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1. Introduction and statement of results

Consider the problem
⎧⎨
⎩
−Δp u = λ |u|p−2 u + |u|p∗−2 u in Ω

u = 0 on ∂Ω,

(1.1)

* Corresponding author.
E-mail addresses: C.Mercuri@swansea.ac.uk (C. Mercuri), kperera@fit.edu (K. Perera).
https://doi.org/10.1016/j.jfa.2022.109536
0022-1236/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jfa.2022.109536
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2022.109536&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:C.Mercuri@swansea.ac.uk
mailto:kperera@fit.edu
https://doi.org/10.1016/j.jfa.2022.109536
http://creativecommons.org/licenses/by/4.0/


2 C. Mercuri, K. Perera / Journal of Functional Analysis 283 (2022) 109536
where Ω is a smooth bounded domain in RN , N ≥ 2, Δp u = div(|∇u|p−2 ∇u) is the 
p-Laplacian of u, 1 < p < N , p∗ = Np/(N − p) is the critical Sobolev exponent, and 
λ > 0 is a parameter. Existence and multiplicity of nontrivial solutions to this problem 
has been widely studied beginning with the celebrated paper of Brézis and Nirenberg [10]
(see, e.g., [1–8,11–15,17–24,27,28,30–34,36,39,41,42,45,47]). In particular, the following 
multiplicity results are known in the semilinear case p = 2:

(i) If N ≥ 7, then problem (1.1) has infinitely many solutions for all λ > 0 (see 
Devillanova and Solimini [22]).

(ii) If 4 ≤ N ≤ 6 and 0 < λ < λ1, where λ1 > 0 is the first Dirichlet eigenvalue of −Δ
on Ω, then problem (1.1) has (N + 2)/2 distinct pairs of nontrivial solutions (see 
Devillanova and Solimini [23] and Clapp and Weth [19]).

(iii) If 4 ≤ N ≤ 6 and λ > λ1 is not an eigenvalue, then problem (1.1) has (N + 1)/2
distinct pairs of nontrivial solutions (see Clapp and Weth [19]).

(iv) If N = 5 or 6 and λ ≥ λ1, then problem (1.1) has (N + 1)/2 distinct pairs of 
nontrivial solutions (see Chen et al. [16]).

(v) If N = 4 and λ ≥ λ1 is an eigenvalue of multiplicity m ≥ 1, then problem (1.1) has 
(N −m + 1)/2 distinct pairs of nontrivial solutions (see Clapp and Weth [19]).

In the general case 1 < p < N , it is known that problem (1.1) has infinitely many 
solutions for all λ > 0 if N > p2 + p (see Cao et al. [11]). The purpose of the present 
paper is to prove some multiplicity results for the case where p2 ≤ N ≤ p2 + p, similar 
to those of Clapp and Weth [19] and Chen et al. [16] for the case p = 2. However, the 
arguments in [19] and [16] are based on the relative equivariant Lusternik-Schnirelmann 
category and the Krasnoselskii genus, respectively, and make essential use of the fact that 
the Laplacian is a linear operator and therefore has linear eigenspaces. These arguments 
do not extend to the p-Laplacian, which is a nonlinear operator and hence lacks linear 
eigenspaces. Our proofs will make use of a new abstract critical point theorem based on 
the Z2-cohomological index that we will prove in the next section. This theorem has no 
hypotheses involving linear subspaces and is of independent interest.

To state our multiplicity results, recall that solutions of problem (1.1) coincide with 
critical points of the energy functional

E(u) = 1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx− 1
p∗

∫
Ω

|u|p∗
dx, u ∈ W 1, p

0 (Ω),

and that eigenvalues of the asymptotic eigenvalue problem⎧⎪⎨
⎪⎩
−Δp u = λ |u|p−2 u in Ω

u = 0 on ∂Ω

coincide with critical values of the functional



C. Mercuri, K. Perera / Journal of Functional Analysis 283 (2022) 109536 3
Ψ(u) = 1∫
Ω

|u|p dx
, u ∈ S =

⎧⎨
⎩u ∈ W 1, p

0 (Ω) :
∫
Ω

|∇u|p dx = 1

⎫⎬
⎭ .

Denote by F the class of symmetric subsets of S and by i(M) the Z2-cohomological 
index of M ∈ F (see Definition 2.1), let Fk = {M ∈ F : i(M) ≥ k}, and set

λk = inf
M∈Fk

sup
u∈M

Ψ(u), k ≥ 1.

Then λ1 = inf Ψ(S) > 0 is the first eigenvalue and λ1 < λ2 ≤ · · · is an unbounded 
sequence of eigenvalues. Let

SN, p = inf
u∈D1, p(RN )\{0}

∫
RN

|∇u|p dx

⎛
⎝∫
RN

|u|p∗
dx

⎞
⎠

p/p∗ (1.2)

denote the best Sobolev constant. Our first multiplicity result is the following.

Theorem 1.1. Let N ≥ p2.

(i) If 0 < λ < λ1 or λk < λ < λk+1 for some k ≥ 1, then problem (1.1) has N/2
distinct pairs of nontrivial solutions.

(ii) If λ = λ1 and N ≥ 3, then problem (1.1) has (N − 1)/2 distinct pairs of nontrivial 
solutions.

(iii) If λk−m < λ = λk−m+1 = · · · = λk < λk+1 for some k > m ≥ 1 and N ≥ m + 2, 
then problem (1.1) has (N −m)/2 distinct pairs of nontrivial solutions.

These solutions satisfy

0 < E(u) < 2
N

S
N/p
N, p . (1.3)

Eigenvalues based on the cohomological index were first introduced in Perera [37] (see 
also Perera and Szulkin [40]). A complete description of the spectrum of the p-Laplacian 
is not known when p �= 2, and (λk) may not be a complete list of eigenvalues. However, 
Theorem 1.1 (i) gives N/2 distinct pairs of nontrivial solutions of problem (1.1) whenever 
λ > 0 is not an eigenvalue from the sequence (λk).

Our second multiplicity result makes no references to the spectrum.

Theorem 1.2. If N2/(N+1) > p2, then problem (1.1) has N/2 distinct pairs of nontrivial 
solutions satisfying
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0 < E(u) < 2
N

S
N/p
N, p (1.4)

for all λ > 0.

As is usually the case with problems of critical growth, the energy functional E as-
sociated with problem (1.1) does not satisfy the (PS)c condition for all c ∈ R. However, 
it has certain weaker compactness properties (see Theorem 3.3). We will first prove an 
abstract multiplicity result that only assumes these weaker conditions, and apply it to 
prove Theorems 1.1 and 1.2.

To state our abstract results, let D be a Banach space and let W be closed linear 
subspace of D. For A ⊂ D and δ > 0, we set

Nδ(A) = {u ∈ W : dist (u,A) ≤ δ} .

Let E be an even C1-functional on W such that E(0) = 0. For c ∈ R, let

Kc = {u ∈ W : E′(u) = 0, E(u) = c}

be the set of critical points of E at the level c. We assume that E has the following 
compactness properties:

(C1) there exists c∗ > 0 such that E satisfies the (PS)c condition for all c ∈ (0, c∗),
(C2) there exist b > c∗ and for each c ∈ [c∗, b) a set Mc ⊂ D \ {0} such that

(i) every (PS)c sequence (un) has either a subsequence that converges strongly to 
a point in Kc, or a renamed subsequence that converges weakly to a point in 
Kc−c∗ and satisfies

dist (un,Mc) → 0 or dist (un,−Mc) → 0,

(ii) Nδ(Mc) ∩Nδ(−Mc) = ∅ for all sufficiently small δ > 0.

Let S = {u ∈ W : ‖u‖ = 1} be the unit sphere in W , let π : W \ {0} → S, u �→ u/ ‖u‖
be the radial projection onto S, and let SN =

{
x ∈ RN+1 : |x| = 1

}
be the unit sphere 

in RN+1. We will prove the following theorem in the next section.

Theorem 1.3. Assume (C1) and (C2). Let B0 and C0 be symmetric subsets of S such that 
C0 is compact, B0 is closed, and

i(C0) ≥ k −m, i(S \B0) ≤ k (1.5)

for some k ≥ m ≥ 0. Assume that there exist an odd continuous map ϕ : SN →
S \ C0, N ≥ m + 2 and R > r > 0 such that, setting
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A0 =

⎧⎨
⎩
ϕ(SN ) if C0 = ∅
{
π((1 − t) v + tw) : v ∈ C0, w ∈ ϕ(SN ), t ∈ [0, 1]

}
if C0 �= ∅,

A = {Ru : u ∈ A0} , B = {ru : u ∈ B0} , X = {tu : u ∈ A, t ∈ [0, 1]} ,

we have

sup
A

E ≤ 0 < inf
B

E, sup
X

E < b.

Then E has (N −m)/2 distinct pairs of critical points at levels in (0, b).

We will apply this theorem to a class of abstract p-Laplacian equations that includes 
problem (1.1) as a special case. Assume that W is uniformly convex and let (W ∗, ‖ · ‖∗)
be its dual with duality pairing (·, ·). Recall that f ∈ C(W, W ∗) is a potential operator if 
there is a functional F ∈ C1(W, R), called a potential for f , such that F ′ = f . Consider 
the nonlinear operator equation

Ap u = λBp u + f(u) (1.6)

in W ∗, where Ap , Bp , f ∈ C(W, W ∗) are potential operators satisfying the following 
assumptions, and λ ∈ R is a parameter:

(A1) Ap is (p − 1)-homogeneous and odd for some p ∈ (1, ∞): Ap (tu) = |t|p−2 t Ap u for 
all u ∈ W and t ∈ R,

(A2) (Ap u, v) ≤ ‖u‖p−1 ‖v‖ for all u, v ∈ W , and equality holds if and only if αu = βv

for some constants α, β ≥ 0, not both zero (in particular, (Ap u, u) = ‖u‖p for all 
u ∈ W ),

(B1) Bp is (p −1)-homogeneous and odd: Bp (tu) = |t|p−2 t Bp u for all u ∈ W and t ∈ R,
(B2) (Bp u, u) > 0 for all u ∈ W \ {0}, and (Bp u, v) ≤ (Bp u, u)(p−1)/p (Bp v, v)1/p for 

all u, v ∈ W ,
(B3) Bp is a compact operator,
(F1) the potential F of f with F (0) = 0 satisfies F (u) = o(‖u‖p) as u → 0,

(F2) lim
t→+∞

F (tu)
tp

= +∞ uniformly on compact subsets of W \ {0}.

Solutions of equation (1.6) coincide with critical points of the C1-functional

E(u) = Ip(u) − λJp(u) − F (u), u ∈ W,

where

Ip(u) = 1 (Ap u, u) = 1 ‖u‖p , Jp(u) = 1 (Bp u, u)

p p p
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are the potentials of Ap and Bp satisfying Ip(0) = 0 = Jp(0), respectively (see Perera et 
al. [38, Proposition 1.2]). Moreover, eigenvalues of the asymptotic eigenvalue problem

Ap u = λBp u

coincide with critical values of the C1-functional

Ψ(u) = 1
(Bp u, u) , u ∈ S,

where S =
{
u ∈ W : (Ap u, u) = 1

}
is the unit sphere in W . Denote by F the class of 

symmetric subsets of S, let Fk = {M ∈ F : i(M) ≥ k}, and set

λk = inf
M∈Fk

sup
u∈M

Ψ(u), k ≥ 1.

Then λ1 = inf Ψ(S) > 0 is the first eigenvalue and λ1 ≤ λ2 ≤ · · · is an unbounded 
sequence of eigenvalues. Moreover, denoting by Ψa = {u ∈ S : Ψ(u) ≤ a} (resp. Ψa =
{u ∈ S : Ψ(u) ≥ a}) the sublevel (resp. superlevel) sets of Ψ, we have

i(S \ Ψλk+1) ≤ k ≤ i(Ψλk) (1.7)

(see Perera et al. [38, Theorem 4.6]). We have the following multiplicity result for the 
equation (1.6).

Theorem 1.4. Suppose (A1)–(F2) hold and E satisfies (C1) and (C2). Assume that λ <
λk+1, there exists a compact symmetric subset C0 of S with i(C0) ≥ k − m for some 
0 ≤ m ≤ k, and there exists an odd continuous map ϕ : SN → S \ C0, N ≥ m + 2 such 
that

sup
w∈ϕ(SN ), t≥0

E(tw) < b if C0 = ∅ (1.8)

and

sup
v∈C0, w∈ϕ(SN ), s,t≥0

E(sv + tw) < b if C0 �= ∅. (1.9)

Then equation (1.6) has (N −m)/2 distinct pairs of nontrivial solutions satisfying

0 < E(u) < b.

We will prove this theorem in the next section, and apply it to prove Theorems 1.1
and 1.2 in Section 4.
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2. Abstract multiplicity results

In this section we prove Theorems 1.3 and 1.4. We begin by recalling the definition 
and some properties of the Z2-cohomological index of Fadell and Rabinowitz [25].

Definition 2.1. Let W be a Banach space and let A denote the class of symmetric subsets 
of W \ {0}. For A ∈ A, let A = A/Z2 be the quotient space of A with each u and −u

identified, let f : A → RP∞ be the classifying map of A, and let f∗ : H∗(RP∞) →
H∗(A) be the induced homomorphism of the Alexander-Spanier cohomology rings. The 
cohomological index of A is defined by

i(A) =

⎧⎨
⎩

0 if A = ∅

sup
{
m ≥ 1 : f∗(ωm−1) �= 0

}
if A �= ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) = Z2[ω].

Example 2.2. The classifying map of the unit sphere SN in RN+1, N ≥ 0 is the inclusion 
RPN ↪→ RP∞, which induces isomorphisms on the cohomology groups Hq for q ≤ N , 
so i(SN ) = N + 1.

The following proposition summarizes the basic properties of this index.

Proposition 2.3 ([25]). The index i : A → N ∪ {0,∞} has the following properties:

(i1) Definiteness: i(A) = 0 if and only if A = ∅.
(i2) Monotonicity: If there is an odd continuous map from A to B (in particular, if A ⊂

B), then i(A) ≤ i(B). Thus, equality holds when the map is an odd homeomorphism.
(i3) Dimension: i(A) ≤ dimW .
(i4) Continuity: If A is closed, then there is a closed neighborhood N ∈ A of A such 

that i(N) = i(A). When A is compact, N may be chosen to be a δ-neighborhood 
Nδ(A) = {u ∈ W : dist (u,A) ≤ δ}.

(i5) Subadditivity: If A and B are closed, then i(A ∪B) ≤ i(A) + i(B).
(i6) Stability: If ΣA is the suspension of A �= ∅, obtained as the quotient space of A ×

[−1, 1] with A ×{1} and A ×{−1} collapsed to different points, then i(ΣA) = i(A) +1.
(i7) Piercing property: If A, C0 and C1 are closed, and ϕ : A × [0, 1] → C0 ∪ C1 is a 

continuous map such that ϕ(−u, t) = −ϕ(u, t) for all (u, t) ∈ A × [0, 1], ϕ(A × [0, 1])
is closed, ϕ(A ×{0}) ⊂ C0 and ϕ(A ×{1}) ⊂ C1, then i(ϕ(A ×[0, 1]) ∩C0∩C1) ≥ i(A).

(i8) Neighborhood of zero: If U is a bounded closed symmetric neighborhood of 0, then 
i(∂U) = dimW .

Next we recall the definition and some properties of the pseudo-index of Benci [9].
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Definition 2.4. Let A∗ denote the class of symmetric subsets of W , let M ∈ A be closed, 
and let Γ denote the group of odd homeomorphisms of W that are the identity outside 
E−1(0, b). Then the pseudo-index of A ∈ A∗ related to i, M, and Γ is defined by

i∗(A) = min
γ∈Γ

i(γ(A) ∩M).

The following proposition lists some properties of the pseudo-index.

Proposition 2.5 ([9]). The pseudo-index i∗ : A∗ → N ∪ {0,∞} has the following proper-
ties:

(i∗1) If A ⊂ B, then i∗(A) ≤ i∗(B).
(i∗2) If γ ∈ Γ, then i∗(γ(A)) = i∗(A).
(i∗3) If A and B are closed, then i∗(A ∪B) ≤ i∗(A) + i(B).

For j ≥ 1, let

A∗
j = {M ∈ A∗ : M is compact and i∗(M) ≥ j}

and set

c∗j = inf
M∈A∗

j

max
u∈M

E(u). (2.1)

Theorem 2.6. Assume (C1) and (C2). If 0 < c∗k+1 ≤ · · · ≤ c∗k+l < b for some k ≥ 0 and 
l ≥ 3, then E has (l − 1)/2 distinct pairs of critical points at levels in (0, b).

First we prove a deformation lemma. For α ≤ β in R, let

Eα = {u ∈ W : E(u) ≥ α} , Eβ = {u ∈ W : E(u) ≤ β} ,

Eβ
α = {u ∈ W : α ≤ E(u) ≤ β} .

Lemma 2.7. Assume (C2) and let c ∈ [c∗, b), B = Kc∪Mc∪−Mc, and δ > 0. Then there 
exist ε0 > 0 and for each ε ∈ (0, ε0) a map η ∈ C(W × [0, 1], W ) satisfying

(i) η(·, 0) is the identity,
(ii) η(·, t) is an odd homeomorphism of W for all t ∈ [0, 1],

(iii) η(·, t) is the identity outside Ec+2ε
c−2ε \Nδ/3(B) for all t ∈ [0, 1],

(iv) ‖η(u, t) − u‖ ≤ δ/4 for all (u, t) ∈ W × [0, 1],
(v) E(η(u, ·)) is nonincreasing for all u ∈ W ,

(vi) η(Ec+ε \Nδ(B), 1) ⊂ Ec−ε.
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Proof. We claim that there exists ε0 > 0 such that for each ε ∈ (0, ε0),

‖E′(u)‖∗ ≥ 32ε
δ

∀u ∈ Ec+2ε
c−2ε \Nδ/3(B). (2.2)

To see this, suppose there is no such ε0. Then there is a (PS)c sequence (un) ⊂ W \
Nδ/3(B). Since Kc ⊂ B, (un) has no subsequence that converges strongly to a point in 
Kc. On the other hand, since Mc ∪ −Mc ⊂ B, (un) also has no renamed subsequence 
that satisfies

dist (un,Mc) → 0 or dist (un,−Mc) → 0.

So (C2) is violated.
Let V be an odd pseudo-gradient vector field for E, i.e., a locally Lipschitz continuous 

mapping from {u ∈ W : E′(u) �= 0} to W satisfying

‖V (u)‖ ≤ ‖E′(u)‖∗ , 2 (E′(u), V (u)) ≥
(
‖E′(u)‖∗

)2
, V (−u) = −V (u). (2.3)

Take an even locally Lipschitz continuous mapping g : W → [0, 1] such that g = 0 outside 
Ec+2ε

c−2ε \Nδ/3(B) and g = 1 on Ec+ε
c−ε \N2δ/3(B), and let η(u, t), 0 ≤ t < T (u) ≤ +∞ be 

the maximal solution of

η̇ = −4εg(η) V (η)
‖V (η)‖2 , t > 0, η(u, 0) = u ∈ W.

Then

‖η(u, t) − u‖ ≤ 4ε
t∫

0

g(η(u, τ))
‖V (η(u, τ))‖ dτ ≤ 8ε

t∫
0

g(η(u, τ))
‖E′(η(u, τ))‖∗ dτ ≤ δt

4

by (2.3) and (2.2), so ‖η(u, ·)‖ is bounded if T (u) < +∞. So T (u) = +∞ and (i)–(iv)
follow. Since

d

dt
(E(η(u, t))) = (E′(η), η̇) = −4εg(η)

(E′(η), V (η))
‖V (η)‖2 ≤ −2εg(η) ≤ 0 (2.4)

by (2.3), (v) holds. To see that (vi) holds, let u ∈ Ec+ε \ Nδ(B) and suppose that 
η(u, 1) /∈ Ec−ε. Then for all t ∈ [0, 1], η(u, t) ∈ Ec+ε

c−ε by (v) and η(u, t) /∈ N2δ/3(B) by 
(iv). So η(u, t) ∈ Ec+ε

c−ε \N2δ/3(B) and hence g(η(u, t)) = 1 for all t ∈ [0, 1], so (2.4) gives

E(η(u, 1)) ≤ E(u) − 2ε ≤ c− ε,

a contradiction. �
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Next we show that if two of the minimax levels defined in (2.1) coincide, then there 
are infinitely many critical points at that level.

Lemma 2.8. Assume (C1) and (C2). If 0 < c∗j = c∗j+1 = c < b, then Kc is an infinite set.

Proof. If c ∈ (0, c∗), then E satisfies the (PS)c condition by (C1) and hence the desired 
conclusion follows from a standard argument. So suppose c ∈ [c∗, b), and let B = Kc ∪
Mc ∪ −Mc. If Kc consists of a finite number of pairs of antipodal points, then (C2)
implies that for sufficiently small δ > 0, Nδ(B) is the disjoint union of ±Nδ(Mc) and 
a finite number of pairs of closed balls centered at antipodal points. So there is an odd 
continuous map from Nδ(B) to {±1} and hence i(Nδ(B)) ≤ 1 by (i2) and (i8). We will 
show that

i(Nδ(B)) ≥ 2, (2.5)

and conclude that Kc is an infinite set.
Let ε0 > 0, ε ∈ (0, ε0), and η ∈ C(W × [0, 1], W ) be as in Lemma 2.7. Since c∗j+1 = c, 

there exists M ∈ A∗
j+1 such that M ⊂ Ec+ε and hence

j + 1 ≤ i∗(M) ≤ i∗(Ec+ε) (2.6)

by (i∗1). Take ε < min {c/2, (b− c)/2} and let γ = η(·, 1). Then γ is an odd homeomor-
phism of W by (ii) and is the identity outside E−1(0, b) by (iii), so γ ∈ Γ. Hence

i∗(Ec+ε) = i∗(γ(Ec+ε)) (2.7)

by (i∗2). By (vi),

γ(Ec+ε) = γ(Ec+ε \Nδ(B)) ∪ γ(Nδ(B)) ⊂ Ec−ε ∪ γ(Nδ(B)), (2.8)

and γ(Nδ(B)) is closed since γ is a homeomorphism, so

i∗(γ(Ec+ε)) ≤ i∗(Ec−ε) + i(γ(Nδ(B))) (2.9)

by (i∗1) and (i∗3). Since c∗j = c, Ec−ε /∈ A∗
j and hence

i∗(Ec−ε) ≤ j − 1, (2.10)

and

i(γ(Nδ(B))) = i(Nδ(B)) (2.11)

by (i2). Combining (2.6)–(2.11) gives (2.5). �
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We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. We may assume that 0 < c∗k+1 < · · · < c∗k+l < b in view of 
Lemma 2.8. For j = k + 1, . . . , k + l, if E satisfies the (PS)c∗j condition, then c∗j is a 
critical level of E by a standard argument (see, e.g., Perera et al. [38, Proposition 3.42]). 
On the other hand, if E does not satisfy the (PS)c∗j condition, then c∗j ∈ [c∗, b) by (C1)
and E has a (PS)c∗j sequence with no convergent subsequence. Then c∗j − c∗ is a critical 
level of E by (C2). So c∗j or c∗j − c∗ is a critical level of E in (0, b) for each j such that 
c∗j �= c∗, and it follows that E has (l − 1)/2 distinct critical levels in (0, b). �

Next we prove the following theorem, from which Theorem 1.3 will follow.

Theorem 2.9. Assume (C1) and (C2). Let A0 and B0 be symmetric subsets of the unit 
sphere S = {u ∈ W : ‖u‖ = 1} such that A0 is compact, B0 is closed, and

i(A0) ≥ k + l, i(S \B0) ≤ k (2.12)

for some k ≥ 0 and l ≥ 3. Assume that there exist R > r > 0 such that, setting

A = {Ru : u ∈ A0} , B = {ru : u ∈ B0} , X = {tu : u ∈ A, t ∈ [0, 1]} ,

we have

sup
A

E ≤ 0 < inf
B

E, sup
X

E < b.

Then E has (l − 1)/2 distinct pairs of critical points at levels in (0, b).

Proof. We take M to be the sphere Sr = {u ∈ W : ‖u‖ = r}, show that

0 < inf
B

E ≤ c∗k+1 ≤ · · · ≤ c∗k+l ≤ sup
X

E < b,

and apply Theorem 2.6. We note that A and Sr \ B are radially homeomorphic to A0
and S \B0, respectively, and hence

i(A) ≥ k + l, i(Sr \B) ≤ k (2.13)

by (i2) and (2.12).
If M ∈ A∗

k+1, then (2.13) gives

i(Sr \B) ≤ k < k + 1 ≤ i∗(M) ≤ i(M ∩ Sr)

since the identity is in Γ, so M intersects B by (i2). Hence c∗k+1 ≥ inf E(B).
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For γ ∈ Γ, consider the continuous map

ϕ : A× [0, 1] → W, ϕ(u, t) = γ(tu).

We have ϕ(A × [0, 1]) = γ(X), which is compact. Since γ is odd, ϕ(−u, t) = −ϕ(u, t)
for all (u, t) ∈ A × [0, 1] and ϕ(A × {0}) = {γ(0)} = {0}. Since E ≤ 0 on A, γ|A is the 
identity and hence ϕ(A × {1}) = A. Applying the piercing property (i7) of the index 
with C0 = {u ∈ W : ‖u‖ ≤ r} and C1 = {u ∈ W : ‖u‖ ≥ r} gives

i(γ(X) ∩ Sr) = i(ϕ(A× [0, 1]) ∩ C0 ∩ C1) ≥ i(A) ≥ k + l

by (2.13). Hence i∗(X) ≥ k + l. So X ∈ A∗
k+l and hence c∗k+l ≤ supE(X). �

We are now ready to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. If C0 = ∅, then k = m by (1.5) and (i1), and

i(A0) = i(ϕ(SN )) ≥ i(SN ) = N + 1 = k + N −m + 1

by (i2) and (i8), so the conclusion follows from Theorem 2.9.
If C0 �= ∅, recall that ΣC0 denotes the suspension of C0, which is obtained as the 

quotient space of C0 × [−1, 1] with C0 ×{1} and C0 ×{−1} collapsed to different points. 
Let ΣN+1C0 be the (N + 1)-fold suspension consisting of points (v, t1, . . . , tN+1), where 
v ∈ C0 and tj ∈ [−1, 1] for j = 1, . . . , N + 1, with the appropriate identifications for 
tj = ±1. Set

p0 =
N+1∏
l=1

(1 − |tl|), pj = |tj |
N+1∏
l=j+1

(1 − |tl|) for j = 1, . . . , N, pN+1 = |tN+1|,

let {e1, . . . , eN+1} be the standard unit basis of RN+1, and let

� : RN+1 \ {0} → SN , x �→ x

|x|

be the radial projection onto SN . Then

ΣN+1C0 → A0, (v, t1, . . . , tN+1) �→ π

(
p0v+(1−p0)ϕ

(
�

(
1

1 − p0

N+1∑
j=1

pj sgn tj ej

)))

is an odd continuous map, and hence

i(A0) ≥ i(ΣN+1C0) = i(C0) + N + 1 ≥ k + N −m + 1

by (i2), (i6), and (1.5). So the conclusion follows from Theorem 2.9 again. �
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Proof of Theorem 1.4. We apply Theorem 1.3 with B0 = Ψλk+1 . By (1.7), i(S\Ψλk+1) ≤
k. For u ∈ S and t > 0,

E(tu) = tp

p

(
1 − λ

Ψ(u)

)
− F (tu).

Since Ψ(u) > 0 by (B2), this gives

tp

p

(
1 − λ+

Ψ(u)

)
− F (tu) ≤ E(tu) ≤ tp

p

(
1 + λ−

Ψ(u)

)
− F (tu),

where λ± = max {±λ, 0}. Since λ+ < λk+1, the first inequality and (F1) imply that 
inf E(B) > 0 if r > 0 is sufficiently small. Since A0 is a compact subset of W \ {0}, the 
second inequality and (F2) imply that supE(A) ≤ 0 if R > r is sufficiently large. By 
(1.8) and (1.9), supE(X) < b. �
3. Compactness conditions

In this section we show that the energy functional

E(u) = 1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx− 1
p∗

∫
Ω

|u|p∗
dx, u ∈ W 1, p

0 (Ω)

satisfies the compactness conditions (C1) and (C2).
Solutions of the asymptotic equation

−Δp u = |u|p∗−2 u (3.1)

in D1, p(RN ) coincide with critical points of the functional

E∞(u) = 1
p

∫
RN

|∇u|p dx− 1
p∗

∫
RN

|u|p∗
dx, u ∈ D1, p(RN ).

Denote by RN
+ =

{
x = (x1, . . . , xN ) ∈ RN : xN > 0

}
the upper-half space in RN and by 

D1, p
0 (RN

+ ) the closure of C∞
0 (RN

+ ) in D1, p(RN ) after extending by zero on RN \RN
+ . Set

c∗ = 1
N

S
N/p
N, p .

Lemma 3.1. Let u be a nontrivial weak solution of the equation (3.1) in D1, p(RN ) or 
D1, p

0 (RN
+ ). Then

E∞(u) ≥ c∗. (3.2)
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If u ∈ D1, p
0 (RN

+ ), then this inequality is strict. If u is sign-changing, then

E∞(u) ≥ 2c∗. (3.3)

Proof. The inequality (3.2) follows by testing (3.1) with u and using the Sobolev in-
equality. If u ∈ D1, p

0 (RN
+ ) and equality holds in (3.2), then u ≡ 0 by Mercuri and Willem 

[35, Theorem 1.1] (see also Farina et al. [26]). If u is sign-changing, testing (3.1) with u±

and using the Sobolev inequality gives (3.3). �
Next we prove a global compactness result for problem (1.1).

Theorem 3.2. Let c ∈ R and let (un) ⊂ W 1, p
0 (Ω) be a (PS)c sequence for E. Then, passing 

to a subsequence if necessary, there exist a possibly nontrivial solution u ∈ W 1, p
0 (Ω) of 

problem (1.1), k ∈ N ∪ {0}, nontrivial solutions vi, i = 1, . . . , k of equation (3.1) in 
Hi, where Hi is RN or (up to a rotation and a translation) RN

+ , with vi ∈ D1, p(RN ) if 
Hi = RN and vi ∈ D1, p

0 (RN
+ ) if Hi = RN

+ , and sequences 
(
yin

)
⊂ Ω and 

(
εin

)
⊂ R+ such 

that

(
εin

)−1 dist (yin, ∂Ω) → ∞ as n → ∞ if Hi = RN ,

(
εin

)−1 dist (yin, ∂Ω) is bounded if Hi = RN
+ ,

∥∥∥∥∥un − u−
k∑

i=1

(
εin

)−(N−p)/p
vi((· − yin)/εin)

∥∥∥∥∥ → 0 as n → ∞, (3.4)

‖un‖p → ‖u‖p +
k∑

i=1
‖vi‖p as n → ∞,

E(u) +
k∑

i=1
E∞(vi) = c. (3.5)

Proof. This theorem follows by arguing as in Mercuri and Willem [35, Theorem 1.2]. 
Note that (un) is bounded by a standard argument and k is finite by Lemma 3.1. Unlike 
in [35], here vi may be a solution of (3.1) in RN or RN

+ since we make no assumptions 
on u−

n (see also Farina et al. [26]). �
Recall that the infimum in (1.2) is attained on the functions

uε, y(x) = cN, p ε
(N−p)/p (p−1)(

p/(p−1) p/(p−1)
)(N−p)/p , ε > 0, y ∈ RN , (3.6)
ε + |x− y|
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where the constant cN, p > 0 is chosen so that
∫
RN

|∇uε, y|p dx =
∫
RN

up∗

ε, y dx = S
N/p
N, p

(see Talenti [44]). Set

M =
{
uε, y : ε > 0, y ∈ RN

}
.

The main result of this section is the following theorem, which implies that E satisfies 
(C1) and (C2).

Theorem 3.3. The functional E satisfies the (PS)c condition for all c < c∗. If c∗ ≤
c < 2c∗ and (un) is a (PS)c sequence for E such that un ⇀ u but not strongly, then 
u ∈ Kc−c∗ and

dist (un − u,M) → 0 or dist (un − u,−M) → 0

for a renamed subsequence. Moreover, setting

Mc = Kc−c∗ + M = {u + v : u ∈ Kc−c∗ , v ∈ M} ,

we have Mc ⊂ D \ {0} and Nδ(Mc) ∩Nδ(−Mc) = ∅ for all sufficiently small δ > 0.

Proof. The proof is based on Theorem 3.2. We have

E(u) = E(u) − 1
p
E′(u)u = 1

N

∫
Ω

|u|p∗
dx

since E′(u) = 0, and E∞(vi) ≥ c∗ for i = 1, . . . , k by Lemma 3.1, so (3.5) yields

1
N

∫
Ω

|u|p∗
dx + kc∗ ≤ c. (3.7)

If c < c∗, this implies k = 0, so un → u by (3.4).
Suppose c∗ ≤ c < 2c∗. Then k ≤ 1 by (3.7). If k = 0, then un → u as before, so 

suppose k = 1. Then∥∥∥un − u−
(
ε1
n

)−(N−p)/p
v1((· − y1

n)/ε1
n)
∥∥∥ → 0 as n → ∞

by (3.4) and

E(u) + E∞(v1) = c (3.8)



16 C. Mercuri, K. Perera / Journal of Functional Analysis 283 (2022) 109536
by (3.5). If c = c∗, then u ≡ 0 by (3.7) and hence E∞(v1) = c∗ by (3.8). Then either 
v1 ∈ M or v1 ∈ −M by Talenti [44]. If c∗ < c < 2c∗, then E∞(v1) < 2c∗ by (3.8)
and hence v1 does not change sign by Lemma 3.1. So v1 is a constant sign nontrivial 
solution of (3.1) in D1, p(RN ) by the Liouville theorem on RN

+ of Mercuri and Willem 
[35, Theorem 1.1] (see also Farina et al. [26]). Then either v1 ∈ M or v1 ∈ −M by Sciunzi 
[43] and Vétois [46] (see also Guedda and Véron [29, Theorem 2.1(ii)]). In particular, 
E∞(v1) = c∗, so E(u) = c − c∗ by (3.8) and hence u ∈ Kc−c∗ . Since c − c∗ < c∗ and 
hence Kc−c∗ is compact by the first part of the theorem, the rest now follows as in Clapp 
and Weth [19, Lemma 9]. �
4. Proofs of main theorems

In this section we prove Theorems 1.1 and 1.2 by applying Theorem 1.4 with D =
D1, p(RN ), W = W 1, p

0 (Ω), and the operators Ap , Bp , f ∈ C(W 1, p
0 (Ω), W−1, p′(Ω)) given 

by

(Ap u, v) =
∫
Ω

|∇u|p−2 ∇u · ∇v dx, (Bp u, v) =
∫
Ω

|u|p−2 uv dx,

(f(u), v) =
∫
Ω

|u|p∗−2 uv dx

for u, v ∈ W 1, p
0 (Ω). It is easily seen that (A1)–(F2) hold, and E satisfies (C1) and (C2)

with

c∗ = 1
N

S
N/p
N, p , b = 2

N
S
N/p
N, p

by Theorem 3.3.
To construct the compact symmetric set C0, we assume without loss of generality that 

0 ∈ Ω. Fix 0 < δ0 < dist (0, ∂Ω) and let π : W 1, p
0 (Ω) \{0} → S, u �→ u/ ‖u‖ be the radial 

projection onto S.

Lemma 4.1. For each k ≥ 1 and sufficiently small 0 < δ < δ0, there exists a compact 
symmetric subset Ck,δ of S with i(Ck,δ) ≥ k such that v = 0 on B3δ/4(0) for all v ∈ Ck,δ

and

sup
v∈Ck,δ, s≥0

E(sv) ≤

⎧⎨
⎩

0 if λ > λk

aδ(N−p)N/p if λ = λk

(4.1)

for some constant a > 0.

Proof. We have λk = · · · = λl < λl+1 for some l ≥ k. By Degiovanni and Lancelotti [21, 
Theorem 2.3], the sublevel set Ψλl has a compact symmetric subset Cl of index l that 
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is bounded in L∞(Ω) ∩ C1, α
loc (Ω). Let ξ : [0, ∞) → [0, 1] be a smooth function such that 

ξ(s) = 0 for s ≤ 3/4 and ξ(s) = 1 for s ≥ 1. For u ∈ Cl, set

uδ(x) = ξ

(
|x|
δ

)
u(x), v = π(uδ),

and let

Ck,δ = {v : u ∈ Cl} .

Since Cl is a compact symmetric set and u �→ v is an odd continuous map of Cl onto 
Ck,δ, Ck,δ is also a compact symmetric set and

i(Ck,δ) ≥ i(Cl) = l ≥ k

by (i2).
Let u ∈ Cl, v = π(uδ), and s ≥ 0. Since u is bounded in C1(Bδ0(0)) and belongs to 

Ψλl = Ψλk ,
∫
Ω

|∇uδ|p dx ≤
∫

Ω\Bδ(0)

|∇u|p dx +
∫

Bδ(0)

(
|∇u|p + a1 δ

−p |u|p
)
dx ≤ 1 + a2 δ

N−p

and ∫
Ω

|uδ|p dx ≥
∫

Ω\Bδ(0)

|u|p dx =
∫
Ω

|u|p dx−
∫

Bδ(0)

|u|p dx ≥ 1
λk

− a3 δ
N

for some constants a1, a2, a3 > 0. So

∫
Ω

|v|p dx =

∫
Ω

|uδ|p dx

∫
Ω

|∇uδ|p dx
≥ 1

λk
− a4 δ

N−p (4.2)

for some constant a4 > 0 and hence
∫
Ω

|v|p∗
dx ≥ a5 (4.3)

for some constant a5 > 0. We have

E(sv) = sp

p

∫
|∇v|p dx− λsp

p

∫
|v|p dx− sp

∗

p∗

∫
|v|p∗

dx,
Ω Ω Ω
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and maximizing the right-hand side over s ≥ 0 gives

E(sv) ≤ 1
N

Q(v)N/p,

where

Q(v) =

⎛
⎝∫

Ω

|∇v|p dx− λ

∫
Ω

|v|p dx

⎞
⎠

+

⎛
⎝∫

Ω

|v|p∗
dx

⎞
⎠

p/p∗ .

By (4.2) and (4.3),

Q(v) ≤ a6

(
1 − λ

λk
+ a7 δ

N−p

)+

for some constants a6, a7 > 0, so (4.1) follows for sufficiently small δ > 0. �
Next we construct the odd continuous map ϕ.

Lemma 4.2. For each ε > 0 and 0 < δ < δ0 with ε � δ, there exists an odd continuous 
map ϕε,δ : SN → S such that w = 0 on Ω \B3δ/4(0) for all w ∈ ϕε,δ(SN ) and

sup
w∈ϕε,δ(SN ), t≥0

E(tw) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
N

S
N/p
N, p

[
1 + a1

(
ε

δ

)(N−p)/(p−1)

− a2 ε
p

]N/p

if N > p2

2
p2 Sp

N, p

[
1 + a1

(
ε

δ

)p

− a2 ε
p log

(
δ

ε

)]p

if N = p2

(4.4)
for some constants a1, a2 > 0.

Proof. Referring to (3.6), let

uε(x) = uε, 0(x) = cN, p ε
(N−p)/p (p−1)(

εp/(p−1) + |x|p/(p−1)
)(N−p)/p , ε > 0.

Let ζ : [0, ∞) → [0, 1] be a smooth function such that ζ(s) = 1 for s ≤ 1/8 and ζ(s) = 0
for s ≥ 1/4, and set

uε,δ(x) = ζ

(
|x|

)
uε(x), ε > 0, 0 < δ < δ0.
δ
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We have the estimates

∫
Ω

|∇uε,δ|p dx ≤ S
N/p
N, p

[
1 + a3

(
ε

δ

)(N−p)/(p−1)
]
, (4.5)

⎛
⎝∫

Ω

up∗

ε,δ dx

⎞
⎠

p/p∗

≥ S
N/p∗

N, p

[
1 − a4

(
ε

δ

)N/(p−1)
]
, (4.6)

∫
Ω

up
ε,δ dx ≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εp

[
a5 − a6

(
ε

δ

)(N−p2)/(p−1)
]

if N > p2

εp

[
a5 log

(
δ

ε

)
− a6

]
if N = p2

(4.7)

for some constants a3, a4, a5, a6 > 0 (see, e.g., Degiovanni and Lancelotti [21, Lemma 
3.1]).

Let SN−1 be the unit sphere in RN , let

SN
+ =

{
x = (x′

√
1 − s2, s) : x′ ∈ SN−1, s ∈ [0, 1]

}
be the upper hemisphere in RN+1, and define a continuous map ϕε,δ : SN

+ → S by

ϕε,δ(x) = π
(
uε,δ(· − (1 − s)x′/2) − (1 − s)uε,δ(· + x′/2)

)
.

Let w = ϕε,δ(x) and note that w = 0 outside B3δ/4(0). For t ≥ 0,

E(tw) = tp

p

∫
Ω

|∇w|p dx− λtp

p

∫
Ω

|w|p dx− tp
∗

p∗

∫
Ω

|w|p∗
dx,

and maximizing the right-hand side over t ≥ 0 gives

E(tw) ≤ 1
N

Q(w)N/p,

where

Q(w) =

∫
Ω

|∇w|p dx− λ

∫
Ω

|w|p dx

⎛
⎝∫

|w|p∗
dx

⎞
⎠

p/p∗ .
Ω
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Noting that Q(w) = Q(uε,δ(· −(1 −s) x′/2) −(1 −s) uε,δ(· +x′/2)) and uε,δ(· −(1 −s) x′/2)
and uε,δ(· + x′/2) have disjoint supports gives

Q(w) = 1 + (1 − s)p

[1 + (1 − s)p∗ ]p/p∗ Q(uε,δ),

and maximizing the right-hand side over s ∈ [0, 1] gives

Q(w) ≤ 2p/NQ(uε,δ).

So

E(tw) ≤ 2
N

Q(uε,δ)N/p. (4.8)

Since ϕε,δ is odd on SN−1 and E is an even functional, ϕε,δ can be extended to an odd 
continuous map from SN to S such that (4.8) holds for all w ∈ ϕε,δ(SN ) and t ≥ 0. 
Since ε � δ,

Q(uε,δ) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S + a3

(
ε

δ

)(N−p)/(p−1)

− a4 ε
p if N > p2

S + a3

(
ε

δ

)p

− a4 ε
p log

(
δ

ε

)
if N = p2

for some constants a3, a4 > 0 by (4.5)–(4.7), so (4.4) follows. �
We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let 0 < δ < δ0. Lemma 4.2 gives an odd continuous map ϕε,δ :
SN → S satisfying

sup
w∈ϕε,δ(SN ), t≥0

E(tw) < 2
N

S
N/p
N, p (4.9)

for all sufficiently small ε > 0.
(i) If 0 < λ < λ1, Theorem 1.4 with k = m = 0 and C0 = ∅ gives N/2 distinct pairs 

of nontrivial solutions satisfying (1.3). If λk < λ < λk+1, Lemma 4.1 gives a compact 
symmetric subset Ck,δ of S with i(Ck,δ) ≥ k satisfying

sup
v∈Ck,δ, s≥0

E(sv) = 0 (4.10)

when δ is sufficiently small. Let v ∈ Ck,δ, w ∈ ϕε,δ(SN ), and s, t ≥ 0. Since v = 0 on 
B3δ/4(0) and w = 0 outside B3δ/4(0), ϕε,δ(SN ) ⊂ S \ Ck,δ and
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E(sv + tw) = E(sv) + E(tw). (4.11)

It follows from (4.9)–(4.11) that

sup
v∈Ck,δ, w∈ϕε,δ(SN ), s,t≥0

E(sv + tw) < 2
N

S
N/p
N, p .

So Theorem 1.4 with m = 0 again gives N/2 distinct pairs of nontrivial solutions satis-
fying (1.3).

(ii) If λ = λ1, then λ < λ2 since the first eigenvalue is simple, so Theorem 1.4 with 
k = m = 1 and C0 = ∅ gives (N − 1)/2 distinct pairs of nontrivial solutions satisfying 
(1.3).

(iii) If λk−m < λ = λk−m+1 = · · · = λk < λk+1, where k > m ≥ 1, Lemma 4.1 gives 
a compact symmetric subset Ck−m,δ of S with i(Ck−m,δ) ≥ k −m satisfying

sup
v∈Ck−m,δ, s≥0

E(sv) = 0

when δ is sufficiently small. As in the proof of part (i), ϕε,δ(SN ) ⊂ S \ Ck−m,δ and

sup
v∈Ck−m,δ, w∈ϕε,δ(SN ), s,t≥0

E(sv + tw) < 2
N

S
N/p
N, p .

So Theorem 1.4 gives (N−m)/2 distinct pairs of nontrivial solutions satisfying (1.3). �
Proof of Theorem 1.2. The case where 0 < λ < λ1 or λk < λ < λk+1 for some k ≥ 1 is 
covered in Theorem 1.1 (i), so we assume that λ = λk < λk+1 for some k ≥ 1. Lemma 4.1
gives a compact symmetric subset Ck,δ of S with i(Ck,δ) ≥ k satisfying

sup
v∈Ck,δ, s≥0

E(sv) ≤ aδ(N−p)N/p (4.12)

for some constant a > 0 when 0 < δ < δ0 is sufficiently small. Lemma 4.2 gives an odd 
continuous map ϕε,δ : SN → S satisfying

sup
w∈ϕε,δ(SN ), t≥0

E(tw) ≤ 2
N

S
N/p
N, p

[
1 + a1

(
ε

δ

)(N−p)/(p−1)

− a2 ε
p

]N/p

(4.13)

for some constants a1, a2 > 0 for all sufficiently small ε > 0. Let v ∈ Ck,δ, w ∈ ϕε,δ(SN ), 
and s, t ≥ 0. Since v = 0 on B3δ/4(0) and w = 0 outside B3δ/4(0), ϕε,δ(SN ) ⊂ S \ Ck,δ

and

E(sv + tw) = E(sv) + E(tw). (4.14)

Take δ = εα with 0 < α < 1. Then
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δ(N−p)N/p = εp+[(N−p)Nα−p2]/p,

(
ε

δ

)(N−p)/(p−1)

= εp+[N−p2−(N−p)α]/(p−1).

(4.15)
Since N2/(N + 1) > p2,

0 <
p2

(N − p)N <
N − p2

N − p
< 1,

so we can take p2/(N − p) N < α < (N − p2)/(N − p), combine (4.12)–(4.15), and take 
ε sufficiently small to get

sup
v∈Ck,δ, w∈ϕε,δ(SN ), s,t≥0

E(sv + tw) < 2
N

S
N/p
N, p .

So Theorem 1.4 with m = 0 gives N/2 distinct pairs of nontrivial solutions satisfying 
(1.4). �
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