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Abstract
Porous media are ubiquitous in the natural environment and engineering, and typical ex-
amples include rocks, soils, and concretes. Their transport properties (i.e. permeability,
effective diffusivity, formation resistivity factor and thermal conductivity) usually exhibit
strong uncertainty, due to the intricacy, stochasticity and heterogeneity inherent in pore mi-
crostructures. Although high-definition visualizations of opaque porous media can be derived
from advanced microscopy imaging techniques (such as micro-CT), it remains a critical
challenge to effectively link microstructural characteristics to transport properties. This
thesis is devoted to improving the understanding of structure-property relationships of porous
media, thereby predicting macroscopic transport properties from observable microstructure
informatics. The research objective has been achieved through three interrelated modules:
stochastic characterization, microstructure reconstruction and predictive model construction.

To bridge the gaps between microstructural characteristics and transport properties, quan-
titative characterization of porous media in explicit expression is the essential prerequisite,
through which the stochastic morphology of complicated microstructures is reduced to a
small set of descriptors related to macroscopic transport properties. A comprehensive review
of statistical characterization of pore microstructures is presented, where a wide variety of
morphological descriptors are collected through an extensive literature survey, to provide
microstructural informatics from the global, local, geometrical and topological perspectives.
Tortuosity of porous media is one of the key parameters to model transport properties, and it
is systematically examined from the viewpoints of concept and evaluation method in this
study. The correlations between geometrical and physical tortuosities are further analyzed,
based on which phenomenological relations between them are established.

With the limited availability of digital microstructures, the inherent stochasticity of porous
media can rarely be captured by using a small number of samples. The complete compu-
tational dataset should cover the representative samples with all possible configurations.
Stochastic reconstruction of 3D pore microstructure is an effective way to provide large num-
bers of samples of arbitrary size for analyzing transport properties of porous media. A novel
method is presented to statistically characterize and reconstruct heterogeneous microstruc-
tures through a deep neural network model, which can generate 3D pore microstructure
samples by well preserving statistical equivalence, long-distance connectivity and transport
properties. Besides, another new approach is developed to stochastically reconstruct 3D pore
microstructures from 2D cross-sectional images through supervised machine learning, which
can rapidly produce more realistic and accurate 3D microstructure samples compared with
other three classical approaches.

The digital microstructure of high-quality provides a high-fidelity framework for pore-
scale simulations of fluid flows, permitting one to evaluate transport properties or explore
specific physical phenomena. However, the results obtained from low-resolution images of
pore microstructures are often compromised with significant errors, known as the resolution
effect. The resolution effect on permeability evaluation from the lattice Boltzmann method is
quantitatively investigated, and an error correction model is constructed to reduce/eliminate
this resolution effect by identifying the primary error causes. The model uses correlated
morphological descriptors to quantify the resolution effect and achieve error correction.
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What’s more, the dependence of permeability on microstructural characteristics of porous
media is fundamentally studied through feature selection and machine learning. The mor-
phological descriptors significant to permeability are highlighted and selected through the
performance-driven feature selection. In essence, the selected morphological descriptors
provide a deep and interpretable insight into the underlying microstructure-permeability
linkage. The machine learning-based permeability model is thus built by using the optimal
subset of morphological descriptors as the feature data, and the prediction model exhibits
excellent performances in predictive accuracy and general applicability.
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Chapter 1

Introduction

1.1 Background and motivation

Porous media are ubiquitous in nature, science and engineering, typical examples include
rocks, soils, concretes, cement, porous electrodes, heterogeneous catalysts and bone tissues,
which consist of solid skeletal matrix and pore space, allowing fluid to pass through or
surround. It is well known that the pore structure fundamentally determines the macroscopic
transport properties of a porous medium [2]. In geoscience, the transport behaviors of fluid
permeation, mass diffusion, current transmission, and heat conduction through porous rocks
are highly dependent on the pore geometry and connectivity, which determine the corre-
sponding petrophysical properties: permeability [34], effective diffusivity [352], formation
resistivity factor [37], and thermal conductivity [357] respectively.

Structure-property linkages of porous media are embodied in many geologic applications.
For radioactive waste management [264, 299, 398], the internal specific surface area of the
back-fill clay (such as bentonite) is decisive to its sorption affinities for organic and inorganic
ions, which plays a vital role in preventing radionuclide to migrate from a deep geological
repository to the surface environment over a long period. As to geological carbon dioxide
sequestration [337, 192, 40], CO2 is injected into the underground storage reservoir and
isolated from the atmosphere by the geological barrier with low permeability, where pore
microstructures of rocks in the reservoir formation and the geological barrier are strongly
correlated to the storage capacity and the sealing performance respectively. In the case of
groundwater contaminant transport [31, 170], the microstructural characteristics of aquifer
materials (such as permeable or fractured rocks) determine a variety of transport mechanisms
including permeation, diffusion and dispersion.

In addition to transport properties, the macroscopic elastic properties of porous rocks
and concrete are also acutely sensitive to pore structures [256, 15]. The interaction between
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the cementitious material and environment is controlled by the pore structure as well, which
leads to structural degradation and determines the material durability [27, 360, 292]. The
electrode microstructure has a significant influence on the performance of solid oxide fuel
cell in terms of energy storage and conversion [456, 24]. For the heterogeneous catalyst,
the pore architecture is directly linked to the reaction efficiency [361, 245]. Besides, the
processes of cell migration, nutrient diffusion, waste removal, and bone remodeling are
greatly affected by the structure of bone tissue [138].

Currently, the relationship between pore microstructures and macroscopic physical prop-
erties is one of the most elementary questions in numerous porous media research disciplines
(e.g., geoscience, material science, civil engineering, energy storage, chemical engineering,
and bioengineering), which is still without being conclusive [445, 460, 125, 195, 438, 18].
The structure-property linkage is of great value to model/predict macroscopic properties of a
given porous medium just from its measurable microstructural features, without conducting
expensive experiments or and complex numerical simulations. To bridge the gaps between the
microstructural characteristics and the effective macroscopic properties, direct measurement
on the pore space and quantitative characterization of geometric complexity in an explicit
expression are the essential prerequisites [12].

Fig. 1.1 Schematic representation of typical pores in porous media

However, it is difficult to completely measure and characterize the intricacy of pore
microstructures due to various reasons: (1) Only a few microstructural properties, such
as porosity, pore surface area and pore size distribution, can be measured from laboratory
experiments [486, 259];(2) The internal structures of the opaque porous media are often at
the microscale, even nanoscale, and thus advanced microscopy imaging techniques are the
only option for noninvasive and nondestructive measurements [474, 12]; (3) Porous media
usually exhibit structure on hierarchical scales, which means the structure element itself has a
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structure at lower scale [492]; (4) Structural elements of porous media, irrespective the scale,
show a huge variety of complex geometry in terms of shape and size, and exhibit strong
randomness in the spatial distribution of different phases [460]. In general, a porous medium
involves a large number of connected, isolated, dead-end, geometry-irregular, randomly
distributed and hierarchical pores, constituting an anfractuous pore microstructure that is
extremely complicated to achieve a completely quantitative representation (as illustrated in
Figure 1.1).

1.2 Pore microstructure measurement techniques

Various measuring techniques have been applied to acquire the geometry and topology
information of pore structures [12], which can be broadly grouped into two categories:
experimental measurement and microscopy imaging. Although the scopes of pore size
covered by these measurement techniques are overlapped, they are still complementary in
general, as illustrated in Figure 1.2.

Fig. 1.2 Experimental measurement approaches and microscopy imaging techniques (2D and
3D imaging techniques are denoted by texts with yellow and pink backgrounds respectively)
to characterize pore microstructures
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1.2.1 Experimental measurement approaches

There are several experimental measurement approaches to characterizing microstructures
of porous media in non-destructive manners, such as gas adsorption measurement, water
immersion porosimetry (WIP), and gas pycnometer. From these experimental measurements,
information on effective pore space can be obtained, including porosity, pore size distribution
(PSD) and specific surface area, but not the full connectivity of pore space [486].

Mercury intrusion porosimetry (MIP) [155, 145] could be the most popular experimental
measurement to investigate pore structures in an indirect manner, due to its simple physio-
chemical principle and fast operation process, and it is capable of covering the pore size
ranging from about 3.5 nm to 500 µm. However, the determination of PSD from MIP is based
on the assumption of cylindrical pores, which is untrue for porous media with irregular pore
geometry. In practice, MIP systematically misallocates almost all pore sizes of complicated
porous media, and it tends to underestimate the actual pore sizes, because of the “throat” and
“ink bottle” effects.

Gas adsorption [89, 88] is widely used to quantify the pore microstructures of tight
sandstones and shales, and the measurable pore diameter range is from 0.3 to 300 nm.
During the testing process, the gas adsorption volume is measured together with the relative
equilibrium adsorption pressure, and isotherm interpretation is then required to achieve
microstructural characteristics. The classical Brunauer-Emmett-Teller (BET) method is
popular to evaluate specific surface area, but it is not applicable for pore media with narrow
pores. Pore volume and PSD can be derived from the well-known Barrett-Joyner-Halenda
(BJH) method, but the BJH method simply describes a porous medium as a collection of
cylindrical or slit pores.

WIP [254, 202] is a standard porosity measurement, where the testing sample is saturated
with a liquid with known density and then the pore volume can be determined from the
weight difference between the completely saturated and dry states. The bulk volume of the
testing sample can be determined from Archimedes’ Principle by immersing it in the liquid.
Thus, the porosity can be calculated as the ratio of the pore volume to the bulk volume. Water
is an ideal choice of the saturating and immersing fluid, because it is able to penetrate small
pores and capillaries.

Gas pycnometry [432, 12], also referred to as helium pycnometry, is to measure the
volume of solid particles for low permeable porous rocks. Combined with the measurement
of bulk or pore volume, the effective porosity of a rock sample can be estimated. It is based
on Boyle-Mariotte’s law that describes the volume-pressure relationship of an experimental
gas. Helium (He) is usually used as the experimental gas, due to its ideal properties. There
are at least three types of gas pycnometry reported in literature [432]: constant-volume,
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variable-volume and comparative, and constant-volume gas pycnometry is the most popular
one.

1.2.2 Advanced microscopy imaging techniques

How pores are internally connected is of primary interest, because connectivity and topology
of pore networks are crucial to fluid flow and mass transport behaviors. However, conven-
tional experimental measurements can only provide very limited information about internal
pore structures, and the interpretation of experimental data is not straightforward, which
requires careful modeling.

Recently, modern microscopy imaging techniques [12, 259] have been able to digitize the
geometry of a porous medium, usually called a microstructure, into a 2D or 3D image at dif-
ferent resolution levels and various length scales. The digital microstructure can be used for a
variety of simulation or diagnostic purposes, which radically boosts microstructural analyses.
Scanning electron microscopy (SEM), backscattered electron (BSE) imaging, atomic force
microscopy (AFM), optical microscopy and transmission electron microscopy (TEM) are
commonly used techniques to provide 2D non-invasive visualizations of microstructures. Be-
sides, 3D digital microstructures can be acquired through X-ray micro-computed tomography
(micro-CT or µCT), Nuclear magnetic resonance (NMR) imaging, and focused ion beam
scanning electron microscopy (FIB-SEM). Although the imaging mechanisms of various
microscopy techniques are different, the acquired digital images at the same resolution
level are comparable [328]. As shown in Figure 1.3, 1.4 and 1.5, the 2D visualizations
of microstructures inside reservoir rocks are obtained from modern microscopy imaging
techniques. Various types of pores, such as inter-granular pores, intra-granular pores and
fractures, constitute the complicated pore systems inside a sandstone, a carbonate rock and a
shale.

Optical microscope [308] uses visible light and a system of lenses to create magnified
visual of small objects, and the magnified visual can be captured by a light-sensitive camera
to produce a 2D photomicrograph, from which the pore system and the solid minerals on
the surface of a porous rock sample can be evaluated. The pore system can be highlighted
by impregnating epoxy to the sample for better identification [12]. The resolution range of
an optical microscope is essentially limited by the length of the visible light wave, which
is usually lower than the half-wavelength (0.4-0.7 µm). Optical petrology is a simple and
piratical way to investigate pore structures, but the real pore system (including inter-granular
pores) in 3D space can not be completely reflected by the surface information.

The micro-CT scanner [238, 388] is able to obtain internal microstructures of porous
rocks in a non-destructive and non-invasive manner. An X-ray beam is sent out from the
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Fig. 1.3 SEM-BSE images showing different types of pores inside Clashach sandstone, where
pore space is shown in dark: (a) intergranular pores, (b) secondary dissolution pores, (c)
fractures, (d) transgranular fractures, and micropores on each image (redraw after [133])

radioactive source, and it is attenuated when passing through materials, due to scattering and
absorption. The attenuated X-ray beam is detected by a detector, and then the attenuation
degree can be converted to a projection image according to Beer-Lambert law. A continuous
series of cross-sectional projection images are taken from different angles by rotating the
sample 360◦, from which the 3D model is reconstructed to provide an internal microstructure.
The typical spatial resolution of micro-CT is from about 1 to 50 µm, and rock cores are
normally constrained to a few millimeters to acquire representative images at the micro-scale.
Currently, the nano-CT facility is able to provide scanning images with the spatial resolution
better than 50 nm, allowing researchers to observe smaller pores at the sub-micro scale.
Besides, SAXS [499] is capable of quantifying the nano-scale density difference in a rock
sample by analyzing the elastic scattering behavior, to provide structural information of
dimensions ranging from 1 to 100 nm.

SEM [423, 397] is a popular imaging technique to acquire 2D visualizations of pore
microstructures. It generates images by scanning the sample surface with a focused beam
of electrons, where the electrons interact with the atoms in the sample to produce various
signals, including secondary electrons and back-scattered electrons (BSE). In SEM mode,
secondary electrons emitted by atoms are detected, and the signal intensity yields topography
information. The common SEM instrument can achieve resolution around 5-20 nm. BSE
can also be detected to form images, but it usually produces lower resolution than secondary
electrons. In addition, SEM can also be used in transmission mode, where the focused beam
of electrons is transmitted through a thin specimen (less than 100 nm) to form an image. TEM
is capable of returning resolution at the atomic level, which has been used to characterize
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Fig. 1.4 Casting thin section images showing different types of pores inside Carboniferous
carbonate rock, where pore space is shown in blue: (a) intergranular dissolution pores, (b)
intragranular dissolution pores, (c) intercrystalline dissolution pores, and (d) dissolution
fractures (redraw after [400])

the metal-Zeolite catalyst systems [248]. However, the connectivity of a 3D pore space
cannot be accurately learned from the surface information provided by 2D SEM images.
The combination of focused ion beams (FIB) and SEM (FIB-SEM) provides a new route to
acquire the 3D pore structure with very high-resolution [323, 48], where ion beams make
very fine slices through etching the sample, enabling sequential SEM images to be obtained.
The 3D model can be built by stacking 2D sequential images together. The FIB-SEM is a
destructive technique, but it can typically achieve voxel dimensions of tens of nanometers.

NMR [259] is another non-destructive technique to quantify pore microstructure, which
is able to cover almost the full range of pores inside reservoir rocks. NMR extracts pore
structure information from the relaxation process of hydrogen nuclei in the pore fluids, where
the spin axis relaxation times of protons are measured in the presence of static and pulsed
magnetic field [12, 486]. There are two types of relaxation times in NMR: the longitudinal
and transverse. The pore size distribution of a porous media sample is commonly extracted
from the transverse relaxation time, because the transverse relaxation time can be obtained
much faster and contains sufficient information on pore size. Typically, NMR is suitable for
quantifying pore diameter ranging from 2 nm to 1 µm, depending on the absorbate.

AFM [212] is the latest scanning probe microscope techniques, which is capable of
characterizing pore features down to the atomic scale. AFM has been applied to quantify
pore structures and gas flow behaviors inside the ultra-tight shales [212, 107]. In AFM, a
probe at the tip of a cantilever is used to scan over the sample surface, and interaction (force)
between the probe and the sample is measured simultaneously. The local attractive and
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Fig. 1.5 SEM images showing different types of pores inside shale, where pore space is
shown in dark: (a) organic matter pores, (b) intergranular pores, (c) intragranular pores and
micro-channel, and (d) micro-fracture and shrinkage pores (redraw after [500])

repulsive force between the probe and sample surface bend the cantilever beam, and the
vertical and lateral deflections of the cantilever are measured through an optical lever. The
optical lever operates by reflecting a laser beam off the back of the cantilever, in order to
amplify the deflection to be a measurable signal that can be captured by the photo-detector.
Generally, the lateral resolution that AFM can achieve is relatively low (about 30 nm), but
the vertical resolution can reach up to 0.1 nm.

Moreover, chemical characterization and composition/crystallographic data can be ob-
tained accompanying with microstructural data, by combining energy-dispersive X-ray
spectroscopy (EDXS) [331], secondary-ion mass spectrometry (SIMS) [84] or electron
backscatter diffraction (EBSD) [203] with the above mentioned microscopy imaging tech-
nologies. The internal variations of microstructures responding to the changing ambient
environment can also be tracked, allowing 4D analysis of microstructural evolution in the time
scale [67, 380]. The noninvasive microscope imaging techniques leave the physical samples
intact and unaltered, allowing complimentary analysis such as experimental measurements
performed on the samples.

1.3 Digital rock physics

Benefiting from the tremendous advances in microscopy imaging techniques, digital rock
physics (DRP) [11, 48] has evolved into a new discipline to investigates and calculates the
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transport/physical properties of porous rocks in a non-destructive manner, as illustrated in
Figure 1.6. DRP uses microscopy imaging techniques such as micro-CT to obtain digital
rock images with varying resolutions and sizes. The representations of complex pore
microstructure can be obtained by separating the pore space from mineral matrix phases
through the segmentation processing on raw images, and then physical simulations can be
performed on the pore-scale microstructures to estimate the effective properties of rocks
(e.g. permeability, elastic moduli, effective diffusivity, thermal conductivity and formation
resistivity factor).

Fig. 1.6 Schematic illustration of the digital rock physics technique to study transport
properties of porous rocks

1.3.1 Image processing and segmentation

After the image acquisition, the raw scanning image should be processed to remove artifacts
and noise, and then image segmentation is conducted to separate the pore space from the solid
matrix for pore space analysis [388]. Due to the wide use of lab-based micro-CT scanners,
we take the micro-CT image as the example to illustrate image processing and segmentation.
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Fig. 1.7 Illustration of image processing to remove artifacts and noise in micro-CT images:
(a) A 2D slice of a simulated silicon sample with beam hardening artifacts (after [193]); (b)
A cross-section of a sand pack sample (uniformly graded (0.60–1.18 mm) Leighton Buzzard
sand) with ring artifact (after [81]); (c) A cross-sectional slice of a Ketton limestone sample
with noise (after [412]); (d) Correction of the beam hardening artifacts; (e) Alleviation of the
ring artifact; (f) Removal of image noise

Artifacts and noise removal

There are two types of commonly encountered scanning artifacts [238] in micro-CT images:
beam hardening and ring artifacts, which have dramatic effects on intensity-based image
segmentation. When an X-ray beam passes through a scanned object, its lower energy
components are preferentially absorbed by the object surface, leading to an increase in
the average energy of the X-ray beam. This effect is referred to as beam hardening, and
it can cause cupping artifact (brighter object edges compared to the image center) and
streaking artifact (dark shadows surrounding the bright areas in the image), as shown in
Figure 1.7a. Various remedies can be used to correct beam hardening artifacts, such as
scanning preparation, outer covering filter and data processing, and more details can be found
in relevant references [238, 193]. By comparing Figure 1.7a and d, one can observe that the
beam hardening artifacts are effectively corrected.

As to the ring artifact [388], it appears as full or partial circles in the center of the micro-
CT scanning image, as shown in Figure 1.7b. The ring artifact is caused by the shifts in
output from the detector array of a micro-CT scanner, leading to anomalous values of voxel
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intensity in the photograph [238]. Due to its linkage to beam hardening, the ring artifact can
be eliminated at the scanning stage by using the same methods, such as scanning preparation
and outer covering filter. Besides, the ring artifact is more amenable to software methods.
For example, it can be alleviated by renormalizing the reconstructed image at the sinogram
stage through Fourier filtering [322].

Noise is almost inevitable during the image acquisition process, which brings great
difficulty to image segmentation [206]. Noise can be significantly reduced from raw scanning
images through various filtering methods, so as to enhance the contrast between different
phases, as illustrated in Figure 1.7c and f. The mean, Gaussian, median, shock, anisotropic
diffusion, total variation and nonlocal means filters are frequently used to smooth raw
scanning images, and more details can be found in relevant references [226, 388].

Image segmentation

Fig. 1.8 Illustration of image segmentation for a Gildehauser sandstone sample via global
thresholding: (a) The 3D micro-CT image in 16-bit grayscale mode, where the pore space is
shown in dark; (b) The histogram of the grayscale values, based on which the segmentation
threshold is determined; (c) The 3D segmented image with two distinct phases, where white
region corresponds to the pore space and the solid matrix is shown in black

The raw micro-CT image is in a grayscale or color mode with continuous pixel/voxel
intensities, as shown in Figure 1.8a and b. Therefore, it is important to convert the raw
scanning image from the continuum model to a discrete form that permits quantitative
characterization of the porous microstructure and subsequent pore-scale modeling of fluid
flow [206]. An image segmentation process is commonly implemented to separate the pore
space from the solid matrix. A broad range of image segmentation methods have been
developed and applied in porous media research, such as global thresholding, locally adaptive
thresholding, region growing methods, deformable surface methods, probabilistic fuzzy
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clustering, Bayesian methods, hybrid method and manual segmentation, and more details
about image segmentation can be found in related references [206, 388, 268].

After image segmentation, the raw scanning image is discretized into a binary form with
two distinct phases: pore space and solid matrix, as shown in Figure 1.8c. The pore space P
is represented as the solid matrix body M embedded in Euclidean space Ω, and a particular
configuration of a pore structure X can be described by using the characteristic (or indicator)
function as follows [186]:

X(r) =

1 for r ∈ P

0 for r ∈ M
(1.1)

where r ∈ Ω is the position vector of the pixel/voxel on the digitized grid, and X(r) is the
corresponding pixel/voxel intensity value.

1.3.2 Pore-scale modeling of fluid flow

The digital microstructure of high-quality provides a high fidelity framework for numerical
simulations of different physical processes at the pore scale, permitting one to evaluate
effective physical properties or explore specific physical phenomena, from which a profound
understanding of the impacts of the pore microstructure on physical processes can be gained
directly [369, 11, 48, 427]. Pore-scale simulations allow for systematic variations of pore
geometries, fluid properties, operating conditions and boundary conditions to evaluate their
influences, which is almost impossible to achieve with physical experiments [305, 486].
For the effective transport properties of porous media, pore-network modeling (PNM) and
direct numerical simulation (DNS) are the two main pore-scale modeling approaches to
mimicking transport processes [48], from which permeability, effective diffusivity, electrical
and thermal conductivity can be evaluated according to Darcy’s, Fick’s, Ohm’s and Fourier’s
law, receptively.

Pore network modeling

PNM [486] simplifies the complicated pore space into a topologically representative network
of pore bodies interconnected by pore throats with ideal shapes (such as sphere and cylinder),
where the size and connectivity of each network element are determined from the geometry
and topology of the pore microstructure according to specific criteria. The transport behaviors
within each network element are described by semi-analytical laws (such as Hagen-Poiseuille
law), which makes the computation considerably fast and enables researches to incorporate
strong heterogeneity in modeling large volumes [48]. PNM is naturally appropriate for
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capillary-controlled transport processes. However, the transport properties obtained from
PNM could be less credible, due to the simplification of the complicated pore space. It is
still a great challenge to obtain reliable results from PNM, by identifying the features and
phenomena relevant to network modeling and ignoring the remaining parts to simplify the
computational complexity.

Direct numerical simulation

On the contrary, DNS directly discretizes the pore space into computing elements by preserv-
ing pore geometry (voxels can be used as the computing elements), and transport equations
(such as the Navier-Stokes or Laplace equations) are numerically solved or approximated
on the computational meshes [305, 48]. Lattice Boltzmann method (LBM), finite element
method (FEM) and finite volume method (FVM) are commonly used to approximate or solve
the transport equations at the pore scale. Generally, DNS can provide direct insight into the
impact of pore microstructure on transport properties.

However, this direct approach has severe limitations: (1) Intensive computation. The
3D digital microstructure with large representative size and high resolution usually contains
millions, even billions of computational elements (or voxels), therefore, massive parallel
programming, long computing time, high-performance computation platform and large data
storage are usually required to run numerical simulations (such as the lattice Boltzmann
simulation of multiphase flow) [283, 384]. (2) Lack of representativeness. The results
obtained from physical simulations performed on single or several digital microstructure
sample(s) with limited sizes may not represent the real property of the porous medium,
because properties of natural porous media can be heterogeneous and show strong randomness
at all length scales [445, 103]. (3) Multi-scale problem. As mentioned above, a pore medium
usually involves pores with various characteristic length scales, and these pores can not be
completely captured by a single image, because all microscopy imaging techniques have a
limited ratio between image size and image resolution. It is possible to built digital models
covering heterogeneous properties at several length scales, but these models can be too
detailed to solve the fluid flow equations via standard discretization methods [132, 283].

1.4 Research objective and layout of the thesis

1.4.1 Research objective

As discussed above, modern microscopy imaging techniques can provide digital microstruc-
tures of porous media, and effective transport properties can be estimated by performing
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pore-scale simulations on them. However, the crucial point is how to deeply understand the
dependence of transport properties on the microstructural characteristics of porous media.

The objective of this thesis is to gain deep insight into the microstructure-property linkages
of porous media, thereby to construct reliable predictive models of transport properties. Such
microstructure-property models are of great value, based on which transport properties can
be directly estimated from the observable microstructure informatics, avoiding high-cost and
time-consuming experiments or computation-intensive simulations.

The research objective is achieved through three interrelated modules, including stochastic
characterization, microstructure reconstruction and predictive model construction:

• Stochastic characterization of pore microstructures in explicit expression is the es-
sential prerequisite to model transport properties, where the microstructural complexity
of porous media is reduced to a small set of morphological descriptors related to
transport properties.

• Microstructure reconstruction is an effective and economic way to statistically gen-
erate large numbers of samples for transport property modeling, so as to capture the
inherent stochasticity of porous media. Because the complete computational dataset
should cover the representative samples with all possible configurations.

• Predictive model construction is not only to establish reliable prediction models to
directly evaluate transport properties from relevant morphological descriptors, but
also to fundamentally study and interpret the underlying microstructure-property
relationships of porous media.

1.4.2 Layout of the thesis

The research works corresponding to the three interrelated modules are distributed in eight
chapters of this thesis, as illustrated in Figure 1.9.

In Chapter 2, a comprehensive review of statistical characterization of pore microstruc-
tures is presented, where a broad variety of morphological descriptors are collected through
an extensive literature survey. And the applications of morphological descriptors to charac-
terize pore microstructures and model transport properties are systematically summarized
as well. Basically, these morphological descriptors quantify pore microstructures from
different perspectives, from which suitable subsets of descriptors can be selected to model
transport properties or explore specific problems. This chapter lays a solid foundation for all
subsequent studies in this thesis, including stochastic microstructure reconstruction, error
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Fig. 1.9 The structure arrangement of the thesis

correction modeling due to the resolution effect, and the fundamental investigation of the
microstructure-permeability relationship.

In Chapter 3, tortuosity of porous media, as a key parameter to model transport properties,
is systematically examined from the viewpoints of definition and evaluation method. Various
types of tortuosities are broadly divided into two groups: geometrical and physical tortuosity,
depending on whether the analysis object is the pore space itself or the transport flow through
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the pore space. Phenomenological relations between geometrical and physical tortuosities
are established to predict physical tortuosities from geometrical ones, avoiding computation-
intensive simulations. Tortuosity plays an important role in subsequent studies of this thesis,
including error correction modeling due to the resolution effect, and establishment of the
microstructure-permeability linkage.

In Chapter 4, a novel method is presented to statistically characterize and reconstruct
random microstructures via deep neural networks, from which large numbers of pore mi-
crostructure samples can be rapidly generated by preserving statistical equivalence, morpho-
logical similarities, long-distance connectivity and transport properties. The reconstructed
microstructure samples in this chapter are used to further explore the relationships between
microstructural characteristics and transport properties.

In Chapter 5, a novel method is developed to statistically reconstruct 3D porous mi-
crostructures from 2D cross-sectional images using supervised machine learning. The
proposed method is able to reconstruct both 3D isotropic and anisotropic microstructures,
and it exhibits great advantages over the commonly used reconstruction methods, in terms of
accuracy and efficiency.

In Chapter 6, the resolution effect on permeability evaluated from LBM is quantita-
tively investigated through identifying the primary causes of error, based on which an error
correction model is proposed. The model uses such microstructure characteristics as con-
nected porosity, specific surface area and diffusion tortuosity to quantify the resolution
effect and achieve error correction. The error correction model makes image resolution
reduction more meaningful and creditable for LBM permeability evaluation of porous me-
dia, thereby supporting its adoption in practical applications. The study in this chapter
provides credible permeability results for the subsequent study to deeply investigate the
microstructure-permeability linkage.

In Chapter 7, the dependence of permeability on microstructural characteristics of natu-
ral porous rocks is fundamentally investigated through feature selection and machine learning.
The optimal subset of morphological descriptors is picked out from the feature pool con-
taining dozens of descriptors through the performance-driven feature selection. The feature
selection result provides a deep and interpretable insight into the microstructure-permeability
relationship. The machine learning-based permeability prediction model, corresponding
to the optimal subset morphological descriptors, possesses an excellent performance in
predicting permeability values spanning 4 orders of magnitude.

Finally, Chapter 8 summarizes the main attributions and innovations of this thesis and
points out directions for future research.



Chapter 2

Statistical characterization of porous
media: Morphology and topology

2.1 Introduction

Quantitative description of porous media is an essential prerequisite to build microstructure-
property relationships or to reveal physical phenomena related to microstructural characteris-
tics. The pore space inside natural porous rock usually exhibits great disorder and strong ran-
domness, which should be quantitatively characterized in statistical terms to involve the spa-
tial distribution of microstructural features. Statistical characterization [441, 186, 321, 460]
of the pore microstructure is an attractive way to model/predict transport or physical prop-
erties, where the microstructural complexity is reduced to a limited number of meaningful
descriptive parameters related to the properties of interest.

Massive efforts have been made to analyze pore microstructures, and a broad range of
statistical characterization approaches have been developed in the literature, including geo-
metrical measurements [92, 186, 12], topological quantification [90, 460, 18], pore network
interpretation [28] and others. However, there are several crucial problems in microstructure
characterization through image analysis, which have not been properly solved yet, and they
have significant impacts on the development of reliable structure-property relationships:
(1) Ambiguous definitions. Some morphological descriptors are not strictly defined, even
with multiple definitions, whose concepts are strongly coupled with specific operations that
could cause inconsistent results. (2) Incomplete characterization. There is no such a basic
set of computable/measurable parameters that are capable of completely characterizing the
microstructures of natural porous media. Usually, physical properties depend on unknown
sets of microstructural variables and parameters, and the internal correlations between mor-
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phological descriptors are also not fully understand. (3) Image analysis errors. Microstructure
information extracted from digitized images is subject to a number of errors, which could
come from image binarization and preparation, finite image size and boundary effect, finite
image resolution and discretization effect, as well as key parameter selection related to image
analysis algorithms. (4) Improper usage. Some microstructure information can be extracted
both from 2D and 3D images, and equivalent transformation between them can be made
through stereology (stereology provides meaningful quantitative descriptions of the geometry
of 3D structures from measurements that are made on 2D images). Accurate descriptions of
pore connectivity and topology always require 3D microstructures, but the relevant measures,
such as tortuosity, constriction factor and pore/throat size distribution, are often extracted
from 2D slices by researchers, leading to mistakes in microstructure characterization and
transport properties modeling.

Considering the above problems, it is essential to systematically investigate microstruc-
tural characteristics, so as to lay a solid foundation to explore how pore microstructures affect
the macroscopic properties of porous media by integrating the important microstructural
informatics. A comprehensive review of statistical characterization of pore microstructures
is thus conducted, where the theoretical bases and extraction methods of a wide variety
of morphological descriptors are involved, aiming to provide a profound understanding of
limitations and opportunities in microstructure characterization and analysis.

2.2 Microstructure characterization via image analysis

Broad diversity of morphological descriptors have been proposed to characterize porous
media in the literature. The commonly used descriptors are collected through an extensive
literature study, and they are summarized and grouped in Table 2.1. To achieve a better
understanding of microstructure characterization, the morphological descriptors are applied
to a group of Fontainebleau sandstone samples with a wide porosity range. Fontainebleau
sandstone [371, 7] only possesses inter-granular porosity covering a range from 3.0% to
30.0% without noticeable grain-size variation, which makes it the most commonly used
natural porous rock to investigate the structure-property correlations independently of other
influencing factors [122, 92, 34, 371, 7, 142]. In this study, seven 3D digital microstructure
samples of Fontainebleau sandstone are used [35], whose porosities are 8.61%, 10.15%,
12.57%, 15.36%, 17.62%, 20.64% and 24.50%, respectively. The image sizes of these digital
samples are of 480 × 480 × 480 voxels with a voxel resolution of 5.7 µm, representing
equivalent physical samples of 2.736 mm3 cube, as shown in Figure 2.1.
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2.2.1 Minkowski functionals

The idea of using Minkowski functionals to characterize structural complexity emerged from
the field of statistical physics, where it was evident that numerous physical processes are
linked with the geometry and spatial pattern of stochastic structures [391, 307]. Minkowski
functionals show the potential to achieve geometric characterization of pore structures and
fluid phase distribution inside porous media.

As early as 1997, Vogel started to use Euler characteristic as an index of connectivity
of soil structures, where Euler characteristic was quantified as a function of minimum pore
diameter, called connectivity function [457]. The pore size distribution and connectivity
function developed from Minkowski functionals were used to predict the hydraulic properties
of soils [459]. Latter, Vogel (2002) [458] used Euler characteristic as a function of porosity
threshold to characterize the topology (connectivity) of porous media. Mecke and Arns
(2005) [306] used Minkowski functionals as the morphological measure to quantitatively
characterize porous media with complex structure, and also to predict the transport and
thermodynamic properties in porous media. The effects of Minkowski functionals on the
permeability of porous media were analyzed by Lehmann et al. (2008) [267], and they found
permeability is much more sensitive to volume and surface than to curvature and connectivity.
Vogel et al. (2010) [460] further developed the Minkowski quantities to be functions of
pore size or aggregate size through morphological filter processing, in order to characterize
the soil structures, which have the potential to be linked to physical properties. Scholz et
al. (2012) [394] found that the permeability of 2D porous structures can be determined
from Euler characteristic. Recently, Minkowski functionals were also used to reconstruct
statistically equivalent microstructure samples for porous media [262, 389, 315].

In addition to microstructure characterization and reconstruction, Minkowski functionals
also have been applied to quantitatively represent the morphological characteristics of two-
phase flow in different researches, to understand two-phase fluid distribution [267], capillary
pressure [19], pore-scale displacement mechanisms [387], flow regimes during immiscible
displacement [17] and relative permeability [286].

Basic Minkowski densities

Minkowski functionals are basic morphological measures defined for binary spatial structures
[460]. Given a n-dimensional binary structure, a set of n+ 1 Minkowski functionals can
be obtained through integral geometry, where area, perimeter and Euler characteristic are
for 2D structures, and volume, surface, integrated mean curvature (related to mean breath)
and integrated total curvature or Euler characteristic are for 3D structures [307, 267, 18].
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The theoretical basis of Minkowski functionals necessary for structural characterization
is briefly introduced here, and more in-depth analyses can be found in related references
[418, 393, 18].

After image segmentation, the digital microstructure of a porous medium is represented
as a binary structure. Take a 3D digital microstructure X as the case, the first functional M0

is total volume of pore space:

M0(X) =
∫

Ω

X(r) dv (2.1)

where dv is the volume element. The second functional M1 measures the total area of the
pore-solid interface ∇X through integral geometry:

M1(X) =
∫

∇X
ds (2.2)

where ds is the surface element (as illustrated in Figure 2.2). The third functional M2 is the
integral of mean curvature over the pore-solid interface ∇X :

M2(X) =
1
2

∫
∇X

(
1

R1
+

1
R2

)
ds (2.3)

where R1 and R2 are the principal radii of curvature of surface element ds (as illustrated
in Figure 2.2). Generally, the radius of convex curvature is positive, and it is negative for
concave curvature. The fourth functional M3 is the integral of Gaussian curvature over the
pore-solid interface ∇X :

M3(X) =
∫

∇X

(
1

R1R2

)
ds = 4π χ(X) (2.4)

where χ(X) is the Euler characteristic of pore space. The measurement units of M0, M1 and
M2 are [L3], [L2] and [L], respectively, while M3 is dimensionless.

To eliminate the effect of sample size, the four Minkowski functionals are normalized
with respect to the bulk volume V (X) of the porous media, yielding four Minkowski densities
mk [460]:

mk(X) =
Mk(X)

V (X)
(2.5)

Obviously, m0 is the absolute porosity φ of porous media, defined as the fraction of
pore space over the bulk volume. It can be simply calculated from the ratio of pore voxel
number to the total voxel number via image analysis [136, 454]. Porosity [204] is one
of the most fundamental properties of porous media such as reservoir rocks, which is a
measure of fluid storage capability determining the amount of valuable resource fluid that
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Fig. 2.2 Illustration of a surface element ds on the pore-solid interface ∇X of a 3D pore
microstructure X and locally defined radii R1 and R2 of curvature

may have accumulated. Connected porosity φc, defined as the percentage of interconnected
pore space with respect to the bulk volume, is commonly used to model/predict transport
properties [5, 454]. As shown in Figure 2.3, transport properties of Fontainebleau sandstone
are functions of porosity. Besides, effective porosity φe is also proposed though excluding
the dead-end pores or determining the effective pore space according to fluid streamlines
[246, 34].

(a) (b)

Fig. 2.3 Transport properties of Fontainebleau sandstone as functions of porosity: (a) Intrinsic
permeability (experimental data is collected from [56], [122], [140], [158] and [7]); (b)
Formation factor (experimental data is collected from [122], [109], [140], [158], [371] and
[7])

The second Minkowski density m1 corresponds to specific surface area S, which is defined
as the total interface area between pore space and solid matrix per unit bulk volume of porous
media [2]. Specific surface area is another critical geometric characteristic to understand
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transport behaviors inside porous media [50, 246, 221, 367]. In addition, mean curvature
m2 is related to pore shape, and total curvature m3 characterizes the topology of pore space,
which is an important index of connectivity. An isolated pore provides a positive Euler
characteristic, so a negative value of total curvature with a large magnitude usually means
good connectivity. The Minkowski functionals of 2D/3D pore structures can be determined
by considering local binary patterns, and more details about the computation can be found in
[333] and [266]. Here, we calculate the Minkowski densities for the group of Fontainebleau
sandstone samples in Figure 2.1 through image analysis, and the results are shown in Figure
2.4.

(a) (b)

(c)

Fig. 2.4 The Minkowski densities mk of the group of Fontainebleau sandstone samples: (a)
Specific surface area m1; (b) Mean curvature m2; (c) Total curvature m3

Minkowski functions

As discussed above, each Minkowski functional/density provides a single value by integrating
over the pore space or the pore-solid surface, representing the average property of the
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overall porous structure. However, Minkowski functionals/densities may not be sufficient to
characterize the geometric features that are relevant to flow processes inside porous media
[267], because the structural informatics such as pore size distribution and anisotropy are
not involved. Therefore, Minkowski densities are also determined as functions of pore size
by researchers [457, 459, 460, 390], called Minkowski functions, so as to provide geometric
information on pore surface area and pore connectivity, as well as on pore/aggregate size
distribution.

Fig. 2.5 Schematic illustration of morphological opening on a 2D image using a circular
structuring element with increasing diameter d (pore space is in white, solid matrix is in
black, and gray areas are the pores smaller than the structuring element after morphological
opening)

Through a filter procedure based on mathematical morphology, the pores that are larger
than a specified size can be extracted. This procedure, known as morphological opening,
is an erosion operation followed by a dilation operation by using the same structuring
element, as illustrated in Figure 2.5. By using a spherical structuring element with a prescribe
diameter d, the pores smaller this diameter d are filtered out after morphological opening,
and then Minkowski densities can be computed as functions of pore diameter by changing
the diameter of the spherical structuring element, which are called Minkowski functions
mk(d) [460, 390]. As shown in Figure 2.6, the Minkowski functions m0(d) of the group of
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Fontainebleau sandstone are plotted. It should be noted that the first Minkowski function
m0(d) is cumulative pore-size distribution representing the porosity larger than a given pore
diameter, and its derivative is an alternative of pore-size distribution [459], as shown in
Figure 2.29b. The fourth Minkowski function m4(d), also called pore connectivity function,
is defined as the Euler characteristic in dependence of minimum pore size considered, which
provides quantitative information on the connectivity within and between different classes of
pore size [459].

Fig. 2.6 The Minkowski functions mk(d) of the group of Fontainebleau sandstone samples: (a)
Cumulative pore size distribution function m0(d); (b) m1(d); (c) m2(d); (d) Pore connectivity
function m3(d)

2.2.2 Spatial correlation functions

As early as in 1996, spatial correlation functions had been used to characterize the microstruc-
tures of rocks and other porous media by researchers, providing quantitative measures
to understand the dependence of transport properties on the pore microstructure [92, 46].
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The macroscopic physical properties of heterogeneous materials have been explicitly ex-
pressed as series expansions containing certain integrals of spatial correlation functions
[441, 443]. Additionally, spatial correlation functions are also frequently used for stochastic
reconstruction to generate statistically equivalent microstructure samples for porous media
[493, 495, 217, 214].

Two/n-point correlation function

The n-point correlation function Sn(r1,r2, ...,rn) is commonly used to statistically character-
ize microstructures, which provides the probability of finding n points in the same material
phase located at r1,r2, ...,rn [92, 441].

Sn(r1,r2, ...,rn) = ⟨X(r1)X(r2)...X(rn)⟩ (2.6)

where ⟨·⟩ denotes ensemble averaging, which is equivalent to volume averaging under ergodic
hypothesis. For statistically homogeneous and isotropic media, the n-point correlation
function only depends on the relative positions of the n points. The infinite family of n-
point correlation functions exclusively and exhaustively describes the random nature of pore
microstructures.

Fig. 2.7 Schematic illustration of statistical descriptors of 2D pore microstructures

The porosity (volume fraction) φ can also be considered as the one-point correlation
function, which can be simply interpreted as the probability of finding a point in the pore
space [92, 441]. As to the two-point correlation function S2(r1,r2), it depicts the probability
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of finding any two points separated by distance ∆r = r2 − r1 who are located in the pore
space (as illustrated in Figure 2.7). For the statistically homogeneous and isotropic porous
media, S2(r1,r2) only depends on the magnitude of separation distance ∆r, given by

S2(r1,r2) = S2(r2 − r1) = S2(∆r) (2.7)

where ∆r = |r2 − r1|. In particular, the two-point correlation function has the significant
properties as follows, which can be seen in Figure 2.8:

S2(0) = φ

lim
∆r→∞

S2(∆r) = φ
2 (2.8)

Fig. 2.8 An example of two-point correlation function S2(∆r)

Two-point correlation function also carries the information of specific surface area S.
When ∆r is close to 0, the slop of S2(∆r) is proportional to S [185, 495, 443], given by:

d(S2(∆r))
d(∆r)

|∆r=0 =−S′2(0) =


−S/2 for 1D space;

−S/π for 2D space;

−S/4 for 3D space.

(2.9)

The effective pore size dc can also be estimated from S2(∆r) [46, 12], given by

dc =
φ −φ 2

−S′2(0)
(2.10)
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Fig. 2.9 The flow diagram of computing two-point correlation function via Fourier transform

The value of dc is directly measured from the curve of S2(∆r), as illustrated in Figure 2.8,
and it is related to the hydraulic diameter dh = 2φ/S [2, 34, 344]. Additionally, several
characteristic length scales can be extracted from S2(∆r) as follows [92]:

la =
∫

∞

0

(
S2(∆r)−φ

2)d(∆r) (2.11)

lb =
√∫

∞

0
(S2(∆r)−φ 2)∆rd(∆r) (2.12)

Another characteristic length scale is the distance lc where S2(∆r) dwindles to its asymptotic
value of φ 2 (as shown in Figure 2.8). All these length scales mentioned above have been
used as probes to understand the influence of pore structure on transport/physical properties
of porous media.

Generally, there are two common ways to extract two-point correlation function from a
digital microstructure. One is the Monte Carlo method to randomly caste line segments with
length ∆r in a specified orientation and then to count the fraction of times that both of the
endpoints fall in pore space [441]. The problem of this method is that it is computationally
slow. The other way is using the radial integration of the power spectrum of the digital
image via the Fourier transform [12]. This method is based on the famous Wiener-Khinchin
theorem [135], which is much more efficient to compute two-point correlation function,
compared to the former way [217]. Two-point correlation function is computed through
the Fourier transform (FT) of the image, multiplying by the complex conjugate, inverse
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Fourier transform (IFT) of the power spectrum and averaging the correlation function over
all orientations, as illustrated in Figure 2.9.

It should be noted that the two-point correlation function discussed above is the void-
void correlation function of porous media. Actually, grain-grain and void-grain correlation
function also have been used to characterize pore microstructures [46, 214]. The two-
point correlation functions and the corresponding high-level microstructural parameters of
the group of Fontainebleau sandstone samples are provided in Figure 2.10 and Table 2.2,
respectively.

(a) (b)

(c)

Fig. 2.10 The two-points correlation functions S2(∆r) of the group of Fontainebleau sandstone
samples: (a) Void-void correlation; (b) Grain-grain correlation; (c) Void-grain correlation

Besides, three-point or other higher-order correlation functions, involving multiple refer-
ence points, are also valuable statistics for describing porous microstructures, which always
encompass more information than lower-order correlation functions [213]. However, cor-
relation functions with order higher than three encounter both analytical and numerical
difficulties to compute [217]. Therefore, two-point correlation function, carrying informa-
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tion of porosity and specific surface area, is the most commonly used correlation function,
which has been arisen in rigorous expressions of effective transport or mechanical properties
[46, 441].

Table 2.2 Microstructural parameters extracted from S2(∆r), R(∆r), ρ(z) and µ(φ̃ ,L) of the
group of Fontainebleau sandstone samples

Microstructural parameters Fontainebleau sandstone samples with different porosities

8.61% 10.15% 12.57% 15.36% 17.62% 20.65% 24.50%

S (mm−1) 11.08 12.50 14.71 16.72 18.23 19.98 21.75
dc (µm) 28.42 29.17 29.89 31.10 31.86 32.80 34.02
dh (µm) 23.28 23.46 24.36 25.96 27.30 29.12 31.72
la (µm) 2.63 3.06 3.66 4.48 4.95 5.65 6.43
lb (µm) 7.21 8.29 9.59 10.76 11.32 11.62 11.88
lc (µm) 143.08 133.53 126.76 122.63 119.13 114.77 110.92
ld (µm) 33.42 33.55 33.30 34.46 34.10 34.48 34.76
z̄ (µm) 41.74 43.33 46.04 49.69 52.79 56.11 61.50
r̄ (µm) 16.49 17.01 17.66 18.53 19.23 20.11 21.40

L⋆ (µm) 239.40 222.30 222.30 222.30 188.10 171.00 171.00

Normalized/scaled auto-covariance function

Normalized/scaled auto-covariance function R(∆r), a variation of two-point correlation func-
tion S2(∆r), is widely used to statistically characterize and reconstruct porous microstructures
[33, 277, 442, 215]. For statistically homogeneous and isotropic porous media, R(∆r) is
defined as

R(∆r) =
⟨(X(r1)−φ)(X(r2)−φ)⟩

φ −φ 2

=
⟨X(r1)X(r2)⟩−φ 2

φ −φ 2

=
S2(∆r)−φ 2

φ −φ 2

(2.13)

where ∆r = |r2 − r1| again. Obviously, R(∆r) is equivalent to S2(∆r) in terms of the carried
morphology information of pore microstructures, and it has properties [186] as follows,

R(0) = 1

lim
∆r→∞

R(∆r) = 0
(2.14)

In addition, the integral of R(∆r) was used as a length scale to predict permeability of porous
rocks [208]:

ld =
∫

∞

0
R(∆r)d(∆r) =

la
φ −φ 2 (2.15)
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Normalized/scaled auto-covariance functions and the corresponding high-level microstruc-
tural parameter of the group of Fontainebleau sandstone samples are provided in Figure 2.11
and Table 2.2, respectively.

Fig. 2.11 Normalized auto-covariance functions R(∆r) of the group of Fontainebleau sand-
stone samples

Two-point cluster correlation function

Although two-point correlation function S2(r1,r2) carries fundamental and indispensable
information of pore microstructures, it cannot provide sufficient topological characteristics
(clustering or connectedness) of pore space [441, 216]. As an analogue of S2(r1,r2), two-
point cluster correlation function C2(r1,r2) is defined as the probability of finding both
points r1 and r2 in the same cluster of void phase, which contains topological connectivity
information [444, 441, 231].

The relationship between S2(r1,r2) and C2(r1,r2) is interpreted by decomposing S2(r1,r2)

into a connected part and a disconnected part:

S2(r1,r2) =C2(r1,r2)+E2(r1,r2) (2.16)

where E2(r1,r2) denotes the probability of finding both points r1 and r2 in different clusters
of void phase.

Similarly, C2(r1,r2) only depends on the magnitude of separation distance ∆r for the
statistically homogeneous and isotropic porous media, given by

C2(r1,r2) =C2(r2 − r1) =C2(∆r) (2.17)

where ∆r = |r2 − r1| again.
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And C2(∆r) also has important properties [213] as follows:

C2(0) = φ

lim
∆r→∞

C2(∆r) = 0
(2.18)

Finally, it should be noted that two-point cluster correlation function is an intrinsic
measure for 3D microstructures, which can not be simply measured from 2D cross-section
of porous media [441]. The two-point cluster correlation functions C2(∆r) of the group
of Fontainebleau sandstone samples are given in Figure 2.12, which are very close to the
two-point correlation functions S2(∆r) in Figure 2.10a. This is due to the good connectivity
of pore space inside the Fontainebleau sandstone samples, which means most of the pores are
interconnected to be one pore cluster. For pore media with many isolated pores, the C2(∆r)
exhibits great difference from the S2(∆r).

Fig. 2.12 Two-point cluster correlation functions C2(∆r) of the group of Fontainebleau
sandstone samples

Pair connectivity function

Pair connectivity function H(r1,r2) is defined as the probability of two points r1 and r2 are
linked by a continuous path within the pore space P [9, 13, 389], given by

H(r1,r2) = Prob{r1 ↔ r2, r2 ∈ P|r1 ∈ P} (2.19)

where r1 ↔ r2 means the points r1 and r2 are connected through a pore path. This connectivity
measurement combines the concept of connected path used in percolation theory with the
well-established lag-dependence [471, 389].
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For the statistically homogeneous and isotropic porous media, H(r1,r2) only depends on
the magnitude of separation distance ∆r. Apparently, pair connectivity function is in close
accordance to two-point cluster correlation function C2(∆r) discussed above.

H(∆r) =
C2(∆r)

φ
(2.20)

where ∆r = |r2 − r1| again. An average connectivity distance le is defined as the integral of
H(∆r) over all distance [242, 13], given by:

le =
∫

∞

0
H(∆r)d(∆r) (2.21)

The pair connectivity functions of the group of Fontainebleau sandstone samples are
provided in Figure 2.13, and the average connectivity distances are given in Table 2.2 .

Fig. 2.13 Pair connectivity functions H(∆r) of the group of Fontainebleau sandstone samples

Field-field correlation function

A pore microstructure is usually modeled as a truncation of a certain realization of random
field [277, 372, 135, 14], and field-field correlation function is used to characterize the
underlying random field Y (r) instead of the porous microstructure itself X(r) [213, 406].
The random field is often assumed to be statistically homogeneous up to the second order,
so that its mean and variance are invariant when shifted in space. Gaussian random field
(GRF) is commonly used to model microstructures due to its explicit and simple probability
distribution.
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The realization of a standard GRF Y (r) at each point r marginally follows a standard
normal distribution, and its marginal probability density function is as follows:

f (Y (r) = yr) =
1√
2π

exp
(
−y2

r
2

)
(2.22)

where yr is a realization of the GRF at point r. And the cumulative distribution function is
then given by

F (Y (r) = yr) =
1√
2π

∫ yr

−∞

exp
(
−ζ 2

2

)
dζ (2.23)

where ζ is a dummy variable. The porous microstructure X(r) in binary form can be
considered as the result from the truncation of a certain relation of the corresponding GRF
Y (r), with the thresholding value φ :

X(r) =

1 if F (Y (r = yr))≤ φ

0 otherwise
(2.24)

where φ is the porosity.
For a statistically homogeneous and isotropic porous microstructure, field-field correlation

function G(∆r) is a direct way to characterize the underlying GRF Y (r), given by

G(r1,r2) = ⟨Y (r1)Y (r2)⟩= G(∆r) (2.25)

where ∆r = |r2 − r1| again.

Fig. 2.14 Field-field correlation functions G(∆r) of the group of Fontainebleau sandstone
samples
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Basically, the field-field correlation function G(∆r) is the correlation of two points
separated by distance ∆r in the GRF Y (r). The transformation of the underlying GRF Y (r)
from the porous microstructure X(r) can be implemented through iterative optimization
methods or explicit transformation, and more details can be found in relevant references
[374, 373, 405, 213, 135]. As shown in Figure 2.14, the field-field correlation functions of
the group of Fontainebleau sandstone samples are given.

Surface correlation functions

Surface correlation functions [441, 216, 296] contain essential information about the pore-
solid interface ∇X , which are of fundamental importance to transport properties of fluid-
saturated porous media, including permeability, effective diffusivity and trapping constant
[377, 378, 443]. The specific surface area S mentioned above is the simplest surface correla-
tion function, which is a constant everywhere for homogeneous media:

S = ⟨∇X⟩ (2.26)

Specific surface area S can also be considered as a one-point correlation function, but it
cannot be interpreted as probability, because the likelihood of finding a point on the pore-solid
interface is zero.

As to two-point surface correlation functions, surface-surface correlation function Fss

and surface-void correlation function Fsv are often used to characterize pore microstructures.
For statistically homogeneous and isotropic porous media, they are defined as follows:

Fss(r1,r2) = ⟨∇X(r)∇X(r+∆r)⟩= Fss(∆r) (2.27)

Fsv(r1,r2) = ⟨∇X(r)X(r+∆r)⟩= Fsv(∆r) (2.28)

where ∆r = |r2 − r1| again. The asymptotic behaviors of these two surface correlation
functions are given by:

lim
∆r→∞

Fss(∆r) = S2 (2.29)

lim
∆r→∞

Fsv(∆r) = Sφ (2.30)

As shown in Figure 2.15, the surface-surface correlation functions and surface-void
correlation functions of the group of Fontainebleau sandstone samples are provided.
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Fig. 2.15 Surface correlation functions Fss(∆r) (solid line + empty label) and Fsv(∆r) (dashed
line + solid label) of the group of Fontainebleau sandstone samples

2.2.3 Contact distribution function

Contact distribution functions are used to characterize the stochastic geometry [83], and
some special cases have been applied in porous media research, such as spherical and linear
contact distribution function [319, 186].

Spherical contact distribution function

For a given porous medium X and a convex compact set B containing the internal origin o,
contact distribution function HB(d) is defined as

HB(d) = 1− Prob{M∩ (d ×B) =∅}
φ

for d ≥ 0 (2.31)

where M denotes the solid matrix, ∅ denotes empty set, and φ is the porosity. A particular
important case is that the convex compact set B is a unit sphere S(o,d = 1) centered at the
point o, yielding the spherical contact distribution function HS(d):

HS(d) = 1− Prob{M∩S(o,d) =∅}
φ

for d ≥ 0 (2.32)

where S(o,d) denotes a sphere centered at point o with diameter d. More specifically, HS(d)
is defined as the probability that the diameter of a randomly centered sphere completely
falling into the pore space is not larger than d.

Spherical contact distribution function HS(d) not only accounts for pore shapes but
also pore size distribution. Its probability density is an alternative to characterize pore size
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distribution function p(d) of porous media [186, 267], given by:

p(d) =
dHS(d)

dd
(2.33)

where d here is equivalent to pore diameter. The p(d) can be considered as the fraction of
spheres centered at pore space with diameter d which have no intersection with solid matrix.
The spherical contact distributions and pore size distributions of the group of Fontainebleau
sandstone samples are given in Figure 2.16 and 2.29b, respectively.

Fig. 2.16 Spherical contact distributions of the group of Fontainebleau sandstone samples

Linear contact distribution function

Analogous to spherical contact distribution function, linear contact distribution function
Hl(z) [319] corresponds to the case where the convex compact set B is a unit line segment
l(o,z = 1). Hl(z) is often redefined as lineal path function L(z) to characterize porous media
[186]. For statistically isotropic porous media, lineal path function L(z) [291, 92, 333, 186]
provides the probability that a line segment with length z wholly falls inside the pore space P
when randomly casting it into the porous medium sample X , given by:

L(z) = φ(1−Hl(z)) = Prob{M∩ l(o,z) =∅} (2.34)

The schematic illustration of L(z) can been in Figure 2.7.
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For the line segment with length z → 0, L(z) reduces to the probability of finding a point
in the pore space. As to the line segment with large length, L(z) decays to zero rapidly.

L(0) = φ

lim
z→∞

L(z) = 0
(2.35)

Generally, L(z) is considered to contain partial topological connectedness information of
pore space. The lineal path functions of the group of Fontainebleau sandstone samples are
given in Figure 2.17.

Fig. 2.17 Lineal path functions L(z) of the group of Fontainebleau sandstone samples

Chord length distribution function

Throwing an infinitely long line into a porous medium, it will be intersected into line segments
by the pore-solid interface, and the line segments lying in pore or solid phase are called
chords, as illustrated in Figure 2.7. Chord length is thus defined as the distance between two
intersections of a line with the pore-solid boundary. For statistically isotropic porous media,
chord length distribution function ρ(z) is defined as the probability of finding a chord with
the length between z and z+dz completely lying inside pore space [441].

Chord length distribution function ρ(z) [319, 92, 333] is highly related to lineal path
function L(z) though

ρ(z) =
z̄
φ

d2(L(z))
dz2 (2.36)

where z̄ is the mean chord length and it is defined as

z̄ =
∫

∞

0
zρ(ζ )dζ (2.37)



2.2 Microstructure characterization via image analysis 43

where ζ is a dummy variable.
Chord length distribution function ρ(z) only possesses limited information on connectiv-

ity of pore network, because connectedness is evaluated along lineal test lines. The chord
length distribution functions and the mean chord lengths of the group of Fontainebleau
sandstone samples are provided in Figure 2.18 and Table 2.2, respectively.

Fig. 2.18 Chord length distribution functions ρ(z) of the group of Fontainebleau sandstone
samples

2.2.4 Local porosity characterization

Local porosity characterization [290, 184, 186, 408] is a class of scale-dependent measure-
ments to quantitatively represent the porosity fluctuation and connectivity variation for porous
media. As illustrated in Figure 2.19, variations in local porosity and connectivity of porous
media are presented. Two geometric characteristics, including local porosity distribution and
coarseness [290, 92], have been successively created to measure the local volume fraction
fluctuation in porous media. Local percolation probabilities and total fraction of percolation
cells are used to characterize the size-dependent connectivity variation inside porous media
[183, 44]. The local porosity characteristics are highly related to transport properties of
porous media, including permeability and conductivity [45, 186].

Local porosity distribution

Local porosity distribution [183, 44, 186] is to measure local porosities from compact subsets
of a porous medium and collect the measurements in a histogram form to represent the
empirical probability density. A measurement cell K(r,L) is defined as a cube (or a square)
with side-length L centered at the lattice vector r inside the 3D (or 2D) pore microstructure
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Fig. 2.19 Schematic illustration of variations in local porosity and connectivity of porous
media

(as shown in Figure 2.19), and local porosity φlocal(r,L) is defined as the porosity of this
measurement cell K(r,L):

φlocal(r,L) =
V (P∩K(r,L))

V (K(r,L))
(2.38)

where V (·) denotes the volume.
Local porosity distribution µ(φ̃ ,L) provides the probability density of finding a local

porosity equal to φ̃ when the side-length of measurement cell is set to L, and it is defined as

µ(φ̃ ,L) =
1

N∆φ̃
∑
r

δ (φ̃ −φlocal(r,L)) (2.39)

where N is the number of placements of the measurement cells K(r,L), and δ (φ̃ −φlocal(r,L))
is the Dirac δ function which is defined as follows:

δ (φ̃ −φlocal(r,L)) =

{
1, if |φ̃ −φlocal(r,L)| ≤ dφ̃ ;

0, otherwise.
(2.40)

where dφ̃ denotes the interval to build the histogram associated with local porosity distribution.
Essentially, µ(φ̃ ,L)dφ̃ measures the probability of finding a measurement cell with side-
length L and local porosity between φ̃ and φ̃ +dφ̃ .

Obviously, µ(φ̃ ,L) depends on the side-length L of the measurement cell, but there is no
common rule to determine an optimal value of L for a specific porous medium. A special
length scale L⋆ is defined to measure the pore size, given by:

L⋆ = min{L : µ(0,L) = µ(1,L) = 0} (2.41)
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where the Dirac δ function at φlocal = 0 and φlocal = 1 vanish for the first time. And the length
scale L⋆ is usually used as the characteristic length to extract the local porosity distribution
µ(φ̃ ,L⋆) and the local percolation probability λα(φ̃ ,L⋆) from porous media [44, 186].

If the porous medium is macroscopically homogeneous, its local porosity distribution
µ(φ̃ ,L) has following properties:

lim
L→0

µ(φ̃ ,L) = φδ (φ̃ −1)+(1−φ)δ (φ̃)

lim
L→∞

µ(φ̃ ,L) = δ (φ̃ −φ)
(2.42)

where φ is bulk porosity of the porous medium.
Besides, local densities of surface area, mean curvature and total curvature are also

defined in the way analogous to local porosity distribution, but they are not used frequently
in microstructure characterization (more details can be found in [185]). The local porosity
distributions and the corresponding length scales L⋆ of the group of Fontainebleau sandstone
samples are given in Figure 2.20 and 2.2, receptively.

(a) L = 50 voxels (b) L = L⋆

Fig. 2.20 Local porosity distributions µ(φ̃ ,L) of the group of Fontainebleau sandstone
samples (the value of L⋆ decreases with porosity, which is equal to 42, 39, 39, 39, 33, 30 and
30 voxels respectively for these sandstone samples)

Coarseness

Coarseness C(L) provides a quantitative measure of size-dependent fluctuation of local
porosity φlocal(r,L), and it has extensive use to characterize stochastic microstructures
[290, 92, 364, 408]. The standard deviation associated with the local porosity φlocal(r,L) of
measurement cells K(r,L) can be used to represent the fluctuation of spatially local porosity
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for statistically homogeneous media. Coarseness C(L) is defined as the standard deviation
divided by the mean of φlocal(r,L), given by

C(L) =

√〈
φ 2

local(r,L)
〉
−⟨φlocal(r,L)⟩2

⟨φlocal(r,L)⟩

=

√〈
φ 2

local(r,L)
〉
−φ 2

φ

(2.43)

where φ is the bulk porosity again. Coarseness C(L) has following properties, when the
measurement cell K(r,L) has infinitely small or large size L:

lim
L→0

C(L) =

√
φ(1−φ)

φ

lim
L→∞

C(L) = 0
(2.44)

It should be noted that the measurement cell K(r,L) can be an arbitrary-shaped ob-
servation region, not limited to a cube or square. The coarseness results of the group of
Fontainebleau sandstones are given in Figure 2.21.

Fig. 2.21 Coarseness C(L) results of the group of Fontainebleau sandstone samples

Local percolation probabilities

Local percolation probabilities [183, 44, 186, 101] are used to characterize the connectivity
of measurement cells K(r,L) with the specific local porosity. A measurement cell K(r,L)
is termed percolating in direction α , if there exists at least one pore path lying inside this
measurement cell that connects two points on the opposite surfaces perpendicular to this
direction.
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The indicator function of the measurement cell K(r,L) percolating in direction α is given
by

Λα(r,L) =

{
1, if K(r,L) percolates in the direction α;

0, otherwise.
(2.45)

Thus, Λx(r,L) = 1, Λy(r,L) = 1 or Λz(r,L) = 1 indicates the measurement cell is percolating
in the x-, y- or z-direction. It should be noted that Λ1(r,L) = 1 and Λ3(r,L) = 1 indicate the
measurement cell is percolating in at least one of the principal directions and in all the three
principal directions, respectively.

The local percolating probability λα(φ̃ ,L) in the direction α is defined as follows:

λα(φ̃ ,L) =
∑r Λα(r,L)δ (φ̃ −φlocal(r,L))

∑r δ (φ̃ −φlocal(r,L))
(2.46)

Basically, λα(φ̃ ,L) provides the fraction of measurement cells with side-length L and local
porosity φ̃ that are percolating in direction α . Local percolating probabilities of the group of
Fontainebleau sandstone samples are provided in Figure 2.22.

(a) L = 50 voxels (b) L = L⋆

Fig. 2.22 Local porosity probabilities λ3(φ̃ ,L) of the group of Fontainebleau sandstone
samples

Total fraction of percolating cells

Total fraction of percolating cells Tα(L) [44, 186, 101] provides the fraction of all mea-
surement cells K(r,L) with side-length L that are percolating in the direction α , and it is
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calculated from the integration over all local porosities:

Tα(L) =
∫ 1

0
µ(φ̃ ,L)λα(φ̃ ,L)dφ̃ (2.47)

Total fraction of percolating cells Tα(L) quantifies the connectivity characteristic of the
pore network, which is important for modeling transport properties [262]. The Total fractions
of percolating cells fo the group of Fontainebleau sandstone samples are given in Figure 2.23.

(a) Percolation in one of three principal directions (b) Percolation in all three principal directions

Fig. 2.23 Total fractions of percolation cells T1(L) and T3(L)of the group of Fontainebleau
sandstone samples

2.2.5 Pore size distribution

The size of pores within porous media could affect the transport and mechanical properties,
so pore size distribution (PSD) is one of the most important descriptors to quantitatively
represent pore structure, and then to understand the structure-property linkages. Generally,
pores are classified into three categories according to their sizes: micropores (pore diameter
d ≤ 2 nm), mesopores (2 nm < d ≤ 50 nm), and macropores (d > 50 nm), which was
recommended by the International Union of Pure and Applied Chemistry [410]. A wide pore
size spectrum associated with ultrafine pore sizes may be exhibited in porous media such as
shale, which sometimes makes it difficult to obtain the full PSD information.

It is difficult to define the “pore body” inside natural porous rocks, and there is no
uniformity of PSD [185, 281]. Due to the mathematically unambiguous definitions of PSD
[321], several image analysis methods have been proposed to extract PSD from images.
These methods can be generally classified into the intercept method, the random point
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method, the pore skeleton method, the discrete method, the continuous method and the
morphological opening method. It should be noted that PSD can only be extracted from
digital microstructures in 3D form, because it contains connectedness information of pore
space.

Intercept method

The PSD obtained from the intercept method [140, 194, 74] reflects the probability of
intercepted lengths of randomly oriented lines by the pore-solid interface, as illustrated in
Figure 2.24. Both lineal path function and chord length distribution function can be used as
the intercept PSDs to estimate characterize the pore structure, and more details have been
given in Section 2.2.3. However, intercept PSD may poorly represent the pore size of porous
media with complicated morphologies. For example, very different interception lengths
are observed at the location of a bottle neck (as shown in Figure 2.24), which may lead to
relatively wider pore size distribution.

Fig. 2.24 Schematic diagram of PSD determination using the intercept method

Random point method

The random point method [291, 185, 92, 441] is one of the simplest approach to obtaining
PSD p(r), where p(r)dr is defined as the probability of randomly choosing a point in the pore
space that lies at the distance between r and r+dr to the pore-solid interfaces. Essentially,
this distance r is equal to the radius of the sphere centered at the randomly selected point
and inscribed to the pore-solid surface, as illustrated in Figure 2.7. The sum of probability is
equal to 1, given by: ∫

∞

0
p(r)dr = 1 (2.48)



50 Statistical characterization of porous media: Morphology and topology

PSD p(r) satisfies properties as follows:

lim
r→0

p(r) =
S
φ

lim
r→∞

p(r) = 0
(2.49)

Besides, the mean pore size r̄ is defined as the first moment of p(r), given by:

r̄ =
∫

∞

0
rp(r)dr (2.50)

In this study, the distances of all pore pixels/voxels to the pore-solid interfaces are
calculated, to form a distance map, as shown in Figure 2.25a. The distance data is then
collected in a histogram form to represent the empirical probability density of pore radius.
The PSDs and mean pore sizes of the group of Fontainebleau sandstone samples are provided
in Figure 2.25b and Table 2.2, respectively. Generally, the PSD obtained from this random
point method provides less information of the geometrical complexity of pore space.

Fig. 2.25 (a) Schematic diagram of distance map, and (b) PSD p(r) of the group of
Fontainebleau sandstone samples

Pore skeleton method

The pore skeleton method [280, 115, 281, 431] is analogous to the random point method,
but it selects the points on the medial axis (pore skeleton) of the pore space as the centers
of circles/spheres inscribed to the pore-solid interfaces, in order to capture geometric char-
acteristics related to transport flow. The pore skeleton can be extracted from a pore space
through a skeletonization process, such as the homotopic thinning algorithm [280] and the
fast marching algorithm [431]. The distances from the points on the pore skeleton to the
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pore-solid interfaces are equal to the radii of circles/spheres that are centered on the pore
skeleton and inscribed to the pore-solid interfaces. The occurrence frequencies of radii are
used to estimate the PSD. Here, the homotopic thinning algorithm is adopted to extract
pore skeleton, and then the inscribed circles centered on the pore skeleton are determined,
as shown in Figure 2.26a. The pore-skeleton-based PSDs of the group of Fontainebleau
sandstone samples are shown in Figure 2.26b.

Fig. 2.26 Determination of PSD by using the continuous method: (a) schematic diagram
of circles centered at the pore skeleton and inscribed to pore-solid interface, and (b) the
continuous PSDs of the group of Fontainebleau sandstone samples

Discrete method

The entire pore network can be split into discrete objects based on a specific criterion, and
then equivalent pore diameters deq are derived from the areas (2D) or the volumes (3D) of
the discrete pore bodies [321, 194], as illustrated in Figure 2.27a. However, there is a lack of
reliable methods to recognize individual pore objects, and the splitting process may introduce
significant uncertainties to the determination of PSD [320].

Here, the watershed algorithm [309] is adopted to partition the pore network, and the
discrete PSD is then calculated in a histogram form to represent the empirical probability
density of pore diameter. The discrete PSDs of the group of Fontainebleau sandstone samples
are given in Figure 2.27b.

Continuous method

In reality, the pore space inside a natural porous rock does not consist of isolated cavities with
simple shapes, which is a continuous 3D network with irregular geometry, so the conventional
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Fig. 2.27 PSD determination by using the discrete method: (a) schematic diagram of pore
splitting, and (b) the discrete PSDs of the group of Fontainebleau sandstone samples

concept of “discrete PSD” breaks down. The continuous method treats the pore space as
a single continuum, where the PSD at a specific pore diameter d is determined from the
amount of pore area (2D) or volume (3D) that can be potentially occupied by the circle or
sphere with diameter d [321, 194].

Fig. 2.28 Determination of PSD by using the continuous method: (a) schematic diagram of
distance map, and (b) the continuous PSDs of the group of Fontainebleau sandstone samples

In this study, the distance map is firstly calculated from the binary pore mask, which
contains the distances between all void pixels/voxels to the pore-solid interfaces (as can be
seen in Figure 2.28a). The distance map provides information where the centers of circles
or spheres with radius r = d/2 should be located without overlapping with the solid matrix.
The location set LS(r), where void pixels/voxels are farther than r away from the pore-solid
interfaces, can then be determined from the distance map. Subsequently, LS(r) is dilated by
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a circular or spherical structuring element with radius r, and the obtained area or volume is
the part of pore space that can be completely experienced by the circle or sphere with radius
r. By progressively reducing the diameter d = 2r, more constricted area or volume such as
bottle necks and narrow corners can be occupied by the circle or sphere. The cumulative
PSD P(d) can be calculated from the ratio of occupied area or volume to the entire pore
space. The cumulative PSDs of the group fo Fontainebleau sandstone samples are provided
in Figure 2.28b.

Morphological opening method

PSD can also be determined through a morphological opening process, where successive
morphological opening is performed on the pore space with a circular or spherical structuring
element (SE) of increasing size [122, 431, 121]. After each opening operation, the resulting
pore space only preserves the pores larger than the SE with a specific radius. The opening
operation is repeated with increasing SE size until the entire pore space vanishes. The pore
volume fraction with a specific radius can be calculated from the difference of pore volumes
between two successive opening steps, so as to estimate the PSD. The obtained pore radius is
equivalent to the radius of the maximum inscribed circle or sphere inside the pore, as shown
in Figure 2.29a.

Actually, this method has been discussed in Section 2.2.1 and 2.2.3 to determine the
Minkowski functions and the spherical contact distribution function, respectively. The
morphological opening process is illustrated in Figure 2.5. The morphological-opening PSDs
of the group of Fontainebleau sandstone samples are shown in Figure 2.29b.

Fig. 2.29 Determination of PSD by using the morphological opening method: (a) schematic
diagram of pore radius map, and (b) the morphological-opening PSDs p(d) of the group of
Fontainebleau sandstone samples
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2.2.6 Pore throat size distribution

A pore throat [281, 239] is defined as a local minimum of the cross-sectional area along
the pore channel. Throats locally control the movement of flow and play an important
role in determining the bulk transport properties of porous media. The MIP simulation
[321, 121, 174] is a popular approach to extracting throat size information from porous media,
because the mercury intrusion process is dominated by the effect of constriction/bottleneck
[195]. Besides, there are several throat-finding algorithms that have been developed to locate
throats in the pore network and estimate the throat size distribution, such as the wedge-based
algorithm [407], the Dijkstra-based shortest length algorithm [281], and the planar dilation
algorithm [239]. Due to the wide use in characterizing pore structures [121] and modeling
transport properties [195], the MIP simulation is emphatically introduced in this work. With
the availability of 3D digital microstructures, the mercury intrusion process can be mimicked
through a specific region-growing algorithm [146, 321].

(a) Cumulative throat size distributions (b) Throat size distributions

Fig. 2.30 Pore throat size distributions of the group of Fontainebleau sandstone samples
evaluated from MIP simulations

The cubic digital microstructure sample is virtually surrounded with mercury by setting
active mercury layers separating from the cube surfaces with a fixed distance. The contact
angle θ between mercury and solid matrix is assumed to be 180◦, so that the intrusion flow
from each active mercury location can be represented as a sphere with diameter d. The exact
contact angle value is not important here, because it just acts as an overall scale factor in
the Washburn equation [465], which does not affect the dependence of intrusion pressure on
equivalent pore size. If a sphere centered at an actuation point with diameter d can be fitted
in the pore space without overlapping the solid matrix, all void voxels within the spherical
space that are still empty will be recognized as the new mercury actuation regions for the
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next flow propagation step. The iterative cycle continues until there is no new intrusion space
to explore. By executing this simulation scheme with a continuous rang of spherical diameter
d, a complete MIP curve can be obtained to represent the relationship between intruded pore
volume and spherical diameter d. In essence, this simulation scheme can be considered as a
region-growing algorithm, where a new void voxel meeting the growing criterion is permitted
to join the intrusion region. Throat size distributions evaluated from MIP simulations for the
group of Fontainebleau sandstone samples are shown in Figure 2.30.

Recently, morphological opening has been used for MIP simulation, and the procedure is
similar to the determination of morphological-opening PSD, as described in section 2.2.5.
The MIP simulation needs to check the pore connectivity after each image erosion step and
to remove the eroded pore space that is inaccessible to the active mercury surface [121]. MIP
simulation results of the group of Fontainebleau sandstone samples are given in Figure 2.31.

Fig. 2.31 The MIP simulations (morphological opening method) performed on the group
of Fontainebleau sandstone samples: (a) Visualization of differentiated pores after mercury
intrusion, when the diameter of spherical structuring element is set to be 28.5 µm (the
mercury-intruded pores in red, the empty pore in green and the solid matrix is in blue); (b)
Pore throat size distributions

2.2.7 Tortuosity

Porous media, whether natural or artificial, are with highly chaotic pore space and especially
complex microstructures. The internal pore channels are usually tortuous and meandering,
along which the cross-sectional areas are also uneven and varying. The flow paths of fluid



56 Statistical characterization of porous media: Morphology and topology

permeation, molecular diffusion, current transmission, and heat conduction are shaped by
the pore channels, where the presence of solid matrix in porous media greatly hinders these
transport processes. Tortuosity is a dominant microstructural measurement to characterize
the sinuosity and complexity of internal percolation paths, and it is also used to quantify
retarding effects of pore microstructures on different transport processes [90, 26, 153].

The tortuosity concept varies depending on the specific applications, but in general, it can
be understood from two interrelated perspectives: (1) a geometrical measure to characterize
the sinuosity of pore channels (flow paths) inside the porous medium; (2) a physical charac-
teristic to quantify the retarding effect (resistance) of the porous microstructure on transport
processes through the porous medium. The nature of tortuosity has not been completely
understood yet, and it is very confusing whether tortuosity is an intrinsic microstructural
property of the porous medium, a physical characteristic depending on the type of transport
process taking place inside the porous medium, or just a ’fudge factor’ to match predictions
with experimental results [153].

Since the concept of tortuosity can be understood from physical and geometrical perspec-
tives, we thus broadly divide tortuosity into two major categories: physical tortuosity and
geometrical tortuosity, depending on whether the analysis object is the transport flow through
the pore space or the pore space itself. The physical tortuosity can be further divided into
hydraulic, electrical, diffusional, and thermal tortuosity, according to the specific transport
process occurring inside porous media [90].

Physical tortuosity

Given the digital microstructures of porous media, the transport processes including fluid
permeation, molecular diffusion, electrical conduction and heat transfer can be simulated
using various numerical methods to compute the corresponding physical tortuosities. More
details will be provided in Chapter 3.

Geometrical tortuosity

Geometrical tortuosity is defined as the ratio of the effective length of flow paths to the
straight-line distance in the macroscopic flow direction [90, 153], to describe the degree of
streamlines deviating from the straight line, which can be evaluated through image analysis.
More details will be given in Chapter 3.
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Geometrical tortuosity distribution

Geometrical tortuosity is a single-valued factor greater than 1, which is calculated as the aver-
age ratio of the shortest pore channel length Lmin to the corresponding straight-line distance L.
The identified shortest pore channel connecting two opposite faces can be different, when the
starting or ending point changes. Therefore, it is natural to define the geometrical tortuosity
distribution to characterize the length variation of the connected pore channel inside porous
media [280, 435, 223, 74, 80]. Compared to one single tortuosity value, the geometrical
tortuosity distribution contains more information relevant to microstructural properties, which
can be used to correlate microstructural characteristics to transport properties.

(a) DSPSM (b) SSPSM

(c) FMM

Fig. 2.32 Geometrical tortuosity distributions of the group of Fontainebleau sandstone
samples

The direct shortest path searching method (DSPSM) [74], skeleton shortest searching
method (SSPSM) [280] and fast marching method (FMM) [223] are used to extract the
geometrical tortuosity distribution, and the results of the group of Fontainebleau sandstones
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are shown in Figure 2.32. The geometrical tortuosity distribution results calculated by
DSPSM, SSPSM and FMM are inconsistent, although they show similar trends varying with
porosity. More details about these three methods can be found in Chapter 3.

2.2.8 Constrictivity

The constriction and expansion along pore channels (as shown in Figure 2.33) converge and
diverge the fluid streamlines, which will lead to variation in fluid velocity, thereby hindering
the transport process [34]. As discussed above, tortuosity does not account for the variation
in cross-sectional area along the pore channels [153]. To quantitatively characterize the
transport resistance called ‘bottleneck effect’, constrictivity δ was therefore introduced by
researchers [195, 34, 422]:

σeff

σ0
=

φδ

τ
(2.51)

where σ0 is the electrical conductivity of a fluid, and σeff is the effective electrical conductivity
measured on the test porous media sample. The influences of constrictivity on transport
processes are usually considered together with the effects of tortuosity τ .

Fig. 2.33 Sketch of the non-constricted bulge and bottlenecks along the pore channel

Constrictivity δ is a dimensionless parameter whose value lies in between 0 and 1, and it
characterizes the transport resistance that is inverse proportional to the width of bottleneck
[195, 34]. However, there is no rigorous and unique definition for constrictivity.

Petersen (1958) [354] is one of the pioneers to study the effect of constriction on diffusion,
and he proposed a simple mathematical expression of constriction factor βPetersen for a single
cylindrical pore channel with varying cross-section areas, given by:

βPetersen =
Amax

Amin
(2.52)

where Amax and Amin are the maximum and minimum cross-section area respectively along
the pore channel.
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Latter, Currie (1960) [106] introduced a factor f to represent the contrition effect on
diffusion through a tube with non-uniform cross section:

f =
√

AmaxAmin

Amean
(2.53)

where Amean is the average cross-section area along the cube. Although βPetersen and f are
well defined in geometric perspective, they are limited to ideal geometry of single pore
capillary.

To quantify the constriction factor of real porous media with complicated geometry, a
proper methodology is required to measure the cross-sectional areas at the constrictions and
the bulges, as shown in Figure 2.33. Holzer et al. (2013) [195] used the inverse of Petersen’s
constriction factor to characterize the bottleneck effect, whose value is in between 0 and 1,
given by:

β =
Amin

Amax
=

(
dmin

dmax

)2

(2.54)

where dmax and dmin are the diameters of pore cross sections at the non-constricted ‘bulges’
and the bottlenecks respectively along pore channels.

(a) (b)

Fig. 2.34 (a) Schematic illustration of constriction factor β determined from cumulative pore
size distributions; (b) Constriction factors β of the Fontainebleau sandstone samples

The values of dmax and dmin can be determined from PSD of pore media with complicated
geometries. As discussed in Section 2.2.5, the PSD results obtained from diverse methods are
inconsistent, due to the conceptual differences across them. Basically, the PSD obtained from
MIP simulation (MIP-PSD) is controlled the pore constriction, while continuous PSD (cPSD)
is insensitive to the bottleneck effect [321]. Therefore, cPSD and MIP-PSD were adopted by
[195], from which dmax and dmin can be extracted respectively, to quantitatively represent the
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dimensions of bottlenecks and non-constricted bulges for complicated microstructures. The
50% volume fractiles (d50) of the cPSD and MIP-PSD curves are considered as the measures
of dmax and dmin respectively, as illustrated in Figure 2.34a. And then, constriction factor β

can be determined according to Eqn. (2.54).
As a microstructural parameter, constriction factor is quantified from measurable geo-

metrical attributes (i.e. dmax and dmin). Following the above procedure, constriction factor
results of the group of Fontainebleau sandstones are calculated and plotted in Figure 2.34b,
and the corresponding cPSD and MIP-PSD curves can be seen in Figure 2.28a and 2.30b,
respectively.

2.2.9 Pore coordination number

Pore coordination number η [379, 365] represents the number of adjacent pore bodies
connected to a specific pore, which is used to characterize the topology of porous media. As
a fundamental characteristic of pore networks, the coordinate number has been extensively
invoked for studying flow and transport in porous rocks [32, 79, 451].

Generally, there are two different approaches to determining the pore coordination number
of a porous medium. In the first approach, the skeleton (medial axis) is extracted from the
pore space firstly, and then coordinate number η is calculated as the number of branches of
the medial axis meeting at a junction of the pore skeleton [122, 281, 197], as shown in Figure
2.35. The average coordination number η̄ is an important topological parameter, defined
as the average number of branches meeting at one node in the skeleton. In this study, the
homotopic thinning algorithm [280] is applied to reduce the pore space to a skeleton of one
voxel thickness with the preservation of topological properties. The average coordination
numbers of the group of Fontainebleau sandstone samples are given in Figure 2.36a.

Fig. 2.35 The 2D schematic illustration of a pore with coordination number η̄=4 (the blue
dash lines denote the pore skeleton)
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(a) (b)

Fig. 2.36 (a) The average coordinate numbers calculated from the first approach, and (b)
the coordination number distributions calculated from the second approach for the group of
Fontainebleau sandstone samples.

The second approach compartmentalizes the pore space into individual pore bodies and
calculates the coordinate number of a pore as the number of adjacent pore bodies connected to
it [197, 365], as shown in Figure 2.37b. In this study, the watershed segmentation algorithm
[309] is adopted to partition the pore space, and the pore coordination number distribution
(PCND) is then calculated in a histogram form to represent the empirical probability density
of pore coordination number. The PCNDs of the group of Fontainebleau sandstone samples
are provided in Figure 2.36b.

(a) Original pore space (b) Segmentation of pore space

Fig. 2.37 The 2D schematic illustration of determination of pore coordination number through
pore space segmentation
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2.2.10 Fractal characterization

Fractal geometry theory [131] has been broadly applied in the microstructural analysis of nat-
ural porous media. There are several fractal parameters such as fractal dimension, lacunarity
and succolarity, and these fractal parameters are complementary to characterize complicated
pore microstructures [327, 12, 485]. These fractal parameters of pore geometry extracted
from digital images have also been employed to relate microstructural characteristics to
transport properties[2, 485], and to stochastically reconstruct microstructure samples [224].

Fractal dimension

Fractal dimension [232, 12, 229, 485], as the most conventional fractal parameter, is a
measurement of scaling irregularity and complexity of pore microstructures, which has
been widely used in microstructure characterization and macroscopic property modeling for
reservoir rocks. Given the digital microstructure of a porous medium, the fractal dimension
can be efficiently estimated from the image through the popular box-counting method
[279, 271].

(a) (b)

Fig. 2.38 Determination of fractal dimension for the Fontainebleau sandstone samples via the
boxing-counting method: (a) the log[n(ε)]-log(ε) graphs and (b) fractal dimension results α

In the box-counting method, the fraction dimension is measured from a binary image, and
the image is subdivided into a series of boxes of side-length ε . The number n(ε) of required
boxes to completely cover the void phase in the image is counted. Reducing or increasing
the box size ε and recounting the number n(ε) of required boxes by repeating the above
procedures, the relationship between log[n(ε)] and log(ε) is created. The log[n(ε)]-log(ε)
plot is used to determine the fractal dimension from the slope of the regression line, as shown
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in Figure 2.38a. The box-counting fractal dimension α [131] is defined as:

α = lim
ε→0

log[n(ε)]
log(1/ε)

(2.55)

The principles of the box-counting method to extract the fractal dimension from 2D and
3D microstructures are almost identical. Here, a cube-counting method is used to estimate
the fractal dimensions of the group of Fontainebleau sandstone samples, and the results are
given in Figure 2.38b.

Lacunarity

Lacunarity is a relatively new fractal parameter to quantitatively measure how clustered
the pore microstructure is, which reflects the degree of homogeneity or heterogeneity or
translational/rotational invariance of the porous medium [327, 12]. Generally, a low la-
cunarity value means homogeneity of pore microstructures, while a high lacunarity value
indicates heterogeneity. The porous microstructures with the same fractal dimension can
be distinguished by the lacunarity. It has been applied to represent the pore structures and
evaluate the transport properties of reservoirs rocks [148, 485], soils [85] and other porous
media [240, 104].

The box counting method is the simplest method to calculate lacunarity [8, 12], where a
box of side-length ε is glided over the binary image in a non-overlapping or an overlapping
manner (also called sliding box counting method). The number M of pore pixels in each
box of size ε is recorded during the box sliding process, and the number of boxes contain M
pore pixels is counted as well, marked as n(M,ε). The occurrence frequency of the boxes of
side-length ε containing M pore pixels is calculated to represent probability density function
Q(M,ε), which is calculated as follows:

Q(M,ε) =
n(M,ε)

N(ε)
(2.56)

where N(ε) is the total number of boxes of size ε .
The lacunarity δ (ε) at a specific box size ε is defined as the ratio between the second

moment and the square of the first moment of Q(M,ε), given by:

δ (ε) =
∑M2Q(M,ε)

[∑MQ(M,ε)]2
(2.57)
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Gradually increasing or reducing the box size, lacunarity δ (ε) as a function of ε can be
obtained. Besides, lacunarity δ (ε) satisfies properties as follows:

lim
ε→0

δ (ε) =
1
φ

lim
ε→∞

δ (ε) = 1
(2.58)

where φ is the bulk porosity the porous medium.
Similar to the sliding box-counting method described above, the lacunarity of a 3D image

can be calculated by using a cubic box of side-length ε through the same procedure. The
lacunarity results of the group of Fontainebleau sandstone samples are provided in Figure
2.39.

Fig. 2.39 The lacunarity δ (ε) results of the group of Fontainebleau sandstone samples

Succolarity

Succolarity is a fractal parameter containing connectivity and intercommunication infor-
mation, which can be used to characterize the percolation degree that allows fluid to flow
through the pore microstructure in a direction [112, 113, 327, 12, 485]. The calculation
approach of succolarity was put forward by De Melo and Conci (2008, 2013) [112, 113],
which is an ideal box-counting method contains four steps. Succolarity of a 2D image is
calculated in different directions: from left to right (x+), from right to left (x−), from bottom
to top (y+) and from top to bottom (y−).

In the first step, a virtual pressure field is applied to the 2D microstructure in x+ direction
(or other directions), and a virtual fluid starting from the most-left column of pore pixels is
driven by the pressure field to flow into the microstructure. All of the pore pixels connected
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to the most-left column are detected according to the 4-connectivity criterion, and these
selected pixels form the penetrable area for the next set of succolarity calculation.

In the second step, the 2D image that only contains pore pixels belonging to the penetrable
area is divided into boxes of size ε . The occupation percentage (OP) of pore pixels is
measured for each box, given by:

OP(i, j) =
NP(i, j)

ε2 (2.59)

where i and j are the coordinates of the centroid of a box, and NP(i, j) is the number of pore
pixels in the box. The average pressure (AP) applied to each box in x+ direction is related to
the location of its centroid, given by:

AP(i, j) = j−0.5 (2.60)

Finally, the box-counting succolarity ψ(ε,x+) at specific box size ε and in the x+ direc-
tion is defined as:

ψ(ε,x+) =
∑[OP(i, j)×AP(i, j)]

∑AP(i, j)
(2.61)

Gradually increasing or reducing the box size, the succolarity ψ(ε) as function ε of can be
acquired. And the succolarities in other directions can be calculated in the same procedure,
and they have been used to measure the connectivities of the microstructure in different
directions.

Fig. 2.40 The succolarity ψ(ε) results of the group of Fontainebleau sandstone samples

The calculation procedure of 3D succolarity is similar to that of 2D succolarity, where
the 3D microstructure is applied with the virtual pressure filed in 6 directions and divided
into cubic boxes [113]. The average succolarities of the group of Fontainebleau sandstone
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samples over 6 directions are given in Figure 2.40, and it seems that succolarity is invariant
to the cubic box size for these samples.

2.3 Concluding remarks

The main contribution of this chapter is to fundamentally investigate the statistical characteri-
zation of pore microstructures, where a broad variety of morphological descriptors have been
collected from an extensive literature study. The morphological descriptors are statistical
descriptions of microstructural complexity within porous media, which are essential to deeply
understand microstructure-property relationships, to reveal specific physical phenomena, or
to explore the transport behaviors of fluid flow relevant to microstructural characteristics.
The comprehensive review of microstructure characterization in this chapter provides a
sophisticated understanding of the limitations and opportunities of morphological descriptors
in porous media research.

The commonly used morphological descriptors are introduced in terms of theoretical
principles and determination methods, and they are roughly categorized into four levels to
provide microstructural informatics from global, local, geometrical and topological perspec-
tives. Porosity and specific surface area are the typical descriptors at the first level, which
simply represent the global microstructural properties of porous media via single numbers.
However, the detailed morphology of pore systems is not captured by them. When it comes
to the second level, local microstructural characteristics are measured by descriptors such as
local porosity distribution, coarseness and local percolation probability. As to the third level,
geometric attributes of porous media are quantified in different aspects such as shape and
size, and the frequently-used descriptors include pore/throat size distribution function, mean
curvature, spatial correlations functions, surface roughness, contact distribution functions
and others. The fourth level focuses on the topology of porous media, which is related to
long-distance connectivity and percolation of the pore network. Integrate of total curvature
(Euler characteristic), pore connectivity function and total fraction of percolation cells are
commonly-used indexes of connectivity. Geometrical tortuosity reflects the sinuosity degree
of percolation paths inside porous media, while constriction factor quantitatively represents
the cross-section variation along pore channels.

It should be noted that this chapter lays a solid foundation for subsequent studies in this
thesis, including stochastic microstructure reconstruction (Chapter 4 and 5), error correction
modeling due to the resolution effect (Chapter 6), and the fundamental investigation of the
microstructure-permeability relationship (Chapter 7).



Chapter 3

Tortuosity of porous media: Image
analysis and physical simulation

3.1 Introduction

Porous media, whether natural or artificial, comprise chaotic microstructures so that the
internal flow path for fluid permeation, molecular diffusion, electrical conduction, and
heat transfer are tortuous and meandering. In order to quantify the transport behavior
of flow passing through porous media, an accurate understanding of the heterogeneous
microstructure is required [48, 474, 64]. Such microstructural descriptors as porosity [246],
specific surface area [355], correlation functions [92, 186], pore size distribution [321],
Minkowski functionals [460, 18], constrictivity [195, 236] and tortuosity [34, 490] play
vital roles in characterizing the morphology of porous media. Among them, tortuosity
is a special parameter, which is not only used to explicitly describe the sinuosity and
complexity of internal percolation paths but also to quantify transport properties of porous
media [90, 26, 153].

Tortuosity is an important concept in many scientific and engineering fields. In geoscience,
tortuosity is closely related to the transport behavior of fluid permeation, molecular diffusion,
electrical conduction, and heat conduction, thereby affecting such petrophysical properties
as permeability, effective diffusivity, formation resistivity factor, and thermal conductivity
[300, 23, 420]. In energy storage and conversion, tortuosity is a key factor for electrodes
design to maximize battery capacity [235, 24, 497]. For chemical catalysts, tortuosity has
a great influence on reaction efficiency [361, 245]. In acoustic applications, tortuosity is
closely linked to sound propagation and velocity variation in pore space [99, 501]. For
water treatment, the tortuosity of the membrane microstructure significantly influences the
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distillation performance [228]. In bone tissue engineering, tortuosity affects cell migration
through the scaffold, nutrient diffusion, waste removal, and bone remodeling [54, 147, 41].

Despite this broad presence in diverse fields, tortuosity is not consistently defined by
geologists, engineers, chemists and biologists. Extensive efforts have been made to determine
the tortuosity of porous media, but the evaluation methods and results differ between various
types of tortuosity. Also, different types of tortuosity are often interchangeably used in
literature [404, 153, 438]. In the following subsections, different approaches to determining
the tortuosity of porous media are briefly reviewed, including experimental measurement,
theoretical/phenomenological modeling, image analysis and physical simulation.

3.1.1 Experimental measurement

To model the permeability of porous media, the concept of tortuosity was first introduced
by Kozeny (1927) [250] based on a capillary tube experiment and then further refined by
Carman (1937) [71]. Tortuosity was initially only used as a tuning parameter to account
for the effect of complicated pore structures on fluid flows in porous media [26, 51]. The
presence of the solid phase in porous media causes the flow path to deviate from the straight
line; and to approximate the effective flow path, the length scale of the pore channel is
adjusted by tortuosity. Besides fluid permeation, the tortuosity concept has been applied to
other transport behaviors of porous media as well, including molecular diffusion, electrical
conduction and heat transfer.

There are two widely-used experimental approaches to measuring the tortuosity of porous
media. The first approach is based on the electrical conductivity experiment, where the
porous test sample is saturated with an electrolyte and the tortuosity is evaluated using the
effective conductivity measured on the porous sample [149, 467, 26]. The second approach
measures the diffusion coefficient of a nonreactive species diffusing through the porous
media sample, and the tortuosity is estimated using the measured diffusivity [26, 467, 176].
Compared to the electrical conductivity experiment, the diffusion process in porous media is
much slower, and the corresponding experiment is sensitive to the selected chemical species
and temperature. Typically, the tortuosity values measured from electrical conductivity
and diffusion experiments are different [149]. Therefore, different tortuosities are defined
depending on the underlying physical process and the measurement protocol [490].

3.1.2 Theoretical/phenomenological models

A large number of theoretical or phenomenological models have been proposed to estimate
the tortuosity of porous media, and most of them simply express tortuosity as functions
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of porosity [316, 261, 124, 4]. The Bruggeman correlation [61, 119] is one of the most
commonly used porosity-tortuosity relationships, which is expressed as an exponential
equation, given by

τ
2 = φ

1−α (3.1)

where τ denotes the tortuosity, φ is the porosity and α is an empirical constant called
Bruggeman exponent. Considering the relationship between porosity φ and formation
resistivity factor F , i.e. τ2 = φF [483, 93], the Bruggeman relation is formally consistent
with the well-known Archie’s law [16]: F = φ−α . Another famous model was presented by
[94], which treats tortuosity as a logarithmic function of porosity:

τ
2 = 1− p lnφ (3.2)

where p is an empirical constant related to the grain shape. The porosity-tortuosity model
put forward by Iversen and Jørgensen [210] is also popular, where the linear relationship
between porosity and tortuosity was observed as follows:

τ
2 = 1+q(1−φ) (3.3)

where q is an empirical constant depending on the type of porous media. Du Plessis and
Masliyah [123] derived an analytical model from an idealized granular pore microstructure
without involving any undetermined parameter, which is mathematically expressed as

τ =
φ

1− (1−φ)2/3 (3.4)

Besides, another representative theoretical model was derived from a fixed bed of randomly
packed identical particles by Lanfrey et al. [261], given by

τ = 1.23
(1−φ)4/3

ξ 2φ
(3.5)

where ξ is the shape factor (sphericity) of particle, ξ = 1 for sphere and ξ < 1 for non-
spherical particles.

The above five porosity-tortuosity relations are representatives of various models for
tortuosity estimations. Despite the simple formulations, phenomenological models usually
contain empirical parameters or uncertain coefficients such as α , p, q and ξ in above
equations, and accurate determinations of them are difficult. Even for a small class of
porous media, these adjustable parameters can vary significantly causing great errors for the
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tortuosity estimation [153, 438]. To improve the prediction accuracy, tortuosity models with
more sophisticated formulation and more parameters have been proposed, but typically they
are only suitable for a narrow range of microstructures [358, 301, 261, 86]. Ghanbarian et
al. [153] presented a critical review of tortuosity models including geometrical, hydraulic,
electrical and diffusional tortuosities, and it was found that various porosity-tortuosity models
differ greatly and may not be used interchangeably. Moreover, although many actual porous
media are anisotropic in nature, most theoretical and phenomenological models assume the
medium to be isotropic.

Microstructural features such as the shape, size, orientation and spatial distribution of
grains and pores all affect the tortuosity of porous media [453], but most phenomenological
models rely mainly on the porosity [404, 153]. A porous medium contains a large number of
geometrically irregular pore bodies, some are connected, and others are isolated or dead-end.
The length scales of randomly distributed pores can range over several orders of magnitude.
Besides, the solid-pore interfaces are typically rough with a significant resistance effect on
transport flow. These complications make it extremely challenging, if not impossible, to
develop an explicit mathematical model that can accurately predict the tortuosity for general
porous media. Indeed, the tortuosity values calculated from various phenomenological
models often differ greatly from experimental measurements or numerical simulation results
and are even incorrect in some cases [404, 301, 261, 438].

3.1.3 Image analysis

As illustrated in Figure 3.1, modern microscopy imaging techniques are capable of providing
non-destructive visualization and characterization of 2D/3D porous microstructures at scales
of nanometers to millimeters [259]. Raw microscopic images are typically processed and
stored as pixels or voxels in grey scale (as shown in Figure 3.19a), and through image
segmentation they can be converted into binary forms, where the pore space is separated
from the solid matrix (as shown Figure 3.19c). The segmented digital microstructure with
sufficient size and adequate resolution can be directly used as a representative elementary
volume (REV) for further analyses of geometry measurement and physical simulation.

With the increasing availability of digital microstructures, the effects of complex mi-
crostructures on the macroscopic transport properties have attracted significant attention in
recent years [48, 474, 64]. Owing to the high efficiency, it is desirable to directly evaluate
the tortuosity through image analysis. Thus, to describe the degree of flow paths deviating
from straight lines in porous media, geometrical tortuosity is defined as the ratio of the
effective flow-path length to the straight-line distance in the macroscopic flow direction [153].
Geometrical tortuosity is usually computed by considering the shortest pore channels as the
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Fig. 3.1 Multiscale microstructure characterization of a shale sample by using different
microscopy imaging techniques: The 2D images on the first line provide microstructural
information at three length scales, where micro-fractures, mineralogical components and
organic pores are identified; The 3D images in the second row visualize internal structure at
three length scales, where micro-fractures, mineralogical components and macro/meso-pores
are distinguished; The images at the bottom are graphic illustrations about rock sample
preparation for microscopy imaging at different length scales (the raw picture materials are
collected from [332] and [117])

actual flow paths through porous media [428, 75]. Various algorithms, such as Dijkstra’s
algorithm and fast marching algorithm, have been used to search for the shortest pore chan-
nels that can be equivalent to the effective flow paths. Some popular methods to calculate
geometrical tortuosity are listed in Table 3.1, including the direct shortest path searching
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method (DSPSM), the skeleton shortest path searching method (SSPSM), the fast marching
method (FMM) and the pore centroid method (PCM), etc.

Table 3.1 Image analysis methods to calculate geometrical tortuosity of porous media

Evaluation method Porous media Image dimension Representative reference

DSPSM
(Dijkstra’s algorithm)

Porous rocks,
nanocomposites, and
fuel cell electrodes.

3D
[159], [75], [464],
[282] and [422]

DSPSM
(Wavefront propagation
algorithm)

Structures of sodium
chloride compacts. 2D [381]

DSPSM
(A-star algorithm)

Structures of
sintered compacts. 2D [313]

SSPSM
(Dijkstra’s algorithm)

Porous rocks,
fuel cell electrodes,
alumina, and paper
microstructures.

3D
[280], [21], [428],
[402] and [6]

FMM

Porous rocks,
fuel cell electrodes,
infiltrated aluminium,
cellular materials, and
energy storage materials.

3D
[62], [223], [347],
[80] and [431]

PCM
Porous rocks,
soil and, fuel
cell electrodes.

3D
[162], [116], [403]
and [225]

Path tracking method Artificial models. 3D [415]

It should be noted that geometrical tortuosity is a microstructural characteristic, inde-
pendent from the specific transport process in porous media [90]. Moreover, although
constrictions and bottlenecks of pore channels can greatly affect the transport behaviors
[195, 34], geometrical tortuosity only considers the longitudinal distance of possible flow
paths and neglects the flow variation in the cross-section of pore channels. Also, the flow
paths identified by image analysis can differ greatly from the real flow paths in porous media
[153]. These limitations may explain why geometrical tortuosity often fails to accurately
model/predict such transport properties of porous media as permeability, effective diffusivity
and conductivity.

3.1.4 Physical simulation

High-quality digital microstructures also make it possible to mimic experimental measure-
ments with high fidelity numerical simulations, so that tortuosities can be evaluated from
physical simulations of fluid permeation, electrical conduction, molecular diffusion and heat
transfer in porous media [124, 98, 438]. These flux-based tortuosities (namely the hydraulic,
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Table 3.2 Numerical simulation methods for the prediction of physical tortuosities

Tortuosity type Numerical method Porous media Image dimension Representative reference

Hydraulic
Lattice gas automata
(The precursor to LBM) Artificial models. 3D [498]

Hydraulic LBM
Porous rocks and
artificial models. 2D and 3D

[247], [301], [124],
[302] and [114]

Hydraulic FEM Artificial models. 2D [383]

Hydraulic FVM Artificial models. 2D [295]

Electrical
Lattice gas automata
(The precursor to LBM) Artificial models. 3D [498]

Electrical FEM Artificial models. 2D [383]

Thermal FVM
Fuel cell
electrodes. 3D [98], [440] and [60]

Thermal FEM
Fuel cell
electrodes. 3D [426]

Diffusional FVM
Porous rocks and
battery cathode. 3D [205] and [353]

Diffusional FEM
Fuel cell
electrodes. 3D [476] and [80]

Diffusional FDM
Porous rocks
and fuel cell
electrodes.

3D
[358], [96], [137]
and [23]

Diffusional LBM
Soils, and
fuel cell electrodes. 3D [467], [211] and [342]

Diffusional Gauss–Seidel method Porous alumina. 3D [402]

Diffusional RWM

Porous rocks,
fuel cell electrodes,
concretes and
bead packs.

2D and 3D
[326], [325], [211],
[241] and [447]

electrical, diffusional and thermal tortuosity) are collectively referred to as physical tortu-
osities in this paper. Table 3.2 summarizes the popular numerical methods for pore-scale
simulations of various transport processes in porous media to evaluate physical tortuosities,
including the lattice Boltzmann method (LBM), the finite element method (FEM), the finite
volume method (FVM), the finite difference method (FDM), the random walk method (RWM)
and others.

In contrast to geometrical tortuosity, which is exclusively determined by the porous
microstructure, physical tortuosities are related to both the porous microstructure and the
transport flow inside it. For a specific transport process in a porous medium, the associated
physical tortuosity describes the resistance effect from the solid microstructure. Although
transport processes in porous media can be fundamentally different, physical tortuosities
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are often interchangeably used in the literature [90]. For example, the electrical tortuosity
was considered to be identical to the hydraulic tortuosity [72, 318, 108, 466], and many
researchers took the former as an approximation of the latter to model permeability of porous
media [111, 110, 26, 383]. The diffusional tortuosity obtained from molecular diffusion
simulation or random walk simulation was also used to substitute the hydraulic tortuosity in
hydraulic conductivity studies of porous rocks [325, 300, 353, 23]. Numerical simulation
of thermal conduction was adopted to evaluate the diffusional tortuosity of porous media
[98, 440, 60, 426]. Besides, geometrical tortuosity is commonly used as an alternative of
physical tortuosities to model transport properties of porous media [313, 428, 75, 195, 34,
225, 274], such as permeability, effective diffusivity, formation resistivity factor and thermal
conductivity.

Many open-source or commercial software packages have been developed for microstruc-
tural analysis, as summarized in Table 3.3. These software tools can all provide morphological
characteristics or physical properties of porous media, but they adopt different methods (as
listed in Table 3.1 and 3.2) to calculate tortuosity, which often leads to inconsistent results.

3.1.5 Motivation and significance

A summary of the origin, evolution and variation of the tortuosity concept was given by
Clennell (1997) [90], where the relationships between different types of tortuosity were
analyzed. The tortuosity concept varies depending on the specific application, but in general,
it can be understood from two interrelated perspectives: (1) a geometrical measure to
characterize the sinuosity of pore channels (flow paths) inside the porous medium; (2) a
physical characteristic to quantify the retarding effect (resistance) of the heterogeneous
microstructure on a specific transport process inside the porous medium. The nature of
tortuosity has not been fully understood, so that it remains confusing whether tortuosity is an
intrinsic microstructural property of the porous medium, a physical characteristic depending
on the type of transport process, or just a “fudge factor” to tune predictions to match with
experimental results [153].

A diverse range of approaches have been developed and applied to evaluate tortuosities of
porous media, including experimental measurement, theoretical/phenomenological models,
image analysis, and physical simulation, but inconsistent results are often obtained from
different evaluation methods [149, 404, 153, 347, 438]. There is no rigorous and unique
definition for tortuosity as its physical essence has not been completely understood. Other
factors, including experimental facility and condition, modeling assumption and data, numer-
ical simulation method and boundary condition, and image preparation and analysis methods,
also have significant influence on the tortuosity results. Further research is required to tackle
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Table 3.3 Open-source and commercial software packages for the prediction of tortuosities

Name Tortuosity type Calculation method Nature Reference

iMorph Geometrical FMM Open-source [62]

Tort3D Geometrical DSPSM Open-source [75]

TORT3D Geometrical SSPSM Open-source [6]

Palabos
Hydraulic
Diffusional

LBM simulation of laminar flow
LBM simulation of molecular diffusion Open-source [345]

OpenLB
Hydraulic
Diffusional

LBM simulation of laminar flow
LBM simulation of molecular diffusion Open-source [339]

TauFactor Diffusional FDM Open-source [96]

PuMA Diffusional FDM or RWM Open-source [136]

pytrax Diffusional RWM Open-source [447]

Avizo

Geometrical
Hydraulic
Diffusional
Electrical
Thermal

PCM
FVM simulation of laminar flow
FVM simulation of molecular diffusion
FVM simulation of electrical conduction
FVM simulation of heat conduction

Commercial [20]

Simpleware

Geometrical
Hydraulic
Diffusional
Electrical
Thermal

SSPSM
FEM simulation of laminar flow
FEM simulation of molecular diffusion
FEM simulation of electrical conduction
FEM simulation of heat conduction

Commercial [409]

GeoDict

Geometrical
Hydraulic
Diffusional
Electrical
Thermal

DSPSM or SSPSM
FVM simulation of laminar flow
FVM simulation of molecular diffusion
FVM simulation of electrical conduction
FVM simulation of heat conduction

Commercial [151]

the nature of tortuosity and the relationship between different evaluation approaches, which
are critical for understanding the transport behaviors inside porous media.

In this study, we focus on modern approaches to evaluating the tortuosity of porous
media, i.e. image analysis and physical simulation. It is noted that the tortuosity τ is
a scalar-valued factor greater than 1. Neither the tortuosity factor τ2 (i.e. the square of
tortuosity) [127] nor the tortuosity coefficient τ−1 (i.e. the inverse of the tortuosity) [189] is
considered in this work. Geometrical and physical tortuosities are systematically reviewed
in Section 3.2 and Section 3.3, respectively, to clarify the definition and evaluation method
of each type of tortuosity. A comparison study is conducted for the geometrical tortuosity
evaluations in Section 3.4.1, where the geometrical tortuosity values obtained from different
image analysis methods are found to be inconsistent. Although geometrical tortuosity has
a relatively clear definition, several uncertainties exist in its evaluation methods via image
analysis. Another comparison study is presented in Section 3.4.2 for numerical simulations
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of different transport flows in porous media, to examine the relationship between physical
tortuosities. The underlying physics is explored to explain the differences and similarities.
Large discrepancies are observed between geometrical and physical tortuosities, which
questions strongly the common practice of using the former as the substitute for the latter. To
address this problem, empirical correlations between geometrical and physical tortuosities are
established in Section 3.5 for a wide range of porous media samples. Finally, the influences
from REV size and image resolution on tortuosity evaluation are discussed in Section 3.6,
and the correlation length is used to determine the optimal image parameters.

3.2 Geometrical tortuosity

3.2.1 Definition of geometrical tortuosity

To describe the degree of streamlines in porous media deviating from the straight line,
geometrical tortuosity is defined as the ratio of the effective length of flow paths to the
straight-line distance L in the macroscopic flow direction [90, 153]. As illustrated in Figure
3.2, the transport flow inside porous media is shaped by the pore network, so the shortest
pore channel Lg is usually adopted as the effective flow path Lh to compute geometrical
tortuosity τg [2], given by

τg =
Lg

L
(3.6)

Compared with the zigzag line of the shortest pore channel, the effective flow path is much
smoother.

(a) (b)

Fig. 3.2 (a) The shortest pore-channel (geodesic) length Lg, (b) the effective flow-path length
Lh and the straight-line (Euclidean) distance L in a 2D digital microstructure
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Geometrical tortuosity can be considered as a microstructural characteristic as it is purely
determined by the geometrical and morphological features of porous media [90]. Various
image analysis methods have been developed to evaluate geometrical tortuosity from the
digital microstructures of porous media, including the direct shortest-path search method
(DSPSM), the skeleton shortest-path search method (SSPSM), the fast marching method
(FMM) and the pore centroid method (PCM), etc. These image-based methods directly
operate on the pixel/voxel data, which are usually easy to implement and computationally
efficient. It is however worth noting that geometrical tortuosity does not account for the
variation of cross-section along the pore channels, although the constriction and bottleneck
of porous microstructures do play a vital role in transport properties [438].

3.2.2 Direct shortest-path search method

The DSPSM searches for the shortest pore channel directly on the pixel/voxel data by using
the shortest-path search algorithms [82, 422], such as Dijkstra’s algorithm [428, 75], the
wavefront propagation algorithm [482] and the A-star algorithm [313]. In this subsection, a
representative DSPSM based on Dijkstra’s algorithm is briefly recapped.

Fig. 3.3 (a) A 3D digital microstructure (yellow denotes the pore space and red is the solid
matrix); (b) Conversion of 3D dataset to 2D graph for path search, based on 6-neighbour-
connectivity criterion; (c) The shortest pore channels between top and bottom surface
determined by using Dijkstra’s algorithm

The shortest pore channel is defined as the shortest connected route starting from a
surface voxel on one side of the digital microstructure and ending at another surface voxel on
the opposite side, and it must always remain in the pore space [75]. Changing the starting
or ending voxel will lead to a different shortest path, so geometrical tortuosity τg is usually
calculated as the average ratio of the shortest pore channel length Lmin to the corresponding
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straight-line distance L:

τg =

〈
Lmin

L

〉
(3.7)

The algorithm first converts the 3D microstructure dataset into a 2D adjacency matrix, so
that the digital microstructure in Figure 3.3a is modeled by the graph in Figure 3.3b. Each
node in the graph represents a voxel in the microstructure, and the connections between
nodes represent the voxel connectivities, where the 6-neighbour-connectivity criterion is
usually adopted. The Euclidean distance between two adjacent void voxels in the digital
microstructure is used as the weight of linkage between the corresponding nodes in the graph,
and all weights are equal to 1 for the 6-neighbour-connectivity case. Dijkstra’s algorithm is
then used to search for the shortest path from a designate starting node to an ending node that
represents a pore voxel on the opposite surface. The search is performed for each pore voxel
on the start surface to identify all pore channels of interest, as shown in Figure 3.3c. Finally,
geometrical tortuosity τg of the porous medium in Figure 3.3a can be calculated according to
Eq. (3.7).

3.2.3 Skeleton shortest-path search method

The shortest pore channels identified by DSPSM can deviate greatly from the medial axis
of pore network, especially for porous media with large porosities or high-resolution mi-
crostructures. As shown in Figure 3.4, the shortest path identified by Dijkstra’s algorithm
in the wide channel shown in Figure 3.4b deviates greatly from the central axis and such
deviation is much smaller for the narrow channel shown in Figure 3.4a. As a result, the
DSPSM may underestimate geometrical tortuosity. Besides, to manage computational cost,
the simple 6-neighbour-connectivity criterion as shown in Figure 3.3b is usually adopted by
the DSPSM, leading to bumpy results as shown in Figure 3.3c, which could introduce extra
errors into geometrical tortuosity evaluation.

One way to reduce the above error is to perform the path search on the pore skeleton
instead of the pore space [280, 428, 402, 6]. Formed by the medial axis of a pore space, the
skeleton preserves to a large extent of the original topological and geometrical properties. The
homotopic thinning algorithm [265] is often used to extract the 3D medial axis skeleton from
the 3D microstructure, and then Dijkstra’s algorithm is applied on the skeleton to identify the
shortest pore channels, as illustrated in Figure 3.5. Geometrical tortuosity is then calculated
according to Eq. (3.7). The medial axis skeleton has a much lower dimensionality compared
to the original pore space, which greatly simplifies the path search task. Therefore, Dijkstra’s
algorithm can adopt 18- or 26-neighbor connectivity. Generally, the tortuosity value obtained
from the pore skeleton is greater than that from the pore space [422], especially for porous
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Fig. 3.4 The shortest paths (red dashed lines) identified by Dijkstra’s algorithm in a narrow
pore channel (left) and a wide channel (right)

media with high porosities. More details about the skeleton extraction can be found in
relevant literatures [265, 362].

Fig. 3.5 (a) The pore space of the 3D porous medium in Figure 3.3a; (b) The medial axis
skeleton extracted from the pore space; (c) The shortest pore channels identified between top
and bottom surface

3.2.4 Fast marching method

The FMM is another frequently-used algorithm to find the shortest pore channel inside porous
media [399, 223, 173, 347, 222, 431]. It is an efficient computational algorithm for tracking
and modeling the propagation of a wavefront moving in its normal direction with a known
speed. At a given position x, the motion of the wavefront is described by the Eikonal equation
[399, 25, 173] as follows:

∥∇t(x)∥F(x) = 1, F(x)> 0 (3.8)
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where ∥∇t(x)∥ is the magnitude of the gradient vector of the arrival function t(x), and F(x)
is the propagation speed of the wavefront at the location x. By efficiently approximating
the solution to the Eq. (3.8), the FMM calculates the time t(x) required by the wavefront
originating from the source to arrive at the other points in the computational domain. As
F(x)> 0 ∀x, the wavefront only expands outward, and hence the points further away from
the source have greater t(x) values. If F(x) = 1 is set throughout the investigation domain,
the arrival time map t(x) is equivalent to the distance map d(x), which provides the distances
to all locations from the source, as shown in Figure 3.6c.

The FMM can be directly applied to a regular grid such as a 3D digital image, to evaluate
geometrical tortuosity τg of a porous medium. The pore voxels on the starting surface
are selected as the sources of wavefront expansion, and the opposite surface is set as the
destination plane. The lengths of shortest pore channels Lmin connecting the source voxels
and destination voxels can be obtained from the distance map d(x), by setting F(x) = 1 for
the pore space and F(x) = 10−6 (a small value) for the solid matrix, where the wavefront
moves much faster in the pore space than in the solid matrix. Similarly, the straight-line
distances L between the starting and ending voxels can also be obtained from the distance
map d(x), by setting F(x) = 1 for both pore space and solid matrix, where the porous media
sample is considered as a homogeneous domain allowing the wavefront to propagate freely.
Once the distance data Lmin and L are determined by the FMM, geometrical tortuosity τg can
be calculated according to Eq. (3.7).

Fig. 3.6 (a) The 3D digital microstructure; (b) The pore space of the 3D porous medium,
which is the investigation domain of FMM; (c) The distance map calculated from FMM by
setting the pore voxel on the top center as the source of wavefront expansion
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3.2.5 Pore centroid method

The PCM estimates geometrical tortuosity τg by calculating the average change of pore
centroid locations between adjacent 2D slices in the 3D microstructure [162, 414, 98, 438].
As shown in Figure 3.7, the effective pore channel is determined by calculating the coordinate
(xi,yi,zi) of pore centroid on each layer and then connecting these pore centroids into a path.
The length Lg of the effective pore path can be calculated as:

Lg =
N−1

∑
i=1

Li =
N−1

∑
i=1

√
(xi+1 − xi)2 +(yi+1 − yi)2 +(zi+1 − zi)2 (3.9)

where i enumerates the 2D slices, and N is the total number of 2D slices in the 3D microstruc-
ture. Geometrical tortuosity τg is then calculated as the ratio of Lg to L, according to Eq. (3.6).

Fig. 3.7 (a) The 3D digital microstructure; (b) The distances Li between the pore centroids
on adjacent 2D slices; (c) The effective pore path from top to bottom surface determined by
PCM

3.3 Physical tortuosities

In contrast to geometrical tortuosity characterizing the pore microstructure itself, physical
tortuosities focus on the transport processes occurring inside the porous medium, including
transfers of volume, charge, mass and energy. Numerical simulations can be performed on
the digital microstructures of porous media to mimic various transport phenomena at the
pore scale, thereby to compute corresponding physical tortuosities.
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3.3.1 Analogy among different transport phenomena

The study of transport phenomena in porous media [2, 87, 30] concerns fluid permeation,
electrical conduction, molecular diffusion, heat transfer and momentum exchange, and differ-
ent transport phenomena share notable commonalities in terms of macroscopic mechanisms.
Generally, these transport phenomena are governed by two primary principles at the steady
state [42, 59, 359]: (1) the conservation law, which demands the quantity of transport matter
(i.e. mass, charge, energy, momentum or others) must be conserved; (2) the constitutive
relation, which describes the behavior of transport matter responding to stimuli.

Table 3.4 The analogy among various transport phenomena in porous media

Transport phenomenon
(Transport matter/quantity) Driving force Constitutive

relation
Phenomenological

property Definitive law

Fluid permeation
(Volume)

Hydraulic gradient ∇H
(Pressure gradient) Jh =−K∇H Hydraulic conductivity K

(Intrinsic permeability) Darcy’s law

Molecular diffusion
(Mass) Concentrate gradient ∇C Jd =−D∇C Diffusion coefficient D Fick’s law

Electrical conduction
(Charge) Voltage gradient ∇V Je =−σ∇V Electrical conductivity σ Ohm’s law

Heat transfer
(Energy) Temperature gradient ∇T Jt =−λ∇T Thermal conductance λ Fourier’s law

Newtonian viscous flow
(Momentum) Velocity gradient ∇U Jm =−µ∇U Dynamic viscosity µ

Newton’s law
of viscosity

Note: Jh, Jd, Je, Jt and Jm denote fluid flux, diffusion flux, charge flux, heat flux and momentum flux (shear stress) respectively.

For different transport phenomena, if the density of transport matter is constant and
independent of time and space, the continuity equation can be simply expressed as follows
[42, 59, 359]:

∇ ·J = 0 (3.10)

where J is the steady-state flux of transport matter. As to the constructive relations, transfers
of fluid volume, mass, charge, heat and momentum are almost described identically, which
can be seen in Table 3.4. Different transport processes are governed by similar macroscopic
laws (i.e. Darcy’s, Fick’s, Ohm’s, Fourier’s and Newton’s law), which have a general
expression as follows [42, 59, 359]:

J =−δ∇Fdrive (3.11)

where the steady-state flux J of transport matter is proportional to the applied driving force
∇Fdrive, and the proportionality constant δ is the phenomenological coefficient corresponding
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to transport property (i.e. intrinsic permeability, diffusion coefficient, electrical conductivity,
thermal conductance or dynamic viscosity).

Massive efforts have been made to study the ‘analogy’ among various transport phenom-
ena, aiming to achieve the utility of them [42, 59, 359]. Partially due to this mathematical
analogy, the physical tortuosities associated with four different transport phenomena (i.e.
fluid permeation, electric conduction, molecular diffusion and heat transfer) are often inter-
changeably used in the literature, without rigorous justification. However, this mathematical
analogy in no way means that the physical mechanisms underlying different transport pro-
cesses are completely equivalent in any aspect. For example, there are discrepancies between
the transport streamlines of different transport phenomena happening inside a specific porous
medium, which is the primary cause of the inconsistencies between different types of phys-
ical tortuosity (more detailed explanation is provided in Section 3.4). To address this gap,
we systematically investigate hydraulic, electrical, diffusional and thermal tortuosity in the
following subsections to clarify their relationships.

3.3.2 Hydraulic tortuosity

Definition of hydraulic tortuosity

Hydraulic tortuosity τh was first proposed by Kozeny (1927) [250] and then further refined
by Carman (1937) [71] to model permeability κ of porous media through the well-known
Kozeny-Carman equation [90]:

κ =
φ 3

βτ2
h S2 (3.12)

where φ is the porosity defined as the fraction of pore space in the porous medium, S is the
specific surface area equal to the ratio of interstitial surface area to bulk volume, and β is the
shape factor (a constant depending on the type of granular material).

Hydraulic tortuosity τh is defined as [90]:

τh =
Lh

L
(3.13)

where Lh denotes the length of effective hydraulic flow path and L the straight-line distance
through the porous medium in the macroscopic flow direction.

The length Lh is usually measured from the streamlines of steady state pore-scale flow.
Hydraulic tortuosity τh can be considered as a dimensionless parameter to describe the
average elongation of streamlines in a porous medium with respect to the homogeneous flow
[124]. However, the flow flux in a random porous medium varies continuously along the
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flow path affected by its cross section, shape, orientation, branching and rejoining, making it
difficult to identify the streamlines of pore-scale flow.

Evaluation via fluid simulation

The fluid flow in a digital microstructure can be simulated using such numerical schemes
as LBM [219] and FVM [356], after which hydraulic tortuosity τh can be calculated by
analyzing the streamlines determined by the pore-scale simulation. Several methods have
been proposed to calculate τh based on the streamlines. The effective length of hydraulic
flow path Lh is often evaluated as a weighted average of streamline lengths [498, 124]:

τh =
1
L

(
∑i wili
∑i wi

)
(3.14)

where i enumerates the separated streamlines, li is the length of the ith streamline, and wi is
the weight of the ith streamline contributing to the overall flux.

Different methods have been proposed to determine the weight wi. Zhang (1995) [498]
used the travel time ti of a fluid particle moving along the ith streamline to determine the
weight wi, given by: wi = 1/ti. Considering the relationship between the travel time and the
fluid particle speed along the streamline, Koponen (1996) [247] modified the calculation as
follows:

τh =
1
L

∫
Ω

l(r)v(r)dΩ∫
Ω

v(r)dΩ
≈ 1

L
∑ j l(r j)v(r j)

∑ j v(r j)
(3.15)

where Ω denotes the volume domain of pore space, l(r) is the length of the streamline passing
through a point r, and v(r) = |v(r)| is the tangential velocity of the fluid at point r. It was
later proved by [124] and [302] that Eq. (3.15) is equivalent to:

τh =

∫
Ω

v(r)dΩ∫
Ω

vx(r)dΩ
=

⟨v⟩
⟨vx⟩

(3.16)

where vx(r) is the velocity component along the macroscopic flow direction at point r, and
⟨·⟩ denotes the spatial average over the pore space Ω.

Eq. (3.16) directly calculates hydraulic tortuosity from the steady-state fluid velocity filed,
avoiding the calculation of streamlines. This method is widely used as it significantly simpli-
fies the calculation of hydraulic tortuosity for porous media with complicated geometries. It
should be noted that Eq. (3.16) is based on two assumptions: the fluid is incompressible and
the fluid flow is not reentrant. For the fluid flow passing through porous media with a low
Reynolds number, the effect of reentrant is negligible.
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Fig. 3.8 (a) A 3D porous media REV; (b) Boundary conditions for the LBM simulation of
fluid flow passing through a porous media REV; (c) The steady-state fluid velocity field
inside the porous media REV

LBM is adopted in this work to simulate the fluid flow in digital microstructures, as shown
in Figure 3.8c. The LBM models the fluid particles through a time-dependent distribution
propagating on a regular lattice [252]. The pore voxels of digital microstructures serve as
the regular lattice, and each lattice node is located in the center of corresponding pore voxel.
Starting with an initial state, the particle distribution function moves from one lattice node to
its neighboring nodes at each time step, and evolves itself locally subject to both mass and
momentum conservation. The local equilibrium particle distribution function corresponds
to an ideal state, where the particle distribution tends to a specific macroscopic state, and it
is specifically selected to recover the macroscopic Navier-stokes equations. For stationary,
creeping, and incompressible Newtonian fluid flow in porous media, the Navier-Stokes
equations can be simplified to Darcy’s law (as expressed in Table 3.4).

Pore-scale simulations using LBM are well established and comprehensively documented
in many literatures [219, 258, 139]. In this work, the conventional D3Q19 lattice arrangement
and Bhatnagar-Gross-Krook (BGK) collision operator are adopted. Since the steady-state
flow in porous media is insensitive to the initial state, we simply set the flow velocity to 0 and
the fluid density to 1 for the whole domain as the initial conditions. As shown in Figure 3.8b,
two types of boundary condition are adopted: the no-slip boundary at the pore-solid interface
and the constant pressure boundary at inlet and outlet. To apply the constant pressure gradient
to the cubic microstructure sample, two void layers are added to the outlet and inlet faces.
As to the other four faces that are parallel to the global flow direction, solid walls are added
to isolate the cubic REV from the outside. Driven by a constant pressure gradient, the fluid
flows from the inlet face towards the outlet face steadily, as shown in Figure 3.8b. The LBM
simulation runs iteratively until the steady state is reached, and then hydraulic tortuosity can
be calculated following Eq. (3.16).
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3.3.3 Electrical tortuosity

Definition of electrical tortuosity

Electrical tortuosity is measured through the electrical conduction experiment, where the
porous media sample is saturated with an electrolyte of electrical conductivity σ0 and driven
by a voltage difference, the electric charges are transmitted through the pore space filled by
the electrolyte liquid [149, 467, 26]. The effective conductivity σeff measured on the test
sample is smaller than the electrolyte conductivity σ0, due to the retarding effect of solid
microstructure on the electric charge transmission [477]. The difference between σ0 and σeff

is represented by electrical tortuosity τe as follows [448, 348, 260]:

σeff = σ0
φ

τ2
e

(3.17)

where φ is the porosity, and 1/τ2
e can be understood as the fraction of pore volumes having

the same efficiency for electrical conductivity as the electrolyte.
To be consistent with hydraulic tortuosity τh in Eq. (3.13)), electrical tortuosity τe was

redefined as [477, 90, 68]:

τe =
Le

L
(3.18)

where Le is the effective length of the electrical conduction path. Electrical tortuosity of a
porous medium is defined as a retardation factor of the electrical conduction in Eq. (3.17),
and also defined as an elongation factor of electrical conduction path in Eq. (3.18). However,
the equivalence between these two definitions is derived from a simple capillary tube model
[26], while it remains unclear whether or not a similar correlation holds for general porous
media [124].

Evaluation via electrical conduction simulation

Electrical conduction in porous media can be simulated by various numerical methods such
as LBM [427], FEM [383], FDM [396] and RWM [209]. In this work, we use the Avizo
package [20] to simulate electrical charges transmitting through 3D digital microstructures
and electrical tortuosity is calculated according to Eq. (3.17). The Avizo solver is based FVM
[317], where the image voxels are used as the volume elements. The solid phase is assumed
to be homogeneous and insulating, while the pore space is saturated with an electrolyte of
electrical conductivity σ0. As shown in Figure 3.9b, a constant electrical potential difference
is applied on the inlet and outlet faces of the cubic digital microstructure, while the other
four faces are set as isolating. The boundary condition for the pore-solid interface is set as
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follows:
∇V ·n = 0 (3.19)

where n is the unit normal of the pore-solid surface, pointing to the solid phase.

Fig. 3.9 (a) A 3D porous media REV; (b) Boundary conditions for the FVM simulation of
electrical conduction in the porous media REV; (c) The steady-state electrical flux density
inside the porous media REV

Driven by the constant electrical potential gradient, electrical charges are transmitted
through the porous media sample filled with electrolyte. The electric conduction at the steady
state is governed by Ohm’s law and the conservation of charges, as expressed in Table 3.4 and
Eq. (3.10) respectively. The effective (apparent) electrical conductivity σeff can be estimated
by:

J(REV)
e

A
= σeff

Voutlet −Vinlet

L
(3.20)

where J(REV)
e is the electrical flux passing through the outlet face of the porous media sample,

A is the cross section area perpendicular to the flow direction, Vinlet and Voutlet are the applied
electrical potentials at the inlet and outlet faces, respectively, L is the distance between inlet
and outlet faces. The total electrical flux J(REV)

e can be obtained through an integration:

J(REV)
e =

∫
A
−σ0∇V dA (3.21)

Substituting Eq. (3.20) and Eq. (3.21) into Eq. (3.17), electrical tortuosity τe can be computed
as:

τe =

√
σ0

σeff
φ =

√√√√Aσ0
Voutlet−Vinlet

L

J(REV)
e

φ =

√√√√ J(Free)
e

J(REV)
e

φ (3.22)

where J(Free)
e is the electrical flux passing through a homogeneous medium with the same

dimensions, of the electrical conductivity σ0, and driven by the same electrical potential
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gradient. As discussed earlier, electrical tortuosity τe is often used to substitute hydraulic
tortuosity τh whose direct evaluation is more time-consuming and costly.

3.3.4 Diffusional tortuosity

Definition of diffusional tortuosity

The tortuosity of porous media can also be measured by using a diffusion experiment, where
a diffusing gases are typically used as the probe due to their high diffusion rates [449, 251].
The effective diffusivity Deff in porous media is lower than the bulk diffusivity D0 of the
diffusing gas [149]. Diffusional tortuosity τd is determined by the ratio of Deff to D0 as
[449, 127, 55, 312, 440]:

Deff = D0
φδ

τ2
d

(3.23)

where δ is the constriction coefficient due to the variation of pore diameter along the diffusion
pathway, and it depends on the ratio of the solute diameter (probe molecule dimension) to
the pore diameter. The kinetic diameter of probe gas molecule is usually smaller than 1 nm
[411], and when the pore diameter is larger than 1 µm, δ is approximately 1 [163].

By modeling the porous medium with cylindrical capillaries, diffusional tortuosity τd is
also defined as the ratio between the effective length of diffusive path Ld and the straight-line
distance L [127]:

τd =
Ld

L
(3.24)

Generally speaking, mass diffusion inside porous media may involve ordinary molecular
(Fickian) diffusion [199] and Knudsen diffusion [298], depending on the ratio of the mean
free path of the probe molecules to the pore diameter. If the mean free path is relatively short
compared to the pore size, only the molecular diffusion occurs, and the diffusion process
can be described by Fick’s law as expressed in Table 3.4. Knudsen diffusion takes place
when the mean free path is comparable to the pore size, where the molecules collide with
the pore walls more frequently than with each other, impeding the molecule transport. The
diffusion transport usually decreases as the probe molecule size increases, because more
collisions occur between the molecules and the pore walls. Therefore, the tortuosity obtained
from different diffusion measurements may differ, depending on the diffusion regime and
the probe molecule. The thresholds of pore size are 1 µm and 10 nm for Fickian diffusion
and Knudsen diffusion, respectively [484, 149]. That is, the Knudsen effect is negligible
when pore size is larger than 1 µm, and in this case the diffusion tortuosity is independent
of the probe molecule. In this work, only the ordinary molecular diffusion is considered
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and diffusional tortuosity τd is evaluated according to Eq. (3.23), where the constriction
coefficient δ is set as 1.

Evaluation via molecular diffusion simulation

The molecular diffusion process in porous media can be simulated by such numerical methods
as FVM [438], LBM [342] and FDM [95]. In this work, we adopt the open-source solver
TauFactor [96], which is based on FDM and directly uses image voxels as the discretization
mesh for simulation. As shown in Figure 3.10, diffusional tortuosity is calculated by
comparing the steady-state diffusive flux passing through the cubic porous media REV and
the cubic homogeneous REV with the same dimensions. A constant concentration difference
is applied between inlet and outlet faces of both REVs, while the other four faces parallel to
the diffusional flow direction are set as isolating solid walls. The boundary condition at the
pore-solid interface is set as:

∇C ·n = 0 (3.25)

Driven by the constant concentration gradient, the diffusive specie moves from the inlet
face to the outlet face. When the steady state is reached, the diffusional flux passing through
the porous media REV and the homogeneous REV can be obtained from Fick’s law:

J(REV)
d =−ADeff

∆C
L

(3.26)

J(Free)
d =−AD0

∆C
L

(3.27)

where J(REV)
d and J(Free)

d are the diffusion fluxes passing through the porous media REV and
the homogeneous REV, respectively. Taking the ratio of J(REV)

d to J(Free)
d and then rearranging

the equation, diffusional tortuosity τd can be expressed as:

τd =

√
D0

Deff
φ =

√√√√ J(Free)
d

J(REV)
d

φ (3.28)

Evaluation via random walk simulation

Diffusional tortuosity τd of a porous medium can also be statistically estimated from the
random walk process of non-absorbing particles, which can be considered as a simplified
diffusion simulation [326, 325, 211, 201, 438]. The random walk simulation starts by
randomly distributing a number of walkers into the pore space at t = 0. Then, each walker
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Fig. 3.10 (a) The schematic diagram of boundary conditions for the FDM simulation of
molecular diffusion in a porous media REV; (b) The diffusional flux density at the steady
state inside the porous media REV; (c) The diffusional flux density at the steady state inside
the homogeneous REV

randomly selects one of its neighboring voxels (e.g. following the 6-neighbor-connectivity
criterion) as its possible position at the next time step. If the selected voxel belongs to the
pore phase, the walker moves to the new position; otherwise the walker stays at the current
location. With the random walking procedure repeated, the mean square displacement

〈
r2(t)

〉
of all random walkers is a function of time step t:

〈
r2(t)

〉
=

1
N

N

∑
i=1

{
[xi(t)− xi(0)]

2 +[yi(t)− yi(0)]
2 +[zi(t)− zi(0)]

2
}

(3.29)

where N is the number of random walkers, xi(t), yi(t) and zi(t) are the coordinates of the ith
walker at time t, and ⟨·⟩ denotes the ensemble average.

For random walkers walking inside a cubic homogeneous REV, the mean square displace-
ment

〈
r2(t)

〉
Free of them is related to the diffusion coefficient DFree as follows:

DFree =
1
6

d
〈
r2(t)

〉
Free

dt
(3.30)

where DFree is the diffusion coefficient in the cubic homogeneous REV (e.g. the diffusivity
of gas or water). While for random walkers in a porous medium REV, the mean square
displacement

〈
r2(t)

〉
Pore of them is reduced due to the obstruction effect from solid phase,

which is related to the effective diffusion coefficient DPore as follows:

DPore = φ
1
6

d
〈
r2(t)

〉
Pore

dt
(3.31)
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DFree is a constant because of the unrestricted diffusion in the cubic homogeneous REV, but
Dpore is time-dependent due to local heterogeneity present in porous media. The random
walk trajectory is restricted by the solid phase, thereby reducing the diffusivity.

Diffusional tortuosity τd is calculated from the ratio of DFree to DPore as follows:

τd =

√
DFree

DPore
φ =

√
d
〈
r2(t)

〉
Free /dt

d⟨r2(t)⟩Pore /dt
(3.32)

Long-time data of the mean square displacement
〈
r2(t)

〉
from large numbers of random

walkers can fully experience the porous microstructure, and the slope d
〈
r2(t)

〉
Pore /dt ap-

proximates to a constant value, as shown in Figure 3.11c.
A natural porous medium such as rock often possesses an anisotropic pore structure.

If the porous medium is significantly anisotropic, the effective diffusivity DPore is tensor
instead of a scalar, and Eqs. (3.29) to (3.32) break down [325]. Directional mean square
displacements

〈
x2(t)

〉
,
〈
y2(t)

〉
and

〈
z2(t)

〉
are required to evaluate the directional tortuosities

of the anisotropic porous medium [325, 211], given by

〈
x2(t)

〉
Pore =

1
N

N

∑
i=1

[xi(t)− xi(0)]2 (3.33)

〈
y2(t)

〉
Pore =

1
N

N

∑
i=1

[yi(t)− yi(0)]2 (3.34)

〈
z2(t)

〉
Pore =

1
N

N

∑
i=1

[zi(t)− zi(0)]2 (3.35)

〈
x2(t)

〉
Free =

〈
y2(t)

〉
Free =

〈
z2(t)

〉
Free =

1
3
〈
r2(t)

〉
Free (3.36)

Then, the directional tortuosities τx, τy and τz can be calculated as follows:

τx =

√
d
〈
x2(t)

〉
Free /dt

d⟨x2(t)⟩Pore /dt
(3.37)

τy =

√
d
〈
y2(t)

〉
Free /dt

d⟨y2(t)⟩Pore /dt
(3.38)

τz =

√
d
〈
z2(t)

〉
Free /dt

d⟨z2(t)⟩Pore /dt
(3.39)
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In our implementation, the random walk simulation lasts for 1,000,000 time steps with
10,000 random walkers, and the periodic boundary condition is set to avoid the random
walkers moving out the cubic REV sample with a finite size. Data obtained from the first
500,000 time steps are dismissed, because the random walkers have not fully experienced
the porous microstructure at the early stage of the simulation.

Fig. 3.11 (a) The trajectory of a single random walker moving inside the free space for
1,000,000 time steps; (b) The trajectory of a single random walker moving inside the pore
space for 1,000,000 time steps; (c) Mean-square displacements of the random walking
averaged over 10,000 walkers

3.3.5 Thermal tortuosity

Definition of thermal tortuosity

Heat transfer in porous media is mainly determined by the solid phase conduction. The
convective and radiative effects can be largely ignored [338], because the thermal conductivity
of solid matrix is usually much higher than the void phase of air. Therefore, the concept of
thermal tortuosity is sometimes related to the winding paths of heat flow through the solid
phase of a porous medium [338, 49]. However, this work focuses on the tortuosity of the
pore space, and as such we simulate the heat conduction passing through the void phase
of the porous medium, by assuming the solid phase to be thermal insulating. The effective
thermal conductivity λeff can be evaluated from the heat flux simulation, based on which
thermal tortuosity τt of pore space can be obtained as follows [98, 97]:

λeff = λ0
φ

τ2
t

(3.40)

where λ0 is the bulk thermal conductivity of air.
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Evaluation via heat transfer simulation

Heat transfer through the pore space can be numerically simulated by using FVM [97],
FDM [473] and LBM [166]. The FVM-based Avizo package [20] is adopted in this work to
simulate the heat flux passing through porous media, and the thermal tortuosity is calculated
according to Eq. (3.40). The pore space is fully filled with air of thermal conductivity λ0,
while the solid phase is assumed to be homogeneous and thermal insulating. A constant
temperature difference is applied between input and output faces of the cubic porous media
REV, and the other faces are set as thermal isolating. The boundary condition on the
pore-solid interface is set as follows:

∇T ·n = 0 (3.41)

Driven by the temperature difference, heat transfers inside the pore space from the higher
temperature area to the lower temperature area. When the steady-state is reached, the heat
flow can be described by the conservation of energy in Eq. (3.10) and Fourier’s law (as
expressed in Table 3.4). The effective (apparent) thermal conductivity λeff can be calculated
by:

J(REV)
t

A
= λeff

Toutlet −Tinlet

L
(3.42)

where J(REV)
t is the heat flux passing through the output face of the cubic REV, and Tintlet and

Toutlet are the applied temperature at the input and output faces, respectively. The total heat
flux J(REV)

t can be obtained by integrating the local heat flux computed from Fourier’s law:

J(REV)
t =

∫
A
−λ0∇T dA (3.43)

Substituting Eq. (3.42) and Eq. (3.43) into Eq. (3.40), thermal tortuosity τt can be computed
as:

τt =

√
λ0

λeff
φ =

√√√√Aλ0
Toutlet−Tinlet

L

J(REV)
t

φ =

√√√√ J(Free)
t

J(REV)
t

φ (3.44)

where J(Free)
t is the heat flux passing through a cubic homogeneous REV with the same

dimensions and filled with air of thermal conductivity λ0.
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Fig. 3.12 (a) A 3D porous media REV; (b) Boundary conditions of the FVM simulation of
heat flux passing through the porous media REV; (c) The heat flux density inside the porous
media REV at the steady state

3.4 Comparison and analysis

A set of Fontainebleau sandstones with porosity ranging from 8.61% to 24.50% are used to
compare the tortuosity results evaluated by different methods. As shown in Figure 2.1, the 3D
REV models (in binary forms) are of 480×480×480 voxels with a voxel resolution of 5.700
µm, representing an equivalent physical sample of 2.736 mm3 cube [35]. For each REV,
both geometrical and physical tortuosities are computed for three principal directions using
the methods reviewed in Section 3.2 and Section 3.3, respectively. Fontainebleau sandstone
is considered isotropic and to minimize the sampling error, a characteristic tortuosity τ is
obtained by averaging three directional tortuosities [97]:

1
τ2 =

1
3
(

1
τ2

x
+

1
τ2

y
+

1
τ2

z
) (3.45)

where τx, τy and τz are tortuosities in the x, y and z direction respectively.
The tortuosity results evaluated from different methods for the set of Fontainebleau

sandstone are summarized in Table 3.5 and plotted in Figure 3.13. Although the overall
trends of tortuosity in relation to porosity are similar, remarkable discrepancies can be
observed across different methods, especially for the samples with low porosity.

3.4.1 Comparison between geometrical tortuosity results

The geometrical tortuosities of Fontainebleau sandstone samples are computed using four
image-based methods, as reviewed in Section 3.2. It can be observed in Table 3.5 and Figure
3.13 that remarkable differences are present between the tortuosity results, although the
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Table 3.5 Geometrical and physical tortuosities of the Fontainebleau sandstone samples

Tortuosity type Calculation method/model Tortuosity values of samples with different porosities

8.61% 10.15% 12.57% 15.36% 17.62% 20.65% 24.50%

Geometrical DSPSM 1.91 1.76 1.57 1.46 1.40 1.34 1.28
Geometrical SSPSM 2.07 1.98 1.83 1.71 1.65 1.63 1.61
Geometrical FMM 1.54 1.32 1.20 1.13 1.11 1.07 1.05
Geometrical PCM 2.97 2.79 2.41 2.39 2.15 2.03 1.84
Hydraulic LBM simulation 2.02 1.95 1.81 1.67 1.59 1.52 1.45
Electrical FVM simulation 4.32 3.50 2.90 2.29 2.04 1.82 1.65

Diffusional FDM simulation 4.33 3.51 2.85 2.29 2.04 1.82 1.65
Diffusional RWM simulation 4.30 3.49 2.90 2.36 2.08 1.85 1.73

Thermal FVM simulation 4.33 3.50 2.91 2.29 2.04 1.82 1.65

Diffusional
Bruggeman relation

(α = 1.5) 1.85 1.77 1.68 1.60 1.54 1.48 1.42

Hydraulic
Bruggeman relation

(α = 1.8) 2.67 2.50 2.29 2.12 2.00 1.88 1.76

Electrical
Archie’s law

(α = 2.5) 6.29 5.56 4.74 4.08 3.68 3.26 2.87

Hydraulic
Comiti’s model

(p = 0.49) 1.48 1.46 1.42 1.38 1.36 1.33 1.30

Diffusional
Iversen’s model

(q = 2) 1.68 1.67 1.66 1.64 1.63 1.61 1.58

Hydraulic Du Plessis’s model 1.48 1.47 1.47 1.46 1.45 1.45 1.43

Geometrical
Lanfrey’s model

(ξ = 0.9) 15.64 12.97 10.10 7.92 6.66 5.40 4.26

trends in relation to porosity are similar. The largest and smallest geometrical tortuosity
results are produced by the PCM and the FMM, respectively, and the difference between them
exceeds 75%. The DSPSM and the SSPSM provide similar geometrical tortuosities, due to
the same searching algorithm (Dijkstra’s algorithm) being used. Because of the difference
in image preparation, the tortuosity results from the DSPSM are usually smaller than that
calculated from the SSPSM, as discussed in Section 3.2.3. Tortuosity results obtained from
the FMM are always smaller than that calculated from the DSPSM and the SSPSM, which
means the shortest pore channels identified by the FMM are ‘shorter’ than that searched by
Dijkstra’s algorithm. A stable difference between the geometrical tortuosity results computed
from the FMM and Dijkstra’s algorithm can be observed. As to the PCM, it is more suitable
for the single pore channel case, where it recognizes the central axis of pore channel as the
effective flow path.

Several factors could affect image analysis results, thereby bringing uncertainties to the
computation of geometrical tortuosity: (1) Image preparation. For instance, the DSPSM
directly searches for the shortest pore channel within the raw pore space, while the SSPSM
operates on the pore skeleton after image skeletonization, leading to inconsistent results of
geometrical tortuosity between them. The adopted skeletonization algorithm can also affect
the extracted topology of the 3D graph [195] and then influence the tortuosity calculation. (2)
The definition of the effective flow path Lg. The shortest pore channel Lmin is often taken as
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Fig. 3.13 The tortuosity results calculated from different image analysis methods, physical
simulations and porosity-tortuosity models for the set of Fontainebleau sandstone samples

the effective flow path through the complex pore microstructure [280], but different criteria
have also been used by other methods such as the PCM. (3) The path searching algorithm and
the definition of pixel/voxel connectivity. For examples, the shortest pore channel searched
by the fast marching method is different from the one obtained by Dijkstra’s algorithm, and
the shortest path based on the 6-neighbor-connectivity criterion (as shown in Figure 3.14)
is usually longer than that based on the 18- or 26-neighbor-connectivity criterion. (4) The
distance metric. A number of distance metrics exist for regular image grids, among which
Manhattan distance, Euclidean distance and Chebyshev distance are widely used [80]. These
distance metrics yield different distances between voxels, as shown in Figure 3.15. The
choice of distance metric directly affects the identification of the shortest/effective pore
channel, thereby affecting the geometrical tortuosity result.

Fig. 3.14 Different connectivity criteria between adjacent image voxels: (a) 6-neighbor-
connectivity; (b) 18-neighbor-connectivity; (c) 26-neighbor-connectivity
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Fig. 3.15 Different distance metrics between image voxels: (a) Manhattan distance; (b)
Euclidean distance; (c) Chebyshev distance

What’s more, the effects coming from image resolution and image size on tortuosity
computation cannot be ignored, but they can be reduced/avoided by using the digital REV
samples with sufficient high resolutions and large sizes, which will be further discussed in
Section 3.6. With the above intrinsic uncertainties present in various image-based calculation
methods, proper use of geometrical tortuosity requires a standard procedure, clear definition
and reasonable parameter selection, to ensure reproducible and portable results.

3.4.2 Comparison between physical tortuosity results

The physical tortuosities of the set of Fontainebleau sandstone samples are computed via
different physical simulations as discussed in Section 3.3, and the results are recorded in
Table 3.5 and plotted in Figure 3.13. It is observed that the diffusional, electrical and
thermal tortuosity of each sample are almost identical. This is because the underlying
transport physics of molecular diffusion, electrical conduction and heat transfer at steady
state are described by similar constitutive relations, namely Fick’s, Ohm’s and Fourier’s
laws. Diffusivity and conductivity are directly related to each other through Nernst-Einstein
equation as well [293]. Numerical simulations of these three transport processes are governed
by Laplace equation with exactly the same mathematical expression, and the boundary
conditions including the external driving force, outside surface and pore-solid interface are
identical as well. Recognizing the consistency among diffusional, electrical and thermal
tortuosities, a general definition of physical tortuosity τ can be expressed as [26]:(

J
∇Fdrive

)
eff

=
φ

τ2

(
J

∇Fdrive

)
0

(3.46)
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where J denotes the transport flux, ∇Fdrive denotes the driving force gradient, and the
subscripts ‘eff’ and ‘0’ denote the effective conductivity/diffusivity in porous media and the
bulk conductivity/diffusivity in homogeneous media, respectively.

However, the general definition in Eq. (3.46) is not applicable to hydraulic tortuosity.
As shown in Table 3.5 and Figure 3.13, the hydraulic tortuosity differs significantly from
the other three physical tortuosities, especially for the porous media samples with lower
porosity. Fluid permeation inside porous media not only contains the bulk movement of
flow volume driven by pressure gradient, but also involves the momentum transfer from
the pore wall towards the central axis of flow, so the underlying physics of hydrodynamic
flow is greatly different from that of molecular diffusion, electrical conduction or heat
transfer. Essentially, pore-scale fluid flow is governed by Navier–Stokes equations, which
are fundamentally different from the Laplace equation that governs the other three transport
phenomena. Further, due to the viscous resistance between the pore wall and fluid, the flow
velocity reduces to zero at pore walls (no-slip boundary condition) and gradually increases
towards the medial axes of pore channels, forming a velocity distribution as shown in Figure
3.16a. For the transport processes of molecular diffusion, electrical conduction and heat
transfer, the flow intensity suddenly declines to zero at the pore walls, forming a uniform
intensity distribution as shown in Figure 3.16b. Therefore, the pressure-driven fluid flow
is much more hindered by the small pores inside porous media, which can make the bulk
moving streamlines of fluid permeation significantly different from the transfer paths of the
other three transport phenomena.

Fig. 3.16 (a) The velocity profile of Newtonian fluid flow inside a pipe with ‘no-slip’ boundary
condition; (b) The intensity profile of molecular diffusion, electrical conduction and heat
transfer inside a pipe

Another useful observation from Table 3.5 and Figure 3.13 is that the random walk
simulation can provide tortuosity results close to the diffusional tortuosity values obtained
from molecular diffusion simulations. However, the results from random walk simulation rely
heavily on the numbers of random walkers as well as the simulation time step, especially for
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porous media with complicated microstructures. The difference between molecular diffusion
and random walk simulation increases with porosity. This is because the pore space is not
fully experienced by the random walkers, leading to the overestimation of tortuosity. The
accuracy of random walk simulation can be improved by increasing the numbers of random
walkers and time steps.

It should be noted that four different numerical methods (i.e. LBM, RWM, FDM and
FVM) are used here to simulate various transport phenomena at the pore scale, so numerical
errors on the computations of physical tortuosities can be different. For example, all numerical
simulations directly use image voxels as the basic computing elements, but the connectivity
between adjacent pore voxels follow different criteria during the discretization of governing
equations. Basically, the 18-neighbor-connectivity criterion is used in the LBM simulation
because of the adoption of the D3Q19 lattice arrangement, while the RWM, FDM and FVM
simulations follow the 6-neighbor-connectivity criterion which only permits direct exchange
of dependent variables occurring between adjacent pore voxels with common faces. However,
according to the comparison results in previous studies [211, 98, 433, 96, 439], as well as our
computational experiences (as shown in Figure 3.13, 3.26 and 3.29), numerical errors are very
tiny and negligible for the high-fidelity simulations performed on 3D high-resolution images
of porous media samples. Therefore, the above analysis results on physical tortuosities are
reliable, although different numerical simulation methods are used for this comparison study.
Besides, image resolution and image size are important influencing factors for physical
tortuosity calculation as well, which will be further discussed in Section 3.6.

3.4.3 Performances of theoretical/phenomenological models

It is evident from Table 3.5 and Figure 3.13 that there are close inverse correlations between
porosity and tortuosity results computed from different image analysis methods or physical
simulations. In this subsection, five different porosity-tortuosity models are applied to
estimate the tortuosity results of the set of Fontainebleau sandstone samples, as expressed
in Eqs. (3.1) to (3.5). As discussed in Section 3.1.2, these porosity-tortuosity relations
usually contain empirical parameters or uncertain coefficients that are difficult to accurately
determine, and irrational values of them may lead to great errors in tortuosity estimation.
Recommended values of these adjustable parameters are found through a literature survey,
and they are adopted here to assess the performances of theoretical/phenomenological models
on tortuosity evaluation.

For Bruggeman relation or Archie’s law (as expressed in Eq. (3.1)), its empirical exponent
α usually ranges from 1.3 to 2.5 [311], and there are various methods to determine α for a
particular porous medium [153]. However, reliable values of α are often determined from
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experimental measurements or numerical simulations [438]. The value of α is assigned to be
1.5 in the standard form of Bruggeman relation to estimate diffusional tortuosity of porous
media [438]. Besides, Mota et al. (2001) [316] found α was equal to 1.8 for granular beds
of spherical particles, from which the estimated hydraulic tortuosity well agreed with the
experimental data. As to Comiti’s model (Eq. (3.2)), its empirical constant p varies greatly for
plates with different height-side ratios [94]. Mauret and Renaud (1997) [303] found p=0.49
was appropriate for a capillary model of granular and fibrous beds to estimate hydraulic
tortuosity, which was later confirmed by an experimental study. For the empirical model
(Eq. (3.3)) proposed by Iversen and Jørgensen (1993) [210], its coefficient q=2 was found to
be appropriate for diffusional tortuosity of sandy sediments through diffusion experiments.
Considering the non-spherical grains, the sphericity factor ξ involved in Lanfrey’s model (Eq.
(3.5)) should be smaller than 1 [261] to estimate geometrical tortuosity for natural porous
media. Here, α= 1.5, 1.8 and 2.5 (the upper limit), p = 0.49, q = 2 and ξ = 0.9 are adopted
for the above porosity-tortuosity relationships to evaluate the tortuosity values of the set of
Fontainebleau sandstone samples, and the results are recorded in Table 3.5 and plotted Figure
3.13.

In general, none of these five models can provide tortuosity values that closely match
the results computed from any image analysis methods or physical simulations, which is
in accordance with the remarks on theoretical/phenomenological models in Section 3.1.2.
Comiti’s model, Iversen’s model and Du Plessis’s model tend to underestimate physical
tortuosities (compared with the physical simulation results), especially for the porous media
samples with low porosity, while Lanfrey’s model greatly overestimates the geometrical
tortuosity values of the set of Fontainebleau sandstones. The primary reason of such model
failures is that both model constructions and corresponding parameter calibrations are based
on porous media with high porosity (such as sandy sediments, granular beds and fibrous
beds). Therefore, it is no wonder that the above models can rarely provide reliable tortuosity
estimations for natural porous rocks with relatively low porosity. As shown in Figure 3.17,
a large group of pore media samples with a wide range of porosity are used to test these
porosity-tortuosity models, and the results further confirm the above viewpoint.

As can be seen in Table 3.5, Figure 3.13 and 3.17, three different values are assigned
to the exponent α in Bruggeman relation or Archie’s law to estimate tortuosity values of
Fontainebleau sandstones. It seems that Bruggeman relation or Archie’s law that treats
tortuosity as an exponential function of tortuosity is more reasonable than the other four
models, and it is possible to accurately evaluate physical tortuosities by selecting an appro-
priate value for the Bruggeman exponent α . To better correlate Bruggeman model with
tortuosity, an additional scaling factor β was introduced by researchers, and Bruggeman
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Fig. 3.17 Tortuosity results calculated from different image analysis methods, physical
simulations and porosity-tortuosity models for a group of porous media samples with a broad
range of porosity (detailed information about the porous media samples are given in Section
3.5)

model was extended to be τ = βφ α [438]. The crucial point is how to determine the values
of adjustable parameters α and β that directly affect the estimation accuracy of tortuosity. It
has been proved that both α and β depend on the analyzed pore microstructures, and they
vary significantly even for a small class of porous media, which leads to conflicting results
on the validity of Bruggeman relation in a broad range of studies [153, 438]. Therefore, the
tortuosity predictions from Bruggeman relation are not always consistent with experimental
data or numerical simulation results, and researchers usually alter the adjustable parameters
to fit the experimental or numerical values.

It is understandable that different porous media with the same porosity may have different
transport path lengths, so tortuosity cannot be a function of porosity only, especially for
low-porosity rocks that possess extremely complicated microstructures with a large number
of isolated and dead-end pores. Natural porous rocks are usually very different from and
much more complex than the spherical structures that closely follow the initial hypotheses of
porosity-tortuosity relationship derivation. The aforementioned porosity-tortuosity models
do not take account of other microstructural characteristics that have considerable effects
on tortuosity evaluation, such as pore size, shape, surface, distribution and connectivity. In
summary, it can be stated that the porosity-tortuosity models are appropriate and reliable for
porous media that are similar to the pore microstructures used to construct corresponding
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relationships and calibrate adjustable coefficients, but they are less suitable for complicated
pore networks without adequate characterization.

3.5 Relationships between geometrical and physical tortu-
osities

It is usually compute-intensive to evaluate physical tortuosities via pore-scale simulations of
transport processes, but geometrical tortuosity can be obtained much cheaply from image
analysis. Therefore, geometrical tortuosity is commonly used as the substitute for physical
tortuosities to model and predict transport properties. However, due to conceptual differences,
great discrepancies exist between geometrical and physical tortuosities. As shown in Figure
3.13, none of the image-based methods is able to provide a geometrical tortuosity result that
is close to any one of the physical tortuosities. In order to bridge such gaps, we established
quantitative relationships between geometrical and physical tortuosities in this section, so
that tortuosity can be better used in porous media research.

As the porosity varies, a strong correlation exists between geometrical and physical
tortuosities, which can be observed in Figure 3.13. To confirm this trend, a large set of
porous media (mainly geological materials) with diverse morphologies are used to explore
the relationships between geometrical and physical tortuosities, including sandstones, sand
packs, carbonate rocks (limestone), synthetic silica, bead packs, and others. The 3D micro-
CT images of these porous media samples are collected from several publicly shared data
sources, and due to page limit, only a part of them are shown in Figure 3.18 in 2D form. The
raw micro-CT images are in gray-scale to prepare for image analysis and physical simulation.
First they are processed and segmented into binary forms by using ImageJ [207], a popular
image processing tool in the digital rock physics community. As illustrated in Figure 3.19,
3D micro-CT images of four representative porous media samples are segmented using
Otsu’s method [343].

The micro-CT databases employed in this work include 120 digital microstructure sam-
ples. These raw images are representative covering a diverse set of porous media, but more
samples are still required in order to develop phenomenological models to link geometrical
and physical tortuosities. A stochastic microstructure reconstruction method has been newly
developed using deep neural networks, which will be detailedly explained in Chapter 4. This
method is capable of quickly generating 3D digital microstructure samples by preserving
the statistical equivalence, long-distance connectivity and transport properties of the training
images. Here, the segmentations of the above micro-CT models are used as the guides to
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Fig. 3.18 The 2D cross-sections of 3D micro-CT images of different porous media samples
(pore is shown in dark): data in (a)-(r) are collected from [120]; data in (s)-(u) are collected
from [455]; data in (v)-(y) are collected from [401]; data in (z) is collected from [386]; data
in (aa) is collected from [180]; data in (ab) is collected from [262]; data in (ac) is collected
from [63]; data in (ad) is collected from [36]
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Fig. 3.19 Segmentation of micro-CT images through Otsu’s method: (a) Gildehauser sand-
stone, (d) Bentheimer sandstone, (c) Ketton limestone and (d) Mt. Simon sandstone; (b), (e),
(h) and (k) are the histograms of grayscale values of corresponding micro-CT images; (c),
(f), (i) and (l) are the segmented images in binary form
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(a) (b)

Fig. 3.20 (a) The hydraulic tortuosity obtained with LBM simulation and the geometrical
tortuosities obtained from SSPSM and DSPSM for porous media at different porosity; (b)
Comparison between geometrical and hydraulic tortuosities

reconstruct new porous media samples. In total, 200 microstructure samples (120 samples
from raw micro-CT images plus 80 reconstructed samples) are used in this work to investigate
the relationships between geometrical and physical tortuosities, with the porosity varying
from 8.61% to 50.72%. Specifically, the relationship between geometrical tortuosity and
hydraulic tortuosity is described in Section 3.5.1, and the relationship between geometrical
tortuosity and diffusional/electrical/thermal tortuosity is described in Section 3.5.2.

3.5.1 Prediction model for hydraulic tortuosity

As shown in Figure 3.13, the hydraulic tortuosity lies in between the geometrical tortuosity
results calculated from the DSPSM and SSPSM. This phenomenon can be easily understood
by comparing the shortest pore channels with the effective flow path in Figure 3.2 and 3.4.
Thus, it is natural to use the DSPSM and the SSPSM results to develop a better approximation
to hydraulic tortuosity, thereby avoiding the costly fluid flow simulations. Indeed, the same
trend is also observed for the whole set of 200 porous media samples, as shown in Figure 3.20,
where the geometrical tortuosity results calculated from the DSPSM and the SSPSM form
nicely the upper and lower bounds of hydraulic tortuosity determined from LBM simulations.

The above observation suggests that the average length of fluid streamlines in a porous
medium is bounded by the shortest paths identified by the DSPSM and SSPSM. Based on
the above data and taking into account the variation with respect to porosity, we propose the
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Fig. 3.21 Comparison between the hydraulic tortuosity predicted using the proposed model
and the reference value obtained from LBM simulations

following phenomenological model to predict hydraulic tortuosity:

τ̃h = aφ
b
τ
(DSPSM)
g +(1−aφ

b)τ
(SSPSM)
g (3.47)

where τ̃h denotes the predicted hydraulic tortuosity, a and b are empirical coefficients, and
τ
(DSPSM)
g and τ

(SSPSM)
g are the geometrical tortuosity results calculated from the DSPSM and

SSPSM, respectively.
The set of porous media with 200 samples are randomly divided into the fitting group

(70%) and the testing group (30%). The coefficients a and b are identified as 1.3100 and
0.5435 respectively, through fitting the tortuosity and porosity data extracted from the porous
media samples in the fitting group. The mean error and the largest error of the fitted model
are 2.99% and 7.41%, respectively. The fitted model is applied to the porous media samples
in the testing group, to predict the hydraulic tortuosity values based the geometrical tortuosity
and porosity data. As shown in Figure 3.21, the predictions τ̃h from the above model are in
good agreement with the results τh obtained from LBM simulations, and the mean error and
the largest error of prediction are 3.11% and 7.19%, respectively.

3.5.2 Prediction model for diffusional tortuosity

As discussed in Section 3.4.2, diffusional, electrical and thermal tortuosity are almost
identical, and they are unified into a general form (as illustrated in Eq. 3.46). Here, we take
diffusional tortuosity as the representative to establish the prediction model. The geometrical
tortuosity τ

(DSPSM)
g calculated by the DSPSM is selected for the task, because it shows a
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Fig. 3.22 The geometrical and diffusional tortuosities of porous media at varying porosity

stronger correlation to diffusional tortuosity and does not involve any extra image preparation
that may cause errors. As shown in Figure 3.13, the diffusional tortuosity τd values are
always larger than the geometrical tortuosity values τ

(DSPSM)
g , and their difference decreases

with the growth of porosity φ . This observation also holds for other porous media samples
with wider range of porosity, as shown in Figure 3.22. Here, an empirical model is going
to be established to link geometrical tortuosity to diffusional tortuosity. Although the gap
between τ

(DSPSM)
g and τd is related to porosity, it is found that τd can be accurately estimated

from τ
(DSPSM)
g without considering porosity φ through the following empirical model:

τ̃d = m(τ
(DSPSM)
g )n (3.48)

where m and n are empirical constants.

The same fitting and testing group of porous media samples are used here. The values
of m and n are evaluated to be 0.9505 and 2.2310 respectively, though fitting the tortuosity
data extracted from the porous media samples in the fitting group. The mean error and the
largest error of the fitted model are 3.58% and 8.50%, respectively. Applying the fitted model
to the testing group, the predicted diffusional tortuosity τ̃d are in good agreement with the
numerical simulation result τd, as demonstrated in Figure 3.23. The mean error and the
largest error of the predictions are 3.07% and 7.71%, respectively.
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Fig. 3.23 Comparison between the predicted diffusional tortuosity obtained from the proposed
model and the reference value obtained from molecular diffusion simulation

3.6 Issues on REV size and resolution

REV size and resolution (voxel size) are two critical issues that need to be carefully con-
sidered when computing tortuosity values of digital microstructures through image analysis
or physical simulation. Generally, reliable pore-scale analysis requires large digital mi-
crostructure with high resolution. To serve as a good statistical representative for the specific
porous medium, the REV sample needs to be sufficiently large [103], and to provide accurate
pore space geometry close to the reality, the digital microstructure must be at a sufficiently
high-resolution level [142].

Through image analysis or physical simulation, accurate tortuosity results can be obtained
from large REV samples with high resolution [51, 353, 165]. However, it is still a challenging
task to deal with 3D REV samples with super-high resolutions, because they can contain
hundreds of millions (or even billions) of voxels. High-performance computing platforms are
often required to perform pore-scale analyses on these digital microstructures. In practice,
the raw micro-CT images are often rescaled to a lower resolution, in order to reduce the
computational cost. The resolution reduction is particularly common when using GPU
platforms, as a finer REV model often exceeds the memory capacity of a single graphics card
[220]. Therefore, the choice of image resolution of the REV sample is often a compromise
between accuracy requirement and computational complexity.

Naturally, the critical REV size and resolution for porous media depend on the character-
istic length of morphological features. In this work, the correlation length is selected as the
characteristic length to study the effects of image size and resolution on tortuosity evaluation,
because it is related to both mean pore radius and hydraulic radius [234]. Specifically, the
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correlation length l is defined as the distance where the two-point correlation function [441]
dwindles to the asymptotic value of φ 2 [92], as illustrated in Figure 3.25.

3.6.1 REV size

A Fontainebleau sandstone with porosity about 14.00% is selected to study the effect of
sample size on tortuosity evaluation. Its 3D micro-CT image with a resolution of 7.324 µm
[188] is segmented using ImageJ [207], as shown in Figure 3.24. The two-point correlation
function can be extracted from the binary segmentation, and the correlation length l is
measured as 17.50 voxels, as demonstrated in Figure 3.25. To study the influence of sample
size on tortuosity calculation, the 3D digital microstructure is cut into cubic subsamples with
side lengths L of 5, 10, 15, 20 and 25 times of the correlation length l, as shown in Figure
3.24b.

Fig. 3.24 (a) The micro-CT image of a Fontainebleau sandstone sample with resolution
of 7.324 µm; (b) The binary segmentation of the micro-CT image, and it is partitioned to
subsamples of different sizes (L is the side length of cubic sample, and l is the correlation
length)

Image analysis and physical simulation are performed on these subsamples to compute
geometrical and physical tortuosity, and the results are plotted in Figure 3.26. It can be
observed that both geometrical and physical tortuosity values fluctuate greatly for small
samples, especially the diffusional tortuosity computed by the RWM where the results
fluctuate from 2.37 to 3.84. As the sample size increases, both geometrical and physical
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tortuosities converge gradually. The larger fluctuation observed in smaller samples can be
attributed to two causes: (1) the morphological characteristics of smaller samples are not
statistically representative and (2) the boundary effects of various computing algorithms
or numerical methods on tortuosity calculations are more visible for smaller samples. It is
also observed that the tortuosity results computed from all methods become stable when the
sample size L increases to 20l, indicating the critical REV size Lc for tortuosity calculation:

Lc = 20l (3.49)

This critical REV size Lc = 20l can also be a valid reference for other types of porous
media. But more significantly, the correlation length extracted from the two-point correlation
function is demonstrated to be an effective characteristic length to determine the REV size
for tortuosity evaluation.

Fig. 3.25 The two-point correlation function S2(d) and correlation length l of the
Fontainebleau sandstone sample with resolution of 7.324 µm

3.6.2 REV resolution

The 3D micro-CT images at four resolution levels (e.g. 3.662, 7.324, 14.648 and 29.296 µm)
of the Fontainebleau sandstone [188] are used to study the resolution effect on tortuosity
evaluation, as shown in Figure 3.27. To avoid the sample size effect, these micro-CT images
are segmented and then partitioned into subsamples with side length L = 20l. The correlation
length l of the Fontainebleau sandstone is about 128.170 µm, which is equal to 35.00, 17.50,
8.75 and 4.38 voxels respectively for the digital microstructures from fine to coarse. The
correlation length l can be directly measured from the two-point correlation function curves,
as illustrated in Figure 3.28.
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(a) Geometrical tortuosity (b) Physical tortuosity

Fig. 3.26 The effects of sample size on the calculation results of different tortuosities

Performing image analysis and pore-scale simulation on the digital microstructures with
different resolutions, the geometrical and physical tortuosity values are calculated, and the
results are plotted in Figure 3.29. The REV resolution is found to have different effects on
tortuosity evaluations of the four image-based methods. The geometrical tortuosity results
calculated by the DSPSM and FMM are sensitive to image resolution, and they show similar
increase pattern as voxel size becomes larger. There are two primary sources of error caused
by the resolution effect: geometrical error and image analysis error. The difference between
the acquired digital microstructure and the real microstructure is termed as the geometrical
error, and this error increases as the digital microstructure becomes coarse, due to losing
geometrical information during the pixel/voxel binning. Bad pore-connectivity inside the
digital microstructure with low resolution usually results in a larger value of geometrical
tortuosity. Image analysis error refers to the difference between the shortest pore channel
identified by the algorithm and the actual shortest pore channel inside a porous microstructure.
Usually, the shortest pore channel identified from a fine image is ‘shorter’ than that obtained
from a coarse image, as illustrated in Figure 3.4. On the contrary, the SSPSM and PCM are
less influenced by the REV resolution, and the geometrical tortuosity only slightly declines as
the image resolution becomes lower. As described in Section 3.2.3, the SSPSM searches the
shortest pore channel from the medial axis skeleton of the pore space, which greatly reduces
the image analysis error discussed above. The PCM is very simple, and it does not consider
pore-connectivity and does not involve a path searching algorithm either. As the PCM only
takes into account the pore centroid position on each layer, it is usually less affected by the
image resolution. Generally, the resolution effect on the four image-based methods is very
much limited when the correlation length l is larger than 17.5 voxels, as shown in Figure
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Fig. 3.27 The micro-CT images and corresponding binary segmentations of a Fontainebleau
sandstone sample at four different resolution levels
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3.29a. Therefore, for the calculation of geometrical tortuosity, it is recommended to use
digital microstructures with the voxel size smaller than l/17.5.

Fig. 3.28 The two-point correlation functions S2(d) of digital microstructure samples at four
different resolution levels

(a) Geometrical tortuosity (b) Physical tortuosity

Fig. 3.29 The effects of image resolution on calculation results of different tortuosities

As observed in Figure 3.29b, the hydraulic tortuosity evaluation is quite stable when the
image resolution changes, and reasonably accurate results can be obtained on coarse images.
Although hydraulic tortuosity is less affected by REV resolution, it has been proven that the
resolution effect on the hydraulic conductivity (or permeability) is remarkable [142]. For the
evaluation of diffusional, electrical and thermal tortuosity, the resolution effect is significant.
As can be seen in Figure 3.29b, the diffusional tortuosity results increase with the voxel size.
The poor pore-connectivity inside the coarse image leads to greater retardation effects on the
transport processes of molecular diffusion, electrical conduction and heat transfer, thereby
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overestimating the tortuosity values. Physical tortuosities are estimated from numerical
simulations where image voxels are directly used as the discretization elements. Therefore,
the increase of voxel size may introduce extra numerical errors. For example, when LBM is
used to simulate fluid flow passing through a porous medium, the fluid-solid interface will be
‘misidentified’ if a suboptimal value is selected for the single relaxation time, and this error
will be greatly amplified on a coarse grid [142]. As shown in Figure 3.29b, the resolution
effect on the physical tortuosity calculation is generally negligible when the REV resolution
is higher than Rc:

Rc = l/17.5 (3.50)

This critical resolution level Rc = l/17.5 can play as an effective reference for other types
of porous media as well, but the key here is that the correlation length can be used as the
measure to select a proper image resolution level for tortuosity evaluation.

3.7 Discussion and concluding remarks

3.7.1 Discussion

The concept of tortuosity is used to model and predict transport properties of porous media,
such as permeability, effective diffusivity, electrical conductivity and thermal conductance.
However, it seems that the physical tortuosities evaluated through numerical simulations of
various transport phenomena are redundant, because corresponding transport properties can
be directly estimated from physical simulations without the requirement of such intermediate
variables. Inverse computation of physical tortuosity from transport property (as defined in
Eq. (3.17), (3.23), (3.32) and (3.40)) just runs counter to the original intention of introducing
tortuosity. Massive efforts have been made to directly relate tortuosity to porosity, so as to
derive explicit models for tortuosity evaluation, as discussed in Section 3.1.2. The broad
variety of porosity-tortuosity models usually lack general applicability for natural porous
media with complicated pore networks, due to the absence of consideration of other important
microstructural characteristics, which has been deeply discussed in Section 3.4.3. Besides,
reliable calibrations of the empirical parameters or uncertainty coefficient involved in these
porosity-tortuosity relations often require experimental measurement or numerical simulation,
which heavily discounts their values in practical applications.

Geometrical tortuosity can be an effective alternative to physical tortuosities to fulfill
the intended purpose in modeling and predicting transport properties, because it is a purely
microstructural feature of porous media that can be quickly determined through image
analysis. However, no general standard exists in extracting geometrical tortuosity from the
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digital microstructures of porous media, and thus uncertainties could be brought into image
analysis, due to the different options in terms of image preparation, definition of the effective
flow path, path searching algorithm, pixel/voxel connectivity criterion, distance metric,
image resolution and other factors. Although geometrical tortuosity is conceptually sound,
inconsistent results are often obtained from different image-based calculation methods,
as discussed in Section 3.4.1. A lack of reference makes it have no way to assess the
performances of different image-based methods and judge the rationality of geometrical
tortuosity results. According to our own computational experience, the DSPSM and SSPSM
using Dijkstra’s algorithm are recommended to extract geometrical tortuosity from the digital
porous media sample, because they can efficiently and stably provide geometrical tortuosity
results that are the lower and upper approximations of hydraulic tortuosity respectively, as
discussed in Section 3.5.1.

Tortuosity cannot simply be a characterization of pore space itself just from the geometric
perspective, but it should also be related to the actual streamlines of transport flows. For
electrical, diffusional and thermal flow, the transfers of charge, mass and energy depend on
the available cross-sectional area of the transport path, but geometrical tortuosity doesn’t take
consideration of the constrictions or bottlenecks along the pore channel. As to hydrodynamic
flow, the movement of fluid volume relies on both the pore size and cross-sectional shape
along the permeation route, and momentum exchange is also involved into it due to the
viscous effect, but these important factors are never taken into account in geometrical
tortuosity. In view of this, we developed two phenomenological models based on a large
group of porous media samples with a broad range of porosity in Section 3.5, aiming to
bridge the gaps between geometrical and physical tortuosities. The physical tortuosity values
estimated from the geometrical ones through the proposed models can be more appropriate
for transport property prediction.

Along the lines of the above discussion, two issues on tortuosity may need to be further
resolved: (1) If geometrical tortuosity is an intrinsic microstructural property, it should
have a unique value for a particular porous medium. How to standardize the determination
procedure of geometrical tortuosity to yield a unique value is the first issue. (2) Geometrical
tortuosity is not exactly equivalent to physical tortuosities, so how to better understand the
gaps between them is the second issue. Only after that, geometrical tortuosity together with
other supplementary microstructural characteristics can completely take the role of physical
tortuosities in modeling and predicting transport properties.
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3.7.2 Concluding remarks

From concepts to evaluation methods, this study systematically investigates the tortuosity
of porous media. The study focuses on modern approaches to evaluating the tortuosity of
porous media based on digital microstructures, covering a wide range of image analysis and
numerical simulation methods. The various types of tortuosity are broadly categorized into
two groups: geometrical and physical tortuosity, depending on whether the analysis object
is the pore space itself or the transport flow through the pore space. Physical tortuosity is
further classified into four types: hydraulic, electrical, diffusional, and thermal tortuosity,
corresponding to the specific transport process.

Different physical tortuosities are often used interchangeably in the literature, ignoring
their distinct differences in definition and evaluation method. To clarify the situation, hy-
draulic, electrical, diffusional, and thermal tortuosities are examined by using numerical
simulations of the corresponding transport processes in porous media. It is found that elec-
trical, diffusional and thermal tortuosity are similar in value, but they visibly differ from
hydraulic tortuosity. This is because the underlying physics of molecular diffusion, electrical
conduction, and heat transfer are equivalent, and the steady-states of these transport phe-
nomena are described by Laplace’s equation. This is distinctly different from Navier-Stokes
equations that govern the hydrodynamic fluid flow in porous media. Therefore, electrical,
diffusional, and thermal tortuosity can be unified to be one retarding factor, but it cannot be
interchangeably used with hydraulic tortuosity.

The increasing availability of high-quality digital microstructures makes it possible to
perform high-fidelity numerical simulations for transport flows in porous media. However,
the computational cost of pore-scale simulation is high and it increases rapidly with the
size of digital REVs. In contrast, geometrical tortuosity can be cheaply evaluated from
image analysis, making it desirable to explore an alternative approach to evaluating physical
tortuosities without involving costly physical simulation. It is found that the commonly-used
image analysis methods do not provide consistent geometrical tortuosity results and they all
differ greatly from the physical tortuosity values. To overcome this problem, two phenomeno-
logical models are proposed to evaluate physical tortuosities using the geometrical tortuosity,
one for the hydraulic tortuosity prediction, and the other for the diffusional/electrical/thermal
tortuosity prediction. Independent checks are performed to confirm the accuracy of these
predictions.

Finally, the effects of image size and resolution on the tortuosity evaluation are analyzed
as well. The correlation length extracted from two-point correlation function is found to be
an effective measure to determine the critical thresholds for REV size and resolution.
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It’s worth reminding that tortuosity plays an important role in subsequent studies of this
thesis, including stochastic microstructure reconstruction (Chapter 4 and 5), error correction
modeling due to the resolution effect (Chapter 6), and the fundamental investigation of the
microstructure-permeability relationship (Chapter 7).





Chapter 4

Statistical characterization and
reconstruction of heterogeneous
microstructures using deep neural
network

4.1 Introduction

Random heterogeneous materials comprised of at least two distinct phases (including void)
are ubiquitous in engineering and natural environment, and typical examples include com-
posites, alloys, concretes, soils and rocks. Their physical properties (i.e. transport, elastic,
and conductive properties) usually exhibit strong uncertainty, due to the random distributions
of different phases and the phase discontinuity on the interfaces [443]. Microstructural
characteristics of heterogeneous media are considered to be the key to understanding their
macroscopic behaviors [34, 167]. Modern microscopy imaging techniques have been able to
digitize the geometry of a heterogeneous medium, usually called a microstructure, into a 2D
or 3D image at different resolution levels and various length scales. The digital microstructure
can be used for a variety of simulation or diagnostic purposes.

Although useful insight into heterogeneous media can be derived from modern mi-
croscopy imaging techniques, it remains a critical challenge to effectively link microstructural
features to material properties. Such knowledge is of great value for predicting material
properties from the observable microstructures [443]. Additionally, microstructural charac-
teristics can also be linked to material formation processes, which can help to design and
manufacture materials to possess desirable properties.
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In practice, material properties are usually measured by experiments on physical samples
or estimated from numerical simulations on digital microstructure samples. However, physi-
cal sample acquisition, such as rock sample drilling, is usually expensive, and microscopy
imaging is also of high cost [480]. Without sufficient physical (or digital) samples, direct
experiments (or numerical simulations) are unable to correctly assess heterogeneous media
due to their stochastic nature. The complete computational model of a heterogeneous medium
is far beyond a small number of microstructure samples, and it should cover representative
samples with all possible configurations. In other words, the complete computational model
is an ensemble of representative/statistical volume elements that share the same averaged
characteristics. This situation promotes researchers to find an alternative approach to under-
standing the microstructure-property relationships with limited availability of physical (or
digital) raw samples [224].

A reliable way to quantitatively characterize the complex microstructure is an essential
prerequisite to establishing effective microstructure-property relationships. Stochastic char-
acterization provides a statistical description of microstructural features, where the stochastic
morphology of complex microstructures is reduced to a small set of descriptors related to
material properties [443]. As mentioned above, the number of raw microstructures is usually
limited, due to the high cost of advanced microscopy imaging techniques, which brings a
practical difficulty for accurate characterization. Therefore, stochastic microstructure recon-
struction was introduced to generate microstructural samples with statistical equivalence by
using limited microstructural information [495], and it has been proved to be an effective
and economical way to tackle this problem.

Various methods have been developed to reconstruct heterogeneous microstructures
over the past few decades. Among them, the stochastic optimization method [495] and
Gaussian random field method [363, 135, 134] are the most commonly-used approaches. The
stochastic optimization method generates a microstructure sample through an optimization
procedure by setting up the optimization objective with microstructural descriptors [495].
The reconstructed trial sample is iteratively adjusted to minimize the statistical difference
(measured by the selected descriptors) between it and the original microstructure, to produce
a microstructural sample that is statistically equivalent to the original one. The simulated
annealing algorithm is often used to drive the optimization procedure. This reconstruction
method is flexible and robust, and the accuracy of realizations can be controlled by setting
the appropriate termination criterion for the optimization process. However, this method is
very computation-intensive, due to its iterative nature of the optimization procedure and the
repetitive calculation of statistical descriptors. Gaussian random field method [363, 135, 134]
models a microstructure as a Gaussian random field, and it produces a microstructure sample
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by truncating a manually generated realization of random filed. Generally, this types of
method are much faster than the stochastic optimization method to generate microstructure
samples, but it only captures the first- and second-order statistical information, which is
inadequate to preserve the morphological complexity of heterogeneous microstructures.
Besides, some other reconstruction methods, including process-based method [341], Markov
Chain Monte Carlo simulation [480], multiple-point statistics method [336], patch-based
method [430] and texture synthesis method [285], are also used frequently.

Effective reconstruction methods should allow accurate and efficient reconstruction of
realistic microstructures, such that geometrical measurement and numerical simulation can
be performed on the reconstructed samples to investigate the impact of microstructures
on material properties. Recently, machine learning [368] and deep learning [3] have been
successfully applied to characterize and reconstruct complex heterogeneous media, because
of their powerful capacities to analyze complex data and explore hidden connections.

Caers (2001) [66] first used artificial neural networks (ANN) to statistically model
connected reservoirs. Latter, Sundararaghavan and Zabaras (2005) [429] considered mi-
crostructure reconstruction as a pattern recognition problem, and they adopted a support
vector machine (SVM) to reconstruct 3D microstructures by using statistical information
extracted from planar images. The SVM-based reconstruction method can generate mi-
crostructure samples with multiple features closely matching the original microstructure, but
a prior database of 3D microstructures is required for feature extraction and SVM model
training, which is often unavailable in practice. In 2016, Bostanabad et al. (2016) [52, 53]
adopted the decision tree (supervised machine learning) model to learn the stochastic feature
of heterogeneous microstructures, and then statistically equivalent microstructure samples
are generated based on this characterization. As a simple supervised machine learning model,
the decision tree may not fully capture the complex morphology of heterogeneous microstruc-
tures. As Markov random field assumption was used for microstructure characterization, this
method may have limitations in capturing long-distance morphologies. Cang et al. (2017)
[69] developed a method to characterize and reconstruct heterogeneous microstructures via
convolution deep belief networks (CDBN). This method can generate samples that statisti-
cally preserve the long-distance morphological features as well as the critical fracture strength
values. Currently, this method can only be used for 2D microstructure reconstruction, and it
cannot guarantee the accuracy, because the key parameters such as threshold are determined
empirically. Mosser et al. (2017) [315] proposed a method to reconstruct 3D porous media
by using the generative adversarial network (GAN), where the GAN serves as an implicit
description of the probability distribution of the 3D image dataset. The reconstructed samples
closely match the reference porous media in terms of pore morphology and single-phase
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permeability, but this method requires a prior dataset of 3D digital images to train the GAN
model. More recently, the convolutional neural network (CNN) [276, 462] has been used to
characterize and reconstruct heterogeneous microstructures. GAN and CNN are powerful
tools to characterize microstructures, but the efficiency to reconstruct new samples still needs
to improve, especially for large 3D microstructures.

Based on deep neural network (DNN), this study presents a new method for statistical
characterization and reconstruction of heterogeneous microstructures in both 2D and 3D
formats. To examine its performance, a series of reconstruction tests and comparisons
involving many different types of microstructures are conducted, where the reconstruction
quality is assessed by comparing both morphological and physical properties of reconstructed
and target microstructures. The main technical advantage includes: (1) using sparse stacked
autoencoder (SSAE) and SoftMax classifier, the proposed method is accurate, efficient, and
applicable to a wide range of heterogeneous materials with various morphological features;
(2) using a multi-level approach to statistically characterize and reconstruct microstructures
in a hierarchical manner, the new method can accurately capture long-distance morphological
features, making it particularly suitable for the application in porous media with long-range
connectivity.

The remainder of this chapter is organized as follows: In Section 4.2, statistical mi-
crostructure characterization using deep neural network is presented in detail through a
2D microstructure, including basic assumption, training data collection and process, and
‘SSAE+Softmax’ model training; Section 4.3 explains the procedure of stochastic recon-
struction based on the microstructure characterization from the trained ‘SSAE+Softmax’
model; Section 4.4 examines the performance of reconstructing 2D microstructures with
distinct morphologies, where the proposed method is systematically compared with the recent
machine learning-based method proposed by Bostanabad (2016) [52, 53]; In Section 4.5, the
method is extended for 3D microstructures, and the multi-level approach is developed for
microstructures with long-distance morphological features; Finally, conclusions are drawn in
Section 4.6.

4.2 Microstructure characterization

The raw SEM or micro-CT images of heterogeneous microstructures are in grayscale, so
they are usually segmented to represent different phases of the microstructures with distinct
intensity values [388]. Statistically characterizing the distributions of different phases within
the microstructures is critical, which is the first step to reconstruct new microstructure samples
with statistical equivalence. In this section, we take the 2D heterogeneous microstructure with
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two phases as the example to illustrate the proposed microstructure characterization method
using deep neural networks, and this method can be readily extended to 3D microstructures
with multiple phases.

4.2.1 Markov random field

An example of 2D digital microstructure with two phases is shown in Figure 4.2a, where its
two phases are represented by white and black regions respectively. In computer vision, a
digital image is a dot matrix data structure which represents a typically rectangular grid of
pixels. Let the matrix X(s1×s2) denote the set of pixels in a 2D digital microstructure with
size s1 × s2:

X = {Xi j | 1 ≤ i ≤ s1,1 ≤ j ≤ s2} (4.1)

where Xi j denotes the element in the matrix X, representing the intensity value of the pixel at
row i and column j. For the 2-phase microstructure, Xi j is a binary variable described by the
phase function as follows:

Xi j =

{
1 if (i, j) is located at white phase
0 if (i, j) is located at black phase

(4.2)

Markov random field assumption

Due to the stochastic nature of heterogeneous microstructure, the matrix X corresponding
to a microstructure sample can be described by the joint probability distribution function
(PDF) p(X11,X12, . . . ,Xi j, . . . ,Xs1,s2) or p(X), which is the perfect characterization of the
microstructure X. If p(X) could be learned, it can be directly used to reconstruct statistically
equivalent microstructure samples. However, p(X) usually has an extremely high dimension
equal to the number of pixels in the image, making it impracticable to estimate p(X) from
limited number of digital images X. To simplify the microstructure characterization problem,
the digital image of a heterogeneous medium is assumed to be a Markov random filed, which
can greatly reduce the computing complexity of p(X).

MRF models a texture as a local and stationary random process, and it has been proven
to be an effective method for a wide range of textures in computer vision applications [272].
Specifically, MRF has two assumptions [469]:

• Locality: each pixel Xi j in the digital image is only related to its neighboring pixels
Ni j within a sufficiently large area:

p(Xi j|X(−i j)) = p(Xi j|Ni j) (4.3)
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where X(−i j) denotes the rest of pixels in X excluding pixel Xi j.

• Stationarity: p(Xi j|Ni j) is the same for all pixels regardless of the pixel location (i, j),
which signifies that different regions in the image always share the same statistical
characteristics.

Data template and extension of MRF assumption

The geometry and size of spatial region covering the neighboring pixels Ni j are important
for the application of MRF. In this study, the neighboring pixels Ni j within the L-shaped
region are adopted to characterize the central pixel Xi j, and the whole area covering both the
central pixel and its neighborhood is called a ‘data template’, as shown in Figure 4.1. The
reason to choose the L-shaped data template is that the neighboring pixels Ni j are prior to
the central pixel Xi j in the raster scan order, which meets the requirement of microstructure
reconstruction in our method (more details will be discussed in Section 4.3). The size of
data template is measured by the radius r, and it should be large enough to capture the
fundamental morphology features in the image.

(a) 1 central pixel (b) 4 central pixels (c) 9 central pixels

Fig. 4.1 Data templates with central pixel(s) and neighboring pixels (neighborhood radius
r = 3 pixels)

The classical MRF model only focuses on the relationship between one central pixel Xi j

and its surrounding neighboring pixels Ni j [272]. In this study, we extend the classical MRF
assumption into more general forms, where the correlation between multiple central pixels Ci j

and their surrounding neighboring pixels Ni j can also be considered, and the corresponding
data templates are shown in Figures 4.1b and 4.1c. The locality and stationarity assumptions
are both applied equally to the cases with multiple central pixels, and Eq. (4.3) is rewritten
as:

p(Ci j|X(−i j)) = p(Ci j|Ni j) (4.4)

where X(−i j) denotes the set of pixels in X excluding the central pixels Ci j.
The possible configurations of multiple central pixels are much more diverse than the

case of a single central pixel. Take the 4-central-pixel case as an example, there are 24



4.2 Microstructure characterization 125

possible patterns for these 4 central pixels in a 2-phase microstructure. The purposes of
MRF extension are two-fold: (1) to capture the complexity (long-distance morphology) of
microstructures by using the proposed multi-level approach (as described in Section 4.5);
and (2) to speed up the microstructure reconstruction process by updating multiple pixels at
each iteration step (as discussed in Section 4.3). One can choose the most suitable template
for microstructure characterization and reconstruction to balance efficiency and accuracy.

4.2.2 Data event collection

The data template is used to collect primary local patterns from the microstructure, so it has
significant influence on microstructure characterization, thereby determining the quality of
microstructure reconstruction. The selected data template scans over the entire digital image
X, termed training image here, to collect data events (Ci j,Ni j) in a raster scan order. Each
data event (Ci j,Ni j) is a paired observation, and its configuration varies with the location
(i, j) to represent the variation of local spatial pattern in the training image X. The scanning
process starts from the top left pixels with enough neighboring pixels to fit the data template.
The border pixels are not scanned as the central pixel, because they do not have sufficient
neighborhoods to accommodate the data template. Figure 4.2 illustrates the data event
collection by using the selected data template to scan over the entire training image.

Fig. 4.2 Illustration of data event collection from the training image: (a) The training image
of a 2D microstructure; (b) Data template with 4 central pixels (r = 3 pixels); (c) Partial
enlarge detail of the training image with data template scanning on it; (d) Three examples of
data event (Ci j,Ni j)

The conditional probability distribution function (CPDF) p(Ci j|Ni j) associated with the
data template can be estimated from the occurrence frequencies of data events collected from
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the training image:

p(Ci j,Ni j) =
O(Ci j,Ni j)

∑O(Ci j,Ni j)
=

O(Ci j,Ni j)

Oall
(4.5)

p(Ni j) =
O(Ni j)

∑O(Ni j)
=

O(Ni j)

Oall
(4.6)

p(Ci j|Ni j) =
p(Ci j,Ni j)

p(Ni j)
=

O(Ci j,Ni j)

O(Ni j)
(4.7)

where O(Ci j,Ni j) and O(Ni j) are the occurrence numbers of data event (Ci j,Ni j) and (Ni j)

respectively, and Oall is the total number of all data events collected from the training image.

4.2.3 Microstructure characterization via deep neural network

The core of microstructure characterization is to determine the CPDF p(Xi j|Ni j) or p(Ci j|Ni j)

of the training image X. However, explicit construction of the CPDF is complicated and
computational intensive [469], especially for heterogeneous microstructures with complicated
geometries, sometimes even impossible. As mentioned above, the phase value of each
pixel Xi j can only be 1 (white) or 0 (black) in the binary representation of a microstructure.
Therefore, the conditional probability p(Xi j|Ni j) associated with 1-central-pixel data template
can be considered as a class probability, which provides the probability of the central pixel
Xi j to be white or black when given its neighboring pixels Ni j. It is a binary classification
problem, where the phase value of Xi j is the classification category and the configuration
of Ni j is the classification feature. In addition, the data events (Xi j,Ni j) collected from the
training image are paired observations, which are perfect training dataset to train a machine
learning model for classification [43]. Taking the collected data events (Xi j,Ni j) as the
training dataset, the machine learning classifier can be built to minimize the probability
of misclassification for any input features Ni j. The class probability stored in the fitted
machine learning model will be an accurate estimation of the CPDF p(Xi j|Ni j). As to the
CPDF p(Ci j|Ni j) associated with data template having multiple central pixels, it can also
be estimated in the same way. But data conversion is required to assign a label Li j to each
configuration of the multiple central pixels Ci j, and then the label Li j together with the
neighbouring pixels Ni j will serve as a pair of observation to train the machine learning
model. In other words, the binary classification problem discussed above becomes a multi-
class classification problem here, but the basic principles remain. More details about data
conversion will be explained in Section 4.2.3.

An appropriate machine learning model is critical for the above classification (pattern
recognition) task. Considering the high dimension of feature data (feature data Ni j usually
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contain hundreds of pixels, and the number of voxels will exceed 1000 for 3D microstructure
cases) and the large number of classification categories (the number of possible classification
categories for the n-central-pixel case is 2n, and it becomes even larger for multi-phase
microstructures), deep neural network appears to be the most attractive option. DNN models
[392] with multiple layers are effective for solving classification problems with complex
data, and each layer can learn/capture features at a different level.

Data conversion for the central pixels in data template

For the 1-central-pixel data template, the central pixel has two possible configurations, and
each configuration can be labeled by the phase value. However, for the 4- or 9-central-pixel
data template, there are 24 or 29 possible configurations for the central pixels. An index label
is required for each possible configuration, so that the machine learning model can be trained
to map each label to the corresponding feature data.

Fig. 4.3 Flow chart of data conversion (taking 4-central-pixel data template as the example)

As shown in Figure 4.3, a 4-central-pixel data template is used to explain the data
conversion procedure. Given 4 central pixels Ci j, there are 16 possible pattern configurations
in total, and for each configuration, the phase values are first recorded as a binary number,
which is then translated into an integer label, denoted by Li j. Finally, the integer label is
translated into a probability vector so that the class probabilities can be directly outputted
from the trained DNN model upon new input data. The data conversion procedure remains the
same for a n-central-pixel data template with two phases. As to multi-phase microstructures,
such as 3-phase microstructures, the data conversion still works by changing the binary
number to a ternary number. It should be noted that the data conversion is reversible, which
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is important for the stochastic reconstruction of microstructure samples through probability
sampling.

Data compression for the neighboring pixels in data template

Although MRF assumption has been adopted to reduce dimensionality for microstructure
characterization, the number of neighboring pixels in the data template is usually large,
especially for 3D microstructures with long-distance morphological characteristics. This
section explains how to extract features from the raw pixel inputs using stacked sparse
autoencoder (SSAE) [190, 488, 463].

Autoencoder is an unsupervised machine learning algorithm that learns the representation
of high-dimension input data by finding the correlation between the data, and is especially
suitable for dimensionality reduction. Consisting of an encoder and a decoder, an autoencoder
is a multi-layer feed-forward neural network trained to represent the input through back-
propagation. It compresses the input data into lower dimensional code and then reconstructs
the output from this latent-space representation. During the training process, the discrepancy
between input and reconstruction is minimized by applying back-propagation, and a set of
parameters including weights W and biases b are optimized, as shown in Figure 4.4.

Fig. 4.4 The architecture of basic sparse autoencoder to compress local patterns of heteroge-
neous microstructures (each input patch contains 480 pixels)
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A set of neighboring pixels Ni j is called a ‘training patch’ here. Let Pa=(N(1),N(2), . . . ,N(m))

denote the entire training patches collected from the training image, where N(k) ∈ R dN , m
and dN are the number of training patches and the number of pixels in each patch, respectively.
Let h(l)(k) = (h(l)1 (k),h(l)2 (k), . . . ,h(l)dh

(k))T denote the learned high-level feature at layer l for
the k-th patch, where dh is the number of hidden units in the current layer l. Throughout this
section, the superscript and subscript on a notation are used to define the hidden layer and
unit in this layer, respectively. For example, the h(1)i in Figure 4.4 represents the i-th unit
in the 1st hidden layer. For simplicity, N and h(l) are used to denote an input patch and its
representation at hidden layer l, respectively.

Figure 4.4 shows the architecture of a sparse autoencoder. Generally, the input layer of
the autoencoder consists in an encoder, where input patches N are compressed into lower
dimensional representations h. The output layer is a decoder which is trained to reconstruct
approximations N̂ of the input patches N from the hidden representation h. In essence,
training an autoencoder is to optimize the parameters by setting the minimization of the
discrepancy between input N and output N̂ as the objective. This discrepancy is represented
by a cost function with three terms as follows:

L (θ) =
1
m

m

∑
k=1

L(N(k),d
θ̂
(e

θ̌
(N(k))))+α

n

∑
j=1

KL(ρ||ρ̂ j)+β∥W∥2
2 (4.8)

The first term in Eq. (4.8) is the mean sum-of-squared error that accounts for the discrep-
ancy between input N and output N̂ over the entire set of data. Encoder e

θ̌
(·) compresses the

input N ∈ R dN into the hidden representation h ∈ R dh through the following equation:

h = e
θ̌
(N) = f (WN+bh) (4.9)

where W is a dh × dN weight matrix, and bh ∈ R dh is a bias vector. The encoder is
parametrized by θ̌ = (W,bh). Decoder d

θ̂
(·) transforms the hidden representation h into the

input space N̂ by:
N̂ = d

θ̂
(h) = f (WT h+bN) (4.10)

where WT is a dN ×dh weight matrix, and bN ∈ R dN is a bias vector. Hence, the decoder is
parameterized by θ̂ = (W T,bN). The activation function f (·) is a sigmoid logistic function:

f (z) =
1

1+ e−z (4.11)
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where z is the pre-activation of a neuron. The cost function L(N, N̂) quantifies the discrepancy
between input N and the reconstruction N̂, given by:

L(N, N̂) = (N− N̂)2 (4.12)

The second term in Eq. (4.8) describes the sparsity cost, where n is the number of units
in the hidden layer, and the index j scans across all hidden units in the network. ρ̂ j is
the average activation value of hidden unite j over the entire data set, and ρ is the desired
activation value. KL(ρ||ρ̂ j) denotes the Kullback-Leibler (KL) divergence between ρ and
ρ̂ j, given by:

KL(ρ||ρ̂ j) = ρ log(
ρ

ρ̂ j
)+(1−ρ) log

1−ρ

1− ρ̂ j
(4.13)

The third term in Eq. (4.8) defines the regularization cost (also called weight decay term),
which tends to decrease the magnitude of the weight to prevent overfitting.

∥W∥2
2 = tr(WT W) (4.14)

The basic sparse autoencoders can also be stacked to form a hierarchical sparse deep
model, where high-order features are compressed, organized and extracted. A stacked sparse
autoencoder (SSAE) is a deep neural network consisting of multiple sparse autoencoders,
where the output of each autoencoder layer is fed into the inputs of the successive autoencoder
layer. The architecture of an SSAE that consists of two autoencoder layers is shown in Figure
4.5. The figure illustrates only the encoder part of each basic autoencoder, because the
decoder part is not involved in the feature dimensionality reduction when estimating the class
probability for an input patch (further explanation is provided in the next subsection). The
SSAE yields a function S: R dN → R d

h(2) , which depresses an input raw pixels of a patch
to a new feature representation h(2) = S(N). Due to large numbers of initial parameters
(weights and bias) in SSAE, it is challenging to effectively optimize the parameters of these
autoencoders. Pretraining the network of a deep autoencoder to make the initial parameters
close to the good solutions is a practical strategy to overcome this problem. The greedy
layer-wise learning algorithm is an effective method to pretrain a deep network by training
each layer in turn.

SSAE+Softmax classifier: An implicit form of CPDF

Softmax classifier [43] is a multi-class neural network model using supervised learning
algorithm, which is used to classify the final output from the SSAE into multiple classes and
calculates a probability for each possible class. The architecture of SSAE with two sparse
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autoencoders followed by a Softmax classifier is shown in Figure 4.5. The first autoencoder
layer of the SSAE model learns primary features h(1) from the raw pixel input N. Then, these
primary features are used as the input for the second autoencoder layer of the SSAE model
to learn secondary features h(2) from the primary features. Next, these secondary features
are served as the input for a Softmax classifier layer, which is trained to map the secondary
features h(2) to the corresponding labels L. These two sparse autoencoders and the Softmax
classifier are combined together to form an ‘SSAE+Softmax’ model with two hidden layers
and a classification layer, as illustrated in Figure 4.5. After the ‘SSAE+Softmax’ classifier is
properly trained, it can provide a probability vector for a new testing patch. This probability
vector contains all probabilities of the testing patch belonging to corresponding classes.

Fig. 4.5 Schematic diagram of the ‘SSAE+Softmax’ model consisting of two autoencoder
layers and a Softmax classifier layer to classify the testing patches (local morphology patterns)
of a microstructure (Only the encoder part of each sparse autoencoder is drawn here, because
the decoder part is not involved in the feature dimensionality reduction for estimating the
class probability)
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Mathematically, the class probability of an input patch N belonging to class t can be
written as:

p(L = t|N) = p(L = t|h(2)) = So f tmax(W(0)h(2)+b(0)) =
eW (0)

t h(2)+b(0)t

∑
K
k eW (0)

k h(2)+b(0)k

(4.15)

where W(0) and b(0) are the weight matrix and bias vector of the softmax classifier, respec-
tively, and K is the number of classification categories. Considering the mapping relationship
between the label L and the configuration of central pixels C, the class probability p(L|N)

from the ‘SSAE+Softmax’ classifier is equivalent to the conditional probability p(C|N).
From this perspective, the ‘SSAE+Softmax’ classifier model trained by the training data
(Xi j,Ni j) or (Ci j,Ni j) is an implicit form of the conditional probability distribution (CPDF)
p(Xi j|Ni j) or p(Ci j|Ni j). In practice, cross-validation should be conducted to prevent overfit-
ting the ‘SSAE+Softmax’ classifier model, and thereby to improve its predictive performance
on new datasets.

4.3 Microstructure reconstruction

In the previous section, statistical microstructure characterization is obtained by training an
‘SSAE+Softmax’ classifier model to learn the CPDF p(Xi j|Ni j) or p(Ci j|Ni j) of the training
image X. This section describes how to generate statistically equivalent microstructure
samples based on the obtained characterization.

4.3.1 Microstructure reconstruction procedure

The joint PDF p(Y) of the reconstructed microstructure sample Y can be expressed as:

p(Y) = p(Y11)p(Y12|Y11)p(Y13|Y11,Y12) · · · p(Yi j|Y11,Y12, · · ·Yi( j−1)) · · ·
= p(Y11)p(Y12|Y(<12))p(Y13|Y(<13)) · · · p(Yi j|Y(<i j)) · · ·

(4.16)

where Y(<i j) represents the pixel sequence ahead of the pixel Yi j. If all above conditional
probabilities p(Yi j|Y(<i j)) are known, it is feasible to sequentially generate pixel Yi j by
sampling from the p(Yi j|Y(<i j)). As shown in Figure 4.1a, the neighboring pixels Ni j in the
data template are all in front of the central pixel Xi j in the raster scan order. With the MRF
assumption, the following relation holds:

p(Yi j|Y(<i j)) = p(Yi j|N(Y )
i j ) (4.17)
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where N(Y )
i j is the set of neighboring pixels surrounding the central pixel Yi j. Substituting

Eq. (4.17) into Eq. (4.16), the joint PDF p(Y) is rewritten as:

p(Y) = p(Y11)p(Y11|N
(Y )
11 )p(Y12|N

(Y )
12 ) · · · p(Yi j|N(Y )

i j ) · · · (4.18)

where each conditional probability p(Yi j|N(Y )
i j ) can be obtained by inputting N(Y )

i j into the
trained ‘SSAE+Softmax’ classifier. The microstructure sample Y can be reconstructed
through sequential probability sampling by giving an initial guess of p(Y11). The effect
of initialization can be ignored when the pixel sequence is long enough, therefore, the
reconstructed microstructure sample Y is statistically equivalent to the training image X in
terms of the joint PDF.

Basically, the above procedure is to reconstruct a microstructure sample through gener-
ating pixels one by one. By using the data template with multiple central pixels (as shown
in Figures 4.1b and 4.1c), multiple pixels can be generated at each step, which can greatly
speed up the reconstruction process. In these cases, the joint PDF p(Y) can be calculated as:

p(Y) = p(C(Y )
11 )p(C(Y )

11 |N(Y )
11 )p(C(Y )

12 |N(Y )
12 ) · · · p(C(Y )

i j |N(Y )
i j ) · · · (4.19)

where C(Y )
i j denotes the multiple central pixels in the image Y, and p(C(Y )

i j |N(Y )
i j ) can be

obtained from the trained ‘SSAE+Softmax’ classifier by inputting N(Y )
i j .

The algorithmic workflow of the proposed characterization and reconstruction for 2D
microstructures is summarized in Algorithm 1. The 4-central-pixel data template is used as
the example to describe the procedure of microstructure characterization and reconstruction,
and a schematic illustration is provided in Figure 4.6.

4.3.2 Boundary effect

As shown in Figure 4.6b, the boundary pixels of the initial image Y0 do not have enough
neighboring pixels as the inputs for the trained ‘SSAE+Softmax’ classifier model, so their
phase values will not be updated during the reconstruction process. However, these boundary
pixels still play as neighboring pixels for the corresponding inner pixels, which will cause
a negative effect on microstructure reconstruction, as shown in Figure 4.7b. To tackle the
boundary effect problem, a simple method is to remove the boundary and affected area from
the reconstructed image and only pick the central part as the final result, as shown in Figure
4.7b. In this study, a more rational approach using periodical/reflected boundary conditions
is proposed to overcome the boundary effect problem. Specifically, the boundary of the
initial reconstruction is first removed to obtain a defect-free reconstruction (as shown in
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Algorithm 1: Stochastic characterization and reconstruction of 2D heterogeneous
microstructures

Microstructure Characterization:
Data: The training image X with size s1 × s2;
Data: The selected 4-central-pixel data template with neighboring radius equal to r.
while r+1 ≤ i ≤ s1 −1 and r+1 ≤ j ≤ s2 − r−1 do

Collect the data event (Ci j,Ni j) from the training image X by using the selected
data template;

Convert the multiple central pixels Ci j to corresponding label data Li j;
Move the data template to the next step in the raster scan order.

end
Train the ‘SSAE+Softmax’ classifier model M by using the training data (L,N);
Result: The trained ‘SSAE+Softmax’ classifier model M.

Microstructure Reconstruction:
Data: The trained ‘SSAE+Softmax’ classifier model;
Data: The selected 4-central-pixel data template with neighboring radius equal to r;
Data: A 2D lattice grid with size s3 × s4.
Initialization: Assign binary white noise to the 2D lattice grid as the initial image
Y0;

while r+1 ≤ i ≤ s3 −1 and r+1 ≤ j ≤ s4 − r−1 do
Extract the data event (C(Y0)

i j ,N(Y0)
i j ) from the initial image by using the selected

data template;

Input the N(Y0)
i j to the trained ‘SSAE+Softmax’ classifier model M to obtained the

class probability vector p(L|N(Y0)
i j );

Generate a label data Li j by probability sampling from the class probability
vector p(L|N(Y0)

i j );
Convert the label data Li j to the corresponding configuration of multiple pixels
C(Y )

i j ;

Update corresponding pixels C(Y0)
i j by using C(Y )

i j ;
Move the data template to the next step in the raster scan order.

end
Result: A statistically equivalent reconstructed microstructure sample Y.
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(a) (b)

Fig. 4.6 Schematic illustration of microstructure reconstruction procedure: (a) A binary
white noise image as the initial state; (b) Pixels are updated by using the 4-central-pixel
data template to scan the initial image in the raster scan order (It should be noted that the
boundary pixels outside the blue square will not be updated, because they do not have enough
neighboring pixels)

Figure 4.7b); then the defect-free sample is used as a tile to build an enlarged copy with
periodic/reflected boundaries; and finally the intermediate sample with periodic/reflected
boundaries is used as the initialization to reconstruct the final sample as shown in 4.7c. This
periodical/reflected boundary approach can effectively eliminate the boundary effect problem
in the reconstruction.

(a) (b) (c)

Fig. 4.7 (a) The training image; (b) The reconstructed image without setting periodical
boundary; and (c) The reconstructed image with setting periodical boundary

4.3.3 Size of data template

The radius r of the neighboring pixel zone in the data template is an important parameter
affecting the reconstruction quality. A digital image of heterogeneous microstructure can
be considered as a spatial signal, so the size of the data template should be large enough to
cover the local morphological features. Using the image in Figure 4.7a as the training image,
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new samples are reconstructed by using 1-central-pixel data templates with different radius
r, and the reconstructed results are shown in Figure 4.8. The microstructure reconstruction
quality is continuously improved before r increasing to a threshold value, and no significant
improvement is observed after that. This test confirms that the selection of r has a significant
influence on microstructure reconstruction quality, and it needs to be greater than a minimum
value to achieve an accurate reconstruction.

(a) r = 1 pixel (b) r = 2 pixels (c) r = 3 pixels (d) r = 4 pixels (e) r = 5 pixels

(f) r = 6 pixels (g) r = 7 pixels (h) r = 8 pixels (i) r = 10 pixels (j) r = 15 pixles

Fig. 4.8 Microstructure reconstruction by using data templates with different radii r

In our experience, the minimum value of r can be estimated from the two-point correlation
function (TPCF) [443] of the training image. The correlation length a provides a reference
value for r, and it can be directly measured from TPCF, as shown in Figure 4.9. The
correlation length a can also be computed by fitting the TPCF with an exponential function
as defined below [100]:

S2(d) = (φ −φ
2)exp(−3d

a
)+φ

2 (4.20)

where S2(d) denotes TPCF, φ is volume fraction of calculated phase, and d is the distance
between two points. The correlation length a of the training image in Figure 4.7a is 9.83
pixels, and the reconstructed result by setting r = 10 is visually consistent with the training
image, as shown in Figure 4.8i. As to the 4-central-pixel and 9-central-pixel data template,
the minimum sizes of r can also be determined from the correlation length a, which are equal
to a−0.5 and a−1, respectively.
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Fig. 4.9 Two-point correlation function and its fitting curve

4.4 Results and discussion

In this section, two groups of microstructures with distinct morphologies are used to examine
the proposed statistical characterization and reconstruction method. The new method is also
compared with a recent machine-learning based approach [52, 53] that uses the decision
tree model to learn the stochastic features of heterogeneous media. Different statistical
descriptors [443], including two-point correlation function (TPCF), two-point cluster cor-
relation function (TPCCF) and lineal path function (LPF), are used to assess statistical
equivalence between reconstructed and target microstructures. In addition, the time costs for
microstructure characterization and reconstruction by using different data templates are also
compared. Microstructure characterization and reconstruction methods used in this study
are all implemented with MATLAB, and all tests are performed on a PC with an Intel Xeon
3.5GHZ CPU and 32GB memory.

4.4.1 Microstructures with short-distance correlations

Original microstructures

Representative images of three different microstructures are chosen as the training images,
as shown in Figure 4.10. Each of these microstructures has unique morphology with relative
small size, and the correlation lengths of them are 10, 10, 12 pixels respectively, which can
be measured from the TPCFs in Figure 4.12. The first one is an isotropic microstructure with
circular inclusions embedded in the matrix; the second one is an anisotropic microstructure
with irregular-shaped inclusions; and the last microstructure is a porous medium with strong
randomness in pore shapes and sizes.
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(a) Microstructure I (b) Microstructure II (c) Microstructure III

Fig. 4.10 The 2D training images of three microstructures with short-distance correlations
(image size: 200 × 200 pixels)

For each microstructure, we use all three data templates (as shown in Figure 4.1) to collect
data events from the training image, and then to train ‘SSAE+Softmax’ classifier models in
order to learn the CPDFs of the training image. Finally, each trained ‘SSAE+Softmax’ classi-
fier model is used to generate a set of microstructures with 50 samples, and these samples are
compared with the target microstructures by measuring the statistical descriptors. The sizes
of data template is determined from the correlation length of the original microstructure, as
described in Section 4.3.3. The parameters of ‘SSAE+Softmax’ classifier model training
are summarized in Table 4.1. For comparison, Bostanabad’s method [52, 53] is also used to
reconstruct these three microstructures by using data templates with the same sizes.

Table 4.1 The parameters for ‘SSAE+Softmax’ classifier model training

Microstructure Data template Template size r Unite number of each layer

Input layer Hidden layer 1 Hidden layer 2

I 1-central-pixel 10 pixels 220 80 40
I 4-central-pixel 10 pixels 240 80 40
I 9-central-pixel 10 pixels 260 120 40
II 1-central-pixel 10 pixels 220 80 40
II 4-central-pixel 10 pixels 240 120 40
II 9-central-pixel 10 pixels 260 140 60
III 1-central-pixel 12 pixels 312 120 50
III 4-central-pixel 12 pixels 336 140 60
III 9-central-pixel 11 pixels 308 140 60

Reconstruction results

As shown in Figure 4.11, the three columns of images are the representative reconstruction
results corresponding to the three target microstructures in Figure 4.10, by using the proposed
method and Bostanabad’s method. The first three rows (from top to bottom) of images
are reconstructed from the proposed method by using the three data templates in Figure
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4.1, respectively. The last row provides reconstruction results of Bostanabad’s method.
Visual inspection of these reconstructed samples implies that the isotropy, anisotropy, and
randomness of target microstructures are well preserved, and no obvious discrepancies are
observed between the samples reconstructed from the proposed method and Bostanabad’s
method.

In order to assess whether these reconstructed samples are statistically equivalent to
the original microstructures, we compared the TPCF (S2(d)), TPCCF (C2(d)), and the LPF
(L(d)) between them. All three morphological descriptors are computed for the white phase
in the images, and the results are shown in Figure 4.12, 4.13 and 4.14. Generally, the curves
of S2(d), C2(d) and L(d) measured from the original microstructures are located inside the
red intervals which are the ranges of the statistical descriptors extracted from each set of
reconstructed microstructures with 50 samples. The relative errors (quantified by L2 norm
error) between the averages of morphological descriptors from reconstructed samples and
that of the original microstructure are listed in Table 4.2. Each averaged curve calculated
from the 50 reconstructed samples are very closed to the curve measured from the original
microstructures, with a relative error within 5.00%, and the greatest variation of the statistical
descriptor extracted from a particular reconstructed sample is usually less than 10.00%.

More specifically, the reconstructed samples of the first microstructure not only preserve
the shape of circular inclusions, but also maintain the spatial distribution of the circular
inclusions as evidenced by the good agreements of statistical descriptors. As to the second
microstructure, the reconstructed samples preserve well the anisotropic property and the
irregularity of inclusion shapes, which indicates the raster scan order of pixel generation
during the reconstruction process does not affect the reconstruction quality. The third
microstructure shows the greatest stochasticity in terms of pore shape and pore size, and
the trained ‘SSAE+Softmax’ classifier models is again able to capture stochasticity and
complexity of pore geometry and reconstruct statistically equivalent samples.

The reconstructed samples from the proposed method by using different data templates
do not differ much visually, and the statistical equivalence shows a similar accuracy level (as
shown in Figure 4.11 and Table 4.2). However, the efficiency of microstructure characteriza-
tion and reconstruction by using different data templates varies greatly, as illustrated in Table
4.2. The time cost of ‘SSAE+Softmax’ classifier model training (microstructure characteri-
zation) increases significantly from using 1-central-pixel template to using 9-central-pixel
template, while the corresponding time consumption of reconstruction declines notably. Be-
sides the selection of data template, the complexity of the target microstructure also influence
the computational cost, because large neighborhood and complicated classifier model are
required for such microstructures. Compared with the 1-central-pixel case, the reconstruction
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(a) 1-central-pixel case (b) 1-central-pixel case (c) 1-central-pixel case

(d) 4-central-pixel case (e) 4-central-pixel case (f) 4-central-pixel case

(g) 9-central-pixel case (h) 9-central-pixel case (i) 9-central-pixel case

(j) Bostanabad’s method (k) Bostanabad’s method (l) Bostanabad’s method

Fig. 4.11 Representative reconstruction results (image size: 200×200 pixels) by using the
proposed method and Bostanabad’s method (the three columns of microstructures from left
to right are reconstruction results corresponding to microstructure I, II and III respectively)

using 4- or 9-central-pixel template requires more computer memory, but the reconstruction
speed can be enhanced remarkably. In addition, the trained ‘SSAE+Softmax’ classifier model
can be stored and used repeatedly to reconstruct microstructure samples with any size.
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(a) 1-central-pixel case (b) 1-central-pixel case (c) 1-central-pixel case

(d) 4-central-pixel case (e) 4-central-pixel case (f) 4-central-pixel case

(g) 9-central-pixel case (h) 9-central-pixel case (i) 9-central-pixel case

(j) Bostanabad’s method (k) Bostanabad’s method (l) Bostanabad’s method

Fig. 4.12 Comparison of TPCF S2(d) between the original and reconstructed microstructures
from the proposed method and Bostanabad’s method (the three columns of figures from left
to right are TPCFs corresponding to the microstructure I, II and III respectively)
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(a) 1-central-pixel case (b) 1-central-pixel case (c) 1-central-pixel case

(d) 4-central-pixel case (e) 4-central-pixel case (f) 4-central-pixel case

(g) 9-central-pixel case (h) 9-central-pixel case (i) 9-central-pixel case

(j) Bostanabad’s method (k) Bostanabad’s method (l) Bostanabad’s method

Fig. 4.13 Comparison of TPCCF C2(d) between the original and reconstructed microstruc-
tures from the proposed method and Bostanabad’s method (the three columns of figures from
left to right are TPCCFs corresponding to the microstructure I, II and III respectively)
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(a) 1-central-pixel case (b) 1-central-pixel case (c) 1-central-pixel case

(d) 4-central-pixel case (e) 4-central-pixel case (f) 4-central-pixel case

(g) 9-central-pixel case (h) 9-central-pixel case (i) 9-central-pixel case

(j) Bostanabad’s method (k) Bostanabad’s method (l) Bostanabad’s method

Fig. 4.14 Comparison of LPF L(d) between the original and reconstructed microstructures
from the proposed method and Bostanabad’s method (the three columns of figures from left
to right are LPFs corresponding to the microstructure I, II and III respectively)
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Table 4.2 Average reconstruction errors in volume fraction (φ ), TPCF (S2(d)), TPCCF
(C2(d)), and LPF (L(d)), as well as the average computational costs of microstructure
characterization and reconstruction

Microstructure Data template/ Method |∆φ | |∆S2(d)| |∆C2(d)| |∆L(d)| Average CPU time (s)

Characterization Reconstruction

I 1-central-pixel 2.55% 2.83% 1.34% 1.17% 161.5 198.9
I 4-central-pixel 3.15% 2.53% 1.25% 0.90% 336.1 52.6
I 9-central-pixel 2.76% 3.21% 1.51% 1.52% 529.2 26.9
I Bostanabad’s method 2.69% 2.74% 1.36% 1.28% 15.2 41.4
II 1-central-pixel 3.90% 2.38% 1.85% 1.21% 139.7 166.4
II 4-central-pixel 3.58% 3.10% 2.92% 1.73% 290.6 53.7
II 9-central-pixel 3.67% 3.45% 2.31% 1.82% 1293.5 24.7
II Bostanabad’s method 3.49% 2.46% 2.11% 1.32% 19.1 62.8
III 1-central-pixel 3.43% 2.90% 2.84% 1.41% 116.2 169.1
III 4-central-pixel 3.07% 2.38% 1.67% 1.56% 270.2 55.4
III 9-central-pixel 2.58% 3.41% 1.07% 1.77% 848.8 29.2
III Bostanabad’s method 2.97% 3.06% 1.19% 1.84% 18.7 54.1

For the above three microstructures with short-distance morphologies, the proposed
method and Bostanabad’s method have similar reconstruction accuracy, as recorded in Table
4.2. Bostanabad’s method is more efficient in microstructure characterization, because
the decision tree model is much simpler than the ‘SSAE+Softmax’ classifier model. The
proposed method can reconstruct samples much faster than Bandstand’s method when the
9-central-pixel template is adapted. Therefore, for reconstruction of multiple samples, the
proposed method will achieve a better overall efficiency than Bostanabad’s method, and the
more samples reconstructed the more time saved. However, the key advantage of the new
method is to accurately generate microstructures with long-distance morphological features,
which will be discussed in the following section.

4.4.2 Microstructures with long-distance correlations

This section considers microstructures with long-distance correlations. Again, both the
proposed reconstruction method and Bostanabad’s method are tested on three microstructures
with distinct morphological features.

Original microstructures

As shown in Figure 4.15, three distinct microstructures with long-distance features are
tested. The largest inclusions in microstructure IV and microstructure V exceed the half
size of training images, and the wavy stripes in microstructure VI even penetrate through
the whole training image. For microstructure IV and microstructure V, both the proposed
method with three different data templates and Bostanabad’s method are used for statistical
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characterization reconstruction. The parameters of ‘SSAE+Softmax’ classifier model training
are listed in Table 4.3. The data template sizes are determined by the correlation length, and
for fair comparison the data templates of same sizes are used by Bostanabad’s method.

(a) Microstructure IV (b) Microstructure V (c) Microstructure VI

Fig. 4.15 The 2D training images of three microstructures with long-distance correlations
(image size: 200 × 200 pixels)

Table 4.3 The parameters for ‘SSAE+Softmax’ classifier model training

Microstructure Data template Template size r Unite number of each layer

Input layer Hidden layer 1 Hidden layer 2

IV 1-central-pixel 10 pixels 220 80 40
IV 4-central-pixel 10 pixels 240 80 40
IV 9-central-pixel 10 pixels 260 120 60
V 1-central-pixel 20 pixels 840 200 80
V 4-central-pixel 19 pixels 798 200 80
V 9-central-pixel 19 pixels 836 240 80

As to microstructure VI, the multi-level version of the proposed method is adopted to
capture the super large morphological features. The multi-level approach in this study is
specifically developed to generate 3D porous media samples that preserve long-distance
connectivity of pore networks, and its reconstruction procedures are described in details
in Section 4.5.2. Microstructure samples are reconstructed in three levels, and 1-, 4- and
4-central-pixel templates are used in the first, second and third level of reconstruction
respectively, where the template sizes are 4, 8, and 14 pixels respectively.

Reconstruction results

Figure 4.16 shows the representative reconstruction results corresponding to the three target
microstructures in Figure 4.15. Visually, both the local morphologies and long-distance
connectivities of the original microstructures are well preserved by the reconstructed sam-
ples from the proposed method, while the performance of Bostanabad’s method is poorer,
especially for microstructure VI.
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(a) 1-central-pixel case (b) 1-central-pixel case (c) Multi-level approach

(d) 4-central-pixel case (e) 4-central-pixel case (f) Multi-level approach

(g) 9-central-pixel case (h) 9-central-pixel case (i) Multi-level approach

(j) Bostanabad’s method (k) Bostanabad’s method (l) Bostanabad’s method

Fig. 4.16 Representative reconstruction results (image size: 200×200 pixels) by using the
proposed method and Bostanabad’s method (the three columns of microstructures from left to
right are reconstruction results corresponding to the microstructure IV, V and VI respectively)

The proposed method well captures the inclusion pattern in microstructure IV as well
as its long-distance correlation. The reconstructed samples are also statistically equivalent
to the original microstructure measured by TPCF, TPCCF and LPF, as illustrated in Figure
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4.17, Figure 4.18 and Figure 4.19, respectively. As to Bostanabad’s method, it approximately
captures the long-distance morphology of microstructure IV by adopting a sufficiently large
data template, but it loses local morphology information of inclusions. As shown in Figure
4.16, the inclusions in the reconstructed sample are disordered and very different from
the layered pattern in the original sample. This is because the simple decision tree model
used by Bostanabad’s method cannot capture both the local details and the long-distance
morphological features at the same time. The ‘SSAE+Softmax’ classifier model adopted by
the proposed method is capable of preserving more comprehensively morphological features
of the microstructure.

The irregularly shaped inclusions in microstructure V are of different sizes, while the
morphology exhibits long-distance features. Both the stochastic nature and long-distance
morphology of microstructure V are well preserved in the samples reconstructed from the
proposed method, as shown in Figure 4.16, Figure 4.17, Figure 4.18 and Figure 4.19. By
contrast, the reconstructed samples from Bostanabad’s method cannot accurately preserve
the long-distance morphological features and as shown in Figure 4.18 and Figure 4.19, the
TPCCF and LPF of reconstructed samples are below that of the original microstructure.
Compared to the ‘SSAE+Softmax’ classifier model, the decision tree model adopted by
Bostanabad’s method is less effective to learn and express the complex morphology of
microstructure V.

Microstructure VI contains long wavy stripes penetrating through whole medium, so
the multi-level version of the proposed method is used to characterize and reconstruct the
microstructure in a hierarchical way. The low-frequency (long-distance) morphology is
maintained at the low level of reconstruction, and high-frequency details are added at the
following higher levels of reconstruction. Three representative reconstructed samples are
provided in Figure 4.16, from which one can observe that the long-distance morphological
features of microstructure VI are well preserved. The good agreements of TPCF, TPCCF
and LPF between the original and reconstructed microstructures also confirm the statistical
equivalence between them, as shown in Figure 4.17, Figure 4.18 and Figure 4.19, respectively.
As to Bostanabad’s method, it fails to capture the long-distance morphology that is far beyond
the size of selected data template, although date templates of different sizes were tried in
this study. The disagreements of TPCCF and LPF between the original and reconstructed
microstructures also demonstrate the limitation of Bostanabad’s method in reconstructing
microstructures with long-distance correlations.

The average reconstruction errors measured by statistical descriptors are recorded in Table
4.4, as well as the average time costs of microstructure characterization and reconstruction by
using different methods. The training of ‘SSAE+Softmax’ classifier model is generally more
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(a) 1-central-pixel case (b) 1-central-pixel case

(c) 4-central-pixel case (d) 4-central-pixel case (e) Multi-level approach

(f) 9-central-pixel case (g) 9-central-pixel case

(h) Bostanabad’s method (i) Bostanabad’s method (j) Bostanabad’s method

Fig. 4.17 Comparison of TPCF S2(d) between the original and reconstructed microstructures
from the proposed method and Bostanabad’s method (the three columns of figures from left
to right are TPCFs corresponding to the microstructure IV, V and VI respectively)

time consuming than the training of the decision tree model, but the former model adopted
by the proposed methods can better learn and express the complexity of microstructures
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(a) 1-central-pixel case (b) 1-central-pixel case

(c) 4-central-pixel case (d) 4-central-pixel case (e) Multi-level approach

(f) 9-central-pixel case (g) 9-central-pixel case

(h) Bostanabad’s method (i) Bostanabad’s method (j) Bostanabad’s method

Fig. 4.18 Comparison of TPCCF C2(d) between the original and reconstructed microstruc-
tures from the proposed method and Bostanabad’s method (the three columns of figures from
left to right are TPCCFs corresponding to the microstructure IV, V and VI respectively)

with long-distance morphologies. Once the ‘SSAE+Softmax’ classifier model corresponding
to a microstructure is properly trained, it can be saved for reuse. Using the 4-central-pixel
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(a) 1-central-pixel case (b) 1-central-pixel case

(c) 4-central-pixel case (d) 4-central-pixel case (e) Multi-level approach

(f) 9-central-pixel case (g) 9-central-pixel case

(h) Bostanabad’s method (i) Bostanabad’s method (j) Bostanabad’s method

Fig. 4.19 Comparison of LPF L(d) between the original and reconstructed microstructures
from the proposed method and Bostanabad’s method (the three columns of figures from left
to right are LPFs corresponding to the microstructure IV, V and VI respectively)

data template, the proposed method has a similar reconstruction efficiency as Bostanabad’s
method, while using the 9-central-pixel data template, the reconstruction efficiency of the



4.5 Extension for 3D Microstructures 151

Table 4.4 Average reconstruction errors in volume fraction (φ ), TPCF (S2(d)), TPCCF
(C2(d)), and LPF (L(d)), as well as the average computational costs of microstructure
characterization and reconstruction

Microstructure Data template (Method) |∆φ | |∆S2(d)| |∆C2(d)| |∆L(d)| Average CPU time (s)

Characterization Reconstruction

IV 1-central-pixel 3.68% 3.15% 3.56% 2.40% 127.5 162.8
IV 4-central-pixel 3.35% 3.23% 2.27% 1.73% 284.0 49.6
IV 9-central-pixel 3.72% 4.19% 4.21% 3.62% 930.2 25.1
IV Bostanabad’s method 3.59% 5.12% 3.94% 3.48% 17.9 46.5
V 1-central-pixel 4.28% 4.35% 5.56% 2.67% 145.7 205.4
V 4-central-pixel 4.09% 4.43% 4.69% 1.39% 255.3 52.8
V 9-central-pixel 3.84% 3.59% 4.14% 2.36% 1032.7 27.5
V Bostanabad’s method 7.71% 8.04% 8.15% 4.25% 18.3 49.3
VI Multi-level approach 4.82% 5.17% 3.71% 4.51% 465.1 90.2
VI Bostanabad’s method 10.31% 12.65% 32.46% 8.74% 19.2 51.4

proposed method gets doubled. In summary, the proposed method has unique advantages in
accurately characterizing and efficiently reconstructing heterogeneous microstructures with
long-distance correlations.

4.5 Extension for 3D Microstructures

The methodology presented in Section 4.2 and Section 4.3 can be readily extended to charac-
terize and reconstruct 3D microstructures. The procedures of microstructure characterization
and reconstruction are similar to that of 2D microstructures, while the main difference is
on the data template. We introduce four data templates for 3D microstructures, as shown in
Figure 4.20. The first two data templates have full neighboring voxels in cubic space, which
cover the neighboring voxels that are prior to the central voxel(s) in the raster scan order, and
the numbers of central voxels of these two templates are 1 and 8, respectively. Considering
memory constraint and computational complexity, the number of neighboring voxels in the
3D data template can be reduced. Another two data templates with partial neighboring voxels
are therefore created, and they only cover the neighboring voxels in three orthogonal planes,
as shown in Figure 4.20c and 4.20d.

Although the partial templates are used for 3D microstructure characterization and
reconstruction to reduce the memory requirement, sometimes the size of data template has to
be very large in order to capture the largest morphological features in the training image, such
as the long-distance connectivity inside the porous microstructures, which may exceed the
computational capacity of ordinary computers. To overcome this limitation and efficiently
capture long-distance features, we propose a multiple-level reconstruction strategy, which is
explained in Section 4.5.2.
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(a) (b)

(c) (d)

Fig. 4.20 The 3D data templates (neighborhood radius r = 4 voxels): (a) 1 central voxel with
full neighboring voxels, (b) 8 central voxels with full neighboring voxels, (c) 1 central pixel
with partial neighboring voxels, and (d) 8 central voxels with partial neighboring voxels

4.5.1 Single-level approach

The single-level approach characterizes and reconstructs 3D microstructures in the same
procedure as that of 2D microstructures, as described in Algorithm 1. Firstly, the selected 3D
data template is used to scan the entire 3D training image X to collect data events (Xi jk,Ni jk)

or (Ci jk,Ni jk), and then the ‘SSAE+Softmax’ classifier model is trained to estimate the CPDF
p(Xi jk|Ni jk) or p(Ci jk|Ni jk) of the 3D training image. Finally, 3D statistically equivalent
samples can be generated by using the trained ‘SSAE+Softmax’ classifier model which is
considered as an implicit form of CPDF p(Xi jk|Ni jk) or p(Ci jk|Ni jk). A 3D microstructure
samples is reconstructed slice by slice, and the voxels on each slice are generated in the raster
scan order.

Original microstructures

In this section, three 3D microstructures with different morphological features are selected
to demonstrate the single-level approach, as shown in Figure 4.21. The first microstructure
is a clustered isotropic nanocomposite with silica inclusions randomly embedded in the
rubber matrix. The volume fraction of silica inclusion is 9.55%, and the size of the training
image is 150 × 150 × 150 voxels. The second microstructure is anisotropic, and its
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(a) Microstructure I (b) Microstructure II (c) Microstructure III

Fig. 4.21 The 3D training images of three microstructures with different morphological
features

morphological features in orthogonal directions are visibly different in terms of size and
shape of the secondary phase. The volume fraction of the secondary phase is 39.16%, and
the image size is 100 × 100 × 100 voxels. The last image is a porous microstructure of
synthesis silica with pore space (white phase) occupying 42.73% of the bulk volume, which
has long-distance morphological features and the image size is 150 × 150 × 150 voxels.
Different data templates are used to characterize and reconstruct these microstructures, and
a set of 50 samples are generated for each case. The statistical equivalence between the
original microstructures and the reconstructed samples is evaluated by comparing different
morphological descriptors, including TPCF S2(d), TPCCF C2(d), and LPF L(d), which are
all computed from the white phase in each microstructure. The neighborhood radius of data
template is determined by the correlation length measured from the TPCF, which can be seen
in Figure 18. The parameters of the ‘SSAE+Softmax’ classifier model are listed in Table 4.5.

Table 4.5 The parameters for ‘SSAE+Softmax’ classifier model

Microstructure Data template Template size r Unite number of each layer

Input layer Hidden layer 1 Hidden layer 2

I 1, full 7 voxels 1687 220 80
I 1, partial 7 voxels 315 100 50
II 1, partial 11 voxels 759 160 70
II 8, partial 10 voxels 1320 220 100
III 1, partial 13 voxels 1053 200 85
III 8, partial 12 voxels 1872 300 120
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Reconstruction results

As shown in Figure 4.22, the three columns of images are the representative reconstructions
for the three original microstructures in Figure 4.21, respectively. These reconstructed sam-
ples have the same sizes as the corresponding training images, and they are reconstructed
by using different data templates in order to study the influence of data template on mi-
crostructure reconstruction. Visual comparisons between the original microstructures and
reconstructed samples imply that the morphological features of the original microstructures,
e.g. stochasticity, anisotropy and connectivity, can be well preserved by the reconstructed
samples. To evaluate the statistical equivalence between the original microstructure and
corresponding reconstructed samples, as well as to quantify the variation of reconstructed
samples, morphological descriptors are compared and the results are shown in Figures 4.23,
4.24 and 4.25. The red intervals in Figures 4.23, 4.24 and 4.25 are S2(d), C2(d) and L(d)
computed from the reconstructed microstructure samples. The black solid curves are the
descriptors extracted from original microstructures, and they are all located inside the red
intervals. The L2 norm error between the averages of morphological descriptors extracted
from reconstructed samples and that of the original microstructure are usually less than 5.00%
(as listed in Table 4.6), which confirms statistical equivalence is well preserved.

Two data templates with full and partial neighborhoods are used to reconstruct samples
for the first microstructure, whose morphological features are relatively simple and in small
size. Although the reconstructed sample by using these two data templates are visually
similar, the data template covering full neighborhood generates samples with smaller errors
and less variation, which can be observed from Figures 4.23, 4.24 and 4.25. The data
template covering partial neighborhoods can also produce samples with acceptable error and
variation, and it significantly reduces the memory requirement and time cost of microstructure
characterization and reconstruction. As to the second and third microstructures, they have
long-distance morphologies, so the sizes of data templates need to be large enough to capture
the main morphological features. The data templates covering partial neighborhoods are
adopted to reconstruct samples for them, because these data templates require less memory
to operate. No significant difference is observed between the reconstructed samples using
partial data templates with 1 and 8 central voxel(s). The reconstructed samples are all visually
similar, and the statistical evaluations show similar accuracy level, as shown in Figures 4.23,
4.24, 4.25. According to Table 4.6, the efficiencies of characterization and reconstruction
by using different data templates show great difference. The time cost of microstructure
characterization by using 8-central-voxel template is higher than using 1-central-voxel
template, while the cost comparison for microstructure reconstruction is opposite. The trained
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(a) (b) (c)

(d) (e) (f)

Fig. 4.22 Microstructure reconstruction results by using different data templates: (a) 1 central
voxel with full neighborhoods, (b) 1 central voxel with partial neighborhoods, (c) 1 central
voxel with partial neighborhoods, (d) 1 central voxel with partial neighborhoods, (e) 8 central
voxel with partial neighborhoods, and (f) 8 central voxels with partial neighborhoods

‘SSAE+Softmax’ classifier model can be stored for reuse, so microstructure reconstruction
by using 8-central-voxel template is time-saving in the long run.

Table 4.6 Average reconstruction errors of volume fraction (φ ), TPCF (S2(d)), TPCCF
(C2(d)), and LPF (L(d)), as well as the average computational costs of microstructure
characterization and reconstruction

Microstructure (Data template) |∆φ | |∆S2(d)| |∆C2(r)| |∆L(d)| Average CPU time (s)

Characterization Reconstruction

I (1, full) 2.25% 2.02% 1.85% 1.21% 10142.2 8029.4
I (1, partial) 2.83% 2.89% 2.49% 2.31% 3669.0 7783.9
II (1, partial) 4.35% 4.77% 4.77% 4.59% 4202.7 3038.4
II (8, partial) 4.07% 4.07% 4.06% 3.88% 6329.4 819.8
III (1, partial) 4.65% 4.58% 4.58% 4.68% 5068.8 8077.4
III (8, partial) 4.88% 4.45% 4.46% 4.23% 12142.5 1809.4
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Fig. 4.23 Comparison of TPCF S2(d) between the original and reconstructed microstructures

Fig. 4.24 Comparison of TPCCF C2(d) between the original and reconstructed microstruc-
tures

4.5.2 Multi-level approach

The single-level approach captures the morphological features of microstructures by using
data templates of a sufficiently large size. However, due to limitations in computer memory
and computing power, it may not be adequate to capture the long-distance connectivity of
complicated pore network within such porous microstructure as sandstone. In this section, we
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Fig. 4.25 Comparison of LPF L(d) between the original and reconstructed microstructures

solve this problem by using a multi-level image pyramid, where the large-scale morphological
features can be represented more compactly by using a data template with a smaller size
at the lower image pyramid level. The multi-level approach is particularly developed to
characterize and reconstruct porous microstructures with long-distance connectivity.

The three-level approach is taken as an example to explain the procedures to characterize
and reconstruct 3D microstructures in a multi-level manner. First, a 3D Gaussian pyramid
[65] is built in three levels for the original microstructure. The three-level image pyramid
plays as the training images for microstructure characterization and reconstruction at different
levels, which can be denoted as Xhigh, Xmiddle, and Xlow, respectively. Then, for the first level,
Xlow is used as the training image, and an ‘SSAE+Softmax’ classifier model Mlow is trained
to learn the morphological features of Xlow by using a selected data template. Based on the
fitted ‘SSAE+Softmax’ classifier model Mlow, a microstructure sample Ylow can be generated
at the lowest level. Basically, the microstructure characterization and reconstruction at the
first level is the same as the single-level approach. Next, for the second level, Xmiddle and
Xlow are used together to serve as the training images. The only modification is that each set
of neighboring voxels N not only contains the neighboring voxels in current level but also
covers the neighboring voxels and central voxel(s) in the lower level, in order to maintain
the morphological consistency between Xmiddle and Xlow. The second ‘SSAE+Softmax’
classifier model Mmiddle is trained by using the collected training data, based on which
a microstructure sample Ymiddle can be produced conditional to the reconstructed sample
Ylow at the lower level. Finally, as to the third level, the procedures are the same as that of
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the second level, where an ‘SSAE+Softmax’ classifier model Mhigh at the highest level is
trained based on Xhigh and Xmiddle, after which the final microstructure sample Yhigh can be
reconstructed conditional to Ymiddle.

In summary, the multi-level approach characterizes and reconstructs microstructures
in a hierarchical way, where the low-frequency (long-distance) morphological features are
captured at a lower level, conditional to which the high-frequency details are added at
the higher levels. The same procedures can also be used to characterize and reconstruct
2D microstructures with long-distance morphologies, as discussed in Section 4.4.2. The
algorithmic workflow of the multi-level approach is summarized in Algorithm 2, and a
schematic illustration is provided in Figure 4.26.

Algorithm 2: Stochastic characterization and reconstruction of 3D heterogeneous
microstructures using the three-level approach

Microstructure Characterization:
Data: The Gaussian pyramid with three levels playing as the training images Xhigh,

Xmiddle, and Xlow;
Data: The selected data templates DThigh, DTmiddle, and DTlow for different levels.
Collect the data events (Clow,Nlow) from the training image Xlow by using the data
template DTlow , and then train the ‘SSAE+Softmax’ classifier models Mlow;

Collect the data events (Cmiddle,Nmiddle +Nlow +Clow) from the training image
Xmiddle and Xlow by using the data templates DTmiddle and DTlow, and then train the
‘SSAE+Softmax’ classifier model Mmiddle;

Collect the data events (Chigh,Nhigh +Nmiddle +Cmiddle) from the training image
Xhigh and Xmiddle by using the data templates DThigh and DTmiddle, and then train
the ‘SSAE+Softmax’ classifier model Mhigh;

Result: The trained ‘SSAE+Softmax’ classifier models Mhigh, Mmiddle and Mlow.

Microstructure Reconstruction:
Data: The trained ‘SSAE+Softmax’ classifier model Mhigh, Mmiddle and Mlow;
Data: The selected data templates DThigh, DTmiddle, and DTlow for different levels.
Reconstruct the first-level microstructure Ylow based on the trained ‘SSAE+Softmax’
classifier model Mlow;

Conditional to Ylow, reconstruct the second-level microstructure Ymiddle based on the
trained ‘SSAE+Softmax’ classifier model Mmiddle;

Conditional to Ymiddle, reconstruct the third-level microstructure Yhigh based on the
trained ‘SSAE+Softmax’ classifier model Mhigh;

Result: A statistically equivalent reconstructed microstructure sample Yhigh.
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Fig. 4.26 Schematic diagram of microstructure characterization and reconstruction using the
three-level approach

Original microstructures

Fontainebleau sandstone is chosen to test the performance of the proposed multi-level
approach to characterize and reconstruct porous microstructures, and its reconstruction results
are also compared with that of Bostanabad’s method [52, 53]. Fontainebleau sandstone [341]
is an isotropic porous medium, which is often used as the reference standard for validating
models of porous media due to its special properties. It consists of monocrystalline quartz
grains with an average size of about 200 µm and it does not contain clay, inside which only
inter-granular porosity exists. A group of 3D digital microstructures (resolution: 5.7µm)
of three Fontainebleau sandstone samples are used, whose porosities are 15.6%, 20.9%,
and 24.5%, respectively [34]. The digital microstructures are shown in Figure 4.27, where
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the white region denotes the pore space and the black region denotes the solid matrix.
These digital microstructures are used as training images for stochastic characterization and
reconstruction.

(a) φ =15.6% (b) φ =20.9% (c) φ =24.5%

Fig. 4.27 The 3D training images (320×320×320) of Fontainebleau sandstone microstruc-
tures with different porosities φ

The three-level approach is used to characterize and reconstruct the microstructures of
Fontainebleau sandstones, so as to capture the long-distance connectivity as well as the
geometrical complexity of the pore networks. For the first level, the data template DTlow

covering 1 central voxel and partial neighboring voxels is selected, and the radius of DTlow

is 7 voxels which can be measured from the TPCFs S2(d) of the training images Xlow. As to
the second level, the training images Xmiddle become finner than Xlow, and the data template
DTmiddle covering 8 central voxels and partial neighboring voxels is chosen, because 8 voxels
in the 3D image of current level covers the same domain of 1 voxel in the 3D image of the
lower level. Limited by the computing capacity, the radius of DTmiddle is also 7 voxels in
this study. For the third level, the data template DThigh covering 8 central voxels and partial
neighboring voxels is used, and the radius of DThigh is set to be 6 voxels. In additional, the
data template with partial neighborhoods is use for Bostanabad’s method, and the size of
data template is determined by correlation length.

Reconstruction results

For each Fontainebleau sandstone sample, a group of 30 microstructure samples are recon-
structed by the proposed multi-level approach and Bostanabad’s method individually, and
representative reconstruction results are shown in Figure 4.28. The Fontainebleau sandstone
sample with the porosity of 24.5% is taken as the example to illustrate the characterization
and reconstruction procedure in Figure 4.26. The Gaussian pyramid with three levels is used
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as the training images, where the training image is half sized from a high level to a lower
level with the main morphology maintained. At the low level, the long-distance morphology
is captured compactly by using a data template of a relatively small size. Conditional to
the reconstruction result at the low level, morphological details are added to the reconstruc-
tion at the middle level, which makes the reconstruction result much closer to the original
microstructure, especially in terms of the local connectivity between isolated pores. After
adding more high-frequency morphology features at the highest level, the final reconstruc-
tion result becomes visually indistinguishable compared to the original microstructure. By
contrast, the reconstructed samples from Bostanabad’s method have smaller pores and less
pore connectivity, as shown in Figure 4.28.

(a) φ =15.6% (b) φ =20.9% (c) φ =24.5%

(d) φ =15.6% (e) φ =20.9% (f) φ =24.5%

Fig. 4.28 The representative reconstruction results (320×320×320) for Fontainebleau sand-
stone samples by using different methods: the proposed multi-level approach (a)∼(c) and
Bostanabad’s method (d)∼(f)

Statistical equivalence between the original and reconstructed microstructures is accessed
by TPCF, as shown in Figure 4.29. Both the proposed multi-level approach and Bostanabad’s
method show good performance to maintain the stochastic features of original microstructures,
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(a) φ =15.6% (b) φ =20.9% (c) φ =24.5%

(d) φ =15.6% (e) φ =20.9% (f) φ =24.5%

Fig. 4.29 Comparison of TPCF S2(d) between the original and reconstructed microstructures
from different methods: the proposed multi-level approach (a)∼(c) and Bostanabad’s method
(d)∼(f)

but the multi-level approach has higher accuracy in reconstructing samples in terms of
TPCF. Pore size distribution (PSD) P(D) [281] is used to evaluate the reconstruction results
from the angle of pore geometry, and it measures the distribution of equivalent diameters
D of pore bodies. In Figure 4.30, the black solid curve is the PSD extracted from the
original microstructure, while the red and blue dashed curves are the average results of
PSDs calculated from 30 reconstructed samples. Bostanabad’s method tends to generate
smaller pores inside the reconstructed samples compared to the pores inside the original
microstructures, and pore geometry information at a large scale is not fully captured. The
proposed multi-level approach is however able to accurately capture the geometry information
of both small and large pores, which is confirmed by the good agreements of PSDs extracted
from the reconstructed and original microstructures. Total fraction of percolating cells
(TFPC) T3(L) [341] measures topology information of pore network, which reflects the
connectivity characteristics of porous media. As shown in Figure 4.31, the average TFPCs
extracted from the 30 samples reconstructed by Bostanabad’s method are just below the
reference TFPCs, especially at long distance, which means the reconstructed samples have
worse pore connectivity compared to the original microstructure. However, the long-distance
connectivity of the pore network is well preserved in the samples reconstructed by the
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proposed multi-level approach, which is confirmed by the good matches of TFPCs between
the original and reconstructed microstructures. In general, the proposed multi-level approach
is very powerful to capture the morphological features of porous microstructures with long-
distance connectivity.

(a) φ =15.6% (b) φ =20.9% (c) φ =24.5%

Fig. 4.30 Comparison of PSD P(D) between the original and reconstructed microstructures

(a) φ =15.6% (b) φ =20.9% (c) φ =24.5%

Fig. 4.31 Comparison of TFPC T3(L) between the original and reconstructed microstructures

Transport properties

In this section, transport properties, including intrinsic permeability and diffusional tortuosity
factor, are compared between the original and reconstructed microstructures to assess the
reconstruction quality. Both intrinsic permeability and diffusional tortuosity factor are
directly related to geometrical attributes of the porous microstructure, such as porosity,
specific surface, and pore/throat size distribution [34, 96]. Lattice Boltzmann Method
(LBM) [252, 142] and Finite Difference Method (FDM) [269] are adopted to evaluate
the permeability and tortuosity factor through open-source solvers: Palabos [114] and
TauFactor [96], respectively. These two open-source solvers are widely used by the research
community of porous media, where pore-scale simulations of fluid flow and molecular
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diffusion can be directly performed on the digital microstructures by using the voxels as the
mesh elements, and they have good flexibility to work with complex geometries.

The LBM is used to simulate a single-phase fluid flow with low Reynolds number
(Re ≪ 1) passing through a porous medium under a constant pressure gradient. When
the fluid flow reaches a steady state, it can be described by Darcy’s law, and the intrinsic
permeability κ of the porous medium is quantified by the following equation:

κ =− µ

∇p
⟨u⟩ (4.21)

where ∇p is the pressure gradient along the direction of fluid flow, µ is the dynamic viscosity
of the fluid, and ⟨u⟩ denotes the average fluid velocity across the simulation domain.

The FDM is adopted to simulate the steady diffusive flow through a porous medium
under a constant concentration gradient. Compared to the free diffusion without geometry
constraint, the diffusive transport through the porous medium is remarkably decreased
because of the convolutions of flow paths inside the porous medium. The steady-state
diffusive flow is described by the Fick’s first law, and the decrease of diffusive transport in a
porous medium is quantified by tortuosity factor τ [163]:

J =−De∇C (4.22)

De = D
φ

τ
(4.23)

where J denotes the diffusion flux, De is the effective diffusivity, ∇C is the concentration
gradient, D is the intrinsic diffusivity of the conductive phase (gas or liquid) filling the pores,
and φ is porosity.

Performing LBM simulations on both the original and reconstructed microstructures
of Fontainebleau sandstones, we obtain the velocity fields of fluid flow at steady states, as
shown in Figure 4.32. Driven by the same pressure gradient, the flow velocity magnitude
range inside the microstructure reconstructed from the multi-level approach is close to that
inside the original microstructure. As to the microstructure reconstructed from Bostanabad’s
method, it has smaller velocity magnitude and fewer flow streamlines. The permeability
results evaluated from LBM simulations are recorded in Figure 4.34a. It can be observed
that the permeabilities of the samples reconstructed from the multi-level approach fluctuate
around the reference values (red stars). The average permeability value of each group of 30
reconstructed samples is close to the corresponding reference permeability, with all errors
less than 5.00%. The presence of permeability variation in reconstructed samples is expected,
because these reconstructed samples are generated from probability sampling and they
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(a) (b)

(c)

Fig. 4.32 The fluid velocity fields at steady state obtained from LBM simulations: (a)
Original microstructure (φ = 24.5%); (b) The representative microstructure (φ = 24.5%)
reconstructed from the multi-level approach; (c) The representative microstructure (φ =
24.5%) reconstructed from Bostanabad’s method

statistically represent the heterogeneous nature of the concerned microstructures. However,
Bostanabad’s method fails to preserve the intrinsic permeabilities of original microstructures,
and the reconstructed samples generally have significantly smaller permeabilities compared
to the reference values, with errors ranging from -79.70% to -36.10%.

FDM simulations are applied to both the original and reconstructed microstructures, from
which the steady-state flux density fields of diffusion are acquired. As shown in Figure 4.33,
the output flux from the sample reconstructed by the multi-level method is close to that
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(a) (b)

(c)

Fig. 4.33 The flux density fields at steady state obtained from FDM simulations: (a) Original
microstructure (φ = 24.5%); (b) The representative microstructure (φ = 24.5%) recon-
structed from the multi-level approach; (c) The representative microstructure (φ = 24.5%)
reconstructed from Bostanabad’s method

from the original microstructure, under the same concentrate gradient. But the reconstructed
microstructure from Bostanabad’s method outputs much less diffusional flux, compared
to the original one. Tortuosity factors are evaluated from the steady-state flux density
fields (as plotted in Figure 4.34b), which quantify the retarding effects of microstructures
on diffusion. Again, the tortuosity factors of reconstructed samples from the multi-level
method are located around the reference values, with the average errors smaller than 5.00%.
However, Bostanabad’s method is not able to maintain the tortuosity factors of original
microstructures, and the tortuosity factors of its reconstructed sample are 25.80% to 186.70%
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(a) Intrisinc permeability (b) Diffusional tortuosity factor

Fig. 4.34 The comparison of transport properties between the original and reconstructed
microstructures

larger than the reference values. In summary, the proposed multi-level approach shows
excellent performance to statistically preserve transport properties of porous media, and the
reconstructed samples can be used for relevant researches.

4.6 Conclusions

The main contribution of this chapter is to present a versatile method that can accurately
characterize and efficiently reconstruct heterogeneous microstructures using deep neural
network (DNN), and it only requires one (or a few) real microstructure(s) to serve as the
training image(s). The most prominent advantage of this method is its powerful capacity to
capture long-distance morphological features, which overcomes the short-distance limitation
of many MRF-based methods.

Specifically, the digital microstructure image is treated as an extended Markov random
field (MRF), in order to improve microstructure characterization quality and reconstruc-
tion speed. Different data templates are designed to collect data events (local morphology
patterns) from the target image, and these data events are used as training data to fit an
‘SSAE+Softmax’ model for the microstructure characterization purpose. In essence, the
fitted ‘SSAE+Softmax’ model is an implicit representation of the conditional probability
distribution function of pixels/voxels in the target image, from which statistically equivalent
microstructure samples can be generated through a specific reconstruction procedure. More-
over, a multi-level approach is developed for microstructures with long-distance correlations,
where microstructure characterization and reconstruction are carried out in a hierarchical
manner, to avoid the short-distance limitation inherent in the MRF assumption.
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The new method is tested on both 2D and 3D microstructures with distinct morpholo-
gies, and reconstruction qualities are evaluated through comparisons between target and
reconstructed microstructures, in terms of statistical information, geometrical attribute, topo-
logical features and transport properties. The comparisons show excellent consistency, and
the statistical equivalence, morphological similarity and transport properties are all well
preserved by the reconstructed microstructure samples. In general, the proposed method
is applicable to a variety of microstructures, especially suitable for microstructures with
long-distance morphological features. It is also flexible to balance the computation memory
requirement and reconstruction speed by choosing different data templates or switching
between single-level and multi-level approach. It is noted that the proposed method can be
readily extended for heterogeneous media with multiple phases, although only two-phase
microstructures are involved in this work.

It should be noted that large numbers of 3D microstructure samples generated by the
proposed reconstruction method are used to further explore the relationships between mi-
crostructural characteristics and transport properties in Chapter 3 and 7.



Chapter 5

Stochastic reconstruction of 3D pore
microstructures from 2D cross-sectional
images via supervised machine learning

5.1 Introduction

As mentioned in Chapter 1, various modern microscopy imaging techniques have been
developed to obtain the 3D or 2D digital images of porous media at different scales. Micro-
CT [388] and FIB-SEM [48] are often used to scan the physical samples of porous media
and construct 3D digital visualizations at the microscopic level. However, high-quality 3D
datasets of pore microstructures are still difficult and expensive to acquire, and 3D datasets
are usually limited to small volume measurement which may bring uncertainty to statistical
significance. In practice, high-fidelity 2D thin-sections are much easier and cheaper to
obtain through SEM or other microscopy facilities, which are often the only supplied graphic
information of porous rocks in engineering. The 3D representations of pore space are of
great necessity to quantitatively characterize the porous media and to perform numerical
simulations of transport processes [336, 48], thereby to establish reliable structure-property
relationships. In this case, 3D microstructures need to be created by preserving the spatial
dependences inferred from the available 2D thin-sections [120]. Stochastic microstructure
reconstruction is an effective way to provide large numbers of samples of arbitrary sizes for
microstructural analyses. The focus of this study is to develop a stochastic microstructure
reconstruction method, where statistically equivalent 3D microstructures can be accurately
and efficiently reconstructed by using the limited information of 2D thin-sections.
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Generally, stochastic optimization-based method [495] and Gaussian random field trans-
formation [363, 135] are the most popular stochastic reconstruction methods for heteroge-
neous media, and other methods such as Markov Chain Monte Carlo (MCMC) simulation
[480], multiple-point statistics method [336], patch-based method [430], process-based
method [341] and texture synthesis method [285] are also used frequently.

For the reconstruction of porous media, the connectivity and geometry of pore space must
be accurately preserved, as well as the flow and transport properties. However, the stochastic
optimization-based method and Gaussian random field-based method often fail to reproduce
samples by maintaining the long-distance characteristics, because these methods only use
the low-order statistical information that is inadequate to fully capture the microstructural
complexity of porous media. Effective reconstruction methods allow accurate and efficient
generation of realistic microstructures, and subsequent analyses can be performed on the
reconstructed samples to predict macroscopic properties. Due to the above issues, various
techniques have been developed into relatively new algorithms aiming to characterize and
reconstruct the microstructures of heterogeneous porous media, among which machine
learning has been proved to be a promising tool to solve these problems.

Recently, Bostanabad et al. (2016) [52, 53] proposed a novel method to statistically
reconstruct 2D and 3D microstructures using supervised machine learning. This method fol-
lows a similar reconstruction concept as texture synthesis, but it adopts a supervised learning
algorithm to determine the central pixel value from the phase values of its neighboring pixels.
Because of the involvement of supervised learning, the method performs more efficiently and
flexibly than conventional texture synthesis, and the stochastic signature and microstructural
complexity of heterogeneous media can also be well captured by it.

Currently, Bostanabad’s method [52, 53] can only reconstruct 2D microstructures from
2D reference samples, or generate 3D microstructures from 3D reference samples. Inspired
by this method, a new multiple-voxel interaction scheme is further developed to reconstruct
3D heterogeneous pore microstructures from 2D thin-section images. It should be noted that
this study is by no means a simple extension of Bostanabad’s method. Due to information
asymmetry between 2D and 3D microstructures, the supervised learning models trained
by 2D thin section images cannot be directly used to generate 3D microstructures through
a mapping mode. Therefore, the dimensional extension of 2D morphological information
needs to be implemented in a proper way to generate 3D microstructures. Our strategy for
the dimensional extension is as follow: (1) For isotropic reconstruction cases, 2D multiple-
points statistics on one plane, which is captured by the fitted supervised machine learning
models, are rotated 90◦ around each principle axis; (2) For anisotropic reconstruction cases,
supervised machine learning models are trained based on 2D images on all three principal
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planes to capture the anisotropic features. The probabilities of the voxel phase conditional
to its neighboring voxels on each 2D plane are combined to provide an approximation of
the conditional probability of the voxel phase in 3D space through an interacting scheme.
Based on this conditional probability, statistically equivalent 3D microstructure samples can
be reconstructed through sequential probability sampling.

5.2 Statistical microstructure characterization

As discussed in Chapter 4, the underlying full joint probability distribution function (PDF)
p(X) is an ideal characterization of the pore microstructure X. Due to the extremely high
dimension of p(X), the Markov random filed (MRF) [469] assumption is adopted to reduce
the computing complexity of p(X), thereby to simplify the microstructure characterization
issue. With the locality and stationarity assumptions of MRF, the core of microstructure
characterization is to learn the relationship between a pixel and its neighboring pixels, aiming
to capture local morphology patterns. The conditional probability distribution function
(CPDF) p(Xi j|Ni j) is used to take on the role of statistical microstructure characterization,
where Xi j denotes a pixel in a image, and Ni j denotes the neighboring pixels surrounding it.

5.2.1 Data event collection

The L-shaped data template that contains 1 central pixel and its neighbors is adopted to
collect data events from the 2D digital microstructure (also called training image), as shown
in Figure 5.1. The process of data collection is illustrated in Figure 5.2. As described in
Chapter 4, the CPDF p(Ci j|Ni j) associated with the data template can be estimated from the
occurrence frequencies of data events collected from the training image:

p(Xi j,Ni j) =
O(Xi j,Ni j)

∑O(Xi j,Ni j)
=

O(Xi j,Ni j)

Oall
(5.1)

p(Ni j) =
O(Ni j)

∑O(Ni j)
=

O(Ni j)

Oall
(5.2)

p(Xi j|Ni j) =
p(Xi j,Ni j)

p(Ni j)
=

O(Xi j,Ni j)

O(Ni j)
(5.3)

where O(Xi j,Ni j) and O(Ni j) are the occurrence numbers of data event (Xi j,Ni j) and (Ni j)

respectively, and Oall is the total number of all data events collected from the training image.
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Fig. 5.1 Data template with neighborhood radius r=2 pixels

5.2.2 Implicit modeling of CPDF via supervised machine learning

Explicit construction of CPDF p(Xi j|Ni j) should be avoided due to its high computational
expense [469], especially for highly complicated microstructures, and the explicit probability
sampling may also make the subsequent microstructure reconstruction procedure more com-
plex. In this study, the CPDF p(Xi j|Ni j) is estimated by using the collected data event to fit a
supervised learning model, and the fitted model can be served as an implicit representation
of p(Xi j|Ni j) to reconstruct new statistically equivalent microstructure samples.

As the phase value of each pixel can only be 1 (pore) or 0 (solid) for the binary represen-
tation of a pore microstructure, so p(Xi j|Ni j) can be considered as a class probability where
Xi j is the classification category and Ni j is the classification features. Data events (Xi j,Ni j)

are paired observations, which are perfect training data to train a supervised machine learning
model for classification [324]. Taking the collected data events (Xi j,Ni j) as the training data,
a classifier can be built through minimizing the probability of misclassification for any input
features Ni j. The class probability stored in the fitted model can be an accurate estimation of
CPDF p(Xi j|Ni j).

Commonly-used supervised machine learning algorithms [249], such as decision tree,
artificial neural network, Bayesian network and support vector machine, are able to fulfill
this classification purpose. Among them, the decision tree is found particularly suitable
to capture the spatial dependencies of pore microstructure via implicitly modeling CPDF
p(Xi j|Ni j), based on which microstructure samples can quickly be reconstructed due to its
simplicity.

A decision tree is a hierarchical structure consisting of nodes and directed edges, as
shown in Figure 5.2e, where the root node is located at the top of the tree model, leaf nodes
are located at the bottom, and internal nodes are between the root and leaves. Each non-
leaf node contains attribute test conditions to separate input feature data that have different
characteristics. Each leaf node is assigned a class label after computing all attributes, and
the paths from the root to leaves represent the classification rules. Essentially, the decision
tree recursively partitions the variable space into regions, and each region corresponding to
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Fig. 5.2 Illustration of data event collection and decision tree training: (a) The training image
X of a porous medium; (b) A data template with r = 2; (c) Partial enlarged detail of training
image with the data template scanning over it; (d) Two examples of data events (Xi j,Ni j); (e)
Training of decision tree model

one leaf node, which is defined by the split sequences from the root to leaf. In this study, Xi j

and Ni j play the roles of label and feature vector respectively to fit the decision tree model.
It should be noted that the format of Ni j needs to be rearranged to an array for the model
training, as shown in Figure 5.2d and e.

After the decision tree model is properly trained based on the train data, the model
is able to predict the response for a new observation by bringing it to traverse from the
root node to the correct leaf node. Each leaf node stores a predicted class probability
associated with the response variable. This class probability is estimated as the ratio between
the number of training observations with response value belonging to that class and the
number of training observations with predictor values falling into that leaf node, which is
equivalent to the conditional probability in Eq. (5.3). In our case, Xi j and Ni j of the training
observations (Xi j,Ni j) corresponding to pixel location (i, j) are the response variable and
predictor variables respectively. Therefore, the fitted decision tree model can be considered
as an implicit representation of CPDF p(Xi j|Ni j) corresponding to the training image X.

Decision tree algorithm, as well as other supervised machine learning algorithms, contain
tuning parameters that can be adjusted to enhance its predictive performance on new obser-
vations. Cross-validation, as a widely-used nonparametric method, is adopted to optimize
the tuning parameters for the decision tree model. Commonly, the decision tree model is
firstly over-fitted to ensure the p(Xi j|Ni j) of the training image X is fully preserved, and
cross-validation is then applied to prune the over-fitted tree model and eliminate the redun-
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dant noise, aiming to achieve an optimal model with the best approximate of p(Xi j|Ni j). As
to the basic theory of decision tree, one can refer to relevant literature [58, 249].

5.3 Stochastic microstructure reconstruction

After implicitly modeling of the CPDF p(Xi j|Ni j) of the 2D target image via decision tree,
the next key issue is how to generate (reconstruct) statistically equivalent 3D microstructures
based on this characterization. As discussed in Section 5.1, Bostanabad’s method has
been well developed to reconstruct 2D (3D) microstructures from 2D (3D) training images
[52, 53], and its reconstruction procedure can be interpreted as stochastic recombination of
local morphology patterns captured by the pretrained decision tree model, where only the size
expansion occurs during the microstructure reconstruction. While for the 3D microstructure
reconstruction from 2D training images, both size expansion and dimensional extension of
local morphology patterns are involved in the reconstruction process. Here, an interacting
scheme is developed to reconstruct 3D microstructures from 2D thin-section images.

5.3.1 Basic idea of morphology integration

Generally, a 2D thin-section image cannot completely represent the corresponding 3D
microstructure that contains a stack of 2D images, but it can be considered as a realization
from a probability sampling of the morphological information of the 3D microstructure in
2D space [480]. If the 3D microstructure is stationary, it is reasonable to use a single 2D
thin-section image of proper size as an effective representative for all layers in the same
direction [430]. Therefore, it is possible and feasible to reconstruct 3D microstructures from
2D thin-sections.

Fig. 5.3 A 3D data template involving 2D data templates on three perpendicular planes (r=3)
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The MRF assumption is still applicable for 3D microstructures, which means the phase
value of a central voxel Yi jk at any site of the 3D image only depends on its neighboring voxels
Ni jk within a large enough space. Here, we further simplify the MRF assumption, where
the value of a central voxel only depends on its neighboring voxels on three perpendicular
planes: xy-plane, yz-plane and zx-plane within a sufficiently long range. A 3D data template
is thus created by combining three 2D data templates, as shown in Figure 5.3.

Data events are collected by using the 2D data template to scan 2D thin-section image(s),
and then they are used to fit the decision tree model(s). For the 3D isotropic reconstruction,
the statistics of local morphology pattern on the xy-plane captured by the decision tree model
can be directly transformed to the yz-plane and zx-plane. While for the 3D anisotropic
microstructure, 2D training images in the three perpendicular directions are all required, and
three decision models are trained separately to capture the anisotropic properties. The point
is how to integrate the 2D statistics on three separate planes into the 3D statistics of local
morphology patterns. As illustrated in Figure 5.3, where 2D data templates on three principal
planes are combined to be a 3D data template. And the relationship between the central voxel
Yi jk and its neighboring voxels Ni jk is mathematically expressed as follows:

p(Yi jk|Ni jk) = p(Yi jk|N
(zx)
i jk ,N(xy)

i jk ,N(yz)
i jk )

≈ 1
3
·
[

p(Yi jk|N
(xy)
i jk )+ p(Yi jk|N

(yz)
i jk )+ p(Yi jk|N

(zx)
i jk )

] (5.4)

where N(xy)
i jk , N(yz)

i jk and N(zx)
i jk are the neighboring voxels on xy-plane, yz-plane and zx-plane

respectively.
As discussed in Section 2.3, the properly fitted decision tree model is a good implicit

approximation of CPDF, therefore, p(Yi jk|Ni jk) can be calculated as:

p(Yi jk|Ni jk)≈
1
3
· (p(xy)

i jk + p(yz)
i jk + p(zx)

i jk ) (5.5)

where p(xy)
i jk , p(yz)

i jk and p(zx)
i jk are class probabilities stored in the fitted decision tree models.

For 3D isotropic reconstruction, p(xy)
i jk , p(yz)

i jk and p(zx)
i jk can be extracted from the same decision

tree model. For 3D anisotropic reconstruction, p(xy)
i jk , p(yz)

i jk and p(zx)
i jk should be extracted from

three different decision tree models that are trained by using the data events collected from
xy-plane, yz-plane and zx-plane respectively.
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5.3.2 Microstructure reconstruction procedure

The 3D CPDF p(Yi jk|Ni jk) is estimated through a special interacting scheme, based on
which statistically equivalent 3D microstructure samples can be generated. Suppose there
is a underlying full joint PDF p(Y) of the 3D reconstructed samples Y, and p(Y) can be
expressed in factorial from as follows:

p(Y) = p(Y111)p(Y112|Y111)p(Y113|Y111,Y112) · · · p(Yi jk|Y111,Y112, · · ·Yi j(k−1)) · · ·
= p(Y111)p(Y112|Y(<112))p(Y113|Y(<113)) · · · p(Yi jk|Y(<i jk)) · · ·

(5.6)

where Y(<i jk) represents the voxel sequence ahead of the voxel Yi jk.
If all CPDFs p(Yi jk|Y(<i jk)) are known to us, it is feasible to sequentially generate

voxels by probability sampling from the full joint PDF p(Y), there by to reconstruct 3D
microstructure samples. To be specific, voxel Y111 is generated from p(Y111|Y(<111)) firstly,
with random initialization of Y(<111), and then voxel Y112 is generated from p(Y112|Y(<112)),
conditional to Y111. The remaining voxels can all be generated by using same procedure.
When the voxel sequence is long enough, the effect of initialization can be ignored.

As shown in Figure 5.3, the neighboring voxels Ni jk in the 3D data template are all in
front of the central voxels Yi jk in a raster scan order. With the MRF assumption, the following
relationship is established:

p(Yi jk|Y(<i jk)) = p(Yi jk|Ni jk) (5.7)

Substituting Eq. (5.7) to Eq. (5.6), the full joint PDF p(Y) is rewritten as follows:

p(Y) = p(Y111)p(Y112|N112) · · · p(Yi jk|Ni jk) · · · (5.8)

The CPDF p(Yi jk|Ni jk) can be estimated by using Eq. (5.5), where class probabilities are
extracted from the pretrained decision tree models.

In this method, the 3D microstructure sample is reconstructed layer by layer, and voxels
on each layer are generated one by one in a raster scan order, as illustrated in Figure 5.4.
The phase value of each voxel Yi jk is generated by probability sampling from the CPDF
p(Yi jk|Ni jk) that is estimated through Eq. (5.5). The class probabilities p(xy)

i jk , p(yz)
i jk and p(zx)

i jk

are obtained by inputing the neighboring voxels N(xy)
i jk , N(yz)

i jk and N(zx)
i jk into the fitted decision

tree models M(xy), M(yz), and M(zx) respectively.
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(a) (b)

Fig. 5.4 Schematic illustration of a 3D microstructure reconstruction: (a) reconstruction of
the first layer and (b) reconstruction of the third layer

It should be noted that the number of voxels in N(yz)
i jk and N(zx)

i jk are less than that of N(xy)
i jk

for the reconstruction of the first few layers. For example, the number of voxels in N(yz)
i j1 and

N(zx)
i j1 are 0 for the reconstruction of 1st layer, which means only the N(xy)

i j1 with neighboring

radius r is required to reconstruct the 1st layer. The neighboring radii of N(yz)
i jk and N(zx)

i jk
gradually increase as more layers are generated. As shown in Figure 5.5, the neighboring
radii of N(xy)

i j3 N(yz)
i j3 and N(zx)

i j3 are equal to 3, 2 and 2 voxels respectively, for the reconstruction
of the 3rd layer.

(a) (b) (c)

Fig. 5.5 Neighboring voxels on (a) xy-plane with rxy = 3 voxels, (b) on yz-plane with ryz = 2
voxels and (c) zx-plane with rzx = 2 voxels

During the reconstruction process of the first r layers, multiple decision tree models are
required because of the variation of neighboring voxel numbers on yz-plane and zx-plane.
After that, the neighboring radii of N(xy)

i jk N(yz)
i jk and N(zx)

i jk are fixed to be a specific value r.
More details about boundary condition and determination of neighboring radius can be found
in Chapter 4. The following pseudocode summarizes the procedure to reconstruct new 3D
microstructure samples from 2D thin-section images, as described in Algorithm 3.
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Algorithm 3: Stochastic reconstruction of 3D microstructures from 2D cross-
sectional image(s) using supervised machine learning

Data: The radius r of neighboring voxel (pixel) area.
Data: The pretrained supervised learning models M.
Data: A 3D lattice grid with size l ×w×h.
Initialization: Assign binary white noise to the 3D lattice grid as the initial state Y0;
while k ≤ r do

Select the fitted supervised machine learning models M(xy)
(r) , M(yz)

(k−1), and M(zx)
(k−1);

Reconstruct the kth layer Lk of Y0, based on M(xy)
(r) , M(yz)

(k−1), and M(zx)
(k−1);

while r+1 ≤ i ≤ l and r+1 ≤ j ≤ w− r do
Extract the neighboring voxels Ni jk from Y0, including N(xy)

i jk , N(yz)
i jk and N(zx)

i jk ;

Input N(xy)
i jk , N(yz)

i jk and N(zx)
i jk to the M(xy)

(r) , M(yz)
(k−1), and M(zx)

(k−1) respectively, to

obtain class probability p(xy)
i jk , p(yz)

i jk and p(zx)
i jk ;

Compute p(Yi jk|Ni jk) according to Eq. (5.5);
Generate the phase value of voxel Yi jk by probability sampling from

p(Yi jk|Ni jk), and update the corresponding voxel in Y0.
end

end
while r+1 ≤ k ≤ h do

Select the fitted supervised machine learning models M(xy)
(r) , M(yz)

(r) , and M(zx)
(r) ;

Reconstruct the kth layer Lk of Y0, based on M(xy)
(r) , M(yz)

(r) , and M(zx)
(r) ;

while r+1 ≤ i ≤ l and r+1 ≤ j ≤ w− r do
Extract the neighboring voxels Ni jk from Y0, including N(xy)

i jk , N(yz)
i jk and N(zx)

i jk ;

Input N(xy)
i jk , N(yz)

i jk and N(zx)
i jk to the M(xy)

(r) , M(yz)
(r) , and M(zx)

(r) respectively, to

obtain class probability p(xy)
i jk , p(yz)

i jk and p(zx)
i jk ;

Compute p(Yi jk|Ni jk) according to Eq. (5.5);
Generate the phase value of voxel Yi jk by probability sampling from

p(Yi jk|Ni jk), and update the corresponding voxel in Y0.
end

end
Reture: A statistically equivalent 3D reconstructed microstructure sample Y

5.3.3 Noise reduction and image smoothing

As discussed above, 2D thin-section images cannot completely represent corresponding 3D
microstructures, so the decision tree model fitted by 2D data cannot fully capture the 3D
morphological information. Due to this incompleteness, the reconstructed 3D microstructures
are inevitable mingled with noise [336], as shown in Figure 5.6a.
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To improve the microstructure reconstruction quality, image noise-reduction processing
can be carried out. Besides, non-percolating solid and pore components may exist in the raw
stochastic realizations of porous microstructures. The non-percolating solid components are
isolated islands suspended inside the pore space, which is impossible in the real porous media.
Therefore, they are directly replaced by pore space, and the effect of this replacement has
been proved to be negligible [277]. Okabe (2004) [334] adopted dilation-erosion processes
to smooth the sold-pore boundaries, and additional operation was carried out to adjust the
porosity of the reconstructed porous microstructure, through which noise is significantly
reduced.

(a) (b)

Fig. 5.6 Noise reduction and image smoothing for 2D layers in the 3D reconstructed mi-
crostructure: (a) before image processing and (b) after image processing

Inspired by previous studies described above, the reconstructed microstructures in this
study are processed through the following procedures:

(1) 2D image process after each layer is reconstructed:
i. Remove the small isolated noise;
ii. Apply the opening process (combination of dilation and erosion) to smooth
pore-solid interfaces.

(2) 3D image process after the whole microstructure is reconstructed:
i. Replace the non-percolating solid phase with pore space;
ii. Adjust the pore-solid ratio to preserve the bulk porosity.

5.4 Results and comparison

Here, the proposed reconstruction method based on supervised learning (SL) is applied to two
different random media with isotropic and anisotropic properties. To highlight the superiority
of the proposed method, it is compared with other three commonly used reconstruction
methods, including the simulated annealing (SA) method [495], Gaussian random field-based



180
Stochastic reconstruction of 3D pore microstructures from 2D cross-sectional images via

supervised machine learning

(GRF) method [363, 135], and Markov Chain Monte Carlo (MCMC) method [480], to
reconstruct 3D microstructures from 2D thin-section images. Generally, the effectiveness of
microstructure reconstruction depends on how well the inherent stochasticity of the original
microstructure is preserved. Therefore, a comprehensive comparison is conducted to evaluate
the statistical equivalence between the reconstructed and original microstructures.

5.4.1 Example 1: Isotropic porous medium

Fontainebleau sandstone is chosen as the example of isotropic porous medium, which is
often used as the reference standard for validation, due to its special properties [341, 262].
A 3D micro-CT scanning image of Fontainebleau sandstone discretized at a resolution of
14.65 µm is obtained from Institute for Computation Physics, University Stuttgart, Germany.
A sub-model containing 150× 150× 150 voxels is cut from it, which is used as the 3D
reference model for microstructure reconstruction (as shown in Figure 5.9). Representative
2D slices are selected from the 3D reference image, and they are used as the 2D training
images to fit the decision tree model. Considering the porosity variation of different layers
in the 3D image (the bulk porosity is 14.7%), we select five representative 2D slices with
different porosities as the training images, and their porosities are 12.52%, 13.60%, 14.70%,
15.80%, and 16.89% respectively, as shown in Figure 5.7.

Based on the selected 2D images, 3D microstructure samples are generated from the
SA method, GRF method, MCMC method and the proposed SL method. From each re-
construction method, a group of 75 microstructure samples are reproduced, and statisti-
cal/morphological descriptors are extracted from these samples to access the reconstruction
performance in terms of statistical equivalence and morphological similarity. For the pro-
posed SL method, the size r of data template is 10 pixels/voxels, and it can be determined
from the two-point correlation functions of the 2D slices, as shown in Figure 5.8. For the SA
method, two-point correlation function [495] is selected as the optimization objective during
the microstructure reconstruction process.

Visual comparison

The experimental micro-CT model and the representative microstructure samples recon-
structed from different methods are illustrated in Figure 5.9, and the image size of them
are 150× 150× 150 voxels. Visual inspection implies that the morphology of the 3D re-
constructed samples using different methods are significantly different from each other, and
only the SL sample closely resembles the micro-CT model in terms of pore shape and pore
distribution. For the SA samples, they are reconstructed by preserving the porosity and
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(a) φ = 12.52% (b) φ = 13.60% (c) φ = 14.70%

(d) φ = 15.80% (e) φ = 16.89%

Fig. 5.7 The selected slices with difference porosities φ (the pore space is shown in white,
and solid matrix is shown in black)

Fig. 5.8 Two-point correlation functions of the selected 2D slices

two-point correlation function of the 2D reference images. Visual observation of the SA
model reveals that it contains more isolated small pores compared with the micro-CT model,
and isolated solid components exist inside the pore space, which is impossible in the real
porous rocks. The GRF samples preserve the porosity and autocorrelation function of the
2D slice selected from the micro-CT model, but the pore shapes are more round, which is
distinctly different from the strip shape of pores within the micro-CT model. Visually, the
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MCMC method provides the worst reconstruction result, because it rarely maintains the
morphology of the micro-CT model.

(a) Micro-CT model (b) SL sample (c) SA sample

(d) GRF sample (e) MCMC sample

Fig. 5.9 Visual comparison between the 3D micro-CT model and the representative mi-
crostructure samples reconstructed from different methods

Comparison based on Minkowski functionals

The four boxplots in Figure 5.10 illustrate the comparisons of Minkowski functionals be-
tween the micro-CT model and the 3D reconstructed models. For each type of Minkowski
functionals, the statistics are collected from the four groups of 3D samples reconstructed by
different methods, based on which the corresponding boxplots are drawn.

As can be seen from Figure 5.10a, 3D microstructure samples reconstructed by all the
four methods can well preserve the reference porosity. However, when it comes to the
specific surface area, mean curvature, and total curvature, only the SL samples can accurately
maintain the corresponding reference values (as shown in Figure 5.10b-c), which means
the proposed SL method can capture more morphological information than the other three
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(a) Porosity (b) Specific surface area

(c) Mean curvature (d) Total curvature

Fig. 5.10 Comparisons of Minkowski functionals between the micro-CT model (the reference
values) and the reconstructed microstructure samples

methods. Compared to the SA method and the MCMC method, the GRF-based method
exhibits better performance, because the ranges of specific surface area and mean curvature
extracted from the GRF samples cover the reference values, and the total curvature range
is not far away from its reference value. The SA samples differ greatly from the micro-
CT model in terms of specific surface area, mean curvature and total curvature, but the
performance of the SA method could be improved by involving more descriptors as the
optimization objectives. As to the MCMC method [480], it is filed to capture high-order
morphological information, because it only uses multiple-point statistics within a very short
range to reconstruct microstructure samples.

Comparison based on statistical correlation functions

Three statistical descriptors are extracted from both the 3D micro-CT model and the re-
constructed microstructure samples to check the statical equivalence, including two-point
correlation function (TPCF), two-point cluster correlation function (TPCCF) and lineal path
function (LPF). All the functions are calculated for the pore space. As shown in Figure
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5.11a-c, the dashed curves correspond to the averages of statistical descriptors over 75
reconstructed microstructure samples, and the solid curve is the functions extracted from
the micro-CT model. The dashed curves are compared with the solid ones in terms of the
Euclidean norm, and the relative errors are provided in the brackets of each figure (the same
below).

(a) TPCF (b) TPCCF

(c) LPF

Fig. 5.11 Comparisons of statistical correlation functions between the micro-CT model and
the reconstructed microstructure samples

The proposed SL method possesses the highest level of accuracy in preserving statistical
equivalence. The SA samples can well maintain the information of TPCF and LPF, but
not TPCCF, which means the SA method is failed to completely capture the long-distance
connectivity of the pore network. As to the GRF method and MCMC method, they exhibit
poor performance in capturing the information of TPCCF and LPF, which means they can
only generate microstructure samples by preserving low-order statistics.



5.4 Results and comparison 185

Comparison based on connectivity coefficient and geometric tortuosity

Connectivity coefficient [481] is defined as the proportion of the connected pore volume to
the bulk pore volume, which can be used to represent the connectivity characteristic of porous
media. As can be seen from Figure 5.12a, the red diamond mark denotes the connectivity
coefficient of the micro-CT model, and its value is 0.99, which means almost the entire pore
space is connected and very few isolated pores exist. The boxplots describe the distributions
of connectivity coefficients of the reconstructed microstructure samples, and the average
values of them are all below the reference value, which means the reconstructed samples
contain more isolated pores than the micro-CT model. By comparison, the proposed SL
method shows the best performance in maintaining the connectivity coefficient.

(a) Connectivity coefficient (b) Geometric tortuosity

Fig. 5.12 Comparisons of (a) connectivity coefficient and (b) geometric tortuosity extracted
from the 3D micro-CT model and the reconstructed microstructure samples

Geometrical tortuosity [90, 153] is defined as the ratio of the effective length of flow
paths to the straight-line distance in the macroscopic flow direction, to describe the degree of
streamlines deviating from the straight line, whose value is usually greater than 1. As shown
in Figure 5.12b, the average tortuosity values of the SL samples, SA samples, GRF samples
and MCMC samples are 1.725, 1.98 2.325 and 2.289 respectively, and they are all lager than
the reference value (1.631) from the micro-CT model, but the SL samples are still the closest
to the reference model in terms of the geometrical tortuosity.

Comparison based on local porosity characterization

Figure 5.13 demonstrates the comparisons between the micro-CT model and the reconstructed
microstructure samples in terms of local porosity distribution (LPD) µ(φ ,L) on two different
scales. The dashed curves are average results of LPDs over 75 reconstructed samples, and
the solid curves correspond to the LPDs extracted from the micro-CT model. By comparison,
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the SL samples are the best match to the reference model in terms of LPDs on two different
scales, and the SA samples show small differences from the reference model. As to the GRF
samples and the MCMC samples, the LPD curves of them significantly deviate from the
reference ones.

(a) SL samples (b) SA samples

(c) GRF samples (d) MCMC samples

Fig. 5.13 Comparisons of LPDs extracted from the 3D micro-CT model and the reconstructed
microstructure samples on two different scales (L=16 and L=32 voxels)

In Figure 5.14, local percolation probabilities (LPP) λ3(φ ,L) are extracted from both the
micro-CT model and the reconstructed microstructure samples on two different scales. Local
percolation probability represents the fluctuations of pore connectivity, but none of the four
reconstruction methods is able to completely capture this connectivity characteristics. The
primary reason is that 2D thin-sections limitedly reflect the topological information of the 3D
pore network, so the 3D microstructure samples reconstructed from 2D thin-sections cannot
fully preserve the connectivity characteristics. Even so, the proposed SL method and the
MCMC method show comparatively good performance in maintaining pore connectivity.

Figure 5.15 provides the total fractions of percolating cells (TFPC) of both the micro-CT
model and the reconstructed microstructure samples. TFPC directly reflects the connectivity
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(a) SL samples (b) SA samples

(c) GRF samples (d) MCMC samples

Fig. 5.14 Comparisons of LPPs extracted from the 3D micro-CT model and the reconstructed
microstructure samples on two different scales (L=16 and L=32 voxels)

characteristics of porous media, but only the TFPC curves of MCMC samples well match
the reference curves. As to the SL samples, their TFPC curves reasonably agree with the
reference TFPC curve in one direction, but not the TFPC curve in three directions. The SA
samples and GRF samples show a huge discrepancy with the reference model in aspects of
TFPC, which reveals that the connectivity characteristics of them are much worse than that
of the reference model.

5.4.2 Example 2: Anisotropic microstructure

Here, the proposed reconstruction method based on supervised learning (SL) is used to
reconstruct a 3D anisotropic microstructure from 2D thin-sections. The 3D reference model
with 100×100×100 voxels is shown in Figure 5.17a, and representative 2D slices in three
perpendicular planes are selected from the 3D reference model to play as the 2D training
images for 3D reconstruction, as shown in Figure 5.16. Based on the set of 2D training
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(a) Percolation in one principal direction (b) Percolation in three principal directions

Fig. 5.15 Comparisons of TFPCs extracted from the 3D micro-CT model and the recon-
structed microstructure samples

images, the proposed SL method and the SA method, MCMC method are used to reconstruct
3D microstructures (The GRF method is not used here, because it is generally for isotropic
microstructure reconstruction). A group of 50 samples are reconstructed by using each
reconstruction method.

(a) xy-plane (b) yz-plane (c) zx-plane

Fig. 5.16 A set of 2D training images are selected from the 3D reference image in three
perpendicular planes

For the proposed SL method, the data template size is determined from the TPCF of
each 2D training image. According to the TPCF curves in Figure 5.19a-c, the radii of data
template on three perpendicular planes are determined to be r(xy) = 16, r(yz) = 5 and r(zx) = 5
pixels, respectively.
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Visual comparison

As shown in Figure 5.17, 3D visualizations (image size: 100× 100× 100 voxels) of the
reference model and representative reconstructed microstructure samples are provided. Visual
inspection implies that only the SL samples and SA samples can well preserve the morphology
of the reference model, especially the anisotropic feature. The SL samples also closely
resemble the reference model in terms of grain shapes and particle sizes, while the SA
samples contain more isolated grains of small size. It should be noted that the SA samples
are reconstructed by setting the TPCFs in different directions as the multiple optimization
objectives, which makes the reconstruction more accurate but computationally intensive. As
to the MCMC samples, they are failed to preserve the basic morphology of the reference
model.

(a) Reference model (b) SL sample

(c) SA sample (d) MCMC sample

Fig. 5.17 Visual comparison between the 3D reference model and the representative mi-
crostructure samples reconstructed from different methods
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Comparison based on Minkowski functionals

The four boxplots in Figure 5.18 illustrate the comparisons of Minkowski functionals be-
tween the 3D reference model and reconstructed microstructure samples. For each type of
Minkowski functionals, the statistics collected from 50 reconstructed microstructure samples,
based on which the boxplots are drawn. All of the 3D reconstructed models agree well with
the reference model in terms of volume fraction. However, only the SL samples can maintain
the specific surface area of the reference model. As to the mean curvature and total curvature,
all of the reconstructed samples are failed to preserve them.

(a) Volume fraction (b) Specific surface area

(c) Mean curvature (d) Total curvature

Fig. 5.18 Comparisons of Minkowski functionals between the reference model and the
reconstructed microstructure samples

Comparison based on statistical correlation functions

To inspect how well the reconstructed samples preserve the anisotropic feature of the 3D
reference model, we compare the TPCFs in three different directions. Figure 5.19a-c display
the TPCFs in the directions of 45-degree on xy-plane, yz-plane, and zx-plane, respectively.
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(a) TPCF-xy-45◦ (b) TPCF-yz-45◦

(c) TPCF-zx-45◦ (d) TPCCF

(e) LPF

Fig. 5.19 Comparisons of statistical correlation functions between the 3D reference model
and the reconstructed microstructure samples
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(a) SL samples (b) SA samples

(c) MCMC samples

Fig. 5.20 Comparisons of LPDs extracted from the 3D reference model and the reconstructed
microstructure samples on two different scales (L=16 and L=32 voxels)

The TPCF curves extracted from the SL samples and SA samples well match the reference
curves, while the accuracy of SL samples is much higher than that of SA samples. As to
MCMC samples, the relative error of the TPCF in the direction of 45-degree on xy-plane is
up to 88.39%, which means MCMC samples are failed to maintain the anisotropic feature of
the reference model. Besides, TPCCF and LPF are also extracted from the reference model
and reconstructed samples. The SL samples show the best performance in preserving the
TPCCF and LPF of the reference model, and the SA samples can also reasonably preserve
TPCCF and LPF. As to the MCMC samples, they are failed to capture both TPCCF and LPF,
especially in the short distance.

Comparison based on local volume fraction characterization

Figure 5.20 demonstrates the comparisons of local volume fraction distributions (LVFDs)
µ(φ ,L) between the 3D reference model and reconstructed microstructure samples, and the
LVFDs are calculated on two different scales, with the side lengths of measurement cells
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L=16 and L=32 voxels respectively. Apparently, the SL samples show the best performance
in preserving the information of LVFD, but the SA method and MCMC method are failed to
capture LVFD.

In Figure 5.21, the local percolation probabilities (LPPs) λ3(φ ,L) extracted from the 3D
reference model and reconstructed microstructure samples are compared on two different
scales (L = 16 and L = 32 voxels). Since LPP represents the connectivity fluctuation of a
specific material phase, so the connectivity characteristics of SL samples are closest to that
of the reference model. As the SA and MCMC samples, their connectivity characteristics are
significantly different from that of the reference model.

(a) SL samples (b) SA samples

(c) MCMC samples

Fig. 5.21 Comparisons of LPPs extracted from the 3D reference model and the reconstructed
microstructure samples on two different scales (L=16 and L=32 voxels)

Figure 5.22 provides the total fractions of percolating cells (TFPCs) P1(L) extracted from
the 3D reference model and reconstructed microstructure samples. Due to the anisotropic
property of the reference model, the TFPC in z-directions is remarkably different from that
in x-direction and y-direction. It is clear that only the SL samples reasonably preserve the
anisotropic connectivity of the reference model.
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(a) SL samples (b) SA samples

(c) MCMC samples

Fig. 5.22 Comparisons of TFPCs extracted from the 3D reference model and the reconstructed
microstructure samples

5.4.3 Other examples

To demonstrate the powerful capacity of the proposed microstructure reconstruction method,
it is applied to reconstruct various 3D microstructures with distinct morphological features
from corresponding 2D thin-sections, as illustrated in Figure 5.23, 5.24, 5.25, 5.27 and 5.26.
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(a) 2D training image (b) 3D reconstructed sample I (c) 3D reconstructed sample II

Fig. 5.23 Berea sandstone

(a) 2D training image (b) 3D reconstructed sample I (c) 3D reconstructed sample II

Fig. 5.24 Synthetic silica

(a) 2D training image (b) 3D reconstructed sample I (c) 3D reconstructed sample II

Fig. 5.25 A nanocomposite with silica embedded in rubber matrix
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(a) 2D training image (b) 3D reconstructed sample I (c) 3D reconstructed sample II

Fig. 5.26 Sandstone IV

(a) 2D training image (b) 3D reconstructed sample I (c) 3D reconstructed sample II

Fig. 5.27 Sandstone VIII

5.5 Discussion and conclusions

The main contribution of this chapter is to develop a novel method to statistically reconstruct
3D heterogeneous porous microstructures from 2D thin-section images via supervised ma-
chine learning. The method starts by collecting data events from the 2D training images, and
then the collected data events are fed to the supervised learning models to learn the local
morphological patterns of the microstructure. Based on the statistical information stored
in the fitted supervised learning models, 3D microstructures can be constructed through a
specific procedure to integrate morphological information.

Essentially, the fitted supervised machine learning model is an implicit representation of
multiple-points statistics associated with the data template. For isotropic microstructures,
they can be statistically characterized by learning the multiple-points statistics from the
representative 2D planes in one direction. While for anisotropic microstructures, the multiple-
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points statistics of 2D planes in the three principal directions are required to capture the
anisotropy.

The class probabilities stored in the fitted supervised learning model(s) are good approx-
imations of the conditional probabilities of each 2D plane, and 2D statistical information
on three perpendicular planes can be integrated to provide an estimation of the conditional
probability of voxel in 3D space. In this way, the morphological information hidden in the
2D training images is dug out by supervised machine learning and then extended to 3D
spatial morphology through information integration, based on which statistically equivalent
3D microstructures can be generated through probability sampling. The 3D microstructure
is constructed through a layer-by-layer scheme, where voxels on each layer are generated
one by one. The operation of information integration here is to maintain the continuity and
connectivity between adjacent layers.

Table 5.1 Computational cost of microstructure reconstruction using different methods

Reconstruction method
Average CPU time cost(s)

Example 1: Isotropic microstructure
(size: 150×150×150 voxels)

Example 2: Anisotropic microstructure
(size: 100×100×100 voxels)

The SL method
(the proposed method) 3415 1080

The SA method 498841 87940
The GRF method 85 -

The MCMC method 1475 345

The proposed method is compared with three commonly used reconstruction methods, to
reconstruct both 3D isotropic and anisotropic microstructures by using the limited information
from 2D thin-sections, and their performances are assessed in terms of reconstruction
accuracy and efficiency. The four reconstruction methods are performed on an ordinary
computer (Intel Xeon CPU 3.50GHz), and the computational costs are listed in Table 5.1.
Generally, the proposed method can well preserve the spatial dependencies of the reference
microstructure, and to generate more realistic and accurate microstructures with higher
efficiency, compared with the other three classical methods.

However, the 3D reconstructed microstructure samples are not completely consistent
with the 3D reference models, especially in terms of long-range connectivity. To summarize,
the reasons are threefold: Firstly, 2D thin-section images are not the complete representatives
of the corresponding 3D microstructure, based on which the 3D reconstructed sample
cannot fully preserve the morphological information. Proper selection of 2D slices as the
training images can improve the qualities of 3D reconstruction samples. Secondly, with
the MRF assumption, local morphology patterns are collected from the training images
to fit the supervised learning models, so the reconstructed samples may lose some global
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morphological features such as long-range connectivity. Finally, the image post-processing
of reconstructed samples may bring a certain degree of distortion, but currently, it is an
indispensable process for microstructure reconstruction based on incomplete information.
More reasonable and flexible image post-processing techniques can be used to improve
reconstruction results.

Another important advantage of the proposed method is that various open-source machine
learning toolboxes are available, which makes the proposed method easy to be implemented
based on them. Moreover, the microstructure examples involved in this study are with
two phases, but the proposed method can be easily extended to reconstruct multi-phase
microstructures.



Chapter 6

Resolution effect: An error correction
model for permeability of porous media
estimated from lattice Boltzmann
method

6.1 Introduction

Digital rock physics (DRP) studies, in a non-destructive manner, how pore-scale processes
govern macroscopic rock properties, such as transport, elastic, thermal and electrical prop-
erties [11]. DRP uses microscopic imaging techniques such as X-ray micro-computed
tomography (micro-CT) to obtain 3D digital rock images with varying resolutions and sizes.
The 3D representations of complex pore geometry can be obtained by separating the pore
space from mineral matrix phases through the segmentation processing on raw images, and
then physical simulations can be performed on the pore-scale microstructures to estimate
the effective properties of rocks (e.g. permeability, elastic moduli, effective diffusivity,
thermal conductivity and formation resistivity factor). In this study, we focus on intrinsic
permeability, one of the most important transport properties of porous media that measure
the ability of a structure to transmit fluid. The intrinsic permeability of porous media is of
fundamental importance for many geological and geotechnical applications, such as oil and
gas production [154], geothermal energy extraction, contaminant hydrogeology and carbon
geological sequestration.

When core samples are unavailable for experimental measurements, microscopy imaging
and numerical simulation can be performed on cutting samples to determine the permeability
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of a porous rock. Lattice Boltzmann method (LBM) is one of the most widely-used numerical
solvers for pore-scale simulation of fluid flow through porous media [417], because it can be
directly applied to the digital pore-scale microstructures without simplification or meshing
and it has good flexibility to work with complex flow geometries. The LBM is developed
from the microscopic kinetic equation (Boltzmann equation) for gas, where the mathematical
model is expressed as a particle distribution equation, and such macroscopic properties as
density, pressure and velocity can be calculated from the particle distribution function [252].
Compared to laboratory measurements, the LBM has the advantage to directly link the flow
field to the micro-scale geometry of porous media. The method is well-suited for evaluating
single-phase flow properties of porous rocks, and can deliver reliable results for permeability,
dispersion coefficients and effective reaction rates, etc. [48].

Out of several variations, the most popular LBM formulation is arguably the single
relaxation Bhatnagar-Gross-Krook (BGK) collision model [78] with a standard bounce-back
(SBB) scheme to represent the no-slip condition on solid walls [252]. The success of LBM
is, to a great degree, founded on the BGK model to solve the incompressible Navier-Stocks
equations. Although mass and momentum conserving, the single relaxation time LBM (SRT-
LBM) using the SBB scheme has a major drawback that the exact physical position of fluid-
solid boundary depends on the viscosity value due to the associated numerical approximation
[177]. The viscosity-dependent boundary condition becomes more problematic in pore-scale
simulations of fluid flow through porous media, because it makes the predicted macroscopic
properties (e.g. permeability) dependent on the simulation parameter viscosity. In LBM,
the kinematic viscosity ν is controlled by the relaxation time τ through the equation: ν =

c2
s ∆t(τ −0.5). However, there is no common rule to determine the optimal value of τ when

performing SRT-LBM on a specific porous medium. It is generally recommended to choose
a relaxation time around 1.0 as a trade-off between the accuracy, stability and efficiency of
LBM simulation [252]. In addition, a higher resolution grid is often suggested to reduce the
dependency of computed permeability on viscosity.

Accurate pore-scale analysis using LBM requires high-resolution and large-size rep-
resentative volume elements (RVEs), which can take a long time to simulate, even on
high-performance computing platforms [401]. The general resolutions of micro-CT images
used for DRP analysis range from a few microns to dozens of microns, depending on the
rock types and the physical phenomena [48]. Current micro-CT facilities are capable to
provide digital images with more than 2000×2000×2000 voxels at the submicron resolution,
and the LBM solvers have to be massively parallelized to deal with such large models. In
practice, the raw micro-CT images are often rescaled to a lower resolution, in order to reduce
the computational cost of LBM simulation to an acceptable level. The resolution reduction is
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particularly common when using GPU platforms, as a finer RVE model often exceeds the
memory capacity of a single graphics card [220]. Therefore, the choice of image resolution
is usually a compromise between accuracy requirement and computation cost.

The resolution effect on permeability evaluation is well known to the DRP community,
and it occurs not only with LBM simulation but also with other numerical methods. As early
as 2000, Edie et al. [126] studied the effect of image resolution on fluid flow simulation in
porous media. They took a 3D digital model of a Fontainebleau sandstone sample constructed
from micro-CT at a resolution of 7.5 µm, and coarsened it to five different resolution levels
ranging from 15 µm to 45 µm. Lattice gas simulation was performed on these models,
and the permeability results were found to vary by a factor of 5 over the resolution range.
Later, Pan et al. (2001) [346] studied the effect of voxel size on permeability calculation
by performing LBM on random sphere packings, and they found the permeability result
decreased when the image became finer before a threshold level of resolution was reached.
In 2004, Keehm and Mukerji [234] researched the influence of grid resolution on LBM
permeability evaluation, and they found the permeability was consistently overestimated with
the increase of grid space. Many other researchers also reported similar observations that the
permeability evaluation from LBM generally increases as the image resolution reduces (voxel
size increases) [335, 51, 161, 385]. These previous studies only focused on the resolution
effect coming from the variations of pore geometry and pore structure due to resolution
reduction, without considering the influence of relaxation time. This limits the practical
applicability of these studies. As shown in Figure 6.7b, the computed permeability with the
relaxation time of 0.625 decreases as the image resolution reduces, which is opposite to some
of the former observations in the literature.

Recently, Peng et al. (2012) [351] investigated the resolution effect on pore structure
characterization of a Berea sandstone, and they found relatively low-resolution images
(voxel size up to 5.29 µm) can be used to calculate permeability, because small pores do
not influence permeability significantly. However, for micro-CT images with even lower
resolutions, they tended to overestimate the pore size and thereby the permeability [353].
Alyafei et al. (2015) [10] used Pore Network Modeling (PNM) to study the resolution
effect on permeability prediction for sandstones and limestones, but they did not observe a
clear trend in permeability prediction with respect to the voxel size. More recently, Shah
et al. (2016) [401] studied the influence of voxel resolution on petrophysical properties of
sandstones and carbonates by using both LBM and PNM, and they showed that petrophysical
properties are consistent over the resolution range after using a specific numerical coarsening
scheme to rescale images. But Latief et al. (2017) [263] observed that the image resolution
reduction performed by hardware-based and software-based approaches both have significant
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influences on permeability results calculated by LBM. Liu et al. (2018) [284] adopted the
Finite Volume Method (FVM) to estimate the permeabilities from micro-CT images with
different resolutions, and they found the permeability predictions are stable when the image
resolution is higher than a specific threshold resolution. Similarly, Guan et al. (2018) [164]
also used FVM to calculate the permeability of a Bentheimer sandstone, and they found
permeability changes rapidly when the voxel size is larger than a certain value, which implies
an optimal resolution may exist to balance efficiency and accuracy of permeability evaluation.
In addition, Borujeni et al. (2013) [51] found grid coarsening on the Finite Element Method
(FEM) mesh leads to a reduction of computed permeability, and they attributed it to the
tightening of pore space rather than a numerical error.

In summary, the resolution effect on permeability evaluation for porous media is widely
recognized for virtually all numerical methods including LBM, PNM, FVM and FEM, but
they are rarely addressed in a quantitative manner in previous studies, making the resolution
reduction questionable in practical use. In this study, we focus on the resolution effect on
permeability evaluation from the LBM simulation, aiming to establish an error correction
model that can effectively reduce, even eliminate the permeability error caused by image
resolution reduction.

The rest of this chapter is organized as follows. Section 6.2 briefly summarizes the basic
theory of LBM, our implementation of LBM to evaluate permeabilities of porous media, and
the verification of our implementation is also presented in this section. In Section 6.3, we
investigate the resolution effect on permeability calculation by performing LBM on a group
of digital rock samples, and the geometry error and the boundary error are identified as the
primary error sources due to the resolution effect. In Section 6.4, two models are established
to capture the geometry error and the boundary error respectively, which can be used to
compensate for the resolution effect on LBM permeability evaluation. Section 6.5 examines
the performance of the proposed error correction model on different types of porous media.
Finally, conclusions and discussions of future research are summarized in Section 6.6.

6.2 Permeability evaluation using LBM

6.2.1 Basic theory of LBM

LBM [252] models the fluid flow through a time-dependent distribution of fluid particles
propagating on a regular lattice. In DRP research, pore voxels of segmented rock images
serve as the regular lattice for LBM to simulate the fluid flow, and each lattice node is located
in the center of the corresponding pore voxel. The numerical grid of lattice Boltzmann
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simulation is coincident with the voxel grid in this study. The particle distribution function
fi(x, t) represents the probability of finding a fluid particle with the lattice velocity ci in the
location x and at the time t. Beginning with an initial state, fi(x, t) moves from one lattice
node to its neighboring nodes at each time step, and evolves itself locally subject to both
mass and momentum conservation.

In this work, we adopt the conventional LBM scheme with D3Q19 lattice arrangement
(as shown in Figure 6.1) and the Bhatnagar-Gross-Krook (BGK) collision operator [78]. The
evolution of fi(x, t) along the direction of ci from the time t to t +∆t can be expressed as:

fi(x+ ci∆t, t +∆t)− fi(x, t) =−1
τ

[
fi(x, t)− f eq

i (x, t)
]

(6.1)

where τ is the single-relaxation time, f eq
i (x, t) is the equilibrium distribution function, and the

subscript i indicates the direction of lattice velocity around the lattice node. The relaxation
time τ is a function of kinematic lattice viscosity ν of simulated fluid, i.e. ν = c2

s ∆t(τ −0.5),
where cs is the lattice speed of sound and it is assigned with the dimensionless value of√

1/3.

Fig. 6.1 Lattice structure of D3Q19 model with 19 velocity directions per lattice node

The equilibrium distribution function f eq
i (x, t) corresponds to an ideal state where the

particle distributions tend to a specific macroscopic state, in order to recover the macroscopic
Navier-stokes equations. For the D3Q19 lattice arrangement with BGK collision operator,
f eq
i (x, t) is given by the following equation [78]:

f eq
i (x, t) = wiρ

[
1+3(ci ·u)+

9(ci ·u)2

2
− 3(u ·u)

2

]
(6.2)
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where wi is the weight factor of D3Q19 lattice structure, ρ is the fluid density, and u is the
macroscopic fluid velocity. For the D3Q19 lattice model, the weight factors equal to 12

36 , 2
36

and 1
36 for the velocity directions of the central lattice node, face-connected neighbors and

edge-connected neighbors, respectively.
At the end of each time step, the macroscopic properties of fluid flow, including density

ρ and velocity u, can be approximated from fi(x, t) through the following equations, and
these macroscopic properties will be used for the LBM computation at the next time step.

ρ =
n

∑
i=1

fi (6.3)

u =
∑

n
i=1 fici

ρ
(6.4)

where n is the number of lattice directions (n=19 in D3Q19 lattice structure).

6.2.2 Implementation of lattice Boltzmann simulation

To evaluate the intrinsic permeability of a porous medium, we consider a cubic digital rock
sample as shown in Figure 6.2, and use SRT-LBM to simulate a single-phase fluid flow
(incompressible Newtonian fluid) with low Reynolds number (Re ≪ 1) passing through
it. Under a constant pressure difference between the inlet and outlet faces, the fluid is
driven through the pore microstructure. When the fluid flow reaches a steady state, it can be
described by Darcy’s law, and the intrinsic permeability κ of the porous medium is quantified
by the following equation:

κ =− µ

∇p
⟨u⟩ (6.5)

where ∇p is the pressure gradient along the direction of macroscopic fluid flow, µ is the
dynamic viscosity of fluid, and ⟨u⟩ denotes the average fluid velocity across the simulation
domain.

Since the initial condition of fluid flow in LBM is not sensitive for studying the steady-
state flow and the associated long-term behavior [413], we simply set the initial flow velocity
u = 0 and fluid density ρ = 1 throughout the domain in the LBM simulation. Three types of
boundary conditions are adopted in the LBM simulation for fluid flow inside porous media:
the no-slip boundary condition (SBB scheme) on the pore-solid surface, fixed pressure
boundary condition at the inlet and outlet faces, and periodic boundary condition added on
the boundary faces that are parallel to the macroscopic flow direction. The fluid flows in
the porous media only pass through the connected pore space, while the isolated pore space
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Fig. 6.2 LBM evaluation of intrinsic permeability for a porous medium: (a) The 3D digital
image of the porous microstructure; (b) The schematic diagram of fluid flow through the
porous medium; (c) The steady-state fluid velocity field inside the porous medium obtained
from LBM simulation

does not contribute to the permeability. The 18-connectivity criterion is used to identify the
connected pore space, which is consistent with the 19-velocity lattice arrangement (D3Q19).
The LBM simulation runs continuously until the steady state of fluid flow is reached. The
fluid flow is assumed to be stable when the standard deviation of average kinetic energy falls
below 10−6 (the maximum number of iteration steps is 60,000).

6.2.3 Verification of LBM implementation

The intrinsic permeability defined by Darcy’s law is valid for laminar flow with a low
Reynolds number Re. Further, the permeability of porous media is independent of fluid
properties including viscosity, density and pressure gradient. If the Re increases beyond
approximately 1, Darcy’s law starts to fail [29], because the inertial force plays an important
role and it can not be neglected. In this section, we apply our implementation of SRT-LBM
to calculate the permeabilities for two simple structures with known analytical permeability
values. Firstly, the permeability results are checked with the pressure gradient varied over a
wide range, in order to ensure the porous media flow is in the laminar regime. Secondly, the
calculated permeability results are compared with the analytical values to verify our LBM
implementation.

The 3D structures of the face-centered cube (FCC) and body-centered cube (BCC) are
created as shown in Figure 6.3. The porosities of FCC and BCC are 25.95% and 31.98%,
respectively. The permeabilities of FCC and BCC can be analytically determined by solving
the associated Stocks equations [76], and the dimensionless permeability values (κ/D2,
where D is the sphere diameter) are 1.7360×10−4 (for FCC) and 5.0230×10−4 (for BCC).



206
Resolution effect: An error correction model for permeability of porous media estimated

from lattice Boltzmann method

(a) FCC (domain:
√

2D×
√

2D×
√

2D) (b) BCC (domain:2/
√

3D×2/
√

3D×2/
√

3D)

Fig. 6.3 The representations of FCC structure with the sphere diameter D = 340.12 voxels
and BCC structure with the sphere diameter D = 347.28 voxels

(a) Velocity field inside FCC (b) Velocity field inside BCC

Fig. 6.4 The steady-state fluid velocity fields obtained from LBM simulations

Pressure gradients varying over several orders of magnitude are applied along the X
direction of FCC and BCC models. With the relaxation time τ = 1.0, the steady-state fluid
velocity fields obtained from LBM simulations are shown in Figure 6.4. The calculated
permeabilities of FCC and BCC models under different pressure gradients are listed in
Table 6.1. It can be observed that the calculated dimensionless permeability (κ/D2) varies
with the applied pressure gradient, until the pressure gradient is smaller than a specific value.
To examine the cause of permeability fluctuation, the Reynolds number Re of steady-state
flow is calculated for each simulation case. The predicted permeabilities in the cases of high-
pressure gradients have significant errors because the corresponding Reynolds numbers are
much greater than 1.0 invalidating the assumption of Darcy’s law. In the cases of low-pressure
gradients, the calculated permeabilities are consistent with small relative errors at -1.092%
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and -0.884% compared to the analytical values of FCC and BCC, respectively. As discussed in
Section 6.3 later, the permeability estimation error mainly comes from the geometry error and
the boundary error, both of which are negligible for the FCC and BCC structures considered
here because of the fine-resolution grid adopted in the calculation. The verification confirms
our LBM implementation is able to accurately estimate the permeability of porous media
when the boundary conditions are set correctly. In the following sections, the resolution
effect on permeability evaluation for porous media will be investigated quantitatively to
develop an error correction model, for which the flow regime will be controlled with a low
Reynolds number (Re ≪ 1).

Table 6.1 Fluid flow simulations under different pressure gradients by using SRT-LBM

Structure ∇p (lattice unit) ν (lattice unit) ⟨u⟩ (lattice unit) κ/D2 Error (%) Re = ⟨u⟩D
ν

FCC

2.0661×10−4 0.1667 1.9647×10−2 1.3763×10−4 -20.718 40.00
2.0661×10−5 0.1667 2.4595×10−3 1.7229×10−4 -0.753 5.01
2.0661×10−6 0.1667 2.4545×10−4 1.7195×10−4 -0.952 0.50
2.0661×10−7 0.1667 2.4514×10−5 1.7173×10−4 -1.079 4.99×10−2

2.0661×10−8 0.1667 2.4511×10−6 1.7170×10−4 -1.092 4.99×10−3

2.0661×10−9 0.1667 2.4510×10−7 1.7170×10−4 -1.092 4.99×10−4

BCC

7.4257×10−5 0.1667 3.3397×10−2 6.2441×10−4 24.311 69.43
2.4753×10−5 0.1667 8.6362×10−3 4.8440×10−4 -3.563 17.95
2.4753×10−6 0.1667 8.8652×10−4 4.9725×10−4 -1.006 1.84
2.4753×10−7 0.1667 8.8766×10−5 4.9789×10−4 -0.878 1.84×10−1

2.4753×10−8 0.1667 8.8762×10−6 4.9786×10−4 -0.884 1.84×10−2

2.4753×10−9 0.1667 8.8761×10−7 4.9786×10−4 -0.884 1.84×10−3

Note: ∇p is the pressure gradient, ν is the kinetic viscosity, ⟨u⟩ is the average flow velocity and D is the sphere diameter.

6.3 Resolution effect on permeability calculation though
pore-scale simulation

6.3.1 Permeability evaluation via SRT-LBM simulation

By using our implementation of SRT-LBM, pore-scale simulations are performed on a
group of porous media to investigate the effects of image resolution and relaxation time
on permeability results. Seven Fontainebleau rock samples are analyzed, whose porosities
are 8.6%, 10.1%, 12.5%, 15.3%, 17.6%, 20.6%, and 24.5%, respectively [34]. The digital
images of these samples are of 480×480×480 voxels with a voxel resolution of 5.7 µm,
which represents an equivalent physical sample of 2.7 mm3 cube. To check the resolution
effect, these raw images are rescaled to 240×240×240 voxels and 120×120×120 voxels,
representing the voxel resolution at around 11.4 µm and 22.8 µm, respectively. Figure 6.5
shows an example of the digital rock models at different resolution levels. The LBM
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simulations are run on the ASTUTE HPC cluster in Swansea University (72 nodes, 2×14
core CPUs per node, 64 GB RAM per node).

(a) Resolution= 5.7 µm (b) Resolution= 11.4 µm (c) Resolution= 22.8 µm

Fig. 6.5 The binary representations of Fontainebleau sandstone with porosity 15.3% at three
different resolution levels (white phase denotes pore space and black phase denotes solid
matrix)

(a) Computation time (b) Computational memory

Fig. 6.6 The computation time and memory requirement of SRT-LBM simulations to evaluate
intrinsic permeabilities (seven Fontainebleau sandstone samples FS9, FS10, FS13, FS14,
FS15, FS18, FS21 and FS25 are studied, whose porosities are 8.6%, 10.1%, 12.5%, 15.3%,
17.6%, 20.6%, and 24.5%, respectively)

By setting the relaxation time τ = 1.0, the permeabilities of these digital rocks with
different resolutions are calculated through SRT-LBM simulations. As shown in Figure
6.6a and 6.6b, reducing the image resolution not only improves the efficiency of LBM
simulation significantly, but it also greatly reduces the memory requirement. However,
image resolution reduction also causes a negative impact on permeability evaluation, due
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to the loss of geometric information related to the finer pore-scale microstructure. It is
found that the permeability results evaluated from SRT-LBM simulations are different before
and after image coarsening. As shown in Figure 6.7a, the computed permeabilities from
the highest resolution images are closed to the reference values obtained from laboratory
measurement [56], but the coarsened images tend to overestimate the permeability values.
The evaluation errors caused by resolution reduction are between 12.48% and 47.37% for
these Fontainebleau sandstone samples. For some other porous media, the evaluation errors
caused by resolution reduction even exceed 100%, as illustrated in Figure 6.19a, 6.20a and
6.21a.

(a) Influence of image resolution (b) Influence of relaxation time

Fig. 6.7 The influences of image resolution and relaxation time on permeability estimation
from SRT-LBM simulations

By choosing different values of relaxation time τ , the SRT-LBM simulations are per-
formed on a digital Fontainebleau sandstone sample with 24.50% porosity, and the perme-
ability results are shown in Figure 6.7b. Apparently, the computed permeability is dependent
on the relaxation time (viscosity), and they appear to be positively correlated. The extent
to which the computed permeability depends on the relaxation time differs for digital rock
images at different resolutions. Low-resolution images are very sensitive to the relaxation
time, which has a significant influence on the accuracy of computed permeability. As shown
in Figure 6.7b, the computed permeability at τ = 1.667 is four times larger than the com-
puted permeability at τ = 0.625 for the image with the lowest resolution. For high-resolution
images, the dependence of computed permeability on the relaxation time is much weaker, so
the choice of τ value is less worrying.

From the above parametric investigations, it is clear that LBM simulations performed
on higher resolution images provide more accurate permeability predictions. The reasons
are: (1) the digital rock image at higher resolution contains more details so that the pore



210
Resolution effect: An error correction model for permeability of porous media estimated

from lattice Boltzmann method

geometry and structure are closer to the morphological reality; (2) the higher resolution
grid makes LBM simulations less sensitive to the relaxation time, in which the physical
location of the fluid-solid boundary is less misplaced when a sub-optimal relaxation time
is chosen. However, practical limitations in computing power and waiting time often force
the resolution of digital rock image to be reduced so that the associated pore-scale LBM
simulation is computationally feasible. This resolution reduction usually has a remarkable
effect on the accuracy of LBM simulation results, which is referred to as the resolution
effect. Two primary sources of permeability evaluation error are identified in relation to the
resolution effect: (1) the geometry error, which comes from the changes of pore geometry,
including pore-solid interface and pore connectivity, as a result of voxel reassignment from
image rescaling; (2) the boundary error, which comes from the aggravation of mismatch
between fluid-solid boundary and pore-solid interface for the low-resolution image, when a
sub-optimal relaxation time is chosen. Both the geometry error and the boundary error are
related to the pore geometry, therefore, it is possible to use suitable geometric attributes to
represent and quantify them, and then to correct the permeability evaluation error due to the
resolution effect.

6.3.2 Comparison with other numerical schemes

The resolution effect on permeability calculation via SRT-LBM is studied in the above
section, where the permeability results are compared with the reference values obtained
from laboratory measurement. In this section, the examination of the resolution effect on
permeability calculation is extended to other numerical schemes.

As discussed above, the permeability result calculated from SRT-LBM strongly depends
on the relaxation time τ . Multiple-relaxation time LBM (MRT-LBM) was thus introduced by
d’Humieres (2002) [118] to overcome some of the limitations of SRT-LBM, particularly to
maintain the stability at low relaxation time. MRT-LBM allows different moments of the
distribution function to relax at different rates, while for SRT-LBM all moments relax at the
same rate [252]. A collision matrix is constructed to define individual relaxation times for all
variables, which provides the maximum flexibility to optimize LBM stability. Further details
about MRT-LBM can be found in relevant literature [118, 252]. The procedures to compute
the intrinsic permeabilities of porous media via MRT-LBM are also well documented in the
literature [129, 370]. We implement the MRT-LBM program to calculate intrinsic permeabil-
ity for 3D porous media samples under the same initial state and boundary conditions as the
SRT-LBM implementation (explained in Section 6.2).

By setting the relaxation time τ = 1.0, the permeabilities of the digital Fontainebleau
rocks with different resolutions are computed from MRT-LBM simulations, which are plotted
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in Figure 6.8a. The image resolution is observed to have a great influence on the permeability
results, and the computed permeabilities from the finest images are close to the reference
values. Compared with the SRT-LBM simulation, the MRT-LBM simulation does not provide
more accurate permeability evaluations when the relaxation time is τ = 1.0. By choosing
different values of relaxation time τ , the permeability results of a digital Fontainebleau
rock with 24.50% porosity are computed via MRT-LBM simulations. It is observed that
the viscosity-dependence (or relaxation time dependency) of MRT-LBM is much weaker
than that of SRT-LBM, which is a well-known advantage of MRT-LBM. Therefore, if
a sub-optimal relaxation time τ is chosen (for instance, when τ ≥ 1.4 is taken for the
Fontainebleau sandstone samples), MRT-LBM usually provides more accurate permeability
results compared to SRT-LBM. It is possible to adjust the MRT collision parameters so as
to greatly reduce the viscosity-dependence, but such parameter adjustment mainly relies on
experience [129, 370]. In addition, compared with SRT-LBM, MRT-LBM requires longer
simulation time (1.5 to 2 times) and more computing memory (more than 1.5 times).

(a) Influence of image resolution (b) Influence of relaxation time

Fig. 6.8 The influences of image resolution and relaxation time on permeability estimation
from MRT-LBM simulations

Finite volume method (FVM) is another commonly-used numerical scheme to simulate
pore-scale fluid flow [475, 356]. To examine the resolution in relation to the FVM scheme,
a commercial FVM fluid dynamic solver, Avizo (FEI, Hillsboro, Oregon, USA), is used to
simulate incompressible laminar flow through porous media to estimate intrinsic permeability.
Avizo solves Navier–Stokes equations through voxel-based FVM [172], where the image
voxels are used as the volume elements, and no additional meshing step is required. The no-
slip boundary condition is set at the fluid-solid interface, and periodical boundary conditions
are imposed on the surfaces of the cubic sample. Driven by the pressure difference between
inlet and outlet, laminar flow with low Reynolds number is simulated to pass through the
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porous medium sample. When the steady state is reached, the intrinsic permeability can be
estimated based on Darcy’s law.

As shown in Figure 6.9a, the permeability results are obtained by performing FVM
simulations on digital Fontainebleau rocks with different resolutions. It is observed that the
resolution effect on permeability calculation through FVM simulation is greater than the
LBM simulation. Overall, FVM simulation tends to overestimate the permeability of porous
media, especially when the image resolution is low. Besides, the permeability results of
the digital Fontainebleau rocks with the highest resolutions are compared between LBM
(including SRT-LBM and MRT-LBM with relaxation time τ = 1) and FVM simulations,
as illustrated in Figure 6.9b. For the case of τ = 1, SRT-LBM provides the most accurate
permeability results among three different numerical schemes, which at least demonstrates
that SRT-LBM is capable of providing comparable permeability results when appropriate
relaxation time is selected. Taking into account the simplicity, efficiency and popularity
of SRT-LBM, further studies are desired to reduce or eliminate the resolution effect on its
permeability calculation.

(a) Influence of image resolution (b) Comparison of permeability results

Fig. 6.9 (a) The influence of image resolution on permeability estimation from FVM simula-
tions; (b) Comparison between permeability results estimated from SRT-LBM, MRT-LBM
and FVM simulations

6.4 Error correction model for resolution effect

Accurate intrinsic permeability is expected to be obtained from the digital rock image with
high resolution, but due to the high cost of LBM simulation, the image is usually rescaled
into a lower resolution. As illustrated in Section 6.3, resolution reduction can significantly
reduce the computational complexity of LBM simulation, but it also causes the geometry
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and boundary errors that affect the pore-scale simulation results. Both types of error are
associated to the pore geometry: the geometry error mainly comes from the changes of pore-
solid interface and pore connectivity resulting from voxel reassignment; and the boundary
error is primarily caused by the aggravation of mismatch between fluid-solid boundary and
pore-solid interface when a sub-optimal relaxation time is chosen. In this section, we look
for suitable geometric attributes to represent and quantify the geometry and boundary errors
in permeability evaluation, and propose an error correction model to recover the accurate
permeability from the results evaluated using coarsened images.

6.4.1 Digital rocks at different resolutions

A set of cubic micro-CT models of Fontainebleau sandstone are considered in this study.
Fontainebleau sandstone is an isotropic porous medium, which is often used as the reference
standard for validating models of porous media. It consists of monocrystalline quartz grains
with an average size of about 200 µm, inside which only inter-granular porosity exists. Digital
rock samples from the open database at Stuttgart University’s Institute of Computational
Physics [188] are used in this study.

The Fontainebleau sandstone sample with physical size of 15 mm3 is imaged by micro-
CT scanner at four different resolution levels: 3.662 µm, 7.324 µm, 14.648 µm and 29.296
µm, as shown in Figure 6.10. The micro-CT images are segmented into binary images
by using ImageJ, a popular image processing tool in the DRP community. The default
thresholding method in ImageJ is adopted here, which is a variation of the IsoData algorithm
[452], and the segmentation results are also given in Figure 6.10, where the white phase
indicates pore space and the black phase denotes solid grains. After image segmentation,
the 3D binary images are partitioned into small RVEs for pore-scale simulation using LBM.
The image sizes of RVEs at the four resolution levels (from high to low) are 640×640×640,
320×320×320, 160×160×160 and 80×80×80, respectively, and representative examples
are shown in Figure 6.10. For each resolution level, around 15 RVEs are selected to perform
SRT-LBM simulation of pore-scale fluid flow and evaluate their intrinsic permeabilities.

6.4.2 The geometry error coming from voxel assignment

Image acquisition and segmentation are essentially discretization processes, which assign
the voxel value in the digital image to represent the material phases at the microscopic
scale. Discrepancies in terms of pore geometry exist between digital rock images obtained
at different resolutions, as highlighted by the red circles in Figure 6.12b (which are binary
segmentations of micro-CT images in Figure 6.12a). Higher resolution images generally
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(a) Micro-CT image (3.662 µm) (b) Binary segmentation (3.662 µm)

(c) Micro-CT image (7.324 µm) (d) Binary segmentation (7.324 µm)

(e) Micro-CT image (14.648 µm) (f) Binary segmentation (14.648 µm)

(g) Micro-CT image (29.296 µm) (h) Binary segmentation (29.296 µm)

Fig. 6.10 The 3D micro-CT images and corresponding binary segmentations (white = pore,
black = solid) of the Fontainebleau sandstone at four different resolution levels
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Fig. 6.11 Permeability results evaluated by LBM simulations for the RVEs at different
resolutions

provide a closer representation for the reality inside rocks, while lower resolution images
may lose fine-scale details of pore space geometry. The permeability evaluation error purely
caused by the discrepancies of pore geometry between digital rock images at different
resolutions is referred to as the geometry error. In practice, it is however difficult to separate
the geometry error from the boundary error caused by relaxation time, unless the optimal
relaxation times τ0 is selected, where the exact pore-solid interface is used as the fluid-
solid boundary during the LBM simulation. In this section, we set τ = 1.0 to calculate the
permeabilities for all RVEs of Fontainebleau sandstone sample at different resolutions, in
order to avoid the influence coming from the relaxation time. The computed permeability
results are recorded in Figure 6.11, and the reference permeability of the Fontainebleau
sandstone sample is about 1150 mD [56]. The permeabilities evaluated from the RVEs at the
highest resolution are close to the reference value, while the permeability results from the
RVEs at lower resolutions are overestimated with errors ranging from 23.9% to 68.0%. It
is clear that the resolution effect does have a significant impact on the LBM permeability
evaluation.

The primary sources of error are the discrepancies of the pore-solid interface and pore
connectivity between RVEs at different resolution levels. Therefore, it is possible, at least in
principle, to characterize the evaluation error by using suitable geometric attributes of porous
media. A well known empirical predication for the intrinsic permeability of porous media is
Kozeny-Carman equation [90]:

κ =
φ 3

βτ2
HS2 (6.6)

where φ is the porosity, S is the specific surface area equal to the ratio of the total pore-solid
surface area to the bulk volume, β is a shape factor, and τH is the hydraulic tortuosity of the
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porous medium. The Kozeny-Carman equation implies that porosity, specific surface area
and tortuosity of the digital rock image could be useful geometric attributes to account for
the permeability evaluation error due to the resolution effect.

Fig. 6.12 (a) 2D slices of the 3D micro-CT images and (b) 2D slices of the corresponding
binary segmentations at four different resolution levels

Note that fluid flows in the porous media only pass through the connected pore space in
the LBM simulation. Therefore, we extract connected pore space from each RVE sample
using the 18-connectivity criterion, and then calculate the connected porosity φc and the
connected specific surface area Sc to investigate the geometric difference between RVEs
at different resolutions. Figures 6.13a-b show the φc and Sc values extracted from these
RVEs. The average connected porosities at four different resolutions are 13.674%, 13.981%,
14.143% and 13.687%, respectively. The average connected specific surface area at four
different resolutions are 10.333, 9.659, 8.668 and 6.823 mm−1, respectively.

The hydraulic tortuosity τH is used in the Kozeny-Carman equation to account for the
retardation effect of tortuous flow paths, and it is defined as the ratio of flow path length to
the Euclidean distance between inlet and outlet [90]. Although the definition of hydraulic
tortuosity is conceptually sound, it is extremely difficult, if not impossible, to accurately
estimate it from a digital image without performing a pore-scale flow simulation. Therefore,
the geometrical tortuosity [90] and the diffusional tortuosity [163] are examined instead in
this work. Through comparisons, the diffusional tortuosity is adopted to characterize the
complexity of flow paths inside porous media. The diffusional tortuosity τd is obtained from
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(a) (b)

(c) (d)

Fig. 6.13 The geometric attributes of Fontainebleau sandstone RVEs at different resolution
levels: (a) Connected porosity φc; (b) Connected specific surface area Sc; (c) Diffusion
tortuosity τd; (d) Morphological factor ϑ

diffusion simulation by the following equation:

Dp =
φσDb

τ2
d

(6.7)

where Dp is the effective diffusion coefficient in the porous medium, σ is the constrictivity
factor, and Db is the diffusion coefficient of air or water filled inside the pore space. The
constrictivity factor σ ≈ 1.0 when the pore size is lager than 1 µm [163]. In this study, the
diffusion tortuosity is obtained using the open-source code TauFactor [96]. Figure 6.13c
shows the diffusion tortuosities calculated from these RVEs at four different resolutions,
whose average values are 2.298, 2.419, 2.829 and 4.641, respectively. The diffusion tortuosity
monotonically increases as the resolution of RVEs drops.

Following the above analysis, an improved model is proposed to link the intrinsic perme-
ability κLBM evaluated using LBM simulation and the geometric attributes of digital rock
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images:

κLBM =
φ 3

c
ϑ
√

τdS2
c

(6.8)

where φc denotes connected porosity, Sc connected specific surface area, τd diffusion tortu-
osity, and ϑ a morphological factor independent from the resolution of digital images. By
substituting the values of LBM permeability κLBM, connected porosity φc, connected specific
surface area Sc and diffusion tortuosity τd of these RVEs into Eq. (6.8), the morphological
factor ϑ can be obtained, as shown in Figure 6.13d. The numerical results confirm that the
morphological factor ϑ is indeed a constant, independent from the image resolution.

As the geometric parameters φc, Sc and τd can all be easily extracted from 3D digital
images, Eq. (6.8) can be used to correct the error of LBM permeability evaluation obtained
at lower resolution. Specifically, as the morphological factor ϑ is a constant independent
from image resolution, the following relation holds:

ϑ =
φ 3

c,h

κh
√

τd,hS2
c,h

=
φ 3

c,l

κl
√

τd,lS2
c,l

(6.9)

where the subscripts h and l denote the quantities corresponding to the high-resolution RV Eh

and the low-resolution RV E l, respectively. Rearranging the above equation yields:

κh = κl
φ 3

c,h
√

τd,lS2
c,l

φ 3
c,l
√

τd,hS2
c,h

= κlCresolution (6.10)

where Cresolution =
φ 3

c,h
√

τd,lS2
c,l

φ 3
c,l
√

τd,hS2
c,h

is the up-scaling factor fully determined by the geometric

attributes of the 3D digital models RV Eh and RV E l. It should be noted that Eq. (6.10) is
established based on the computed permeabilities from LBM simulations by setting τ = 1.0.

6.4.3 The boundary error coming from mismatch between fluid-solid
boundary and pore-solid interface

The standard bounce-back (SBB) scheme is most popular in the literature to represent no-slip
solid walls. In this scheme, the incoming fluid particles that hit the solid walls at a certain
time step are bounced back to the nodes in the pore space where they came from. The SBB
scheme assumes the fluid-solid boundary is located approximately half-way between the
bounce-back solid node and its neighboring fluid node [252], as illustrated in Figure 6.14.
However, it does not always locate the fluid-solid boundary at the half-way between the
bounce-back solid node and its neighboring fluid node [252].
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Fig. 6.14 Fluid-solid boundary handling in LBM simulations by using the SBB scheme [288]
(Solid matrix is shown in dark gray, pore space (fluid phase) in white. The black squares are
the lattice nodes in the solid phase, the gray-filled squares are the fluid nodes with solid node
neighbor(s), and the white squares are lattice nodes completely within the fluid phase. The
stair-shaped dash line represents the fluid-solid boundary in LBM simulations)

The classical lattice Boltzmann model with BGK collision operator and SBB scheme
has a well-know defect that the actual physical position of fluid-solid boundary depends on
the relaxation time τ . The spatial error is related to the grid spacing and proportional to
(τ −1/2)2 [156]. This can be easily observed from the analytic solution for Poiseuille-Hagen
flow between two parallel plates [157]:

H2
eff = H2 +48ν

2 −1 = H2 +
16
3
(τ −1/2)2 −1 (6.11)

where H is the exact physical width between the parallel plates, and Heff is the effective width.
In this example, the solid wall is exactly located at the half-way between the bounce-back
solid node and its neighboring fluid node if and only if τ = 0.933.

However, there is no common rule to determine the optimal relaxation time for porous
media with complex geometry [198]. The fluid-solid boundary of LBM simulation is
not exactly located at the pore-solid interface of the porous medium, when a sub-optimal
relaxation time is chosen. This mismatch between the fluid-solid boundary and pore-solid
interface causes a numerical error to the LBM simulation, which is referred to as the boundary
error. It tends to be aggravated after resolution reduction, and the permeability computed
from the low-resolution image is more sensitive to the relaxation time than that computed
from the high-resolution image (see Section 6.3).

The permeabilities of the Fontainebleau sandstone RVEs are computed through LBM
simulations at different relaxation times ranging from 0.625 to 1.667, and the results are
recorded in Figure 6.17a. The permeability results of four representative RVEs at different
resolutions are given in Figure 6.15, from which it can be observed the computed permeability
almost increases linearly with the relaxation time. Similar observations are also recorded by
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other researches [129]. Hence, we assume a positive linear correlation between the computed
permeability and the relaxation time. The computed permeability data at different relaxation
time are linearly fitted as:

M =
κ(τ)−κ(1)

τ −1
(6.12)

where κ(τ) is the computed permeability at relaxation time τ , and M is the slope of the fitted
line. The dashed lines in Figure 6.15 show the linear fitting results, which agree well with
the original permeability data.

Fig. 6.15 The dependence of computed permeability on relaxation time for images at different
resolution levels

If the slope M for a specific porous medium can be obtained without performing more
LBM simulations, then the computed permeability κ(τ) at different relaxation time can be
readily predicted from κ(1) based on Eq. (6.12). As discussed above, the relaxation time
controls the actual location of the fluid-solid boundary. Based on our experiments, it is
assumed the effective connected porosity φc(τ) and the effective specific surface area Sc(τ)

of a porous medium are functions of the relaxation time τ , while other parameters such
as morphological factor ϑ (or shape factor β ) and tortuosity τd (or τH) are independent
from the relaxation time τ . According to the Kozeny-Carman equation (6.6), the following
relationship can be derived:

M =
dκ(τ)

dτ
=

d
(

φ 3(τ)

βτ2
d S2(τ)

)
dτ

=
1

βτ2
d

(
3

φ 2(τ)

S2(τ)

dφ(τ)

dτ
−2

φ 3(τ)

S3(τ)

dS(τ)
dτ

) (6.13)
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The computed permeability κ(τ) is assumed to be proportional to relaxation time τ , so the
slope M is independent of τ . Suppose an optimal relaxation time τ0 exists such that the
fluid-solid boundary of the LBM simulation is exactly located at the pore-solid interface of
the porous medium, the above equation can then be written as:

M =
1

βτ2
d

(
3

φ 2
c (τ0)

S2
c(τ0)

dφc(τ0)

dτ
−2

φ 3
c (τ0)

S3
c(τ0)

dSc(τ0)

dτ

)
(6.14)

where φc(τ0) denotes the connected porosity and Sc(τ0) the connected specific surface area.
Both φc(τ0) and Sc(τ0) can be directly extracted from the pore geometry, as shown in Figure
6.13a and 6.13b, respectively.

The remaining difficulty is to characterize dφc(τ0)
dτ

and dSc(τ0)
dτ

. Note that the effective pore
space expands as the relaxation time increases. As shown in Figure 6.16, the pore space
expands by one voxel (pixel) thickness as a result of the relaxation time increasing from τ0

to τ0 +T , where T is a small positive increment. Using this artificial case, dφc(τ0)
dτ

and dSc(τ0)
dτ

can be estimated as:
dφc(τ0)

dτ
≈ φc(τ0 +T )−φc(τ0)

T
(6.15)

dSc(τ0)

dτ
≈ Sc(τ0 +T )−Sc(τ0)

T
(6.16)

where φc(τ0 +T ) and Sc(τ0 +T ) are the connected porosity and connected specific surface
area of the porous medium with pore space expanded by one voxel (pixel) thickness, and
they can be directly extracted from the expanded pore geometry, as shown in Figure 6.17c
and 6.17d.

(a) Original pore space (b) The solid border (in yellow) (c) Expansion of pore space

Fig. 6.16 Illustration of pore space expanding for one pixel (voxel) thickness
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Substituting Eq. (6.15), (6.16) and (6.6) into Eq. (6.14) yields:

M =
1

βτ2
d T

(
3

φ 2
c (τ0)

S2
c(τ0)

(φc(τ0 +T )−φc(τ0))−2
φ 3

c (τ0)

S3
c(τ0)

(Sc(τ0 +T )−Sc(τ0))

)
=

1
βτ2

d T
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3

φ 2
c (τ0)

S2
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(φc(τ0 +T )−φc(τ0))−2
φ 3

c (τ0)
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where κ(τ0) is the computed permeability at the optimal relaxation time τ0 from the LBM
simulation. The values of φc(τ0), φc(τ0 +T ), Sc(τ0) and Sc(τ0 +T ) are geometric attributes
which can be quickly extracted from the pore geometries before and after the pore space
expansion. However, κ(τ0) and T are unknown, and are difficult to determine for a specific
porous medium.

To overcome the above difficulty, the dimensionless permeability κ(τ)/κ(1) is consid-
ered, where the permeability calculated with the relaxation time τ = 1.0 is used to normalize
the permeability computed with an arbitrary relaxation time τ . As κ(1) is a constant for a
given digital rock image, the slope of the linear fitting to the dimensionless permeabilities is
given by:

m =
M

κ(1)
=

κ(τ0)

κ(1)T

(
3

φc(τ0 +T )−φc(τ0)

φc(τ0)
−2

Sc(τ0 +T )−Sc(τ0)

Sc(τ0)

)
=CκE

(6.18)

where the coefficient Cκ =
κ(τ0)

κ(1)T
and the expansion ratio E = 3φc(τ0+T )−φc(τ0)

φc(τ0)
−2Sc(τ0+T )−Sc(τ0)

Sc(τ0)
.

As shown in Figure 6.17a, the RVE group of Fontainebleau sandstone are simulated
by using LBM with different relaxation times, ranging from 0.625 to 1.667. For each
RVE sample, a strong linear correlation exists between the computed permeability and the
relaxation time, as illustrated in Figure 6.15. The normalized slope m for each RVE sample is
plotted in Figure 6.17b. With the decrease of image resolution, the normalized slope increases,
which implies the permeabilities computed from lower resolution images are more sensitive
to the relaxation time. The geometric attributes including the connected porosity and the
connected specific surface area are extracted from the original and expanded porous media,
and the results are given in Figures 6.13a, 6.13b, 6.17c and 6.17d, respectively. According
to Eq. (6.18), the expansion ratio E is obtained from the geometric attributes for each RVE
sample, which are plotted in Figure 6.17e. By substituting the normalized slope m and the

expansion ratio E to Eq. (6.18), the coefficient Cκ =
κ(τ0)

κ(1)T
can be obtained, as plotted in
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Figure 6.17f. It is observed that the coefficient Cκ remains constant as the resolution varies.
Hence, Cκ is independent of image resolution for a specific porous medium:

Cκ =
mh

Eh
=

ml

El
(6.19)

where the subscripts h and l denote the quantities corresponding to the high resolution RV Eh

and the low resolution RV E l, respectively. The slope mh can be estimated from ml as follows:

mh = ml
Eh

El
= mlCrelaxation (6.20)

where Crelxation =
Eh

El
, Eh and El are expansion ratios directly extracted from RV Eh and RV E l,

respectively, and ml can be quickly estimated from LBM simulations performed on RV E l.
By combining Eq. (6.10) and Eq. (6.20), the computed permeabilities of RV Eh can be

estimated from the computed permeabilities of RV E l, given by:

κh(τ) =CresolutionCrelaxation (κl(τ)−κl(1))+Cresolutionκl(1) (6.21)

where Cresolution is the up-scaling factor. Both Cresolution and Crelaxation are determined by
the geometric attributes of the 3D digital models RV Eh and RV E l. It should be noted that
Eq. (6.21) can be used to correct the permeability error due to the resolution effect for LBM
simulations with any relaxation time τ .

6.4.4 Remarks on image resizing methods

The choice of image resizing methods may affect the image rescaling results, because
different voxel reassignment schemes can potentially introduce different geometry errors.
There are two categories of image resizing methods for adjusting the resolution of micro-
CT images of porous rocks: the device-based method and the software-based method.
The device-based method is implemented by the specific settings on the micro-CT facility
during image acquisition, to achieve a trade-off between the image resolution and the size
of physical samples. The spatial resolution of a micro-CT image depends not only on
scanning parameters such as focal-spot size and detector element dimensions, but also the
resolving power linked to the image reconstruction. After image acquisition, the image
resolution can also be artificially adjusted (reduced) by using software-based methods such
as image interpolation [130] and image pyramid reduction [65], to make the associated
LBM simulation more computationally affordable. As shown in Figure 6.18, different
software-based methods are performed on a binary segmentation of micro-CT image, and
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(a) Computed permeability results (b) Normalized slope values

(c) Connected porosity (d) Specific surface area

(e) Expansion ratio values (f) The values of Cκ

Fig. 6.17 The computed results of the Fontainebleau sandstone RVEs at different resolution
levels: (a) Computed permeability κ(τ); (b) Normalized slope m; (c) Connected porosity
φc(τ0 +T ) of expanded pore geometry; (d) Connected specific surface area Sc(τ0 +T ) of
expanded pore geometry; (e) Expansion ratio E; (f) Cκ

very slight differences are observed between these rescaling results. LBM simulations are
applied to these 3D digital models (corresponding to the 2D slices in Figure 6.18), and
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Fig. 6.18 Comparison between different image resizing methods: (a) A 2D slice in the
original 3D image at resolution 5.7 µm and it is rescaled to 11.4 µm by using four different
software-based resizing methods; (b) The rescaled image by the cubic interpolation method;
(c) The rescaled image by the linear interpolation; (d) The rescaled image by the nearest
interpolation method; (d) The rescaled image by the Gaussian pyramid reduction method

the permeability results at τ = 1 are 4343.5 (original), 4919.1 (cubic interpolation), 4928.7
(linear interpolation), 4947.1 (nearest interpolation), and 4890.5 mD (Gaussian pyramid
reduction), respectively. The permeability differences between the four rescaled images are
negligible compared with the evaluation error caused by resolution reduction and bad choice
of relaxation time.

It is possible, at least in principle, to develop a specialized image resizing method which
is able to preserve comprehensively the pore geometry details and avoid the geometry error.
However, such methods are content-dependent and it is extremely difficult, if not impossible,
to design a resizing scheme for porous media due to their complicated pore geometries. In
this study, the cubic interpolation method is adopted to rescale the image, after which the
result is binarized using the global threshold scheme [343] to keep the porosity consistent.
The proposed error correction model (as illustrated in Eq. (6.21) is established based on
micro-CT images with different resolutions resulted from the device-based method. In the
next section, the error correction model is demonstrated for the resolution effect arising from
the software-based resizing method.
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6.5 Results and discussion

The error correction model in Eq. (6.21) is established following the analysis of a Fontainebleau
sandstone with a porosity of about 14.00%. It is necessary to examine the applicability of
the model on other Fontainebleau sandstones with different porosities. The Fontainebleau
sandstone samples discussed in Section 6.1 are employed for this purpose, whose porosities
range from 8.61% to 24.50%. The resolution of raw images is 5.7 µm, and they are rescaled
to 11.4 µm and 22.8 µm. The permeabilities of these digital rock images with different
resolutions are evaluated through LBM simulations, and different relaxation times ranging
from 0.625 to 1.667 are selected in the simulation.

(a) Permeability errors (b) Permeability correction

Fig. 6.19 Tests on Fontainebleau sandstone of different porosities: (a) Errors of computed
permeabilities between high and low-resolution images; (b) Error correction for the perme-
abilities computed from low-resolution images

As shown in Figure 6.19a, the permeabilities κl(τ) computed from low resolution images
are different from the permeabilities κh(τ) computed from high resolution images. The
relative errors between κl(τ) and κh(τ) are significant, varying between -79.02% to 126.06%.
After applying the error correction, the permeability results κ̃h(τ) are recovered from κl(τ),
and as shown in Figure 6.19b they are in good agreement with κh(τ). The errors between
κ̃h(τ) and κh(τ) are less than 5.00% for all rescaled images with 11.4 µm resolution. As
to the rescaled images with 22.8 µm resolution, the errors between κ̃h(τ) and κh(τ) are
slightly larger, but all within 6.50%. These testes demonstrate the error correction model is
not limited by the porosity range of Fontainebleau sandstones. The image information and
geometric attributes of the Fontainebleau sandstone samples are listed in Table 6.2.
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Table 6.2 The intermediate variables of permeability error correction for Fontainebleau
sandstones of different porosities

Sandstone Resolution (µm) Size (voxel) φc(τ0) Sc(τ0) (mm−1) τd φc(τ0 +T ) Sc(τ0 +T ) (mm−1)

Fontainebleau 1 5.700 4803 8.26% 7.384 4.950 11.96% 8.503
11.400 2403 7.88% 5.966 6.882 14.04% 7.654

Fontainebleau 2 5.700 4803 9.99% 8.645 3.658 14.29% 9.875
11.400 2403 9.65% 7.190 4.684 17.09% 9.104

Fontainebleau 3
5.700 4803 12.51% 10.320 2.915 17.59% 11.593
11.400 2403 12.41% 8.956 3.573 21.56% 11.066
22.800 1203 11.77% 6.862 6.162 27.07% 9.919

Fontainebleau 4
5.700 4803 15.33% 11.833 2.295 21.10% 13.039
11.400 2403 15.28% 10.437 2.616 25.77% 12.487
22.800 1203 15.07% 8.435 3.630 33.40% 11.589

Fontainebleau 5
5.700 4803 17.61% 12.911 2.041 23.85% 14.003
11.400 2403 17.58% 11.527 2.278 28.99% 13.423
22.800 1203 17.48% 9.485 2.954 37.66% 12.491

Fontainebleau 6
5.700 4803 20.64% 14.181 1.8153 27.43% 15.082
11.400 2403 20.63% 12.800 1.996 33.09% 14.411
22.800 1203 20.57% 10.671 2.438 42.70% 13.287

Fontainebleau 7
5.700 4803 24.50% 15.447 1.652 31.80% 16.090
11.400 2403 24.49% 14.092 1.784 37.95% 15.270
22.800 1203 24.46% 11.977 2.102 48.40% 13.864

Note: φc(τ0) and φc(τ0 +T ) are connected porosities of the porous medium and the expanded porous medium, respectively. Sc(τ0)
and Sc(τ0 +T ) are connected specific surface areas of the porous medium and the expanded porous medium, respectively. τd is the
diffusional tortuosity of the porous medium (same to the tables below).

(a) Permeability errors (b) Permeability correction

Fig. 6.20 Tests on different types of sandstones: (a) Errors of computed permeabilities
between high and low resolution images; (b) Error correction for the permeabilities computed
from low resolution images

Next, the proposed error correction model is applied to different types of sandstones for
further applicability test. Six types of sandstones are examined in addition to Fontainebleau
sandstone, and the image information and geometric attributes of the sandstone samples are
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given in Table 6.3. The raw images of these sandstone samples are rescaled into two lower
resolutions. Still the relative errors between the computed permeabilities κl(τ) and κh(τ) are
remarkable, ranging from -67.58% to 159.76% as shown in Figure 6.20a. By applying the
error correction model, the permeability errors are dramatically reduced to less than 5.00% in
most cases (the largest error is 7.15%), as shown in Figure 6.20b. These results demonstrate
the error correction model works well for different types of sandstones.

Table 6.3 The intermediate variables of permeability error correction for different types of
sandstones

Sandstone Resolution (µm) Size (voxel) φc(τ0) Sc(τ0) (mm−1) τd φc(τ0 +T ) Sc(τ0 +T ) (mm−1)

Berea
5.345 4003 19.53% 15.815 2.133 26.60% 17.420

10.690 2003 19.42% 13.953 2.411 32.50% 16.407
21.380 1003 19.06% 10.593 3.421 40.28% 13.885

Doddington
2.775 4803 20.30% 14.196 1.680 23.46% 14.556
5.549 2403 20.26% 12.722 2.006 25.96% 13.525

11.098 1203 20.15% 11.120 2.265 30.34% 12.543

Bentheimer 1
6.007 4003 21.56% 13.954 1.935 28.54% 14.999

12.014 2003 21.55% 12.661 2.106 34.57% 14.521
24.028 1003 21.51% 10.535 2.661 44.70% 13.303

Bentheimer 2
5.000 4803 25.43% 16.744 1.794 32.63% 17.412

10.000 2403 25.36% 14.626 1.896 37.83% 16.021
20.000 1203 25.21% 11.974 2.203 46.41% 14.155

Bentheimer 3
5.000 4803 22.30% 15.037 1.908 28.80% 15.779

10.000 2403 22.26% 13.723 2.033 33.73% 14.923
20.000 1203 22.14% 11.578 2.393 41.83% 13.462

Gildehauser
4.400 4003 19.26% 14.320 2.107 24.55% 15.507
8.800 2003 19.19% 13.530 2.279 29.32% 15.587

17.600 1003 19.09% 11.621 2.799 37.60% 14.900

Leopard
3.475 4803 13.37% 15.722 4.396 18.20% 18.100
6.950 2403 13.18% 13.861 5.216 21.95% 17.555

13.901 1203 12.48% 10.360 10.849 26.62% 14.831

Castlegate
5.600 4803 20.62% 16.417 2.155 28.44% 17.984

11.200 2403 20.60% 15.325 2.208 35.64% 17.914
22.400 1203 20.50% 12.588 2.759 47.33% 15.954

Finally, the error correction model is further tested on other porous media including
carbonate rocks, sand packs and synthetic silica, etc. The detailed information about these
porous media samples is given in Table 6.4. The permeability errors caused by resolution
reduction show similar patterns as that of sandstones. As shown in Figure 6.21a, the errors
between κl(τ) and κh(τ) is significant, ranging from -27.61% to 179.40%. By applying the
proposed error correction model, the permeability errors are successfully reduced to less than
5.00% in most of the cases (the largest error is 7.80%), as can be seen in Figure 6.21b. These
tests demonstrate the proposed error model is applicable for many more types of porous
media.
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(a) Permeability errors (b) Permeability correction

Fig. 6.21 Tests on other types of porous media. (a) Errors of computed permeabilities between
high and low resolution images; (b) Error correction for the permeabilities computed from
low resolution images

Table 6.4 The intermediate variables of permeability error correction for different types of
porous media

Porous media Resolution (µm) Size (voxel) φc(τ0) Sc(τ0) (mm−1) τd φc(τ0 +T ) Sc(τ0 +T ) (mm−1)

Carbonate 1
2.850 4003 21.24% 20.677 2.255 26.06% 20.276
5.700 2003 21.06% 16.565 2.750 28.76% 16.759
11.400 1003 21.03% 12.831 3.211 33.06% 13.570

Carbonate 2
5.345 4003 14.02% 10.007 5.484 18.54% 10.362
10.690 2003 13.82% 7.878 5.819 20.98% 8.243
21.380 1003 13.77% 5.540 5.798 23.94% 6.062

Sand pack F42A
9.996 3003 32.65% 10.070 1.304 40.56% 9.944
19.992 1503 32.55% 8.930 1.555 46.59% 8.939
39.984 753 32.29% 7.589 1.754 56.69% 7.765

Sand pack F42B
10.002 3003 33.35% 10.611 1.334 41.66% 10.373
20.004 1503 33.22% 9.518 1.535 48.15% 9.381
40.008 753 32.95% 7.997 1.735 58.63% 8.033

Sand pack F42C
10.002 3003 32.86% 10.689 1.339 41.23% 10.500
20.004 1503 32.77% 9.768 1.454 48.04% 9.563
40.008 753 32.55% 8.211 1.622 58.93% 8.120

Sand pack LV60A 10.002 3003 36.78% 15.054 1.382 48.70% 14.197
20.004 1503 36.67% 13.027 1.509 57.21% 12.029

Sand pack LV60B 8.851 3003 36.85% 15.642 1.363 41.66% 11.722
17.702 1503 36.75% 13.637 1.467 48.15% 10.601

Sand pack LV60C 10.002 3003 37.59% 15.963 1.390 50.24% 15.033
20.004 1503 37.48% 13.708 1.483 59.11% 12.600

Synthetic silica 3.850 1503 44.73% 44.577 1.452 55.29% 40.903
7.700 753 44.78% 36.431 1.575 61.94% 32.454

In summary, the error correction model has been tested on 24 different porous media
samples for LBM permeability evaluation, and it succeeds in all cases and significantly
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reduces the errors caused by the resolution effect. Combining the resolution reduction and
the proposed error correction model, one can evaluate the intrinsic permeability of porous
media both accurately and efficiently.

6.6 Conclusions and future work

The resolution effect related to the permeability evaluation of porous media using LBM
simulation is systematically investigated in this chapter, and an error correction model is
proposed to compensate for the accuracy loss due to the use of low-resolution images. Two
primary sources of error are identified for the resolution effect: (1) the geometry error, which
is caused by the variation of pore geometry between digital images at different resolution
levels; (2) the boundary error, which is caused by misidentification of the fluid-solid boundary
for LBM simulations. A specific set of geometric attributes are defined to quantify these two
errors, from which a novel error correction model is proposed. A large number of numerical
tests have been performed to examine the performance of the new error correction model,
covering the differences in rock types, resizing methods, image resolutions and relaxation
times. In all our tests, the error correction model reduces dramatically the permeability
evaluation error and the remaining error is less than 5.00% in most cases. By ensuring
simultaneously accuracy and efficiency for LBM permeability evaluation, the error correction
model makes the practice use of image resolution reduction more meaningful and creditable
in digital rock physics applications.

The new error correction model is not without limitation. If the image resolution is
overly reduced, the morphological difference between the original and coarsened images may
become too large to be workable for error correction. It is especially true for the micro-CT
images scanned at low resolution and for the porous media with very low porosity. As for
future research, it is interesting to look for the optimal relaxation time of LBM simulation
for a specific porous medium such that the fluid-solid boundary is exactly located at the
pore-solid interface. Moreover, the resolution effect on multi-phase fluid flow simulations
through LBM or other numerical methods can also be studied in a similar way.

It’s worth reminding that the error correction model provides more credible perme-
ability values of porous media samples for the subsequent study to deeply investigate the
microstructure-permeability linkage in Chapter 7.



Chapter 7

Dependence of permeability on
microstructural characteristics of porous
rocks: Investigation and modeling
through feature selection and machine
learning

7.1 Introduction

Permeability quantifies the ability of a porous medium to transmit fluid [29], which is a
fundamental parameter to understanding the transport behaviors of fluid flows. Permeabil-
ity plays a critical role in many geological applications, including oil and gas recovery,
geothermal energy exploitation, CO2 underground storage, radioactive waste disposal and
contaminant hydrogeology. The permeable pore spaces within natural geologic materials are
often highly distinct from each other, which leads to an extremely broad range of permeability
values, varying up to 13 orders of magnitude [294]. Essentially, the transport properties
of a porous medium strongly depend on its microstructural characteristics. The structure-
property relationship is one of the most elementary issues in porous media research, from
which the macroscopic physical property is expected to be predicted from the measurable
microstructure informatics. However, the intricacy, stochasticity and heterogeneity inherent
in the natural porous rocks make it difficult to accurately and rapidly evaluate permeability,
especially for tight rocks with low porosity. Therefore, a deep insight into the dependence of
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permeability on microstructural characteristics is always being pursued, aiming to achieve a
reliable and efficient method for permeability prediction [46, 92, 489, 34, 142].

Laboratory measurement is the routine way to determine permeability, where fluid flow
is driven by a constant pressure difference to pass through a rock core, and permeability is
evaluated according to Darcy’s law when the fluid flow reaches the steady state [29]. One
the other hand, great efforts have been made to incorporate permeability using analytical
or empirical models (as listed in Table 7.1), such as the famous semi-empirical Kozeny-
Carman relation [143] and many variants deriving from it [38, 102, 34, 470]. Generally, these
models rely on specific microstructural characteristics of porous media, such as porosity,
specific surface area, tortuosity, characteristic length, pore size, constriction factor, fractal
dimension and others. Despite the simplicity and convenience in actual practice, analytical
models are often highly idealized and empirical models usually contain adjustable parameters
of uncertainty, which make them only appropriate and reliable for specific or ideal pore
microstructures and often break down for natural rocks with complicated pore networks.

Recently, the digital rock physics (DRP) technique has been rapidly developed to be
an alternative to laboratory measurement, which is convenient and reliable to characterize
microstructural attributes and compute petrophysical properties [11, 142]. The DRP tech-
nique applies advanced microscopy imaging facility [48, 12], such as X-ray micro-computed
tomography (micro-CT) and focused ion beam scanning electron microscopy (FIB-SEM),
to obtain 3D visualization of pore microstructures at the microscale, which provides a new
routine to explore microscopic physics of transport phenomena. After the image acquisition,
high-fidelity numerical simulations of transport processes can be performed on the digital
microstructures to evaluate corresponding transport properties or explore specific physical
phenomena [11, 47].

Pore-network modeling (PNM) and direct numerical simulation (DNS) are the two
primary pore-scale computing approaches to mimicking transport processes happening inside
porous rocks. PNM simplifies the complicated pore space into a topologically representative
network of pore bodies interconnected by pore throats with ideal shapes (such as sphere
and cylinder), according to specific criteria [486, 47]. The transport behaviors within each
network element are described by semi-analytical laws (such as Hagen-Poiseuille law), which
makes the computation considerably fast and enables multi-scale modeling to incorporate
strong heterogeneity in large volumes. PNM is naturally appropriate for capillary-controlled
transport processes. However, the transport property results estimated from PNM are often
less accurate, due to the simplification of the complicated pore space. It is still of great
challenge to gain reliable results from PNM by identifying the microstructural features
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relevant to network modeling and ignoring the remaining parts to simplify the computational
complexity [486].

On the contrary, DNS directly discretizes the raw pore space into computing elements
by preserving pore geometry (voxels can be used as the computing elements), and then
transport equations (such as Navier-Stokes or Laplace equations) are numerically solved
or approximated on the computational meshes [11, 48]. Lattice Boltzmann method (LBM),
finite element method (FEM) and finite volume method (FVM) are commonly used to
approximate or solve transport equations at the pore scale. Generally, DNS can provide
direct insight into the impact of pore microstructure on transport properties, but it has
severe limitations in computational intensity. The 3D digital microstructure with a large
representative size and high resolution usually contains hundreds of millions, even billions
of computational elements (or voxels). As a consequence, massively parallel programming,
long computing time, high-performance computing (HPC) platform and large data storage are
usually required to run such huge numerical simulations [283, 384]. The compute-intensive
nature of DNS makes it difficult to accommodate all the details of pore microstructures and
involve all the relevant transport physics.

Generally, it is a ‘brute-force’ way to explore the relationships between microstructural
characteristics and transport properties by solely using pore-scale simulations. Currently,
many attempts have been made to build the surrogate microstructure-property models through
artificial intelligence, in order to rapidly and accurately predict macroscopic properties from
the measurable microstructure informatics. Due to the powerful capacities in massive data
analysis and hidden rule exploration, machine/deep learning algorithms are becoming more
and more popular in this field, especially the convolutional neural network (CNN). Typically,
CNN [3] is capable of automatically extracting task-related features from spatial data such as
images through its convolution layers, avoiding the manual feature selection procedure, and
it has achieved tremendous success in the computer vision field. Therefore, many similar
studies have been conducted to construct CNN-based surrogate models for permeability
prediction, where the 2D or 3D digital images of porous microstructures are directly used as
the input data [419, 479, 424, 227, 436, 196, 434]. Besides, CNN has also been applied to
establish the linkages between microstructures and other macroscopic properties/behaviors
for various heterogeneous materials, including effective thermal conductivity [468], effective
elastic moduli [73, 275], effective diffusivity [478], P/S-wave velocity [230], formation factor
[366] and fluid velocity filed [382].

However, several critical issues and challenges have not been properly solved for the
CNN-based surrogate modeling of physical properties in porous media research. (1) Dimen-
sional homogeneity problem. In some studies [275, 227, 436], the ‘linkages’ between digital
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images and physical-property variables are directly built through CNN without nondimen-
sionalization process, which is contrary to the principle of dimensional homogeneity. (2)
Computational problem. High computational complexity and excessive memory requirement
are the inherent defects of the 3D CNN, which strictly limit both the quality and quantity
of 3D training images. However, a reliable prediction model needs a large amount of repre-
sentative elementary volumes (REVs) with high quality to feed it, and such high-intensive
computation usually demands an HPC platform. (3) Feature extraction problem. Kernels
(convolving windows) are applied across the input image to extract local features, but the
internal connection of components as well as the relative spatial relationships are not cap-
tured by the convolution layers of CNN. It means that the global features of porous media
(such as long-distance connectivity and topological information) that are crucial to transport
properties are rarely used for permeability prediction by CNN. (4) Lack of spatial invariance.
The internal representation of a pore microstructure in CNN is not independent of view angle,
which means the rotation of the input image can affect the prediction result. This issue can
be solved through data augmentation, but the computational expense of DNN model training
will be dramatically increased. (5) Overfitting problem. The CNN model is easily over-fitted
due to a large database for training. (6) Low-level interpretability. The complicated CNN
architecture, formed by a deep stack of distinct layers, is often referred to as a ‘black box’,
because it is difficult to understand the underlying mechanics and no inherent way exists to
interpret how features influence a particular prediction. (7) Lack of flexibility. Once a CNN
model is fitted for physical property prediction, both the size and resolution of input images
are fixed, which is very inflexible for the common cases where adjustments of image size or
resolution have to be made without losing information.

According to the discussion above, it is clear that the usage of CNN doesn’t contribute
to any better understandings of transport/mechanical behaviors within pore microstructures
because of its poor explainability. In contrast, simple regression algorithms, including linear
regression, decision tree, random forest, support vector machine and shallow neural network,
are much easier to be interpreted than CNN, which can be used to reveal the underlying
mechanisms of the microstructure-property linkages. Additionally, the manual feature-
extraction free of CNN doesn’t constitute a comparative advantage over the other machine
learning algorithms that require predefined feature variables, especially in porous media
research. Because various morphological descriptors have already been properly designed in
the literature to statistically characterize pore microstructures (as listed in Table 7.1), and
they can be used as the input features to construct microstructure-property relationships
through machine learning. Compared with the unreadable features extracted by CNN,
morphological descriptors characterize porous microstructures from multiple perspectives
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with clear physical meanings, and these descriptors can compose the feature pool to construct
machine learning-based surrogate permeability models. Feature selection can be conducted
to keep the morphological descriptors that are significant to permeability and remove the
abundant/irrelevant ones, through which the microstructural complexity is reduced to a limited
number of descriptive parameters related to permeability, and then a permeability prediction
model with excellent performance can be achieved, as illustrated in Figure 7.1. What’s more
important is that the dependence of permeability on microstructural characteristics can also
be well interpreted through the feature selection process, providing a deep insight into the
implicit microstructure-permeability relationship.

Although simple supervised machine learning algorithms were adopted to model effective
properties of porous media in previous studies [450, 461, 128, 437, 376], they didn’t achieve
the purpose to yield insightful understandings of the linkages between macroscopic properties
and microstructural characteristics, and the corresponding pore-scale behaviors are still poorly
understood. This study distinguishes itself from previous efforts in five aspects: (1) Plenty
of digital rocks with diverse morphologies were acquired from the advanced microscopy
imaging technique (micro-CT) at high-resolution levels, which are used to construct the
predictive model to ensure its generalization ability. (2) A large number of 3D microstructure
samples are stochastically reconstructed by preserving statistical equivalence, morphological
similarity and transport properties, which are used as the raw data to capture the stochasticity
in permeability modeling. (3) A wide variety of morphological descriptors are collected
through an extensive literature survey for the purpose of comprehensive characterization of
pore microstructures. (4) High-fidelity simulations of pore-scale fluid flow passing through
the representative elementary volumes (REV) of digital microstructures are performed on
the HPC platform, to calculate permeability values. (5) Feature selection is conducted to
gain the optimal feature subset for predictive model construction and enhance the model
interpretability.

Basically, a data-driven framework is developed in this chapter to study the dependence
of macroscopic property on microstructural characteristics, which is generally applicable
to analyze different physical (hydraulic, thermal, electrical, diffusional and mechanical)
properties of porous media, although only permeability is studied here. The remaining
parts of this chapter is organized as follows: In Section 7.2, the methodology of surrogate
permeability modeling through feature selection and machine learning are systematically
presented, and the raw datasets are well prepared and organized, including microstructure
sample generation, morphological descriptor extraction and permeability evaluation; In
Section 7.3, three types of feature selection are briefly introduced, and various feature
selection methods are tried to pick out the microstructure characteristics that are significant
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to permeability; In Section 7.4, two permeability prediction models are constructed through
wrapper type feature selection and shallow neural networks, where the dependence of
permeability on microstructure characteristics is deeply explained, and their predictive
performances are also compared with that of two analytical/empirical models; The main
contributions and key findings are summarized in Section 7.5.

7.2 Methodology and data preparation

In this study, multiple techniques are fused into the data-driven framework to investigate
the microstructure-permeability relationship and to construct the predictive model for nat-
ural porous rocks, as illustrated in Figure 7.1. There are six components involved in this
framework, including digital rock acquirement, stochastic microstructure reconstruction,
statistical characterization of pore microstructures, pore-scale simulation, feature selection
and machine learning-based surrogate modeling.

7.2.1 Digital rock acquirement

Various types of porous media (mainly porous rocks) are used in this work, to explore the
relationship between microstructural characteristics and intrinsic permeability, including
sandstones, carbonate rocks, sand packs, synthetic silicas and others. The pore microstruc-
tures within them are distinct in terms of pore size, shape, geometry and topology, with a
wide porosity range from 6.85% to 50.73%, based on which a generalized prediction model
of permeability is expected to achieve with high reliability.

Advanced microscopy imaging facilities, such as the micro-CT scanner, are capable of
obtaining deep insight into the opaque porous rocks, to provide 3D digital visualization of
internal structures at the micro-scale. The raw (micro-CT) scanning image is usually in a
grayscale or color mode with continuous pixel/voxel intensities, as can be seen in Figure 7.2a.
It is necessary to convert the raw scanning image from the continuous model to a discrete
form that permits quantitative characterization of the porous microstructures and subsequent
pore-scale simulation of fluid flow. As shown in Figure 7.2, the raw micro-CT scanning
image of a Mt. Simon sandstone sample [243] is taken as the example to illustrate image
processing and segmentation, and a segmented image in binary form is finally obtained by
separating the pore space from the solid matrix. The segmented image, also called digital
microstructure, allows statistical quantification of the pore network, and it also provides
high-fidelity meshes for numerical simulations of fluid flow at the pore scale, permitting one
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Fig. 7.1 The data-driven framework to investigate the microstructure-property relationship
and to construct the permeability prediction model for porous rocks, which primarily contains
six modules: (1) Digital rock acquirement, (2) Stochastic microstructure reconstruction, (3)
Microstructural characterization, (4) Feature selection, (5) Pore-scale simulation (LBM), and
(6) Predictive model construction
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to evaluate transport properties. More details on image processing and segmentation can be
found in relevant references [388, 206].

Fig. 7.2 Illustration of image processing and segmentation: (a) The raw micro-CT scanning
image of a Mt. Simon sandstone sample (resolution is 2.80 µm, and image size is 4803

voxels); (b) The grayscale image after denoising and enhancement; (c) The histogram of
voxel grayscale value; and (d) The binary image segmented by a global thresholding method
(pore space is shown in white, and solid matrix is shown in black)

It should be noted that the micro-CT scanning images used here are collected from several
open-access databases, and these images are processed and segmented by using ImageJ
[207], a popular image processing tool in the DRP community. Due to the high costs of rock
core drilling and microscopy imaging, there are only a limited number of 3D digital rock
samples available. The number of micro-CT scanning images is 185, covering 37 types of
porous media with distinct morphological features, and parts of them are shown in Figure
7.8 and 7.9.
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7.2.2 Stochastic microstructure reconstruction

The transport properties of porous media usually exhibit strong uncertainty, due to the
random distribution of pore bodies. The limited number of digital rocks obtained from
micro-CT scanners are far from adequate to involve all possible morphology configurations
of pore microstructures, much less to reveal the stochastic nature of porous rocks. In
general, the complete computational dataset [141] is an ensemble of representative/statistical
volume elements that cover all morphological possibilities and share the same averaged
characteristics, based on which a generalized prediction model can be achieved with high
reliability.

(a) φ=15.6% (b) φ=20.9% (c) φ=24.5%

(d) φ=15.6% (e) φ=20.9% (f) φ=24.5%

Fig. 7.3 Stochastic microstructure reconstruction (image size: 3203 voxels): (a), (b) and (c)
are the original microstructures of Fontainebleau sandstones with different porosities φ ; (d),
(e) and (f) are representative reconstruction results

Stochastic microstructure reconstruction [495, 335] is an effective and economical ap-
proach to generating statistically equivalent samples of porous media, and the numerous
reconstructed samples can be used to investigate the microstructure-property relationships
when the availability of real porous media samples is limited. Here, a novel reconstruction
method developed in Chapter 4 [141] is applied to generate 3D pore microstructure samples,
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and the reconstructed samples have been proved to be able to preserve statistical equivalence,
morphological similarity, long-distance connectivity and transport properties. As can be
seen in Figure 7.3, Fontainebleau sandstone samples with different porosities are taken as
examples to illustrate stochastic microstructure reconstruction using the novel method. This
method is used to generate 1270 pore microstructure samples (with image size varying
from 2003 to 3203 voxels), guided by the morphological information extracted from the real
digital microstructures. The real digital rocks together with the reconstructed microstructure
samples compose the raw dataset for subsequent analyses, which contains 1455 samples in
total.

7.2.3 Pore microstructure characterization

The intrinsic permeability of a porous medium only depends on its microstructural charac-
teristics, therefore, it is an essential prerequisite to quantitatively characterizing the pore
microstructure in an explicit expression, so as to derive an interpretable prediction model. The
pore space inside natural porous rock usually exhibits great disorder and strong randomness,
which needs to be quantitatively characterized in statistical terms. Through statistical charac-
terization [443], the microstructural complexity of a porous medium is reduced to a small set
of morphological descriptors related to macroscopic physical properties. A broad range of
microstructure characterization approaches have been developed for pore media, including
geometrical measurement, topological representation, fractal analysis and others. As listed
in Table 7.1, a wide variety of morphological descriptors have been collected through an
extensive literature study in Chapter 2, and they will be used as the microstructural features
for permeability prediction. About half of these descriptors were used to model the transport
properties of porous media in previous studies, and corresponding permeability prediction
models are also provided in Table 7.1.

Various types of morphological descriptors characterize pore microstructures from dif-
ferent perspectives, and they can be roughly categorized into four levels. Porosity and
specific surface area are the typical descriptors at the first level to simply represent the
global/mean properties of porous microstructures via single numbers, but they ignore the de-
tailed morphological features of pore networks that may have significant effects on transport
processes. When it comes to the second level, local or size-dependent features are measured
by morphological descriptors such as local porosity distribution, coarseness, local percolation
probabilities, and lacunarity. As to the third level, geometric attributes of porous media
are quantified from various aspects such as pore shape, pore size and surface roughness.
The frequently-used descriptors include pore/throat size distribution, mean curvature, chord
length distribution, lineal path function, and spatial correlations functions. The fourth level
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Table 7.1 The commonly used morphological descriptors for statistical microstructure char-
acterization and permeability (κ) modeling

Morphological descriptor
(Determination method)

Data
dimension

Empirical or
analytical model

Representative
reference

D1: Absolute porosity φ 1 κ =
ξ 2D2

pφ3

180(1−φ)2 [71]
D2: Connected porosity φc 1 κ ≈ φcd2

t [152]
D3: Specific surface area S 1 κ = φ 2/(cS2F) [278]
D4: Integral of mean curvature m2 1 – [267]
D5: Integral of total curvature m3 1 – [460]
D6: Geometrical tortuosity τg
(Direct shortest path search method) 1 κ = φ 3/(cS2τ2

g ) [246] and [74]

D7: Geometrical tortuosity τg
(Skeleton shortest path search method) 1 κ = φ 3/(cS2τ2

g ) [142] and [428]

D8: Constriction factor β

(Mercury intrusion porosimetry simulation) 1 κ = L2
hφcβ/(8τ2

g ) [195] and [34]

D9: Constriction factor β

(Morphological opening method) 1 κ = L2
hφcβ/(8τ2

g ) [34] and [121]

D10: Mean chord length ⟨z⟩ 1 κ = φ⟨z⟩2

32τg

(
⟨z2⟩
2⟨z⟩2 +∑⟨cosϑm⟩

)
[92] and [39]

D11: Average pore coordination number η 1 κ = 2πwd4
h (η −1.5)b /l2 [197]

D12: Average pore size d (Continuous method) 1 κ = cd2/F [321]
D13: Average pore size d (Discrete method) 1 κ = cφd2 [194]
D14: Average pore size d
(Morphological opening method) 1 κ = cd2/F [349] and [121]

D15: Average pore size d (Random point method) 1 κ = 0.8391G−1.3334φ 2d2 [441]
D16: Average pore size d (Skeleton method) 1 κ = φ 5.5d2/5.6 [115]
D17: Average pore throat size dt 1 κ = d2

t /(226F) [278]
D18: Effective pore size dc 1 κ = d2

c φ/((1−φ)2cτ2
g ) [46]

D19: Hydraulic pore diameter dh 1 κ = d2
h φ/(cτ2

g ) [29]
D20: Characteristic length I la 1 – [92]
D21: Characteristic length II lb 1 κ ≤ 2l2

b/(3(1−φ)2) [92]
D22: Characteristic length III lc 1 – [92]
D23: Characteristic length IV ld 1 ln(κ) = a+bln(φ)+ cln(ld) [208]
D24: Average connectivity distance le 1 – [242]
D25: Characteristic length V L⋆ 1 – [186]
D26: Fractal dimension α 1 κ = παd4

max/(128A(4−α)) [496]
D27: Succolarity ψ 1 κ = 0.0239e23.98ψ [485]
D28: Lacunarity δ (ε) 10 – [327]
D29: Chord length distribution ρ(z) 70 – [319]
D30: Lineal path function L(z) 50 – [186]
D31: Spherical contact distribution function HS(d) 16 – [267]
D32: 1st Minkowski function m0(d) 16 – [460]
D33: 2nd Minkowski function m1(d) 16 – [18]
D34: 3rd Minkowski function m2(d) 16 – [460]
D35: 4th Minkowski function m3(d) 16 – [18]
D36: Two-point correlation function S2(r) 50 – [46]
D37: Two-point cluster correlation function C2(r) 50 – [216]
D38: Normalized auto-covariance function R(r) 50 – [33]
D39: Pair connectivity function H(r) 50 – [242]
D40: Surface-surface correlation function FSS(r) 20 – [377]
D41: Surface-void correlation function FSV(r) 50 – [378]
D42: Local porosity distribution µ(φ̃ ,L = 50) 100 – [44]
D43: Local porosity distribution µ(φ̃ ,L = L⋆) 100 – [186]
D44: Local percolation probabilities λ (φ̃ ,L = 50) 50 – [101]
D45: Local percolation probabilities λ (φ̃ ,L = L⋆) 50 – [101]
D46: Total fraction of percolating cells T1(L) 75 – [262]
D47: Total fraction of percolating cells T3(L) 75 – [186]
D48: Pore coordination number distribution O(η) 20 – [197]
D49: Pore size distribution p(d)
(Continuous method) 50 – [321]

D50: Pore size distribution p(d) (Discrete method) 30 – [194]
D51: Pore size distribution p(d)
(Morphological opening method) 20 – [121]

D52: Pore size distribution p(d)
(Random point method) 30 – [441]

D53: Pore size distribution p(d) (Skeleton method) 30 – [115]
D54: Pore throat size distribution p(dt) 15 – [281]
D55: Coarseness C(L) 100 – [364]
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focuses on the topological characteristics of pore microstructures, which is related to long-
distance connectivity and percolation of pore networks. Total curvature (Euler characteristic),
two-point cluster correlation function, pair connectivity function, total fraction of percolating
cells and succolarity are commonly-used indexes of connectivity. Pore coordination number
represents the number of adjacent pore bodies connected to a specific pore. Besides, geomet-
rical tortuosity characterizes the sinuosity and complexity of percolation paths inside porous
media, while constriction factor quantitatively represents cross-sectional variation along pore
channels.

All of the morphological descriptors listed in Table 7.1 are extracted from the digital
microstructure dataset with 1455 samples, and they are going to be the possible predictor
variables to feed the machine learning model for permeability evaluation, as illustrated in
Figure 7.1. The results of 12 representative descriptors are given in Figure 7.4 and 7.5.
Some morphological descriptors have multiple definitions, leading to various determination
methods, so different determination methods are used here to achieve a microstructure
characterization as comprehensively as possible.

It should be noted that image resolutions of the digital microstructure samples are all
around 5 µm, which means the microstructural analyses here are conducted in voxel domains
with different length scales. For the dimensionless descriptors, such as porosity, geometrical
tortuosity, constriction factor, and poor coordination number, no additional data process is
required. As to the descriptors with length dimension, such as specific surface area, mean
curvature, average pore size and characteristic length, they are all quantified by using voxel
as the basic length unit here, instead of converting them into physical length scale. Because
it is easy to achieve the seamless combination between the morphological descriptors in the
voxel length unit and the LBM permeability in the lattice length unit, just by setting the
lattice length equal to the voxel size for each porous media sample.

7.2.4 Permeability evaluation via lattice Boltzmann simulation

Fore pore-scale simulation of fluid flow, lattice Boltzmann method (LBM) is more rigorous
than pore network modeling (PNM), and the former can provide more reliable permeability
evaluations for porous media samples [486]. Besides, the lattice Boltzmann simulation is
directly performed on voxel domain of the digital microstructure without simplification, and
the computed permeability values in the lattice unit can be directly linked to the morphological
descriptors in the voxel unit, avoiding additional data conversion/processing. Therefore,
LBM is adopted in this work to evaluate the intrinsic permeabilities of the set of digital
microstructure samples. Further details about the numerical methodology of LBM can be
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(a) Specific surface area (b) Geometrical tortuosity

(c) Constriction factor (d) Average pore throat size

(e) Characteristic length (f) Fractal dimension

Fig. 7.4 Representative morphological descriptors extracted from the dataset with 1455
microstructure samples



244
Dependence of permeability on microstructural characteristics of porous rocks: Investigation

and modeling through feature selection and machine learning

(a) 2nd Minkowski function (b) Two-point correlation function

(c) Pair connectivity function (d) Chord length distribution

(e) Total fraction of percolating cells (f) Pore size distribution

Fig. 7.5 Representative morphological descriptors extracted from the dataset with 1455
microstructure samples
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found in the relevant literature [252], and the procedures to evaluate intrinsic permeabilities
of porous media through lattice Boltzmann method are well explained in Chapter 6.

Driven by a constant pressure difference between the inlet and outlet faces, LBM is
performed on the cubic digital rock sample, to simulate a single-phase fluid flow with a low
Reynolds number (Re ≪ 1) passing through it. When the fluid flow reaches a steady state, it
can be described by Darcy’s law, and the intrinsic permeability κ of the porous medium is
quantified by the following equation:

κ =− µ

∇p
⟨u⟩ (7.1)

where ∇p is the pressure gradient along the direction of macroscopic fluid flow, µ is the
dynamic viscosity of the fluid, and ⟨u⟩ denotes the volume-averaged fluid velocity across the
simulation domain. The Mt. Simon sandstone sample in Figure 7.2 is taken as the example
to illustrate the lattice Boltzmann simulation, as shown in Figure 7.6.

Fig. 7.6 Evaluation of intrinsic permeability through lattice Boltzmann simulation: (a) The
3D digital microstructure of a Mt. Simon sandstone sample; (b) The boundary conditions;
(c) The steady-state fluid velocity field inside the porous medium

The permeability value computed from lattice Boltzmann simulation is in dimensionless
lattice unit, which can be converted to the physical unit via the following equation [425]:

κphysical = κlattice

(
Lphysical

Llattice

)2

(7.2)

where κphysical and κlattice are the permeability values in physical and lattice unit, respectively;
and Lphysical and Llattice are the lengths of any identical feature in the physical sample and the
LBM domain, respectively. Since the numerical grid of LBM is coincident with the voxel
grid in this study, so the value of Lphysical

Llattice
is equal to the image resolution.
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For each microstructure sample, lattice Boltzmann simulations of fluid flow are conducted
along with three-axial directions, and the average value of three directional permeabilities is
used to investigate the microstructure-permeability relationship. As shown in Figure 7.7, the
permeability values of the digital microstructure dataset with 1455 samples are given both in
the lattice and physical unit, and the permeability values span in a broad range over 4 orders
of magnitude. As mentioned above, the permeability values in the lattice unit will be used as
the response variable to fit the machine learning-based prediction model (as illustrated in
Figure 7.1).

(a) Permeability values in the lattice unit

(b) Permeability values in the physical unit

Fig. 7.7 The intrinsic permeability results of the set of 1455 microstructure samples evaluated
from lattice Boltzmann simulations



7.2 Methodology and data preparation 247

Fig. 7.8 Digital rock samples and lattice Boltzmann simulations: The micro-CT scanning
images of (a) Ketton carbonate, (d) Fontainebleau sandstone, (g) Savonnières carbonate,
and (j) Leopard sandstone; (b), (e), (h) and (k) are the segmented images (digital pore
microstructures); (c), (f), (i) and (l) are the flow velocity fields at steady states
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Fig. 7.9 Digital rock samples and lattice Boltzmann simulations: The micro-CT scanning
images of (m) Bentheimer sandstone, (p) Berea sandstone, (s) Massangis Jaune carbonate,
and (v) Gildehauser sandstone; (n), (q), (t) and (w) are the segmented images; (o), (r), (u)
and (x) are the flow velocity fields at steady states
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7.3 Feature selection

It is well-known that the intrinsic permeability of a porous medium only depends on its
microstructural characteristics [29, 142], but some morphological descriptors (in Table 7.1)
statistically characterizing microstructural complexity may be irrelevant or less significant to
permeability. The unnecessary involvement of irrelevant and abundant features can increase
the model complexity and make it harder to interpret. On the other hand, a dumb regression
model can consequently be constructed with lower accuracy and reliability in prediction.
Therefore, feature selection is an indispensable data preprocessing for predictive model
construction, where the most relevant and significant features are picked out from a large set
of morphological descriptors in Table 7.1.

For a dataset of m observations {xi,κi} (i= 1, ... m) consisting of n input feature variables
xi, j ( j = 1, ... n) and a output permeability value κi, various methods can be applied to pick
out the feature variables xi, j that are important to the response κi. Generally, feature selection
techniques [168, 270] can be divided into three categories from the perspective of selection
strategy, which are the filter, wrapper and embedded methods. Among them, the filter type
feature selection is independent of the training algorithm, while the wrapper and embedded
methods interact with a particular learning process. All of these methods are tried here to
undertake the feature selection task due to their wide applicability.

The objective of feature selection in this work is threefold: (1) Enhancing interpretability
of the implicit regression model to obtain deep insights into the underlying dependence of
permeability on microstructural characteristics; (2) Reducing the computational complexity
and avoiding overfitting to built a cost-effective predictor by using the selected subset of
features; (3) Achieving a generalized and sensible model with the optimal performance in
permeability prediction.

7.3.1 Filter type feature selection

Filter type feature selection [168, 270] assesses feature importance according to certain
data characteristics, so it is unrelated to any learning algorithms. Typically, a filter method
consists of two steps: feature importance ranking and feature filtering. Different feature
evaluation criteria have been proposed to rank feature importance, such as feature correlation,
mutual information, the feature discriminative ability, the feature ability to maintain the data
manifold, and the feature capacity to reconstruct the raw data. Four representative criteria of
feature importance evaluation are briefly introduced as follows:
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(i) Correlation coefficient

R
[
x j
]
=

∑
m
i=1(xi, j − x j)(κi −κ)√

∑
m
i=1(xi, j − x j)2 ∑

m
i=1(κi −κ)2

(7.3)

where the bar notation stands for an average over the index j. The value of R
[
x j
]

is
between -1 and 1, and a value close to -1 or 1 indicates strongly linear dependency
between a feature variable and the target. In additional to Pearson’s correlation, other
similar criteria such as Kendall’s and Spearman’s correlation can also be used.

(ii) RReliefF importance weight
The RReliefF algorithm [375] evaluates the feature importance weight W

[
x j
]

accord-
ing to the capacity of the feature vector x j to distinguish the response values. It punishes
the feature for not distinguishing different response values and rewards the features for
not separating similar response values, providing the following probabilities:

W
[
x j
]
= P(similar x j | dissimilar κ)−P(similar x j | dissimilar κ) (7.4)

The RReliefF algorithm is capable of revealing the conditional dependencies between
features, from which a unified evaluation of feature importance to response values can
be obtained.

(iii) F-test importance score
F-test [22] is a type of statistical test using the F-statics to test the null hypotheses H,
which can be used to examine the significance of each feature. An F-statistic F is the
ratio between the variance of two models, given by

F =−Between-group varaince
Within-group varaince

(7.5)

which tests the null hypothesis (that the responses value grouped by feature variables
are extracted from populations sharing the same mean) with respected to the alternative
hypothesis (that these populations do not share the same mean).

The p-value of the F-statistics is used to indicate feature importance, providing the
largest probability under the null hypothesis H:

p = Pr(F ≥ t | H) (7.6)
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where t is the observed value. The feature importance score is given in the form of
−log(p), where a lager score means the corresponding feature is significant to the
response.

(iv) Nearest neighbor-based feature weight
Neighborhood component analysis (NCA) [491] selects features through optimizing
the prediction accuracy of nearest neighbor regression, and the corresponding objective
function for minimization is expressed as follows:

f (w) =
1
m

m

∑
i=1

li +λ

n

∑
j=1

w2
j (7.7)

where w is the weighting vector indicating feature importance, li is a loss function
measuring the disagreement between the target κ and prediction κ̂ , the regularization
term λ ∑

n
j=1 w2

j is to alleviate overfitting, and the regularization parameter λ can be
tuned via cross validation.

7.3.2 Embedded type feature selection

Embedded methods [168, 270] conduct feature selection during the process of model fitting,
which are deeply embedded in specific learning algorithms such as decision tree, random
forest and Gaussian process regression.

(i) Decision tree
During the training process of a decision tree model [289], feature importance is
evaluated from the sum of changes in the mean squared error (MSE) due to splits on
each feature and the number of branch nodes. This sum is taken over all splits at each
branch node, where the MSE is estimated as node error weighted by node probability.
And then, feature importance associated with the corresponding split is calculated as
the difference between the MSE for the parent node and the total MSE for children
nodes.

(ii) Random forest
Random forest [57] is a predictive model composed of a weighted combination of
multiple decision trees, where feature importance can be evaluated by permutation
to measure the influence degree of a feature variable in predicting the response. If a
feature is influential to the response, then permuting its values will affect the prediction
error; while if a feature is uninfluential, then permuting its values has an ignorable
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effect on model prediction. Feature importance is computed as the difference of model
prediction errors before and after variable permutation.

(iii) Gaussian process regression
Gaussian process regression (GPR) [395] is a non-parametric Bayesian approach
towards regression problems, where feature importance can be evaluated from cor-
responding separate length scales of the kernel function. In the case of the squared
exponential kernel function, a large value of the length scale indicates the feature
variable is not influential on the model response. The feature weights are computed as
the exponential of the negative length scales. The values of normalized feature weights
are constrained between 0 and 1, and the irrelevant features have weights close to 0.

7.3.3 Wrapper type feature selection

Compared with the above-introduced filter and embedded methods, wrapper methods are
applicable to heterogeneous feature selection. Considering the dimension difference between
morphological descriptors listed in Table 7.1, wrapper type feature selection is worth trying.
Wrapper methods [244, 168, 169] assess the quality of feature selection according to the
predictive performance of the predefined learning algorithm. It searches the optimal feature
subset through evaluating the possible combinations of features greedily based on a certain
evaluation criterion. For regression problems, the coefficient of determination R2, the root-
mean-squared error (RMSE) and the mean-absolute error (MAE) can be used as the metrics to
evaluate the model performance, which are mathematically expressed as following equations
respectively:

R2 = 1− ∑
m
i=1(κi − κ̂i)

2

∑
m
i=1(κi −κ)2 (7.8)

RMSE =

√
1
m

m

∑
i=1

(κi − κ̂i)2 (7.9)

MAE =
1
m

m

∑
i=1

|κi − κ̂i| (7.10)

where κi and κ̂i are the target and predicted permeability respectively corresponding to the
i-th sample, and κ is the average value of the target permeability. R2 quantifies the degree to
which the feature variables explain the variation of the response, and its value ranges from 0
to 1, where a larger value indicates a better model performance.

Exhaustive search is a ‘brute-force’ strategy in wrapper type feature selection, which
usually requires enormous amounts of computation, especially when the number of feature
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variables is large. By contrast, greedy search strategies are of lower computation cost, which
can be further divided into two categories: forward selection and backward elimination. Here,
the wrapper method with sequential forward adding strategy [160] is adopted, as explained
in Figure 7.10. Starting with a null model, each morphological descriptor in Table 7.1 is
used individually to fit the machine-learning model, and the descriptor that achieves the best
predictive performance (the maximum R2 value) is picked out as the first selected feature. A
new machine-learning model with two features is then fitted by sequentially combining the
previously selected feature with one of the remaining descriptors, and the descriptor resulting
in the largest R2 is selected as the second feature. The above procedure is repeated iteratively
until no improvement of predictive performance or reaching the desired number of included
features, and a subset of features is consequently selected through this performance-driven
process.

Fig. 7.10 The flow chart of the wrapper method to select features through a sequential forward
adding strategy

7.3.4 Feature selection results

As listed in Table 7.1, the first 27 morphological descriptors are in the format of a single
number, while the remaining 28 descriptors are in the form of distributions with different
dimensions. Generally, the filter and embedded methods are not applicable to feature
selection with heterogeneous data, and the wrapper type feature selection possesses strong
versatility. Considering the above situation, feature selection is firstly performed on the first
27 morphological descriptors by using different methods, and later the wrapper method is
applied to select features from the entire feature pool with 55 descriptors in Section 7.4.

The results of feature importance ranking are estimated for the first 27 descriptors by
using four different filter methods, as shown in Figure 7.11. Due to the difference of feature
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(a) Pearson correlation coeffcients (b) RReliefF importance weights

(c) F-test importance scores (d) NCA feature weights

Fig. 7.11 The feature importance ranking results estimated from four filter methods

evaluation criteria, the importance ranking results estimated from these methods are not
entirely consistent with each other, but the overall assessment results are similar. In all of the
four filter methods, porosity (D1) is identified as one of the most important microstructure
characteristics to permeability (κ), which is in accord with common understandings of porous
media. However, specific surface area (D3) is evaluated to be an insignificant/irrelevant
feature, which is contrary to the basic view that specific surface area is critical to permeability
of porous media. Filter methods evaluate the importance of feature variables individually,
but a feature variable that is recognized to be unimportant by itself can be significant to the
response when used with other features [168]. Filter methods are unable to detect the joint
importance of multivariable features, which is one of the main drawbacks.

Three embedded methods are used to assess the importance weights of the first 27
morphological descriptors to permeability, and corresponding results are plotted in Figure
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(a) Feature importances in regression tree (b) Feature importances in random forest

(c) Feature weights in GPR

Fig. 7.12 The feature importance ranking results estimated from three embedded methods

7.12. Because different learning algorithms are embedded in these three feature selection
processes, the importance ranking orders of morphological descriptors are inconsistent.
Similar to the results of filter methods, porosity (D1) is also selected as an important
microstructure feature by embedded methods, but specific surface area (D3) is assigned with
low importance scores, especially in random forest and GPR models. Besides, embedded
type feature selection is associated with specific learning algorithms, which is inflexible for
prediction model construction.

The intended purpose of feature selection has not been achieved by using the filter or
embedded methods. On the one hand, not all of the morphological descriptors in Table 7.1 are
covered; On the other hand, feature importance is not reasonably assigned to some particular
descriptors. This task will be continuously undertaken through wrapper type feature selection.
Because the wrapper method and the choice of learning algorithms are interrelated to each
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other, the feature selection results are put together with prediction model construction in the
next section.

7.4 Results and discussion

7.4.1 Choice of learning algorithm

The methodology of permeability prediction has been illustrated in Figure 7.1, where the
microstructure-permeability relationship is implicitly built in a supervised learning manner.
Although deep learning algorithms such as CNN have an acceptable performance on surrogate
modeling, they are usually too complicated to provide a clear interpretation of the underlying
linkage between microstructure characteristics and permeability. Generally, prediction
accuracy increases with model complexity, but at the expense of explainability [253]. Besides,
blind pursuit of model accuracy also tends to overfit the training data, lowering the prediction
performance on unseen data.

There are a number of alternative regression algorithms which have better explainability,
such as linear regression [314], decision tree [289], random forest [57], support vector
machine [421] and shallow neural network [494]. To identify the important features from
the 55 morphological descriptors via wrapper type feature selection, the chosen learning
algorithm should be able to deal with high-dimensional data, thereby avoiding the influence
of model incapability on large data processing. Besides, the model responses of the chosen
learning algorithm should also be sensitive to influential feature variables, so as to capture
feature significance or insignificance.

(a) Cumulative features (b) Individual feature

Fig. 7.13 Comparison of regression performances based on different learning algorithms
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By using the entire data with 1455 observations, the model regression performances
(measured by R2) corresponding to 5 learning algorithms are preliminarily investigated,
and the results are plotted in Figure 7.13. Firstly, regression models are fitted by gradually
increasing the number of input features, where all of the morphological descriptors in Table
7.1 are sequentially added to the feature set. Secondly, each descriptor is used as an individual
feature to feed the regression model.

As can be seen in Figure 7.13a, the shallow neural network model is not only able to
cope with high-dimensional data, but it can also achieve the best regression performance
when suitable features are given. The other four models are inferior to the shallow neural
network in terms of regression performance, among which linear regression is failed to model
high-dimensional data and support vector machine requires many input features to reach
an acceptable performance. In Figure 7.13a and b, the curves of regression performance
corresponding to shallow neural network fluctuate strongly, which indicates the model
response is sensitive to input feature variables. According to the above comparative analysis,
the shallow neural network is chosen as the supervised learning algorithm to undertake the
feature selection task through the wrapper method. The selected features are then used to
implicitly establish the microstructure-permeability linkage for prediction purpose. What’s
more, a good explanation of how microstructural characteristics determine the intrinsic
permeability of a porous medium can be obtained as well.

7.4.2 Prediction model construction

A shallow neuron network model with two hidden layers is used to explore the dependency of
permeability on microstructural characteristics, where and the numbers of neurons in the 1st
and 2nd hidden layers are 40 and 20 respectively. More detailed information on the shallow
neuron network model is provided in the Appendices of this chapter.

After data normalization, the entire dataset is randomly split into three subsets: training
(60%), validation (20%) and testing (20%). The training dataset is used to fit the neuron
network, where network parameters are adjusted to minimize regression error. The validation
dataset is used to measure network generalization, and the training process is halted when
generalization stops improving, so as to avoid overfitting. The testing dataset is used to
provide an independent measure of the model performance on new observations. Due to the
variation of initial conditions (such as initial network parameters and data divisions), training
the neural network model multiple times will generate different results. Therefore, in each
case of inputted features, the neural network model is are fitted for 50 times, and the average
output is used to evaluate the predictive performance during the process of wrapper type
feature selection.
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Fig. 7.14 Regression performances of the shallow neuron network models trained by using
individual features

Figure 7.13b is redrawn into a bar graph, as shown in Figure 7.14. The first 27 morpho-
logical descriptors in Table 7.1 are in the format of a single number, which are shown as blue
bars, and we call them blue descriptors for convenience. As to the remaining 28 morpho-
logical descriptors, they are in the format of distribution, which are called green descriptors
here. Roughly, individual utilization of a green descriptor can yield better predictive perfor-
mance than a blue descriptor, because the former contains more predictor variables than the
latter. However, most of the morphological descriptors yield poor permeability predictions
(R2 < 0.8) when individually using them, which may imply morphological descriptors should
be used together for better characterization of porous microstructures.

As can be observed in Figure 7.13a, the regression performance improving with the num-
ber of used features is the main trend, but some morphological descriptors play negative roles
in permeability prediction, leading to local fluctuations of the performance curve. Therefore,
feature selection is a necessary operation to obtain the optimal subset of morphological
descriptors that are relevant and significant to permeability. Besides, the maximum value of
R2 is 0.9812, and it measures the predictive performance of the neural network model trained
by using the first 26 descriptors in Table 7.1, which may suggest an excellent prediction
model can be achieved by only using the blue descriptors.

Permeability prediction model I

In this subsection, feature selection is restricted to the blue descriptors by using the wrap-
per method, aiming to build a cost-effective prediction model with fewer input variables.
According to Figure 7.14a, absolute porosity (D1) is selected in the first step, because it
yields a neural network model with the best predictive performance (R2 = 0.7209) among
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the blue descriptors. The importance of D1 to permeability is identified by all types of
feature selection, including filter, embedded and wrapper methods. In the second step, D1 is
combined with the remaining descriptors to fit neural network models, and the predictive
performances of these models are remarkably improved, as shown in Figure 7.15a. The
maximum value of R2 is 0.9242, and the corresponding descriptor D3 (specific surface area)
is selected as the second feature. In contrast to filter and embedded methods, the significance
of specific surface area to permeability can be well recognized through wrapper type feature
selection. Repeating the above procedures, morphological descriptors D7, D20, D2, D8, D17,
D19, D13 and D26 are successively picked out, as exhibited in Figure 7.15b–i.

The effect of feature selection on performance improvement is significant, where pre-
dictive performance increases continuously when more selected morphological descriptors
are fed to the neural network model. When the first 6 selected descriptors are used for
model training, its predictive performance is comparable to another model fitted by using
26 descriptors, which can be seen by comparing Figure 7.15e with Figure 7.13a. When 8
selected descriptors are used to train the neural network model, its performance reaches the
peak, where R2 = 0.9937. Continuing to add more descriptors for model training, the perfor-
mance of the fitted neural network model starts to decline. Therefore, the optimal feature
subset, obtained from wrapper type feature selection, contains 8 morphological descriptors,
which are absolute porosity, geometrical tortuosity, characteristic length I, connected porosity,
constriction factor, average pore throat size and hydraulic pore diameter.

The above feature selection result is thought to be reasonable, because the selected
morphological descriptors had been directly used to build analytical/empirical models for
permeability prediction in previous researches, as demonstrated in Table 7.1. For example,
the first 3 selected descriptors (porosity, specific surface area and geometrical tortuosity) are
involved in the well-known Kozeny-Carmon relation [90, 142]. Different from the filter or
embedded methods that one-sidedly analyze the relationship between an individual descriptor
and permeability, the wrapper method selects features through a multi-variable analytical
methodology.
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(a) D3: Specific surface area S (b) D7: Geometrical tortuosity τg

(c) D20: Characteristic length I la (d) D2: Connected porosity φc

(e) D8: Constriction factor β (f) D17: Average pore throat size dt

(g) D19: Hydraulic pore diameter dh (h) D13: Average pore size d
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(i) D26: Fractal dimension α

Fig. 7.15 The results of feature selection in each step via the wrapper method

Essentially, the 8 selected morphological descriptors quantitatively characterize pore
microstructures from five perspectives, as illustrated in Figure 7.16, and the dependence of
permeability on microstructural characteristics can be interpreted as follows : (1) Absolute
and connected porosity represent the entire pore space and the permeable portion permitting
fluid to flow through respectively; (2) Specific surface area approximately reflects the area
of the fluid-solid interface that provides adhesive friction to fluid flow; (3) Characteristic
length, hydraulic pore diameter and pore throat size quantify the distances between opposite
walls of pore channels allowing fluid to pass through; (4) Geometrical tortuosity measures
the sinuosity of percolating pore paths that extends the average length of flow streamlines;
(5) Constriction factor characterizes the cross-sectional variation along pore channels which
leads to convergence and divergence of streamlines.

Based on the optimal set of selected features, the neural network model is fitted for
prediction purpose, and the results are shown in Figure 7.17. The model exhibits high
generalization capability to predict permeability spanning 4 orders of magnitude with an
average error of 6.92% for natural reservoir rocks. Compared to the popular PNM who has
an average error ranging from 33.00% to 40.00% in permeability evaluation [28, 486], this
machine learning-based prediction model has much better performances in terms of accuracy
and efficiency.

Specifically, the relative errors of the fitted neural network model in permeability pre-
diction are within ±10.00% for 81.17% of the porous microstructure samples, and the error
magnitude is less than 20.00% for 95.05% of the used samples. Less than 5.00% of the
samples have relatively larger prediction errors between ±20.00% and ±40.00%, due to the
extreme complexities of these porous microstructures. For some special porous media, their
complicated microstructures exhibit strong randomness and heterogeneity, which cause great
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Fig. 7.16 Graphic illustrations of microstructural characteristics: (a) Interconnected, dead-
end and isolated pores, and the distances between opposite solid walls; (b) Adhesion at the
fluid-solid interface; (c) Sinuous fluid flow path; and (d) Cross-section variation along pore
channel

(a) (b)

Fig. 7.17 Performance of prediction model I: (1) Comparison between the target and predicted
permeability values; (a) The relative error distribution of permeability prediction

difficulties to completely capture the microstructural characteristics related to permeability.
Considering the diversity of porous media samples used in this work that possesses a super
large variation of permeability, it is understandable that a generalized prediction model shows
a certain of incompleteness for some individual samples but has acceptable accuracy.
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Permeability prediction model II

In this subsection, microstructural characteristics are selected from the feature pool containing
both blue and green descriptors, to built another neural network model for permeability
prediction. According to Figure 7.14, D32 (1st Minkowski function) is firstly selected
because it yields the prediction model with the best performance (R2 = 0.9269). Subsequently,
D39, D33, D19, D8, D7, D17, D18, D35 and D54 are picked out one by one through the
wrapper method of feature selection, as demonstrated in Figure 7.18. The peak of predictive
performance (R2 = 0.9881) is achieved by using the first 9 selected morphological descriptors
to train the neural network model, and the selected feature set contains 1st Minkowski
function, pair connectivity function, 2nd Minkowski function, hydraulic pore diameter,
constriction factor, geometrical tortuosity, average pore throat size, effective pore size, and
4th Minkowski function.

Comparing the 1st and 2nd feature selection results, 4 morphological descriptors (hy-
draulic pore diameter, constriction factor, geometrical tortuosity, average pore throat size)
are found in common, as can be seen in Figure 7.15 and 7.18. As to the remaining selected
descriptors, some of them are also highly related. For example, porosity and specific surface
area are fully contained in the 1st and 2nd Minkowski function respectively, which can be
considered as a single point on a curve. Basically, the two sets of selected features share
similar morphological information, but the main difference between them lies in the pair con-
nectivity function and 4th Minkowski function. Both of these two descriptors are important
indicators of pore connectivity that affect the spatial distribution of fluid flow inside porous
media.

During the second process of feature selection, the predictive performance starts from a
higher point (R2 = 0.9269), but it increases slowly as more selected descriptors are added,
and R2 reaches a lower peak value of 0.9881, as can be seen in Figure 7.18. The permeability
prediction results of the neural network model trained by the optimal set of descriptors
are given in Figure 7.19. The average error of permeability prediction from this model is
7.76%, which is slightly larger than that of the first prediction model who has an average
error of 6.92%. To be specific, the second permeability prediction model has errors within
±10.00% for 75.26% of the porous media samples used in this study, and the ratio increases
to 93.13% for samples whose permeability values can be reliably evaluated with errors
between −20.00% and 20.00%. As to the remaining samples (less than 7.00%), the predicted
permeabilities of them have relatively large errors ranging from ±20.00% and ±40.00%, but
still acceptable.
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(a) D39: Pair connectivity function H(r) (b) D33: 2nd Minkowski function m1(d)

(c) D19: Hydraulic pore diameter dh (d) D8: Constriction factor β

(e) D7: Geometrical tortuosity τg (f) D17: Average pore throat size dt

(g) D18: Effective pore size dc (h) D35: 4th Minkowski function m3(d)
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(i) D54: Pore throat size distribution p(dt)

Fig. 7.18 The results of feature selection in each step via wrapper method

(a) (b)

Fig. 7.19 Performance of the prediction model II: (1) Comparison between the target and
predicted permeability values; (a) The relative error distribution of permeability prediction

The second prediction model is slightly inferior to the first model in terms of prediction
accuracy, although the feature set with many more variables (103 variables) are fed to the
second prediction model, compared with the feature set with 8 variable input to the first model.
It may imply that the blue descriptors are more suitable to model permeability compared
with the green descriptors, because the formers contain more morphological information that
is significant to permeability. It should be noted that the objective of this study is not just to
provide reliable models for permeability prediction, but also to highlight the morphological
descriptors that are most relevant to permeability through the feature selection processing
performed on a fairly simple neural network model. Without doubt, the predictive accuracy
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can be improved by fitting a more complicated and powerful model, but the risk of overfitting
will be increased as well, and the generalization performance can thus be declined.

7.4.3 Comparisons

In this subsection, the permeability prediction models established through feature selection
and machine learning are compared with two popular analytical/empirical models, to high-
light the advantage of the proposed data-driven framework in transport property analysis. As
discussed in the introduction section, the semi-empirical Kozeny-Carman relation [90] is one
of the best-known models to estimate permeability, given by:

κ =
φ 3

cS2τ2
g

(7.11)

where c is a dimensionless parameter called shape factor. Generally, shape factor c is
considered as a constant, varying with the types of porous media, but it is determined
empirically [489]. Its value is around 2.5 for beds packed with spherical particles [233]. Due
to microstructural complexities, the shape factors should be larger than 2.5 for natural porous
rocks. Here, 2.5 and 10.0 are taken as the upper and lower limits of shape factor receptively,
to estimate the permeability values of the set of porous media samples, and the results are
shown in Figure 7.20.

(a) Permeability estimation results (b) The relative error distribution

Fig. 7.20 Performance of Kozeny-Carman relation in permeability estimation

There are three common morphological descriptors involved in both Kozeny-Carman
relation and the machine learning-based prediction model I, which are porosity φ , specific
surface area S and geometrical tortuosity τg. However, the machine learning-based prediction
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model I possesses a much better performance than Kozeny-Carman equation in terms of
accuracy, which can be easily seen by comparing Figure 7.17 with Figure 7.20. The estimation
error of Kozeny-Carman relation mainly comes from the misunderstanding of shape factor c,
because it is a parameter related to microstructural characteristics such as constriction factor,
hydraulic pore diameter and pore throat size, rather than a constant. Even though the shape
factor can be used as a constant for simplicity, empirical determination of its value also has a
great influence on permeability estimation results. As shown in Figure 7.20a, permeability
values are generally overestimated and underestimated for the cases of c = 2.5 and c = 10.0
respectively. The average values of the permeability estimation results at these two cases are
used to assess the performance of Kozeny-Carman relation, and the relative error distribution
is given in Figure 7.20b. The permeability estimation error ranges widely from -75.00% to
875.00%, and the average error magnitude is 86.69%. In general, Kozeny-Carman relation
shown hug uncertainty and less reliability in permeability estimation for natural porous rocks,
mainly due to empirical selection of the shape factor.

Inspired by Kozeny-Carman relation, Berg et al. [34] proposed an analytical model to
describe permeability through pore structure parameters, without introducing free constant.
Although Berg’s model reproduces Darcy’s law for idealized pipe flow, it is also used to
evaluate permeability for natural rocks. Berg’s model is mathematically expressed as follows:

κ =
L2

hφcβ

8τ2
g

(7.12)

where Lh is called hydraulic length, representing the effective pore size inside a porous
medium. It can be easily found that the remaining three structure parameters are also
involved in the machine learning-based permeability prediction model I. Here, the value of
Lh is estimated from the average pore diameter d by using the skeleton method [115], and
then the permeability values of the set of porous media samples are calculated through Berg’s
model, as shown in Figure 7.21.

Compared with Kozeny-Carman relation, Berg’s model exhibits a better performance
in permeability estimation, and its greatest success is the exclusion of empirical parameter
by introducing constriction factor β . But permeability is still not completely described by
Berg’s model for natural porous rocks, because the permeability estimations have remarkable
errors ranging from -87.25% to 387.25%, as shown in Figure 7.21b. To construct explicit
permeability models by introducing more microstructural characteristics may not be a
feasible practice, because the nonlinear relationship between microstructure and permeability
is extremely complicated for natural porous rocks. In view of the above-mentioned facts,
the rationality of implicitly modeling permeability through machine learning to involve
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(a) Permeability estimation results (b) The relative error distribution

Fig. 7.21 Performance of Berg’s model in permeability estimation

further microstructural informatics can be understood, and these machine learning-based
permeability models show great advantages over the empirical/analytical models in terms of
predictive accuracy. In the meanwhile, the interpretations of such implicit microstructure-
permeability models are maintained as well through the feature selection process.

7.5 Conclusions

In this chapter, the dependence of permeability on microstructural characteristics of natural
porous rocks is fundamentally investigated through feature selection and machine learning
(shallow neural network). Various morphological descriptors are collected from an extensive
literature survey, and they quantitatively characterize pore microstructures from different
perspectives. These morphological descriptors compose the raw feature pool, from which
microstructural characteristics that are significant to permeability are identified by using
wrapper type feature selection.

The optimal set of morphological descriptors contains absolute and connected porosity,
specific surface area, geometrical tortuosity, characteristic length, constriction factor, average
pore throat size and hydraulic pore diameter. The feature selection result provides a deep
insight into the microstructure-permeability relationship, which can be interpreted as follows:
(1) Absolute and connected porosity represent the entire void fraction and the permeable
portion conducting fluid flow respectively; (2) Specific surface area approximately reflects
the fluid-solid interface where adhesive friction is applied to fluid flow; (3) Characteristic
length, pore throat size and hydraulic pore diameter are indicators with different emphases to
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represent the average distance between opposite solid walls, where fluid flow is constricted be-
tween them; (4) Geometrical tortuosity quantifies the prolongation degree of streamlines due
to the sinuosity of percolating pore path; (5) Constriction factor measures the cross-section
fluctuation along pore channels that leads to divergence and convergence of streamlines at
the expansion and shrinkage positions respectively.

Based on the optimal set morphological descriptors, a machine learning-based model is
constructed for permeability prediction purpose, and it exhibits an excellent generalization
performance in predicting permeability values spanning 4 orders of magnitude for natural
porous rocks, with the average error less than 6.92%. Compared with commonly used
empirical/analytical permeability relations, the machine learning-based prediction model pos-
sesses great superiorities in terms of predictive accuracy and general applicability. Basically,
this study provides a new routine to fundamentally understand structure-property linkages
for porous media, which can be straightforwardly applied to model different macroscopic
properties, such as effective diffusivity, thermal conductivity, formation factor and effective
elastic moduli, by involving significant microstructural informatics.

Appendices

Artificial neural networks [494] are function approximators to map the inputs to the output
through many interconnected computation elements called neurons. Each elementary neuron
possesses a certain degree of approximation capacity, and a powerful learning performance
can be achieved by cohesively combining many neurons. In a basic neuron, as illustrated in
Figure 7.22, the weighted sum of inputs xi plussing the bias b is calculated through a transfer
function, and the sum is then fed to a non-linear activation function to obtain an output y:

y = f

(
n

∑
i=1

wixi +b

)
(7.13)

where the activation function f can be a sigmoid function, hyperbolic tangent function or
rectified linear unit.

Many basic neurons can be connected in various ways to be a multilayer architecture,
called a neural network, where the output from a prior neuron is used as the input of the
following neuron. It has been proved that a fairly simple neural network is capable of fitting
any practical functions [253]. The shallow neural networks only have one or two hidden
layers compares to the deep ones, and each hidden layer comprises of many basic neurons.
Considering model complexity, prediction accuracy and interpretability, a shallow neural
network is adopted to construct the implicit microstructure-permeability model in this study.
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Fig. 7.22 The graphic model of a basic neuron

Morphological descriptors D are used as the microstructural features to feed a shallow neural
network model with 2 hidden layers, and the final output is a permeability prediction κ̂ of
the porous media sample, as illustrated in Figure 7.23.

Fig. 7.23 The graphic illustration of a shallow neural network model with 2 hidden layers

The permeability prediction κ̂ is computed through a series of forward-propagation
equations that occur at particular layers, given by:

H(1) = f1
(
W T

1 D+b1
)

(7.14)

H(2) = f2

(
W T

2 H(1)+b2

)
(7.15)
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κ̂ = f3

(
W T

3 H(2)+b3

)
(7.16)

where H(1) and H(2) are the outputs of the 1st and 2nd hidden layers. Training data are used
to fit the shallow neural network model by adjusting the weight matrices and bias vectors,
where the cost function used to quantify the errors between observations and predictions is
minimized through an optimization algorithm such as gradient descent. Cross-validation is
usually performed to avoid overfitting, thereby to improve the generalized predictive ability
for new observations. More details about parameter optimization of neural networks can be
found in relevant references [494, 253].





Chapter 8

Conclusions and outlook

8.1 Conclusions

Fig. 8.1 The main contributions and innovations of this thesis

The present thesis is devoted to anatomizing the dependence of transport properties on
microstructural characteristics of porous media through statistical microstructure charac-
terization, stochastic microstructure reconstruction and predictive model construction, as
illustrated in Figure 8.1. Overall, a comprehensive review of statistical characterization of
pore microstructures has been provided; a systematic study of tortuosity evaluation methods,
including image analysis and physical simulation, has been conducted; a novel stochastic



274 Conclusions and outlook

microstructure reconstruction method has been developed through deep neural network to
generate 2D/3D microstructure samples with high quality; a new method has been proposed
to statistically reconstruct 3D microstructures from the limited information provided by 2D
thin-sections via supervised machine learning; an error correction model has been estab-
lished to reduce/eliminate the resolution effect on permeability estimated from LBM; the
microstructure-permeability relationship has been fundamentally investigated through the
performance-driven process of feature selection, and the machine learning-based permeabil-
ity prediction model has been constructed by using the optimal subset of microstructural
features.

The main contributions and innovations made in each chapter are summarized as follows:

• Chapter 2 fundamentally investigates the statistical characterization of pore mi-
crostructures by presenting a comprehensive review, where a broad variety of morpho-
logical descriptors are gathered through an extensive literature survey. The morpholog-
ical descriptors are quantitative expressions of porous media, which are essential to
obtain deep insight into the structure-property linkages, to explore the relevant trans-
port behaviors of fluid flow, or to reveal underlying mechanisms of specific physical
phenomena. The commonly used morphological descriptors are introduced in terms
of theoretical bases and extraction methods, and they are roughly categorized into
four levels to provide microstructural characteristics from global, local, geometrical
and topological perspectives. This chapter provides a profound understanding of the
limitations and opportunities in microstructure characterization and analysis.

• Chapter 3 systematically examines geometrical, hydraulic, electrical, diffusional, and
thermal tortuosities from the viewpoints of concept and evaluation method. Physi-
cal tortuosities are defined to describe different transport processes occurring inside
porous media, while geometrical tortuosity is considered as a microstructural char-
acteristic, and they can be evaluated through various image analysis and numerical
simulation methods. Different types of tortuosity can differ greatly in value, but
they are used interchangeably in many works of literature. Thus, the correlations
between geometrical and physical tortuosities are further analyzed, which also takes
into account the influences of both image size and resolution. From the correlation
analysis, phenomenological relations between geometrical and physical tortuosities are
established, so that the latter can be accurately predicted by using the former, avoiding
computationally intensive simulations of transport processes.



8.1 Conclusions 275

• Chapter 4 presents a novel method to statistically characterize and reconstruct ran-
dom microstructures through a deep neural network (DNN) model, which can be
used to study the microstructure-property relationships. In this method, the digital
microstructure is assumed to be a stationary Markov random field (MRF), and local
patterns covering the basic morphological features are collected to train a DNN model,
after which statistically equivalent samples can be generated through a DNN-guided
reconstruction procedure. To overcome the short-distance limitation associated with
the MRF assumption, a multi-level approach is developed to preserve the long-distance
morphological features of heterogeneous microstructures. The proposed microstructure
reconstruction method can capture both morphological characteristics and physical
properties, which is efficient, accurate and versatile to generate 2D/3D microstructures
with long-distance morphology, such as porous media with long-range connectivity.

• Chapter 5 proposes a new approach to stochastically reconstructing 3D heterogeneous
porous media from the 2D cross-sectional images through supervised machine learning.
Data events collected from the 2D cross-sectional images are fed to the supervised
learning model to learn the multiple-point statistics of the original microstructure. For
the isotropic microstructure, the multiple-points statistics on one (or several) represen-
tative 2D plane are sufficient to reflect the 3D morphological information. While for the
anisotropic microstructure, the multiple-points statistics of 2D planes in the three prin-
cipal directions are required to capture the anisotropy. The class probabilities stored in
the fitted supervised learning model(s) are good approximations of the multiple-points
statistics of each 2D plane, and 2D statistical information on three perpendicular planes
can be integrated to provide an estimation of the conditional probability of voxel in
3D space, based on which statistically equivalent 3D microstructures can be generated
through probability sampling. Compared with the other three classical reconstruction
methods, the proposed method can rapidly generate more realistic and accurate 3D
microstructures.

• Chapter 6 quantitatively investigates the resolution effect on permeability evaluation
from the lattice Boltzmann method (LBM), and an error correction model is established
to reduce/eliminate this resolution effect by identifying the primary error causes.
The error correction model uses such geometric attributes as connected porosity,
specific surface area and diffusional tortuosity to quantify the permeability error due to
resolution effect and achieve error correction. Demonstrated on various types of porous
media including sandstone, carbonate rock, sand pack and synthesis silica, etc., the
proposed error correction model can effectively correct the errors in LBM permeability
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evaluation caused by the resolution effect. The error correction model makes image
resolution reduction more meaningful and creditable for LBM permeability evaluation
of porous media, thereby supporting its adoption in practical applications.

• Chapter 7 deeply explores the dependence of permeability on microstructural charac-
teristics of natural porous rocks through performance-driven feature selection, and the
machine learning-based permeability model is constructed by using the optimal subset
of morphological descriptors as the feature data. The optimal feature set contains
absolute and connected porosity, specific surface area, geometrical tortuosity, charac-
teristic length, constriction factor, average pore throat size and hydraulic pore diameter,
which provides a deep insight into the microstructure-permeability linkage that can
be interpreted as follows: Absolute and connected porosity represent the entire void
fraction and the permeable portion conducting fluid flow respectively; Specific surface
area approximately reflects the fluid-solid interface where adhesive friction is applied
to fluid flow; Characteristic length, pore throat size and hydraulic pore diameter are
indicators with different emphases to represent the average distance between opposite
solid walls, where fluid flow is constricted between them; Geometrical tortuosity quan-
tifies the prolongation degree of streamlines due to the sinuosity of percolating pore
path; Constriction factor measures the cross-section fluctuation along pore channels
that leads to divergence and convergence of streamlines at the expansion and shrinkage
positions respectively. Additionally, the machine learning-based permeability model
possesses an excellent generalization performance to estimate permeability values
spanning 4 orders of magnitude with the average error less than 6.92%, and it ex-
hibits great superiorities over empirical/analytical permeability relations in terms of
predictive accuracy and generalization ability.

8.2 Outlook

The research work presented in this thesis has improved the understanding of the relationships
between microstructural characteristics and transport properties of porous media, but some
problems still require further research. Future studies that may be beneficial are suggested as
follows:

• Although extensive efforts have been made to quantitatively characterize pore mi-
crostructures, the morphological descriptors determined from digitized images are
subject to a number of errors and uncertainties, including finite image size, finite resolu-
tion, binarization error, boundary effect, and errors related to parameter selection (such
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as connectivity criterion and distance metrics) of determination algorithms. These
errors should be constrained within acceptable ranges for microstructural analysis.

• Stochastic reconstruction of 3D heterogeneous pore microstructure is an effective way
to provide large numbers of samples to analyze the transport properties of porous
media. However, it is still a challenge to rapidly generate 3D digital samples of pore
microstructures with arbitrary desired morphologies, especially for 3D microstructure
reconstruction from 2D cross-sectional images. A more powerful method remains to
be developed to promote the microstructure-property study in porous media research.

• For permeability evaluation from lattice Boltzmann simulation, viscosity dependence
is one of its major drawbacks. According to our preliminary findings, it is possible to
determine the optimization relaxation time of LBM simulation for a specific porous
medium, where the fluid-solid boundary is exactly located at the pore-solid interface,
thereby avoiding the viscosity dependence.

• This thesis provides a new routine to fundamentally investigate the dependence of
permeability on microstructural characteristics of porous media, which can also be
applied to study other macroscopic properties by involving significant microstructural
informatics, such as effective diffusivity, thermal conductivity, formation factor and
elastic moduli. Besides, it is well worth establishing microstructure-property linkages
for sandstones containing finer-grained materials (i.e. clay).

• It is interesting to apply the morphological descriptors to quantitatively represent
the characteristics of multi-phase flow to understand the fluid distribution, capillary
pressure, relative permeability, fluid displacement mechanisms and other pore-scale
transport behaviors.
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