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Abstract
Manufacturing Process Causal Knowledge Discovery using a

Modified Random Forest-based Predictive Model

A Modified Random Forest algorithm (MRF)-based predictive model is proposed for use in man-
ufacturing processes to estimate the effects of several potential interventions, such as (i) altering
the operating ranges of selected continuous process parameters within specified tolerance limits,
(ii) choosing particular categories of discrete process parameters, or (iii) choosing combinations of
both types of process parameters. The model introduces a non-linear approach to defining the most
critical process inputs by scoring the contribution made by each process input to the process output
prediction power. It uses this contribution to discover optimal operating ranges for the continuous
process parameters and/or optimal categories for discrete process parameters. The set of values
used for the process inputs was generated from operating ranges identified using a novel Decision
Path Search (DPS) algorithm and Bootstrap sampling.

The odds ratio is the ratio between the occurrence probabilities of desired and undesired process
output values. The effect of potential interventions, or of proposed confirmation trials, are quantified
as posterior odds and used to calculate conditional probability distributions. The advantages of
this approach are discussed in comparison to fitting these probability distributions to Bayesian
Networks (BN).

The proposed explainable data-driven predictive model is scalable to a large number of process
factors with non-linear dependence on one or more process responses. It allows the discovery
of data-driven process improvement opportunities that involve minimal interaction with domain
expertise. An iterative Random Forest algorithm is proposed to predict the missing values for the
mixed dataset (continuous and categorical process parameters). It is shown that the algorithm is
robust even at high proportions of missing values in the dataset.

The number of observations available in manufacturing process datasets is generally low, e.g.
of a similar order of magnitude to the number of process parameters. Hence, Neural Network
(NN)-based deep learning methods are generally not applicable, as these techniques require 50-100
times more observations than input factors (process parameters).

The results are verified on a number of benchmark examples with datasets published in the lit-
erature. The results demonstrate that the proposed method outperforms the comparison approaches
in term of accuracy and causality, with linearity assumed. Furthermore, the computational cost is
both far better and very feasible for heterogeneous datasets.
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Chapter 1

Introduction

The fourth industrial revolution, commonly referred to as ’Industry 4.0’, will involve a complete
digital transformation of several manufacturing operations. This transition will give rise to new
developments in intelligent, co-operational, and integratedmanufacturing processes that are capable
of tracking real-time operating progress in order to monitor expenses, minimise downtime, and
avoid system failures [1]. In this chapter, the main topics and challenges of the present dissertation
are introduced and addressed. In Section 1.1, the manufacturing problem of interest and the
necessary terminology pertaining to the statistical process control are defined, followed by the
description of the investment casting process as a case study in Section 1.2. In Section 1.3, the aims
and objectives of the study are outlined and discussed. Publishable results for potential journal
papers are illustrated and included in Section 1.4. In Section 1.5, the research roadmap is depicted
in the context of demonstrating how this work fits in with the Swansea University’s overall research,
as well as how it builds upon the findings of previous researchers group in the same field. Finally,
Section 1.6 comprises the layout of this dissertation.

1.1 Industrial Research Context and Problem Definition

The development and enhancement of quality management systems have become core management
practices for both industrial companies and service providers. Improved quality is a significant
benefit in business. An organisation that can satisfy its consumers by monitoring to improve quality
will overtake its rivals. Quality is inversely related to both volatility and variability, which implies
that with a decline in the number of vital characteristics of the product, the product’s condition
will improve. As an example, one automotive manufacturer in the USA conducted a comparative
survey on vehicle transmission systems that were locally manufactured and those produced by a

1



CHAPTER 1. INTRODUCTION 2

Japanese supplier. As Figure 1.1a shows, a remarkable distinction was observed between these
sources (US manufacturers and the Japanese supplier) on terms of warranty claims and repair costs.
The Japanese transmission had a much lower cost; moreover, by measuring several critical quality
measures from random samples within each plant, as demonstrated in Figure 1.1b, the distributions
for both principal dimensions are centralised at the target value. Nevertheless, the distribution of
significant characteristics of transmissions produced in the US is approximately 75% of the width
of the specifications. For the Japanese transmissions, on the other hand, the identical major features
are allocated only around 25% of the specification band. Therefore, the root cause behind the
cost-performance discrepancy was found to be the the smaller variability in the essential quality
specifications of the Japanese-made transmissions compared to those manufactured in the US.

(a) Warranty costs for transmissions (b) Critical dimensions for transmissions

Figure 1.1: Cost and critical dimensions variability range comparison [2]

When it comes to the mass-production of systems and components, reduction of variability in
processes is the recipe for reducing the total cost, enhancing functionality, and boosting customer
satisfaction. Excess variation leads to scrapping and reworking, more customer returns, and
decreased serviceability and durability. In the foundry industry, in 2017, global casting production
was around 109.8million tons [3]. Themean cost of production for ferrous foundries was 1.7 billion
Euros per million tons manufactured, and 4.94 billion Euros for every million tons of non-ferrous
castings [4]. It can also be noted that the international casting industries created casts worth over
130 billion Euros in 2017. Tremendous advances have been implemented in the field of foundry
technologies involving computer simulations, moulding machines, binder formulations, and alloy
production. Commonly, factories would lose 4–5% of their annual revenues. In 2017, the direct
expenses to the global economy contributed around 1.3 billion Euros based on the 1% refusal rate
in foundries. These costs could potentially be reduced, or even eliminated, if efforts were made to
derive product-specific process knowledge from the in-process statistics and to recycle it in order to



CHAPTER 1. INTRODUCTION 3

optimise the casting procedures for current and emerging casting parts. According to the statistical
process control framework, in any manufacturing process, (see Figure 1.2a), regardless of how
well a process is designed, there is always a certain amount of natural variability around the target
process output, referred to as critical-to-quality characteristics (CTQs). There are two types of
variability. The first is inherited naturally from the combined effect of many small unavoidable
causes. This type of variability is called common cause variation. This is an allowable variation,
and the process response values remain during the process’ upper (USL) and lower specification
limits (LSL), as represented in Figure 1.2b. A process that operates in the presence of common
causes is said to be an ’in-control’ process. The second type of variability often occurs in the
outcome of a process as a results of factors like improper machine adjustment, machine defects,
operator errors, and defective raw material. Typically, the majority of these process results lie
outside the specifications range compared to the natural variability and result in the unacceptable
quality level of the process output. These sources of variability are typically referred to as special
or assignable causes variation. A system that operates in the presence of assignable causes is
considered to be an ’out-of-control’ process [2]. The LSLs and USLs represent the total range for
each factor in the process. These limits are extracted from the industry by the process engineer in
order to visualise the range limits for each process.

(a) Manufacturing process inputs and output (b) Process output variability

Figure 1.2: Typical manufacturing process control [2]

These common and assignable causes of variation are illustrated in Figure 1.3. A process
remains in-control until time C1 when operating in the presence of common cause variation. The
mean value (`0) and standard deviation (f0) of the system are centred around the in-control values.
At time C1, an assignable cause occurs, resulting in shifting the process mean `0 to the more
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considerable value `1. At time C2, the other assignable cause appears, which leads to (` = `0);
however, the standard deviation of the output becomes a more significant value (f1 > f0). At time
C3, the next assignable cause emerges, which results in both the process mean value and the standard
deviation moving to the out-of-control range. After time C1, the existence of assignable causes leads
to an out-of-control scenario. Moreover, as shown in Figure 1.3, the in-control process produces
outputs that remain within the minimum and maximum control limits (LSL and USL respectively).
On the other hand, the out-of-control process produces products or responses that do not comply
with the desired specification limits.

Figure 1.3: Variation types of manufacturing process [2]

Typically, under these circumstances, statistical process control (SPC) is employed, along with
other problem-solving techniques [5, 6] implemented to identify the presence of assignable causes
of system variations and process investigation; this enables corrective action to be implemented
before several non-conforming units are produced. The variation in the response values is usually
associated with a variety of one or more process inputs or factor values. Thus, a reduction in inputs
variance mitigates the variation of the response values [7]. Figure 1.4 illustrates the schematic
representation of this effect. Extracting process knowledge from available measured data regarding
of how and why a process behaves as it does is crucial to identifying causal relationships in the data
and understanding the sources of variation and their role in process improvement. This information
can then be used to enhance the process output characteristics. The work done by Batbooti [8]
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introduced an algorithm that investigated the optimisation of the investment casting process by
applying the QCA algorithm to Swansea University’s historical (nickel-based superalloy) dataset.
This algorithm presumes linearity in the process data. The aim of this work is to propose a solution
for non-linear datasets and discover opportunities to optimise process settings that will lead to a
reduction in defects.

1.2 Investment Casting Process

The oldest known precise metal casting method, which is considered in this study, is the invest-
ment casting process, also referred to as lost-wax casting. Investment casting is used to produce
components with complex-shaped that require a very smooth and detailed surface finish, tighter tol-
erances, and relatively thin sections such as aerospace turbine blades and automotive turbocharger
wheels [9]. The investment casting process employs a series of operations, each of which involves
a sub-process. The first step is the creation of wax patterns that resemble the shape of the final
product using an injection mould. The wax pattern is then coated with ceramic to create disposable
ceramic moulds. The moulds are gently heated to melt and drain away wax. The molten metal
is then poured into the ceramic moulds. Subsequently, the ceramic moulds are removed to reveal
the finished product. Finally, any excess material is removed from the finished product [9, 10]. As
an example, producing a turbine blade takes a period of weeks. It often takes several days from
the initial wax manufacturing phases to the final casting before the propeller is created. Typical
continuous quality improvement studies incorporate more than 60 to 70 measurable procedure
variables that control the quality of the finished blade or the propeller. Discussions with foundry
process engineers revealed that they do try to reduce common cause variation by manually tuning
the process using their domain expertise. The difficulty for foundry process designers is associated
with making improvements to many system parameters (e.g., minor modifications to the opera-
tional ranges of different settings, such as alloy formulations at specific melting and pouring points,
pouring temperatures, moulding criteria, etc). It is not adequate to make one single improvement at
a time. It is also not straightforward for specialists to select the top crucial process factors that are
seen to be accountable for the 3–5% rejection. The majority of waste produced by a foundry can
be typically attributed to these factors. The schematic representation of this problem is illustrated
in Figure 1.4, where the variation in the grey area is acceptable and hence considered as common
cause variation. However, for processes with improved process capability, a reduction in spread or
movement of target value may reduce the spread of causes. Figure 1.4 illustrates the input/output
relationship of a typical single-input/single-output process. It is noticeable that as the input varies
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along the horizontal axis, the output varies by a corresponding amount. This variation is governed
by the process itself and is represented by the blue curve in the figure, while the variance in the
input value is represented by a normal distribution. The greater the spread of the input distribution,
the greater the variance of the output value. Common cause variations (in grey), in this case, are
substantial enough to cause the output to fall short of the process tolerance indicated by the dashed
lines. The aim of this avenue of research [8,11] is to develop an algorithm capable of confining the
input parameter(s) to a narrow region (the white distribution) to guarantee that the process output
remains within acceptable tolerance. The following two objectives have accordingly been pursued:

1. To quantify the effect of changes to inter-related process inputs on the variability of process
output;

2. To explain this effect by quantifying causal relationships between the inputs and output(s).

Process Input Variation
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Figure 1.4: Typical common cause process revision [8]
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Typically, themajority of historical manufacturing data contains incomplete observations (miss-
ing values), combines both categorical and continuous variables, and is impacted by non-linearly
interacting process factors. In this study, a typical example of an investment casting foundry
manufacturing nickel-based superalloy castings was utilised. The variation in a number of casts
that were rejected due to shrinkage defects was observed and noted as a process response (i.e., the
number of castings manufactured per fixed value of the molten metal, the rejection rate and the
system parameters were observed for each melt or batch). The corresponding chemical compo-
sition readings for the batch are attached in Appendix A. The variation of the rejection rate and
the variability of one process input, (e.g. factor %�), is illustrated in Figure 1.5 along with the
lower (LL) and upper operating range limits (UL). The USL and LSL represent the total range
limits for the carbon composition, while LL and UL represent the optimal limits found in the QCA
algorithm [8]. Figure 1.5 depicts the variation in the carbon composition for each batch (60 batches
total) and the rejection rate variation for the complete process batches. In Figure 1.4, the variation
of region ’E’ corresponds to the variation of %� with lower and upper operating range limits of
(LL) and (UL). The resulting variation in the output corresponds to the output region ’F’.
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Figure 1.5: Variation in rejection rate and of the input factor %C for nickel-based superalloy [8]

To better understand the inter-dependence between the inputs, a co-linearity index (CLI) plot is
constructed [11]. The co-linearity index is defined as the projection of an input variable along the
response variable. The CLI plot describes the contribution of each factor to the shrinkage penalty
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(process output) in the form of strength and direction. Here, strength describes the weight of the
factor in the process, while the direction describes the sign of its contribution to the shrinkage defect.
Moreover, CLI represents the angle found between the loading vectors in the PCA subspace. This
angle is defined by a set of selected principal components. On a graphical plot, the reference x-axis
represents the loading vector, which corresponds to the response. The vectors of the other factors
are plotted with respect to the angles and response of the loading factor. Moreover, the cosine of
angles (i.e. CLI) is defined as the measure of correlation that is calculated with reference to the
response direction. The factors with almost no correlations are removed, while the others are used
for further consideration. This approach is considered to be an improved measure of correlation. A
detailed computation of CLI is shown in the QCA algorithm [8]. The variables represented in the
co-linearity plot can be categorised into different regions according to the strength of correlation,
as follows:

• No Correlation: Central region with CLI between -0.2 and 0.2;

• Weak Positive Correlation: Intermediate region with CLI between 0.2 and 0.5;

• Weak Negative Correlation: Intermediate region with CLI between -0.5 and -0.2;

• Strong Positive Correlation: Extreme region with CLI between 0.5 and 1;

• Strong Negative Correlation: Extreme region with CLI between -1 and -0.5.
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Figure 1.6: Co-linearity index plot for the process data used in nickel-based superalloy [12]
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Figure 1.6 shows the CLI index plot for all process factors with reference to the normalised
shrinkage penalty. The CLI index plot is used to find the strength of the correlations in the
investment casting process. These correlations can be visualised by plotting the process response
as a unit vector along the horizontal axis. All other factors are then represented as unit vectors with
positions that are defined by the angle formed with the response variable. From Figure 1.6, it can
be seen that there is no correlation in the region between shrinkage penalties -0.2% and 0.2% for
%$, %)0, %�, %)8/)0. Also, the factors with shrinkage penalty between 0.2% and 0.5%, and
-0.5% and -0.2% exhibit a weak correlation, such as %�>, %)8, %�;, %�, %�4. Thus, it can be
concluded that there is no strong correlation between the factors in this case study.

(a) Odds ratio for interaction of %� (b) Odds ratio for interaction of %�>

Figure 1.7: Odds ratio for interaction of factors [8]

Figure 1.7a above shows the prediction of the odds ratio of the interaction of %� with every two
factors in the process. The odds ratio is a measurement of the relationship between the probability
of the occurrence of desired and undesired process output values (outcomes). It can be used to
predict the outcome with respect to an input factor. Another important application of the odds ratio
is evaluating the behaviour of a known operating limits range by approximating the values of the
related response. The computation of the odds ratio is explained in more detail in chapter five. The
Bootstrap method is a statistical procedure that makes use of a resampling technique to estimate
quantities of a population by means of random sampling of a single dataset with replacement. The
Bootstrap method creates several random subsets from a single dataset. This technique generates
Bootstrap samples from an initial dataset by randomly drawing with replacement. Moreover, the
Bootstrap technique enables the calculation of standard errors and hypothesis testing from sample
statistics. In machine learning, the Bootstrap method is used to evaluate the capability of a machine
learning model when making predictions on data that is not included in the training data.
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Batbooti [8] extended Gianetti’s work [11] and found an interaction among the process factors.
For example, based on Batbooti’s analysis [8], the odds ratio of 1.32 in Figure 1.7a represents the
effect of the interaction between %�, %)8 and %�>. In other words, the values for these factors
were bootstrapped from the optimal limits; however, the values for the remaining factors were
bootstrapped from the original process range. The interaction table reveals that if the values for
factor %� are bootstrapped from its optimal range limit, the resulting odds ratio is 0.75; however,
the %�> factor exhibits a higher odds ratio at 1.35 [8]. Although both %� and %�> have similar
strength co-linearity indices (weak correlation), as shown in Figure 1.6, the corresponding odds
ratio values are significantly different. This is likely because of the linear assumption of the
quality correlation algorithm (QCA) prediction model [8]. Generally speaking, the QCA predictive
algorithm underestimates odds ratio values for %�. Based on the observations emerging from the
research, Batbooti [8] recommended that a non-linear approach be adopted to try to capture the
inputs/output relationship of the non-linear process at hand. It was concluded that the linearity
assumption was the main point of weakness of Batbooti’s proposed algorithm [8].

Figure 1.8: Penalty matrices for carbon and cobalt composition [13]

Another method of discovering the non-linearity in the dataset involves studying the effect
introduced by Gianetti et al. [13]. Figure 1.8 depicts a method that can be used to standardise
the response in order to determine the correlation between the input and the output [13]. With
reference to its carbon composition, the variation in the batches is first sorted and then divided
into four quartiles. For each quartile, the response penalty is normalised and further divided into
five regions with an increment of 20% for each region, starting from zero until 100% penalty.
Subsequently, each batch is assigned to a quartile based on its appearance limit. Finally, the table
is constructed for each process factor using the same criterion. According to Gianetti [11], a linear
relationship between the process factor and the response is defined as follows: If the bottom 50
percentile (Q1 and Q2) are defined as optimal, this means that the batches are within a penalty
range between 0-40%, and the top 50 percentile (Q3 and Q4) are avoidance, as this indicates
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that the batches are in a penalised range of between 60-100%; and vice versa. Whereas, non-
linearity is defined as a situation in which the bottom 25 percentile (Q1) or top 25 percentile (Q4)
is avoidance; which means that the batches are within the penalised range between 0-40% and
60-100%, respectively. The same is true if the bottom 25 percentile (Q1), top 25 percentile (Q4),
either/or middle 50 percentile (Q2 and Q3) are optimal, which means that the batches between
0-40%, 40-60%, or 60-100%, respectively are within the penalised range. These cases are shown in
Figure 1.8. To sum up, linearity and non-linearity can be defined based on the following cases [11]:

1. Non-Linearity: From cases 1 and 2, a non-linear relationship is observed between process
input and response. These relationships exhibit step changes and are, hence, non-linear.

• Case 1: If the top quartile, bottom quartile or middle two quartiles are ’optimal’ limits.

• Case 2: If the bottom quartile or top quartile are ’avoidance’ limits (undesirable).

2. Linearity: From cases 1 and 2, a linear relationship is observed between process input and
response. These relationships have exhibited pattern variations and are, hence, linear.

• Case 1: If the bottom two quartiles are ’optimal’ limits and top two quartiles are
’avoidance’ limits.

• Case 2: If the bottom two quartiles are ’avoidance’ limits and top two quartiles are
’optimal’ limits.

Figure 1.8 presents the penalty matrices for both carbon %� and cobalt %�>. It can be
observed that carbon composition %� in the first quartile (bottom 25 percentile) is considered
the avoidance limit since it has 13 observations correlated with high penalty values and three
observations correlated with low penalty values. Whereas, the rest of the quartiles (second, third,
and fourth) exhibit similar process performance in the way they are correlated with low penalty
values. From the cases mentioned earlier, it can be observed that %� has a non-linear relationship
since it is categorised as a case 2; this is, the avoidance limit lies within the bottom quartile. There
is also a step change in the relationships when the %� is in the first quartile compared with the other
quartiles. This problem has also been observed in Figure 1.9a, which presents a plot between %�
and shrinkage defects, where it can be seen that for carbon values less than 0.095% the variability
in defect values is high. On the other hand, for cobalt composition %�>, it can be seen that the
first and second quartiles exhibit similar process performance with an optimal range located in the
bottom two quartiles since it has 12 observations correlated with low penalty values. Whereas,
the third and fourth quartiles (top 50 percentile) are considered avoidance limits, since they are
correlated with higher penalty values. Based on the abovementioned cases, it can be observed that
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%�> exhibits a linear relationship since it is categorised as case 1. Thus, the bottom and top two
quartiles are optimal and avoidance limits, respectively. There is also a variation in the range of
%�> since it varies from low penalty values (first and second quartiles) to high penalty values
(third and fourth quartiles). This variation is also illustrated in Figure 1.9b, which presents a plot
between %�> and shrinkage.

(a) Carbon variation (%�) (b) Cobalt variation (%�>)

Figure 1.9: The variability in shrinkage defect values across batches is shown with reference to a
sample of both carbon and cobalt composition values for the batch

An example of the linear/non-linear variation is provided as follows. A linear correlation is
characterised by an input/output relationship that is either monotonically increasing or decreasing.
A non-linear interaction is characterised by having maxima, minima, or step changes in its process
response versus input curve (Figure 1.9a). The input data at 0.085 and 0.095 exhibit high variability
in their output response, which leads to an indication of non-linearity in the dataset studied. It can
also be seen that there are multiple batches with defect values spread over a wide range for a single
sample carbon composition value. There is a step change in the behaviour, with much smaller
spread at higher composition values. This may suggest that the carbon’s effect on the process
output is not independent of other input parameters. By contrast, from Figure 1.9b, a pattern can
be observed in the relationship between cobalt composition and shrinkage defect, which indicates
linearity in the dataset being studied. Furthermore, in the previous work illustrated by Batbooti [8],
it was described that both %� and %�> have the same strength with different interactions and
it was concluded that the variation in carbon is non-linear. Moreover, Gianetti et al. [13] show
that a non-linear relationship exists between carbon composition and shrinkage defect. Based on
Figure 1.9, the previous work done by Batbooti [8], and the work of Gianetti et al. [13], it can
be seen that a non-linear relationship exists between carbon composition and shrinkage, resulting
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in a non-linear problem to solve. Typically, historical manufacturing data is not widely available,
as the observations are usually small in number and include missing data. Generally speaking,
a statistical learning method requires sufficient data if it is to capture statistical knowledge from
the historical data. Moreover, batches also take time to be produce (around 1 - 2 months); in
addition, the process engineer makes decisions based on the amount of data available, and the
decision made based on this limited data might not be accurate. Furthermore, a small dataset
lowers both prediction performance and statistical power, and also increases overfitting, resulting
in low prediction accuracy and weaker causal relationship discovery. This issue can be resolved by
augmenting the model with new data. In chapter four, a new method is discussed and performed
to augment the data to a sufficient extent. Another problem that the process engineer may face
regarding the dataset is that of skewed data. As skewed data often increases the tendency of bias
error, balancing this skewed data is an important step toward minimising bias error in the prediction
model. Chapter three discusses the ways in which skewed data can be balanced. In the previous
work conducted by Batbooti [8], the prediction performance ofmissing data was based on a linearity
assumption. The results of linear prediction are affected by several limitations (see Figure 1.10),
as follows:

1. Altering the effect of correlation for the non-linear interacted factor. This was shown by
Batbooti [8] since the carbon composition correlation was changed after the prediction from
being strongly to weakly correlated with the shrinkage defect.

2. The prediction accuracy performance will decrease dramatically after a certain level of
missing data.

3. Computational cost is high, since it is an iterative method.

Figure 1.10: Limitations of linear prediction
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From the above, it can be concluded that predictions based on the linear assumption are incapable
of extracting statistical knowledge from non-linear interacted data. Moreover, this limitation will be
propagated to both the extracted causal information and the optimal process range. The overall aim
of this thesis was the same as that of Gianetti’s [11] and Batbooti’s [8] theses; however, the precise
objective of this thesis is to overcome the limitations of Batbooti’s [8] work. This is described in
the next section.

1.3 Aims and Objectives

Typical historical foundry process data tend to be mixed, limited to a small number of observations
(batchwise observations per part number are limited), and affected bymissing values. The challenge
of the present study is to create a data-based framework for variation reduction that can (i) diagnose
the process variation; (ii) determine opportunities of optimal and avoidance operating range limits;
and (iii) predict the process performance based on the optimal operating scales of the inputs.
This thesis aims to develop a causal knowledge discovery model in order to find the optimal
operating ranges for continuous process parameters and/or optimal categories for discrete process
parameters that achieve the desired variation reduction in output with minimal interaction from
domain expertise. This is achieved by (i) constraining the operating ranges of selected continuous
process parameters within specified tolerance limits so that the spread is reduced, or changing the
target value for process inputs; (ii) choosing particular categories of discrete process parameters;
or (iii) choosing combinations of both types of process parameters. This leads to the following set
of objectives:

• Development of a predictive machine learning model that has the capability of dealing with
non-linearity in data, as described in Section 1.2.

• Development of a non-linear missing data algorithm to impute the missing values of both
quantitative and categorical variables.

• Development of an augmentation technique to deal with a skewed and limited dataset.

• Demonstration of the ability to predict the output or response of any given choice of operating
limits on selected mixed input factors.

• Development of a non-linear approach for defining the most critical process inputs.

• Verification of the performance efficiency of the proposed algorithm on published datasets
and conduct comparisons with a number of published state-of-the-art models.
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The following four novel techniques (as depicted in Figure 1.11) are proposed in this thesis to
enhance the prediction ability of small non-linear datasets via improved computational efficiency
and to enhance the interpretability of the traditional Random Forest algorithm. These novel
techniques are as follows:

1. A novel automatic forest size optimisation. This algorithm maximises the inherited gains
due to the use of ensemble uncorrelated multiple decision trees.

2. A novel iterative Random Forest training approach used for augmentation, balancing, and
imputing missing values for non-linear mixed datasets.

3. A novel causal framework for Random Forest. This algorithm searches for the optimal
decision path to facilitate interpretation of traditional Random Forest and provides a com-
prehensive inference analysis framework to enable causal knowledge extraction from any
complicated process.This framework is designed to guide process engineers to optimise pro-
cess performance through the estimation of optimal limits for each process factor that will
minimise the process defects and maximise yield.

4. A scoring algorithm for ranking the most critical process factor based on the Decision Path
Search algorithm.

The detailed development process of the first two novel techniques, which involve implementing
the Modified Random Forest algorithm, are discussed in chapter four, while further details of the
third and fourth novel techniques are illustrated in chapter five.

Figure 1.11: Dissertation novelty techniques
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1.4 Publishable Results for Potential Journal Papers

This section introduces the results that could potentially be published in future journal articles re-
garding the novel techniques identified in this research. These proposed articles can be summarised
as follows.

1. "A Novel Approach to Industrial Process Optimisation Using a Modified Random Forest
Algorithm."

• Historical process data rarely deals with small datasets for quick observations and
results. One of the key drawbacks of most non-linear machine learning algorithms is
the inability to deal with a small dataset. Accordingly, the author proposes a novel
approach combining both SMOTE [14] and missForest [15] techniques to resolve the
issue of the small dataset and preserve the overall structure without affecting the factor
correlations. This novel approach comprises the following steps: First, quantify the data
into four different quartiles with a balanced dataset in each quartile so that SMOTE can
be applied. Second, augment the dataset using SMOTE to achieve the optimal number
of datasets that Random Forest can deal with and to preserve the overall structure
of the data. Finally, use the missForest technique to predict the new response for
the new observations in order to preserve the non-linearity relationships between the
factors and the response (s). A novel approach is derived that involves combining both
SMOTE and missForest in order to augment non-linear regression problems, enabling
it, to deal with non-linear unbalanced datasets. In addition, Random Forest (RF) has
an issue with choosing the optimal number of trees. Some hyper-parameter tuning
tuning will thus be conducted to obtain the optimal number of trees that will lead
to both lower computational cost improved and variance reduction. The idea is to
determine the optimal number of trees that will obtain the most robust performance.
Even if this number of trees is exceeded, there will be no change in performance results.
This technique was accomplished by using the cross-validation method to sweep over a
number of different trees in order to find the optimal estimator that will further minimise
overfitting. The author proposes a novel technique for finding the optimal number of
estimators for industrial process optimisation using a Modified Random Forest (MRF)
approach. This paper is further discussed in chapter four.

2. "Causal Knowledge Extraction for Industrial Processes Using Decision Path Search Algo-
rithm."
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• Random forest is a non-parametric algorithm, which leads to difficulty in interpreting
the ensuing decisions. The built-in function in the traditional algorithm is used to score
the factors based on their importance, regardless of whether these factors are affected
by outliers or noise. Accordingly, the author proposes a novel approach to discover
the causal knowledge extraction by searching and tracing the decision trees all the way
to reach the base estimators by traversing the tree. The proposed technique is used to
define the optimal and avoidance limits for every factor in the dataset and to determine
how important this factor is to the given response. This novel approach is called a
Decision Path Search algorithm (DPS). The paper is discussed in more detail in chapter
five.

3. "Robustness of the Modified Random Forest Algorithm."

• In this paper, the Modified Random Forest algorithm is compared with a variety of
published state-of-the-art models to prove the stability and robustness of the proposed
algorithm, as well as to demonstrate the applicability of the MRF algorithms. Due to
the novelty of the proposed algorithm, it can achieve superior performance relative to
other state-of-the-art models. In the first stage of building the MRF algorithm, it was
developed only for the foundry problem, after which it was used as a general algorithm
for a wide variety of further problems that creates impact beyond foundry problems.
The proposed algorithm performs better across the board for foundry-related and other
problems; thus, the findings from the proposed algorithm are not only limited to the
small subset of foundry problems but are generally applicable on a broad scale. This
bench-marking highlights the main areas of weakness areas of the traditional Random
Forest. Based on this, more work was carried out to enhance the base-line algorithm
in terms of its robustness and its stability (even with large datasets). Comparisons with
different state-of-the-art models and their results are presented in chapter six.

1.5 Knowledge Discovery and Variation Reduction Techniques
Roadmap

Figure 1.12 depicts the roadmap of the various reduction techniques within the research group
at Swansea University. It begins with a Penalty Matrix approach (PM) [16] moving on to other
techniques while continuously enhancing the PM approach until the proposed algorithm is reached,
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which is a Modified Random Forest algorithm (MRF). The various reduction techniques shown in
Figure 1.12 will be discussed in more detail in the literature review chapter.

Penalty Matrix Approach (PM)

Coupled Penalty Ma-
trix Approach and PCA

Coupled Penalty Matrix
Approach with PCA and

MFA for Mixed Datasets [13]

Quantile Regression
Trees (QRT) [16]

Quality Correlation Al-
gorithm (QCA) [8]

Modified Random For-
est Algorithm for Non-
Linear Factors (MRF)

Figure 1.12: Various reduction technique within the research group at Swansea University

1.6 Thesis Layout

This thesis describes the main research activities carried out as part of this PhD study. The thesis
structure, which is illustrated in Figure 1.13, is as follows.

• Chapter 2: Introduces and discusses the main body of literature concerning statistical
learning models, tree-based algorithms, and missing data algorithms. This chapter reviews
the traditional and recent multivariate data analysis approaches to manufacturing output
variation monitoring, diagnosis, and analysis.

• Chapter 3: Introduces the mathematical formulation of the predictive causal analytics,
along with the state-of-the-art algorithm that is utilised in this thesis. This chapter lays the
foundation for the novel work introduced in chapter four.
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• Chapter 4: Introduces a predictive machine learning model based on the Random Forest
algorithm, which was first developed by Leo Breiman [17]. The proposed algorithm solves
the knowledge discovery issue from the non-linear relationship between the process factors,
then adds this step to the research done by Batbooti [8]. The Modified Random Forest
algorithm (MRF) is subsequently applied to the nickel-based superalloy dataset. This chapter
demonstrates the algorithm’s capability to predict process responses, even with non-linear
interactions among process factors.

• Chapter 5: Presents a newvariation reduction algorithmbased on the graph search algorithm.
This approach enhances the interpretability of the Random Forest algorithm (RF) and adds
a causal relationship to discover the factor ranges corresponding to variation in the output,
depending on the decision path in each decision tree in the forest. The non-linear optimal
process limits of the algorithm are demonstrated on the nickel-based superalloy dataset. This
chapter demonstrates the algorithm’s ability to estimate the optimal and avoidance limits for
the most critical factors.

• Chapter 6: Three publicly available datasets are studied to demonstrate the applicability of
the proposed algorithms. In all three case studies, the optimal and avoidance variation of
the factors were identified. The process improvement, as suggested by the optimal response
values, was predicted for single and interaction factor effects. The algorithm’s ability to
discover new knowledge, visualise the data, and predict the behaviour of the data within
specific limits is compared overall with recent studies that have been conducted on these
datasets. The regression capability of the proposed algorithm is also compared with the
published results. The novelty of the proposed RF approach is subsequently illustrated by
comparing the MRF algorithm with three published RF models. This comparison reveals
how MRF’s features make it superior to other RF approaches found in the literature.

• Chapter 7: Summarises the main conclusions and research outcomes of this PhD work and
identifies the scope for future work.

• Appendix: Presents both the nickel-based superalloy dataset studied in this thesis and
the optimal number of trees for various published datasets. The plots presented in [8]
summarising previous work on this were reproduced in Python and are also included in the
Appendix.
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Figure 1.13: Dissertation road-plan and chapter outline



Chapter 2

Literature Review

2.1 Introduction

In several fields of technology, humanities, and the sciences, experts have employed past measure-
ments or observations to predict future phenomena. For many years, experts have approached issues
including the devising of analytic frameworks, particularly those based on fundamental principles
or that combine knowledge to understand, model, and analyse the problem of interest. However,
the limitations of conventional approaches begin to be revealed as the difficulty of these problems
increases. Therefore, machines of increasing capacity and speed have been designed to break this
cognitive barrier as well as advance the state of the scientific field. Consequently, many algorithms
and techniques (powerful enough to deal with large and complex datasets) have originated from the
field of machine learning. Notably, data is the ‘magic word’ for every decision-maker across all
industries. Nevertheless, data is meaningless in the absence of a proper interpretation of its mean-
ing. In the modern world, a number of tools are being developed to allow perceiving, analysing,
and drawing conclusions from data, enabling its conversion into useful knowledge. In this chapter,
machine learning methods of variation reduction for multivariate data are reviewed to meet the
goals and objectives outlined in chapter one. This review includes a discussion of the advantages
and disadvantages of the different methods, along with the reasons for selecting the Random Forest
algorithm to discover the process knowledge from the historical data. The remainder of this chapter
is structured as follows. Section 2.2 addresses different methods of machine learning and process
knowledge discovery. Section 2.3 summarises the most common statistical learning models. An
introduction to the RandomForest algorithm is presented in Section 2.4, while Section 2.5 expounds
on the merits of this algorithm. In Section 2.6, the drawbacks of Random Forest are addressed.
Section 2.7 then defines the multivariate feature imputation. Finally, Section 2.8 summarises the

21
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challenges this approach will encounter in the process of solving the problem.

2.2 Statistical Learning Methods for Multivariate Data

In this section, the previous statistical learning methods for multivariate data are addressed. The
section is structured so that the limitations of each method are presented, followed by the contri-
butions this thesis makes to overcoming these limitations. It further outlines the scope of each
approach and discusses how thosemethods are unable to handle the challenges posed by the problem
investigated.

Hotelling’s )2

Typically, in the SPC framework, Hotelling’s )2 statistics [18] are used to detect the occurrence
of assignable causes. Process variables and key product characteristics (KPCs) are monitored, and
the covariance matrix is estimated from common cause variation data; subsequently, )2 statistics
are applied to detect whether or not new process observations lie within the acceptable limit.
However, this approach does not provide any diagnoses to identify the root cause variables. To
improve the diagnosability of Hotelling’s )2, Mason, Tracy and Young (MTY) [19] proposed
decomposing the )2 into independent terms (conditioned and unconditioned), then charting the
unconditioned terms individually (in a similar fashion to a Univariate Shewhart Control Chart [20])
in order to identify the factors that have significant a impact on an individual cause )2 signal. In
terms of the conditional part, it accounts for the contribution of different combinations of process
variables to KPCs. However, it does not provide a detailed causal relationship to distinguish
the root cause of the failure, as it focuses only on the occurrence of the defect; moreover, it is
not computationally efficient, especially given its high number of process inputs [21]. Motivated
by a desire to reduce computational cost and improve the diagnosability, a Bayesian-based )2

approach was proposed [21] - also referred to as causation-based )2 decomposition - that operates
by integrating process knowledge with statistical data analysis. The limitations of this approach are
that it requires heavy domain expertise to build the model and is also computationally expensive.

Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)

PCA is a multivariate data analysis technique designed to extract the most critical information
from the data by projecting a series of observations of variables that are likely to be correlated
on a subspace of linearly uncorrelated orthogonal variables, known as principal components.
It provides a reduced-dimensional space that minimises the information loss. PCA is widely
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used in different areas of science, including computer vision [22], quality and process control
[23], and pattern recognition applications with different types of analysis [24]. A multivariate
computational (statistical) cycle control approach is suggested, which operates by splitting the
initial data space into four different sub-spaces. The reduction in the dimensionality of variables in
each subspace is focused on the principal component analysis and Bayesian inference (BI) [25]. At
the PCA decomposition stage, each variable is divided into two significant sub-spaces: the Principal
Component Subspace (PCS) and the Residual Subspace (RS). The squared Mahalanobis distance
is used to assess the uncertainty within the PCS, while the squared Euclidean distance i used to
calculate the RS variations. Each variable is considered as either relevant or irrelevant within each
main subspace based on a binary numbering system. Multiple correlation coefficients are used in
this work to determine the relevance between variables in PCS or RS. The BI is applied to divided
samples based on conditional probability to infer the state of a new observation relative to the fault
region defined by PCS and RS. Lin et al. [26] proposed a condition-based maintenance model that
employs a Proportional Hazards Model (PHM) [27] and principal component analysis. The PCA
was utilised in this model to reduce the number of original variables, as well as to decorrelate
the linear set of random variables. In this work, the Principal Component of Proportional Hazard
Regression (PCPHR) method is introduced, which uses a set of principal components as covariates
in PHM to reduce the problem’s complexity. Parameter estimation for the hazard model is achieved
by maximising the likelihood function. A dataset of seventy data points was used: Forty-two of
these data points failed, while twenty-eight led to a suspension. The scores in the lower subspace
that were a result of the PCAor Partial Least Squares (PLS) formed the basis for the)2 statistics [23].
The plot of scores for the first three principal components of the refinery’s historical data [28] were
used to cluster the data into five groups. The inference in the lower subspace provides another
approach to studying themain causes of variationwith greater ability from the classical)2 approach.
The squared prediction error (SPE) calculated during the PCA reconstruction method is referred to
in the literature as &BC0C8BC82B. The )2 and &BC0C8BC82B are then used with PCA to highlight outliers in
the data, such that the statistics are calculated and the points located outside the confidence interval
of each statistic were identified as outliers [29–31]. When )2 and&BC0C8BC82B are used together in one
plot, this is referred to as a leverage outliers test [31]. Another PCA-based procedure, the confidence
intervals of the scores, was reviewed by Thennadil et al. [31] and Daszykowski et al. [32]. The
concept of the squared prediction error was used to identify the variation in the new observations,
as well as to estimate the corresponding contribution of the variables to this variation. It should
be noted, however, that the methods described in this review were not designed to identify optimal
and avoidance limits within the common cause variation to relate the process variables operating
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within new limits with KPCs. Instead, these methods were used to reduce the dimensions of the
highly dimensional dataset (i.e. dimensional reduction methods). The number of projection axes
(orthogonal) should be predefined before the dimensional reduction process begins.

The multiple factor analysis (MFA) methods [33] seek to compare a different group of variables
by adapting the categorical variables according to multiple corresponding analysis (MCA), which
is a counterpart of PCA for categorical data [22]. TheMCA uses the Chi-Squared distance measure
instead of the Euclidean distance used in PCA [22]; while the Chi-Squared distance is similar to
Euclidean distance, it is weighted by the inverse of the sum of individuals. Giannetti et al. [5]
used multiple factor analysis to extend the work presented in [13]. The proposed method integrates
three data tables, specifically, quantitative process variables, categorical variables and the process
responses. Data pre-processing is introduced to adapt the input variables and responses to plot
the CLI for mixed data. The median and interquartile range (IQR) transformation is introduced
to stabilise the standard deviation for variables with a Gaussian distribution and amplifies the
standard deviation of those with skewed distribution. Each categorical variable is transformed into
uncorrelated variables with a value of ONE when the corresponding category has occurred and
ZERO otherwise. The main limitation of this approach is that it is sensitive to outliers and factor
scaling, meaning that the data needs to be pre-processed. This approach also assumes that a linear
relationship exists among the variables and is further unable to solve complex problems in which
the majority of the variation is explained by more than the first two-thirds of PCs.

Stream-of-Variation Analysis (SOV)

Stream of Variation (SOV) [34] is a general mathematics-based procedure used for variation propa-
gation analysis in multi-stage manufacturing processes. The main concept concerns the integration
of multivariate statistics with control theory, along with design and manufacturing backgrounds.
Ceglarek et al. [24] developed a novel approach based on the first-time-right (�)')34B86=/3806=>B8B

approach for product/process performance analysis. In the design phase, �)'34B86= and SOV were
used for analysis, prediction and optimisation. SOV simulates the variation propagation throughout
the process and predicts the dimensional variation of the final product. In the production phase,
�)'3806=>B8B and SOV provide a robust method for finding and segregating the underlying causes of
dimensional variation by identifying the most significant dimensional defects. Liu [35] compared
the SOV and statistical process control (SPC) approaches in terms of their variation propagation
modelling, process monitoring, and diagnostic ability. In SOV modelling, the state transition
equation accounts for the change of sources in a manufacturing stage that may cause variation in
product characteristics during the same phase. It also incorporates the effect of upstream stage
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variation on the product, along with the effect of unmodelled variations. The observation equation
used to model key product characteristic measurements assumes a linear dependence on product
and process design information. In the SPC modelling, moreover, the model is built using KPC
measurements rather than physical engineering knowledge pertaining to product and process design
information.

Comparison of the results revealed that the SPC method was capable of identifying any faults
that arose during the different stages, while SOV identified the root causes in the process. SOVs
were used for the dimensional variation accumulated by the multi-stage manufacturing process data
rather than the response variables that create categories where lower or higher values are associated
with better optimisation function. The SOV model is based on a linear state-space model and is
limited to dimensional and geometric variation, while the SPC model can be used for linear state
transitions. The SOV assumes a linear transition model for the process phases and further requires
domain expertise.

Fuzzy Data Analysis (FDA)

Shu and Wu [36] presented a fuzzy data analysis to estimate process yield as a quantification index
of manufacturing process performance. The manufacturing of the touchscreen case presented in
this work specified tolerance depending on the light-transmission rate. Youn et al. [37] developed
a model that predicts the life of power generator stator bars under moisture absorption conditions
resulting from water cooling. The presented work was a diagnostic and prognostic statistical
model using directional Mahalanobis distance as an assessment of the health condition of these
bars. Adopting the Mahalanobis distance approach enabled the high-dimensional dataset to be
reduced to one dimension after normalisation was combined with a statistical model to discover
the correlation between variables. The limitations of the fuzzy dataset are that it is restricted to a
limited number of input variables and also requires a lot of data and expertise to develop a fuzzy
system. Moreover, the dimensional reduction utilised leads to a linearisation of factor interaction.

Bayesian Belief Network (BN)

Yang andLee [38] suggested applying theBayesian belief network (BN) to investigate the qualitative
and quantitative causal relationships between process variables, alongwith their effect on quality, by
constructing BN models at various stages of the process. When a fault occurs, the measurement is
given as proof in the BNmodel, and the backward likelihood of every sensor can be used to indicate
the root cause of the problem. However, this approach requires a significant amount of technical
expertise (domain knowledge) to define some configuration settings during the training process.
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Recognising the features of the mechanism requires a highly resource-demanding algorithm with
intensive training periods. Liu and Jin [39] devised a new Bayesian Networks (BN) modelling
approach for assembly process fault diagnostics that considers small datasets. The network is
constrained to two layers: The top layer contains the root nodes of the fixture variables, while the
second layer represents the assembly variation sensor locations. Finite Element Analysis (FEA)
was used to relate the causes of variance to the deformable component assembly variations. The
critical causal relationship implemented was focuses on the visualisation of the sensitivity matrix of
variance. The results for this relationship results were observed based on the testing of conditional
mutual knowledge. If the system architecture has already been established, the Bayesian method
can be used to achieve the conditional probability tables by integrating the previous probability
distributions. Bayesian multivariate statistical inference approaches have been evaluated by Brown
et al. [40], while Vehtari and Ojanen [41] have been addressed Bayesian-based prediction models.

Dey and Stori [42] developed a Bayesian belief network approach to monitor and diagnose the
process incorporating sequential machine operations. The data on subsequent machining proce-
dures collected from various sensors were then mixed through a causal belief network framework
to supply a probabilistic diagnosis of the root cause of the process variation. A Bayesian belief
network created using Bayes’ theorem and based on the prior probability of observed data was
used to determine the causal relationship between variables. Conditional probability values were
obtained through maximisation of the likelihood function, which represented the data learning step
following network initiation. The message transmission methodology developed in this work for
Bayesian inference was based on sensor observations; in this process, each node received messages
from its parents and transmitted these letters to its children. Data from two sensors (i.e. spindle
power and acoustic emission) and two processes (i.e. face milling and drilling) was studied, with
the obtained results showing that the belief network was capable of accurately diagnosing of the
state of the drill tool wear at the 80% confidence level (10 to 18 trials). The limitations of the
Bayesian network included the need for good domain expertise and its high computational cost.

Support Vector Machine (SVM)

A support vector machine (SVM) can be defined as a supervised machine learning algorithm that
can be used for the purposes of both regression and classification. Specifically, SVMs are largely
employed in problems of classification [43,44]. In essence, they operate by finding the hyperplane
that separates a dataset into two parts in the best way possible. Furthermore, support vectors are
considered vital elements of a dataset, as they affect the location of the dividing hyperplane when
removed. A hyperplane can be a line that linearly divides a set of data while classifying it at the
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same time. Intuitively, classification will be improved if the data points lie further away from
the hyperplane. Hence, it is vital that the data points be as far from the hyperplane as possible.
SVMs conduct regression by reversing the objective: more specifically, by finding a hyperplane
around which the most data points lie in close vicinity. The limitations of SVMs include their
lack of suitability for large datasets, their need for heavy normalisation, and their tendency to
underperform when the number of features is higher than the number of observations.

Artificial Neural Networks (NN)

Neural Networks (NN) have been used in the SPC context to detect different patterns representing
out-of-control situations. Pham [45] developed a Neural Network model to identify the abnormal
patterns on control univariate charts. This trained network can detect different out-of-control
patterns such as linear trends and sudden changes from target output. Pham and Oztemel [46]
devised an Neural Network-based method for the detection of small shifts in the variation of the
output from the target for univariate process control purposes. Cheng and Tannock et al. [47, 48]
devised an approach that detects assignable causes at the early stages of process monitoring using a
single SPC chart. Their work look the form of sequential pattern analysis using a back-propagation
learning network. The sequential analysis incorporated ’Sequence I’, to recognise the abnormal
patterns, and ’Sequence II’, to identify the corresponding critical parameters of the mathematical
model associated with trends in ’Sequence I’. A numerical simulation was conducted to validate
this work [47].

Wang and Chen [49] proposed an Neural Network with a fuzzy model to detect mean shifts in
the multivariate method. The severity of these changes in the mean was classified into different
decision intervals using a fuzzy classifier and an external process decision rule for deciding the
change status. A comparison of results using a Hotelling )2 multivariate control chart revealed that
the proposed model outperformed the )2 charts in detecting the out-of-control causes. A Neural
Network model was further proposed to complement multivariate Chi-Square chart-based methods.
This model was used to evaluate the transition signals derived from the multivariate Chi-Square
chart, then provide specialised specific shift knowledge for multivariate procedures [50]. Niaki
and Abbasi [51] proposed a Neural Network model of a multivariate process to monitor a process
shift from the desired target and identify different types of defects in a product. A more detailed
review of Neural Network applications in the multivariate process control context was provided by
Psarakis [52]. In terms of the limitations of this method, its computational cost is massive and it is
difficult to interpret; moreover, it is also unsuitable for small datasets.
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Coupled Penalty Matrix Approach for Mixed Datasets

The Penalty Matrix method (PM) is used to quantify divergence from predicted outcomes [13].
Process responses are grouped into three groups: (i) acceptable, (ii) unacceptable, and (iii) moder-
ating between the two categories (see Figure 2.1). A zero-penalty value is applied to the acceptable
response, while a 100-penalty value is applied to an unacceptable response. A penalty amount
between zero and 100 is also allocated to the method response in the middle area. The rationale
behind the penalty matrix data visualisation approach involves highlighting patterns related to both
acceptable and unacceptable response values by classifying the input factor data into either quar-
tiles or categories. The correlation between the factor and the penalty value for a given response is
observed using the PCA-based CLI plot [13], as discussed in chapter one. However, this method
is limited to continuous (quantitative) variables and is unable to account for missing data. The
datasets used in this research required the use of mixed data types in which both continuous and
categorical variables are employed in the presence of missing data.

Figure 2.1: Penalty matrix approach for visualisation
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Quantile Regression Trees (QRT)

Quantile Regression Trees (QRT) take into consideration the effects of covariates on the full
conditional distribution, rather than averaging regression trees as Random Forest does [16]. It
extends a decision tree by providing predictions at percentiles, fitting a decision tree, and storing
the full conditional distribution for all node data at the terminal node (target value). Giannetti [16],
introduced a methodology for improving the robustness of manufacturing operations based on
these quantile regression trees. The algorithm allows process engineers to discover and visualise
optimal ranges. The significant drawbacks include the feature selection approach being based on the
linearity assumption, an inability to handle missing data, and the number of trees being limited to
the number of factors that leads to high variance, where the variance error is inversely proportional
to the number of trees (i.e. limitation of trees tends to increase variance error) [53]. Figure 2.2
presents the steps of the algorithm.

Figure 2.2: Quantile regression tree algorithm steps [16]: (a) Embedded risk-based thinking; (b)
Tolerance synthesis; (c) Uncertainty quantification

Quality Correlation Algorithm (QCA)

The Quality Correlation Algorithm (QCA) [8] was developed based on modified PCA. It proposes
a refined operating range for one or more of the process inputs by analysing the contribution of the
PCA scores for every output. The uncertainty in the estimated results using the proposed algorithm
was quantified by the Bootstrap sampling method [54], which was developed by simulating the
error of the QCA model via a Bootstrap replacement strategy. The operating ranges discovered by
the QCA algorithm are then further adjusted with reference to this uncertainty quantification, as
seen in Figure 2.3. Regression-based algorithms are modified to take the missing values for the
mixed dataset into account. It was shown that the algorithm proposed by Batbooti [8] had better
prediction abilities than the commonly used factor analysis for mixed data (FAMD) method [55].
Batbooti’s [8] algorithm was thus used to predict the process response corresponding to a given
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set of values for process inputs. The set of values for process inputs was generated using the
operating ranges discovered by the QCA algorithm using the Bootstrap sampling method [54]. The
main drawbacks of the QCA-based algorithm include the linearity assumption of PCA, the high
computational cost of prediction, and restriction to a single imputation method.

Figure 2.3: Optimal range process steps in QCA

In this thesis, the author has constructed his approach based on the following research direction,
as proposed by Batbooti [8]:

• Identification of the optimal/avoidance range for each factor in terms of its tolerance (process)
limits;

• Development of a confirmation trial plan to validate the optimised model performance versus
the original limits;

• Conducting uncertainty quantification on the QCA algorithm to minimise the error in the
model.
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2.3 Summary of Statistical Learning Models

Table 2.1 summarises the statistical process control and machine learning algorithms most com-
monly applied to manufacturing process knowledge discovery. The table lists the application
typically used with each technique. It also presents the advantages and disadvantages of each tech-
nique, as discussed above. Based on this comprehensive overview of the limitations of previous
techniques, a new approach will be presented in this thesis.

Technique Application Advantages Disadvantages

Hotelling’s
)2

1) Multivariate air qual-
ity control [18].

Real-time monitoring. 1) Computationally inefficient,
with a high number of process
inputs.

2) Hot forming process
[19].

2) Lack of good causal relation-
ships to identify the root cause
of the fault.

(PCA)a

/(MFA)b
1) Prediction of RNA-
Seq Malaria vector [56].

1) Easily visualise the results
with the use of the Bi-plot.

1) Sensitive to outliers.

2) Stochastic Bottle-
neck: Rateless Auto-
Encoder for flexible
dimensionality reduc-
tion [57].

2) Discover and explain the ex-
istence of dominant factors that
contribute to the total variance.

2) Unable to visualise complex
problems where the majority
of the variation is explained by
more than the first 2/3 PCs.

3) Deterioration of his-
torical buildings [58].

3) Assumes linear relationship
among variables.

(SOV)c Multistage manu-
facturing processes
(MMPs) [24].

Provide a variation propagation
model from design to final
product.

Requires domain expertise,
and assumes a linear transition
model between phases.

(FDA)d Assessment of the
health condition of
bars [37].

Reduced the high dimensional
datasets to one dimension and
discover the correlation be-
tween variables.

Restricted to limited number
of input variables, and requires
heavy domain expertise.

(BN)e 1) Semiconductor manu-
facturing [38].

Provide a good causal relation-
ship.

1) Resource-demanding algo-
rithm that has long training
cycles.

2) Automotive body
assembly process [39].

2) Requires substantial prior
domain knowledge.

(SVM)f A new GPU implemen-
tation of SVMs for fast
hyperspectral image
classification [59].

Relatively memory-efficient
and more effective in high-
dimensional spaces.

Not suitable for large datasets
and requires heavy normalisa-
tion.
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Technique Application Advantages Disadvantages

(NN)g 1) Cost estimation for
sheet metal [60].

Able to deal with highly non-
linear problems.

1) Complex tools that require
experience and mathematical
understanding for proper use.

2) Cold rolled steel
process [61].

2) Unable to determine rela-
tionships between parameters.

3) Applying Artificial
NN in construction [62].

3) Only relates inputs to out-
puts.

4) COVID-19 incidence
rates across the conti-
nental US [63].

4) Care required to over-fitting
the data.

(PM)h Discovering product-
specific foundry process
knowledge from in-
process data [13].

Able to help in highlighting the
correlation and patterns.

Limited to quantitative vari-
ables, and inability to handle
missing data.

(QRT)i Risk-based uncertainty
quantification to im-
prove robustness of
manufacturing opera-
tions [16].

Discover the critical process
inputs.

Has a high variance, and fea-
ture selection based on the
linear assumption.

(QCA)j Nickel casting defect
reduction [8].

Discover the optimal process
settings for defect reduction.

Based on linear assumption of
PCA, and has high computa-
tional cost.

(RF)k Using data mining to
predict secondary school
student performance
[64].

Overcomes the high variance in
the regression trees, and deals
with non-linear datasets.

Non-parametric, and requires a
large dataset to implement the
algorithm.

Table 2.1: Summary of multivariate data analysis methods

a Principal Component Analysis
b Multiple Factor Analysis
c Stream-of-Variation Analysis
d Fuzzy Data Analysis
e Bayesian Belief Network
f Support Vector Machine
g Artificial Neural Networks
h Penalty Matrix
i Quantile Regression Tree
j Quality Correlation Algorithm
k Random Forest Algorithm
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2.4 Introduction to Random Forest (RF)

Adecision tree is a representation of the possible outcomes that can be obtained from awide array of
related choices or actions. An individual or an organisation may use a decision tree to evaluate their
possible options in order to identify the best action that will yield the optimal results. In essence, the
decision tree is a decision support tool. The selection of the most rewarding action is influenced by
the associated costs and the likely benefits derived from that action (decision). A typical decision
tree is made up of several nodes and branches. The tree begins with a single node, which then
branches into more than one possible outcome (i.e. from the root node). Each outcome produces
more decision nodes, which also branch off into even more outcomes. This process continues
until a terminal node is reached and no further splitting occurs. A well-developed decision map
resembles a tree in shape.

Figure 2.4: Random Forest algorithm model

Ho [65] discovered that an ensemble of trees can increase the accuracy (compared to a single
decision tree) as they grow without the problem of overfitting, provided that (i) they are randomly
selected to be insensitive to specific feature dimensions, and (ii) they are able to be separated with
oblique hyperplanes. Later, the work of Geman and Amit [66] influenced the early development of
the Random Forest concept proposed by Breiman, which introduced the concept of searching over
a random subset of decisions at the time of splitting a node when growing a single tree. Ho’s [67]
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random subspace selection concept was also influential in RF development. In this case, a forest of
trees is first grown. Subsequently, there is an introduction of variation among the trees through the
projection of the training data into a subspace that is randomly selected before fitting each node.
Consequently, Dietterich first introduced the concept of the optimisation of a randomised node;
in this process, a randomised procedure rather than a deterministic optimisation is employed to
choose the decision at each node [68]. One of the primary tools used for data analysis is a decision
tree, which is an example of a supervised machine learning technique. Random Forest (RF) is
an ensemble learning classification and regression technique that works by creating a variety of
randomly constructed decision-making trees at the training phase. The prediction of the random
forest involves either a class label or numeric values for cases of classification and regression,
respectively. RF algorithms can solve regression and/or classification tasks, and thus come up with
the automated procedures for feature estimation through the use of past observations. RF is an
example of an ensemble method, in which various weak learners are trained on the training sample
and an arbitrary subgroup of variables. It has been argued that increased randomness also improves
the precision of the estimation, eliminates bias, and integrates the different predictions in order to
make the final forecast. Interestingly, decision trees and Random Forests are a class of algorithms
that have proven to be accurate, successful, and robust tools for solving many machine learning
tasks, including density estimation, classification, manifold learning, and regression. The model
of the Random Forest algorithm is shown in Figure 2.4.

It is also important to note that Breiman properly introduced Random Forests in a paper that
explains how to develop a forest of uncorrelated trees by using a procedure similar to Classification
and Regression Trees (CART) [69], together with a randomised subset of the data and the use of the
Bagging technique. Bagging is used to minimise the variance of a decision matrix. It is often used
to eliminate weakmodels and to combine several predictions in order to select themost realistic one.
In addition, the technique can be used by an individual or an organisation to develop stable decision
tree models that significantly reduce variance. In so doing, these models, therefore, increase
the accuracy of the decision trees and eliminate overfitting problems. Intriguingly, regression and
classification trees represent a reasonable point fromwhich to start understanding the CARTmodel.
The basic concept of CART is easy to understand. In essence, a set of observed features are used
to separate the data recursively until the response variable values in every sub-partition become
homogeneous. One measure of variable importance contributes toward this homogeneity. The
steps of the CART algorithm in terms of regression and classification are addressed in detail in
chapter three. Figure 2.5 illustrates the Random Forest cycle.
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2.5 Merits of the Random Forest Algorithm

In the current work, the Random Forest algorithm (RF) is considered due to the several advantages
it offers. Figure 2.6 presents the advantages of Random Forest, which include the following:

1. The ability to efficiently handle large datasets with missing values;

2. No need for normalisation of the selected features;

3. The ability to scale up to thousands of variables;

4. Outliers do not significantly influence its accuracy;

5. The ability to handle classification and regression problems;

6. Requires minimal domain expertise to run and get accurate results;

7. The ability to determine variable significance (critical factors);

8. Computationally efficient.

Figure 2.6: Advantages of Random Forest features
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2.6 Drawbacks of the Random Forest Algorithm

However, the Random Forest method also has significant drawbacks that need to be overcome. In
this thesis, the challenge involves dealing with small datasets, eliminating overfitting, generating
efficient response prediction, and dealing with causal relationships. The drawbacks of the Random
Forest algorithm, as shown in Figure 2.7, are thus as follows:

• It is non-parametric, making it difficult to interpret;

• Requires a large dataset to perform efficiently;

• Needs precise tuning in order to limit overfitting.

Figure 2.7: Limitations of the Random Forest algorithm

Although Random Forest does have some drawbacks, as noted above, its benefits far outweigh
its limitations: Again, it is computationally efficient, can deal with outliers, handle classification
and regression problems, naturally reduce variance, and requires minimal domain expertise. These
merits overcome most of the drawbacks and gaps of the algorithm. In chapters four and five, the
author will introduce a new proposed algorithm to overcome these limitations by producing a robust
non-linear algorithm designed to deal with extracting the causal relationship between the process
factor and response (shrinkage defect).
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2.7 Missing Data Imputation Methods

Generally speaking, industrial datasets may contain missing data for a number of reasons, which
include data collection errors, measuring sensor errors or any other cause that results in missing
observations. Dealing with missing data is essential because the machine learning model cannot be
trained using data with missing observations. Thus, the problem of missing data imputation must
be solved by appropriate methods. Different approaches have been identified in previous studies to
deal with missing data (see Figure 2.8).

Figure 2.8: Missing data imputation methods

2.7.1 Mean Imputation

Mean imputation is a commonly utilised approach based on replacing the missing value using the
variable mean. While it is straightforward, its limitation is that it underestimates the real variance
of the variable, and even the standard deviation [70].

2.7.2 Nearest Neighbours Imputation

Laaksonen [71] introduced an imputation method based on the Nearest Neighbours algorithm,
referred to as regression-based Nearest Neighbour hot decking. The distance between observations
is employed to classify the data into clusters, while the missing observation is replaced with the
mean of the Nearest Neighbour cluster.  -Nearest Neighbour algorithms have been designed based
on  -Nearest Neighbour imputation [72], weighted  -Nearest Neighbour imputation [73], and
fuzzy  -means clustering imputation [74].
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Steps

This  -Nearest Neighbours (KNN) algorithm is broken down into three parts:

1. Cluster the data, and calculate Euclidean distance;

2. Get the Nearest Neighbours;

3. Make predictions.

(a) KNN Imputation (b) KNN Steps

Figure 2.9: K-Nearest Neighbour (KNN) Imputation [75]

2.7.3 Iterative Imputation

The main concept underpinning this approach is that each feature with missing values fits a function
of other features, and this function is used to predict the missing values. The candidate feature
column is treated as output, while the other feature columns are treated as inputs. Using an iterative
approach, this is done for each feature and then repeated until either the maximum number of
iterations is reached or the convergence criterion is attained. Daniel, Stekhoven and Peter [15]
proposed the so-called ‘missForest’ approach, which is RF-based. Using the built-in out-of-bag
error estimation of Random Forest, it is possible to approximate the imputation error without
the need for a validation dataset over other imputation approaches, particularly when complex
relationships and non-linear connections are perceived for predictive accuracy and can therefore
cope with high-dimensional data. This algorithm is discussed in more detail in chapter three.
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2.8 Research Challenges

From the previous discussion, it emerged that optimising any production process requires a model
capable of overcoming the limitations of each technique. Figure 2.10 presents a summary of
these limitations. The candidate machine learning model is required to demonstrate the following
abilities:

• It can act as a predictive non-linear model (as defined in Section 1.2);

• It can deal with a small dataset (as defined in Section 1.2);

• It can deal with high-dimensional data;

• It can handle missing data efficiently;

• It has low computational power;

• It is an easy-to-use tool for non-machine learning experts;

• It can extract the causal relationship between the process factor and the response.

In the next chapter, a model capable of tackling and overcoming most of all the previous
limitations is presented and explained. The chosen model can outperform the other competing
approaches. The problem discussed in this thesis follows a different path to the comparison
methods; this approach requires a novel machine learning model that is capable of dealing with the
abovementioned challenges.

Figure 2.10: Limitations and drawbacks of the various methods described in this thesis



Chapter 3

Mathematical Modelling of Predictive
Causal Analytics

3.1 Introduction

Machine learning is a subset of artificial intelligence (AI) that enables learners to be trained
independently based on previous experiences. In other words, machine learning is the study of
systems that are able to learn from data without the need to program such machines explicitly.
More specifically, machine learning provides both algorithms and insights on the predictive data.

In this chapter, knowledge discovery algorithms are evaluated in order to develop a predictive
model capable of dealing with non-linear problems. This chapter is structured as follows. The
machine learning workflow is described in Section 3.2, while Section 3.3 discusses the data
exploration and feature engineering methods. Section 3.4 presents the predictive causal analytics
while also explaining the prediction accuracy. Section 3.5 reviews the comparisons of predictive
model development. Section 3.6 explains the decision tree and its construction. The advantages and
disadvantages of the decision tree are discussed in Section 3.7, after which Section 3.8 discusses the
bias-variance trade-off. The ensemble methods based on randomisation, along with the algorithm
of the traditional RF approach, are defined in Sections 3.9 and 3.10 respectively. Section 3.11
illustrates the pre-processing steps for the encoding of categorical variables. Section 3.12 outlines
themissing data imputationmethods, while Section 3.13 discusses data augmentation using different
techniques. Model tuning and the assessment of model accuracy are explained in Sections 3.14
and 3.15, respectively. Various validation techniques are addressed in Section 3.16. A research
roadmap is proposed in Section 3.17. Finally, the technological choice for this thesis is described
in Section 3.18.

41
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3.2 Machine Learning Workflow

Data analysis is a method of reviewing, cleaning, transforming, and modelling data in order to find
valuable information, along with conclusions to support the selected decision. The data analysis
process includes the following steps:

• Defining data requirements.

• Data collection through a variety of sources like sensors, satellites, recording devices, etc.;

• Data processing by sorting data in matrix form;

• Data cleaning (removing any possible error or wrong information within data);

• Exploratory data analysis for identifying correlations between features;

• Modelling and algorithm development, where algorithms are implemented for the identifica-
tion of correlations between variables;

• Data product: The data product is dedicated to procedures in which data is input and the
outputs are produced, then returns both inputs and outputs to the system. This could be based
on models or algorithms.

The standard workflow of machine learning applications involves all relevant phases, beginning
from raw data collection to pre-processing, data cleaning, the discovery of technologies and tech-
nical capabilities, and demonstrating the effect it has on the efficiency of machine learning models.
Figure 3.1 illustrates a broad picture of the steps of model development.

Figure 3.1: Machine learning workflow
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3.3 Data Exploration and Feature Engineering

A nickel-based superalloy dataset is used for the manufacturing of cast components for an aerospace
foundry. The dataset consists of 16 chemical composition factors (see Appendix A) that affect the
process response, along with the percentage of defective components produced in a batch due
to shrinkage defects. The input factors are quantitative variables and the process data for 60
observations is available. This example is taken as the benchmark example. This dataset is selected
because Swansea Research used this example, making it a suitable benchmark. It also contains a
limited number of observations, non-linear interactions, and highly skewed data (indicating high
variance), while the data is also based on a real-world case. The process response of the dataset is
depicted in Figure 3.2. Figure 3.3 further illustrates the distribution of process inputs aggregated
for 60 batches/observations in the nickel-based superalloy dataset. Moreover, Figure 3.4 plots the
factor values on the horizontal axis and the response values on the vertical axis to reveal correlations
on the optimal or avoidance limits. The manual inspection of such graphs is difficult and can be
unreliable when the number of data points increases or there are overlaps between points. Manual
interpretation is also particularly difficult when no clear correlation exists between the process
input and the process output, while understanding the effect of interactions is also difficult. It is
far easier to interpret the data using a machine learning model that has been trained to estimate
the recommended process limits. However, this is particularly challenging for non-linear systems,
for which there is no standard procedure that achieves this. Accordingly, one of the main goals
of this thesis is to devise an algorithm capable of achieving this functionality for generic datasets.
The objective is thus to recognise such limits automatically to facilitate better understanding and
interpretation.
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It is infeasible to directly reduce the shrinkage defects of the product. However, it is possible
to control the 16 process inputs (further details of the process inputs and output are presented in
Appendix A). Therefore, if a causal link is found to exist between the process inputs and shrinkage
defects, it will be possible to instruct the manufacturer to modify the process inputs and thus
indirectly decrease the shrinkage defects. Hence, the first goal is to develop an accurate regression
model that is capable of predicting shrinkage defects based on the 16 process inputs. Within this
configuration, the process inputs are the model’s input data variables, while the shrink percentage
is an output response. The input variables are represented using the symbol - , with subscripts
denoting the following subtypes: -1 might be the %/A, -2 ← %�>, ..., -16 ← %�4. The
inputs thus represent the data features. Moreover, the output variable - in this case, the shrinkage
percentage - is the dependent variable (response) and is generally represented by the symbol . .
Thus, with the quantitative response . and the 16 different factors (-1, -2, ..., -16), it is possible to
generalise the relation between . and - = (-1, .., -16) as in Equation 3.1 [75].

. = 5 (-) + n (3.1)

All statistical learning models use a specific set of strategies for the estimation of 5 (-).
Throughout this chapter, some of the basic analytical concepts that are employed during the
evaluation of 5 (-) are also outlined, while tools for evaluating the estimates are acquired. An
important step in machine learning model development is feature engineering and exploring the
quality of the data before proceeding. Feature engineering refers to the process of extracting raw
data parameters (i.e. features) that are used to train a machine learning model. It also involves
performing various permutations on the low-level features to come up with higher-level features.
Feature engineering plays an important role in the machine learning pipeline. There are several
metrics used to evaluate the quality of the data, namely historical data required, skewness, and
kurtosis (see Figure 3.5).

Figure 3.5: The evaluation metric for the data quality
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Historical Data Required

A large dataset is essential if the machine learning model is to perform well. Statistical power
reduces while overfitting increases when the sample size is small, which weakens the discovery of
knowledge and accuracy of the estimation. As shown in Figure 3.3, the historical data available is
limited to only 60 observations. To solve this problem, data augmentation should be performed to
decrease overfitting in the model. Each dataset is unique and there is no such thing as a one-size-
fits-all hyperparameter. The number of factors is also important here; small numbers of factors
require a lower number of observations.

The sample size depends on the prevalence of rejection rates and the minimum magnitude
of process improvement required to demonstrate success. For studies based on design of exper-
iment guidelines, a very small sample size (10-20) is also sufficient as the magnitude of process
improvement demonstrated is usually high. However, the algorithms developed in this thesis are
based on the observational studies. The typical prevalence rejection rates for foundry industry are
around 4-5%. One percent increase in the rejection rate constitutes to around 20% deterioration
in the quality. A typical design of experiment study would aim a difference of at least 100% or
more. The 20% magnitude of process improvement required to demonstrate the success is small
in comparison to the prevalence rates. Statistically, it would require a very large sample size (e.g.
couple of hundred observations) [76]. However, the top management in a foundry industry would
not wait to produce couple of hundred batches with 20% higher rejection rates as the profit margins
are around 10-20%. There is pressure on process engineers to intervene based on limited datasets.
In the nickel-based superalloy case study used for this thesis, the process engineers were required to
intervene after recording observations for 60 batches. In this case study (nickel-based superalloy),
Random Forest would required a minimum of 320 observations [77] in order to achieve accurate
prediction performance. Hence, the need for data augmentation and requirement of not introducing
a bias and preserving the underlying cause and effect structure between factors and responses. In the
literature [78–81], many oversampling techniques were found. However, these techniques cannot
handle the non-linearity of the data. Therefore, a novel data augmentation technique was developed
that is capable of dealing with mixed non-linear datasets; this technique will be introduced in
chapter four.

Skewness

Skewness [82] demonstrates how non-symmetric data travels across the standard. Distortion from
the normal distribution curve is used to determine the loss of symmetry in the distribution of the
results. Typically, machine learning algorithms perform better when data is normally distributed;
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thus, if the dataset has high skewness, it is preferable to eliminate this skewness by balancing the
dataset before training. Skewness is calculated as in Equation 3.2 [82]:

B:4F=4BB =
1
=

∑=
8 (! − `)3

f3 (3.2)

Where,

• !: The dataset values,

• `: The mean value,

• f: The standard deviation,

• =: The normalisation by number of elements.

Figure 3.6: Schematic drawing for different skewness values [83]

Themeasures for skewness range and the different distributions (see Figure 3.6 for an illustration)
are as follows:

• The normal (symmetrical) distribution has a skewness of zero.

• Positive skewness indicates a longer tail on the right side of the distribution. The mean and
median are greater than the mode.

• Negative skewness implies that the tail on the left is more prominent. The mean and median
are lower than the mode.

• Skewness in the range of (-0.5, 0.5) indicates relatively symmetrical data.
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• Skewness in the range of (-1, -0.5) represents negative skewness, while skewness in the range
of (0.5 and 1) represents positive skewness. Therefore, the data is partially skewed.

• A skewness level of lower than -1 (whichmeans negatively skewed) or higher than 1 (positively
skewed) indicates that the data is heavily skewed.

Figure 3.7 depicts the response of the nickel-based superalloy dataset, which is an extremely
(positively) skewed distribution; accordingly, it induces imbalanced estimators that significantly
impact predictive capacity.

Figure 3.7: Response distribution of nickel-based superalloy dataset
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Kurtosis

Kurtosis [84] mostly relates to the distribution tail. It is the approximation of the outliers found in
the distributions. Kurtosis is calculated using Equation 3.3 [84].

:DAC>B8B =
1
=

∑=
8 (! − `)4

f4 (3.3)

Figure 3.8: Schematic drawing for different kurtosis types [85]

Figure 3.8 indicates the disparity between the different types of kurtosis. Based on the formula
above, kurtosis is categorised based on the following [85]:

• Mesokurtic (Kurtosis = 0): The distribution has a kurtosis margin close to that of the standard
normal distribution. This implies that the maximum level of the distribution is identical to
that of normally distributed data.

• Leptokurtic (Kurtosis > 0): The distribution is longer, has fatter tails and a higher and sharper
peak than the normal distribution. High kurtosis implies that the results are heavy-tailed or
a profusion of outliers exists. The more observers are involved in the results, the higher the
probability of false-positive predictions.

• Platykurtic (Kurtosis < 0): The distribution is shorter, has thinner tails and a lower and
broader peak than the normal distribution. Low kurtosis in the collected data is an indication
that the sample has light tails or lacks outliers.
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Distribution of Skewness and Kurtosis in the Nickel-based Superalloy Dataset

Figure 3.9 depicts the distribution of skewness and kurtosis in the nickel-based superalloy dataset,
where the shrinkage defect and %$ exhibit large values of skewness and kurtosis, respectively.
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Figure 3.9: Skewness and Kurtosis in nickel-based superalloy dataset

In any tree-based algorithm, the normal distribution represents the optimum scenario. Any shift
from the normal distribution will create an unbalanced tree. This will increase the tendency of the
variance and thus lead to overfitting. Based on Figure 3.9, it can be seen from the output response
that an unbalanced tree is expected. In order to resolve this matter and improve the performance,
a data augmentation technique is utilised (this technique is introduced in chapter four) to minimise
the skewness in the data and further balance the tree. High skewness and kurtosis in %$ were
observed. %$ may contain outliers that cause this high variance. In this case, a confirmation from
the process engineer is required in order to validate the correctness of the factor measurements
obtained from the sensors, as there might be a defect or a miscalculation of results.



CHAPTER 3. MATHEMATICAL MODELLING OF PREDICTIVE CAUSAL ANALYTICS 52

3.4 Predictive Causal Analytics

There are twomain types of rationale behind all statistical learningmodels: The first is the discovery
of causal knowledge, and the second is prediction.

3.4.1 Discovery of Causal Knowledge

A causal relationship is determined to exist between two occurrences if the incidence of the first
causes the other. Here, the first event is called the cause, and the second event is called the effect.
A relationship between two factors does not imply causation; on the other hand, if there is indeed
a causal relationship between the two variables, they must be correlated. Notably, the predictive
model cannot be treated as a black box; the interesting point to consider is the causal relationship
between . and - , or more specifically, an understanding of how the process response changes as
a function of process inputs -8, ..., -=. Causal knowledge is discovered by identifying correlations
that are supported by domain knowledge and verifying correlations with confirmation trials. This
knowledge is then used for prediction. Accordingly, the purpose of extracting knowledge from the
black box is to find an answer to the following questions:

• Which factors are associated with the response? (Finding a few critical factors among a broad
set of process inputs can be useful.)

• What is the relationship between the response and each factor?

• Is it possible to properly articulate the relationship between . and other critical factors
mathematically?

3.4.2 Prediction

In any process, a set of observations - are accessible, but the output . can only be approximated
using Equation 3.4 [75].

.̂ = 5̂ (-) (3.4)

Here, 5̂ (-) refers to the estimated 5 (-), while .̂ refers to the resulting prediction for . . In
general, 5̂ (-) will not be an exact representation of 5 (-). This inaccuracy can be attributed to
two types of errors [75]: specifically, reducible and irreducible error. The source of reducible
error is based on the choice of the mathematical or machine learning model used; using the best
available analytical learning approach to evaluate 5 (-) will improve this error. The source of
irreducible error could be attributed to an unmeasured variable that may contain information
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useful for predicting . . Moreover, if there are no measurements, 5 (-) cannot be employed for
the prediction. Consider a given model 5̂ (-) and a set of features - , which yields the prediction
.̂ = 5̂ (-). Considering both 5̂ (-) and - remain unchanged by [75],

� (. − .̂ )2 = � [ 5 (-) + n − 5̂ (-)]2

= [ 5 (-) − 5̂ (-)]2︸               ︷︷               ︸
Reducible

+ +0A (n)︸  ︷︷  ︸
Irreducible

(3.5)

Here, � (. − .̂ )2 in Equation 3.5 represents the squared error between the predicted and actual
value of . , while +0A (n) denotes the variance of the uncertainty correlated with the definition of
error (n). Finally, it can be inferred that all predictive approaches aim to reduce the reducible error.
It should further be noted that the irreducible error always provides the upper limit for the precision
of the prediction of . . In chapter four, a novel approach for minimising the reducible error for the
proposed predictive model is discussed.

3.4.3 Prediction Accuracy and Model Interpretability

There are several reasons why a more restrictive model might be chosen over a very flexible
model when causality is of interest. Conditional structures are also easier to interpret under these
circumstances. For example, when the primary purpose is to find a conclusion, the linear model
could be the correct option, as the correlation between the response and the observations will be
easier to comprehend.

Figure 3.10: The trade-off between flexibility and interpretability [75]
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Figure 3.10 illustrates the trade-off inconsistency in understanding when various statistical
learning techniques are used. In this thesis, the challenge is how to increase flexibility in order
to capture the non-linear relationship between the process factors while maintaining a high level
of causality knowledge. Chapter five discusses the novel approach adopted to enhance the causal
capability of the proposed algorithm.

3.5 Predictive Model Development

Machine learning is a data modelling approach that optimises the construction of computational
models. The primary objective is to find patterns and correlations without having to explicitly
program them. Rather than developing and programming logic, data are fed into a machine
learning algorithm, which constructs logic depending on the statistics calculated. In this section,
the terminology used in machine learning is discussed and the most important terms are defined.

3.5.1 Deep vs. Shallow Learning

Deep learning requires several levels of abstraction and several layers of non-linear processing
systems. These techniques have been evolving quite rapidly over recent years and have seen
practical implementations in fields such as computer vision and speech recognition. For their part,
non-deep learning methods may also be categorised as shallow learning methods. Shallow learning
methods are capable of learning from the available input features by extracting patterns; in deep
learning methods, however, the algorithms are (inherently) capable of extracting complex patterns
from the raw data. Table 3.1 explains the critical distinctions between shallow and deep learning.

Table 3.1: Key differences between deep and shallow learning

Shallow Learning Deep Learning

Based on statistical characteristics of data. Detect the features from the raw data.
The provided data will be saved with no
additional comprehension.

Seeks to find correlation within previous
and new knowledge.

Feature engineering is required for better
accuracy.

Predefined feature engineering (Not re-
quired since it happens by itself).

Based on the provided features derived from
heuristics of target.

No prior knowledge is required.
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3.5.2 Supervised vs. Unsupervised Learning

The bulk of predictive learning challenges can be assigned to one of two categories: supervised or
unsupervised (see Figure 3.11). Supervised learning is so called because the method of algorithm
learning applied to the training dataset could be thought of as an instructor in control of the learning
cycle. The right responses are already known; the algorithm then allows iterative assumptions about
the training data and is corrected. Training ends once the algorithm reaches an appropriate degree
of accuracy. The details addressed throughout this chapter all fall under the context of supervised
learning. For each observation of the feature measurement(s) -8, where 8 = 1, ..., =, there is a
related . response measurement.

The researcher’s goal is to fit amodel that relates the response to the features in order to accurately
predict the response for future observations or to truly comprehend the relationship between the
outputs and the critical feature input. Moreover, standard predictive learning approaches, such as
linear regression and logistic regression, and more improved methods such as Generalised Additive
Model (GAM) [86], Support Vector Machines (SVM) [43, 44], and Bagging (Chapter 4), also
function in the supervised learning domain. Supervised learning problems may be further divided
into regression and/or classification approaches. Further examples are listed in Table 3.2.

• Regression: Concerns the prediction of a continuous target value, based on the input fea-
ture(s) values.

• Classification: Concerns the prediction of a class label of the target, based on the input
feature(s) values.

Table 3.2: Machine learning algorithm examples

Machine Learning Supervised Unsupervised

Continuous

Regression
• Linear
• Logistic
• Decision Trees (RF)

Clustering and Dimensionality Reduction
• Singular Value Decomposition (SVD)
• PCA
• K-means

Categorical

Classification
• SVM
• Naive-Bayes
• Decision Trees (RF)

Association Analysis
• Apriori
• FP-Growth
• Hidden Markov Model
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For its part, unsupervised learning deals with unlabelled data. That is, for each set of obser-
vations -8, the output response . is unknown. It is not feasible to fit a linear regression model
under these circumstances since there is no predictive response component. In this case, the task is
referred to as unsupervised, since the response variable is not available for monitoring the analysis.
Clustering is the statistical tool that can be applied in this case. The objective of clustering analysis
is to classify input features in such a way that similar features are grouped together into their corre-
sponding categories or ’bins’. Unsupervised learning tasks may be further classified into clustering
and dimensionality reduction approaches. Table 3.2 presents explanations different unsupervised
machine learning models.

• Clustering: Involves identifying the underlying groupings of data, such as classifying people
through their purchasing behaviour. It also refers to the clustering of groups in such a way
that objects in the same cluster are more analogous to one another compared to objects in
different clusters.

• Dimensional Reduction: The goal is to reduce the number of features used for training
while keeping as much variance in the data as possible.

Figure 3.11: Machine learning approaches

Table 3.3 summarises the difference between supervised and unsupervised machine learning
models according to three criteria; availability of labelled data, data knowledge, and end goal.

Table 3.3: Key differences between supervised and unsupervised learning

Supervised Learning Unsupervised Learning

The data labels are known. The data labels are missing.
Focused on training of dataset. Learning with no initial knowledge.
Aim to classify future observations. The goal is to explore the data.
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3.5.3 Regression vs. Classification Problems

Variables can be characterised as either quantitative or categorical. Quantitative variables are
continuous numerical data, while categorical variables are used to represent categories or groupings
of data points. Problems that relate to a quantitative response are referred to as regression problems,
whereas those associated with a qualitative response are referred to as classification problems.

3.5.4 Overfitting vs. Underfitting

Overfitting refers to a phenomenon such that a regression model tends to capture random errors in
the data rather than the interaction between the variables, and occurs when the algorithm begins to
‘memorise’ training data rather than ‘learning’ to generalise from the pattern. On the other hand, an
underfitted model is a configuration such that the model fails to capture the most important trends
in the data. This will occur, for example, when a linear model is applied to a non-linear dataset and
will lead to low predictive efficiency. Figure 3.12 illustrates how a prediction might be influenced
by either underfitting or overfitting [87].

Figure 3.12: Overfitting vs. Underfitting in machine learning
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3.6 Decision Trees

As discussed in the literature review, the prediction model introduced in [8, 12, 88] is affected by
significant limitations in terms of its regression capability when compared to the Neural Network
model; this was found to be especially true for problems involving non-linear datasets. This par-
ticular drawback, which affects the algorithms discussed above, can be attributed to the underlying
assumption that the dataset is linear, which does not hold true for the dataset under investiga-
tion in this thesis (i.e. the nickel-based superalloy dataset). Linear-based models have certain
advantages relative to other methods regarding their interpretation, inference, and ease of imple-
mentation [75,89]. However, linear regression models also have significant constraints in terms of
their predictive efficiency. It is therefore reasonable to move beyond the linearity assumption while
still attempting to maintain as much interpretability as possible. This can be accomplished by ex-
amining more sophisticated approaches, such as tree-based models. The first step in understanding
how Random Forests work is to learn decision trees. The earliest decision tree (DT) algorithm,
developed by Quinlan in 1975, is known as Iterative Dichotomiser-3 (ID3) [90]. This algorithm
was developed by applying the principle of Occam’s Razor to arrive at a compact and practical
decision tree. Quinlan [91] went on to create the C4.5 algorithm, after which the C5.0 algorithm
was eventually developed.

Figure 3.13: The evolution of decision tree

Figure 3.13 illustrates the evolution of a typical decision tree. It starts with the ID3 algorithm,
which only works with categorical variables. The limitation of this algorithm is that it is unable
to deal with missing data. Nonetheless, the C4.5 algorithm overcomes the limitations of ID3 by
handling both the missing data and the quantitative variables. Another upgrade, referred to as
C5.0, was developed as a significant enhancement of C4.5. The additional improvements include
faster speed, more memory usage, and the ability to use a smaller decision trees. Decision trees
are predictive supervised learning algorithms that utilise a layered splitting process. At each layer,
the population is split into two or many groups so that all observations in the same group are
homogeneous with each other, while the groups are significantly distinctive (heterogeneous). The



CHAPTER 3. MATHEMATICAL MODELLING OF PREDICTIVE CAUSAL ANALYTICS 59

splitting process in a decision tree follows specific criteria, such as the Gini Index, Chi-Square,
Information Gain, etc. Some of the splitting rules are discussed in the next section. Depending on
the output data type, decision trees can be divided into either regression or classification trees. The
former is used to forecast continuous data, while the latter is employed in forecasting categorical
data.

3.6.1 Decision Tree Structure

The decision tree utilises a flowchart-like layout, as depicted in Figure 3.14, where each internal
node represents a condition on a sample of data. Each branch represents the response of the state,
while the terminal (leaf) node corresponds to the final target response of the decision path. The
terminology used in decision trees is as follows:

Root node

Terminal node Decision node

Terminal node Terminal node

Figure 3.14: Decision tree structure

• Root nodes: The first node at the top of the decision tree is called the root node, which
corresponds to the total population and is further split into two or more homogeneous parts.

• Splitting: The procedure employed for the classification of nodes into two ormore sub-nodes.

• Branch: A sub-section of a complete tree.

• Decision nodes: Represent the nodes created by splitting processes, and rank lower in the
hierarchy than roots with decision branches coming out of them.

• Terminal nodes (leaf): The bottom nodes of a decision tree with no branches coming out
of them.

• Pruning: The opposite of the splitting procedure, in which the sub-nodes of a decision tree
are removed.
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3.6.2 Splitting Rules

Splitting the parent node into two or more sub-nodes (or ‘child nodes’) requires following specific
rules to achieve homogeneity of data in each node. Before explaining the splitting procedures, it is
first necessary to define an essential metric that drives the splitting process.

Entropy

Entropy is an indicator of unpredictability (measure of randomness) in the data being processed.
Lower entropy reflects higher homogeneity of the child node, while higher entropy reflects the
impurity of the child node. If the target attribute � can take on a different value �, then the entropy
of the dataset (!) relative to this � − F8B4 classification is defined in Equation 3.6 as follows [89]:

� (!) = −
�∑
8=1

?8 log2 ?8 (3.6)

Where,

• !: The dataset that the entropy is calculated for.

• �: Set of classes in !.

• ?8: The ratio (proportion) of elements in class 8 to the total number of elements in set !.

Figure 3.15: The effect of entropy in terms of proportion
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The relation between the proportion and the entropy is illustrated in Figure 3.15. Entropy is
defined as maximum/minimum based on the proportion value. Entropy is considered maximum
when the proportion is equal to 0.5, since this represents complete randomness in the data. The
minimum entropy corresponds to a proportion of either zero or one, since this represents pure
homogeneity. Splitting rules in building decision trees include the following:

1. Gini Index: Seeks homogeneity in created subsets. A higher Gini Index reflects higher
homogeneity.

2. Chi-Square: Statistically determines the significance of the difference between parent and
child nodes. A higher Chi-Square reflects a higher significance.

3. Reduction in Variance: Determines splitting criteria based on the variance of child node
from the parent-node. It is used for regression problems.

4. Information Gain (IG): Measures the decrease in entropy after splitting. The difference is
estimated between entropy before the splitting and the weighted average of the entropy’ of
the node after splitting the dataset. IG is calculated using Equation 3.7 [89].

�� (�, !) = �=CA>?H(14 5 >A4) −
�∑
9=1

�=CA>?H( 9 , 0 5 C4A) (3.7)

Figure 3.16: Information gain based on entropy after splitting relative to before splitting

�� (�, !) is the information provided about the target function value, given the value of some
other attribute �. Figure 3.16 illustrates the difference between low and high information gains,
where the gain represents the entropy after splitting relative to before splitting. A high information
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gain represents low entropy, where it is the entropy after splitting relative to before splitting, and
leads to more homogeneity. Low information gain represents high entropy, where it is the entropy
after splitting relative to before splitting; this leads to a high level of randomness in the split data.

3.6.3 The Evolution of Decision Tree Construction Algorithms

The top-down induction approach to building decision trees [90] splits the feature space by recur-
sively constituting the successor’s child nodes [92]. The recursion stops if the subset at a given
node includes all identical values of the output, or if no more information gain is added to the
predictions when dividing.

3.6.3.1 ID3 Algorithm

The ID3 algorithm, which was introduced in 1986 by Quinlan [90] is a multi-way decision tree
classification algorithm. The algorithm follows a greedy method of developing a decision tree
by choosing the best categorical feature that will yield the maximum information gain (��) (see
Equation 3.7) or minimum entropy (�) (see Equation 3.6), for categorical targets.

Figure 3.17: The steps of the ID3 algorithm
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In ID3, information gain can be calculated for each remaining attribute. The attribute with the
most significant information gain is used to split the set on that particular iteration. ID3 follows
the principle that a branch with an entropy of zero is a terminal (leaf) node, while any branch with
entropy above zero requires additional splitting. More detailed steps are presented in Figure 3.17.

3.6.3.2 C4.5 Algorithm

C4.5 is a group of supervised learning algorithms for classification problems. Input datasets are
attribute values that are described by collections of attributes and belong to one of the collection
of classes. The algorithm extracts knowledge to map from attribute values to classes that can be
applied to classify new unseen data. This algorithm is the successor to ID3 [91] and works by
removing constraint features that should be categorical by partitioning the continuous attribute
value into a discrete set of intervals.

3.6.3.3 Classification and Regression Trees [CART]

The first building block in the proposed algorithm is CART (Classification and Regression
Trees) [69]. CART is analogous to C4.5 but differs in that it supports numerical target variables
(regression). CART creates binary trees using the feature and threshold that yield the best split at
each node. The conceptual framework behind the CART model is outlined below. Given training
vectors -8 ∈ '=, 8 = 1, .., = and a label vector . ∈ '; , a decision tree recursively partitions the
space such in a way that samples with identical labels are grouped together. Assume the data at
node < is denoted by &. For each dataset split \ = ( 9 , C<), including a feature 9 and threshold C<,
partition the data into &;4 5 C (\) and &A86ℎC (\) subsets using Equation 3.8 [93].

&;4 5 C (\) = (-,. ) |- 9 ≤ C<
&A86ℎC (\) = & \&;4 5 C (\)

(3.8)

The impurity at < is estimated by an impurity function � (), the choice of which depends on
the task being solved (either classification or regression). The equation is defined as follows [93].

� (&, \) =
=;4 5 C

#<
� (&;4 5 C (\)) +

=A86ℎC

#<
� (&A86ℎC (\)) (3.9)

The parameters for minimising the impurity are chosen as follows [93]:

\∗ = argmin\ � (&, \) (3.10)

This process is repeated recursively for subsets&;4 5 C (\∗) and subsets&A86ℎC (\∗) until the maxi-
mumpermitted depth is reached, where #< ≤ minB0<?;4B or the output in the node is homogeneous.
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Part 1: Classification Criteria in CART

A target is a classification outcome that takes on the values 0, 1..., (� −1), for node <, representing
'< a region with #< observations [93]. Let ?<� be the proportion of class � observations in node
<, as follows:

?<� = 1/#<
∑
-8∈'<

� (.8 = �) (3.11)

Common measures of impurity are the Gini Index (using Equation 3.12) or entropy (using
Equation 3.13) as below:

�6 (-<) =
∑
�

?<� (1 − ?<�) (3.12)

�4 (-<) = −
∑
�

?<� log2(?<�) (3.13)

Part 2: Regression Criteria in CART

Every node < describes a zone with '< observations, all with continuous output values. Standard
regression metrics for evaluating possible splits include the mean squared error (MSE), which
minimises error by using the average value at the terminal nodes, or least absolute deviations
(LAD), which decreases error by using the median value at the terminal nodes. MSE and LAD are
evaluated using the following equations [93]:

Mean Squared Error (MSE):

.̄< =
1
#<

∑
8∈#<

.8

� (-<) =
1
#<

∑
8∈#<

(.8 − .̄<)2
(3.14)

Least Absolute Deviations (LAD):

<4380=(.<) = median
8∈#<

(.8)

� (-<) =
1
#<

∑
8∈#<

|.8 − <4380=(.<) |
(3.15)
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Where,

• -< - A subset of the training data at node <.

• � (-<) - The impurity function � () at node <.

• #< - The number of observations in the node <.

• .8 - The output of observation 8 of node <.

• .̄< - The mean of output at node <.

The building blocks for every node in the entire decision tree can be formulated using on the
above formula. Each node is created by splitting the data into subsets. Estimating the location of
the best split, as in Figure 3.18, is achieved by following the steps described in Algorithms 2 and 3.
This block of code is then called recursively to build the whole tree, as described in Algorithm 1.

Figure 3.18: Possible split locations for nickel-based superalloy dataset

The tree splitting phases in the regression context could be summarised in three major steps,
as follows: First, find each feature’s best splits, which minimise the impurity function that contain
the best split (one in each feature). Secondly, find the node’s best splits that minimise the impurity
function, which is the minimum weighted average. Finally, split the node using the best node split
and repeat the first steps until the stopping criterion is met. In more detail, the steps of splitting
CART used in this thesis are as follows:

1. Initially, create a decision tree ()) with root node (<0), which contains the entire dataset (!).

2. Decision trees are trained by dividing the data into two parts recursively, based on the selected
splitting rules.
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3. The nickel-based superalloy dataset has 16 factors with 60 data observations in each column,
meaning that a sum of 960 divisions is probable; accordingly, each of such splits that is best
for the results should be found.

Regarding the first feature ( 9), the steps are as follows:

1. Begin by searching for the best split (\∗
9
) in each feature. Starting from the first feature at the

zero index location (C<,B).

2. Sort the node samples from the smallest data point until the largest data point.

3. Next, compute the mean square error (MSE) for the remaining data points of the feature and
initialise the mean square error of the zero index in the feature equal to zero.

4. Therefore, the weighted average score of the MSE of the two subsets needs to be decreased,
after which the greedy method is utilised to find a split by splitting the data into two halves
with each observation in the column and measuring the weighted average score of the MSE
of the two halves to determine the minimum as follows:

• Initially, increment the index location (C<,B+1), and start updating the MSE of the data
before and after this index location.

• The best split (\∗
9
) will be at the location that results in the minimum weighted average

score for this feature; this will be the split with the lowest ranking score.

5. The same steps are considered later for all training features and are compared greedily in
order to find the best (minimum) score.

6. Accordingly, the best split in the node (\∗) is chosen based on the minimum MSE from the
entire group of features. The data will be partitioned into two child nodes according to the
best split (\∗) location.

7. Finally, the previous steps are repeated recursively at each node until the stopping criterion
(W) is satisfied.
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Algorithm 1: Greedy Induction of a Binary Decision Tree [93]

1 Function BuildDecisionTree(!):
2 Create a decision tree ) with root node <0

3 Create an empty stack (
4 (.push(<0, !)
5 while ( is not empty do
6 <,& = (.pop( )
7 if W is met for < then
8 .̂< = average of the node output
9 else

// Find the split that minimise the ’impurity decreases’
10 \∗ = argmin\ � (&, \)
11 Partition & into &;4 5 C ∪ &A86ℎC according to \∗

12 Create the left <! and the right child node <' of <, respectively
13 S.push(<', &A86ℎC)
14 S.push(<! , &;4 5 C)
15 end
16 end
17 return )
18 End Function

Algorithm 2: Finding the Best Split \∗ for Partitioning & [93]

1 Function FindBestSplit \∗(&):
2 � (&, \) = ∞
3 for 9 = 1, ..., = do
4 Find the best binary split \∗

9
defined on - 9

5 if � (&, \∗
9
) < � (&, \) then

6 � (&, \) = � (&, \∗
9
)

7 \∗ = \∗
9

8 end
9 end
10 return \∗

11 End Function
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Algorithm 3: Finding the Best Split \∗
9
on - 9 for Partitioning & [93]

1 Function FindBestSplit \∗
9
(&, - 9):

2 � (\, &) = ∞
3 B = 0
4 8 = 1
5 C<,B = −∞
6 Initialise the MSE for <! to 0
7 Initialise the MSE for <' to those of 8(<) by computing the MSE
8 Sort the node samples & such that -1, 9 ≤ -2, 9 ≤ ... ≤ -#<, 9

9 while 8 ≤ #< do
10 while 8 + 1 ≤ #< do
11 8 = 8 + 1
12 if 8 ≤ #< then
13 C<,B+1 =

-8, 9+-8−1, 9
2

14 Update the MSE from C<,B to C<,B+1
15 if � (\C<,B+1

9
, &) < � (\, &) then

16 � (\, &) = � (\C<,B+1
9

, &)
17 \∗

9
= \

C<,B+1
9

18 end
19 B = B + 1
20 end
21 end
22 end
23 return \∗

9

24 End Function
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3.7 Advantages and Disadvantages of Decision Trees

Out of all tree-based methods, decision trees have been the most successful, primarily because of
several factors that make them useful in practice. These factors include the following:

• Known to be non-parametric, in that they do not require any prior assumptions to model
arbitrarily complicated connections between outputs and inputs.

• Capable of implementing a selection of features and making them robust to variables that are
noisy or irrelevant.

• Ability to minimise the error introduced by outliers in labels.

• Easy to use; detailed statistical knowledge is not necessary.

• Provide a way to find homogeneous subsets of data in heterogeneous datasets.

• Can be categorised into ’Categorical’ or ’Regression’ trees for categorical and continuous
problems respectively; can therefore work with a variety of data types.

Equally important, however, is that decision trees have drawbacks. The models tend to suffer
from one of two errors, specifically bias and variance. Interestingly, a simple model will tend to
exhibit more bias and less variance; that is, it is likely to exhibit more deviation of the predicted
answer from the actual answer and less change in predicted response with changing samples. The
opposite is true of complex models. Hence, a good model should consider this trade-off between
the two extremes. This trade-off is accomplished through the use of ensemble methods, which
include Bagging, Boosting, and Stacking [68]. Bagging is performed by applying multiple fea-
tures/categories to different samples from the same dataset, then combining all features/categories.
In so doing, the variance is reduced by 1/=, where = denotes the number of features/categories.
Random Forests are an implementation of Bagging. By creating multiple trees using different
feature subsets, the model chooses the answer that gets most of the votes for categorical problems
or, alternatively, takes an average of the outputs for regression problems. More importantly, many
state-of-the-art [94] and modern algorithms (such as forests of randomised trees) use decision trees
as the foundation to build blocks for forming larger models. As the objective is to extract the causal
relationship from the process knowledge, it is necessary to understand all algorithmic details of a
single decision tree. One shortcoming of decision trees relates to their use of a greedy algorithm,
meaning that only the best solution for the current node is considered with no regard for future
solutions. They also tend to overfit the training data, which can lead to poor performance, mainly
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when the model is implemented on a set of new data. This occurs most commonly when the
terminal nodes represent small subsets of the training data while the tree has grown enormously. At
the same time, it is possible to overcome this challenge by employing a process known as pruning.
This process involves eliminating terminal nodes that are likely connected to noise in the data, thus
simplifying the tree. As a result, the effects of over-fitting are minimised, while at the same time,
the predictive power of the model is enhanced. However, there is still a challenge involved, in that
the process of pruning is somewhat subjective; thus, pruning a tree can be cumbersome, thereby
yielding the lowest error in a given test dataset. The other method that can be used to overcome this
challenge is to constrain the tree sizes. Restricting tree size can be done in one of two ways. The
first way involves setting a threshold on a minimum number of samples to allow a node to split; the
second involves limiting the depth of the tree to a specific value. In the next section, the critical
measurements utilised in the evaluation of regression models are considered.

3.8 The Bias-Variance Trade-Off

Bias relates to the error created by the comparison of a real-life problem, which could be incredibly
complex, to a somewhat simplified one. It is unlikely to achieve a precise forecast by using a
restrictive/simple algorithm in cases where the real relationship is extremely complicated. On the
other hand, variance corresponds to the sum by which the estimation of 5 (-) will shift if measured
using a specific collection of training data. Ideally, however, the approximation for 5 (-) will not
differ between training sets. Nevertheless, if the procedure exhibits significant variance, even minor
changes in the dataset could lead to substantial changes in 5 (-).

Figure 3.19: The bias-variance trade-off [75]
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As shown in Figure 3.19, the yellow curve is a linear pattern; moreover, the blue one is a
projection of a marginally non-linear model, while the green curve is a predictor of a strongly
non-linear/flexible model. The optimum model minimises both bias and variance error, as seen in
the black curve. The U-shape found in the MSE test curves in Figure 3.19 tends to be the product
of two conflicting properties of statistical learning methods. It can be seen that the predicted MSE
test, for a defined value of - , can often be broken down into the sum of the fundamental quantities:
the variance of 5̂ (-) (representing the red curve), and the squared bias of 5̂ (-) (representing the
grey curve). High system complexity has been shown to result in more noise in the learning range.
In the case of a given dataset, the lowest MSE level provides an important statement regarding the
bias and variance of the error types. Therefore, with improved variability, bias can be reduced
more than variation increases. While there is no further decrease in bias at any stage, the variation
continues to increase rapidly due to overfitting. Moreover, each adjustment in the data collection
can yield a new result, which is quite reliable, by utilising a mathematical approach that aims to fit
the data points very carefully. The basic theory is as follows: when a predictive approach works
to predict data points more precisely, or as a more robust system is used, bias decreases; however,
variation also increases.

Figure 3.20: Graphical illustration of bias and variance [95]

Themean squared error (MSE) of a statisticalmodel can be represented as the sumof the squared
bias of its forecasts, the variance of such predictions, and the variance of any error expression.
Because both squared bias and variance are non-negative, while other errors that catch randomness
in the data will not be influential, MSE is reduced by decreasing the variance and bias of the model.
As Figure 3.20 indicates, the centre of the target is a model that accurately forecasts the correct
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values. The figure present four separate instances reflecting variations of high and low bias and
variation. High bias occurs where all dots are far from the bulls-eye, while high variance is where
the dots are more dispersed. To minimise the prediction error, a predictive learning approach must
be selected that concurrently maintains low variance and minimal bias.

Trade-off Reflection on the Proposed Algorithm

A decision tree has a high variance and low bias. As shown in Figure 3.20, the optimal model
should have the lowest possible values of both variance and bias. Ensemble methods introduce
a robust approach to reducing the variance error in a decision tree by building randomised trees
from the original data to create a forest of random decision trees. Moreover, a novel technique
is introduced in chapter four for estimating the optimum number of trees to further minimise the
variance error.

3.9 Ensemble Methods

In this chapter, a generalised framework for error decomposition of any statistical learning model
5 (-) is presented. This framework was first introduced by Geman [53] as a tool for diagnosing
model underfitting and overfitting of the model. In the regression context, the MSE is decomposed
into bias and variance terms. Bias measures the discrepancy within the average prediction and the
forecasting of the data model, while the variance term estimates the variability of the predictions.
As can be observed from the graphic presented in Figure 3.20, a reasonable approach to reducing
generalisation error would drive down the prediction variance and either keep the bias the same or
avoid increasing it. Ensemble approaches aim to achieve this by building several uncorrelated dif-
ferent estimators from randomised subsets of features of a single learning series !, then aggregating
the predictions of those models to arrive at the prediction of the ensemble (see Figure 3.21).

Figure 3.21: Ensemble methods of the Random Forest algorithm
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3.10 Random Forest Algorithm (RF)

The black-box version of the Random Forest method explains the challenge associated with ad-
equately analysing Random Forests. The Bagging and the CART split criterion are among the
essential ingredients of the RF approach and play crucial roles. In essence, the Bagging technique
involves two processes [96]: namely, aggregation and bootstrapping. Bootstrapping is a statistical
procedure whereby a random sample is selected from a single dataset using the replacement sam-
pling method. After the selection of random samples, the learning algorithm is then run. In the next
step, the model produces several predictions that are subsequently aggregated to produce the final
prediction, which considers all possible outcomes. In other words, Bagging is a general aggregation
(as shown in Figure 3.22) that is among the most effective computationally intensive mechanisms
for enhancing unstable estimates, particularly for large datasets with high dimensionality. In large
datasets of this kind, it is impossible to find a suitable model in one step due to the sheer scale and
complexity of the problem. It is also essential to understand that the CART-split criterion is based
on Breiman’s influential CART program, which is employed in the establishment of the individual
trees to select the splits that are perpendicular to the axes [16]. Indeed, the best split at each node of
each tree is chosen by maximising the CART-splitting measure based on either the squared predic-
tion error (for regressions) or Gini impurity (for classification). However, both the CART-splitting
scheme and bagging are difficult to evaluate even with rigorous mathematical processes, although
they play essential roles in the mechanism of Random Forests, which is the reason why theoretical
studies tend to prefer simplified versions of the first algorithm. Under these circumstances, what
typically happens is that a simpler split protocol replaces the CART-split selection and the bagging
step is simply ignored. Moreover, each terminal node of the individual trees in Breiman’s forests
consists of some number of observations (usually between one and five).

Algorithm 4: Random Forest Training Procedure for Regression or Classification [89]
Input: Training Data (!), Number of Trees (=CA44)
Output: Forest of trained estimators(trees)

1 RF=[]
2 for 1 = 1 : � do
3 Draw a bootstrap sample 1 from the training data !.
4 Grow a tree )1 using the bootstrapped sample 1, by implementing Algorithm 1.
5 Append tree in the RF.
6 end
7 return RF
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Random Forest is a hybrid algorithm first introduced by Breiman [17]. When used for discrete
predicted results, it is referred to as Random Forest classification, while for continuous values, it
is called Random Forest regression. Algorithm 4 explains the procedure of training an Random
Forest algorithm. For prediction using the trained model with a new unseen observation G, the
estimation of each tree (as in Algorithm 5) would be consolidated based on the output form, as
follows [89]:

• Regression

5̂ (G) =
�∑
1=1

)1 (G) (3.16)

• Classification
5̂ (G) = "0 9>A8CH+>C4{)1 (G)}�1 (3.17)

Algorithm 5: Prediction of the Output Value .̂ = 5̂ (-) in a Decision Tree [89]
1 Function Predict(-):
2 < = <0

3 while < is not a terminal node do
4 <= the child node of <
5 .̂< = Average response in < node
6 end
7 .̂< = Average response in the node
8 return .̂<
9 End Function

The steps involved in using Random Forest for training and testing are illustrated in Figure 3.22
and can be summarised as follows:

1. In the training phase, the data (!) is randomly bootstrapped to generate bags (1), based on
the number of estimated trees (=CA44), for different subsets with replacement. The subsets
created from this bootstrapping process are then used to build a regression tree ()1).

2. The trained trees are appended to the forest.

3. In the testing phase, the unseen observations (G) acquired during training are used to predict
the response and test the predictions generated from the decision tree by using the validation
set (by splitting the data and/or using the :-fold cross-validation).
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4. The prediction of the process response is calculated as follows:

• Starting from the root node (<0), each tree follows the decision path until the terminal
node is reached.

• The predicted value will be the average of the response value at terminal node (.̂<).

• Finally, the average prediction produced from each tree is computed.

Figure 3.22: Random Forest algorithm procedure



CHAPTER 3. MATHEMATICAL MODELLING OF PREDICTIVE CAUSAL ANALYTICS 76

3.11 Encoding of Categorical Features

Encoding [93] is a pre-processing step used to encode the categorical features into numeric values.
In the current work, a simple encoding feature called LabelEncoder is used, which is suitable for
the mixed dataset provided in this case study. The algorithm simply collects all attributes (�) for
each feature, then computes the amount in =!014; that represents the number of categories present
in the attributes. The encoded value is equal to some value between zero and (=!014;−1). Finally,
it creates (quantitative) features based on the total =!014; numbers established in the previous
steps. The detailed steps involved in LabelEncoder are illustrated in Figure 3.23.

Figure 3.23: Steps of categorical feature encoding using the LabelEncoder algorithm
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3.12 Missing Data Imputation

As discussed above, manufacturing data collection is confronted with the issue of missing data.
Missing data imputation techniques are accordingly applied to solve this issue. However, the major-
ity of such imputation methods are limited to one data format (either continuous or categorical). For
mixed-type data, continuous and categorical data is typically handled separately; therefore, these
techniques cannot obtain the potential non-linear relationships between variables. Considering the
nature of the Random Forest, which can provide either a classification or regression capability, the
next section discusses the missForest approach and how it can be used to handle the mixed types
of variables simultaneously.

missForest Algorithm

missForest [15] is an iterative imputation approach based on the Random Forest algorithm. It
utilises a built-in Random Forest out-of-bag error calculation, such that an imputation error may
be calculated without the need for a test set. This approach thus outperforms other imputation
approaches, particularly in cases involving non-linear interactions, computational performance,
and high-dimensional data. The imputer continues to arrange the data columns based on the
least amount of missing values. The first column is called the candidate column (H (B)

<8B
). The

absent values in the remaining non-candidate columns (G (B)
<8B

) are filled using an iterative method
(initial guess). The initial approximation is the mean value for the quantitative columns and the
mode for the categorical columns. After that, the imputer trains a Random Forest model with the
candidate column as the response variable (H (B)

>1B
) and the non-candidate columns as the features

(G (B)
>1B

). The training set requires training matrix rows in which the candidate column values are
not missing. Upon fitting, the missing values of the candidate column are imputed (H (B)

<8B
) using

prediction from the trained Random Forest through (G (B)
<8B

). The rows of the non-candidate columns
act as the data input for the trained model. Thus, the imputer switches to the next nominee column
with the second-smallest number of missing values, and the cycle repeats itself with each column
with a missing value over several iterations before the stopping condition (W) is satisfied. The
stopping criterion relies on the ’difference’ within the imputed arrays between (- 8<?=4F and - 8<?

>;3
)

over successive iterations. The stopping criterion is reached as long as the gap between the newly
imputed given dataset (- 8<?=4F ), and the prior one increases for the first time concerning the selected
variable forms (- 8<?

>;3
). In this case, the various set of continuous variables ∇'# is introduced by

Equation 3.18. For this set of categorical variables, ∇� is introduced by Equation 3.19, where #<8B
is the number of missing values in the categorical variables [15],
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∇'# =
∑
9∈'# (-

8<?
=4F − - 8<?>;3

)2∑
9∈'# (-

8<?
=4F )2

(3.18)

∇� =

∑
9∈�

∑=
8=1 �- 8<?

=4F≠-
8<?

>;3

#<8B
(3.19)

After imputing the missing values, when the Random Forest matches the observed component
of the equation, an out-of-bag (OOB) error calculation is included for that component. After
the stopping criterion W has been met, the correct imputation errors are averaged over the set of
variables of the same type. The performance of this estimation is then assessed by measuring the
absolute discrepancy between the actual imputation error and the OOB imputation error calculation
over both simulation tests. Algorithm 6 is a depiction of the missForest algorithm procedure as
described below, where the variables represent the following:

• H (B)
<8B

- The missing values of observation -B;

• H (B)
>1B

- The observed values of observation -B;

• G (B)
<8B

- The variables other than -B with observations 8 (B)<8B;

• G (B)
>1B

- The variables other than -B with observations 8 (B)>1B =
1,...,=
8
(B)
<8B

.

Algorithm 6: Impute Missing Values with missForest Technique [15]
Result: - 8<?=4F an = × A matrix, stopping criterion W

1 Make initial guess for missing values
2 6← vector of sorted indices of columns in - 8<?

>;3
// w.r.t. increasing amount of missing

3 while W is not met do
4 -

8<?

>;3
← store previously imputed matrix

5 for B in 6 do
6 Fit a Random Forest: H (B)

>1B
≈ G (B)

>1B

7 Predict H (B)
<8B

using G (B)
<8B

8 -
8<?
=4F ← update imputed matrix, using predicted H (B)

<8B
;

9 end
10 Update W
11 end
12 return Imputed matrix - 8<?=4F
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3.13 Data Augmentation Techniques

The randomised bootstrapped subsets approach used in RF produces more trees that are likely to
be uncorrelated and thus reduce overfitting, as well as more in-depth knowledge discovery from
the process data. However, these benefits come at a cost. Having a large dataset is crucial for
the performance of the RF model. A small sample size decreases statistical power and increases
overfitting, resulting in weaker knowledge discovery and low prediction accuracy. The sample size
acts as a control parameter for the degree of randomness in the forest. An increased sample size in a
smaller number of trees tends to produce correlated trees; by contrast, decreasing the sample size in
a larger number of trees will produce trees that are more likely to be uncorrelated and that will thus
tend to prevent overfitting, although typically at the expense of model performance. A beneficial
side effect is that smaller sample sizes reduce the time required to train the model. As noted above,
a large dataset is vital to the good performance of a machine learning model. Accordingly, the
model performance could be enhanced by augmenting the data. Data augmentation is a technique
used for the synthetic generation of new training data from raw training data.

As shown in Figure 3.24, the nickel-based superalloy historical data available is limited to 60
observations only. As the RFmodel cannot be trainedwith this limited number of observations, data
augmentation is a crucial task here. The primary considerations when choosing the augmentation
technique are the types of data and the nature of the relationship between process factors (in other
words, whether or not there is non-linearity in the data). The problem faced in this study is the need
for a robust technique that is capable of handling non-linear mixed datasets. The most common
approaches in the literature are discussed, beginning from the simple random oversampling method
and progressing to the more advanced technology developed especially for balancing classification
problems, referred to as the Synthetic Minority Over-sampling TEchnique (SMOTE) [14]. This
section of the study concludes with the realisation that it is important to consider developing a
more robust technique capable of augmenting non-linear process data, especially when dealing
with regression problems. The detailed algorithms for each method, as described in detail in the
next sections, are as follows:

• Details and results of the random oversampling technique are described in Section 3.13.1.

• The steps of the SMOTE are described in Section 3.13.2.

• Anovel augmentation technique for non-linear regression, including the algorithmand results,
is discussed in chapter four.



CHAPTER 3. MATHEMATICAL MODELLING OF PREDICTIVE CAUSAL ANALYTICS 80

0.0
2

0.0
4

0

5

10

% Zr

7.8 8.0
0

5

10

% Co

20 40
0

5

10

% N

0.7 0.8 0.9
0

5

10

15

% Nb

10 20 30
0

5

10

15

% O

0.4
75

0.5
00

0.5
25

0.0

2.5

5.0

7.5

10.0

% Ta/Ti

3.1 3.2 3.3
0

2

4

6

8

%Al

6.2 6.4
0

2

4

6

8

%Al+Ti

0.0
07

5
0.0

10
0

0

10

20

%B

0.0
9

0.1
0

0.1
1

0.0

2.5

5.0

7.5

10.0

%C

15
.00

15
.25

0.0

2.5

5.0

7.5

10.0

%Cr

0.1 0.2
0

5

10

15

%Fe

1.6 1.7
0

5

10

15

%Mo

1.5 1.6
0.0

2.5

5.0

7.5

10.0

%Ta

3.1 3.2
0.0

2.5

5.0

7.5

10.0

%Ti

2.4 2.6
0

5

10

15

%W

Figure 3.24: Nickel-based superalloy process inputs distributions
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3.13.1 Random Oversampling

The random oversampling technique [97] is a simple technique based on one-step bootstrap re-
sampling. First, a random index (8) is generated that contains between 1 and = original samples.
Next, a lookup for this index is conducted in the original dataset (!), after which the corresponding
observation is obtained and saved in a new data frame (!=4F). This operation is repeated until the
new sample size (==4F) required is reached. Algorithm 7 and the schematic diagram in Figure 3.26
provide an overview of the random over-sampler.

Algorithm 7: Random Oversampling Algorithm [97]
Input: New sample size ==4F
Output: !=4F
Data: Original set !

1 while 8 ≠ ==4F do
2 Generate random index from 1 : = // n is an original sample size !
3 Look up in ! by using the generated index
4 Save the selected index in !=4F
5 8 = 8 + 1
6 end

As can be seen from Figures (3.24, 3.25b, and 3.27), the major drawback of this technique is
that it does not create new examples, but only draws examples randomly from the original data.
Repeating observations increases the likelihood of overfitting during model training.
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Figure 3.25: Response distribution by random oversampling technique for nickel dataset
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Figure 3.27: Distribution of factors while applying the random oversampling technique
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3.13.2 SMOTE

The main drawback of the random oversampling technique is that it increases overfitting. To
overcome this problem, the researchers [14] attempt to deal with imbalanced classes in data. The
presence of imbalanced data can cause inaccurate predictions regarding the minority class due
to insufficient representation of minority observations during training. With the goal of solving
this problem, the Synthetic Minority Over-sampling TEchnique (SMOTE) was introduced for
classification problems. The core concept behind SMOTE is to synthesise ideas for the minority
class, with a focus on those that already exist. It operates by randomly selecting  -values from
the minority class and calculating  -Nearest Neighbours for this stage. Synthetic points are then
inserted between the selected point and its neighbours.

Figure 3.28: Illustration of the SMOTE algorithm

As can be seen from Figure 3.28, the synthetic data was generated based on the clustering of
the feature space. This clustering was based on the response label and involved finding the  -
nearest neighbours ( NN) and conducting linear interpolations to produce a new minority instance
in the neighbourhood. Algorithm 8 presents the detailed implementation steps for SMOTE. The
algorithm starts with the following steps.

1. Initially, this algorithm expects three inputs: the existing number in the minority class (() ),
the required value of augmentation for the minority class sample (%# ), and the  NN value.

2. Then, the algorithm begins to loop over every sample ((B0<?;4) in the minority class (() ) and
computes the  NN.
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3. Ultimately, one of the nearest neighbours (==) is chosen randomly.

4. Afterwards, the algorithm loops over each attribute (�) to find the new synthetic sample
((BH=Cℎ4C82) by implementing the linear interpolations.

5. Repeat by choosing  NN randomly until reaching the required augmentation in the class.

6. Repeat the previous steps for every class in the dataset.

Algorithm 8: SMOTE Algorithm [14]

Input: Number of minority class samples ()
Amount of required SMOTE %# , Number of nearest neighbours  
Output: Required %# of synthetic minority class samples ()

1 %# = (int)(%# − () )
2 �=D<14A = Number of attributes
3 (B0<?;4[ ][ ]: Array for original minority class samples
4 8=4F: Keeps a count of number of synthetic samples generated, initialised to 0
5 (BH=Cℎ4C82[ ][ ]: Array for synthetic samples

// Compute  -Nearest Neighbours for each minority class sample
6 for 8← 1 to () do
7 Compute  -Nearest Neighbours for 8, and save the indices in the ==0AA0H
8 Populate(%# , 8, ==0AA0H)
9 end

// Function to generate the synthetic samples ((BH=Cℎ4C82).
10 Function Populate(%# , 8, ==0AA0H):
11 while %# ≠ 0 do
12 Choose a random number between 1 and  , call it ==. This step chooses one of

the  -Nearest Neighbours of 8
13 for �← 1 to �=D<14A do
14 Compute: Difference = (B0<?;4 [==0AA0H [==]] [�] − (B0<?;4 [8] [�]
15 Compute: Gap = random number between 0 and 1
16 (BH=Cℎ4C82 [8=4F + +] [�] = (B0<?;4 [8] [�]+ (Gap × Difference)
17 end
18 8=4F + +
19 %# = %# − 1
20 end
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3.14 Model Tuning

Tuning the model parameters limits the model’s tendency to overfit. The most common tuning
parameter in all machine learning models is choosing the most relevant features. In ensemble
methods, the second most important parameter in tuning is choosing the optimal number of
estimators.

3.14.1 Feature Selection

Feature selection is a process whereby the factors in the data that are most applicable to the predicted
response or performance are selected. Getting irrelevant characteristics in the data will reduce the
accuracy of several models. Three of the benefits of conducting feature selection before actually
modelling are as follows:

• ReducesOver-fitting: Less redundant datameans a reduced potential to arrive at noise-based
decisions.

• Improves Accuracy: Less inaccurate data tends to improve the accuracy of modelling.

• Reduces Training Time: Fewer data helps the algorithm train faster.

In the scope of optimisation procedures, the feature selection can be used to select the essential
variables that significantly influence the performance and process output of the method. A novel
feature selection approach based on scoring the critical factor is introduced in chapter five.

3.14.2 Optimal Number of Estimators

The current literature does not provide an adequate maximum limit of estimators in the ensemble
models [89]. A random subset of the training sample is used to calibrate a black-box estimator, after
which a final prediction is developed by combining the estimations. In this research, the random
bootstrapping of the forest results in uncorrelated estimators that negatively affect the variability
of the base estimator; that is, a decision tree. This study’s novel approach to the calculation of
optimum forest size is discussed in chapter four.

3.15 Assessing Model Accuracy

The predictive performance of the machine learning model contributes to its ability to predict
unseen test data. The evaluation of this success is essential in an implementation context, as it
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directs the selection of a machine learning approach and provides a product consistency evaluation
method. In this section, the main performance assessment methods are considered.

Measuring the Quality of Fit

Regression is a means of matching a function to a set of data. To assess the efficiency of both the
regression model and the data collection, it is necessary to find a way to calculate the extent to
which its forecasts have generalised the training data. In other words, it is the error between the
measured and predicted values. The most widely used measurement in the regression context is
the mean squared error (MSE), given by Equation 3.20 [89],

"(� =
1
=

=∑
8=1
(.8 − .̂8)2 (3.20)

The coefficient of determination is a standard criterion for determining fitness. The definition
of R-squared is a reflection of the regression model that is comparatively more appropriate than
only having a horizontal line across the mean value. It can be calculated by Equation 3.21 [89],

'2 = 1 − ((A4B83D0;
((C>C0;

= 1 −
∑
8 (.8 − .̂8)2∑
8 (.8 − .̄8)2

(3.21)

3.16 Validation Techniques

Validation techniques measure the performance of the models. These are commonly used to show
how efficient the prediction is. In this section, two methods are described: the holdout method and
the cross-validation technique.

3.16.1 Holdout Method

Figure 3.29: Holdout method
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This method involves removing some parts of the training datasets and utilising them to gain
insights (predictions) from the system trained on the remainder of the data [98]. Machine learning
algorithms are trained on the training set, while the test set is used to evaluate the model predictive
performance on unseen data. The error calculation then tells how this process will operate for the
unseen data.

3.16.2 Cross-Validation Technique

Cross-validation [89] is a generalised re-sampling technique that can be used to test any supervised
machine learning algorithm in a small sample of observations. This methodology has a single :
parameter, which is an integer value that represents the number of splits of the original dataset. As
such, the technique is sometimes referred to as :-fold cross-validation.

Figure 3.30: Cross-validation technique

Typically, a model output evaluation is a stricter and less biased performance assessment when
compared to other approaches such as straightforward holdout methods. Figure 3.30 illustrates the
protocol of the cross-validation technique in terms of a specific :-fold value.
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The basic protocol can be described as follows:

1. Shuffle the dataset randomly.

2. Split the dataset into : groups.

3. For each particular group:

(a) Select the group as a holdout or test dataset.

(b) Take the remaining groups as a training dataset.

(c) Fit a model to the training data and assessment of the test data.

(d) Retain the evaluation score and discard the model.

4. Analyse the model performance using the average of the model evaluation scores.

It may be assumed that, in :-fold cross-validation, : holdouts from each of : subsets are
utilised as a test set, while the other (: − 1) subsets are combined to form the training set. The
estimate of the error is averaged over all : trials to ensure that the model perform adequately. This
significantly decreases the bias and variance, as much of the data for fitting as well as the validation
data is deployed. In this thesis, the value for :-fold validation (i.e. the number of cross-validation
subsets) was chosen as :=10. This value was obtained from the literature [89]. Multiple tests were
conducted to determine the best value for :-fold. The tests revealed that :=5 or :=10 are the best
choices with the least bias and the best prediction accuracy [89]. Thus, the author used :=10 in
this thesis in order to apply the :-fold cross-validation technique.

3.17 Research Roadmap

The research roadmap was established based on several criteria. From the literature review in
chapter two, knowledge from prior research and other competing algorithms gradually led to the
devising of a solution to solve a non-linear mixed dataset based on traditional Random Forest. The
Random Forest algorithm explains some of the problems, along with how to retrieve a solution
to modify those gaps. In essence, one of the major goals is to have lower computational costs
compared to previous works [8]. For example, the QCA algorithm [8] takes approximately 14-15
minutes for a dataset of only 60 observations (a more detailed analysis is presented and illustrated in
Section 6.5). The author chose to focus on shallow learning to further minimise the computational
power by using a predictive algorithm capable of doing this. The provided dataset has a known
output and the features deal with a mixed dataset. Therefore, supervised learning was deemed
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the best solution to consider. Before building the model and choosing a specific algorithm tuning
strategy to move forward from, it is important to explore the data and the feature engineering in
order to improve the prediction accuracy. Skewness and kurtosis were implemented to further
observe the input and output processes. It was discovered that the data has a highly skewed
shrinkage defect, leading to overfitting. Moreover, one of the drawbacks of traditional Random
Forest is that it requires a large dataset to perform efficiently. Hence, it is necessary to use the
data augmentation technique to solve this problem. Furthermore, to limit overfitting, five major
observations need to be covered in order to build a robust model: small dataset, non-linear, highly
skewed, mixed dataset, and handling missing data. In consideration of the non-linear and highly
skewed (and small dataset) properties, a novel approach to data augmentation was proposed to
further minimise overfitting and improve prediction accuracy. For mixed data, a LabelEncoder was
used to encode the categorical factors. Regarding the missing observations, Random Forest has
its own built-in imputation methods to overcome this approach. Based on the data exploration,
it was concluded that encoding the categorical factors, handling missing data imputations, and
data augmentation techniques could be discovered to overcome those gaps. The next steps are
building the required model. Before proceeding with Random Forest, the decision tree is the
first step to discover. In the decision tree context, there are two things to consider: first, which
tree constructing algorithm is required, and second, what splitting rule should be used in order to
achieve the best split. The CART algorithm was selected when moving forward, since it deals well
with both classifications and regression trees. In regression problems, Variation in Reduction is
used for the splitting criteria, while in classification problems, the Gini Index is chosen. After the
tree construction algorithm and the splitting rule were defined, discovering the Random Forest was
the next step. Random Forest is an ensemble learning method that deals with both classification
and regression problems and operates by constructing multiple decision trees. It is considered
both a flexible model and an algorithm capable of dealing with complex problems. In the above
discussion of the bias-variance trade-off, it was observed that a complex algorithm usually has low
bias and high variance. In Random Forest, due to the way the model is built (i.e. generating bags
by bootstrapping to create multiple decision trees), it leads to minimising the variance; thus, the
model inherently has low bias and low variance. Random Forest also requires precise model tuning
to achieve a good prediction result. Regarding the tuning parameters, it is necessary to choose
precise parameters to achieve a low computational cost (which was the major concern, since it is
one of the drawbacks in the previous research and finding a way to resolve it is necessary), and yield
a high-performance model. Thus, another novel approach is established to resolve those issues by
obtaining an automatic number of estimators.
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Figure 3.31: Summary of algorithm proposed to overcome the limits
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The algorithm can then be used for training and testing on the dataset. After implementing
the algorithm, a validation technique is required in order to check the accuracy of the predictive
algorithm. Two techniques were used: namely, the holdout method and the cross-validation
technique. In order to compute the model accuracy, the mean square error (MSE) and coefficient
of determination ('2) were used. At the end, all previous techniques will be used in order to bring
them into one package and enable proceeding to the next step. The proposed algorithm is now
ready to be used in order to achieve robust performance and prediction capacity. The steps and
techniques were combined to further proceed to the proposed algorithm, as shown in Figure 3.31.
Taking into consideration the fact that everything was scattered, the initial task was to apply all
existing methods using the traditional Random Forest. The second step was then to put the pieces
together so that the algorithm can be used to either solve the problem discussed in chapter one or
not. Therefore, there was a need to combine all steps into a single package. Nevertheless, several
remaining limitations were identified. As a result, a decision was made to select the most suitable
techniques to address the research objectives. This led to the development of the Modified Random
Forest algorithm. The MRF algorithm is explained in more detail later on in the thesis (chapters
four and five). Accordingly, based on this roadmap (see Figure 3.31), it is likely that all weak spots
will be identified and be fixed by applying the novel techniques.

Figure 3.32: Research Roadmap

The research roadmap began with the missing mixed data imputation by using the built-in
Random Forest missing technique, called ‘missForest’. Subsequently, it goes through the non-
linear mixed data augmentation technique using the up-sampling technique. This is achieved by
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applying two novel techniques sequentially; namely: SMOTE and missForest (both discussed in
more detail in chapter four). The research introduces the non-linear predictivemodel using theMRF
algorithm with an automated number of tree estimators (discussed in chapter four), followed by the
model accuracy assessments by performing the validation technique (holdout and cross-validation
techniques). Finally, the causal knowledge extraction is implemented by using a novel development
proposed in this research (introduced in chapter five), which is called the ‘Decision Path Search
(DPS) algorithm’. This study’s research roadmap, presented in Figure 3.32, indicates the steps
involved in the proposed solutions; together, they form a model and an approach. The features and
the learning algorithm are the two pillars of any data models, and these will be studied further in
chapter four, Moreover, the details about how the causal knowledge is extracted from the model
will be introduced and discussed further in chapter five.

3.18 Technological Choices

Python is a programming language. In addition to the scripting language and the compiler, Python
consists of an extensive standard library. This library is regarded as the primary scripting and
incorporates components for various operations, threading, networking, databases, etc. It is a
general-purpose programming language that is easy to learn. The language is open-source and
incorporates tools for mathematics and data analysis (for both statistics and analytics). As a
result, Python has become the most widely used programming language in research and scientific
investigations. Python can be used to execute multiple series of instructions at once or one block at
a time. MATLAB, on the other hand, is a commercial computational programming and coding tool
system that is mostly used by engineers for numerical computations. While the class library does
not contain quite enough generic programming features, it does include an arithmetic matrix-based
calculation and an extensive library for processing and plotting data. In this thesis, the author
selected Python rather than MATLAB or R-Code to run the MRF algorithm. Although MATLAB
and R-Code are both good software packages, Python represents a new generation of machine
learning paths. R-Code was developed by statisticians to resolve statistical problems, while Python
is a general-purpose programming language. Although most machine learning code is based on the
R-Code language, Python was eventually selected because it offers a number of advantages. First,
in comparison to MATLAB and R-Code, Python offers more libraries for a variety of applications
(including libraries for maths, statistics and as artificial intelligence), as well as a faster run-time.
Moreover, Python is regarded as the most improved tool for Machine Learning Integration and
Deployment. In addition, Python can perform almost the same functions as R-Code but is also a
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fully integrated programming language (unlike the R-Code). In the previous thesis [8], MATLAB
was used to program the code; in this research, however, Python was selected as the programming
language for the implementation of the algorithms, as it offers the following advantages described
in Table 3.4 below.

Table 3.4: Advantage of Python over MATLAB and R-Code

Python MATLAB R-Code

Large open-source ecosys-
tem.

With default IDE and limited
ecosystem.

Spread across several pack-
ages.

Supported cross-platform. Expensive and commercial
license.

Lacks basic security.

Name-spaces can be im-
ported.

The default core does not
have name-space.

Utilises more memory in
comparison to Python.

Supports object-oriented
programming.

Limited portability. Not a fully integrated pro-
gramming language.

Offers tremendous support of
libraries.

Limited libraries, defined
separately.

A smaller subset of statistical
data.

Introspection is easy; easier
access to internal sections
also provided.

Closed-source libraries make
it difficult to inspect the in-
ternal components.

Complicated language.

Python Processing Code of MRF and DPS Algorithms

The processing code used to implement both algorithms, namely MRF and causal relationships
(DPS), was developed by the author using Python. The results illustrated in chapters four and five
are derived from this processing code. Moreover, the simulation parameters used for the MRF
and DPS algorithms are listed in Table 3.5. The code is applied to both algorithms used in this
thesis. The code of the proposed algorithm is based on pre-existing libraries in Python; however,
the code was also modified in order to overcome the limitations that were identified in this thesis.
All the code refinements developed in this thesis were implemented from scratch. From Table 3.5,
the minimum ()ℎ<8=) and maximum ()ℎ<0G) thresholds for the process were determined by the
process engineers and then measured at the end of the investment casting process. In addition, the
optimal threshold value ()ℎ>?) was used to check the performance of the optimal limit process,
as well as how these ranges affect the overall prediction accuracy. The optimal threshold was also
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measured by the process engineer, and hence provides the process input and output. The code was
modified so that it would work on both the QCA [8] and the MRF algorithms. The user can choose
whether to apply the MRF algorithm or the QCA algorithm for further visualisation and analysis.
In order to verify the performance of the QCA algorithm in Python language, the author reproduced
all the results of the current work by applying the QCA algorithm (see Appendix C). The MRF and
the DPS processing code flowchart are illustrated in Figure 3.33.

Table 3.5: User inputs for prediction and confirmation for nickel-based superalloy dataset

MRF Confirmation Trials

Type LB Bootstrap 1000
)ℎ<8= 0 Simulation No 100
)ℎ<0G 0.03 Total Run’s 100000

No of Factors 16 )ℎ>? 0.2, 0.3, 0.4

Figure 3.33: The proposed algorithms (MRF and DPS) processing flowchart code
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Computer Specifications

The computational cost indicated for each case studies was found by running the code on a personal
computer (laptop) with the specifications given in Table 3.6 and Figure 3.34.

Table 3.6: The computer specifications of the proposed code

Parameter Specifications

Operating System Windows 10 Pro
Edition 2019 Microsoft Corporation
Processor Intel(R) Core(TM) CPU at 2.80 GHz

Installed Memory (RAM) 16 GB
System Type 64/bit operating system, x64

Figure 3.34: Computer running code specifications



Chapter 4

Modified Random Forest Algorithm

4.1 Introduction

The primary objective of a machine learning study is to develop a generally applicable algorithm
for use in predicting future unseen data. From a machine learning perspective, the solution to
the generalisation problem is two-fold: specifically, the generalisation ability of the algorithm on
both the training and testing dataset. The methods optimise the objective function and learn the
abstractions that collectively and compactly form the model. The study was carried out on the
nickel-based superalloy dataset, consisting of 16 chemical profile variables and the process output
represented by shrinkage defect percentages.

In this chapter, the Modified Random Forest algorithm is developed. The goal here is to adapt
the traditional RF algorithm so that it can deal with a small dataset through a novel technique of
non-linear data augmentation, as well as further minimise the variance error and computational
cost through the use of a novel technique to estimate the optimal forest size. The remainder of
this chapter is structured as follows. Section 4.2 defines and explains the Modified Random Forest
algorithm (MRF) and lists the steps for its implementation. This section consists of three parts:
the novelty of the non-linear augmentation technique, the novelty of the optimal forest sizing, and
a summary of the proposed algorithm steps. The model accuracy assessments are introduced in
Section 4.3, which shows the results obtained by using both the holdout method and cross-validation
techniques. In Section 4.4, missing data imputation based on the SMOTE-FOREST technique is
presented, while it is further shown how effective this technique is compared to what has been done
previously. Finally, the chapter’s discussion and conclusion are summarised in Section 4.5 and 4.6,
respectively.

97
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4.2 Modified Random Forest Algorithm (MRF)

The Modified Random Forest algorithm is built over a traditional Random Forest algorithm;
however, it also incorporates extra features to adapt the original algorithm so that it can deal with
any non-linear process, such as the foundry process historical dataset test case (introduced and
discussed in Section 3.3), which is high-dimensional and unbalanced and tends to have missing
values. These modifications alleviate some of the limitations inherited from the traditional Random
Forest algorithm. The MRF algorithm also aims to resolve the problems previously encountered
with non-linear datasets – namely, predictive power, non-linearity, computational efficiency, and
interpretability – by introducing the following two novel techniques.

1. Thefirst technique is a novel iterativeRandomForest training approach used for augmentation,
balancing, and imputing missing values for non-linear mixed datasets.

2. The second technique is a novel automatic forest size optimisation. This techniquemaximises
the inherited gains obtained from ensemble uncorrelated multiple decision trees.

The Modified Random Forest (MRF) algorithm is illustrated in Figure 4.1 and can be sum-
marised as follows:

• Missing data imputation for non-linear mixed datasets (as discussed in chapter three);

• Novel data augmentation technique for non-linear mixed datasets;

• Novel automated optimal forest size estimation.

Figure 4.1: Summary of the MRF algorithm

The development process, along with the detailed steps involved in the novel techniques of the
Modified Random Forest algorithm (as shown in Figure 4.2), will be discussed in the next sections.
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Figure 4.2: Relational overview of the techniques used to devise the novel MRF
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4.2.1 Novelty of Non-Linear Augmentation Technique

As discussed in chapter three, the major drawbacks of SMOTE relate to linear interpolation and its
restriction to classification problems only (i.e. it is not valid for regression problems). Motivated
by combining missForest and SMOTE sequentially, a novel synthetic oversampling technique is
proposed that resolves the significant drawbacks of the SMOTE algorithm. The main idea here is to
apply the SMOTE and missForest algorithms sequentially to create SMOTE-FOREST technique,
as described in Algorithm 9. In the first step, the problem is temporarily converted into a classifi-
cation problem by classifying the process response into four quarters based on the output penalty,
as follows: quartile-I (0 - 25%), quartile-II (25% - 50%), quartile-III (50% - 75%), and quartile-IV
(75% - 100%). Accordingly, the SMOTE can be used for oversampling four classes using Algo-
rithm 8; after that, the response values of the new data example are marked as missing. For its part,
the iterative missForest algorithm is used to predict the missing responses for the new observations
using Algorithm 6. The flowchart in Figure 4.3 summarises all previous steps. SMOTE-FOREST
inherits the strengths of both methods and eliminates the drawbacks; accordingly, the regression can
over-sample data even in the case of complex interactions and non-linear relationships. The data
augmentation technique is applied to preserve the overall structure for each factor in the process.
In addition, this technique is also used to maintain the non-linearity in the shrinkage penalty. In
Figure 4.4, each factor was augmented to 360 synthetic data points while maintaining and preserv-
ing the overall structure of each factor. The raw data was limited to 60 observations, which led
to inaccurate predictions by the original RF algorithm. Figure 4.5 further illustrates each factor
after the data was augmented. The RF algorithm requires a minimum number of data points (based
on the number of features) to enable efficient algorithmic performance. Data augmentation is a
procedure used to maintain the efficiency of RF; the algorithm will not work properly without it.
Figures 4.4 and 4.5 depict the SMOTE-FOREST technique resulting from the oversampling process.

Algorithm 9: Novelty of SMOTE-FOREST Technique

Input: Imbalanced training - , Target response .
Output: Over-sampled -=4F,.=4F

1 Calculate quartiles for response column
2 Categorise original samples based on response quartiles
3 -=4F, .=4F =SMOTE(-,. ); // Generate new samples using SMOTE
4 Mark response values for the new generated samples as missing
5 Correct response value .=4F with missForest iterations for all data
6 return -=4F, .=4F
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Figure 4.3: Proposed novel regression oversampling technique (SMOTE-FOREST)
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Figure 4.4: Response distribution using the SMOTE-FOREST technique
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Figure 4.5: Factors distribution by SMOTE-FOREST technique for the nickel-based superalloy
dataset
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Figure 4.6 depicts the difference between QCA [8] and MRF algorithms in terms of the
augmentation technique used. In the previous work by Batbooti [8], the QCA prediction was
found to be ineffective for the non-linear interaction factors; this was due to the weakness of linear
prediction when used on non-linear factors. Based on the previous results [8], the correlation
between carbon variation and shrinkage penalty was downgraded from strong to weak. The
augmenting technique employed is limited when dealing with non-linear datasets, which led to a
reduction in prediction accuracy. Figure 4.7 illustrates the difference between the variations in
carbon and cobalt before and after applying the augmentation technique. The technique was tested
on both carbon and cobalt since these two factors were discussed both earlier in the thesis and in the
previous work (QCA algorithm) [8]. In this thesis, an attempt is made to show how the proposed
technique overcomes the limitation identified in the previous work of Batbooti [8] by undertaking
an analysis on both carbon and cobalt. It can be observed that the overall structure was maintained
as much as possible in order to preserve any existing correlation and pattern between the input
and the output. Furthermore, the augmentation technique preserved the overall structure of both
the linear (cobalt) and non-linear (carbon) factors, which demonstrates the robustness of the novel
technique. At this point, the technique provides an indication that the process will achieve generally
good results; however, further investigations to ascertain the efficiency of this augmentation method
are necessary.

Figure 4.6: The difference between QCA and MRF algorithm in relation to the augmentation
technique
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(a) Carbon - Raw data (b) Carbon - Augmenting data

(c) Cobalt - Raw data (d) Cobalt - Augmenting data

Figure 4.7: Carbon and cobalt variation before and after applying the novel augmentation tech-
nique
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4.2.2 Novelty of Optimal Forest Sizing

The existing literature provides almost no direction regarding the optimal number of trees that should
be used to generate a forest. In the ensemble algorithms, several example black-box estimators
are trained on random subsets of the original training set, and their predictions are aggregated to
form a final prediction. The randomised bootstrapped subsets approach used in the RF algorithm
in this study produces more trees that are likely to be uncorrelated, which reduces the variance of a
base estimator (i.e., a DT). Thus, theoretically speaking, increasing the number of trees will result
in more accurate predictions. At a certain point, however, the cost of increasing the forest size
will be higher than the benefit in accuracy obtained from such a gigantic forest. After conducting
several experiments on different datasets, the researcher concludes that there is an optimal forest
size for each dataset, and that exceeding this size will result in an insignificant performance increase
accompanied by increases in the computational cost (see Appendix B). The research reported here
introduces an approach to the automatic estimation of the optimal number of trees used to generate
the forest by simply testing a wide range of forest sizes (from 10 to 420 trees). Each time, a Random
Forest algorithm is fitted with a certain tree size (=CA44), after which the model is evaluated using
10-fold cross-validation. The MSE and standard deviation (f) of the error in every fold are stored.
Finally, the best forest size ($?) is selected based on minimum MSE and two times the standard
deviation (2 × f), as described in Equation 4.1. The steps involved are described in more detail
in Algorithm 10 and in Figure 4.9. Moreover, after running the algorithm using the nickel-based
superalloy dataset, the results are summarised in Table 4.1 and Figure 4.8. It can be concluded that
a forest size of 90 trees is sufficient for obtaining an excellent representative prediction model.

Table 4.1: '2 scores of the optimal number of estimators for the nickel-based superalloy dataset

Trees '2 Score 2 × f Trees '2 Score 2 × f

10 84.4 (+/- 0.1874) 100 87.1 (+/- 0.1831)
20 86.0 (+/- 0.1920) 140 87.0 (+/- 0.1888)
30 86.2 (+/- 0.2069) 180 87.0 (+/- 0.1828)
40 86.5 (+/- 0.1975) 220 86.7 (+/- 0.1821)
50 87.2 (+/- 0.1859) 260 86.9 (+/- 0.1794)
60 86.9 (+/- 0.1850) 300 87.1 (+/- 0.1806)
70 87.2 (+/- 0.1846) 340 86.9 (+/- 0.1797)
80 87.2 (+/- 0.1849) 380 86.9 (+/- 0.1802)
90 87.5 (+/- 0.1825) 420 86.9 (+/- 0.1801)
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Algorithm 10: Novelty of Optimal Forest Size
Input: Training matrix - , Maximum number of trees )<0G
Output: Optimal number of trees $?

1 3) = 10 // Increment size
2 8 ← 1, "(� = [], f = []
3 while =CA44 ≤ )<0G do
4 =CA44 ← 8 × 3)
5 . ← 5 (-) // Fit data on a forest with size =CA44
6 "(�, f ← �+(k-folds← 10,′"(�′) // Cross-validation with 10-folds
7 8 + +
8 end
9 $? = <8=("(�, 2 × f) // See Equation 4.1
10 return $?

$? = arg min
("(�,2×f)

{=CA44})<0G

8=10 (4.1)

Figure 4.8: '2 score of different numbers of estimators; here, the blue line represents the '2

score, while the green area represents 2 × f
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4.2.3 Summary of MRF Algorithm (Prediction Analysis)

The steps involved in the Modified Random Forest are as follows. The algorithm starts by checking
on three different criteria: mixed dataset, missing data, and required data augmentation. First, if
the data includes mixed features (continuous and categorical), then categorical factor encoding is
required; second, if there are missing observations in the data, the missForest technique is used to
predict themissing values. Finally, if the dataset is small, the data augmentation technique is applied
through the combined SMOTE-FORESTmethod. After applying all previous pre-processing steps,
the proposed algorithm can finally be used to predict the data, since the algorithm faces no issues
anymore. Initially, apply the sensitivity study of automatic optimal tree sizing by using the 10-fold
cross-validation technique in order to reduce the computational cost and conduct robust tuning to
further minimise both overfitting and variance. Then, the model is trained by fitting the Random
Forest algorithm using the technique of optimal forest sizing. In the testing phase, validation
techniques such as 10-fold cross-validation and the holdout method are applied; here, 20% of
unseen data is proposed. Finally, the proposed algorithm is finalised. The next steps in the process,
which involve extracting the causal relationships, are discussed in chapter five. The pre-processing
steps, model tuning, and training are summarised in the algorithm presented below (Algorithm 11).

Algorithm 11: The Proposed MRF Algorithm Steps

1 Load dataset !
2 if ! is mixed data type then
3 Categorical factors encoding (Refers to Section 3.11)
4 if ! have missing values then
5 Call missForest (Algorithm 6) // Check for missing values
6 if data augmentation required then
7 Call SMOTE-FOREST (Algorithm 9)
8 Optimal forest size calculation using (Algorithm 10)
9 Fit Random Forest with optimal forest size using (Algorithms 4 and 5)
10 Cross-validation using 10-folds (Refers to Section 4.3.1)
11 Final assessment on unseen data (Refers to Section 4.3.2)
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Figure 4.10: Chapter summary highlighting all work that has been done and the novel techniques
proposed
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4.3 Model Accuracy Assessment

Evaluating the machine learning model accuracy is an essential part of the development process.
Moreover, the chosen evaluation metric should be representative of the primary purpose of the
work. The MSE of the process response prediction from the real process response is selected as
a metric for evaluating the predictive power of the model. The validation of the training phase
output ensured the overall efficiency of the model and was used to prevent overfitting issues. The
verification is then performed on a regression model at the testing stage by using a test dataset
as input to the trained model. This test dataset is the remainder of the partitioned data from the
original data collection; thus, it has the same features as the training dataset. The original dataset
is partitioned into 80% training and 20% testing, respectively. Performance metrics are used for
evaluation at both levels. Any overfitting issues can be identified by comparing the performance on
the training and testing datasets; overfitting occurs when the training performance is comparatively
better than the test results.

4.3.1 :-Fold Cross-Validation Technique

To evaluate the efficiency of the prediction model, ten runs of 10-fold cross-validation [89] were
implemented on a defined dataset. The data is randomly shuffled, then split into ten subsets of
the same size. Consecutively, one separate subset is evaluated (with 10% of the data), while the
remaining dataset is used to fit the MRF algorithm. At the end of this step, the entire data collection
of the analysed test set is used. Table 4.2 presents the results of the 10-fold cross-validation on
the nickel-based superalloy dataset. The estimated variance ('2) from the 10-fold cross-validation
was 89.04% (+/- 0.1498). The :-fold cross-validation technique is also used in MRF to find the
optimal number of estimators, as well as to verify the training data. A comparison with the previous
work on the same dataset could not be conducted, as the researcher in [8] was unable to perform
predictions on this dataset. As mentioned above, this problem occurred due to the simplifying
assumption of linearity, which does not hold for this particular dataset. Comparisons with other
published datasets are conducted and presented in chapter six; because the nickel-based superalloy
dataset is Swansea-centric, only a few researchers have worked on it [8, 11].

Table 4.2: '2 scores for 10-fold cross-validation on the nickel-based superalloy dataset

 -fold 1 2 3 4 5 6 7 8 9 10 Mean

'2(%) 84.1 80.4 98.4 89.3 92.9 95.5 95.9 74.6 95.1 84.2 89.04
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4.3.2 Holdout Method

The dataset was split into a training set and a testing set. The MRF was trained on the training
set, while the testing set was used to see how well the generalised model could extract knowledge
from unseen data. A typical split when using the holdout strategy involves using 80% of data
for training and the remaining 20% for testing, as shown in Figure 4.11. This method was used
for prediction testing in the MRF evaluation of the training phase on the nickel-based superalloy
dataset. As Figure 4.12 shows, the model has a coefficient of determination '2 = 81.3% and RMSE
= 0.000699.

Figure 4.11: Validation on unseen data procedure
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Figure 4.12: MRF regression model for nickel-based superalloy dataset
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4.4 Missing Data Simulations

Missing data simulations are conducted for performance assessment and comparison between the
SMOTE-FOREST and KDR algorithms. The strategy involves generating the missing data from
a complete dataset by considering the following incremental levels: 5%, 10%, 15%, 20%, 25%,
30%, 40%, 50%, 60%. For each level, the missing data is randomly generated. The present work
is assessed by calculating the Normalised Root Mean Squared Error (NRMSE) for continuous
variables [99], which is defined as follows:

#'"(� =

√
<40=((- CAD4 − - 8<?)2)

E0A (- CAD4) (4.2)

where

• - CAD4, represents the complete data matrix;

• - 8<?, represents the imputed data matrix.

Moreover, <40= and E0A denote the evidential mean and variance calculated only using con-
tinuous missing values. Throughout the assessment of the categorical variables, the Proportion of
Falsely Classified entries (PFCs) among the categorical missing values is considered, ∇� by using
Equation 3.19. For all instances, outstanding success corresponds to a value close to zero, while
inefficient output corresponds to a value of about one.

Figure 4.13: The path of comparing SMOTE-FOREST with KDR
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Manufacturing Datasets

In order to assess the reliability of the SMOTE-FOREST algorithm, a new dataset with very
large number of known observations with non-linear interactions among factors and responses was
identified. A dataset consisting of 37 process factors that contribute to defects in the casting process
was utilised. Here, 21 of the factors are categorical factors belonging to different categories, such
as %(8, %+ , %�B, etc; the other 16 factors are continuous factors, such as %'4, %(, %� 5 , etc.
The total number of observations in this dataset was 20720. As a result, it is possible to randomly
choose a significant proportion of observations and treat its response value as missing value. The
accuracy of the missing data algorithm can then be verified. This data was used because it offers
the following advantages:

• The dataset contains both quantitative and categorical variables.

• Non-linear interactions are observed.

• Because the data contains a large number of observations (20720), it can be used to check
the computational cost and to visualise the performance of the algorithm on a large dataset.

• The data is based on a real-world example and was used in previous Swansea research.

Batbooti [8] used this dataset to assess the performance of his missing data algorithms: Known
Data Regression (KDR), Factorial Analysis for Mixed Data (FAMD), and Trimmed Score Regres-
sion (TSR), as illustrated in Figure 4.13. He proposed that the best performance was achieved
using the KDR algorithm as illustrated in Figures 4.14a and 4.14b. In the current work, moreover,
a comparison was conducted between the SMOTE-FOREST and KDR method used in the QCA
algorithm [8] for both quantitative and categorical data (see Figure 4.13). The proposed SMOTE-
FOREST algorithm outperformed Batbooti’s KDR algorithm as shown in Figure 4.14. For KDR
algorithm [8], the error increased from 0.2 to 0.8 when the percentage of missing data increased to
40%. However for the proposed SMOTE-FOREST algorithm, the NRMSE error almost remained
constant between 0.2-0.3. Moreover, the SMOTE-FOREST algorithm has a lower computational
cost than the KDR algorithm [8], which represents an additional advantage (see Section 6.5 and
Appendix B for a detailed review of the computational cost comparison). To sum up, the SMOTE-
FOREST method performs better than the KDR method (that was used in the previous work) [8]
in both quantitative and categorical contexts by reducing imputation error, in many cases by more
than 50%, for the manufacturing data.
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4.5 Discussion of Results

To verify the structure of the base estimators of Random Forest, the author extracted a random
sample decision tree from the forest to demonstrate how decisions travel through the decision paths
from the root to the leaf. To recognise what exists in the data or how decisions are made, the MRF
model was trained utilising the nickel-based superalloy dataset with a forest size equivalent to 90
trees. One tree is randomly picked from the forest, as seen in Figure 4.16. The root node, as shown
in Figure 4.15, has four different values, as described below. The feature %#1 value represents
the splitting threshold point, MSE represents the weighted average score, sample represents the
number of the samples in the node, and value represents the average response in the node. Every
node represents a sub-tree with right and left branches: the left branch represents the true test value,
while the right branch represents the false test value. At a growing node, all features are evaluated
to determine the best split. Here, the best split is the one that yields the least weighted MSE within
the actual response of the samples and the predicted response in the child nodes. The predicted
response is the average response of all instances in that node. As can be seen in the tree graph,
%#1 is the feature that best splits when considered at a threshold of 0.745, as described above. If
the value is less than or equivalent to 0.745, the predicted response is 0.108; if the feature %#1 is
greater than 0.745, the predicted response is 0.015. When a new unseen sample is tested, it traverses
each of these nodes until it comes to an end at the last node. Thus, the average response of all
instances in that node is regarded as the predicted response. A growing node is often divided into
two other nodes. The control variables used to tune the model and limit overfitting are as follows:
Number of estimators, Bootstrap with replacement, number of samples that need to be present for
each tree node before split, andminimum sample leaf in each node. Figure 4.16 represents the%#1
feature, which has a minimum sample leaf equal to three (as used in the proposed algorithm). By
contrast, Figure 4.17 represents the %�4 feature, which has a minimum sample leaf equal to five.
The tree of the %#1 feature has more splits than the tree of the %�4 feature, since the minimum
sample of three requires more splitting to be performed to reach the desired output.

Figure 4.15: Root node elements for %#1 factor
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The novel data augmentation technique presented in this chapter achieved good performance
in augmenting 60 observations to 360 synthetic observations while maintaining the non-linear
relationships between the process factors and the process response to the greatest extent possible.
This method eliminates the drawbacks associated with repeating the original observation data, as
in the random oversampling technique, and also extends the SMOTE algorithm to enable its use
in non-linear regression problems. A more detailed comparison with the QCA algorithm [8] was
presented in Section 4.2.1. The novel optimal forest sizing approach illustrated in this chapter
significantly reduced the computational cost, especially when increasing the unnecessary size of
the forest (see Appendix B). Moreover, the novel approach gives the traditional Random Forest
an automatic tuning feature to minimise the variance error and overfitting in the prediction. To
enhance the predictive performance, ten runs of the MRF algorithm were conducted, with 10-fold
cross-validation used for a given run. This data is arbitrarily subdivided into ten subsets of the same
size. Sequentially, one separate subset is evaluated, after which the remaining nine subsets are used
to fit the MRF algorithm. Finally, the entire dataset of the analysed test set is used. The majority of
the values are in/near the Gaussian distribution, indicating an intense fitting. Figure 4.18 displays
the MRF scatter plot (predicted vs observed values) with the statistical regression method. The
MRF prediction is close to the diagonal line, which represents the ideal forecast, throughout most
of the output range. The results of the predictive evaluation of the training and test data further
demonstrate that the proposed novel augmentation technique was robust for non-linearly related
process factors.
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Figure 4.18: Te proposed regression model for nickel-based superalloy dataset
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4.6 Conclusions

The MRF algorithm offers a good prediction accuracy by considering the non-linear relationships
between investment casting process factors. The author could not conduct a comparison with
other externally published work because the nickel-based superalloy dataset is Swansea-centric. In
addition, a comparison with the author’s previous work [8] could not be undertaken because the
QCA algorithm is unable to deal with non-linear interactions [12]. Furthermore, the use of the QCA
algorithm produces poor results. The most significant advantage of the proposed algorithm is its
ability to make accurate predictions regardless of the occurrence of any non-linear interactions. The
model achieved robust mapping of the relationship between the process inputs and the shrinkage
defects as process output; therefore, it was a reliable base for the extraction of the causal relationship
in the process. It can also be concluded that the missing data imputation algorithm used (SMOTE-
FOREST) yields better results than the previous work (KDR) [8], as concluded in Figure 4.19. A
detailed comparison with different datasets and case studies will be carried out in chapter six in
order to compare the performance of the proposed algorithm with other published work. Moreover,
obtaining the cause and effect knowledge will be discussed in chapter five.

Figure 4.19: Key differences between SMOTE-FOREST and KDR methods



Chapter 5

Causal Knowledge Discovery

5.1 Introduction

The predictive model introduced in chapter four acts as a transfer (regression) function between
the process inputs and process response, albeit with results that are difficult to interpret. Using this
transfer function, it is possible to predict the process response/quality output from given process
inputs. However, this is not sufficient by itself to optimise the process and reduce defects. In other
words, themanufacturers needmore specific recommendations, such aswhich critical factors should
be controlled and to what extent in order to to improve quality and reduce waste. Investment casting
process optimisation is defined here as a methodology of using historical process data to discover a
more refined process knowledge through studying the causal relationships between process factors
in order to relate mechanical properties and casting defects with processing conditions. Chapter
five will go deeper into this black-box and extract the cause and effect relationship that governs
the relationship between shrinkage defects and process factors (i.e. chemical composition). This
chapter introduces two novel techniques. The first technique is a completely new causal framework
for the Modified Random Forest algorithm. This algorithm searches for the optimal decision path
to make the traditional RF more interpretable and provide a comprehensive inference analysis
framework that enables causal knowledge extraction from any complicated process. It further
guides the process engineer to optimise process performance through the estimation of optimal
limits for each process factor in order to minimise process defects and maximise yield. The second
technique is a scoring algorithm for ranking the most critical process factor based on Decision
Path Search (DPS). The remainder of this chapter is structured as follows. Section 5.2 describes
the optimal process operating range to reduce defect outputs. This section is further subdivided
into three parts: the novel Decision Path Search technique, the critical process factors that make

120
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the most significant contribution to defects by applying the novel technique, and the results of a
foundry case study. Section 5.3 goes on to define the new process limits and odds ratio calculations.
Finally, the discussion and conclusion can be found in Sections 5.4 and 5.5 respectively.

5.2 Optimal Process Operating Range

In this section, a novel approach for estimating optimal operating limits for mixed data is introduced,
as shown in Figure 5.1. The decision tree structure can be analysed to gain further insight into
the relationship between the process factors and the output target. In the present research, the
author demonstrates how to retrieve the causal relationships required to score the critical factors
and estimate their optimal operating range, which yields process output values that satisfy threshold
limits.

Figure 5.1: Relational overview of the techniques used to devise the novel (Causal Relationship
Discovery) algorithm

5.2.1 Novel Technique for Decision Path Search Algorithm

The novel technique introduced here is based on traversing the internal structures of decision trees to
retrieve deeper process knowledge. The concept of the structured decision trees is not a complicated
one. It involves evaluation of the partitions of the Bayes model through recursively partitioning
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the input data - into sub-spaces and subsequently assigning the prediction value of . to all objects
- within each sub-space. The decision tree used here has a binary structure. Nodes that do not
have any children are leaf nodes, and the decision path consists of all nodes that were reached by
a sample. All decision paths start from the root and end with the leaf node. The flowchart for
all steps used in estimating the optimal process settings for quantitative and categorical variables
is presented in Figure 5.2, while the pseudo-code is summarised in Algorithms 12 and 13. For
each tree in the forest, the following main steps are implemented. First, all leaves are collected.
The Penalty Matrix (PM) scaling is applied for all leaves to penalise undesired process responses
as described in Algorithm 12. Subsequently, the distribution range for all leaves’ output values is
categorised into four quartiles. A leaf is considered an optimal leaf if its importance (value) is in
the first quartile distribution range, while all other leaves are considered undesirable (avoidance)
leaves. The optimal route is then drawn from the optimal leaf to the root node, as in Figure 5.3;
moreover, an avoidance route drawn from an avoidance leaf to the root node is also presented in the
algorithm. Both intervals, as shown in Figure 5.3, are constructed for every factor and aggregated
from all trees. Finally, the algorithm averages all optimal and avoidance intervals for each factor
and constructs the new limit ranges for each factor in the dataset.

Algorithm 12: Penalty Matrix Algorithm [13]

1 Function PenaltyMatrix(.̂ , )ℎ<8=, )ℎ<0G):
2 � = 0, � = 1

// For lower the better case (LB), while � = 1 and � = 0 for higher the better (HB)
3 + ← size of (.̂ )
4 %" ← Array of zeros(+)
5 for j=1 −→ + do
6 if .̂ ≤ )ℎ<8= then
7 %" = �

8 else if .̂ ≥ )ℎ<0G then
9 %" = �

10 else
11 %" =

.̂−)ℎ<8=

)ℎ<0G−)ℎ<8=

12 end
13 end
14 return %"
15 End Function
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Algorithm 13: Novelty of Process Factor Limits Algorithm

1 Fit a Random Forest on the training set ! by using Algorithm 11 presented in chapter 4.
2 Optimal-Intervals=[]
3 Avoidance-Intervals=[]
4 for 1 = 1 to � do
5 Leafs = Collect all terminal nodes of tree 1
6 %"!40 5 B ← PenaltyMatrix(.̂ , )ℎ<8=, )ℎ<0G) (from Algorithm 12)
7 %"&25 ← Quartile(%"!40 5 B,0.25)
8 Optimal-Leaf=[]
9 Avoidance-Leaf=[]
10 for 8 = 1, ...., =;40 5 B do
11 if %" [8] < %"&25 then
12 Optimal-Leaf← leaf[8]
13 Draw a route from leaf[8] to root node
14 Optimal-Intervals[]← Append all optimal interval for each factor // factor

split threshold value
15 else
16 Avoidance-Leaf← leaf[8]
17 Draw a route from leaf[8] to root node
18 Avoidance-Intervals []← Append all avoidance interval for each factor

// factor split threshold value
19 end
20 end
21 end
22 Optimal-Interval=[] // estimate the optimal intervals for every factor
23 Avoidance-Interval=[] // estimate the avoidance intervals for every factor
24 for 9=1 to = do
25 5 ← - [ 9]
26 if 5 is quantitative then
27 Optimal-Interval[ 9]= mean(Optimal-Intervals[ 9])
28 Avoidance-Interval=[ 9]= mean(Avoidance-Intervals[ 9])
29 else
30 Optimal-Interval[ 9]= mode(Optimal-Intervals[ 9])
31 Avoidance-Interval=[ 9]= mode(Avoidance-Intervals[ 9])
32 end
33 end
34 Compare optimal and avoidance intervals
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Figure 5.2: Decision Path Search (DPS) algorithm
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5.2.2 Critical Process Factors

The objective of this work is not only to find the most appropriate models for predicting the process
response but also to recognise which of the input parameters are the most significant for making
predictions, as this will lead to a deeper understanding of the process under study. In this case,
typical Random Forests [17] utilise a range of frameworks for determining the importance of the
input variable and thereby increasing the overall model accuracy. The most common mechanism
used to compute feature importance is the mean decrease in the impurity importance of a feature.
This is calculated by measuring how effective the feature is at variance when creating the decision
trees that make up the Random Forest. However, the drawback of this conventional mechanism
is that it can be affected by noise in the data. In this section, a built-in Random Forest of factor
importance features called ‘Permutation Importance’ is reviewed. Moreover, a robust novel method
based on the contribution of each factor to the prediction power and the optimal operating range is
introduced.

Permutation Importance

Random Forest can use out-of-bag measurements to assess the sensitivity and importance of each
input parameter. This is a Random Forest function that was included in Breiman’s [17] original
paper and was more recently explored by Strobl [100] and Genuer [101]. The feature needed to
define a sample out-of-the-bag (OOB) for a single tree ($1) for the 1Cℎ tree is referred to as )1;
i.e., observations that have not been included in the fitting of this single tree. Features are selected
based on their impact on the prediction accuracy, while the significant feature is determined through
Random Forest by assigning a score to each variable; the sum of all variable scores is unity. The
score assigned to a variable is defined as the overall average reduction in the accuracy of the
forecasts of all trees as the values of that variable are permuted. The input variable that induces the
greatest reduction in accuracy after permutation is defined as the most significant. Once the entire
forest has been trained, the permutation importance of variable - 9 is measured by comparing the
OOB prediction accuracy (ℎ()1)) of a single tree, i.e. the classification rate (classification trees) or
the mean squared error (regression trees) before and after the - 9 feature has been permuted. The
permutation importance of the 9Cℎ feature �?4A<DC4 ( 9) is defined in Equation 5.1 as follows [101]:

�?4A<DC4 ( 9) =
1
�

�∑
1=1

{∑
8∈$1
(.8 − .̂ 18 )2

|$1 |
−
∑
8∈$1
(.8 − .̂ 18,c 9

)2

|$1 |

}
︸                                               ︷︷                                               ︸

�?4A<DC4 ( 9)1

(5.1)
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The theory behind this is as follows: if this feature is applied to the prediction or has had an
effect on the target, the precision would be decreased. Ultimately, the average of each reduction
of the total trees yields the permutation importance. Algorithm 14 presents the steps required
to quantify the importance of the variables, while Figure 5.4 contains a schematic sample of the
permutation importance method.

Algorithm 14: Permutation Importance Algorithm [101]

1 Fit a Random Forest on the training set ! using Algorithm 4 presented in chapter three.
2 for 1 = 1 to � do
3 Compute the OOB prediction accuracy of the 1Cℎ tree ℎ()1).
4 Permute randomly the observations of the feature - 9 in the OOB sample.
5 Re-compute the OOB prediction accuracy of the 1Cℎ tree ℎ()1) using the permuted

input.
6 Compute �?4A<DC4 ( 9)1

7 end
8 Compute the average decrease of prediction accuracy over the entire trees i.e. �?4A<DC4 ( 9)

The results of the permutation feature importance for the nickel-based superalloy dataset are
shown in Figure 5.5. The ranking shown in Figure 5.5 makes sense from a metallurgical point of
view. Since the main chemical element in the Nicked-based superalloy is Iron (%�4), it can be
seen that the absence of this element results in the highest penalty (ferrous metals).

Figure 5.5: Permutation Importance ranking for nickel-based superalloy dataset
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Permutation importance gives a score for each factor based on its contribution to the overall
prediction power. This can be conceptualised as the ranking of critical process factors involved in
casting the nickel-based superalloy. However, ranking the process factors alone is not enough for
process optimisation; the optimal limits for each factor that reduce defects and increase the quality
of process outputs should also be identified. Accordingly, in the next part, a novel technique used
to obtain the optimal process limits based on the trained MRF model is presented.

Novel Technique for Finding Optimal Critical Process Factor

The novel approach to extracting the most significant process factor that contributes to the optimal
and the avoidance ranges is presented in this section. From the obtained values of optimal and
avoidance intervals found by applying the Decision Path Search (DPS) algorithm, the interval
comparison identified four possible cases, as shown in Figure 5.7. The first case, where the
avoidance interval is located in the middle of the optimal intervals, indicates that the factor is
considered an avoiding factor and the new operating range is kept as the original range. The second
case is the opposite: in short, an optimal interval is located in the middle of an avoiding interval,
the factor is considered optimal, and the new range is selected as the optimal interval. The third
case is where the optimal range is shifted to the right compared with the avoidance range; thus, the
chosen factor is optimal and its range is obtained from the optimal interval. The last case is the
opposite of the third case, where the factor is to be considered an avoidance factor and its ranges
are obtained from the avoidance interval.
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score_value
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Figure 5.6: Feature importance ranking based on DPS for nickel-based superalloy dataset
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The scoring for each factor, as shown in Figure 5.6, is calculated based on the non-overlapping
area between the optimal and the avoidance ranges. As shown in Figure 5.7, cases 1 and 2, the
factor has a minimal score because the two areas of both intervals overlap. On the opposite side,
for cases 3 and 4, the score calculated is proportional to the non-overlapping area. The greater the
non-overlap area, the larger the score’s contribution.

Figure 5.7: All possible cases for optimal and avoidance intervals
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5.2.3 Results of a Foundry Case Study for a Nickel-based Superalloy

In general, the MRF model can be applied to the nickel dataset matrix. As discussed in chapter
four, a predictive model was developed, after which the optimal decision path search was used
to estimate the optimal operating limits. The DPS algorithm was then applied to understand the
contribution of each factor to the shrinkage defects vector. Figure 5.8 illustrates the optimal and
avoidance configuration for all variables; the optimum range is shown in black, while the avoidance
range is shown in cyan. Both new ranges (on the left side of each factor) are plotted against the
complete range for all variables (on the right side of each factor). Figure 5.9 represents the optimal
and avoidance intervals for the nickel-based superalloy dataset. It also represents the effect of each
factor on the response based on visualising the interval. Each factor will be categorised based on the
cases shown in Figure 5.7. Here, the optimal range interval is marked in green while the avoidance
range interval is marked in red. In addition, the no-effect and non-importance intervals are marked
in light brown. If the factor is considered optimal, this means that increasing the range will lead to
minimising the shrinkage defect; thus, increasing the range is important to producing a better final
product. By contrast, if the factor is considered an avoidance factor, increasing the range will lead
to increasing the shrinkage defect; in this case, therefore, increasing the range does not enhance the
quality of the final product. The other cases are considered to have minimal importance, meaning
that these factors have minimal impact on the process output quality. From Figure 5.9, it can be
observed that the factors %�4, %#1, %�; +)8, and %� make a strong contribution to minimising
the shrinkage defect. These factors represent case 3 in Figure 5.7, from which it can be observed
that the optimal range will be selected because the green area is increased to further minimise
defect. By contrast, factors %� and %�> showed an avoidance contribution to minimising the
shrinkage defect. These factors represent case 4 in Figure 5.7. It can thus be observed that the
avoidance range will be selected, because when the red area increases, the defect also increases.
Other factors such as %�A, %">, and %)8 have a very small effect on the shrinkage defect; these
factors represent cases 1 and 2 in Figure 5.7.

In summary, four variables (%�4, %#1, %�;+)8, and%�) showed a high optimal contribution
to minimising the shrinkage defects. By contrast, %�, %�>, and %# show an undesirable
(avoidance) contribution to the shrinkage defects. Working within the optimal limits (shown in
green in Figure 5.9) will help to ensure that the output product has very little probability of being
defective. This conclusion can be backed up by the test data, for which the conclusion holds
although the algorithm was not trained on it. This further demonstrates that the proposed MRF
algorithm generalises well for this type of datasets.
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Note that theMRF algorithm is designed to discover correlations from the observational process
data. Correlations are not always expected to lead to causation. These correlations are presented
to process engineers who would then use their metallurgical experience to select some of the
correlations for a confirmation trial. The analysis is considered as successful if it leads to process
engineers choosing at least one or two factors for further monitoring. If none of the factors are
chosen for a confirmation trial, it is still considered as a useful study as it would have helped
eliminate chemistry parameters as potential causes so that further changes, such as design, can be
investigated. However, the analysis of this dataset had led to a change in at least one chemical
composition element for the foundry.

Figure 5.8: Tolerance limits of nickel-based superalloy dataset

The next step is to create a set of new examples within the obtained operating limit range in order
to study the consequence of the process-controlled factors, as well as the new models generated
using the Bootstrap by replacement method from within the optimal range for each factor. Finally,
the odds ratio of the optimal range is compared with the odds ratio of the original range.
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Figure 5.9: Optimal and avoidance intervals for nickel-based superalloy dataset
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5.3 Odds Ratio

The odds ratio is considered to evaluate the behaviour of the discovered operating limits range
by estimating the values of the corresponding response. After determining the response of the
operating limits, this tool can be used to compare the performance of the process before and after
applying operating limits. In other words, it enables estimating the probability of occurrence of the
desired (optimal) and undesired (avoidance) response values for a confirmation trial plan and the
original plan. The comparison of two proportions of occurrence, such as success and failure, can
be carried out by calculating the probabilities of these proportions; another test method used is the
likelihood ratio test [16]. The odds of success are defined as the ratio of the probability of success
to the likelihood of failure [102,103], and can be calculated as follows:

Ω =
cB

c 5
(5.2)

Where:
Ω: The overall odds of success.
cB: The probability of success (Odd of success).
c 5 : The probability of failure (Odd of failure).

In terms of manufacturing defects, success represents the occurrence of desired response values,
such as a lower percentage of defects in batches (optimal response values). Moreover, failure is
represented by higher rates of defects or the appearance of undesired response values (avoidance
response values). As a result, the odds ratio and probabilities of success (odds of success) and failure
(odds of failure) will be replaced by the probability of an optimal result (c?) and the likelihood
of an undesired result (cE ) respectively. The odds ratio equation above can thus be re-written as
follows:

Ω =
c?

cE
(5.3)

Where,
c? : The probability of an optimal result, P(. ≤ )ℎ>?).
cE: The probability of an avoidance result, P(. > )ℎ>?).
)ℎ>?: The optimal threshold.
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Confirmation trial simulations were conducted to explore the consequences of applying the
recommended process limit to the overall process output. The bootstrap (�) method was used
to generate 1000 examples from the combination of the optimal operating limits of factors and
then compared with the original range by estimating the odds ratios for the original factors and
the odds ratio based on the recommended operating limits. Figures 5.10 and 5.11 represents the
odds ratio and the response histogram values for the original range and bootstrapped operating
limits, respectively. These two figures show the significant improvements in process output quality
achieved by using the recommended operating range, which stems from the DPS algorithm.

Figure 5.10: Response before and after applying the recommended process limits from MRF to
the nickel-based superalloy dataset

Figure 5.12 presents a comparison of the odds ratio of interacted factors with the proposed
optimal limit that determines how the interaction of the factor will affect the output response. It
shows that when each of the three factors interacts with each other, this will yield a response
probability value that might lead to success (if it is equal to or above one) or failure (if it is less
than one). If the odds ratio of the three interacted factors shows success, this means that the factors
have a strong correlation that will affect the output response. Each value in the figure represents a
value of three interacted factors from the optimal limits, while the rest of the factors are based on
the original limit. This process reveals the efficiency of the proposed optimal limit in influencing
the response output.
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Figure 5.11: Odds ratio of original (red distributions) and optimal recommended process limits
(blue distributions) of MRF applied to all factors of the nickel-based superalloy dataset
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5.4 Discussion of Results

The nickel-based superalloy dataset used in chapters four and five to estimate the optimal limits is
discussed here. The results are compared with the Penalty Matrix (PM) approach [13] and the QCA
algorithm [8], as seen in Table 5.1. The optimum regions and avoidance ranges are determined
by evaluating the number of observations across a quartile in the Penalty Matrix framework. In
the QCA context, the spectrum obtained depends on the estimation projection of load scores. By
contrast, in the current work, each factor is scored based on its contribution to the prediction of each
tree. To determine which scores contribute to shrinking defects, optimal and avoidance intervals
are plotted in Figure 5.8 to score the contribution of each factor to the defects in the process outputs.
Because of the proposed algorithm’s ability to process mixed data sources, it is now possible to
contrast the categorical interaction variable with the corresponding continuous variables on the
same feature ranking plots. Through this process, the analysis of the process factors and their
optimum operating range provides more information and contributes to a better understanding of
the process.

Table 5.1: Comparison of obtained ranges with Penalty Matrix [13], QCA [8] and MRF

Variables Penalty Matrix Range QCA Range Predicted Range by MRF

%� 0.095 - 0.113 (Optimal) 0.093 - 0.112 (Optimal) 0.092 - 0.110 (Optimal)
%�4 0.114 - 0.200 (Optimal) 0.095 - 0.200 (Optimal) 0.092 - 0.191 (Optimal)
%�; 3.240 - 3.306 (Optimal) 3.145 - 3.306 (Optimal) 3.110 - 3.250 (Optimal)
%#1 0.770 - 0.827 (Optimal) 0.770 - 0.865 (Optimal) 0.755 - 0.885 (Optimal)
%, 2.451 - 2.594 (Optimal) 2.413 - 2.594 (Optimal) 2.377 - 2.548 (Optimal)
%/A 0.026 - 0.050 (Optimal) 0.023 - 0.050 (Optimal) 0.020 - 0.040 (Optimal)

%�; + )8 6.299 - 6.527 (Optimal) 6.299 - 6.498 (Optimal) 6.270 - 6.470 (Optimal)
%�> 7.840 - 8.028 (Avoidance) 7.847 - 8.018 (Avoidance) 7.781 - 7.976 (Avoidance)
%)8 - 3.154 - 3.278 (Avoidance) 3.113 - 3.232 (Avoidance)
%� - - 0.008 - 0.011 (Avoidance)

%)0/)8 - - 0.478 - 0.512 (Avoidance)
%# - - 15.244 - 30.870 (Avoidance)
%�A - - 15.093 - 15.324 (Avoidance)
%"> - - 1.631 - 1.702 (Optimal)
%)0 - - 1.508 - 1.633 (Optimal)
%$ - - 4.714 - 25.399 (Optimal)
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The simulation conducted in Figure 5.12 can be extended to study the effects of interaction
between factors by bootstrapping three factors as (e.g., %�4,%�,%�A) from optimal limits and
bootstrapped values for factors taken from the original range. This procedure is repeated for all
factors. An optimal value threshold for the penalty values of 0.2 is chosen to classify an optimal
process response. The high values of the odds ratio resulting from each combination of factors
indicate the existence of interaction among the factors. The value of the odds ratio in Figure 5.12
is shown in a cell for factor names shown in the corresponding row and column for the given
table associated with the identical factor name. Figure 5.13 presents the odds ratio steps taken to
construct the results.

Figure 5.13: Confirmation trials steps
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5.5 Conclusions

The novel Decision Path Search (DPS) algorithm approach introduced in this research is capable
of scoring the critical process factors successfully, even from the confirmation trials conducted, as
shown in Figure 5.11. The optimised range results obtained from the MRF algorithm match very
closely with the ranges found by previous Swansea researchers [8, 11], as seen in Table 5.1 and
Figure 5.14. It was shown that the MRF algorithm could find these ranges using a direct predictive
approach. This simplifies the process and avoids the introduction of unnecessary techniques (e.g.
uncertainty quantification) for which the accuracy cannot be easily judged. Moreover, this algorithm
relies exclusively on the predictions to find the optimal ranges, which match very well with the
published values, this further underscores the credibility of the model in the prediction task. In
summary, the MRF algorithm achieves good results in obtaining the optimal range intervals for the
nickel-based superalloy dataset.

Figure 5.14: Summary of operating range comparisons with the previous work



Chapter 6

Verification on Published Datasets

6.1 Introduction

After reviewing the many datasets published in the literature, four of them were selected for
verifying the proposed algorithm. Training runs, testing runs, and process optimal range analysis
were conducted for the selected case studies. The results are reported in this chapter. Moreover, the
MRF algorithm was compared with three other published RF models. The comparison highlights
the main advantages and limitations of the proposed approach. The proposed algorithm is fully
automated, with few user inputs required for internal parameter selection. The table of required
input values and the schematic graphical representation of a sample obtained output are presented
in Figure 6.1. The results and input values used are shown in Section 6.2; these follow the input
and output structure shown in Figure 6.1. In Section 6.3, a comparison of the MRF algorithm with
different published Random Forest models is conducted. The discussion of results, the comparison
of the prediction accuracy, and recommendations for the process range obtained using the proposed
algorithm are described in Section 6.4. A computational cost comparison is shown in Section 6.5.
Finally, a comparison between the current and previous works [8] is presented in Section 6.6.

6.2 Case Studies

This section illustrates the results obtained from the proposed algorithm on the following datasets:

1. High Performance Concrete [104].

2. Energy Performance of Residential Buildings [105].

3. Combined Cycle Power Plant [106].

141
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Figure 6.1: The required input parameters and the resulting model output
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6.2.1 High Performance Concrete Dataset

The compressive strength of concrete is a critical issue for the construction industry, as low
compressive strength can lead to failures. The concrete’s composition influences its compressive
strength. Yeh [104] collected experimental data from 17 different sources for high-performance
concrete (HPC) to model the power of the HPC based on a Neural Network model. The dataset
contains 1030 observations consisting of one output response, Compressive Strength (�(), and
eight factors: Cement (�), Fly-Ash (�), Blast-Furnace Slag (�(), Water (,), Superplasticiser (%),
Coarse Aggregate (��), Fine Aggregate (��) and Age of Testing (�)2). The dataset properties are
listed in Table 6.1. In the current work, the MRF algorithm was applied to predict the Compressive
Strength (CS) and estimate the optimal limits of all factors. The influence of using optimal and
original boundaries on response values is quantified based on odds ratio assessments. Simulation
parameters used for the MRF algorithm are listed in Table 6.2. The results of the prediction and
optimal process range analysis are depicted in Figures (6.2 - 6.9).

Table 6.1: High performance concrete dataset properties

Variable Minimum Maximum Mean Data Type Variable Type

�( ("?0) 2.33 82.60 35.82 Quantitative Response
� ( 6/<3) 102.00 540.00 281.17 Quantitative Factor
�( ( 6/<3) 0.00 359.40 73.90 Quantitative Factor
� ( 6/<3) 0.00 200.10 54.19 Quantitative Factor
, ( 6/<3) 121.75 247.00 181.57 Quantitative Factor
% ( 6/<3) 0.00 32.20 6.20 Quantitative Factor
�� ( 6/<3) 801.00 1145.00 972.92 Quantitative Factor
�� ( 6/<3) 594.00 992.60 773.58 Quantitative Factor
�)2 (30HB) 1.00 365.00 45.66 Quantitative Factor

Table 6.2: User inputs for prediction and confirmation for high performance concrete dataset

MRF Confirmation Trials

Type HB Bootstrap 1000
)ℎ<8= 20 Simulation No 100
)ℎ<0G 40 Total Run’s 100000

No of Factors 8 )ℎ>? 0.1, 0.2, 0.3
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The test was performed on the high performance concrete dataset [104]. From Figure 6.7,
the observations indicate that the factors �)2, �, and % are considered optimal intervals, while
the factors , , �, ��, and �� are considered avoidance intervals. The factor �( does not show
a significant effect on the process output. The dataset has non-linear interacted factors and the
proposed algorithm still performs well in predicting the response with an accuracy of 88.4%, as
shown in Figure 6.3. In the current work, it was concluded that the optimal number of trees that
produces the best performance and prediction accuracy is 180 (see Appendix B). An optimal value
threshold for penalty values of 0.1 is chosen to classify an optimal process response. The process
response based on the optimal limit indicates high performance regarding the raw data, leading
to fewer defects and enhancing the total output performance, as shown in Figure 6.6. The odds
distribution in Figure 6.8 shows improved performance on the proposed optimal limit rather than
the raw limit data, even with the minimum threshold in place. This indicates that the proposed limit
will perform well in terms of enhancing product quality. The odds ratio interacted plot, presented
in Figure 6.9, depicts the efficiency of the process when the interacted factors are chosen from
the optimal limit and the remaining factors are based on the original limit. It can be deduced
that the high odds ratio value of 4.92 is based on the interaction of three factors (namely �) , %,
and �). As a result, the process engineer must analyse these specific interactions further. The
proposed algorithm also has a lower computational cost in comparison to other published works
(see Appendix B and Section 6.5); moreover, it achieves improved prediction accuracy compared
with other research work. A thorough comparison with different published studies is conducted in
Section 6.4.
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Figure 6.2: Permutation Importance ranking for high performance concrete dataset
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Figure 6.3: Testing on unseen data - Concrete dataset
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Figure 6.4: Feature importance ranking based on Decision Path Search for high performance con-
crete dataset
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Figure 6.5: Tolerance limits of high performance concrete dataset
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Figure 6.6: Response before and after applying the recommended process limits from MRF to the
high performance concrete dataset
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Figure 6.7: Optimal and avoidance intervals for high performance concrete dataset
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Figure 6.8: Odds ratio of original (red distributions) and optimal recommended process limits
(blue distributions) of MRF applied to all factors of the high performance concrete dataset
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Figure 6.9: Odds ratio of interacted factors with proposed optimal limits from MRF (with 0.1
penalty threshold) applied to the high performance concrete dataset
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6.2.2 Energy Performance of Residential Buildings Dataset

The Ecotect energy simulation tool was used to simulate 12 building forms in Athens, Greece by
Tsanas and Xifara [105]. All buildings have the same volume and material but different surface
areas. The dataset contained 768 observations and consisted of two output responses, Heating Load
(�!) and Cooling Load (�!), and eight factors: Relative compactness ('2), surface Area (�B),
wall Area (�F), roof Area (�A), glazing Area (�6), glazing Area distribution (�3), overall Height
(�), and Orientation ($). The dataset properties are listed in Table 6.3.

The authors used the traditional Random Forest method to arrive at the importance level for each
factor to determine causality. The importance analysis obtained by studying the optimal search and
prediction score is presented in Figure 6.12. The objective of this research is to ensure that all input
factors always remain in the optimal range. If undesired variation in response values continues,
the suggestion is to revisit the cause and effect, as shown in Figure 6.14, and identify the most
important factors to monitor.

The MRF algorithm was used to identify related factors and estimate the tolerance limits of the
quantitative and categorical factors. The odds ratio of correlated factors predicted for every single
element and the interacted factors is based on the procedure in Section 5.3, keeping in mind that
the heating load (�!) is the response with all the other factors. The simulation parameters used for
the MRF algorithm are shown in Table 6.4. The results of prediction analysis and optimal process
range analysis are depicted in Figures (6.10 - 6.17).

Table 6.3: Energy performance of residential buildings dataset properties

Variable Range/Categories Data Type Variable Type

�! 6.01 - 43.10 Quantitative Response
�! 10.90 - 48.03 Quantitative Response
'2 0.62 - 0.98 Quantitative Factor
�B 514.50 - 808.50 Quantitative Factor
�F 245.00 - 416.50 Quantitative Factor
�A 110.25 - 220.50 Quantitative Factor
�6 0 - 0.40 Quantitative Factor
�3 0 - 5.00 Quantitative Factor
� 3.5 and 7 Categorical Factor
$ 2,3,4 and 5 Categorical Factor
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Table 6.4: User inputs for prediction and confirmation for energy performance of residential
buildings dataset

MRF Confirmation Trials

Type LB Bootstrap 1000
)ℎ<8= 15 Simulation No 100
)ℎ<0G 35 Total Run’s 100000

No of Factors 8 )ℎ>? 0.1

The test was performed on the energy performance for residential buildings dataset [105]. From
Figure 6.14, the observations indicate that the factors �A , �B, and �-3.5 are considered optimal
intervals, while the factors '2, �F, �6, �3, and�-7 are considered avoidance intervals. The factor
$ does not show an effect on the process output and is thus considered a non-important factor.
Although the data used is a mixed dataset (i.e. contains both regression and classification factors) ,
the proposed algorithm achieves excellent performance in predicting the response, with an accuracy
of 99.6%, as shown in Figure 6.11. In the current work, it was concluded that the optimal number
of trees to ensure the best performance and prediction accuracy was 300 (see Appendix B). An
optimal value threshold for penalty values of 0.1 is chosen to classify an optimal process response.
The process response based on the optimal limit indicates high performance regarding the raw data,
leading to fewer defects and enhancing the total output performance as shown in Figure 6.15. The
odds distribution in Figure 6.16 shows improved performance on the proposed optimal limit rather
than the raw range data, even with the limited threshold value. This indicates that the proposed
limit will perform well in terms of enhancing product quality. The odds ratio-interacted plot, shown
in Figure 6.17, depicts the efficiency of the process when the interacted factors are chosen from
the optimal limit and the remaining factors are based on the original limit. It can therefore be
concluded that a high odds ratio value of 1.63 is based on the interaction of three factors (namely
�A , �B, and �-7). As a result, the process engineer must analyse and modify these interactions
further. The proposed algorithm has a lower computational cost in comparison to other published
works (see Appendix B and Section 6.5); moreover, it also achieves improved prediction accuracy
compared with other research work. A thorough comparison with different published studies is
discussed in Sections 6.4 and 6.5.
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Figure 6.10: Permutation Importance ranking for energy performance of residential buildings
dataset
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Figure 6.11: Testing on unseen data - Energy performance for residential buildings dataset
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Figure 6.12: Feature importance ranking based on Decision Path Search for energy performance
of residential buildings dataset
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Figure 6.13: Tolerance limits of energy performance for residential buildings dataset
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Figure 6.14: Optimal and avoidance intervals for energy performance of residential buildings
dataset
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Figure 6.15: Response before and after applying the recommended process limits from MRF to
the energy performance for residential buildings dataset

Figure 6.16: Odds ratio of original (red distributions) and optimal recommended process limits
(blue distributions) of MRF applied to all factors of the energy performance of residential build-
ings dataset
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Figure 6.17: Odds ratio of interacted factors with proposed optimal limits from MRF applied to
the energy performance of residential buildings dataset
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6.2.3 Combined Cycle Power Plant Dataset

The combined cycle power plant (CCPP) is a power cycle that consists of gas turbines (GT), steam
turbines (ST), and heat recovery steam generators (HRSG), where the electricity is generated by
the GT and ST [106, 107]. The CCPP dataset used in the current study was designed with the
following specifications: Nominal generation capacity of 480 MW, two 160 MW ABB 13E2 of
GT, two dual-pressure HRSGs, and 160 MW ABB ST [106], as illustrated in Figure 6.18. The
electrical power (%�) generated by both gas and steam turbines is influenced by four quantitative
factors: Ambient Temperature (�)?), Atmospheric Pressure (�%), Relative Humidity ('�), and
the Exhaust Steam Pressure (or vacuum, +). The dataset properties are listed in Table 6.5. This
dataset contains 9568 observations collected over six years (2006 till 2011).

Figure 6.18: The combined cycle power plant layout [106]

The MRF algorithm was used to estimate the prediction performance and extract the optimal
tolerance limits of the factors to maximise efficiency. The simulation parameters used for the MRF
algorithm are listed in Table 6.6. The interaction of the odds ratio, as shown in Figure 6.26, is
displayed for an optimal threshold value of 0.1, with the highest odds ratio of 6.52 for the MRF
algorithm. The optimal combination of factors leading to a high odds ratio value was identified as
the interaction between+ , �% and �) for the MRF algorithm, as shown in Figure 6.26. The results
of prediction analysis and optimal process range analysis are provided in Figures (6.19 - 6.26).



CHAPTER 6. VERIFICATION ON PUBLISHED DATASETS 158

Table 6.5: Combined cycle power plant dataset properties

Variable Minimum Maximum Mean Data Type Variable Type

%� (",) 420.26 495.76 454.37 Quantitative Response
�)? (◦C) 1.81 37.11 19.65 Quantitative Factor
+(2<.�6) 25.36 81.56 54.31 Quantitative Factor
�% (<10A) 992.89 1033.30 1013.26 Quantitative Factor
'� (%) 25.56 100.16 73.31 Quantitative Factor

Table 6.6: User inputs for prediction and confirmation for combined cycle power plant dataset

MRF Confirmation Trials

Type HB Bootstrap 10000
)ℎ<8= 425 Simulation No 100
)ℎ<0G 470 Total Run’s 1000000

No of Factors 4 )ℎ>? 0.1

Testing was performed on the combined cycle power plant dataset [106]. From Figure 6.23,
the observations indicate that the factors '� and �% are considered optimal intervals, while the
factors �)? and+ are considered avoidance intervals. The proposed algorithm performs admirably
in predicting the response, with an accuracy of 95.9%, as shown in Figure 6.21. In the current work,
it was concluded that the optimal number of trees to ensure the best performance and prediction
accuracy was 260 (see Appendix B). An optimal value threshold for penalty values of 0.1 was
chosen to classify an optimal process response. The process response based on the optimal limit
indicates high performance regarding the raw data, leading to fewer defects and enhancing the total
output performance, as shown in Figure 6.24. The odds distribution in Figure 6.25 shows improved
performance on the proposed optimal limit rather than the raw range data, even with the limited
threshold value. This indicates that the proposed limit will perform well in terms of enhancing
product quality. The odds ratio-interacted plot, as shown in Figure 6.26, depicts the efficiency
of the process when the interacted factors are chosen from the optimal limit and the remaining
factors are based on the original limit. The proposed algorithm has a lower computational cost in
comparison to other published works (see Appendix B and Section 6.5); moreover, it also achieves
improved prediction accuracy compared with other research work. A thorough comparison with
different published studies is conducted in Sections 6.4 and 6.5.
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Figure 6.19: Permutation Importance ranking for combined cycle power plant dataset
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Figure 6.20: Testing on unseen data - Combined cycle power plant dataset
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Figure 6.21: Feature importance ranking based on Decision Path Search for combined cycle
power plant dataset
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Figure 6.22: Tolerance limits of combined cycle power plant dataset
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Figure 6.23: Optimal and avoidance intervals for combined cycle power plant dataset
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Figure 6.24: Response before and after applying the recommended process limits from MRF to
the combined cycle power plant dataset

Figure 6.25: Odds ratio of original (red distributions) and optimal recommended process limits
(blue distributions) of MRF applied to all factors of the combined cycle power plant dataset
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Figure 6.26: Odds ratio of interacted factors with proposed optimal limits from MRF applied to
the combined cycle power plant dataset
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6.3 Comparison with Published Random Forest Models

In this section, a comparison of the proposed algorithm (MRF) with published Random Forest
models is discussed. As shown in Figure 6.27, three different models and datasets were compared
with the proposed algorithm for further analysis and validation. The selected models are JigSaw
[108] and CausalNex by McKinsey, while a comparison with the Student Performance dataset [64]
is also conducted.

Figure 6.27: Published Random Forest models and dataset selected for comparison

6.3.1 JigSaw

Machine learning makes it possible to process big data to discern complicated trends and patterns,
an outcome that has revolutionised the study of biology [108]. For example, JigSaw [108], an
emerging model, was designed to predict patterns that could characterise the forest based on the
Random Forest structure. Through laboratory trials, the model was verified to be effective in
recovering various ground truth structures, regardless of the noise levels. Both MRF and JigSaw
are based on the RF algorithm, require minimal domain expertise and are able to deal with non-
linear interactions. Table 6.7 presents a comparison between the proposed algorithm and JigSaw.
Although the two algorithms have different application scopes, Table 6.7 shows that MRF has
certain advantages over the JigSaw algorithm.
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Table 6.7: Comparison between JigSaw and MRF

Algorithm MRF JigSaw

Application Developed for the discovery of
causal relationships between the
process factor and the target out-
put. MRF can predict the process
quality output for any production
process. Also, it is used to extract
the tolerance limit of the process
factor.

Developed to facilitate identifi-
cation of the structures (patterns)
that could describe the predictions
created by the forest. Moreover, it
can utilise metabolites from blood
measurements to assist in the de-
termination of signs that could ex-
plain presence of breast tumours.

Application Type Manufacturing process. Biological science.
Data Type Deals with both regression and

classification problems.
Deals with classification problems
only.

Feature Impor-
tance

Ranks the process factors based on
its contribution to the prediction
score (DPS).

Ranks the process factor based on
their highest frequency.

Computational
Cost

High performance and computa-
tionally efficient; more suitable
for real-time defect prediction and
heterogeneous datasets.

Computationally expensive.

Causal Relation-
ship

Uses the PM to identify the opti-
mal leaves and then searches for
the whole paths through the forest
in order to find the optimal process
operating settings (optimal catego-
ry/range).

Uses Euclidean distance to identify
the correlations for the observed
outcomes. Then, it retraces the
routes through the forest to esti-
mate the corresponding optimal
limits for the feature with highest
score.

Optimal Operat-
ing Range

Produces the optimal operating
range for continuous data and op-
timal categories for the categorical
data. It uses the power of ensemble
method to aggregate the optimal
and avoidance intervals based on
the feature type (Categorical/ Re-
gression).

Suitable for classification prob-
lems only, by finding the upper and
lower decision boundaries.
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6.3.2 CausalNex

CausalNex [109], is a hybrid learning technique with data and domain expertise that helps encode
substantial domain knowledge in models to ensure the correct causal relationship is found while
avoiding spurious relationships. CausalNex, which uses Bayesian analysis, converts continuous
data into ordered categories (e.g. very low, low, medium, high, very high). Table 6.8 presents
a comparison between the proposed algorithm and CausalNex. Because the deliverables of each
algorithm are different (e.g. regarding whether or not it provides an optimal range), a numerical
comparison between the two could not be conducted. Nonetheless, Table 6.8 highlights some
differences between the two approaches and identifies the areas where the MRF algorithm has an
advantage over CausalNex.

Table 6.8: Comparison between CausalNex and MRF

Algorithm MRF CausalNex

Domain Exper-
tise

Minimal domain knowledge re-
quirements.

High dependency on domain
knowledge as a result of hybrid
learning with data and domain ex-
pertise.

Non-Linear In-
teraction Within
Features

Point of strength: dealing with the
non-linearity in data.

Can handle non-linearity in the
data.

Causal Relation-
ships

Generates importance ranking and
causal relationships for provided
response range.

Provides a generic cause for the
overall process.

Optimal Operat-
ing Range

Provides the optimal operating
range for the given thresholds.

No optimal range is given.

Computational
Cost

High performance and computa-
tionally efficient; more suitable
for real-time defect prediction and
heterogeneous datasets.

Computationally expensive.

Minimum
Dataset Size

According to testing on several
datasets, it is suggested to use
at least 350 samples in order to
achieve reasonable accuracy.

Based on the performed bench-
marking, it is suggested to use
at least 1000 samples in order to
achieve reasonable accuracy.
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6.3.3 Student Performance Dataset

The proposed algorithm (MRF) codewas verified on the published Student Performance dataset [64]
that McKinsey used for their CausalNex code. Cortez and Silva [64] used an Random Forest
algorithm on the published dataset, while the provided dataset was used to calculate the regression
line based on the RMSE value. The Student Performance dataset contains mixed data (both
continuous and categorical features) with a total of 32 factors. The factors consist of 17 categorical
features and 15 quantitative factors. In this work, 10-fold were used for the :-fold cross-validation,
as seen in Table 6.9, to check the RMSE and compare it with the traditional RF, enabling an
exploration of the efficiency of the proposed approach. The test was applied and compared with
the traditional RF on the regression problems only, as illustrated in Figures 6.28 and 6.29. A list of
comparisons between different algorithms, including the traditional RF and the MRF algorithm is
presented in Table 6.10. The tables and figures below show the results of the performance on the
given Student dataset for both Mathematics and Portuguese language class. Based on predictions,
the proposed algorithm dominates other competitors’ algorithms across both tests. Obviously, the
MRF algorithm also achieved better results than the traditional Random Forest method.

Table 6.9: RMSE for 10-fold cross-validation on Student Performance dataset

k-Fold 1 2 3 4 5 6 7 8 9 10 Mean

RMSE"0Cℎ 1.76 1.12 1.65 2.30 1.13 1.89 2.08 1.79 1.44 1.35 1.65
RMSE%>AC 1.29 1.52 0.99 0.92 1.85 1.52 0.72 1.11 0.99 1.18 1.21

Table 6.10: RMSE comparison for different algorithms using Student Performance dataset

Algorithm RMSE"0Cℎ RMSE%>AC

Support Vector Machine (SVM) 2.09 1.35
Neural Network (NN) 2.05 1.36
Naive Predictor (NV) 2.01 1.32
Decision Tree (DT) 1.94 1.46
Random Forest (RF) 1.75 1.32

Modified Random Forest (MRF) 1.65 1.21
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Figure 6.28: Regression model on Student Performance dataset for mathematics - Prediction by
traditional Random Forest (RF) [64]
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Figure 6.29: Regression model on Student Performance dataset for mathematics - Prediction by
the proposed algorithm (MRF)
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6.4 Discussion of Results

For the high performance concrete dataset [104], the comparison in Figure 6.30 shows that the
regression coefficient '2 value obtained by the proposed algorithm is 0.884, which is higher than
that obtained by the QCA algorithm ('2 = 0.67) in [8] but slightly lower than that obtained by
the best model (Neural Network), which is '2 = 0.94, in [104]. To compare the speed of the
MRF algorithm to the Neural Network architecture proposed in [104], the same architecture was
implemented with the following parameters:

Table 6.11: The parameters of Neural Network implementation

Number of Hidden Layers 1
Number of Hidden Neurons 8
Hidden Layer Activation ReLU

Number of Neurons in Output Layers 1
Learning Rate 1
Momentum 0.5

Number of Epochs 3000

The data used to train the model is based on experiment R1 in Table 3 in [104]. The instances in
the training, validation, and testing sets were sampled randomly from the original dataset (without
replacement), as seen in Table 6.12. The Neural Network was implemented in Keras [110] with
TensorFlow frontend [111]. Data scaling was carried out using the StandardScaler class [93] from
Scikit-Learn by removing the mean and scaling to unit variance.

Table 6.12: Training, validation and testing instances used in [104]

Training Instances 545
Validation Instances 182
Testing Instances 182

Finally, it may be concluded that the regression capability of the proposed algorithm yields the
closest performance to the Neural Network model in [104], albeit with lower computational cost
(see Table 6.13), as it has a smaller number of internal parameters compared to the Neural Network
model [104].
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Table 6.13: Computational cost of NN and MRF code processing for high performance concrete

NN Process Time (second) MRF Process Time (second)

Data Loading 0.009 Data Loading 0.21
Data Scaling 0.019 Feature Selection (FS) 8.74

Model Construction 0.032 Optimal No. of Tree 37.19
Model Training 155.914 Model Training 1.60
Model Evaluation 0.047 Model Evaluation 0.02
Total Duration 156.021 Total Duration 47.76
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(c) Prediction by MRF

Figure 6.30: High performance concrete dataset regression model
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For the combined cycle power plant dataset [106], the comparison in Figure 6.31 shows that
the regression coefficient '2 value obtained by the proposed algorithm is better than that obtained
by QCA and the Bagging with REPTree algorithm; the latter two obtained '2 = 0.92 [8] and '2 =
0.9485 [106], whereas the proposed algorithm achieved a coefficient regression value '2 = 0.959.
This shows that the proposed algorithm (MRF) achieve better performance than both the QCA and
Bagging with REPTree algorithms.
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Figure 6.31: Combined cycle power plant dataset regression model
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To test the MRF against the traditional Random Forest algorithm, the energy performance for
residential buildings dataset was used. TheMSEwas calculated based on a 10-fold cross-validation
approach, as seen in Table 6.14. The comparison in Table 6.15 further shows that the MSE based
on the proposed algorithm is 0.42, which is lower than that obtained by the traditional Random
Forest algorithm (with a value of 1.03). The proposed algorithm achieves better results in terms of
prediction performance compared with the algorithm in [105].

Table 6.14: MSE for 10-fold cross-validation on energy performance for residential buildings

k-Fold 1 2 3 4 5 6 7 8 9 10 Mean

MSE 0.72 0.42 0.56 0.21 0.42 0.17 0.25 0.47 0.68 0.25 0.42

Table 6.15: MSE comparison for different algorithms using the energy performance dataset

Algorithm MSE

Iterative Reweighted Least Squares (IRLS) 9.87
Random Forest (RF) 1.03

Modified Random Forest (MRF) 0.42

A comparison between the predictive power of MRF and JigSaw [108] cannot be conducted
because each has a different application area. One aspect that makes MRF particularly suitable for
tackling industrial problems is that it can handle both classification and regression (unlike JigSaw,
which can only deal with classification). The computational cost of the JigSaw algorithm also could
not be compared with MRF because it is unable to be applied to the problem under investigation.
From the optimal range perspective, the MRF optimal range has no constraints regarding the
factors, and can trace all the factors in each branch of all trees with no pre-set conditions; hence,
it can provide the full optimal range for each factor. On the other hand, JigSaw has constraints
on the optimal range limit, since it focuses only on the highest-ranking (frequency) factors, which
is not a good strategy for the type of industrial problems considered in the present research. The
process engineer needs the full optimal/avoidance ranges for each factor to conduct analysis and
modifications. Based on these ranges, the process engineer can then select the best ranges to work
with (given the engineer’s extensive domain expertise). This is another key advantage of the MRF
algorithm compared with JigSaw from the point of view of the optimal/avoidance range limit.
Therefore, and looking at the selected case study, it can be seen that MRF has more advantages
than JigSaw in the context of the problem investigated in this thesis.
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CausalNex’s [109] predictive capability could not be tested against MRF. However, given the
problem at hand and its aforementioned constraints, MRF is a better alternative overall. This
conclusion was reached by weighing the pros and cons of each approach for this specific case (not
for the general case). It is stated on CausalNex’s website [109] that the algorithm requires some
requisite user experience in the area of application and that it is also not fully automated. On
the other hand, the MRF algorithm requires minimal (if any) domain expertise and the process is
fully automated. Other drawbacks of CausalNex are also stated on its website [109]. The model
has a limit on the minimum size of the dataset required for efficient performance, and also has a
high computational cost (since the model is graphical and based on Bayesian networks). Thus, the
MRF algorithm is a good alternative for the investigated class of industrial problems, since it is
able to overcome these limitations. It can further be seen that the MRF algorithm has advantages
over CausalNex in terms of requiring minimal domain expertise, its low computational cost, and
its ability to deal with small sample sizes.
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Figure 6.32: Student performance dataset for mathematics regression model

Regarding the Student Performance dataset, the Mathematics and Portuguese language subsec-
tions were selected. In both cases, the proposed algorithm was found to perform better than the
traditional Random Forest model used in [64]. The comparison shows that the root mean squared
errors (RMSEs) obtained using the proposed algorithm were 1.65 for Mathematics and 1.21 for
the Portuguese language class. These results are better than those obtained by the traditional RF
model, which yielded RMSEs of 1.75 and 1.32 for Mathematics and Portuguese language, respec-
tively. The regression model of both algorithms (MRF and RF) based on the Mathematics class is
illustrated in Figure 6.32.
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Conclusion

The proposed algorithm was developed to achieve the following:

• Estimate missing values for non-linear mixed data.

• Predict the process output for any given choice of operating limits.

• Determine the critical process factors.

• Predict potential quality improvement.

• Apply odds ratio by conducting a simulated confirmation trial.

• Produce high computational performance considering on high-dimensional datasets.

The backbone of this research was the development of a generalised fit predictive model to
map the process input to the process response, then extract the process causal knowledge from
the underlying model structure. The proposed algorithm was verified through comparison with
published results on the three chosen datasets. A comparison with other published RF models was
also conducted. The objective was to assess the predictive performance and find optimal tolerance
limits for the process. The tolerance limits of factors that best explain the variation in response
values were estimated. The impact of choosing optimal limits on response values has also been
quantified. The previous work [8] was conducted on the same datasets, albeit with different goals:
in this work, the high performance concrete and combined cycle power plant datasets were studied
using machine learning models to predict the response [104,106]. By contrast, in the present work,
an efficient predictive model was developed. In addition, a causal knowledge technique for finding
the optimal setting that leads to optimal performancewas also implemented. Moreover, as a result of
intensive hyperparameter tuning, the present model can give accurate predictions with minimal risk
of overfitting the dataset. The regression assessment of the present model is compared with QCA,
traditional RF, Bagging with REPTree, and Neural Network algorithms for the high performance
concrete, energy performance of residential buildings, and combined cycle power plant datasets.
Moreover, a comparison with the Student Performance dataset is also conducted based on the
regression assessments of the proposed model. Figures (6.30, 6.31, 6.32) and Table 6.15 illustrate
the results comparison between the proposed algorithm and the other models. Overall, following
comparison of the proposed algorithm (MRF) with different datasets and models, it is evident
that the proposed algorithm achieves better results in terms of both performance and prediction
capability. Moreover, MRF has a lower computational cost relative to algorithms such as QCA,
Neural Network, and Bayesian Networks (CausalNex).
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6.5 Computational Cost Comparison between QCA and MRF

6.5.1 Nickel-based Superalloy

In this section, a comparison between QCA [8] and MRF on the nickel-based superalloy dataset is
conducted to explore the efficiency of both methods in terms of computational cost.

Table 6.16: Computational cost of QCA and MRF code processing for nickel-based superalloy

QCA Process Time (second) MRF Process Time (second)

Data Loading 0.036 Data Loading 0.04
Data Transformation 0.500 Feature Selection (FS) 6.00
FS and Process Limit 13.863 Optimal No. of Trees 25.53

– – Model Training 0.61
– – Model Evaluation 0.01
– – Process Limit 12.42

Odds Ratio 825.478 Odds Ratio 46.78
Total Duration 839.877 Total Duration 89.38

6.5.2 High Performance Concrete

In this section, a comparison between QCA [8] and MRF on the high performance concrete dataset
is conducted to explore the efficiency of both methods in terms of computational cost.

Table 6.17: Computational cost of QCA and MRF code processing for high performance concrete

QCA Process Time (second) MRF Process Time (second)

Data Loading 0.105 Data Loading 0.21
Data Transformation 1.000 Feature Selection (FS) 8.74
FS and Process Limit 124.290 Optimal No. of Trees 37.19

– – Model Training 1.60
– – Model Evaluation 0.02
– – Process Limit 15.41

Odds Ratio 310.223 Odds Ratio 27.71
Total Duration 435.618 Total Duration 90.88
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6.5.3 Energy Performance on Residential Buildings

In this section, a comparison between QCA [8] andMRF on the energy performance in a residential
buildings dataset is conducted to explore the efficiency of both methods in terms of computational
cost.

Table 6.18: Computational cost of QCA and MRF code processing for energy performance

QCA Process Time (second) MRF Process Time (second)

Data Loading 0.13 Data Loading 0.178
Data Transformation 0.009 Feature Selection (FS) 22.7
FS and Process Limit 250 Optimal No. of Trees 47.43

– – Model Training 1.72
– – Model Evaluation 0.018
– – Process Limit 15.7

Odds Ratio 650 Odds Ratio 47.3
Total Duration 900.139 Total Duration 135.046

6.5.4 Combined Cycle Power Plant

In this section, a comparison between QCA [8] andMRF on the combined cycle power plant dataset
is conducted to explore the efficiency of both methods in terms of computational cost.

Table 6.19: Computational cost of QCA and MRF code processing for combined cycle power
plant

QCA Process Time (second) MRF Process Time (second)

Data Loading 0.38 Data Loading 0.42
Data Transformation 0.047 Feature Selection (FS) 9.56
FS and Process Limit 250 Optimal No. of Tree 281.77

– – Model Training 16.89
– – Model Evaluation 0.07
– – Process Limit 68.33

Odds Ratio 1131 Odds Ratio 41.81
Total Duration 1381.427 Total Duration 418.86
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Summary and Results

From the previous tables, a comparison of the associated computational cost of the QCA [8] and
the MRF algorithms reveals that the MRF has a lower computational cost. It has been observed
that computational effort is concentrated on the odds ratio that results in reduced cost for the MRF
procedure. Nonetheless, the QCA algorithm is useful for calculating other parts of the process, as
it takes a long time to make odds ratio predictions. The QCA algorithm makes use of an iterative
technique; hence, the prediction is regarded as a sequential algorithm process, which is associated
with very high computational cost. On the other hand, MRF is a deterministic algorithm and can
be easily parallelised. Moreover, the MRF algorithm is based on the Decision Path Search (DPS),
which is primarily a prediction model, and there is no need for any iterative steps except during the
construction of the decision tree. As a result, the MRF algorithm is more computationally efficient
compared with sequential implementations. Therefore, the computational cost of MRF is very low,
which represents another benefit in addition to its robust predictions. Figure 6.33 presents the QCA
algorithm code processing flowchart.

Figure 6.33: QCA processing code flowchart
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6.6 Conclusions

On the published datasets, MRF was found to achieve better prediction results compared with the
previous work [8] using QCA. Table 6.20 contrasts MRF with the QCA algorithm.

Table 6.20: Comparison between the present and previous works (MRF vs QCA)

Feature Current Work (MRF) Previous Work (QCA)

Prediction Predicts non-linear relationships in
data.

Limited to linear process factors.

Missing Data Algo-
rithm

missForest, shows better prediction
of the missing values than KDR
used in QCA.

KDR, compared with TSR and
FAMD algorithms.

Feature Selection /
Feature Importance

DPS, based on extracting the cause
and effect knowledge from the data
by scoring the critical factor based
on contribution to prediction.

CLI, based on linear assumption,
by highlighting factors that present
opportunities for process fine-
tuning.

Computational Cost High performance and computa-
tionally efficient; more suitable for
prediction and heterogeneous data.

High computational cost.

Optimal Limit Extracts the causal knowledge
from non-linear process factors
using the Decision Path Search al-
gorithm.

Estimates the optimal and avoid-
ance limits that can improve re-
sponse using the co-linearity index
approach.

Confirmation Trials Utilise odds ratio calculations to
quantify the impact of the confir-
mation trials.

The influence of the tolerance limit
is assessed by odds ratio; also iden-
tifies the non-linearity interaction
in the data.

Factor Effect on
Response

Various simulations are applied
to assess the factor effects on the
output response by applying auto-
mated tuning.

Many simulations conducted to
estimate the effect of each factor
on the response(s), as well as the
interaction between factors.

Uncertainty Random Forest deals naturally with
the uncertainty.

Bootstrap utilised for uncertainty
evaluation of the QCA.



Chapter 7

Conclusions

7.1 Main Research Contributions

The work presented in this thesis contributes to the current research into cyber-physical manufac-
turing plants by developing a new data-driven model and associated algorithms. A summary of
the main contributions of this work concerning the original research objectives is provided in the
following paragraphs.

Figure 7.1: The objectives of the current work
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Objective 1: Development of a predictive machine learning model that has the capability of
dealing with non-linearity in data.

The MRF algorithm was developed based on the traditional RF algorithm and novel techniques for
automatic tuning. The proposed model inherits the non-linear capability of RF and the prediction
performance of real foundry data. Good performance was achieved on the high performance
concrete dataset, especially when dealing with non-linearity in the data.

Objective 2: Development of an augmentation technique to deal with a skewed and limited
dataset.

Asuitable data augmentation techniquewas developed. The combination of SMOTEandmissForest
robustly augments the non-linear mixed data. The effectiveness of the proposed approach was
demonstrated by analysing the in-process nickel-based superalloy foundry data.

Objective 3: Development of a non-linearmissing data algorithm to impute themissing values
of both quantitative and categorical variables.

An imputation method based on the Random Forest algorithm, referred to as ‘missForest’ [15],
was used, in the augmentation technique (SMOTE-FOREST), to impute the missing values for
mixed data. The results obtained from testing the algorithm with a real foundry dataset showed
significantly higher accuracy than the KDR method [8].

Objective 4: Demonstration of the ability to predict the output or response of any given choice
of operating limits on selected mixed input factors.

A method for the prediction of unknown responses with known factors is proposed for mixed
non-linear data in the present research. The developed method is based on a tuned RF algorithm,
which makes it possible to verify the recommended process limits. The verification was conducted
by comparing the odds ratio of the response values with the original range, as well as with new
ranges obtained via the Decision Path Search algorithm (referred to as optimal operating limits). A
large number of simulations were performed to simulate different possible factor interactions. In
general, the odds ratio increased significantly compared to the original value after the recommended
operating limits were applied. This supports the hypothesis that the proposed optimal limits lead
to improved quality and a reduction in defects.
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Objective 5: Development of a non-linear approach for defining the most critical process
inputs.

A novel machine learning algorithm was developed to minimise the deficiencies of the optimal
tolerance limits. This algorithm, referred to as Modified Random Forest (MRF), is presented in
chapters four and five. The main advantage of the proposed algorithm is that can work with a
small number of observations due to the application of a novel data augmentation technique and
is also capable of dealing with non-linear datasets. The algorithm is in accordance with ISO9001
requirements, as it supports continual process improvement by eliminating undesired ranges of
critical factors. The essential factors that lead to desired or undesired response ranges are identified
by using the novel Decision Path Search (DPS) algorithm described in chapter five. The proposed
algorithm is subsequently validated by analysing historical process data of a real industrial case
study, after which the results are compared with those of the QCA algorithm and PM approach. The
analysis included developing amethod for discovering interactions among variables by creating new
variables from the interacted optimal ranges of original variables. The MRF algorithm was proven
to be able to identify the factors that are responsible for defects among batches of components, or
any other equivalent response variation.

Objective 6: Verification of the performance efficiency of the proposed algorithmonpublished
datasets and conduct comparisons with a number of published state-of-the-art models.

Three datasets were analysed in chapter six to test the ability of the Modified Random Forest
algorithm to analyse different data-based problems. The datasets are high performance concrete
[104], energy performance of residential buildings [105] and combined cycle power plant datasets
[106]. The analysis included finding the optimal limits, plus a revision of the obtained limit and
the odds ratio of single/interacted factors. Finally, a comparison of results was conducted with
published state-of-the-art models and dataset such as: JigSaw [108], CausalNex [109], and Student
Performance dataset [64]. The proposed algorithm (MRF) shows a superior result compared to the
previous models.
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7.2 Future Work

The reduction of manufacturing defects is a complex task. Addressing this issue requires a multi-
disciplinary approach that spans the production environment, production line, machine technology,
and data-driven models. This work has focused on model development challenges concerning
the optimal system settings and their effects (cause and effect). However, more interdisciplinary
research is required to enhance the ability of the present algorithm to predict the behaviour of the
process. Future research efforts to extend the current work could include the following:

1. Investigating deep learning approaches that may prove better at dealing with non-linear data.

2. Applying either JigSaw [108] and/or CausalNex by McKinsey [109] to test the categorical
variables.

3. Implementing the proposed algorithm (MRF) on real case studies with different application
areas.

4. Capturing and reusing organisational knowledge from meetings, emails, papers, customer
feedback, etc., then applying machine learning to these new data types, which are derived
from manufacturing, accounting, sales, customer relationships, warranty, after-sales, etc.

• Applying natural language processing to capture domain knowledge from emails,
recorded meeting audio, and external PDF files. Knowledge representation for stor-
ing organisational knowledge, the computer will become able to apply this knowledge
to discover causation from both correlations and from completely unstructured data that
is available across the industry (emails, audio, video speech, paper, etc.) instead of
predetermined cause and effect relationships.
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The Investment Casting - A Nickel-based Superalloy Dataset

An aerospace foundry’s cast components are made from a dataset of a nickel-based superalloy.
Each dataset is composed of 16 factors as illustrated in Figure A.1. These factors (chemical
compositions) affect the responses of defective components manufactured in a particular batch due
to a shrinkage defect. Chemical compositions are input factors, which are quantitative variables.
The process data consists of 60 batches or observations, while each batch is composed of 16 factors.
In addition, each batch contains the percentage of shrinkage defects in the observed batch. The
process data also relate to the percentage of castings rejected as a result of shrinkage and other
defects. Furthermore, the final product of investment casting is represented by a single batch. The
remainder of the processing variables, such as temperature, moulding criteria, cementing, etc, are
fixed in all factor cases. Tables A.1 - A.3 list the process inputs in terms of chemical composition,
along with the 16 factors contained in each batch for the nickel-based superalloy.

Figure A.1: Chemical composition factors

A small number of components for a given product that are processed, and inspected together
form a batch. The key process variables are recorded in the beginning of each process step and
are associated with the batch. At every inspection point, rejection rates are recorded and the



APPENDIX A: THE INVESTMENT CASTING 196

corresponding data is associated with the batch. For this particular case study, the rejection rates
became high only for one product type. The process parameters were within the given tolerance
limits and all other product types were within acceptable rejection rates. As a result the process was
considered as robust and it was felt that the root-cause could either be material or design specific for
the said product type. Before investigating potential design changes (e.g. feeding or gate design), it
was decided to investigate the effect of variation in chemical composition. The chemistry was later
optimised for this product type however the dataset became useful as a benchmark dataset in this
as well as the previous research in the research group. The reasons for choosing the nickel-based
superalloy dataset in this thesis, illustrated in Figure A.2, are as follows:

• The dataset contains limited observation.

• Non-linear interactions are observed.

• It is highly skewed dataset.

• The dataset is based on a real-world example and used in previous Swansea research.

Figure A.2: Advantages of using the nickel-based superalloy dataset
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Optimal Number of Estimators

1. High Performance Concrete

In this section, an optimal forest sizing for the high performance concrete dataset [104] is determined
in order to explore the efficiency in terms of computational cost for better prediction accuracy.

Table B.1: '2 scores of optimal number of estimators for a high performance concrete dataset

Trees '2 Score 2 × f Trees '2 Score 2 × f

10 73.05 (+/- 0.2774) 100 75.32 (+/- 0.2462)
20 74.06 (+/- 0.2740) 140 75.21 (+/- 0.2483)
30 74.22 (+/- 0.2562) 180 75.34 (+/- 0.2440)
40 74.48 (+/- 0.2586) 220 75.02 (+/- 0.2483)
50 74.60 (+/- 0.2611) 260 75.12 (+/- 0.2465)
60 75.06 (+/- 0.2528) 300 75.15 (+/- 0.2463)
70 75.15 (+/- 0.2454) 340 75.32 (+/- 0.2441)
80 75.24 (+/- 0.2483) 380 75.32 (+/- 0.2457)
90 75.25 (+/- 0.2500) 420 75.32 (+/- 0.2442)

Figure B.1: The scores of different numbers of estimators for the high performance concrete
dataset
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2. Energy Performance on Residential Buildings

In this section, an optimal forest sizing for the energy performance in residential buildings dataset
[105] is determined in order to explore the efficiency in terms of computational cost for better
prediction accuracy.

Table B.2: '2 scores of optimal number of estimators for energy performance on residential
buildings dataset

Trees '2 Score 2 × f Trees '2 Score 2 × f

10 98.57 (+/- 0.0701) 100 98.58 (+/- 0.0701)
20 98.58 (+/- 0.0701) 140 98.58 (+/- 0.0701)
30 98.58 (+/- 0.0702) 180 98.58 (+/- 0.0701)
40 98.58 (+/- 0.0701) 220 98.58 (+/- 0.0701)
50 98.58 (+/- 0.0701) 260 98.58 (+/- 0.0701)
60 98.58 (+/- 0.0701) 300 98.59 (+/- 0.0701)
70 98.58 (+/- 0.0701) 340 98.58 (+/- 0.0701)
80 98.58 (+/- 0.0701) 380 98.58 (+/- 0.0701)
90 98.58 (+/- 0.0701) 420 98.58 (+/- 0.0701)

Figure B.2: The scores of different numbers of estimators for the energy performance on residen-
tial buildings dataset
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3. Combined Cycle Power Plant

In this section, an optimal forest sizing for the combined cycle power plant dataset [106] is
determined in order to explore the efficiency in terms of computational cost for better prediction
accuracy.

Table B.3: '2 scores of optimal number of estimators for combined cycle power plant dataset

Trees '2 Score 2 × f Trees '2 Score 2 × f

10 95.96 (+/- 0.0125) 100 96.17 (+/- 0.0118)
20 96.06 (+/- 0.0120) 140 96.17 (+/- 0.0117)
30 96.10 (+/- 0.0122) 180 96.17 (+/- 0.0117)
40 96.12 (+/- 0.0122) 220 96.17 (+/- 0.0117)
50 96.14 (+/- 0.0120) 260 96.18 (+/- 0.0115)
60 96.15 (+/- 0.0118) 300 96.18 (+/- 0.0117)
70 96.16 (+/- 0.0117) 340 96.18 (+/- 0.0116)
80 96.16 (+/- 0.0117) 380 96.18 (+/- 0.0116)
90 96.17 (+/- 0.0118) 420 96.18 (+/- 0.0116)

Figure B.3: The scores of different numbers of estimators for the combined cycle power plant
dataset
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Summary and Results

From the previous tables, the proposed algorithm (MRF) is seen to excel at minimising computa-
tional cost in terms of the optimal number of trees. In fact, finding the optimal number of trees will
enhance the prediction accuracy with minimum associated computational cost. Therefore, MRF
can achieve a higher prediction accuracy at lower computational cost, representing another benefit
of this algorithm in addition to its robust predictions. Figure B.4 illustrates the different numbers
of estimators for each case study presented in this work.

Figure B.4: Optimal number of trees for each case study
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QCA Refactoring using Python

1. Verification on Nickel-based Superalloy Dataset

Table C.1: QCA and Prediction simulation table for nickel-based superalloy dataset

QCA Predication

Type LB B 1000
)ℎ<8= 0 No of PCs 6
)ℎ<0G 0.03 Simulations No 100

No of PCs 6 )ℎ>? 0.2,0.3,0.4
B 100 =2 6

2 4 6 8 10
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Figure C.1: Scree plot and principal component for nickel-based superalloy dataset
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Figure C.2: Co-linearity index plot for nickel-based superalloy dataset

Figure C.3: Tolerance limits for nickel-based superalloy dataset
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Figure C.4: Predicted response distribution for nickel-based superalloy dataset

Figure C.5: Odds ratio distribution of all factors for nickel-based superalloy dataset
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Figure C.6: Odds ratio of interacted factors with optimal limits for nickel-based superalloy
dataset

Figure C.7: Odds ratio of interacted factors with uncertainty optimal limits for nickel-based su-
peralloy dataset
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2. Verification on High Performance Concrete Dataset

Table C.2: QCA and Prediction simulation table for high performance concrete dataset

QCA Predication

Type HB B 1000
)ℎ<8= 20 No of PCs 2
)ℎ<0G 40 Simulations No 100

No of PCs 3 )ℎ>? 0.1,0.2,0.3
B 100 =2 6
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Figure C.8: Scree plot and principal component for high performance concrete dataset
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Figure C.9: Co-linearity index plot for high performance concrete dataset
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Figure C.10: Tolerance limits for high performance concrete dataset
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Figure C.11: Predicted response distribution for high performance concrete dataset

Figure C.12: Odds ratio distribution of all factors for high performance concrete dataset
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Figure C.13: Odds ratio of interacted factors with optimal limits for high performance concrete
dataset

Figure C.14: Odds ratio of interacted factors with uncertainty optimal limits for high perfor-
mance concrete dataset
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3. Verification on Energy Performance of Residential Buildings Dataset

Table C.3: QCA and Prediction simulation table for energy performance of residential buildings
dataset

QCA Predication

Type LB B 1000
)ℎ<8= 15 No of PCs 1
)ℎ<0G 35 Simulations No 100

No of PCs 5 )ℎ>? 0.1
B 100 =2 5
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Figure C.15: Scree plot and principal component for energy performance of residential buildings
dataset
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Figure C.16: Co-linearity index plot for energy performance of residential buildings dataset
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Figure C.17: Tolerance limits for energy performance of residential buildings dataset
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Figure C.18: Predicted response distribution for energy performance of residential buildings
dataset

Figure C.19: Odds ratio distribution of all factors for energy performance of residential buildings
dataset
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Figure C.20: Odds ratio of interacted factors with optimal limits for energy performance of resi-
dential buildings dataset
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Figure C.21: Odds ratio of interacted factors with uncertainty optimal limits for energy perfor-
mance of residential buildings dataset
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4. Verification on Combined Cycle Power Plant Dataset

Table C.4: QCA and Prediction simulation table for combined cycle power plant dataset
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Figure C.22: Scree plot and principal component for combined cycle power plant dataset
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Figure C.23: Co-linearity index plot for combined cycle power plant dataset
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Figure C.24: Tolerance limits for combined cycle power plant dataset
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Figure C.25: Predicted response distribution for combined cycle power plant dataset

Figure C.26: Odds ratio distribution of all factors for combined cycle power plant dataset
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Figure C.27: Odds ratio of interacted factors with optimal limits for combined cycle power plant
dataset

AT V AP RH

AT

V

AP

RH

1.07 31.26 1.21 1.05

31.26 31.26 70.43 49.00

1.21 70.43 1.21 1.30

1.05 49.00 1.30 1.05

AT

10

20

30

40

50

60

70

AT V AP RH

AT

V

AP

RH

31.26 31.26 70.43 49.00

31.26 0.81 0.94 0.78

70.43 0.94 0.94 0.87

49.00 0.78 0.87 0.78

V

10

20

30

40

50

60

70

AT V AP RH

AT

V

AP

RH

1.21 70.43 1.21 1.30

70.43 0.94 0.94 0.87

1.21 0.94 0.42 0.40

1.30 0.87 0.40 0.40

AP

10

20

30

40

50

60

70

AT V AP RH

AT

V

AP

RH

1.05 49.00 1.30 1.05

49.00 0.78 0.87 0.78

1.30 0.87 0.40 0.40

1.05 0.78 0.40 0.43

RH

10

20

30

40

Figure C.28: Odds ratio of interacted factors with uncertainty optimal limits for combined cycle
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