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a b s t r a c t

This work aims at developing a viscoelastic formulation for the time-dependent finite deformation
analysis of beams made of hard-magnetic soft materials (HMSMs) under magnetic loading. After
introducing the basic kinematic quantities, a viscoelasticity formulation for the analysis of HMSMs
is developed, which is general in the sense that it can be used for 2D and 3D geometries beside the
beam, plate, and shell-type structures. Next, the expression for the consistent fourth-order tangent
tensors for 3D bodies and beams made of HMSMs are presented. Due to the highly nonlinear nature
of the governing equations, a finite element formulation for the numerical solution of beam problems
with various loading and boundary conditions is developed. To demonstrate the applicability of the
developed formulation, several numerical examples are provided. It is observed that for the case of
elastic deformations, the results of the present formulation are very close to those previously reported
in the literature. For the case of viscoelastic deformations, the creep response of beams is simulated and
the effect of viscoelastic parameters is studied. It is shown that the obtained results are qualitatively
in agreement with the basic properties of viscoelastic deformations.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Magneto-active polymers (MAPs) are a class of soft active
omposite materials that consist of micron-sized magnetizable
articles embedded into an elastomer matrix and exhibit
echanical deformation under magnetic stimuli. These mate-

ials have found various applications, e.g., in sensors, remote-
ontrolled soft robotics, smart vibration absorbers, tunable
tiffness actuators, and soft and flexible electronics [1–10]. Two
ifferent kinds of particles, namely magnetically-soft and
agnetically-hard ones are used in MAPs [11–14]. The main
haracteristic of magnetically-soft particles, such as carbonyl iron,
s that they have negligible hysteresis, and their magnetization
ector changes by applying magnetic loadings. A short list of
esearches on the MAPs composed of magnetically-soft particles
ncludes [15–22]. Reviews of the research work on magnetically-
oft MAPs are available in [23,24] while Lucarini et al. [25]
articularly reviewed hard-magnetic soft materials taking into
ccount their wide range of potential applications. On the other
and, magnetically-hard particles, such as CoFe2O4 or NdFeB,
xhibit significant magnetic hysteresis and their magnetization
ector remains constant for a wide range of magnetic load-
ng [26–29]. A magneto-active polymer composed of the latter
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class of particles is called a hard-magnetic soft material (HMSM).
The purpose of this work is to develop mathematical formulations
that can capture the time-dependent responses of HMSMs.

Recently, the manufacture and analysis of HMSMs have re-
ceived considerable attention in science and industry communi-
ties. In particular, advanced additive manufacturing (3D printing)
technologies have allowed researchers to program the local orien-
tation of the magnetized particles to generate complex deformed
shapes under magnetic loads [30–37]. A continuum theory for
the finite elastic deformation of HMSMs was developed by Zhao
et al. [26]. They then implemented the formulation as a user-
element subroutine into the commercial finite element package
ABAQUS and analyzed the large deformation of hard-magnetic
soft (HMS) beams both numerically and experimentally. Very
recently, viscoelastic deformation of HMSMs has been formulated
in [38,39]. A micromechanics approach through the represen-
tative volume element simulations was also proposed in [40].
Additionally, microstructure-based models accounting for viscous
dissipation as well as dipole–dipole interactions were developed
in [41,42]. A further microstructural lattice model for HMSMs by
partitioning the elastic deformation energy into lattice stretching
and volumetric change has been also proposed by [43].

In addition to the constitutive modeling of HMSMs, several
research articles dealing with the elastic deformation of HMS
beams have been published in the literature. In particular, [34,
44] developed analytical and finite difference solutions for fi-
nite bending of HMS cantilevers. For instance, in a series of
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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apers, Chen and coworkers [45–48] investigated two- and three-
imensional deformations of HMS cantilevers accounting for vari-
ble residual magnetic fluxes or variable volume fractions of
agnetic particles along the beam. An HMS beam formulation
ccounting for the antielastic bending effect was proposed in [49].
oreover, bifurcation analysis of HMS cantilevers under various
ngles of the applied magnetic flux vector was studied in [50].
three-dimensional beam formulations for slender HMSMs was
eveloped in [51,52]. They investigated the finite deformation
f cantilevers and coils under the application of constant as
ell as constant gradient magnetic loading both numerically and
xperimentally.
The aforementioned detailed review of the state-of-the-art

esearch works published in the literature reveals that viscous
ffects on beams made of HMSMs have not been taken into
ccount. Therefore, the main contribution of this work is to de-
elop a formulation that combines viscoelasticity with the finite
eformation of HMS beams under the application of magnetic
timuli. Moreover, a general nonlinear finite element formulation
s developed that can be used for arbitrary hyperelastic consti-
utive equations corresponding to the mechanical contribution of
he free energy density function.

The outline of this paper is as follows. In Section 2, kine-
atics of a deforming HMS beam is formulated. In Section 3, a
iscoelastic formulation for the time-dependent response of 3D
ard-magnetic soft materials is developed and is specialized to
MS beams. In Section 4, a nonlinear finite element formulation
n the Lagrangian framework is derived. To investigate the perfor-
ance of the developed formulation, several numerical examples
re solved and discussed in Section 5. Finally, a summary of the
ork is provided in Section 6.

. Kinematics of deformation

Notation: Throughout this work, Greek indices run over {1, 2}
nd lower-case Latin indices range over {1, 2, 3}. Upper-case Latin
ndices do not obey a general rule and take the values speci-
ied in the corresponding equations. Unless otherwise stated, the
ummation convention holds over all repeated lower-case Latin
ndices. An asterisk ∗ is used for the tensor quantities defined
n the three-dimensional space. Tensor quantities without an
sterisk are defined in the two-dimensional space. For the two
econd-order tensors P∗ and Q∗, in the three-dimensional space,
the fourth-order tensors A∗

= P∗
⊗ Q∗ and B∗

= P∗ ⊠ Q∗

re defined so that their components are given by A∗

ijkl = P∗

ijQ
∗

kl
nd B∗

ijkl = P∗

ilQ
∗

kj, respectively. The double contraction operation
n tensors of different orders is defined by P∗ :Q∗

= P∗

ijQ
∗

ij ,
A∗ :P∗)ij = A∗

ijpqP
∗
pq, (A

∗ :B∗)ijkl = A∗

ijpqB
∗

pqkl. The complete inner
roduct of two fourth-order tensors is defined by A∗ : :B∗

=
∗

ijklB
∗

ijkl. The notations P∗⊤, trP∗, det P∗ and P∗−1 are the trans-
pose, trace, determinant and inverse of the second-order tensor
P∗. Moreover, the magnitude of a vector, say B∗, is denoted by
|B∗

|. It is noted that similar operations and quantities can be
defined in the two-dimensional space, e.g., P :Q = PαβQαβ .

A straight beam of the length L and variable cross-section,
as shown in Fig. 1, is considered. Two coincident Cartesian co-
ordinate systems {X1, X2, X3} and {x1, x2, x3} are located at the
geometric center of the left end of the beam. The basis vectors of
both coordinate systems are denoted by {e1, e2, e3}. The X2-axis
is directed along with the thickness of the beam, and due to the
two-dimensional nature of deformation in the X1X2-plane, it is
assumed that the beam cross-section is symmetric with respect to
this axis. The X3-axis is perpendicular to the plane of deformation
and has not been shown in the figure. As usual, the material co-
ordinate system {X , X , X } describes the undeformed geometry,
1 2 3

2

Fig. 1. Schematic view of the deformation of a HMS beam under the uniform
external magnetic field Bext .

while the spatial coordinate system {x1, x2, x3} is employed to
describe the deformed beam.

The residual magnetic flux density on the undeformed beam
is denoted by B̃r. The external magnetic flux density Bext, which
makes an angle ϕ with the X1-axis, is applied to the beam. Follow-
ing [26,35,44–50], it is assumed that the external magnetic flux
density is uniform in space, and the referential residual magnetic
flux density B̃r is parallel to the X1-axis. It is noted that the
magnitude of B̃r may change along the X1-axis, however, the unit
vector along its direction may be e1 or −e1. The residual magnetic
flux density Br on the deformed beam is considered to be tangent
to the deformed centerline, and the permeability of the beam is
approximated by that of the free space.

Under the assumptions described above, Zhao et al. [26]
showed that the Maxwell equations of the form (see, e.g., [53])

CurlH = 0, DivB = 0, (1)

are satisfied in HMSMs. Here, H and B are the referential mag-
netic field and the magnetic flux density, respectively. More-
over, Curl and Div are the curl and divergence operators in the
reference configuration.

In this work, to describe the kinematics of deformation, the
following 3-parameter mapping is considered (e.g., [54,55]):

x = x̂(X, t) = x0(X1, t) + X2d(X1, t), d = − sinψe1 + cosψe2,
(2)

where x0 and d are the position vector on the deformed cen-
terline and the director vector, respectively. The director d is a
unit vector obtained by the rotation ψ of the beam cross-section
about the X3-axis. Motivated by the motion field, the centerline
displacement vector u is defined as u = x0 − X0 = uαeα ,
where X0 = X1e1 is the initial position vector of the material
points on the undeformed centerline. It is noted that the functions
{u1, u2, ψ} are the three unknown parameters of the present
beam formulation. From Eq. (2) the deformation gradient tensor
F, in the X1X2 plane, may be written as

F = Gradx =
∂xα
∂Xβ

eα ⊗ eβ = F(0) + X2F(1), (3)

where the second-order tensors F(0) and F(1) are given by

F(0) = (1 + u′

1)e1 ⊗ e1 − sinψe1 ⊗ e2

+u′

2e2 ⊗ e1 + cosψe2 ⊗ e2
(1) ′

⎫⎪⎬⎪⎭ . (4)
F = −ψ (cosψe1 ⊗ e1 + sinψe2 ⊗ e1)
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t is noted that the notation {•}
′
= ∂{•}/∂X1 is used throughout

he paper. From Eq. (4), the determinant of the deformation
radient is given by

= det F = J (0) + X2J (1) with J (0) = det F(0) and J (1) = −ψ ′.

(5)

For later use, the quantities J−1, J−2, and F−⊤ are approximated
in the following forms:

J−1
≈ J̃ (0) + X2 J̃ (1), J−2

≈ Ĵ (0) + X2 Ĵ (1), F−⊤
≈ F̃

(0)
+ X2F̃

(1)
,

(6)

where J̃ (I), Ĵ (I), and F̃
(I)

(I = 0, 1) are given by

J̃ (0) = J (0)−1, J̃ (1) = −J (0)−2J (1), Ĵ (0) = J (0)−2

Ĵ (1) = −2J (0)−3J (1), F̃
(0)

= F(0)−⊤, F̃
(1)

= −F̃
(0)
F(1)⊤F̃

(0)

}
. (7)

he kinematic quantities defined in this section will be employed
n the subsequent developments.

. A viscoelasticity formulation for hard-magnetic soft mate-
ials

One of the most well-known viscoelasticity theories, widely
sed in the literature and Finite Element (FE) packages, has been
eveloped by Simo [56]. In this section, a simple generaliza-
ion of Simo’s theory to model hard-magnetic soft materials is
eveloped. In the first step, a viscoelasticity formulation for three-
imensional HMSMs is developed. In the next step, the formula-
ion is specialized to HMS beams.

.1. Viscoelasticity formulation for HMSMs in 3-space

To start the formulation for the three-dimensional viscoelastic
MSMs, a rheological model as displayed in Fig. 2 is considered.
asically, a magnetic branch is added to the traditional general-
zed Maxwell model with a single elastic equilibrium branch and
v viscoelastic ones. Let K∞ be the stiffness of the equilibrium
ranch, and K e

I and ηI be the stiffness and damping of the I ’th
iscoelastic one, respectively. As has been shown on Fig. 2, u(t) is

the total displacement of the system, and αI (t) (I = 1, 2, . . . ,Nv)
denotes the displacement of dampers. From the figure, the total
force P acting on the rheological model is given by

P = PMag
+ P∞

+

Nv∑
I=1

Pe
I = PMag

+ Pe0
−

Nv∑
I=1

QI , (8)

where PMag is the magnetic force, P∞
= K∞u is the force on

the pure elastic branch, Pe
I = K e

I (u − αI ) = K e
I u − QI is the

force on the I ’th viscoelastic branch, and QI = K e
I αI is considered

to be the internal variable of the formulation. Moreover, with
K 0

= K∞
+

∑Nv
I=1 K

e
I , the quantity Pe0

= K 0u is the total elastic
force at the outset of deformation. It is noted that the elastic force
Pe0 can be derived from a pure mechanical potential function of
the form UMech

=
1
2K

0u2, namely Pe0
= dUMech/du.

The evolution equation for the damper displacement αI is
obtained by equating the action and reaction force between the
spring and damper in the I ’th viscoelastic branch, namely ηα̇I =

e
I (u − αI ). By multiplying both sides of this relation by K e

I it
ollows that the evolution equation in terms of QI is given by

˙ I +
1
Q =

K e
I u =

gI Pe0, gI =
K e
I
0 ≥ 0, τI =

ηI
e . (9)
τI τI τI K KI
f

3

Fig. 2. One dimensional rheological model of the viscoelastic formulation.

ere, τI is the relaxation time of the I ’th branch. By assuming zero
orces and displacements as t → −∞, the exact solution for QI
urnishes

I (t) =
gI
τI

∫ t

−∞

exp(
ξ − t
τI

)Pe0(ξ )dξ

= gI

(
Pe0(ξ ) −

∫ t

−∞

exp(
ξ − t
τI

)
d
dξ

Pe0(ξ )dξ
)
,

(10)

here use has been made of integration by parts in the last
quality. By substituting Eq. (10) into (8) it follows that the total
orce reads

= PMag
+

∫ t

−∞

g(t − ξ )
d
dξ

Pe0(ξ )dξ with

g(t) = g∞ +

Nv∑
I=1

gI exp
(−t
τI

)
.

(11)

Here, g∞ = K∞/K 0, and g(t) is the often referred to as the
relaxation function. Clearly, the relation g∞ +

∑Nv
I=1 gI = 1 holds.

Before generalizing the rheological model to HMSMs, it is
noted that the deformation gradient F∗ can be multiplicatively
decomposed into the dilatational part F∗

V and the isochoric one
F̄∗

as follows (e.g., [57]):

F∗
= F∗

V F̄
∗

with F̄∗
= J∗−

1
3 F∗, and F∗

V = F∗F̄∗−1
, (12)

here J∗ = det F∗. From Eq. (12), straightforward calculations
eads to the following relations:

∂ F̄∗

∂F∗
= J

∗
−

1
s Z∗Dev with Z∗Dev

= I∗
−

1
3
F∗−⊤

⊗ F∗ or

Z∗Dev
ijpq = I∗

ijpq −
1
3
F∗−⊤

ij F∗

pq.

(13)

Here, I∗ is a fourth-order tensor whose components are I∗

ijpq =

δ∗

ipδ
∗

jq, and δ
∗

ip is the three-dimensional Kronecker delta. Motivated
by the expression for Z∗Dev, it is possible to define the fourth-
order tensor Z∗Vol, and the deviatoric and volumetric parts of a
two-point second-order tensor T∗ as follows:

Z∗Vol
= I∗

− Z∗Dev
=

1
3
F∗−⊤

⊗ F∗,

T∗Dev
= Z∗Dev :T∗

= T∗
−

1
3
(T∗ :F∗)F∗−⊤

T∗Vol
= Z∗Vol :T∗

=
1
3
(T∗ :F∗)F∗−⊤,

T∗Dev
+ T∗Vol

= I∗ :T∗
= T∗

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (14)

oreover, the relations (T∗Vol)Dev = Z∗Dev :T∗Vol
= 0 and

(T∗Dev)Vol = Z∗Vol :T∗Dev
= 0 are valid. The relations expressed

n Eqs. (13) and (14) play central roles in the present viscoelastic

ormulation.
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Now, the free energy per unit reference volume of an HMSM
as the summation of the mechanical and magnetic contributions
is considered, namely [26]

Ψ = ΨMech
+ ΨMag, ΨMech(F∗) = Θ(J∗) + Ψ Dev(F̄∗

), (15)

here the mechanical contribution ΨMech is expressed as the
ummation of the volumetric part Θ(J∗) and the deviatoric one
Dev(F̄∗

). Following Zhao et al. [26], the magnetic part of the free
energy density is considered to be

ΨMag
= −

1
µ0

F∗B̃∗r
· B∗ext, (16)

here µ0 = 4π × 10−7 N
A2

is the magnetic permeability of
the free space. From Eqs. (15) and (16), the instantaneous first
Piola–Kirchhoff stress P∗ins reads

∗ins
=
∂Ψ

∂F∗
= P∗Mech

+ P∗Mag with P∗Mech
= P∗Vol

+ P∗Dev.

(17)

Here, P∗Vol, P∗Dev, and P∗Mag are, respectively, the volumetric,
deviatoric, and magnetic part of the stress, and are given by

P∗Vol
=
∂Θ

∂F∗
= f1(J∗)F∗−⊤, P∗Dev

=
∂Ψ Dev

∂F∗
= J∗−

1
3 P̄∗Dev

P∗Mag
=
∂ΨMag

∂F∗
= −

1
µ0
B∗ext

⊗ B̃∗r

⎫⎪⎪⎬⎪⎪⎭ , (18)

here f1(J∗) = J∗dΘ/dJ∗ and P̄∗
= ∂Ψ Dev(F̄∗

)/∂ F̄∗
. Obviously, the

elations P∗Dev
= Z∗Dev :P∗Mech and P∗Vol

= Z∗Vol :P∗Mech hold.
dditionally, as a consequence of the form of the magnetic part of
ree energy density, ΨMag, the magnetic part of the stress, P∗Mag,
s independent of X2.

Next, the continuum body is assumed to be stress-free as t →

∞. Motivated by the expression for the total force in Eq. (11),
he term Pe0 must be replaced by P∗Mech. On the other hand,
ased on experimental observations only the deviatoric part of
tress contributes to the convolution integral (e.g., Simo [56]).
onsequently, from Eq. (11), the expression for the viscoelastic
irst Piola–Kirchhoff stress takes the form

∗
= P∗Mag

+ P∗Vol
+

∫ t

−∞

g(t − ξ )
∂

∂ξ
P∗Dev(X, ξ )dξ

= P∗Mag
+ P∗Vol

+ g∞P∗Dev
+

Nv∑
I=1

gIY∗

I (X, t),
(19)

where the second-order tensor Y∗

I (X, t) is defined by

Y∗

I (X, t) =

∫ t

−∞

exp
(
ξ − t
τI

)
∂

∂ξ
P∗Dev(X, ξ )dξ . (20)

Following straightforward manipulations (e.g., [56,58]), a re-
ursive formula for Y∗

I (X, t) at the discrete time t = tn+1 is given
by

Y∗

I (X, tn+1) = exp
(

−∆t
2τI

)[
P∗Dev(X, tn+1) − P∗Dev(X, tn)

]
+ exp

(
−∆t
τI

)
Y∗

I (X, tn),
(21)

where ∆t = tn+1 − tn is the time increment. Now, by substituting
Eq. (21) into (19) the expression for the stress P∗(X, t) at t = tn+1
is obtained. Moreover, the consistent fourth-order tensor A∗ is
obtained by differentiating the viscoelastic stress P∗ with respect
to the deformation gradient F∗ at the time tn+1. Accordingly, from
Eqs. (19) and (21) it follows that

A∗
=
∂P∗

∗

⏐⏐⏐⏐ = A∗Vol
+ g̃(∆t)A∗Dev, (22)
∂F tn+1

4

The expressions for the fourth-order tensors A∗Vol
=

∂P∗Vol/∂F∗)tn+1 and A∗Dev
= (∂P∗Dev/∂F∗)tn+1 , and the algorith-

ic relaxation function g̃(∆t) are given by
∗Vol

= f2(J∗)F∗−⊤
⊗ F∗−⊤

− f1(J∗)F∗−⊤ ⊠ F∗−⊤, (23)

∗Dev
=

1
3

{
J∗−

1
3 [(F∗ : P̄∗

)F∗−⊤ ⊠ F∗−⊤
− F∗−⊤: P̄∗

] − P∗Dev
⊗ F∗−⊤

+ J∗−
2
3 [(F∗ ⊠ F∗) : :Ā∗F∗−⊤

⊗ F∗−⊤

− (F∗−⊤ ⊠ F∗) :Ā∗
+ 3Ā∗ :P∗Dev]

}
,

(24)

g̃(∆t) = g∞ +

N∑
I=1

gI exp
(

−∆t
2τI

)
, (25)

where f2(J∗) = f1(J∗) + J∗2d2Θ/dJ∗2 and Ā∗
= ∂P̄∗

/∂ F̄∗
=

∂2Ψ Dev/∂ F̄∗
∂ F̄∗

. It is noted that in deriving Eqs. (23) and (24) use
has been made of the relation ∂F∗−⊤/∂F∗

= −F∗−⊤ ⊠ F∗−⊤.
The three-dimensional viscoelasticity formulated in this sub-

section is specialized to planar HMS beams in the next subsection.

3.2. Viscoelasticity formulation for HMS beams

Hard-magnetic soft materials are considered to be incom-
pressible or quasi-incompressible in the literature (e.g., [26]). For
the case of beams deforming in the X1X2 plane, it is possible to
enforce the plane stress condition and the incompressibility con-
straint simultaneously. To do so, it is noted that the deformation
gradient tensor F in Eq. (3) is the two-dimensional version of the
tensor F∗ in 3-space, given by

F∗
= F + λ3e3 ⊗ e3, J∗ = det F∗

= λ3 det F = λ3J. (26)

where λ3 is the stretch in the X3 direction. The incompressibility
of HMSMs leads to

J∗ = 1, λ3 = J−1. (27)

On the other hand, for the case of isotropic materials, the me-
chanical part of the free energy may be written as (e.g., [57])

ΨMech(F∗) = Ψ Dev(I∗1 , I
∗

2 ) − p(J∗ − 1), (28)

where I∗1 = trC∗ and I∗2 =
1
2 (I

∗2
1 − trC∗2) are the first two invari-

nts of the three dimensional right Cauchy–Green deformation
∗

= F∗⊤F∗, and p is a Lagrange multiplier, which is often re-
erred to as the hydrostatic pressure. By differentiating the latter
quation with respect to F∗, the mechanical part of the stress
ensor is calculated. After adding the magnetic part of stress, it
s possible to calculate the hydrostatic pressure p via the plane
tress condition. As an example, for the case of incompressible neo-
ookean materials, the mechanical part of strain energy density is
iven by Ψ Dev(I∗1 , I

∗

2 ) =
1
2µ(I

∗

1 −3). Accordingly, the instantaneous
first Piola–Kirchhoff stress takes the form

P∗ins
= P∗Dev

+ P∗Vol
+ PMag with P∗Dev

= µF∗ and

P∗Vol
= −pF∗−⊤.

(29)

oreover, PMag
= −

1
µ0
Bext

⊗B̃r is the magnetic part of the stress
n the X1X2 plane. It is noted that in the present formulation, since
Bext and B̃r lie in the X1X2 plane, the magnetic stress PMag does
not contribute in the X3 direction.

For the case of pure elastic deformations, the plane stress
condition P∗ins

33 = 0 results in the following expression for the
hydrostatic pressure p, and the volumetric and deviatoric parts
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f the stress in the X1X2 plane:

= µλ23 = µJ−2, PVol
= −µJ−2F−⊤, PDev

= µF. (30)

owever, for the case of viscoelastic deformations, the hydro-
tatic pressure p at the time t = tn+1 can be found by enforcing
the plane stress condition P∗

33 = 0 in Eq. (19). Accordingly,
using Eqs. (21) and (27), and after a lengthy but straightforward
manipulations, the hydrostatic pressure p may be written as

(X, tn+1) = α1J−2
+ α2(J−2

− J−1J−1(n)) + α3J−1, (31)

here the superscript (n) denotes the underlying quantity at the
time t = tn. Moreover, the quantities denoted by αS (S = 1, 2, 3)
are defined by

α1 = µg∞, α2 = µ

Nv∑
I=1

gI exp
(

−∆t
2τI

)
,

3 =

Nv∑
I=1

gIY
∗(n)
I33 exp

(
−∆t
τI

)
,

(32)

here Y ∗(n)
I33 is the 33 component of the tensors Y∗

I at the time tn.
ow, the expressions for the fourth-order tensors AVol and ADev

n the two-dimensional space take the form
Vol

= qF−⊤
⊗ F−⊤

+ pF−⊤ ⊠ F−⊤, ADev
= µI. (33)

ere, I is the two-dimensional version of the fourth-order tensor
∗ defined after Eq. (13). Moreover, the function q in Eq. (33)1 is
iven by

= −
∂p
∂ J

= 2α1J−2
+ α2(2J−2

− J−1J−1(n)) + α3J−1. (34)

Based on Eqs. (3), (5), (6), (18)–(24), and (31)–(34), it is pos-
sible to approximate any generic member Φ in the set S =

{α3, p, q, PVol, PDev,A} in the following form:

Φ ≈ Φ(0)
+ X2Φ

(1) for Φ ∈ S. (35)

In particular, from PDev
≈ PDev(0)

+ X2PDev(1) and Eq. (20), the
approximation YI ≈ Y(0)

I + X2Y
(1)
I (I = 1, 2, . . . ,Nv) is deduced.

This allows one to write α3 ≈ α
(0)
3 +X2α

(1)
3 . Similarly, approxima-

tions for PVol, PDev, and YI , beside the expression of the magnetic
stress PMag, leads to the relation P ≈ P(0)

+ X2P(1) for the planar
viscoelastic first Piola–Kirchhoff stress tensor. In particular, for
the incompressible neo-Hookean materials one obtains

p(0) = α1 Ĵ (0) + α2(Ĵ (0) − J̃ (0) J̃ (0)(n)) + α
(0)
3 J̃ (0)

p(1) = α1 Ĵ (1) + α2(Ĵ (1) − J̃ (0) J̃ (1)(n) − J̃ (1) J̃ (0)(n)) + α
(1)
3 J̃ (0) + α

(0)
3 J̃ (1)

}
,

(36)

q(0) = 2α1 Ĵ (0) + α2(2Ĵ (0) − J̃ (0) J̃ (0)(n)) + α
(0)
3 J̃ (0)

q(1) = 2α1 Ĵ (1) + α2(2Ĵ (1) − J̃ (0) J̃ (1)(n) − J̃ (1) J̃ (0)(n)) + α
(1)
3 J̃ (0) + α

(0)
3 J̃ (1)

}
,

(37)

PDev(0)
= µF(0), PDev(1)

= µF(1), (38)

PVol(0)
= −p(0)F̃

(0)
, PVol(1)

= −(p(0)F̃
(1)

+ p(1)F̃
(0)
), (39)

A(0)
= µg̃I + q(0)F̃

(0)
⊗ F̃

(0)
+ p(0)F̃

(0)
⊠ F̃

(0)
, (40)

A(1)
=q(0)(F̃

(0)
⊗ F̃

(1)
+ F̃

(1)
⊗ F̃

(0)
) + p(0)(F̃

(0)
⊠ F̃

(1)
+ F̃

(1)
⊠ F̃

(0)
)

+ q(1)F̃
(0)

⊗ F̃
(0)

+ p(1)F̃
(0)

⊠ F̃
(0)
,

(41)
5

where use has been made of Eq. (22). The consistent tangent
tensor A and its expression of the form A ≈ A(0)

+ X2A(1) will
be used in the next section for constructing the material part of
the element stiffness matrix in the FE formulation.

Remark. It is worthwhile to mention that by setting gI = 0
(I = 1, 2, . . . ,Nv), or equivalently g∞ = 1, in the formulation
developed above, the non-equilibrium viscoelastic effects disap-
pear and the formulation for magneto-hyperelastic HMS beams is
retrieved.

4. FE formulation

In this section, a finite element formulation for the numerical
analysis of viscoelastic HMS beams in the Lagrangian framework
is developed. The deformation is time-dependent and quasi-static
so that the inertia effects are neglected.

The main tool for developing the formulation is the virtual
work principle, namely δU = δW [55]. Here, δU and δW are
the virtual internal energy and the virtual work of external loads,
respectively. To start the formulation, the beam in the reference
configuration is discretized into NE elements, and a typical ele-
ment ΩE is considered. It is assumed that the element contains
NN nodes with u1, u2, and ψ as its degrees of freedom. The field
variables {u1, u2, ψ} are interpolated as follows:

{u1, u2, ψ} =

NN∑
I=1

NI{UI , VI ,ΨI}, (42)

where NI is the I ’th shape function and that {UI , VI ,ΨI} are the
nodal values of the fields {u1, u2, ψ} at the I ’th node. The virtual
internal energy of the typical element, denoted by δUE , may be
written as

δUE
=

∫
V
ΩE

P :δFdV =

∫
L
ΩE

3∑
S=1

δE(S)⊤P(S)dX1, (43)

where VΩE and LΩE are the volume and length of the typical
element. Moreover, the vector-like quantities E(S) and P(S) (S =

1, 2, 3) are defined by

E(1)
=

{
1 + u′

1
cosψ

}
, E(2)

=

{
− sinψ

u′

2

}
, E(3)

=

{
−ψ ′ cosψ
−ψ ′ sinψ

}
,

(44)

P(1)
= Ã

{
P (0)
11

P (0)
22

}
, P(2)

= Ã
{
P (0)
12

P (0)
21

}
, P(3)

= Ĩ
{
P (1)
11

P (1)
21

}
, (45)

where Ã and Ĩ are the cross-sectional area and the moment of
inertia of the beam cross-section about the X3-axis, respectively.
Using Eqs. (42) and (44), the expressions for δE(S) (S = 1, 2, 3)
may be written in the following discretized form:

δE(S)
=

NN∑
I=1

B
(S)
I δUI . (46)

Here, δUI = {δUI , δVI , δΨI}
⊤ represents the virtual generalized

displacement of the I ’th node. Additionally, the 2 × 3 matrices
B

(S)
I (S = 1, 2, 3) have the following nonzero components:

(B(1)
I )11 = N ′

I , (B(1)
I )23 = −NI sinψ,

(B(2)
I )13 = −NI cosψ, (B(2)

I )22 = N ′

I

(B(3)
I )13 = NIψ

′ sinψ − N ′

I cosψ,
(3) ′ ′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (47)
(BI )23 = −NIψ cosψ − NI sinψ
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By substituting Eq. (46) into (43) it follows that the discretized
form of δUE may be written as

δUE
=

NN∑
I=1

δU⊤

I F
int
I with Fint

I =

3∑
S=1

∫
L
ΩE

δB(S)⊤P(S)dX1. (48)

ere, Fint
I is the internal force vector on the I ’th node. Next, the

virtual external work δWE on the typical element may be written
as

δWE
=

∫
Le
(q̃1δu1 + q̃2δu2 + q̃3δψ)dX1

+

NN∑
I=1

(Q̃1IδUI + Q̃2IδVI + Q̃3IδΨI ),
(49)

where q̃1 denotes the force per unit length in X1 direction, q̃2
is the force per unit length in X2 direction and q̃3 presents the
bending moment per unit length around X3-axis. Also, Q̃1I stands
for the point force in X1 direction, Q̃2I represents the point force
n X2 direction, and Q̃3I designates the concentrated bending
oment around the X3-axis acting on the I ’th node of the typical
lement. Using Eq. (42), adopted for the virtual field variables, it
s possible to express δWE in the following form:

WE
=

NN∑
I=1

δU⊤

I F
ext
I with Fext

I = Q̃I +

∫
L
ΩE

NI q̃dX1. (50)

ere, Fext
I represents the external force vector acting on the I ’th

ode. Moreover, the definitions q̃ = {q̃1, q̃2, q̃3}⊤ and Q̃I =

Q̃1I , Q̃2I , Q̃3I}
⊤ have been used. Substituting Eqs. (48) and (50)

into the virtual work principle, the system of nonlinear algebraic
equations R = Fint

−Fext
= 0 is obtained. Here, Fint and Fext are,

respectively, the assembled internal and external force vectors,
and R is the assembled residual vector of the typical element. To
solve the system of equations via the Newton–Raphson method,
it is essential to obtain the linearized form of the equations.
Accordingly, the increment of the virtual internal energy of the
typical element furnishes

∆δUE
=

∫
V
ΩE

δF :∆PdV +

∫
V
ΩE

∆δF :PdV

=

∫
V
ΩE

δF :A :∆FdV +

∫
L
ΩE

3∑
S=1

∆δE(S)⊤P(S)dX1.

(51)

Employing Eqs. (3) and (35), the first integrand in Eq. (51) may
be written as

δF :A :∆F = δF(0) :A(0) :∆F(0)

+ X2[δF(0) : (A(0) :∆F(1) + A(1) :∆F(0)) + δF(1) :A(0) :∆F(0)]
+ X2

2 [δF(0) :A(1) :∆F(0) + δF(1) : (A(0) :∆F(1) + A(1) :∆F(0))].

(52)

onverting this equation into matrix form and integrating over
he cross-sectional area of the element leads to the following
xpression for the third integral in Eq. (51):

V
δF :A :∆FdV =

NN∑ NN∑
δU⊤

I K
mat
IJ ∆UJ , (53)
ΩE I=1 J=1

6

where Kmat
IJ is the IJ ’th block of the material stiffness matrix as

follows:

Kmat
IJ =

∫
L
ΩE

B
(1)
I [Ã(A(1)B

(1)
J +A(2)B

(2)
J ) + ĨA(3)B

(3)
J ]dX1

+

∫
L
ΩE

ĨB(3)
I (A(4)B

(1)
J +A(5)B

(2)
J +A(6)B

(3)
J )dX1

+

∫
L
ΩE

B
(2)
I [Ã(A(7)B

(1)
J +A(8)B

(2)
J ) + ĨA(9)B

(3)
J ]dX1.

(54)

ere, the 2 × 2 matrices A(S) (S = 1, 2, . . . , 9) are given by

A(1)
=

[
A(0)

1111 A(0)
1122

A(0)
2211 A(0)

2222

]
,A(2)

=

[
A(0)

1112 A(0)
1121

A(0)
2212 A(0)

2221

]
,

A(3)
=

[
A(1)

1111 A(1)
1121

A(1)
2211 A(1)

2221

]
A(4)

=

[
A(1)

1111 A(1)
1122

A(1)
2111 A(1)

2122

]
,A(5)

=

[
A(1)

1112 A(1)
1121

A(1)
2112 A(1)

2121

]
,

A(6)
=

[
A(0)

1111 A(0)
1121

A(0)
2111 A(0)

2121

]
A(7)

=

[
A(0)

1211 A(0)
1222

A(0)
2111 A(0)

2122

]
,A(8)

=

[
A(0)

1212 A(0)
1221

A(0)
2211 A(0)

2221

]
,

A(9)
=

[
A(1)

1211 A(1)
1221

A(1)
2111 A(1)

2121

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (55)

On the other hand, the latest integral in Eq. (51) leads to∫
L
ΩE

3∑
S=1

∆δE(S)⊤P(S)dX1 =

NN∑
I=1

NN∑
J=1

δU⊤

I K
geo
IJ ∆UJ , (56)

where Kgeo
IJ is the IJ ’th block of the geometric stiffness matrix,

given by

K
geo
IJ = M

∫
L
ΩE

(β1 + β2 + β3)dX1. (57)

Here, M is a 3 × 3 matrix the only nonzero component of which
is M33 = 1. Moreover, the scalar functions βI (I = 1, 2, 3) are as
follows:

β1 = −P (1)
2 cosψNINJ ,

β2 = P (2)
1 sinψNINJ

β3 = (P (3)
1 sinψ − P (3)

2 cosψ)(N ′

INJ + NIN ′

J )

+ (P (3)
1 cosψ + P (3)

2 sinψ)NINJ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (58)

where P (S)
I (S = 1, 2, 3, I = 1, 2) is the I ’th component of

P(S) defined in Eq. (45). Accordingly, the IJ ’th block of the ele-
ment stiffness matrix becomes KE

IJ = Kmat
IJ + K

geo
IJ . Finally, after

performing the assembly procedure, a linear algebraic equation
of the form K∆ũ = −R is obtained, which is solved for the
incremental assembled generalized displacement vector ∆ũ.

5. Numerical examples

In this section, to examine the performance of the present
formulation, several numerical examples are solved. To do so,
a home-written FE code based on the formulation developed
in the previous sections has been provided. In all simulations,
beam elements with three nodes, and three DOFs {u1, u2, ψ}

at each node, are employed. Additionally, the quasi-static shear
modulus is considered to be µ = 303 kPa, and the material is
assumed to be fully incompressible. Furthermore, all beams under
consideration have constant rectangular cross-sections, and the
width of all cross-sections is 5 mm.
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Fig. 3. Convergence of the lateral deflection vs. the number of elements (a), the nondimensional tip deflection uT
2/L versus the nondimensional load parameter
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Table 1
Beam dimensions, number of elements and load steps, and the maximum lateral
deflection under the applied magnetic induction Bext

= 50e2 (mT)
L (mm) h (mm) AR =

L
h NElements NLoad steps uT

2conv (mm)

11 1.1 10 15 10 8.1782

19.2 1.1 ≈ 17.5 20 10 16.6101

17.2 0.84 ≈ 20.5 26 20 15.2407

17.2 0.42 ≈ 41 38 30 16.2617

5.1. Elastic bending of cantilever beams under a magnetic loading
with ϕ = π/2

In this example, finite elastic bending of cantilever beams
nder an external magnetic flux perpendicular to the undeformed
eams is investigated. This example has been previously studied
umerically and experimentally in [26,44]. Here, it is shown
hat the present formulation can generate the results previously
eported in the literature.

Four cantilever beams with the dimensions indicated in Ta-
le 1 are considered. The aspect ratio ‘‘AR’’ is defined as the ratio

of the length L over the thickness h of the beams. The referential
esidual magnetic flux density is considered to be B̃r

= 0.143 e1
(T). The beams are subjected to the external magnetic flux density
of the form Bext

= |Bext
|e2. In other words, the angle ϕ in Fig. 1

s considered to be π/2. The value of |Bext
| varies gradually from

to |Bext
max| = 50 mT for the four beams.

Convergence of the maximum lateral deflection versus the
umber of elements is displayed in Fig. 3(a). The relative error
s defined as |uT

2 − uT
2conv| × 100/uT

2conv. Here, u
T
2 is the lateral

eflection at the beam tip, and uT
2conv is the converged value. Ac-

ordingly, the minimum number of elements and the converged
alues of lateral deflections are provided in the table.
Variation of the nondimensional tip deflection uT

2/L against the
nondimensional load parameter 1

µµ0
|Bext

||B̃r
| × 103 is demon-

trated in Fig. 3(b). It is observed that the results based on the
present formulation are almost coincident with those obtained
in [26]. The deformed shapes of the beams at ten load steps,
when the magnitude of the applied flux density is of the form
|Bext

| =
S
10 |B

ext
max| (S = 1, 2, . . . , 10), are illustrated in Fig. 4(a–d).

It is noted that the slender beam with AR = 41 exhibits very large
deformations even for small values of the applied flux density. For
7

example, as is observed from Fig. 4(d), under |Bext
| = 5 mT, the

lateral deflection in this beam is about 0.8L.

5.2. Elastic bending of cantilever beams under an anti-parallel mag-
netic loading (ϕ = π)

In this example, finite elastic bending of two cantilever beams
under an external magnetic loading of the form Bext

= −|Bext
|e1

(namely ϕ = π ) is investigated. The cantilever beams under study
are those with the aspect ratios AR = 20.5 and AR = 41 whose
eometric data have been already provided in Table 1. Once more,
he referential residual magnetic flux density is given by B̃r

=

.143 e1 (T). The magnitude of the magnetic loading, |Bext
|, varies

radually from 0 to 40 mT. Deformation of the beam with AR =

0.5 has been modeled numerically and experimentally by Zhao
t al. [26].
Convergence of the lateral tip deflection versus the number of

lements is depicted in Fig. 5(a). It is observed that the minimum
umber of elements in the beams with AR = 20.5 and AR = 41
s NE = 35 and NE = 40, respectively. The number of load steps
in both simulations is NLS = 80. Moreover, for the mentioned
beams, the final value of the lateral tip deflection is obtained to
be 7.8952 and 3.9550 (mm), respectively.

As shown in Fig. 5(a), the angle between the tangent line to
the tip of the deformed beam and the X1-axis is denoted by θ . The
nondimensional tip deflection uT

2/L and the normalized angle θ/π
versus the nondimensional loading parameter 1

µµ0
|Bext

||B̃r
|×103

are displayed in Fig. 5(b). It is observed that the results of the
present formulation for the beam with AR = 20.5 are in good
agreement with those obtained by Zhao et al. [26]. The deformed
shapes of the beams at 40 load steps, when the magnitude of
the applied flux density is of the form |Bext

| =
S
40 |B

ext
max| (S =

, 2, . . . , 40), is illustrated in Fig. 6.

5.3. Viscoelastic deformation of a HMS cantilever beam with con-
stant B̃r

In this example, the time-dependent response of the HMS
cantilever beam with AR = 20.5, considered in the previous
examples, is investigated. Similar to the previous two examples,
the constant referential residual magnetic flux density B̃r

=

0.143 e1 (mT) is considered along the beam. To model the viscous
effects, a viscoelastic branch in addition to the pure elastic one
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Fig. 4. Deformed shapes of the cantilever beams under Bext
= |Bext

|e1 corresponding to |Bext
| = 5S (mT, S = 1, 2, . . . , 10).
Fig. 5. Convergence of the lateral deflection vs. the number of elements (a), the nondimensional tip deflection uT
2/L and the normalized angle θ/π vs. the

nondimensional load parameter 1
µµ0

|Bext
||B̃r

| × 103 (b).
N

s considered. The external magnetic loading of the form Bext
=

Bext
|e2 is applied to the beam. The magnitude of the magnetic

loading, |Bext
|, varies linearly from 0 to 50 (mT) in 2 seconds.

t is then held fixed to observe the creep response of the HMS
eam. In all simulations, the time increment for the loading stage
s ∆t = 0.1 s and that of the creeping stage is ∆t = 0.5 s.

Two different cases are considered. In the first case, the re-
axation time is considered to be τ = 5 s and the deformation
8

is simulated for tmax = 10 seconds. Therefore, in this case, the
total number of load steps is 36. Convergence of the lateral tip
deflection versus the number of elements, for several values of
the nondimensional long term shear modulus g∞, is displayed in
Fig. 7(a). It is noted that the case g∞ = 1 models the pure elastic
deformation of the beam. From the figure, it is observed that the
minimum number of elements to model all cases is NE = 30.
ext, three material points TI (I = 1, 2, 3) located at the position
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Fig. 6. Deformed shapes of the cantilever beams with AR = 20.5 and AR = 41 under Bext
= −|Bext

|e1 corresponding to |Bext
| = S (mT, S = 1, 2, . . . , 40).
Fig. 7. Convergence of the lateral deflection vs the number of elements (a), time history of the lateral deflection at the points TI (I = 1, 2, 3) for τ = 5 s and various
alues of g∞ ∈ {0.7, 0.8, 0.9, 1.0} (b).
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1I =
1
3 IL on the beam centerline are considered. Time history of

he nondimensional lateral deflection u2/L at the material points
I , for different values of g∞ ∈ {0.7, 0.8, 0.9, 1.0}, is depicted
n Fig. 7(b). As can be seen from the figure, for small values
f g∞, which are equivalent to larger viscous effects, the lateral
eflection is smaller than that of pure elastic deformation. This
ndicates that the viscous branch increases the resistance of the
aterial to deformation, which is a well-known phenomenon in
iscoelastic deformations (e.g., [59–61]). On the other hand, it is
bserved that for large values of time, viscoelastic effects vanish
nd the results based on all values of g∞ converge to that of the
ure elastic deformation corresponding to g∞ = 1.
For the second case of simulations, it is assumed that g∞ =

.7, and the deformation is modeled for several values of the re-
axation time τ . To observe the difference between the curves, the
aximum time is considered to be tmax = 4 seconds. Time history
f the nondimensional lateral deflection u2/L at the material
oints TI (I = 1, 2, 3), for different values of τ , is demonstrated in
ig. 8(a). From the figure, it is observed that the viscous effects are
arger for larger values of the relaxation time τ . This means that
or small values of τ , viscoelastic effects vanish rapidly. In con-
rast, more time is needed to diminish the viscous effects if the re-
axation is a large value, which is a widely-observed experimental
henomenon of typical viscoelastic polymers, see [62].
Finally, the deformed shapes of the beam, for g∞ = 0.7, τ = 5

, and at several load steps are illustrated in Fig. 8(b). For the
oading stage with t ∈ [0, 2] s, the 11 curves corresponding to t =

.1 s and t = 0.2S (S = 1, 2, . . . , 10) are displayed in the figure.
 t

9

oreover, for the creeping stage, the curves corresponding to
= 5 and t = 10 s are included in the figure. Based on the above-
entioned explanations, the deformed shape corresponding to
= 10 s is approximately equivalent to the final deformed shape
f the beam in pure elastic deformation as displayed in Fig. 4(c).

.4. Viscoelastic deformation of an HMS cantilever beam with vari-
ble B̃r along the beam

In this example, the time-dependent response of an HMS
antilever with variable residual magnetic flux is studied. The
ength and height of the beam are considered to be L = 18 and
h = 0.5 (mm), respectively. For the referential residual magnetic
flux density, shown in Fig. 9(a), it is assumed that B̃r

= 0.143 e1
(mT) for X1 ∈ [0, 1

3 L) ∪ ( 23 L, L], and B̃r
= −0.143 e1 (mT) for

1 ∈ [
1
3 L,

2
3 L]. It is noted that this is an idealized assumption.

From the practical point of view, there has to be a small gap
between magnetic poles of the same name, which is assumed to
be zero in the present work.

The maximum applied magnetic flux density, loading history,
relaxation times, and loading cases are exactly the same as those
explained in the previous example.

For the first case of loading, the convergence of the lateral tip
deflection versus the number of elements is depicted in Fig. 9(a).
Accordingly, to capture the beam deformation for various values
of the nondimensional long term shear modulus g∞, the mini-
um required number of elements is NE = 45. Time history of

he nondimensional lateral deflection u /L at the material points
2
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Fig. 8. Time history of the lateral deflection at the material points TI (I = 1, 2, 3) for g∞ = 0.7 and various values of τ ∈ {1, 5, 10, 30} s (a), deformed shapes of the
eam at different times t ∈ {0.1, 0.2S, 5, 10} s, (S = 1, 2, . . . , 10, g∞ = 0.7, τ = 5 s) (b).
Fig. 9. Convergence of the lateral deflection vs the number of elements (a), time history of the lateral deflection at the points TI (I = 1, 2, 3) for τ = 5 s and various
alues of g∞ ∈ {0.7, 0.8, 0.9, 1.0} (b).
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I (I = 1, 2, 3), for several values of g∞, is displayed in Fig. 9(b).
n this specific example, the lateral deflection u2 of the material
oint T1, initially located at X1 =

1
3 L, is an ever-increasing

unction of time. For this point, the magnitude of u2 increases
y increasing the value of g∞. Once more, it is observed that the
ateral deflection decreases by increasing the viscoelastic effects.
or large values of the time t , all curves coincide with that of the
ure elastic deformation corresponding to g∞ = 1.
Next, by considering g∞ = 0.7, deformation of the beam

nder various values of the relaxation time τ is studied. Variation
f the nondimensional lateral deflection u2/L vs time at the
aterial points TI (I = 1, 2, 3) is depicted in Fig. 10(a). From the
urves corresponding to the material point T1, it is concluded that
he viscous effects are larger for larger values of the relaxation
ime τ .

The deformed shapes of the beam, for g∞ = 0.7 and τ = 5
, and for various values of time, are demonstrated in Fig. 10(b).
ore precisely, the curves in the figure correspond to t = 0.1, t =

.2S (S = 1, 2, . . . , 10), t = 5, and t = 10 s. Once more, the last
urve that corresponds to t = 10 s is approximately coincident
10
ith the final deformed shape of the beam in a quasi-static pure
lastic deformation.

.5. Viscoelastic deformation of a clamped-simply supported HMS
eam with variable B̃r

In this example, the viscoelastic response of an HMS beam
lamped at one end and simply supported at the other end is
tudied. It is noted the simple support is free to move along the X1
irection. The length, height, loading conditions, time increments,
nd loading cases are the same as those described in the previous
xample. However, the maximum value of the applied magnetic
nduction is |Bext

| = 100 mT. Once more, to account for the
iscous effects, a single viscoelastic branch is considered; and
he referential residual magnetic flux density is considered to
e variable along the beam length. As shown in Fig. 11(a), it is
ssumed that B̃r

= 0.143 e1 (mT) for X1 ∈ [0, 1
4 L) ∪ ( 34 L, L], and

B̃r
= −0.143 e1 (mT) for X1 ∈ [

1
4 L,

3
4 L].

In the first case, the relaxation time is considered to be τ = 5
s and by considering different values for g ∈ {0.7, 0.8, 0.9, 1.0},
∞
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Fig. 10. Time history of the lateral deflection at the material points TI (I = 1, 2, 3) for g∞ = 0.7 and various values of τ ∈ {1, 5, 10, 30} s (a), deformed shapes of
he beam at different times t ∈ {0.1, 0.2S, 5, 10} s (S = 1, 2, . . . , 10, g∞ = 0.7, τ = 5 s) (b).
Fig. 11. Convergence of the lateral deflection vs the number of elements (a), time history of 3|u2 |

2L (at T1 and T3) and |u1 |

L (at T2 and T4) for τ = 5 s and various
values of g∞ ∈ {0.7, 0.8, 0.9, 1.0} (b).
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he deformation is simulated for tmax = 10 seconds. From the
onvergence analysis of the lateral tip deflection, as shown in
ig. 11(a), it is observed that the minimum required number of
lements is NE = 120. Four material points TI (I = 1, 2, 3, 4)

located at the position X1I =
1
4 IL on the beam centerline are con-

sidered. Time histories of the nondimensional axial displacement
|u1|/L (at the material points T1 and T4), and the nondimensional
lateral displacement 3|u2|/2L (at the material points T2 and T3)
are demonstrated in Fig. 11(b). The coefficient 3/2 in 3|u2|/2L
s used to separate different curves from each other. Similar to
he previous example, it is observed by reducing the value of g∞,
iscoelastic effects increase, and the resistance of the material
o deformation increases. Obviously, for large values of time, all
urves converge to the pure elastic solution characterized by
∞ = 1.
For the second set of simulations, by considering the fixed

alue of g∞ = 0.7, the deformation analysis is performed for
ifferent values of the relaxation time τ . Once more, the maxi-
um time is considered to be tmax = 4 seconds. Variation of the
ondimensional axial displacement |u1|/L (at the material points
and T ), and the nondimensional lateral displacement 3|u |/2L
1 4 2 a

11
at the material points T2 and T3) versus time, and for different
alues of τ , is displayed in Fig. 12(a). The curves indicate that
iscoelastic resistance increases by increasing the value of the
elaxation time τ .

Next, the deformed shapes of the beam at various load steps
re depicted in Fig. 12(b). The values of g∞ and τ , and the times
t which the deformations have been captured are the same as
hose mentioned in the previous two examples. It is observed
hat due to variable remnant magnetic flux along the beam, the
eformed shape is very similar to a sinusoidal shape. Although,
he magnitude of deflection at the material point T3 is around
5% larger than that at the material point T1.

. Summary

In this work, a finite deformation framework for beams made
f hard-magnetic soft materials by considering viscoelastic effects
as formulated. As part of the formulation, a viscoelasticity for-
ulation was developed that can be used for the analysis of 2D
nd 3D bodies, beams, plates, and shells made of HMSMs. After
dopting the viscoelastic formulation for the case of beams, a
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Fig. 12. Time history of 3|u2 |

2L (at T1 and T3) and |u1 |

L (at T2 and T4) for g∞ = 0.7 and various values of τ ∈ {1, 5, 10, 30} s (a), deformed shapes of the beam at
ifferent times t ∈ {0.1, 0.2S, 5, 10} s, (S = 1, 2, . . . , 10, g∞ = 0.7, τ = 5 s) (b).
onlinear finite element formulation for the numerical solution of
roblems was developed, and several numerical examples were
olved. It was shown that for the case of purely elastic deforma-
ions, the present formulation can generate the results previously
eported in the literature. For the case of viscoelastic deforma-
ions, the creep response of HMS beams was simulated, and the
ffects of viscoelastic parameters, e.g., relaxation time and the
ondimensional long-term shear modulus were investigated. It
as observed that the present formulation can model the pure
lastic and viscoelastic deformation of HMS beams.
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