×Rd)),

where β∗ = 1− 2ε/p.

Proof. The proof of this Theorem is exactly similar to that of Theorem 3.1 by
using Lemma 4.1. We omit it to the readers. We only emphasize that the distance
will be used here

δ(X,Y ) := max
{
|x− y|, |t− s| 12

}
,

where is different from that in Section 2. The proof is complete. �

Remark 4.1. Theorem 4.1 does not hold for the nonlocal operator because we
did not have the similar properties of kernel function on bounded domain.

Comparing Theorem 4.1 with [19, Theorems 1 and 2], we find the index of [19]
is β < 1

2 −
d
2p for the case Bp and the index in this paper is larger than that of [19].
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5. Applications and further discussions. We first give an example for Theorem
3.2. Consider the equation (3.1). In our paper [24], by using Proposition 2.3, we
got the following result, where p is the heat kernel.

Lemma 5.1. Let 0 ≤ ε < α. The following estimates hold.∫ s

0

(∫
Rd
|∇εp(t− r, z)−∇εp(s− r, z)|(1 + |z|β)dz

)2

dr ≤ N(T, β)(t− s)γ ,∫ s

0

(∫
Rd
|∇εp(s− r, z)|dz

)2

dr ≤ N0,∫ t

s

(∫
Rd
|∇εp(t− r, z)|(1 + |z|β)dz

)2

dr ≤ N(T, β)(t− s)γ ,

where γ = α−ε
α .

Then applying Theorem 3.2 with u = K ∗ g and K = ∇εp, we have the following
result.

Theorem 5.1. Let 0 ≤ ε < α and DT be an A-type bounded domain in Rd+1

such that D̄T ⊂ OT . Suppose that g ∈ Cβ(R+ × Rd), 0 < β < 1, is a non-random
function and g(0, 0) = 0. Then we have, for p ≥ 1 and β < γ,

‖∇εu‖L p,θ((DT ;δ);Lp(Ω)) ≤ C‖g‖Cβ(R+×Rd)),

‖∇εu‖Cβ(DT ;Lp(Ω)) ≤ C‖g‖Cβ(R+×Rd)),

where θ = 1 + γp
d+2 and γ = α−ε

α . Moreover, taking 0 < δ < γp/2 and q > (d+ 2)/δ,
we have for 0 < r < q

‖∇εu‖Lr(Ω;Cβ∗ (DT )) ≤ C‖g‖Cβ(R+×Rd)),

where β∗ = γ − 2δ/p.

In fact, one can use the factorization method to obtain the Hölder estimates of
solutions to the following equation

dut = [∆αu+ f(t, x, u)]dt+ g(t, x)dWt, u|t=0 = u0(x),

where ∆α = −(−∆)α, α ∈ (0, 1] and Wt is a standard Brownian motion on a filtered
probability space (Ω,F ,Ft,P). About the factorization method, see [6].

In addition, one can use the Kunita’s first inequality to deal with a general
case. Let (Ω,F ,F,P) be a complete probability space such that {Ft}t∈[0,T ] is a
filtration on Ω containing all P -null subsets of Ω and F be the predictable σ-algebra
associated with the filtration {Ft}t∈[0,T ]. We are given a σ-finite measure space
(Z,Z, ν) and a Poisson random measure µ on [0, T ]× Z, defined on the stochastic
basis. The compensator of µ is Leb⊗ν, and the compensated martingale measure
Ñ := µ− Leb⊗ ν. The method used here is also suitable to the case that

Gg(t, x) =

∫ t

0

∫
Z

K(t, s, ·) ∗ g(s, ·, z)(x)Ñ(dz, ds)

=

∫ t

0

∫
Z

∫
Rd
K(t− s, x− y)g(s, y, z)dyÑ(dz, ds) (5.1)

for F-predictable processes g : [0, T ]× Rd × Z × Ω→ R.
In the end of this section, we give a new criteria based on the following Proposi-

tion.
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Proposition 5.1. [26, Theorem 2.1] Let {Xt, t ∈ [0, 1]} be a Banach-valued
stochastic field for which there exist three strictly positive constants γ, c, ε such that

E[ sup
0≤t≤1

|Xt(x)−Xt(y)|γ ] ≤ c|x− y|d+ε,

then there is a modification X̃ of X such that

E
[(

sup
s6=t

|X̃t − X̃s|
|t− s|α

)γ]
<∞

for every α ∈ [0, ε/γ). In particular, the paths of X̃ are Hölder continuous in x of
order α.

For applications, we need prove the Kolmogorov criterion with the following form.

Theorem 5.2. Let {Xt(x), x ∈ [0, 1]d, t ∈ [0, 1]} be a Banach-valued stochastic
field for which there exist three strictly positive constants γ, c, ε such that

E[ sup
0≤t≤1

|Xt(x)−Xt(y)|γ ] ≤ c|x− y|d+ε,

then there is a modification X̃ of X such that

E
[

sup
0≤t≤1

(
sup
x 6=y

|X̃t(x)− X̃t(y)|
|x− y|α

)γ]
<∞

for every α ∈ [0, ε/γ). In particular, the paths of X̃ are Hölder continuous in x of
order α.

Proof. Let Dm be the set of points in [0, 1]d whose components are equal to 2−mi
for some integral i ∈ [0, 2m]. The set D = ∪mDm is the set of dyadic numbers. Let
further ∆m be the set of pairs (x, y) in Dm such that |x − y| = 2−m. There are
2(m+1)d such pairs in ∆m.

Let us finally set Ki(t) = sup(x,y)∈∆i
|Xt(x) − Xt(y)|. The hypothesis entails

that for a constant J ,

E[ sup
0≤t≤1

Ki(t)
γ ] ≤

∑
(x,y)∈∆i

E[ sup
0≤t≤1

|Xt(x)−Xt(y)|γ ] ≤ c2(i+1)d2−i(d+ε) = J2−iε.

For a point x (resp. y) in D, there is an increasing sequences {xm} (resp. {ym})
of points in D such that xm (resp. ym) is in Dm for each m, xm ≤ x (ym ≤ y)
and xm = x (ym = y) from some m on. If |x − y| ≤ 2−m, then either xm = ym or
(xm, ym) ∈ ∆m and in any case

Xt(x)−Xt(y) =

∞∑
i=m

(Xt(xi+1)−Xt(xi)) +Xt(xm)−Xt(ym)−
∞∑
i=m

(Xt(yi+1)−Xt(yi)),

where the series are actually finite sums. It follows that

|Xt(x)−Xt(y)| ≤ Km + 2

∞∑
i=m+1

Ki(t) ≤ 2

∞∑
i=m

Ki(t).

As a result, setting Mα(t) = sup{|Xt(x) − Xt(y)|/|x − y|α, x, y ∈ D, x 6= y}, we
have

Mα(t) ≤ sup
m∈N

{
2mα sup

|x−y|≤2−m
|Xt(x)−Xt(y)|, x, y ∈ D, x 6= y

}
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≤ sup
m∈N

{
2mα+1

∞∑
i=m

Ki(t)
}

≤ 2

∞∑
i=0

2iαKi(t).

For γ ≥ 1 and α < ε/γ, we get with J ′ = 2J ,

[E sup
0≤t≤1

Mα(t)γ ]1/γ ≤ 2

∞∑
i=0

2iα[E sup
0≤t≤1

Ki(t)
γ ]1/γ ≤ J ′

∞∑
i=0

2i(α−ε/γ) <∞.

For γ < 1, the same reasoning applies to [E sup0≤t≤1Mα(t)γ ] instead of [E sup0≤t≤1Mα(t)γ ]1/γ .
It follows in particular that for almost every ω, Xt(·) is uniformly continuous on

D and it is uniformly in t, so it make sense to set

X̃t(x, ω) = lim
y∈D,y→x

Xt(y, ω).

By Fatou’s lemma and the hypothesis, X̃t(x) = Xt(x) a.s. and X̃ is clearly the
desired modification. �

It is easy to see that one can use Theorem 5.2 to consider the equation (3.1) and
(5.1)
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[30] X. Wang, Hölder continuous of the solutions to stochastic nonlocal heat equations, Comput.

Math. Appl. 78 (2019) 741-753.

[31] X. Xie, J. Duan, X. Li and G. Lv, A regularity result for the nonlocal Fokker-Planck equation
with Ornstein-Uhlenbeck drift, arXiv:1504.04631.

[32] X. Zhang, Lp-theory of semi-linear SPDEs on general measure spaces and applications J.
Funct. Anal. 239 (2006), no. 1, 44-75.

[33] X. Zhang, Lp-maximal regularity of nonlocal parabolic equations and applications, Ann. Inst.
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