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Abstract 

Introduction. Traditionally in laboratory settings, indirect calorimetry and blood 

lactate B[La] analysis provide a criterion measure of bioenergetics, although it is not 

feasible within a multitude of competitive sports. Mathematical modelling provides a 

solution to estimate metabolic power during competitive sport, whereby a sprint 

running model was proposed, using global positioning systems (GPS) velocity data 

and the known energy cost of the equivalent slope running. Now a novel mechanical 

approach has been presented as an alternative model to estimate metabolic power from 

GPS velocity data and principles of the work-energy theorem. The purpose of this 

study was to compare metabolic power as produced from the sprint running model, the 

mechanical model and indirect calorimetry. Methods. Thirteen participants performed 

a maximal effort 400 m- and a repeated 40 m- sprint and sub-maximal continuous 

running and repeated 20 m shuttle running test. The tests were completed across two 

testing sessions a week apart. In all tests, through exercise and recovery periods, V̇O2 

was measured by single breath analysis and B[La] was sampled during the recovery. 

The sum of V̇O2 and B[La] determined the energy cost. GPS velocity data collected 

throughout each test was processed through the sprint running and mechanical models 

to estimate energy cost. Results. Indirect calorimetry determined significantly greater 

values of overall metabolic power than sprint running (P < 0.001) and mechanical (P 

< 0.001) models across all exercise tests, and the mechanical model estimated larger 

overall metabolic power values than the sprint running model. Conclusion. This study 

urges sports scientists to understand the constructs of modelling bioenergetics and the 

inherent limitations of modelled energetics before implementing them within 

professional practice. Modelled bioenergetics may provide an estimation of the aerobic 

energy demand of overground running during exercise but is unable to account for the 

increased metabolic supply post-exercise.  

Keywords. Energy Cost, GPS, Indirect Calorimetry, Energetic Modelling, Mechanical 

Modelling. 
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Chapter 1.0 Introduction 

 

The fundamental role of sports scientists is to mitigate injury risk and improve 

the athletic performance of their athletes. As such, practitioners must record relevant 

information to be able to assess an athlete’s readiness to perform by monitoring 

training and competition load. Training load can be described as internal or external, 

depending on whether the measured outcomes are acting internally or externally to the 

athlete (Impellizzeri, et al., 2019; Bourdon, et al., 2017; Vanrenterghem, et al., 2017; 

Halson, 2014). Internal load describes the physiological, psychological, and 

biochemical responses of the athlete (Bourdon, et al., 2017; Vanrenterghem, et al., 

2017; Halson, 2014), whereas external load refers to quantification of external 

kinematic outputs of gross movement (Gray, et al, 2018; Bourdon, et al., 2017; 

Vanrenterghem, et al., 2017; Halson, 2014). Coaches will draw upon training load 

data, whether internal or external, to inform the prescription of training interventions 

to elicit a desired physiological adaptation. The most widely adopted practice 

prioritises external load (Impellizzeri, et al., 2019; Gray, et al, 2018) and whilst this is 

effective for prescribing training, it does not directly correlate to positive training 

adaptations. However, it is important to understand the internal load associated with 

training because improved athletic performance occurs from physiological 

adaptations, such as in cardiovascular and skeletal muscle, which is largely dependent 

on the magnitude of the metabolic disruption from homeostasis (Buchheit, et al., 2015; 

Iaia, et al, 2009; Holloszy & Coyle, 1984; Blomqvist & Saltin, 1983).  

While internal load can be measured in several ways, such as using heart rate 

telemetry (Vanrenterghem, et al., 2017; Halson, 2014) or rating of perceived exertion 

(RPE) (Vanrenterghem, et al., 2017; Halson, 2014), these metrics are often indirect 

correlates of metabolic ‘energy’ (Gray, et al., 2018) and are unable to thoroughly 

describe exercise demands, particularly during intermittent activities. Given the 

limitations of these rudimentary approaches, metrics that provide a global 

understanding of metabolic cost might be more appropriate and are often used in 

laboratory environments but are seldom adopted in the field. Indeed, based on 

thermodynamic principles, all metabolic processes produce an equivalent heat, which 

is the basis of ‘gold standard’ direct calorimetry (Kenny, et al, 2017). Direct 
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calorimetry measures the temperature exchange between the body and the environment 

in the chamber. Heat production is directly related to energy expenditure (EE), 

therefore being the quantification of aerobic and anaerobic metabolism. However, the 

requirement of an insulated chamber means this is not viable for competitive sport. 

Thus, indirect calorimetry has become more commonly adopted in laboratory settings, 

providing estimates of EE from the chemical process of metabolism based on the 

respiratory gas exchange of oxygen and carbon dioxide, alongside known caloric 

equivalents (Kenny, et al, 2017). However, the use of a portable metabolic cart is also 

impractical and prohibited in most competitive sports. 

To circumvent these problems, one such method that can be effectively 

implemented to indirectly monitor training load in competitive sport is the 

mathematical modelling of bioenergetics, and thus EE (Clarke & Skiba, 2013). Such 

models provide estimations of internal load, based on energetic equivalents from 

measures of external load. Nevertheless, they appear to be a viable method of globally 

quantifying physiological responses to athletic training due to being non-invasive and 

producing reliable estimations of metabolic power (Gray, et al., 2018). Furusawa and 

Hill (1927) initiated the concepts of modelling overground locomotion and, in more 

recent years, this has been adapted and advanced by di Prampero and collaborators (di 

Pramero, et al., 2015; Buglione & di Prampero, 2013; di Prampero, et al., 2005; di 

Prampero & Ferretti, 1999; di Prampero, et al.,1986), as well as  Péronnet and Thibault, 

(1989). Notably, these developments identified a relationship between metabolic 

power and the mechanical cost of running (di Prampero, et al., 1986), the time maximal 

aerobic power can be sustained, and the capacity of anaerobic metabolism (Péronnet 

& Thibault, 1989). Fundamentally, these models are based on maximal aerobic power 

or the maximal theoretical velocity set by the maximal volume of oxygen consumption 

(V̇O2max) and equivalent energy cost, which were accurate in determining power 

outputs in distances from 60 m to marathon length (Péronnet & Thibault, 1989; di 

Prampero, et al., 1986).  

While the former research had been focused on endurance forms of 

locomotion, di Prampero et al. (2005) took a novel approach to sprint running by 

comparing it to running on an inclined surface. Using the instantaneous velocity, 

collected from a radar gun, and equivalent slope, the instantaneous cost of sprint 
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running can be estimated. di Prampero’s model was utilised to estimate metabolic 

power and EE of football using, time-motion analysis, semi-automated multi-camera 

systems to be able to estimate instantaneous velocity (Osgnach, et al., 2010). The 

benefit of using the multi-camera system was it is non-invasive and can monitor the 

fluctuations in metabolic load throughout a match (Osgnach, et al., 2010). Osgnach et 

al. (2010) proposed the use of global positioning systems (GPS) as an alternative 

method to collect instantaneous velocity for the estimation of metabolic power and EE. 

Methodological limitations have been identified in the model, primarily due to 

the assumptions the models are based upon. One such assumption is that all locomotion 

is horizontal forward in direction. This can lead to modelling errors when, in sports 

such as football, players have possession of the ball causing a deviation in running gait 

(Buchheit, et al., 2015), as di Prampero’s model likens these movements to sloped 

running and not the greater muscular work done in these actions. Furthermore, 

previous research has indicated the model underestimates EE when performing rapid 

changes of direction (Oxendale, et al., 2017; Stevens, et al., 2015). This may be 

attributed to regression equations and acceleration data from maximal testing, which 

does not account for an increased EE with excess post-exercise oxygen consumption 

(EPOC) during intermittent exercise (Lyons, et al., 2006). Gray et al. (2018, 2020) 

proposed an alternative method to improve the collection of energetic data from GPS 

devices. This unique approach was proposed to model mechanical energetics in 

overground locomotion (Gray, et al., 2020). This model was developed to quantify 

mechanical demands of both continuous and intermittent forms of locomotion, with 

metabolic power estimated based on the known efficiency of positive and negative 

work done during gait (Vassallo, et al., 2021; Vassallo, et al., 2020; Cummins, et al., 

2016; Furlan, et al., 2015).  

Whilst EE can be a useful measure to monitor global training load, the 

theoretical basis of each model are not the same and it is unclear whether they will 

produce the same energetic values. The di Prampero model (2005) which estimates the 

bioenergetics of sprint running is underpinned by a single-stage method employing 

energetic equivalents between the energy cost of uphill running at a constant velocity 

to sprint running at a corresponding equivalent slope. As opposed to the Gray model 

(2020) which consists of a two-stage method to estimate bioenergetics. Firstly the 

model considers the runner as a multisegmented system, of stature and mass, that uses 
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chemical energy to increase kinematic energy and/or potential energy of the body 

segments (positive work done) or conversely decrease kinematic and/or potential of 

segments (negative work done) (Gray, et al., 2020). The sum of negative and positive 

work performed produces the overall work done by an athlete. In the second stage, 

once overall total work done has been calculated, by use of efficiency values of 

performing positive and negative work estimations of metabolic power and EE can be 

produced. 

The models, therefore, rely on accurate and reliable data to be able to estimate 

mechanical and metabolic power. To apply the use of radar guns, as per di Prampero 

et al. (2005), would be unachievable in live sport. Osgnach et al. (2010) used multi-

camera systems, from which intentions velocity data can be derived to use within the 

modelling but comes at a great economic cost. GPS devices are one of the most popular 

microtechnologies employed within professional sport (Bourdon, et al., 2017; Malone, 

et al., 2017; Scott, et al., 2016). From the instantaneous velocity data recorded by GPS 

devices, sports scientist can gain a comprehensive understanding of external load on 

an athlete (Impellizzeri, et al., 2019; Bourdon, et al., 2017). Furthermore they are more 

financially accessible to sports teams and so was proposed as means to collect 

instantaneous velocity data (Osgnach, et al., 2010). An extensive review of GPS 

microtechnology has suggested that velocity data acquired from the devices are valid 

for all devices with a sampling rate of ≥10 Hz (Scott, et al., 2016).  

The comparison of the energetic models to gas analysis systems has been questioned 

(Buchheit, et al., 2015; Stevens, et al., 2014). Indirect calorimetry yields EE from 

expired gas analysis, which can be likened to the direct ‘supply’ of energy metabolised. 

In contrast to this, EE estimated via energetic modelling utilises velocity-time data 

from GPS, which is akin to the ‘demand’ of the exercise (Gray, 2011). There are 

discrepancies in these values produced, dependent on the supply or demand. For 

example, this is notable during an on-transient (transition from a state of rest to 

exercise) (Sousa, et al., 2015), where modelled data will estimate instantaneous energy 

cost (the demand). However, as identified by breath-by-breath gas analysis, during the 

initiation of exercise, the metabolic rate (the supply) increases curvilinearly until it 

reaches a plateau to meet energy requirement and a steady state is reached (Whipp, et 

al. 2005; Bangsbo, et al., 2000; Wasserman, et al., 1975; Wasserman, et al., 1967). The 

initial energy requirement is predominantly produced anaerobically, and an oxygen 
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debt is incurred (Whipp, et al., 2005; Bangsbo, et al., 2000), which is somewhat 

replenished by the increased metabolic rate associated with EPOC (Buchheit, et al., 

2015; Lyons, et al., 2006). Thus, there is a temporal dissociation between energy 

supply and demand, as well as the theoretical source of energy across the exercise 

transition (aerobic or anaerobic). 

During steady-state, sub-maximal,  on-kinetics (exercise) (Sousa, et al., 2015), 

the supply and the demand is theoretically equivalent and predominantly met using 

aerobic pathways (James, et al., 2009; Busso & Chatagnon, 2006; Alvarez-Ramirez, 

2002; Lacour, et al., 1990). Therefore, modelled metabolic values are predicted to 

provide similar values to those derived from breath-by-breath gas analysis. As with 

on-kinetics, during off-transient (transition from exercise to resting) and off-kinetics 

(recovery) (Sousa, et al., 2015), temporal dissociations between supply and demand 

are apparent. This is due to the cessation of locomotion, resulting in no modelled EE, 

as per the constraints of energetic models designed to capture the instantaneous 

demand of exercise. During the recovery period, the supply of energy will persist, such 

that measured VO2 is inversely related to the phosphocreatine repletion (i.e. EPOC) 

(Cleuziou, et al., 2004; Perrey, et al., 2002; Paterson & Whipp, 1991; Maehlum, et al., 

1986). Therefore, it is possible that both energetic models, compared with indirect 

calorimetry, might not equally account for all work performed, particularly during 

high-intensity intermittent exercise, owing to the fluctuation in exercise supply and 

demand during repeated bouts (Buchheit & Laursen, 2013). Furthermore, the detailed 

analysis of the recovery period, and modelled aerobic/anaerobic contributions, might 

also provide further insight into the underestimation of EE identified in previous 

literature (Highton, et al., 2017; Oxendale, et al., 2017; Stevens, et al., 2015). 

This study aimed to compare methods of indirect calorimetry and two separate 

energetic modelling approaches (di Prampero and Gray models) for estimation of EE 

during outdoor overground running exercise. Specifically, the current study compared 

the EE values during exercise, recovery and combined segments during overground 

locomotive exercise tests that replicated common actions during team field sports, 

including continuous sub-maximal running, 400 m sprinting, repeated shuttle running, 

and repeated sprint running. It was hypothesised that overall, across the whole 

protocol, the di Prampero model and the Gray model would underestimate total overall 

EE and the aerobic contribution to EE compared with indirect calorimetry as reported 
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elsewhere (Buchheit, et al., 2015), as there is no exercise demand during the recovery 

but there is an increased metabolic rate due to EPOC. However, it was hypothesised 

that the di Prampero model and the Gray model would produce similar estimations of 

EE related to anaerobic contribution to exercise. Furthermore, it is hypothesised that 

the di Prampero model and the Gray model would estimate similar values for EE across 

all measures. 

 

Chapter 2.0 Theoretical Framework 

 

Modelling metabolic power stems from the work of di Prampero (1985) 

investigating the limiting factors to maximal oxygen consumption (VO2max) during 

two- and one-legged exercise, providing insight on how to develop oxygen 

transportation. This paved the way for estimating EE of energy demands of human 

locomotion on land (di Prampero, 1986). This chapter will present the progression of 

the models for estimating metabolic power and work, with the addition of the proposed 

adjusted method to model metabolic power and work utilising mechanical modelling 

to calculate the demand of the exercise from GPS-derived velocity data. 

 

2.1 Model to estimate metabolic load by di Prampero (2005) 

 

di Prampero et al. (2005) took a novel approach to model metabolic power 

based on the energy cost of sprint running and the equivalence of accelerating the 

runners’ centre of mass (COM) with the Earth’s gravitational field. Sprint running on 

flat terrains was likened to uphill running at a constant speed, where the uphill slope 

was determined by the forward acceleration (di Prampero, et al., 2002). Therefore, 

forward acceleration could be measured and translated into the corresponding energy 

cost as the energy cost of uphill running is well documented (Minetti, et al., 2002; 

Minetti, et al., 1994; Margaria, et al., 1963). Combining this information with 

instantaneous velocity data allowed the calculation of metabolic power.  
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Underpinning theory 

 

 

During sprint running the initial acceleration acting on the runner’s body (g') is a 

vectoral sum of forward horizontal acceleration (af) and gravity (g). Both forces are 

assumed to be applied to the runner COM as seen in figure 1A and given as: 

           (1) 

g′ = (af
2 + g2)

0.5
 

 

An angle (α) between g' is applied by generating a line through the foot-terrain contact 

with the runners COM to maintain an equilibrium, this is expressed as: 

           (2) 

α = arctan g / af 

α  

a f  

g′  
g 

COM  

A  

T=H  

T  

H  

g′  = g 

α  

B   

COM  

90 – α  

Figure 1 A simplified view of the forces acting on a runner. The subject is accelerating 

forward while running on flat terrain (A) or running uphill at constant speed (B). The 

subject’s body mass is assumed to be located at the centre of mass (COM); af=forward 

acceleration; g=acceleration of gravity; g′=(af
2+g2)0.5 is the acceleration resulting from 

the vectorial sum of af plus g; T=terrain; H=horizontal; α (=arctan g/af) is the angle 

between runner’s body and T; the angle between T and H is α′=90–α. Reproduced from 

di Prampero et al. (2005)  
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Similar to if the runner were running uphill at a constant speed, where the average 

acceleration (g') is assumed to be applied vertically as seen in figure 1B. As g' was 

tilted upward to make it vertical, so must the latter with the horizontal to maintain a 

constant angle with the terrain (α). The angle between the horizontal and terrain  (α') 

is created by forward acceleration giving the angle α between g' and the terrain as: 

           (3) 

α′ = 90 −  𝛼 = 90 − arctan g / af  

 

The equivalent slope (ES) to the angle α' is given as the tangent of itself: 

           (4) 

ES = tan (90 − arctan g / af ) 

 

In sprint running the average force (F) exerted by active muscle groups in a stride cycle 

(F' = equivalent to body weight) is expressed: 

           (5) 

F′ =  𝑀b ∙ g′ 

 

When running at a constant velocity the average force F equates to the runner’s body 

weight, thus: 

           (6) 

F =  𝑀b ∙ g 

 

The ratio of equations 5 and 6 

                      (7) 

F′/F = g′/ g 
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reveals the equivalent bodyweight (F' = the average force generated by active muscle 

groups), during sprint running, is equal to maintaining a constant velocity with the 

same mass multiplied by the ratio g'/g on the Earth’s surface. This ratio was called 

equivalent normalised body mass (EM) and given: 

           (8) 

EM =  g′ g⁄ = (af
2 g2⁄ + 1)0.5 

 

Therefore, sprint running is considered as constant speed running on the Earth’s 

surface, on an ES whilst transporting additional mass ∆M=Mb (g'/g-1), meaning total 

EM becomes EM=∆M+Mb. Both ES and EM are determined from forward 

acceleration as seen in equations 4 and 8, thus can be calculated once forward 

acceleration is known. Using ES and EM values, energy cost can be determined 

provided that the energy cost of sprint running uphill at a constant velocity per unit of 

body mass is known.  

 

 Calculations 

Running velocities were recorded by a radar gun and speed-time curves were fitted by 

an exponential functional (Chelly & Denis, 2001; Volkov & Lapin, 1979; Henry, 

1954):  

           (9) 

s(𝑡) =  𝑣max  ∙  (1 − e−𝑡/𝜏) 

(s is modelled running velocity, t is time, vmax is maximal velocity, τ is time constant) 

 

As the modelled velocity accurately describes the actual running velocities (di 

Prampero, et al., 2005), instantaneous forward acceleration was given as a derivative 

of equation 9: 

                               (10) 
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af
(𝑡)

= 𝑑𝑠/𝑑𝑡 =  [𝑣max −  𝑣max  ∙ (1 − e−𝑡/τ)]/τ 

From equation 9, using the time derivative a function of distance (d, m) can be 

expressed as: 

                               (11) 

d(𝑡) =  𝑣max ∙ 𝑡 − [𝑣max ∙ (1 − e−𝑡/τ)] ∙ τ 

 

Using individualised ES (equation 4) and EM (equation 5) are obtained from forward 

acceleration which allows for the calculation of energy cost of sprint running. Energy 

cost as presented by Minetti et al. (2002) for slopes from -0.45 to +0.45 is expressed 

as: 

                              (12) 

𝐶 = 155.4𝑥5 −  30.4𝑥4 −  43.3𝑥3 + 46.3𝑥2 + 19.5𝑥 + 3.6 

 

The incline of the terrain is represented as x as given by the tangent of the angle α' to 

the horizontal (Figure 1B). The energy cost of sprint running (Csr) was estimated by 

replacing x with ES and the overall cost is multiplied by EM: 

                    (13) 

𝐶sr =  (155.4ES5 − 30.4ES4 − 43.3ES2 + 46.3ES3 + 46.3ES2 + 19.5ES + 3.6)EM 

 

di Prampero et al. (2005) noted that when ES = 0 and EM = 1, Csr reduces to that 

applying at a constant velocity on flat terrain to 3.6 J·kg-1 as per Minetti et al. (2002).  

 

2.2 Energy cost and metabolic power derived from GPS (Osgnach, et al., 

2010) 

 

Osgnach et al. (2010) first adapted the model detailed in section 2.1 (di Prampero, et 

al, 2005) to derive instantaneous velocity data from a multi-camera system in soccer 
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compared to previously used radar guns and camera devices. It was in this research 

that the suggestion to utilise GPS technology to attain the instantaneous velocity data 

was proposed. 

Once velocity and acceleration are known, metabolic power (P) can be estimated by 

multiplying that with the energy cost of sprint running, given as: 

                    (14) 

𝑃 =  𝐶sr ∙ v 

 

This equation (14) indicated that running velocity can generate different metabolic 

demands based upon the given acceleration (Osgnach, et al., 2010). 

As di Prampero et al. (2005) considered the terrain to be firm as in on a treadmill, 

Osgnach et al. (2010) adjusted the terrain constant (KT = 1.29) in equation 12 to 

account for the 30% greater energy cost of running on a football field (Pinnington & 

Dawson, 2001) and given as:        

                               (15) 

𝐶 = 155.4𝑥5 − 30.4𝑥4 − 43.3𝑥3 + 46.3𝑥2 + 19.5𝑥 + 1.29 

 

The amendment is carried to equation (13) and expressed as: 

                    (16) 

𝐶sr =  (155.4ES5 − 30.4ES4 − 43.3ES2 + 46.3ES3 + 46.3ES2 + 19.5ES

+ 1.29)EM 

2.3 Model to calculate mechanical work of overground running by Gray 

et al. (2020) 

 

The velocity-time curve used in the model is based upon the assumption that; 

the predominant purposeful locomotive motion is forward horizontal acceleration of 

the COM (Bloomfield, et al., 2007), overground running is performed on a hard (non-

deforming) level horizontal surface orthogonal to the Earth’s gravitational field, the 



Robert Owen MSc in Sport Science by Research 

12 

 

runner adopts a fixed vertical position, perpendicular to the ground surface (Grey, et 

al., 2020). Total mechanical work (Wtotal) can be divided into external work (Wext) and 

internal work (Wint). Whereby, Wext is the work performed to accelerate or decelerate 

the COM and Wint is the work performed by the limbs about the COM. Therefore, 

Wtotal is expressed as: 

 

Wtotal = Wext + Wint             (17) 

 

Moreover, Wext can describe locomotion in greater detail as elements of positive and 

negative work performed. Where positive (Whor+) and negative (Whor-) work (J/kg) in 

the horizontal plane are associated with accelerations and decelerations of the COM. 

The model accounts for the mechanical work performed by the athlete to overcome air 

resistance (Wair) (J/kg). Furthermore, positive (Wvert+) and negative (Wvert-) work done 

(J/kg) in the vertical plane is associated with the oscillation of the COM in each step. 

Wint is depicted by the work done to move the body’s limbs (Wlimbs) (J/kg). 

 

Wext = Whor+ + Whor- + Wvert+ + Wvert- + Wair                (18) 

    Wint = Wlimbs                        (19) 

 

 Calculations 

To obtain mechanical work, power and demand from a GPS receiver, velocity 

data during overground running is modelled on the time-velocity curve. The model 

summarised follows a four-step framework to determine Wtotal (analysis over a limited 

number of samples (n) from a GPS receiver over a fixed time interval (ti)). 

1. Prediction of the COM and limb kinematics 

2. Calculating external work performed (Wext) 

3. Calculating internal work performed (Wint) 

4. Summation to calculate total mechanical work and power 
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Prediction of COM and limb kinematics 

During overground running, COM and limb kinematics are closely linked with running 

speed. When running the COM will rise and fall across the gait cycle, being at its 

lowest point in the mid support phase and highest in the mid-flight phase (Segers, et 

al., 2007; Farley & Ferris, 1998). The vertical displacement of COM (∆h, from lowest 

to highest point) has been demonstrated to alter linearly with movement velocity(v) 

(r2= 0.444, p= 0.034, n= 90) (Lee & Farley, 1998; Ito, et al., 1983) given as: 

 

∆h = 0.080 + 0.004 · v            (20) 

(∆h is in m, and v is in m·s-1) 

 

Likewise, limb kinematics are indicated to vary during a continuous running velocity. 

The support phase in the gait cycle decreases and the swing duration is maintained or 

fractionally decreased at higher velocities (Nilsson et al., 1985). When a single limb is 

in the support phase of the gait cycle it is known as the duty factor. As steady-state 

running velocity increases, so does stride frequency (ƒ) and duty factor decreases (d). 

ƒ and d have been established as determinants of metabolic power during locomotion 

(Nardello, et al., 2011) and regressions had been determined (Gray, et al., 2019): 

 

ƒ = 0.026 · v2 – 0.111 · v + 1.398                (21) 

d = 0.0004 · v2 – 0.061 · v + 0.50            (22) 

(ƒ is in Hz, d is in decimal form percentage, and v is in m·s-1) 

 

 Calculating external work 

Cavagna et al., (1964) identified external work as the changes in potential and 

kinetic energy in the COM. The kinetic energy of the COM is the vectoral summation 

of the horizontal and vertical components giving Whor, which is given as: 



Robert Owen MSc in Sport Science by Research 

14 

 

 

                    (23) 

whor
j

∑ 0.5(vj+1
2 −  vj−1

2 )

𝑛

j=1

 

 

Whor is divided into positive (accelerating) horizontal work (Whor
+)  and negative 

(decelerating) horizontal work (Whor
-). Where vJ+1 is greater than vJ-1 Whor

+ is being 

done and conversely when vJ-1 is greater than vJ+1 Whor
- is done in the units of J/kg.  

The vertical displacement of COM is in continuous motion (∆h), rising and falling, 

throughout the phases of running gait. This indicated a state of constant fluctuation of 

vertical kinematic and potential energy. Laws of thermodynamics were used, implying 

∆potential energy = ∆kinetic energy meaning either measure can be used to estimate 

Wvert. Gray et al. (2019) used ∆potential energy for this model to provide the ∆h using 

the equation (20).  ∆potential energy of the COM from its lowest to highest point 

correlates to the positive work done (Wvert
+) and contrariwise attributes to negative 

work done (Wvert
-). This model assumes that the rise and fall of the COM are equal 

│Wvert
+│=│Wvert

-│. Therefore, is given as: 

                    (24) 

│W
vert+
j

│ = │Wvert−
j

│ = │ ∑(2 · g · ∆ℎj · ƒj)

𝑛

j=1

 

 

∆hJ and ƒJ are calculated from velocity through equations (20) and (21) respectively.  

Air resistance (Fair) has been accounted for in this model as an external force acting 

against the surface area of the body. Using ambient air density (ρ), projected frontal 

surface area (Ap), relative air speed squared (S2) and drag coefficient (Cd), Fair can be 

calculated: 

                               (25) 

𝐹𝑎𝑖𝑟 = 0.5 · 𝜌 · 𝐴𝑝 · S2 ∙ 𝐶𝑑 
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Air density is known to vary with temperature (T) and barometric pressure (BP). Air 

density is expressed as kg/m3 when BP is in mmHg and T is in °C and ρο = 1.293 kg/m3 

as at sea level. Air density was approximated accordingly:     

                           (26) 

𝜌 =  
273 ∙ 𝜌𝜊 ∙ 𝐵𝑃

760 ∙ 𝑇
 

 

The surface area of bipedal running locomotion was set as ~26% of total body surface 

area as evidenced in earlier research (Davies,1980; Pugh, 1976; Shanebrook & 

Jaszczak, 1976) and calculated with previously established calculations (Shuter 

& Aslani, 2000; DuBois & DuBois, 1916) using standing height (ht) (measured in m) 

and body mass (M) (measured in kg) producing units in m2. Participant surface area 

can be calculated as:         

                               (27) 

A𝜌 = 0.26(94.9 ∙ ℎ𝑡0.655 ∙ 𝑀0.441 

 

Drag coefficient (Cd) was determined as 1 in the model, extracted from prior research 

which presented values of 0.7 – 1.1 in human locomotion (Walpert & Kyle, 1989; 

Davies,1980; Shanebrook & Jaszczak, 1976). 

 

Mechanical work to overcome air resistance (Wair) is proportional to the forward 

horizontal velocity cubed (v3). Established from findings of di Prampero (1986) where 

the runners movement velocity deduces relative air speed, v = S. Overcoming Wair is 

presented in units’ J/kg and expressed as: 

                               (28) 

Wair
j

=  ∑ (
0.5 ∙ 𝜌 ∙ 𝐴𝜌 ∙ vj

3 ∙ 𝐶𝑑j ∙ 𝑡𝑖

𝑀
)

𝑛

j=1
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 Calculating internal work 

Internal work is comprised predominantly of work done to move the limbs 

(Wlimbs) which Minetti (1998) devised to predict work performed mechanically to 

swing the limbs (Dlimbs). q represents the inertial properties of the limbs and is valued 

as a constant of 0.1 (units J/kg·m).  

                               (29) 

𝐷𝑙𝑖𝑚𝑏𝑠 = 𝑞 ∙ v2 ∙ ƒ (1 + (
𝑑

1 − 𝑑
)

2

) 

 

The original equation (29) allowed for both within and between segment energy 

transfer and so the absolute summation of negative and positive work done by the 

limbs. Meaning work done by the limbs was able to be calculated as:  

                               (30) 

𝑊𝑙𝑖𝑚𝑏𝑠
j

∑ (𝑞 ∙ vj
3 ∙ ƒj (1 + (

𝑑j

1 − 𝑑j
)

2

) ∙ 𝑡𝑡)

𝑛

j = 1

 

Ƒj and dj are calculated from equations (21) and (22) respectively. 

 

 Summation of total mechanical work, power and demand 

The model estimates total work done (Wtotal) (units J/kg) by summing the 

values of equations (18) and (19) which are determined by equations (23), (24), (28), 

and (30). This is expressed as: 

                    (31) 

𝑊𝑡𝑜𝑡𝑎𝑙
j

=  ∑(|W
𝑣𝑒𝑟𝑡+
j

| + |W𝑣𝑒𝑟𝑡−
j

| + |W
ℎ𝑜𝑟+
j

| + |Wℎ𝑜𝑟−
j

| + |W𝑎𝑖𝑟
j

|)

𝑛

j=1

 

 

Total mechanical power (Ptotal) is derived from dividing the Wtotal by the time interval 

and units are W/kg: 
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                               (32) 

𝑃𝑡𝑜𝑡𝑎𝑙
j

=  
𝑊𝑡𝑜𝑡𝑎𝑙

j

𝑡𝑖
 

 

Total mechanical demand is established through division of the mechanical power by 

the running velocity and units are presented in J/kg·m, in correspondence with the 

work of Minetti (1998). Total mechanical demand is given as:   

                                          (33) 

𝐷𝑡𝑜𝑡𝑎𝑙
j

=  
𝑃𝑡𝑜𝑡𝑎𝑙

j

v𝑗
 

 

2.4 Gray’s model to estimate metabolic load via mechanical modelling 

from GPS derived velocity data 

 

Utilising the mechanical model (Grey et al. 2020)  determines mechanical work 

done as seen in equation (31), which dictates the energy cost of running (Cr). To be 

able to estimate energy cost, the efficiency (ⴄ) of executing the mechanical work is 

determined on the understanding that:      

                             (34) 

Cr =  
Wtot

ⴄ
 

As presented by Minetti et al. (2002) locomotion on uphill slopes >0.15 the COM only 

performs positive work and thus, locomotion on downhill slopes >0.15 the COM 

performs negative work. The work efficiency is then compared with a likeness of the 

muscle contraction type to the work performed. Slow speed positive work efficiency 

(+veⴄ) compares with concentric muscle contractions  (~0.25) and slow speed negative 

work efficiency (-veⴄ) compares with eccentric muscle contractions (~1.20) (Minetti, 

et al., 2002; Whipp & Wasserman, 1969; Abbott, et al., 1952; Margaria, 1938; 

Dickinson, 1929). At higher speeds efficiency of positive work is reported to increase 

to ~0.5 (Willems, et al., 1995; Cavagna, et al., 1977; Cavagna, et al., 1964) due to the 
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utilisation of elastic energy from musculotendinous structures (Zamparo, et al., 2019; 

Cavagna, et al., 1977; di Prampero, et al., 1993; Ito, et al., 1983). Arsac and Locatelli 

(2002) proposed a model to portray the performance of positive work of running varied 

linearly dependant on velocity given as: 

                    (35) 

ⴄ+ve = 0.25 + (
0.25

vmax
) ∙ v 

 

Meaning positive work efficiency at the jth GPS sample will be defined as: 

                    (36) 

ⴄ
j

+ve = 0.25 + (
0.25

vmax
) ∙ vj 

 

Negative speed efficiency was considered constant at 0.8 as in previous research 

changes in negative work efficiency at higher speeds are not well defined and often 

use constant values of negative work efficiency ranging from 0.8 to 1.2 (Minetti, et al., 

1994; Ito, et al., 1983). EE for positive and negative mechanical work performed by 

the body at the jth sample is given by: 

                    (37) 

Cj
+ =  

W
hor+
j

+ W
vert+
j

+ Wair
j

+ Wlimbs
j

ⴄ
j

+ve
 

 

                    (38) 

Cj
− =  

Whor−
j

+ Wvert−
j

ⴄ
j

−ve
 

Consideration of work to overcome air resistance and its metabolic cost was noted 

before generating total EE. During acceleration air resistance gradually increases with 
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velocity requiring energy to overcome this. During deceleration, it is assumed air 

resistance assists the reduction of COM velocity, and so has no metabolic cost. 

 

3.0 Literature Review  

 

3.1 ‘Supply’ and ‘demand’ principle of measuring energy expenditure 

 

Methods of estimating EE have progressed from directly measuring heat 

dissipation, quantifying inspired and expired air, to mathematically modelling from 

instantaneous GPS velocity data. Whilst the two approaches have the same aim of 

producing metabolic power, they attain this information by different means. The 

current ‘gold standard’ method of generating EE, indirect calorimetry, measures 

respiratory gases during exercise using a mask and portable metabolic cart. As oxygen 

consumption and carbon dioxide production are directly related to aerobic and 

anaerobic metabolism, it is determined that indirect calorimetry measures the supply 

of energy production. Vice versa, modelled EE and mechanical work, determined from 

instantaneous velocity data from GPS devices, can quantify the locomotive 

movements of exercise. This provides the classification that the modelled metabolic 

power is calculating EE based on the energy demand of the task. Some commercial 

systems offer a method to quantify ‘player load’ from the use of tri-axial acceleration 

data from GPS devices. However, the results are presented in arbitrary units and 

therefore possess no physiological or mechanical significance.  

 

3.2 Calorimetry  

 

3.2.1 History of calorimetry 

 

Metabolic processes occur within all living organisms and a by-product is heat, 

therefore all living beings are in a continuous open cycle of heat exchange with the 

environment (bioenergetics). The measurement of heat exchange between animal and 
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environment is known as direct calorimetry. Antoine Lavoisier and Pierre Simone 

Laplace (1780) are recognised as the creators of the first animal calorimeter for 

measuring animal heat generation during winter (Lodwig & Smeaton, 1974). This 

calorimeter was comprised of two layers, an outer layer of snow and an inner layer of 

ice. Heat transferred from the animal into the surroundings melted the ice, and the 

water was weighed to provide a metric to calculate the energy transferred to melt the 

ice (Kenny, et al., 2017). This initial calorimeter was limited in the size of the chamber 

that could be created and limited all tests to be performed in the winter. The first human 

calorimeter was developed in the 19th century which concurrently measured heat from 

both aerobic and anaerobic metabolism whilst measuring the gas exchange in the 

atmosphere (Atwater, 1905). This was the empirical evidence to demonstrate the law 

of conservation via an equivalency relationship between fuel consumption of oxygen 

and heat production (Mtaweh, et al., 2018; Kenny, et al., 2017). As a result, EE could 

be calculated from heat exchange measurements (direct calorimetry) or could be 

estimated from oxygen consumption converting it into an energy equivalent (indirect 

calorimetry).  

Initially, indirect calorimetry methods required the connection of participants 

to static apparatus such as a spirometer and Douglas bags (Mtaweh, et al., 2018; 

McLean & Tobin, 2007). The innovation of portable metabolic carts came in the late 

19th century (Gunga & Kirsch, 1995), revolutionising how scientists were able to 

measure physiological demands across sports performed in a variety of settings. The 

original portable metabolic cart was designed to measure the physiological effects of 

altitude in mountain climbing (McLean & Tobin, 2007). Portable metabolic carts have 

progressed and are fully automated and able to perform open-circuit spirometry 

(Valanou, et al., 2006; Macfarlane, 2001), meaning that the subject breathes air from 

the surrounding environment (Valanou, et al., 2006). Automated, open circuit 

calorimetry has become the most common method of quantifying EE (Kenny, et al., 

2017). The metabolic carts can quantify oxygen consumption and carbon dioxide 

production by measuring inspired and expired air and using minute ventilation (Kenny, 

et al., 2017). Additionally, oxygen consumption and carbon dioxide production are 

used to calculate the respiratory exchange ratio. This provides an estimate for substrate 

utilisation and allows for a further breakdown of EE using the caloric equivalents for 

macronutrients. 
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3.2.2 Use of indirect calorimetry in medicine and sport performance 

 

The primary use of indirect calorimetry is for interpretation of EE and 

respiratory analysis in medicine (Delsoglio, et al., 2019; Mtaweh, et al., 2018; Reeves, 

et al., 2004) and sport and exercise science (Mtaweh, et al., 2018; Robergs, et al., 2010; 

Macfarlane, 2001). Indirect calorimetry is based on the understanding that food is 

oxidised within the body and produces heat. Using oxygen inhalation and carbon 

dioxide exhalation, the laws of conservation can be expressed as (Kang, 2008): 

                    (39) 

Substrate +  O2  → heat + CO2 + H2O 

 

Inspired and expired air measurements can provide an accurate estimate of EE 

(Macfarlane, 2001). This has been applied in medical settings to estimate the resting 

daily EE of critical patients in intensive care (Smyrnios, et al., 1997).  Smyrnios et al. 

(1997) conducted a 30-minute test during the middle of the day (11 am to 3 pm) 

measuring minute ventilation, respiratory rate and heart rate which were found to be 

representative of daily average EE values. Despite the estimation being representative 

of a daily average, the values should not be used to predict expenditure on subsequent 

days due to patient condition fluctuation greatly varying resting EE values by up to 

46% (Weissman, et al., 1989). Understanding the EE of patients is predominantly 

utilised for the prescription of nutritional therapy as a treatment or to stabilise a patients 

condition (Achamrah, et al., 2021; Psota & Chen, 2013). In addition, physical activity 

has been used as a tool to prevent and manage a variety of chronic diseases, where EE 

was used as a method of global monitoring in these small populations (Psota & Chen, 

2013; Valanou, et al., 2006).  Wherein the use of indirect calorimetry was evaluated 

as an accurate method to estimating EE but not without the pitfalls of being inhibititory 

to normal behaviour patterns and costly to perform across large populations. 

Sport and exercise scientists use indirect calorimetry as a gold standard 

approach to understanding physiological demands by a global measure of metabolic 

power (Oxendale, et al., 2017; Buchheit, et al., 2015; Koehler, et al., 2010). The quality 
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of modern flow sensors and gas analysers have been shown to produce highly valid 

and reliable results (Macfarlane, 2001). The Jager ‘Oxycon Pro’ is compared with the 

Douglas bag method, during a graded exercise test to validate the device for use at 

low- and high-intensity exercise (Rietjens, et al., 2001). No statistical differences were 

identified in V̇E (r2 0.996), V̇O2 (r
2 0.957) and V̇CO2 (r

2 0.980) between the two 

methods (Rietjens, et al., 2001). Bland-Altman validity analysis revealed minimal bias 

and low standard deviations in gas measurement between the Oxycon Pro and Douglas 

bag method. The use of mobile metabolic carts has been questioned and has been 

shown to underestimate V̇O2 during steady-state and graded incremental endurance 

exercise at high cycle ergo workloads, > 200 W, and so must be considered when using 

the device to calculate EE (Perret & Mueller, 2006). 

 

3.3 Modelling energy expenditure 

 

3.3.1 Overview of  the di Prampero et al. (2005) sprint running model  

 

di Prampero et al. (2005) first formulated a model (detailed in section 2.1) to 

estimate metabolic power from video analysis. This development had the benefit that 

athletes were able to move naturally and unimpeded by equipment. The model required 

a minimum of four camera systems strategically placed to determine the location of 

the athlete on the pitch. Through the use of video analysis, the athletes’ movements 

could be tracked and so the velocity at which the athlete moved. The movements were 

subcategorised depending on their velocity as a means to quantify and evaluate an 

athletes performance. The EE of the athlete is calculated via the measured cumulative 

distance covered by the athlete and the assumed energy cost of running. This assumed 

energy cost was determined based on the angle of torso lean during acceleration and 

deceleration which has been compared to inclined and declined running and is like 

running at constant speed on an equivalent slope (di Prampero, et al., 2005). During 

this study, instantaneous velocity was recorded using a radar gun. di Prampero et al. 

(2005) identified a strong relationship between modelled and measured instantaneous 

speed recorded by radar gun (r2 > 0.98). This method proved advantageous being non-

invasive and grants sports scientists the ability to profile fluctuations of metabolic load 
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during play. GPS technology was suggested as an alternative method to video analysis 

to capture instantaneous velocity measures where video analysis may be unavailable 

due to cost or location such as a training venue (Osgnach, et al., 2010).  

Osgnach et al. (2010) proposed alternative parameters to interpret metabolic 

power. Equivalent distance (ED), is the distance covered by the player if run at an 

aerobic steady pace. This is calculated by dividing EE by the energy cost of running 

(Cr) per unit of distance: 

                    (40) 

ED =  
EE

Cr
 

 

Anaerobic index (AI), is the ratio of EE above a metabolic power threshold (EE>TP) to 

overall EE: 

                    (41) 

AI =  
EE>TP

EE
 

 

The metabolic threshold is aligned with VO2max. This assumes that energy delivered 

above this rate is generated from an anaerobic source.  

The method proposed by Osgnach et al. (2010) produced comparable estimates 

of EE to that estimated from video analysis during a football match. The total distance 

was only a partial indication of overall EE as the energy demand of accelerations and 

decelerations could increase the EE for the total distance by 15 % (Osgnach, et al., 

2010). Osgnach et al. (2010) proposed the measure of equivalent distance as a more 

appropriate means to measure overall EE. Furthermore, individualised thresholds can 

be identified based on VO2max to determine energy contribution from aerobic or 

anaerobic sources (Osgnach, et al., 2010).  
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3.3.2 Application of di Prampero model 

 

As Osgnach et al. (2010) identified, the metabolic player load can be greater 

from an increased number of accelerations/decelerations which demonstrates that 

traditional kinematic methods to quantify training load may not be representative of 

the demand of the exercise such as in small-sided games. This popular training tool 

monitored by traditional kinematic methods underestimates player load as players do 

not reach high-speed thresholds or accrue large total distances and so estimations of 

metabolic power provide a more valid method to represent the demands of small-sided 

games (Gaudino, et al., 2014). Furthermore, Gaudino et al. (2013) drew attention that 

not only in training protocols would there be discrepancies but also between positional 

requirements during a match. High-speed efforts (> 14.4 km⸱h−1) were compared with 

high-power efforts (> 20 W kg−1) during football training sessions. This comparison is 

made plausible as the metabolic cost of consistent running at 14.4 km⸱h−1 is 

approximately  20 W kg−1 (Osgnach, et al., 2010). Results show that the demands of 

positions that are associated with fewer high-intensity actions, like central defenders 

and central midfielders, are underestimated by traditional forms of kinematic 

measurements with high power distance being 62 to 84 % greater than high-speed 

running distance (Gaudino, et al., 2013). This therefore indicates the value of 

prescribing individualised training load based on the metabolic requirement of players 

based on position. However, it does not imply that specific drills or exercises must be 

programmed solely on internal descriptors and negate the use of kinematic 

measurements.  

Positional differences in physical demands have been explored across a variety 

of team field sports (Coutts, et al, 2015; Kempton, et al., 2015; Gaudino, et al., 2014; 

Gaudino, et al., 2013; Osgnach, et al., 2010). Coutts et al. (2015) explored the energetic 

cost of professional athletes in the Australian Football League (AFL). Data from 19 

matches were retrieved from GPS devices and metabolic measurements were 

estimated using the di Prampero model detailed in section 2.1. This study reported 

higher values of metabolic power in AFL compared to other field sports of football 

(Gaudino, et al., 2013) and rugby league (Kempton, et al., 2015) during match play. 

Although using the equivalent distance index presented by Osgnach et al. (2010), AFL 

presented lower values than football training (Osgnach, et al., 2010) and rugby league 
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match play (Kempton, et al., 2015). These findings were contributed to AFL matches 

being played on larger pitch sizes than the other sports, therefore, allowing players to 

run greater distances between accelerations/ decelerations or collisions. The overall 

EE during AFL matches was similar to that reported by Osgnach et al. (2010) in 

football match play (Coutts, et al, 2015). Kempton et al. (2015) presented results akin 

to those of previously mentioned studies whereby traditional kinematic measures of 

high-speed running could underestimate match-play demands in comparison to 

energetic measures in rugby league. Additionally, the equivalent distance ratio by 

Osgnach et al. (2010), provided value when evaluating the contribution of accelerating 

distance to overall distance. Total distance in this study was approximately 25 to 30 % 

lower than the equivalent distance, demonstrating the importance of measuring 

dynamic actions when quantifying the demands of sport (Kempton, et al., 2015). 

The model proposed by di Prampero et al. (2005) has been applied in 

theoretical settings to explore the reliability of the model. Stevens et al. (2015) 

conducted a study with adult semi-professional footballers, whereby the energy cost 

was determined from the use of a local positioning measurement system (LMS) and 

compared to values from a portable metabolic cart. A continuous running and shuttle 

running test was completed for a total of 18 minutes, with a starting average velocity 

of 7.5 km.h-1, increasing by 0.5 km.h-1 every 3 minutes until a velocity of 10 km.h-1 

was achieved. Stevens et al. (2015) identified the energy cost of continuous running, 

calculated from LMS data to overestimate EE by approximately 8 % when applied 

with the di Prampero model. This overestimation may be attributed to human error in 

pacing when trying to maintain a constant velocity, whilst not on a treadmill. The 

subjects would be performing small accelerations and decelerations to maintain a 

steady-state pace which would be included in the averaged data for processing, and the 

LMS device has been identified to incorrectly measure low-velocity accelerations as 

they can be misinterpreted for noise (Stevens, et al., 2014). Shuttle running was 

performed over 10 m with a 180° turn; the EE for this test was underestimated by about 

15 % compared to respiratory gas analysis, although the overall EE for shuttle running 

was greater than continuous running (Stevens, et al., 2015). Factors to consider for the 

underestimation are 1) the equivalent slope estimation is based on research conducted 

with elite mountain racers, and the energy cost of elite runners is lower at constant 

velocities compared to professional footballers (Sassi, et al., 2011), and 2) the method 
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using LMS underestimates actions such as 180° changes of direction by 5 %, so a 

multiplication of 1.05 could reduce the error to approximately 10 % (Stevens, et al., 

2014). 

EE values historically have been hard to quantify during intermittent running 

tests, such as the yo-yo intermittent running test. This is because the athletes’ repeated 

changes in direction and continuous cycles of accelerations and decelerations mean a 

constant steady-state velocity cannot quite be attained (Buglione & di Prampero, 

2013). Buglione and di Prampero (2013) used mathematical modelling (di Prampero, 

et al., 2005), from multi-camera system analysis, to estimate the energy cost of shuttle 

running modes between 8.5 and 22 m, as corresponds with commonly used testing 

protocols. The data was compared with a kinetic approach, by combining kinetic 

energy, estimated from max velocity, and the energy cost of steady-state running and 

indirect calorimetry combined with blood lactate concentration (B[La]). The results of 

the study found the two modelled approaches, the kinetic approach and the di 

Prampero model, yield similar values for EE with no significant differences in the 

outcomes. For shorter shuttle distances (8.5 to 10 m), both models underestimated the 

energy cost of shuttle running at an average speed of 4 m/s producing an estimate of 

9.5 J/(kg⸱m) compared to indirect calorimetry, 14 J/(kg m). This was because the 

indirect calorimetry exhibited greater energy cost at faster average velocities. As for 

the longer distance shuttle runs (18.5 to 22 m), all three methods generated similar 

estimations of energy cost for shuttle running. Buglione and di Prampero (2013) 

highlighted a greater energy demand (approx. 3.5 times)  of shuttle running compared 

with steady-state running as seen in previous research (Minetti, et al., 2002; Margaria, 

et al., 1963). This could be attributed to the greater energetic demand of continual 

acceleration and deceleration actions that in turn increase the angle of the equivalent 

slope (di Prampero, et al., 2005) being more comparable to uphill and downhill running 

than to constant velocity flat terrain running. 

Zamparo et al. (2014) conducted a similar investigation around the energetics 

of shuttle running, within male junior basketball players, intending to identify the 

energy cost of running with different turning angles (0 - 180° change of direction) and 

across different distances (5 – 25 m). Results at shorter distances (10 m) indicated a 

significantly larger energy cost when the change of direction increased from 90 to 

180°, P < 0.05. The cost of shuttle running across the 10 m was 5 times larger than 
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that of the steady-state continuous running on flat terrain (Zamparo, et al., 2014). 

Although, across conditions with changes of direction < 180°, no significant difference 

in energy cost was identified in shuttle runs with an effect size of 0.33. This would 

indicate that for changes in direction < 180° there is minimal change in physiological 

demand, but this would not negate the significant changes in biomechanical actions 

such as decelerating and accelerating forces, joint force loading and change of 

momentum (Schot, et al., 1995). Furthermore, significant differences were noticed 

between distances of 5, 10 and 25 m at a 180° change of direction. It is worth noting 

that players were unable to able to maintain the same average velocity during 5 m 

shuttles which may have contributed to the metabolic differences. Zamparo et al. 

(2014) found that the energetic cost for a 180° turn, for all distances, was 2.5 to 7 times 

larger than that of running on flat terrain at constant velocity. Overall cardiorespiratory 

data and B[La] increase with shuttle distance but the energy cost decrease. In 

agreement with the findings of Buglione and di Prampero (2013), the higher energy 

cost was identified to be at shorter shuttle distances, but across all distances, the energy 

cost of shuttle running was greater than that of flat terrain steady-state running. Using 

this insight, practitioners need only adjust shuttle distance dependant to increase or 

decrease the metabolic demand on the athlete dependent on the training outcome.  

Buchheit et al. (2015) implemented the di Prampero model, collecting 

instantaneous velocity data from a 4 Hz GPS device. The study aimed to compare 

estimations of the di Prampero model with indirect calorimetry during football-

specific circuits. The circuits included slalom running with a ball and sport-specific 

actions such as receiving and passing a ball as well as shooting. The author reported 

significant underestimations of metabolic power from the di Prampero model and 

presented an argument of the effectiveness of modelling metabolic power. However, 

Buchheit et al. (2015) does acknowledge that the findings require further support from 

future research within match simulation and in an adult cohort to confirm them. The 

di Prampero model was reported to underestimate metabolic demands, compared with 

indirect calorimetry, by up to 4 times during recovery phases (Buchheit et al., 2015). 

Although, this is to be expected as there is little-to-no metabolic demand during this 

time as there is minimal velocity data recorded during rest. However, there will be a 

metabolic supply increase in VO2 kinetics, to replenish the phosphocreatine system 

from its depletion at the onset of exercise (Cleuziou, et al., 2004; Perrey, et al., 2002; 
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Paterson & Whipp, 1991; Maehlum, et al., 1986). Additionally, Buchheit et al. (2015) 

stated moderate reliability for the di Prampero model in calculating average metabolic 

power during the football-specific circuit, however the distance at high metabolic 

power (> 20 W⸱kg-1) revealed a very large typical error (CV 73.6%). The accuracy of  

GPS devices with < 10 Hz sampling rate have been questioned in research and may 

underestimate instantaneous velocity and distance measures (Osgnach, et al., 2016; 

Varley, et al., 2012; Waldron, et al., 2011). Osgnach et al. (2016) wrote a response to 

the research presented by Buchheit et al. (2015), in which physiological principles and 

modelling assumptions were set forth to offer an explanation for the findings and 

provide clarification on applying the model. 

Initially, Osgnach et al. (2016) clarified key differences between the energy 

supply and metabolic demand. To that end, the energy cost of an exercise does not 

always equal the metabolic demand, especially in intermittent bouts of high- and low-

intensity work such as in football training or match play.  For instance, the energy cost 

at the onset of exercise is greater than the V̇O2 supply until a steady state is reached 

where the V̇O2 supply meets the energetic cost. On the contrary in recovery periods 

the V̇O2 supply is greater than the energy cost (Osgnach, et al., 2016). Figure 2 in 

Buchheit et al.’s (2015) (reproduced as Figure 2) article showed the V̇O2 included the 

measure at rest, but was compared to the net metabolic power, which is the work 

performed above rest, not providing a true comparison (Figure 2, yellow arrow) 

(Osgnach, et al., 2016). Additionally in Figure 2, metabolic power was seen to surpass 

30 W·kg-1 (approximately, 85 ml O2·kg-1·min-1 above rest values) eliciting a 

significant contribution from the anaerobic lactate system to fulfil the energy 

requirement, which raises concerns with a direct comparison between measured V̇O2 

and modelled metabolic power (Figure 2, green arrows) (Osgnach, et al., 2016). 

Finally, when metabolic power is zero, the measured V̇O2 begins to increase indicative 

of the onset of exercise (Figure 2, red arrows) (Osgnach, et al., 2016). Osgnach et al. 

predict if these concerns are met, to estimate metabolic power and measure V̇O2, the 

yields from both methods will produce more meaningful results.  
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Figure 2 Oxygen uptake (VO2), speed and metabolic power estimated from locomotor 

demands (PGPS) during warm-up and the 3 exercise bouts in a representative player. 

VO2max: maximal oxygen uptake reached during the incremental test to exhaustion. 

This figure is reproduced from Figure 2 of Buchheit et al. 2015. Refer to the text for 

the meaning of the arrows. 

 

3.3.3 Overview of Gray et al. (2020) mechanical model 

 

Gray et al. (2018) proposed a novel approach to assessing energetics by 

modelling mechanical load. The Gray model (detailed in section 2.3), through the use 

of GPS velocity data and running kinematics, estimates the mechanical work 

performed by an individual during overground locomotive exercise to provide 

estimations of EE through the application of the energy-work theorem (Gray, et al., 

2018). The total mechanical work is calculated from the sum of work performed to 

propel the COM horizontally, vertically, to overcome air resistance, and to move the 

limbs (Gray, et al., 2020). The model demonstrated the ability to produce estimates 

from absolute- and acceleration-running velocities and can attribute different 

mechanical loads to the individual during varied walking and running patterns. Like 
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the model presented by di Prampero et al. (2005) advantages of this alternative 

mechanical model is attributed to the non-invasive method of data retrieval which will 

not impact the performance of an athlete in field sports. Sports scientists can quantify 

the metabolic load of the athletes and in turn, identify metabolic and mechanically 

demanding bouts which may have attributed to performance outcomes. Progressive 

work utilising the mathematical model of Gray et al. (2020) has permitted the 

estimation of exercise tolerance from modelling overground power in exhaustive 

running (Vassallo, et al., 2020) and the assessment of the power-duration relationship 

in overground running (Vassallo, et al., 2021).  

 

3.3.4 Application of Gray et al. (2020) mechanical model 

 

Vassallo et al. (2020) utilised the mechanical model by Gray et al. (2020) 

(detailed in section 2.3) to obtain instantaneous power output and mechanical work 

from raw velocity data retrieved from a 10 Hz GPS receiver. This enabled Vassallo et 

al. (2020) to calculate an individual’s time to exercise intolerance (TLIM) and 

calculation of W-prime (W’) balance using a differential method (W’BALdiff). The 

W’BALdiff provided a close estimation (~ 9 s difference)  of TLIM  to the over-ground 

W ́BAL derived from a locomotor-specific regression equation, which provides validity 

to the differential method. Furthermore, the mechanical model (Gray, et al. 2020) has 

been employed to estimate bioenergetics to assess power-duration relationships during 

over-ground running (Vassallo, et al., 2021). Vassallo et al. (2021) ran a comparison 

of power- and speed-duration relationships during a 3 minute all-out over-ground 

running test. The results demonstrated reliable power-duration indices comparative to 

speed-duration, critical power coefficient of variation (CV) 2.6% had similar error to 

critical speed CV 2.0% and W’ measured CV 8.1% and D-prime CV 5.6%.  This 

concurs with previous research, in which W’ and D-prime produce great variability 

than critical power and critical speed (Johnson, et al., 2011; Gaesser & Wilson, 1988). 

As the Gray et al. (2020) mechanical model has been able to enable further 

mathematical models, by accurately estimating mechanical work and power, to 

determine valid estimations of exercise tolerance (Vassallo, et al., 2020) and reliable 

estimations of power-duration relationships (Vassallo, et al., 2021), by extension, it is 
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predicted that the mechanical model (Gray, et al. 2020) will facilitate accurate 

estimations of metabolic power in the Gray model. 

 

3.4 Global positioning systems (GPS) 

 

GPS technology has become common practice for sports scientists to monitor 

external load (Bourdon, et al., 2017; Malone, et al., 2017; Scott, et al., 2016; Cummins, 

et al., 2013). The GPS devices must obtain a high level of  intra- and inter-device 

validity and reliability to produce consistent accurate data between units (Heale & 

Twycross, 2015). These commercially available devices can calculate athlete velocity 

by use of the Doppler shift (Scott, et al., 2016), by examining changes in frequency of 

the satellite signal due to the movement of the receiver (Larsson, 2003). GPS has been 

advantageous over other movement tracking technologies by being economically 

viable, producing real-time feedback, and ability to track multiple athletes at once 

(Scott, et al., 2016; Aughey, 2010). Commercial GPS devices are classified by their 

rate of sampling and originally had a sampling rate of 1 Hz. Through continuous 

advancements in technology, commercial GPS devices normally sample at rates of up 

to 20 Hz (Polglaze, et al., 2021; Scott, et al., 2016) and are located between the 

shoulder blades. Increased sampling speeds were accompanied by the integration of 

triaxial accelerometers to be able to sum the accelerations in the X, Y, and Z-axis, as 

seen in Figure 3, to generate composite vector magnitudes (G-force).  
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Figure 3 Representation of location and orientation of triaxial accelerometer axes 

direction. (The figure outlined is facing forward – out of the page). 

 

3.4.1 Reliability and validity of GPS 

 

 1 Hz GPS devices 

Reliability of intra-unit refers to the consistency of a single device across 

several sessions (Coutts & Duffield, 2010). It is paramount that devices have good 

intra-unit reliability as this allows for comparisons of an athletes activity between 

sessions. Devices that sample at 1 Hz have been identified to have good reliability in 

linear and curvilinear running tasks (Gray, et al., 2010; Portas, et al., 2010 Petersen, et 

al., 2009; Edgecomb & Norton, 2006). Edgecomb and Norton (2006) reported a 

relative technical error measurement (TEM) of 4.8% for distance measurements across 

distances between 128 to 1386 m compared with that measured by calibrated trundle 

wheel and intra-device reliability with a TEM of 5.5%. In more recent studies the 

values for intra-device reliability were improved, reporting CV < 5%  during linear 

and non-linear locomotive tasks of walking, jogging, and running of up to 8800 m 

(Gray, et al., 2010; Portas, et al., 2010 Petersen, et al., 2009). Petersen et al. (2009) 

found that for velocities between 2 to 5 m.s-1, 1 Hz GPS devices had valid measures 

compared with the standardised distance, standard error estimate (SEE) ≤ 2.1%. Gray 

et al. (2010) stated CV between and within devices was 2.8% and 2.6% although 
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reduced validity was seen in increased movement intensities in non-linear locomotion, 

underestimating distance travelled.  

Minimal research has been performed on the validity of velocity data obtained 

from 1 Hz devices (Scott, et al., 2016). Barbero-Álvarez et al. (2010) determined that 

GPS velocity data produced valid measures to estimate peak velocity during a 30 m 

sprint with a significant Pearson correlation between GPS devices and timing gates for 

peak velocity (r2 -0.93 )and total sprint time (r2 -0.96). Furthermore, intra-device 

reliability was acceptable with CV 1.2% at max velocity and CV 1.7% for summed 

max velocity. MacLeod et al. (2009) compared the velocity of 1 Hz GPS devices to 

that from timing gates during hockey-related circuits. Pearsons correlation (r2 ≥ 0.99) 

identified that the 1 Hz produced valid measurement of speed across shuttle, linear, 

and T-drills performed at a variety of velocities. Coutts and Duffield (2010) compared 

the velocity reliability across 3 1 Hz GPS devices and the inter-device reliability was 

identified as good (CV 2.3 to 5.8%) during a circuit comprising of varying forms of 

locomotion (walking, jogging, and sprinting) with agility and rest components.  

  

5 Hz GPS devices 

Across the literature, a consensus has been drawn that 5 Hz devices can 

accurately measure athlete distances (Scott, et al., 2016). During linear walks and low 

velocity running, Portas et al. (2010) reported high velocity (SEE 3.1% and 2.9%) over 

distances from 50 to 60 m. Similarly, Petersen et al. (2009) reported the validity of 

distance quantification for 5 Hz devices in curvilinear walking and running distances 

between 600 to 8,800 m (SEE 0.4 to 3.8%). Rampinini et al. (2015) observed 

differences when performing high velocity shuttles (CV 7.8%) and even larger 

discrepancies when performing at very high velocity running (CV 23.2%). Intra-

device reliability has generally been identified as good when measuring distance 

during walking, jogging, and running in linear or curvilinear patterns (CV < 5%) 

(Portas, et al., 2010; Petersen, et al., 2009). In concurrence with the former research, 

Waldron et al. (2011) reported 5 Hz GPS to be reliable when quantifying distance and  

speed (CV 1.62% to 2.3%). Although the devices underestimate both distance 

measured by tape, and velocity measures, compared with timing gates, so the validity 

was questioned. Furthermore, moderate levels of validity of the velocity measures (CV 
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< 10%) were observed in linear running and seemed to improve as distance increased. 

Varley and colleagues (2012) had similar results whereby measurements of 

instantaneous velocity were valid at moderate or high initial velocities (between 3 to 

8 m⸱s-1) of acceleration (CV ≥ 9.5%) and for high-velocity (5 to 8 m⸱s-1) constant speed 

running (CV 3.6%). Although, accelerations with initial low speeds and decelerations 

had poor validity for instantaneous velocity (Varley, et al., 2012). Inter-device 

reliability has been questioned, during simulated multi-directional protocols 

replicating field sports movements, for mean velocity (CV 19.8 to 33.4%) and peak 

velocity (CV 14.2 to 31.5%) (Vickery, et al., 2014).  

 

 10 Hz GPS devices 

Early results of 10 Hz GPS devices demonstrated an acceptable measure of 

validity for sprint distances of 15 m and 30m with mean standard error of measurement 

(SEM) respectively 10.9% and 5.1% (Castellano, et al., 2011). Despite the SEM of 15 

m sprinting being over 10% (indicative of poor validity), 8 of the 9 GPS devices used 

produced SEM < 6%. Furthermore, Castellano et al. (2011) found 10 Hz devices to 

have good inter-device reliability for distance performing sprints across 15 and 30 m 

(CV 1.3% and 0.7%). Vickery et al. (2014) found that 10 Hz devices provided reliable 

measures of distance during simulated cricket protocols, for fielding and sprinting (fast 

bowling), which were similar to values of the criterion data recorded by the 22 multi-

camera VICON system (P > 0.05). 10 Hz GPS devices across literature, exhibit 

moderate and good levels of validity of instantaneous velocity measures when 

performing constant speed running and accelerations, irrespective of the initial 

velocity, and improved when the velocity of actions increase  (Scott, et al., 2016). In 

contradiction to this, poor validity from 10 Hz devices was seen during deceleration 

actions (Varley, et al., 2012). Likewise, Akenhead et al. (2014) produced similar 

results, reporting instantaneous velocity measures were valid for accelerated running 

up to 4 m⸱s-1 (SEE 0.12 – 0.19) but may be compromised above this threshold (SEE 

0.32). Vickery et al. (2014), similarly found no significant differences (P >0.05) 

between peak speed measures of 10 Hz GPS devices and that of the VICON camera 

system across cricket fast bowling and fielding protocols, such as 5-m sprint 

acceleration, a 5-m sprint with a walking start, a run-a-three protocol, change of 
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direction circuits, and random 10 s task of field-based sports movements. Furthermore, 

in the same study, mean velocity measures were not significantly different from that 

measured by VICON in all tasks except during the change of direction circuit and a 

random 10 s task of field-based sports movements. Johnston et al. (2014), found 10 Hz 

GPS to estimate valid (P > 0.05) and reliable measure (TEM 1.3%) of total distance 

and provided improved measures of devices that sample at a lower frequency. 

 

 15 Hz GPS devices 

Currently, there is limited literature on the reliability and validity of 15 Hz GPS 

devices. Vickery et al. (2014) found, when using two 15 Hz GPS devices, that both 

devices had meaningful differences of distance measurements, during change of 

direction circuits, compared to that from the VICON system. Additionally, Vickery et 

al. (2014), found both GPS devices to have similar distance results to VICON in the 

random 10 s task of field-based sports movements, 5-m sprint with a walking start, and 

a run-a-three protocol. Comparably, Johnston et al. (2014) found no meaningful 

difference (P > 0.05) between the criterion distance, measured by tape measure, and 

values recorded by the GPS device supporting the validity of distance measures from 

the 15 Hz units. Furthermore, they reported intra-device reliability for total distance 

(TEM 1.9%, ICC −0.20) and low velocity running distance (TEM  2.0%, ICC 0.98). 

Inversely when reporting high and very high-velocity running distance, Johnston et al. 

(2014) stated that the intra-device reliability decreases and becomes poor (TEM 7.6%, 

ICC 0.94, TEM 12.1 accordingly). Vickery et al. (2014) found 15Hz GPS devices to 

have moderate levels of intra-device reliability, when measuring distance, during the 

15 m fast bowling protocol (CV 5.5%, intraclass correlation (ICC) 0.55), change of 

direction circuit, with shallow cutting angles, (CV 6.2%, ICC 0.46), and random 10 s 

task of field-based sports movements (CV 8.2%, ICC 0.10) and poor during high-

intensity cricket fielding protocols and change of direction circuits with tight cutting 

angles (CV 12.5 to 17.9%). Whereas Rawstorn et al. (2014) observed 15 Hz GPS 

devices to have good intra-device reliability during a football shuttle test (CV 2.44%, 

ICC 0.99). This is similar to the findings of Buchhiet et al. (2014) where good to 

moderate levels of intra-device reliability was seen when reporting total distance (CV 

3%), low velocity (CV 2%), and high velocity (CV 6%) running. 
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Suggestions have been made that increased sampling frequency may be 

detrimental to the validity of velocity measures from GPS devices (Scott, et al. 2016). 

Despite this, Vickery et al. (2014) found 15 Hz devices to be valid for both peak and 

mean velocity in simulated cricket fast bowling, fielding, and a run-a-three protocol. 

Although there were discrepancies during the shallow change of direction circuit for 

mean velocity measures and, during the tight angle change of direction circuit, one 

device substantially underestimated mean velocity and the other device overestimated 

the peak velocity measure (Vickery, et al., 2014). Johnston et al. (2014) studied 

simulated sports circuits; one GPS device was found to be significantly different to 

that of the criterion velocity measure (P 0.009), although Pearson correlations for the 

two devices were large (r 0.64) and very large (r 0.76) effects. The inter-device 

reliability was reported as moderate during cricket fast bowling (CV 8.8%, ICC 0.50), 

a random 10 s task of field-based sports (CV 7.5%, ICC 0.39), and a shallow change 

of direction task (CV 7.8%, ICC -0.14) when measuring mean velocity (Vickery, et 

al., 2014). Furthermore, the inter-device reliability for measuring mean velocity was 

found to be poor for the tight angle change of direction circuit, run-a-three, and cricket 

fielding protocols (CV 10.9 to 16.3%). In addition, the study revealed that inter-device 

reliability for peak velocity, across both change of direction circuits, run-a-three test, 

cricket fielding and the 10 s task of field-based sports movements protocols, to be poor 

(CV 11.9 to 20.0%), although the fast-bowling protocol to be moderate (CV 8.4%, 

ICC 0.36) (Vickery, et al., 2014). Inconsistent with these findings, Buchhiet et al. 

(2014) presented results of good intra-device reliability for measuring mean speed in 

a standardised running circuit (CV 1%) and moderate reliability (TEM 8.1%, ICC -

0.14) during sport simulated circuits (Johnston, et al., 2014).  

Whilst there has been conflicting reliability and validity measures reported on 

15 Hz units for high velocity and change of direction tasks, the question arises whether 

a higher sampling rate is indicative of more accurate results. Johnston et al. (2014), 

when comparing 10 Hz and 15 Hz GPS devices, found the intra-device reliability 

measures to be more accurate, and suggested possible inconsistencies in reliability as 

the sampling rate is increased beyond 10 Hz but there was no empirical evidence to 

confirm this. In addition, the validity of velocity measures was stronger for 10 Hz 

devices (r 0.89 and 0.91) compared with the 15 Hz devices (r 0.64 and 0.76), indicating 

there may be no gain in increased sampling rate (Johnston, et al., 2014). This study 
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suggests that practitioners should take precautions to understand that an increased 

sample rate may improve the validity or reliability of the data retrieved. 

 

Chapter 4.0 Methods 

 

4.1 Participants 

 

Thirteen healthy male adults (see Table 1) volunteered to participate in the 

study.  All volunteers were informed of the experimental procedures, the benefits of 

the research and risks associated with participation. Each participant provided written 

informed consent before undergoing pre-exercise health screening and only 

participated in the study if identified as low risk. Participants were provided pre-test 

instructions and informed to avoid heavy exertion or vigorous exercise 24-h before 

testing, to consume a carbohydrate-dense meal one to four hours before testing, to 

abstain from the consumption of stimulants or depressants three hours before testing, 

and to arrive in a euhydrated state. The study received ethical approval from the 

Human Research Ethics Committee of the University of New England, in accordance 

with the Declaration of Helsinki.  

 

Table 1 Table of participant characteristics. 

 
Stature (cm) Body mass (kg) Age (years) 

VO2max 

(ml⸱kg⸱min) 

n Mean SD Mean SD Mean SD Mean SD 

13 177.9 6.2 75.8 13.68 25 6 44.6 9.6 

 

4.2 Experimental design 

 

A randomised crossover design was implemented to compare the method of 

estimating EE from the demand of the exercise, through modelled velocity data, to 
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measured EE from the supply of oxygen and B[La]. Each participant completed each 

test as outlined in Figure 4.  

 

 

 

Participants performed testing on four occasions, with each visit 1-h in 

duration, performed approximately 1-wk apart. The initial visit, consisting of the 

graded incremental running test and anthropometric measurements, was conducted in 

laboratory conditions and all subsequent visits were performed on a circular running 

track. On the second visit, the participants performed a familiarisation session, 

whereby the participants rehearsed the running tests. On the third and final visit, 

participants were randomly allocated and performed the repeated shuttle test over 20 

m, the repeated sprint test over 40 m, the continuous running test (repeated laps the 

circumference of a 400 m athletics track), and a 400 m sprint (one complete lap of the 

athletics track). For each test, including during the familiarisation session, the 

participant wore a mobile metabolic cart for direct gas analysis, a GPS receiver, and 

B[La] was taken prior to exercise to measure homeostatic physiological markers and 

2 min into the recovery of each test.  

To mitigate the carryover effect, of one test impacting another, the participants 

performed a familiarisation session and were randomly allocated testing protocols to 

• Anthropometric tests (stature, body mass).

• Graded incremental running test

Visit 1 -
Laboratory

• Familiarisation of the repeated shuttle, 
reseated sprint, sontinuous running and 400 
m sprint tests

Visit 2 - Track

• Repeated shutte test

• Repeated sprint test
Visit 3/4 - Track

• Continuous running test

• 400 m sprint test
Visit 3/4 - Track

Figure 4 Participant testing schedule 
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minimise the learning effect. Furthermore, participants would not start the next test 

until the physiological markers returned to homeostatic values and the participant 

verbally consented, that they felt fully recovered. Additionally, during the metabolic 

calculations, the energy contribution from lactate was fixed at 2.0 mmol⸱L for all 

participants. 

 

4.3 Experimental Protocols 

 

Incremental running test 

The initial visit entailed a graded incremental running test to volitional fatigue, 

performed on a treadmill (HP Cosmos Saturn, Traunstein, Germany) (laboratory 

conditions: ambient temperature 18.0°C, barometric pressure 677 mmHg, ambient 

relative humidity 62%). Participants wore a sealed face mask around the nose and 

mouth to collect and analyse expired air through the static Jaeger Oxycon Pro 

metabolic system (Carefusion Germany, 234, GmbH, Hochberg, Germany). The test 

commenced with the treadmill on a 1% incline at 8.0 km∙h-1 for the first minute and 

increased by 1.0 km∙h-1 for each minute thereafter. The speed increase was controlled 

by the researcher and paced by the treadmill. This continued until the participant could 

no longer keep running, upon maximal effort voluntary fatigue, and the test was 

concluded. The graded incremental exercise test provided an accurate estimation of 

V̇O2max (Beltz, et al., 2016; LourenÇo, et al., 2011). Work performed above V̇O2max 

has been thought to correspond with anaerobic energy pathways (Wasserman, 1984; 

Davis, et al., 1976) and work performed below V̇O2max suggests the primary source of 

energy is from aerobic respiration (Bassett & Howley, 2000; Davis, et al., 1976). The 

V̇O2max further indicates the physical fitness level of the participants. 

 

Repeated shuttle test 

The 20 m shuttle runs were performed on a 400 m circular running track (mean 

± SD: temperature 17.64 ± 5.78 °C, relative humidity 78.96 ± 14.97 %, barometric 

pressure 684.55 ± 3.78 mmHg, altitude 987.00 ± 0.00 m), between two markers 
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continuously for 6 min. The test was run at a constant submaximal speed of 12 km∙h-

1. The pace was set by a pre-recorded metronome that was set to play a tone every 6 s 

through a portable MP3 device (Apple iPod Mini, Cupertino, California, United 

States)  and earphones. Throughout all field tests, participants wore a Jaeger Oxycon 

Mobile (Carefusion Germany 234 GmbH, Hoechberg, Germany) portable metabolic 

system, fastened to the upper-back which sampled gas data every 15 s and a 15-Hz 

GPS device (AMR Sport Motion Trax, Gold Coast, Qld, Australia), containing a 

skytraq venus module chipset, as used in other commercially available GPS receivers 

(personal communication, April 2021), mounted within a harness, placed between the 

shoulder blades. Following the 6 min exercise period, the participant immediately 

began a 6 min period of passive recovery whereby blood capillary samples were 

collected from the fingertip with a lancet and analysed on-site with a Lactate Pro 

device (Arkray, Japan). 

 

Repeated sprint test 

The repeated sprint test was performed over 40 m, identified by set markers on 

the track, and participants were required to perform a total of six repetitions separated 

by a 30 s rest interval. Participants were instructed to run as fast as possible (maximal 

effort) for each sprint repetition. On completion of all six repeated sprints, the test was 

ended, and blood samples were taken at the beginning of the passive recovery and 

immediately analysed. 

 

Continuous running test 

Six minutes of continuous running was performed around a 400 m athletics 

track at a constant speed of 12 km∙h-1. The track had markers placed every 20 m, and 

the participant was informed they had to reach each marker on the tone played by the 

pre-set recording. A tone was played every 6 s to pace the participants. On completion 

of the 6 min of exercise the recording ended, and participants commenced 6 min of 

seated passive recovery, in which time blood capillary samples were collected. 
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Four-hundred metre sprint test 

Participants were asked to perform a singular 400 m sprint in the quickest time 

possible. The 400 m bout was followed by 6 min of seated passive rest when the 

investigator collected blood capillary samples to analyse lactate concentration 

immediately. 

Rationale for exercise test selection 

The outlined exercise tests were selected to provide an insight how the models can be 

implemented within a variety of field-based team sports. Most athletes, in field-based 

team sports, will at some time have to perform, in competition or training, steady-state, 

aerobic work, which is represented by the continuous running test. Also, most team 

field sports are intermittent in nature with the predominant amount of work performed 

below maximal intent such as the shuttle running test. In many cases in attacking play, 

within field sports, athletes will be required to either perform an extended run at high 

intensity as simulated by the four-hundred metre test or be required to perform 

repeated high intensity sprints when a tactical advantage or disadvantage suddenly 

occurs within a game. 

4.4 Data Analysis 

 

Blood lactate 

The B[La] was estimated from the net accumulation above rest, assumed to be 

1 mM, using an energy equivalent of 3 ml O2⸱kg⸱mM (di Prampero & Ferretti, 1999; 

di Prampero, 1981) to calculate EE. B[La] EE was then collated with that determined 

by indirect calorimetry gas analysis, hereon, the combined data will be referred to 

solely as gas analysis,  to obtain overall total EE (see Figure 5). 

 

Indirect calorimetry 

Using respiratory gas collection, the sum of EE from the aerobic energy system 

was calculated using oxygen consumption, normalised by body mass V̇O2⸱kg 

(ml⸱min⸱kg), and multiplying by the energy equivalent of 20.9 J·ml of oxygen 

(respiratory quotient = 0.96) as done by Buglione and di Prampero (2013), to calculate 
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aerobic energy contribution (Aer). Anaerobic alactic (AnAl) EE was obtained from 

V̇O2 kinetics over the 6 min recovery phase. Net values of V̇O2 were taken from the 

final 2 min of the recovery phase and linearly interpolated. By back extrapolation of 

the obtained function from the recovery phase to zero, permitted the estimation of the 

fast component of the AnAl oxygen debt (Figure 5). A sum of the aerobic and 

anaerobic (AnAl and Bla) was used to calculate overall EE, expressed as: 

                               (42) 

Aer + AnAl +  Bla = Overall EE 

 

 

 

Figure 5 Typical example of the time course of V̇O2 above resting during 6 min of 

exercise and 6 min of recovery. The straight-line shows regression for obtaining the 

slow component of V̇O2 kinetics after exercise. The area below the V̇O2 curve during 

exercise is a measure of the aerobic energy yield. The area between straight line and 

actual V̇O2 kinetics in recovery is a measure of the anaerobic alactic energy yield 

(AnAl). Reproduced from Buglione and di Prampero (2013). 

 

 di Prampero Model 

Velocity data were processed through the di Prampero metabolic power model 

outlined in section 2.1 to gain an estimate of EE. Once EE estimation is obtained, the 

results are compared with that of the indirect calorimetry and the Gray model. 
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 Gray Model 

The velocity data were input into the Gray model, through which mechanical 

and metabolic modelling (described in section 2.2) calculations produced an estimated 

value of metabolic power and EE. The results generated from the model were then 

compared with those from indirect calorimetry and the di Prampero model. 

 

 

 

4.5 Statistical Analysis 

 

Checks for sphericity were conducted using Mauchly’s test, sphericity was 

violated and the Greenhouse-Geisser correction was used. Repeated measures two-

way analysis of variance (RM 2-way ANOVA) were conducted, for each exercise test, 

400 m, continuous running, repeated shuttle running, and repeated sprint running, for 

gas analysis measures of overall aerobic EE, overall anaerobic EE, and total overall 

EE, compared to modelled data of EE below threshold power, EE above threshold 

power and total overall EE, respectively, across independent variables (three levels: 

the di Prampero model, the Gray model, and gas analysis). A second RM 2-way 

ANOVA was conducted across each exercise test to compare gas analysis measures of 

the aerobic contribution to EE during exercise, aerobic contribution to EE during 

recovery, and total overall EE from aerobic contribution to modelled values of overall 

EE during exercise, overall EE during recovery, and total overall modelled EE. 

Bonferroni post hoc tests were used to examine specific differences between the three 

methods. Statistical significance was set at P < 0.05. Two continuous running, one 400 

m, two repeated shuttle, and three repeated sprint trials were excluded from statistical 

analysis due to incomplete GPS or metabolic cart data sets. 

 

Chapter 5.0 Results 
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5.1 400 m total energy expenditure  

 

There was an effect of the method used to derive overall EE during 400 m 

running (F(1.028,10.277) = 253.585, P < 0.001, ηp
2 = 0.962). Pairwise comparisons showed 

the Gray model to produce greater EE values than the di Prampero model (P < 0.001), 

the gas analysis produced greater EE values than the di Prampero model  (P < 0.001), 

and gas analysis yielded larger EE values than the Gray model (P < 0.001). During 

400 m running, there was an interaction effect between method to calculate EE x 

exercise intensity (F(1.287,12.867) = 37.258, P < 0.001, ηp
2 = 0.788). In 400 m running, 

the Gray model estimated larger EE above threshold power, than the di Prampero 

model (P < 0.001), the di Prampero model estimated significantly lower values than 

that determined by gas analysis for EE above threshold power (P < 0.001), and the 

Gray model produced lower values than gas analysis for EE above threshold power  (P 

= 0.003) (Figure 6A). In 400 m running, when measuring EE below threshold power, 

the EE measured by gas analysis produced greater values than di Prampero model (P 

< 0.001) and the Gray model (P < 0.001), but the di Prampero and the Gray model 

produced similar estimations (P = 0.951) of EE (Figure 6B). Measured overall EE, 

during 400 m running, the gas analysis produced significantly greater values than that 

estimated by both the di Prampero model (P < 0.001) and the Gray model (P < 0.001). 

There was a difference between the two models, where the Gray model estimated a 

larger overall EE compared to the di Prampero model (P < 0.001) (Figure 6C). 
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Figure 6 Means and standard deviations for 400 m A) energy expenditure above 

threshold power, B) energy expenditure below threshold power, C) overall energy 

expenditure  (* = indicates significant difference between methods). 

 

 

5.2 Continuous running total energy expenditure 

 

There was an effect of the method used to obtain overall EE was identified in 

continuous running (F(1.027,9.244) = 135.045, P < 0.001, ηp
2 = 0.938). Pairwise 

comparisons revealed the Gray model produced higher EE values than the di Prampero 

model (P < 0.001), gas analysis determined larger EE values than the di Prampero 

model  (P < 0.001), and gas analysis produced higher values of EE than the Gray model 

(P < 0.001). There was an interaction effect for method to calculate EE x exercise 

intensity (F(1.097,9.875) = 9.641, P < 0.010, ηp
2 = 0.517). The Gray model estimated 

similar EE values above threshold power with the di Prampero model (P = 0.544) and 

the EE from gas analysis (P = 0.472), and the di Prampero model estimated similar 
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values of EE to that determined from gas analysis (P = 0.114) (Figure 7A). When 

measuring EE below threshold power, gas analysis measured significantly higher 

values of EE than produced by the di Prampero model (P < 0.001) and the Gray model 

(P = 0.007), and the Gray model produced larger estimations of EE below threshold 

power than the di Prampero model (P < 0.001) (Figure 7B). During continuous 

running, overall EE measured by gas analysis determined significantly greater values 

than that estimated by both the di Prampero model (P < 0.001) and the Gray model (P 

< 0.001). Similarly, there were meaningful differences by those produced by the 

models, whereby the Gray model produced larger estimations of overall EE than the 

di Prampero model (P < 0.001) (Figure 7C). 

Figure 7 Means and standard deviations for continuous running A) energy expenditure 

above threshold power, B) energy expenditure below threshold power, C) overall 

energy expenditure  (* = indicates significant difference between methods). 

 

5.3 Repeated shuttle running total energy expenditure 

 



Robert Owen MSc in Sport Science by Research 

47 

 

There was an effect of the method used to acquire overall EE during repeated 

shuttle running (F(1.021,9.193) = 155.057, P < 0.001, ηp
2 = 0.945). Pairwise comparisons 

revealed the Gray model to produce higher EE values than the di Prampero model (P 

< 0.001), gas analysis generates larger EE values than the di Prampero model  (P < 

0.001), and gas analysis yield greater EE values than the Gray model (P < 0.001). 

There was an interaction effect, in the shuttle running protocol, for method to calculate 

EE x exercise intensity (F(1.283,11.544) = 240.998, P < 0.001, ηp
2 = 0.964). For EE above 

threshold power, in repeated shuttle running, the Gray model estimated greater values 

of EE than the di Prampero model (P < 0.001), the di Prampero model estimated 

significantly higher values of EE than that measured by gas analysis (P < 0.001), and 

the Gray model produced larger values than gas analysis for EE above threshold power  

(P < 0.001) (Figure 8A). When measuring EE below threshold power, in repeated 

shuttle running, the EE measured by gas analysis produced greater values than the di 

Prampero model (P < 0.001), also the gas analysis generated larger values of EE than 

the Gray model (P < 0.001), the di Prampero model and the Gray model produced 

similar estimations of EE below threshold power (P = 0.352) (Figure 8B). In repeat 

shuttle running, overall EE measured by gas analysis determined larger values than 

that estimated from the di Prampero model (P < 0.001) and the Gray model (P < 

0.001). There was a difference identified between the two models, whereby the Gray 

model estimated a larger total EE overall compared with the di Prampero model (P < 

0.001) (Figure 8C). 
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Figure 8 Means and standard deviations for repeated shuttle running A) energy 

expenditure above threshold power, B) energy expenditure below threshold power, C) 

overall energy expenditure  (* = indicates significant difference between methods). 

 

 

 

5.4 Repeated sprint running total energy expenditure 

 

In the repeated sprint running an effect was identified of the method used to 

derive the overall EE (F(1.019,8.149) = 261.221, P = < 0.001, ηp
2 = 0.970). Pairwise 

comparisons showed the Gray model to estimate larger values of EE than the di 

Prampero model (P < 0.001), the gas analysis determined greater EE values than the 

di Prampero model  (P < 0.001), and gas analysis produced larger EE values than the 

Gray model (P < 0.001). There was an interaction effect between the method to 

calculate EE x exercise intensity (F(1.283,11.544) = 240.998, P = < 0.001, ηp
2 = 0.964). 

During repeated sprint running, the Gray model estimated greater values of EE, above 
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threshold power, than the di Prampero model (P < 0.001), the gas analysis generated 

greater EE values than that of the di Prampero model (P < 0.001), yet the Gray model 

produced similar values to that determined by gas analysis for EE above threshold 

power  (P = 1.000) (Figure 9A). When measuring EE below threshold power, the di 

Prampero model estimated smaller values of EE than those generated by gas analysis 

(P < 0.001), also the gas analysis generated higher values of EE than the Gray model 

(P < 0.001), and the Gray model generated larger estimates than the di Prampero model 

of EE below threshold power (P < 0.001) (Figure 9B). The gas analysis method 

determined larger overall EE measured compared to the di Prampero model (P < 

0.001) and the Gray model (P < 0.001). There was a statistical difference between 

modelled estimations of EE, whereby the Gray model estimated greater vales of total 

EE overall than the di Prampero model (P < 0.001) (Figure 9C). 

 

 

Figure 9 Means and standard deviations for repeated shuttle running A) energy 

expenditure above threshold power, B) energy expenditure below threshold power, C) 

overall energy expenditure  (* = indicates significant difference between methods). 
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5.5 Total modelled energy expenditure compared to aerobic energy 

expenditure in 400 m running 

 

There was an effect seen between methods to attain modelled EE and EE from 

indirect calorimetry in the 400 m running protocol (F(1.042,10.416) = 68.668, P < 0.001, 

ηp
2 = 0.873). Pairwise comparisons revealed the di Prampero model to significantly 

produce smaller overall estimations of EE than the Gray model (P < 0.001) and indirect 

calorimetry (P < 0.001), the Gray model obtained similar values to that from indirect 

calorimetry (P = 0.007). Interaction effect between model type x test phase condition 

was identified (F(1.085,10.846) = 537.269, P < 0.001, ηp
2 = 0.982). During the exercise 

phase, indirect calorimetry determined significantly lower values of EE than the di 

Prampero model (P < 0.001) and the Gray model (P < 0.001), whereas the di Prampero 

model and the Gray model estimated similar EE values (P = 0.307) ( Figure 10A). 

During the recovery period, the Gray model estimated greater values of EE than the di 

Prampero model (P < 0.001), and aerobic EE from indirect calorimetry determined 

significantly greater values than the di Prampero model (P < 0.001) and the Gray 

model (P < 0.001) (Figure 10B). Overall EE expenditure from the di Prampero model 

underestimated that of the aerobic energy system from gas analysis (P < 0.001), also 

the di Prampero model estimated lower EE values than the Gray model (P < 0.001), 

the Gray model estimated similar values to that determined by gas analysis (P = 0.007) 

(Figure 10C).  



Robert Owen MSc in Sport Science by Research 

51 

 

 

Figure 10 Means and standard deviations for 400 m modelled and aerobic energy 

expenditure A) during exercise, B) during recovery, C) overall aerobic energy 

expenditure (* = indicates significant difference between methods). 

 

5.6 Total modelled energy expenditure compared to aerobic energy 

expenditure in continuous running 

 

An effect was identified between models to obtain modelled EE and EE from 

indirect calorimetry during the continuous running (F(1.040,9.359) = 64.095, P < 0.001, 

ηp
2 = 0.877). Pairwise comparisons revealed the di Prampero model to produce smaller 

overall EE values than the Gray model (P < 0.001) and indirect calorimetry (P < 

0.001), the Gray model obtained smaller EE values to aerobic EE from indirect 

calorimetry (P < 0.001). Interaction effect between model type x test phase condition 

was identified (F(1.719,15.467) = 75.452, P  < 0.001, ηp
2 = 0.893). During the exercise 

period, the di Prampero model estimated smaller values of EE than the Gray model (P 

< 0.001), and the di Prampero model estimated similar results to that determined by 

gas analysis (P = 1.000), and the Gray model estimated similar values to that from gas 
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analysis (P = 1.000) (Figure 11A). During the recovery phase, the Gray model 

produced greater estimations of EE than the di Prampero model (P < 0.001), EE 

determined from gas analysis produced significantly larger EE values than that 

estimated by the di Prampero model (P < 0.001) and the Gray model (P < 0.001) 

(Figure 11B). The overall aerobic EE by gas analysis was significantly larger than that 

estimated by the di Prampero model (P < 0.001) and the Gray model (P < 0.001), the 

Gray model generated larger estimated vales of EE that the di Prampero model (P < 

0.001) (Figure 11C).  

 

 

Figure 11 Means and standard deviations for continuous running modelled and 

aerobic energy expenditure A) during exercise, B) during recovery, C) overall aerobic 

energy expenditure (* = indicates significant difference between methods). 

 

5.7 Total modelled energy expenditure compared to aerobic energy 

expenditure in repeat shuttle running 
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There was an effect of the model to produce EE during repeated shuttle running 

(F(1.022,9.202) = 92.003, P < 0.001, ηp
2 = 0.911). Pairwise comparisons revealed the Gray 

model to produce higher values than the di Prampero (P < 0.001), gas analysis to 

produce greater values than the di Prampero model  (P < 0.001), and the gas analysis 

to determine larger values than the Gray model (P < 0.001). There was an interaction 

effect for model type x test phase condition was identified (F(1.341,12.071) = 56.065, P < 

0.001, ηp
2 = 0.862). The Gray model estimated larger values of EE during the exercise 

phase than the di Prampero model (P < 0.001), the di Prampero model estimated 

significantly smaller values of EE than measured by gas analysis (P < 0.001), and the 

Gray model produced smaller values than gas analysis during the exercise period (P < 

0.001) (Figure 12A). In the recovery period, the Gray model estimated greater values 

of EE than the di Prampero model (P < 0.001), the EE from the aerobic system 

measured by gas analysis determined significantly larger values than that estimated by 

the di Prampero model (P < 0.001) and the Gray model (P < 0.001) (Figure 12B). The 

overall EE from the aerobic gas analysis ascertained significantly greater values of EE 

than the di Prampero model (P < 0.001) and the Gray model (P < 0.001), and the Gray 

model generated larger EE values than that produced by the di Prampero model (P < 

0.001) (Figure 12C).  
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Figure 12 Means and standard deviations for repeated shuttle running modelled and 

aerobic energy expenditure A) during exercise, B) during recovery, C) overall aerobic 

energy expenditure (* = indicates significant difference between methods). 

 

5.5 Total modelled energy expenditure compared to aerobic energy 

expenditure in repeat sprint running 

 

There was an effect of the model to produce EE was identified during repeated 

sprint running (F(1.015,8.124) = 85.928, P < 0.001, ηp
2 = 0.915). Pairwise comparisons 

showed the Gray model to produce higher values than the di Prampero (P < 0.001), 

gas analysis to produce greater values than the di Prampero model  (P < 0.001), and 

the gas analysis to produce greater values than estimated by the Gray model (P < 

0.001). There was an interaction effect for model type x test phase condition was 

identified (F(1.791,14.332) = 78.452, P  < 0.001, ηp
2 = 0.907). During the exercise phase, 

the Gray model estimated greater values of EE than the di Prampero model (P < 0.001), 

the di Prampero model estimated similar values to that measured by gas analysis (P = 

0.104), and the Gray model produced similar EE values to the gas analysis during the 

exercise period (P = 1.000) (Figure 9D). In the recovery, the di Prampero model 
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estimated lower values of EE compared to the Gray model (P < 0.001) and the gas 

analysis(P < 0.001), the measured gas analysis determined higher values of EE than 

that produces by the Gray model (P < 0.001) (Figure 10D). The overall total aerobic 

contribution to EE determined significantly greater values than the di Prampero model 

(P < 0.001) and the Gray model (P < 0.001), and the Gray model estimated higher 

values of overall EE than the di Prampero model (P < 0.001) (Figure 11D). 

 

Figure 13 Means and standard deviations for repeated sprint running modelled and 

aerobic energy expenditure A) during exercise, B) during recovery, C) overall aerobic 

energy expenditure (* = indicates significant difference between methods). 

 

Chapter 6.0 Discussion 

 

The primary aim of this study was to understand whether modelling energetics, 

based on the demand of the exercise, is comparative to measuring energetics from the 

energetic supply, measured via gas analysis, to provide a global measure of internal 

load as EE. The findings of this study suggest that the modelled energetics may not be 

directly comparable with measured EE from indirect calorimetry and B[La] and so 
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should be implemented with the understanding of the limitations of modelling by 

sports science practitioners.  

In the present study, when comparing overall EE, across all exercise tests (400 

m, continuous running, repeated shuttle running, and repeated sprint running) the EE 

measured from gas analysis was greater than the di Prampero and Gray models, 

supporting the initial hypothesis. This considerable underestimation of EE by the di 

Prampero (400 m ~62 %, continuous running ~39 %, repeat shuttle running ~74 %, 

and repeat sprint running ~70 %) and Gray (400 m ~28 %, continuous running ~28 %, 

repeat shuttle running ~55 %, and repeat sprint running ~52 %)  models was associated 

with the greater contribution of EE from predominantly aerobic energy contribution. 

This is supported by the results of EE below threshold power, whereby both models 

underestimated values established by gas analysis. It is expected that both models’ 

gross underestimation of EE below threshold power can be attributed to increased 

measured pulmonary VO2 in the off-transient and -kinetics (recovery) associated with 

EPOC occurring in reciprocation to phosphocreatine depletion at the onset of exercise 

(Cleuziou, et al., 2004; Perrey, et al., 2002; Paterson & Whipp, 1991; Maehlum, et al., 

1986). This idea is supported by limitations noted by the authors of the di Prampero 

and Gray models (Gray, et al., 2020; di Prampero, et al., 2005), given that the models 

require velocity data to estimate the EE demand, which is absent due to the passive 

recovery in the protocol, and so would not account for any EE accrued during EPOC. 

This was supported by detailed analysis between modelled data and the contribution 

of the aerobic system to EE, which demonstrated the di Prampero and Gray models to 

greatly underestimate EE during recovery compared to the measured EE from breath-

by-breath analysis for all exercise tests (Figure 10). In addition, both models are 

limited to estimating energy cost from velocity data and do not account for work done 

to circulate blood and other functions within the body, which may describe some of 

the underestimations of EE compared to physiological measures from combined 

respiratory gas analysis and B[La].    

Across the 400 m, continuous running, repeat shuttle running, and repeat sprint 

exercise tests, the di Prampero and Gray models estimated similar EE below threshold 

power, as was hypothesised. Although contrary to our hypothesis, the Gray model 

estimated significantly greater EE below threshold power compared to the di Prampero 

model (P < 0.001) in 400 m running (Figure 6B), and higher estimations of EE in all 
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exercise tests in EE above threshold power and overall EE (Figure 6, 7, 8, & 9). These 

differences identified between the di Prampero and the Gray model could be attributed 

to the assumptions of the models and differing derivations EE. For example, the di 

Prampero model is based on the theory that sprint running, during acceleration, is 

similar to running at a steady state on an ES (di Prampero, et al., 2005). Prior 

understanding of the energy cost during ES running allowed for the metabolic 

modelling of constant speed running on a flat terrain, utilising instantaneous velocity 

data (Osgnach, et al. 2010; di Prampero, et al., 2005). Whereas, the Gray model 

estimates mechanical work of overground running (Gray, et al., 2020; Gray, et al., 

2018). Here, the overall work performed is established from the sum of Whor, Wvert, 

Wlimbs, and Wair applied with the work-energy theorem (Gray, et al., 2020). These 

founding principles present the first limitation of the di Prampero model, where overall 

mass is assumed to be located at the COM and energy required to swing the limbs is 

neglected from the calculations (di Prampero, et al., 2005). Furthermore, di Prampero 

et al. (2005) assume the internal work is the same for uphill and sprint running, which 

is not accurate, as sprint running has a higher stride frequency than uphill running, and 

that the average applied force is the same during the duty factor. This is predicted to 

represent a minimum value of metabolic power and so likely underestimate energy 

cost. The Gray model states that work to swing the limbs is the main descriptor of 

internal work during locomotion (Gray, et al., 2020), which could be a contributing 

factor to higher estimations of EE determined by the Gray model. Although, the 

calculations in the Gray model to predict Wlimb is based on work by Minetti (1998), 

which was formed upon numerous assumptions. One being a simplification that all 

limbs are straight segments with consistent inertial properties across all running 

velocities, which may provide an overestimation of work done (Gray, et al., 2020). 

The culmination of differing constructs, outlined above, between the di Prampero 

model and the Gray model could describe the different estimated outcomes. As such, 

the inclusion of Wint in the Gray model is likely to contribute to the higher estimation 

of EE than the di Prampero model, suggesting the mechanically derived model is more 

likely to closely represent the true exercise demand. 

The results from this study contradict those presented by Stevens et al. (2015), 

whereby estimations of EE using the di Prampero model were reported to overestimate 

energy cost values from measured gas analysis during continuous running (Stevens, et 
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al., 2015). However, the study conducted by Stevens et al. (2015) only described EE 

during the exercise period and, therefore, would not account for V̇O2 during the 

recovery period, due to EPOC (Cleuziou, et al., 2004; Perrey, et al., 2002; Paterson & 

Whipp, 1991; Maehlum, et al., 1986), which would increase the measured overall EE 

from the gas analysis. The actual energy cost of repeated shuttle running was 

underestimated by the di Prampero model compared to gas analysis (Stevens, et al., 

2015), which agreed with results reported in the current study. Unlike the current 

study, Stevens et al. (2015) obtained the measured supply of energy from only from 

the pulmonary VO2 response, excluding B[La]. Despite the different methods of 

acquiring the supply of energy cost, both Stevens et al. (2015) and the current study 

produced comparable findings of the underestimation of EE from the di Prampero 

model in shuttle running. This, in turn, could be attributed to the speed of the exercise 

test being close to the participants speed at V̇O2max and thus elicit a larger contribution 

of EE from the anaerobic energy systems (Figure 7). 

Some results of the current study mirrored the findings of Buchheit et al. 

(2015), notwithstanding the uncertainties raised with the statistical analysis by only 

accounting for the exercise phase of the test (Osgnach, et al., 2016). This study used a 

GPS with a superior sampling frequency than that in the previous study to mitigate 

reliability and validity concerns (Buchheit, et al., 2015). The results of this study reveal 

that the di Prampero and Gray model significantly underestimate overall metabolic 

power compared with measured gas analysis, across all exercise tests (Figure 6, 7, 8, 

& 9). As was expected, and as demonstrated by Buchheit et al (2015), when solely 

comparing the measured V̇O2 to modelled EE during the recovery period, the V̇O2 

measured significantly greater values than that estimated by the di Prampero and Gray 

model (Figure 10B, 11B, 12B, & 13B). However, in the current study, during 

continuous running and repeated sprint running, both the di Prampero model and the 

Gray model estimated similar values of EE compared with measured V̇O2 (Figure 11A 

& 13A). Conversely, during the 400 m sprint, the di Prampero and Gray models 

overestimated aerobic EE. This is to be expected due to the short duration of the 

exercise test and the intensity of the exercise bout is more closely associated with work 

above V̇O2max and so a greater contribution of energy can be attributed to the anaerobic 

pathways (Figure 10A). As opposed to the results in the 400 m, continuous running, 

and repeated sprint test the di Prampero and Gray models underestimated EE compared 
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to gas analysis during repeated shuttle running over 20 m, concurring with results 

reported by Stevens et al. (2015). These results contradict the findings of Buglione and 

di Prampero (2013), who found the energetic cost of shuttle running, over 20 m, to be 

similar to measured V̇O2. Notably, the participant pool used by Bulglione and di 

Prampero (2013) consisted of physically active adults, professional footballers, and 

high-level runners, whereas the current study used only physically active adults with 

a large SD of V̇O2max (Table 1). As mentioned by Stevens et al. (2015), limitations of 

the di Prampero model could be drawn from the original work to derive the energy 

cost of running on an ES. Minetti et al. (2002) developed the principles of ES running 

with elite endurance athletes (elite mountain runners), who perform constant running 

tasks with greater efficiency, lower energy cost, than observed by field sport athletes 

(Sassi, et al., 2011). Additionally, the exclusion of the work performed by the limbs, 

in the di Prampero model, may contribute to the underestimated energy cost. 

Limitations of modelling energetics 

Whilst the mathematical modelling of an athletes energetics can provide 

practitioners with a global understanding of the physiological demands of exercise, 

mathematical modelling comes with inherent limitations. The first limitation to note is 

all model calculations are fundamentally built upon assumptions (Clarke & Skiba, 

2013) and as such this characterises that there will be some deviation for true values.  

The di Prampero model 

The di Prampero model is built on the assumption that the total mass of an 

individual is located at their COM. This means the di Prampero model does not 

attribute any expenditure to come from the swing of moving limbs during locomotion 

which is inaccurate (di Prampero, et al., 2005). Another assumption of the di Prampero 

model is that limb joint angles are the same in uphill running and sprint running and 

so that internal work during sprint running at an ES on a flat terrain, is identical to 

running uphill. This is not the case as in sprint running over on a flat terrain has a 

higher stride frequency than that of uphill running and so will have a different energetic 

demand (di Prampero, et al., 2005). Also, this model assumes that the energy cost of 

per unit of distance run at a given slope is independent of speed, meaning the 

calculation for the energy cost of uphill running to sprint running can be done 

regardless of the speed of the individual (di Prampero, et al., 2005). Finally, the di 
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Prampero model determines the cost of energy from pervious literature on steady-state 

exercise (Minetti, et al., 2002), primarily supplied by aerobic pathways, which 

contrasts to that in sprint running which has greater contribution from anaerobic 

sources and so the energy cost of sprint running, when implementing the di Prampero 

model, should be used with caution (di Prampero, et al., 2005). 

The Gray model 

The Gray model first calculates the mechanical work performed before then 

converting it to energy expenditure as detailed in section x. In this section it is outlined 

that the calculations to predict internal work were taken from previous literature from 

Minetti et al. (2002). Minetti’s model by extension is built upon assumptions such as 

that the limbs are all single straight limbs with constant inertial properties (2002). The 

Gray model being mechanical in nature does not account for the EE required for the 

body to perform involuntary actions such as ventilation, circulating blood through the 

body and organ function. Additionally, the model assumes that vertical work is solely 

done by the oscillation of the COM, rising and falling at a constant rate with each step 

during overground running. Furthermore, the Gray model assumes the displacement 

of the COM along with the stride frequency, and duty factor are estimated from 

forward horizontal velocity. Lastly the Gray model negates the effect of fatigue, 

running surface and running ability when calculating EE.  

 

Conclusion 
 

This study compared metabolic power obtained by measuring energy supply, 

via indict calorimetry combined with B[La], and exercise demand, modelled from GPS 

velocity data, across 400 m, continuous running, repeated shuttle running, and repeated 

sprint running tasks. In summary, the results of this study indicate the di Prampero and 

Gray models significantly underestimate the overall energy cost, the sum of exercise 

and recovery phases, compared with the measured sum of gas analysis and B[La]. 

Furthermore, the di Prampero and Gray models do not agree on the predominant source 

of energy i.e. aerobic or anaerobic system. This study revealed the di Prampero and 

Gray model to attribute significant energy cost to work performed above threshold 
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power during the submaximal exercises test (repeated shuttle running) and so may be 

sensitive to velocities close to that achieved at an individuals VO2max or the greater 

mechanical demand associated with deceleration and reacceleration in changing 

direction. When implementing modelled energetics, sports scientists must understand 

the constructs on which their chosen model is formed to appropriately interpret training 

data to plan suitable training strategies.  
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