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Following [1] we study a QCD-like gauge theory using a non-supersymmetric setup in type IIB string 
theory. The setup includes an O 3 plane and N D3 anti-branes and it realises a U Spp2Nq ‘electric’ gauge 
theory with four “quarks” in the two-index antisymmetric representation and six heavy scalars in the 
adjoint representation. Using S-duality we obtain a dual ‘magnetic’ theory that includes S O p2N ´ 1q

gauge theory with six scalars in the adjoint representation and four heavy “quarks” in the two-
index symmetric representation. The dual theory provides a description of confinement and dynamical 
symmetry breaking of the form SUp4q Ñ S O p4q. We extend the results of [1] by adding masses to the 
quarks in the electric side and deriving parts of the chiral Lagrangian using the dual magnetic theory. In 
particular, we derive the Gell-Mann-Oakes-Renner (GMOR) relation for Nambu-Goldstone bosons (pions) 
using the magnetic theory.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Confinement and chiral symmetry breaking remain the most notorious problems in QCD. There are very few analytic tools at our 
disposal when we consider four dimensional strongly coupled gauge theories and they usually rely on supersymmetry, where we can use 
the power of holomorphicity to derive non-perturbative results.

S-duality is believed to be an exact duality of type IIB string theory. When applied to a system with N coincident D3 branes, the 
celebrated Olive-Montonen S-duality for N “ 4 UpNq SYM is recovered. Adding an O3 plane on top of the coincident branes leads to 
S-duality between U Spp2Nq and S O p2N ` 1q theories, or the SO(2N)/SO(2N) duality. These dualities and their realisation in type IIB string 
theory are reviewed in [2].

In ref. [3] it was suggested by Uranga to study a system of O3 planes and anti-D3 branes using S-duality. A detailed study of this 
system was carried out by Sugimoto [1]. In brief, the electric side of the duality provides the UV description of a QCD-like theory - a 
gauge theory with four flavours of massless quarks. The magnetic side provides a realisation of confinement and dynamical symmetry 
breaking in terms of massless ‘pions’ (the Nambu-Goldstone (NG) bosons). Thus the massless piece of the magnetic theory resembles the 
chiral Lagrangian of QCD. We review the results of [1] in section 2.

While the duality is interesting and the results are nice, the duality is lacking a predictive power. It turns out that the dynamics of the 
magnetic theory is not under full control and some assumptions needed to be made about the potential between the orientifold plane 
and the anti-branes.

The purpose of the present paper is to extend and support the duality of [1] by adding a mass to the quarks. Somewhat counter-
intuitively, in QCD the mass of the pions is proportional to the square root of the sum of the quark masses, by virtue of the celebrated 
GMOR relation [4]

f 2
π M2

π “ ´pmu ` mdqx�̄�y . (1.1)

Our main result is to recover the GMOR relation for any general set of quark masses m1, m2, m3, m4 by using the dual magnetic theory.
The GMOR relation is not at all natural in string theory: naively the string mass is a sum of the string tension times its length and the 

quark masses. How could a meson made of an open string have a mass proportional to the square root of the quarks’ masses? Moreover, 
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as we shall see, in the theory under consideration the dependence on m1, ..., m4 is in general highly non-trivial and is not easily obtained 
from a picture of a classical string with two ends. In particular, we shall see that in general the meson mass is a function of all four quark 
masses.

Our paper contains several new results: we construct the chiral Lagrangian for the QCD-like theory under consideration and derive 
the expected mass spectrum of the Nambu-Goldstone bosons. We then derive the same mass spectrum using Sugimoto’s S-duality. The 
matching between the QCD analysis and string theory relies on the existence of a particular scalar cubic term in the theory on the anti 
D3 branes and a coupling to a 3-form background flux. To our delight, all pieces fall to the right place.

The paper is organised as follows: in section 2 we review the results of [1]. Section 3 is devoted to the chiral Lagrangian of the electric 
theory. In section 4 we derive the GMOR relation from the magnetic dual. Finally, in section 5 we summarise our results and discuss 
future directions of research.

Throughout this paper we use the following conventions: capital letters, e.g. I, J , K “ 1, ..., 6 are S O p6q indices. The small letters 
i, j, k “ 1, ..4 are used for S O p4q or SUp4q. The small letters a, b, c “ 1, 2, 3 (or ã, ̃b, ̃c) are used for S O p3q. α, β “ 1, 2 are SUp2q indices. 
Meson masses are denoted by capital M. Quark masses are denoted by small m (or m’). Generators of Lie algebras are normalised such 
that Tr T a T b “ 2δab .

2. Review of non-supersymmetric S-duality

Before we begin to examine the dual gauge theories of interest, it is requisite to first establish the origin of their proposed duality.
To begin with, we consider a type IIB string theory, in a 10-dimensional spacetime, parametrised by the usual co-ordinates x0, x1, ..., x9. 
We then define a (3`1) dimensional hyperplane located at px4, x5, ..., x9q “ 0, and we shall say that this plane is fixed with respect to 
the action of the operator I6�p´1qF L , where I6 generates a Z2 action that flips the sign of the spatial co-ordinates transverse to the 
fixed plane px4„9q, � is the world-sheet parity transformation operator and F L is the left-moving spacetime fermion number. I6�p´1qF L

is called the orientifold action, and the hyperplane which is invariant under its action is called an orientifold plane, in this case it is an 
orientifold 3-plane, which we shall abbreviate to O3.

We construct two, seemingly distinct, string theories by placing a stack of N D3 (anti-D3) branes in the transverse space to an O 3`

or ĆO 3´ plane (see [1] for a precise definition of these orientifold planes). Note that D3, like D3 branes, are invariant under the S-duality, 
but preserve an opposite supersymmetry to O3 planes, meaning that a system of D3 branes above an O3 plane breaks supersymmetry 
completely. O 3` and ĆO 3´ form an S-dual pair. Therefore a stack of N D3 branes suspended above an O 3` or ĆO 3´ defines a pair of 
non-supersymmetric, S-dual string theories. At this point we shall implement some terminology, which will be useful for orienting our 
discussion moving forward. We shall refer to the theory of N D3 branes above an O 3` plane as the ‘electric side’ of our duality, while 
the theory of N D3 branes above an ĆO 3´ will be referred to as the ‘magnetic side’.
The Lagrangian of the electric theory at tree level is given by

Ltree
electric „ Tr F 2

μν ` Tr pQ̄ iσ
μ

pBμ Q i
` rAμ, Q i

sqq ` Tr ppBμ
I
` rAμ,
I

sq
2
q (2.1)

` Tr pQ i�I
i jr


I , Q j
sq ` Tr pr
I ,
 J

s
2
q ` h.c.

with I, J “ 1, .., 6 and i, j “ 1, .., 4. A is the gauge field, Q is the fermion field, 
I are the six transverse scalar fields, and �I are matrices 
which form a Dirac-like algebra. The electric theory has the gauge symmetry U Spp2Nq and global symmetry S O p6q. While the bosons 
transform in the two-index symmetric representation, the fermions transform in the two-index antisymmetric representation of the gauge 
group.

In line with this naming convention, we call the low-energy effective theory of the ‘magnetic side’ string theory, the magnetic theory, 
and again list its tree level Lagrangian

Ltree
magneticpIq „ Tr f 2

μν ` Tr pq̄iσ
μ

pBμqi
` raμ,qi

sqq ` Tr ppBμφ I
` raμ,φ I

sq
2
q (2.2)

`ppBμ ` aμqtq
2

` V ptq ` ψ̄ iσμ
pBμψi ` aμψiq ` Tr pqi�I

i jrφ
I ,q j

sq

` Tr prφ I , φ J
s
2
q ` tT φ Iφ I t ` ψ̄ iT �I

i jφ
I ψ̄ j

` tT qiψi ` h.c.

Where a is the gauge field, q and ψ are the fermions, t is a tachyonic scalar field and again φ I are six transverse scalar fields. The 
magnetic theory has gauge symmetry S O p2Nq and global symmetry S O p6q. Note that the gauge field and the scalars φ I transform in the 
antisymmetric representation, while the fermions qi transform in the symmetric representation of the gauge group. The tachyon t and the 
fermion ψ transform in the fundamental representation.

The electric and magnetic theory Lagrangians are in schematic form, and the couplings have been omitted. There are some issues to 
clarify before any productive analyses of these theories can proceed. Starting with the most obvious point of concern, we have a tachyon 
in our magnetic theory, making it unstable. After tachyon condensation the gauge symmetry will be broken to S O p2Nq Ñ S O p2N ´ 1q, 
and through the terms tT φ Iφ I t and tT qiψi we see that this condensation will give mass to some components of φ I and qi as well as to 
ψ . The massless field Lagrangian after tachyon condensation is given here

Ltree
magneticpI Iq „ Tr f 2

μν ` Tr pq̄iσ
μ

pBμqi
` raμ,qi

sqq ` Tr ppBμφ I
` raμ,φ I

sq
2
q (2.3)

` Tr pqi�I
i jrφ

I ,q j
sq ` Tr prφ I , φ J

s
2
q ` h.c.

Going forward, this is the theory we will be referring to as the magnetic theory. It is similar to N “ 4 S O p2N ´ 1q SYM, except that the 
fermions qi transform in the two-index symmetric representation of the gauge group.

The electric theory is asymptotically free, in other words, it is best described at high energies. The fields in (2.1) are all massless at tree 
level, however as the supersymmetry is completely broken, the scalar fields take on cut-off scale masses from the quantum corrections 
2
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and decouple from the low energy theory. It is conjectured in the literature that the U Spp2Nq gauge theory with four Weyl fermions in the 
anti-symmetric representation lies outside the conformal window and is in the confined phase [5,6]. In particular, it was argued [6] that 
the critical number of flavours above which U Spp2Nq theory with antisymmetric fermions is in the conformal window is N‹

f “ 4 Nc`1
Nc´1 . 

In addition, for the case that N ą 1 the global S O p6q symmetry is believed to be dynamically broken to S O p4q by the condensation of a 
fermion bilinear

εαβ
xTr pQ i

α Q j
βqy “ cδi j , (2.4)

with c the value of the quark condensate.
The magnetic theory is more opaque. It is asymptotically non-free, which raises obstacles when taking a decoupling limit in a controlled 

way, however, some useful insight is extracted from a comparison of 1-loop corrections to the scalar masses between the electric and 
magnetic theories. The 1-loop calculation shows that the mass-squared for the 
I in the electric theory is positive, while the mass-
squared for the φ I in the magnetic theory is negative

m2

 “ `C gsl

´2
s , m2

φ “ ´C 1 gsl
´2
s (2.5)

Where gs is the string coupling and C and C 1 are positive constants.
The scalar fields on the D3 brane have the interpretation of the position of the brane in the transverse space to the central O3 plane, 

as such, the mass-squared values in (2.5) suggest that the D3 in the electric theory are attracted to the O3 plane, while in the magnetic 
theory they are repulsed.

With this interpretation, (2.5) gives us a picture of a scalar theory which is unstable at the origin, but becomes attractive towards 
the origin at large distances. This Higgs potential-like behaviour suggests that our scalar fields will develop a non-trivial expectation 
value (vev) and will thereby spontaneously break the global symmetry of the system. This qualitative picture is of course best described 
mathematically on the magnetic side of our duality, in spite of the difficulties concerning the energy scales at which it is strongly or 
weakly coupled, because the scalar fields are completely decoupled from the electric theory. Rather than going through the hardship of 
attempting to calculate the exact potential of the magnetic theory, Sugimoto proposed a ‘toy’ potential, or model, for the magnetic theory 
scalars

V pφ I
q “ ´

μ2

2
trpφ Iφ I

q ´
g

4
trprφ I , φ J

s
2
q `

λ

2
trppφ Iφ I

q
2
q (2.6)

Where the first term is the tachyonic mass term, the second is imported from the potential portion of the Lagrangian (2.3), and the final, 
quartic term is included to stabilise the potential at long-distance, to reflect the behaviour we know to expect. It should be noted that the 
last term is expected to be generated in a non-supersymmetric theory, according to the general rules of QFT. Any operator that preserves 
the symmetries of the tree level Lagrangian can be generated via quantum corrections. The sign and the magnitude of λ, however, were 
assumed in [1], in order to ensure a vacuum with symmetry breaking.

Differentiating (2.6) yields the following equation of motion for the magnetic theory

´μ2φ I
´ grφ J , rφ I , φ J

ss ` λpφ I
pφ J φ J

q ` pφ J φ J
qφ I

q “ 0 (2.7)

Which admits several vacua, depending on the choice of (in)equality between the positive coefficients λ and g .
The scalar field φ I takes values in the Lie algebra of the gauge group. For the case N “ 2 the group is S O p3q, hence we define

φ I
“ AI

i J i , (2.8)

where J i are basis elements of the Lie algebra sop3q (the spin-1 representation of sup2q). For the choice λ ą g , it is straightforward to 
show that the following value for φ I is a solution to (2.7) and thereby a vacuum of the theory

xφ1
y “ a J 1, xφ2

y “ a J 2, xφ3
y “ a J 3, xφ4„6

y “ 0 . (2.9)

This is a “fuzzy sphere” configuration of radius a. This solution is chosen as it is the only admissible vacuum that breaks S O p6q Ñ
S O p3q ̂ S O p3q. This is sufficient to justify the choice as it is assumed that the S Lp2, Zq symmetry which generates the duality is exact, 
this being so, the electric and magnetic theories must exhibit the same symmetry breaking pattern. As we shall see later, the constant a
corresponds to the value of the quark condensate.

This vacuum for (2.6) is clearly invariant under the group S O p3q ̂ S O p3q, where one SO(3) acts on the non-zero components of 
xφ I y and is freely undone by a gauge rotation, and the other is the SO(3) which acts on the null-components of xφ I y which are trivially 
invariant under its action. The isomorphism S O p3q ̂ S O p3q » S O p4q is a known result. Therefore, the duality allows us to realise the 
dynamical S O p6q Ñ S O p4q symmetry breaking expected of the strongly-coupled electric theory very simply and elegantly in terms of the 
condensation of a non-zero vev for scalar fields in its magnetic-dual description.

A careful study of the vacuum (2.9), carried out in [1], reveals that all the fields, except nine modes which transform in the coset 
S O p6q{S O p4q become massive, as expected from the Goldstone theorem. In particular, the gauge bosons acquire a mass due to SSB and 
the fermions acquire a mass due to Yukawa couplings. Moreover all the scalars, except the nine modes that correspond to the NG bosons, 
also acquire a mass.
3



A. Armoni and H. Harper-Gardner Physics Letters B 828 (2022) 137012
3. The chiral Lagrangian

In a U Spp2Nq theory with four antisymmetric quarks there exists a Up4q “ Up1q b SUp4q global symmetry. The Up1q part is anomalous 
and hence the theory admits a massive η1 pseudo-scalar meson. According to Witten-Veneziano formula [7,8] we expect it to have a mass 
M2

η1 „
2N´2

2N �2
QCD. Unlike ordinary QCD where the η1 becomes light in the ’t Hooft large-N limit, in the present case the η1 is always 

heavy and therefore it decouples from the low-energy theory.
The global SUp4q symmetry is expected to break dynamically according to the pattern

SU p4q Ñ S O p4q. (3.1)

The order parameter for the breaking is the quark condensate (2.4).
The breaking of the global symmetry results in a multiplet of nine massless Nambu-Goldstone (NG) bosons. The NG bosons belong to 

the coset U ” G{H “ SUp4q{S O p4q. The fifteen generators of the SUp4q are either symmetric (and real) or antisymmetric (and imaginary) 
Hermitian matrices. The six antisymmetric generators form the generators of the S O p4q group. The remaining nine symmetric generators 
of the SUp4q group transform in the two-index traceless symmetric representation of S O p4q. The massive η1 particle corresponds to the 
unit matrix.

The chiral Lagrangian of the present theory can be written in terms of U , with

U “ exp iπ , (3.2)

where π is a matrix that transforms in the two-index traceless symmetric representation of the S O p4q algebra.
The relevant terms that will be at the centre of our interest are the kinetic term and the mass term for the NG bosons (the ‘pions’)

S „

ż

d4x Tr
´

pU ´1
BμU qpU ´1

B
μU q ` cpmqU ` h.c.q

¯

, (3.3)

where mq is the quarks’ mass matrix, namely the same 4 ̂ 4 symmetric matrix that gives mass to the quarks

pmqqi j Q i Q j
` h.c. (3.4)

We will choose mq to be the diagonal matrix mq “ diagpm1, m2, m3, m4q. Note that we also set fπ “ 1.
We will mostly be interested in the kinetic term and the mass term of the pions

S “

ż

d4x
1

2
Tr

´

BμπB
μπ ´ cmqπ

2
¯

` ... . (3.5)

In the simplest case, where all four quarks have the same mass mq “ m1, we recover the celebrated GMOR relation

M2
π „ cm . (3.6)

In the most general case where the four quark masses have arbitrary values we can proceed as follows. We parametrise the symmetric 
4 ̂ 4 pion matrix using ten entries, such that πi j “ π ji . Note that the diagonal is not traceless, namely we have ten Nambu-Goldstone 
bosons instead of nine. We thus add the constraint

ÿ

i

πii “ 0 . (3.7)

The mass terms in (3.5) together with the constraint (3.7) take the form

L “ ´
c

2

ÿ

i j

pmi ` m jqπ
2
i j ´ �2

p
ÿ

i

πiiq
2 , (3.8)

with � Ñ 8. We may think about 
ř

i πii as an infinitely heavy η1 . If, instead, we consider a hypothetical theory where � “ 0, namely 
we ignore the constraint (3.7), we obtain at low energy ten light particles whose masses are given by M2

i j “ cpmi ` m jq, where four 
of them contain a quark anti-quark pair of same flavour (mi “ m j) and the other six contain a quark anti-quark of different flavours 
(mi ‰ m j). Imagine that we continuously vary the value of � from 0 to 8. As we increase � the mass of the η1 increases, the masses of 
six NG bosons do not change and the mass of the three remaining NG bosons becomes a mixture of the four quark masses. The precise 
eigenvalues are determined by diagonalising a 3 ̂ 3 matrix. We will discuss it in more detail in the next section.

At the Lie Algebra level sop4q is isomorphic to sop3q ̂ sop3q. For comparison with the results of S-duality, it will be more convenient to 
write the chiral Lagrangian in the language of S O p3q ̂ S O p3q. The nine pions which transform in the traceless symmetric representation 
of S O p4q transform in the bi-fundamental of S O p3q ̂ S O p3q. The ten entries of the symmetric mass matrix mij can be decomposed into 
a singlet m1 and nine bifundamentals m1a

ã of S O p3q ̂ S O p3q (a, ̃a “ 1..3), as listed in Table 1. The relation between the ten parameters of 
pmqqi j and m1, m1a

ã is given in appendix B.
The explicit form of the action (3.5) is

S “

ż

d4x
1

2

´

Bμπa
ã B

μπa
ã ´ cm1πa

ã πa
ã ` cεãb̃c̃εabcm̃1a

ãπ
b
b̃
π c

c̃

¯

. (3.9)

We will derive eq. (3.9) in the next section.
4
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Table 1
Content of the chiral Lagrangian.

S O p3q S O p3q

m1 . .
m1a

ã

πa
ã

4. GMOR relations from S-duality

Let us introduce mass to the quarks of the electric theory and examine how it affects the mass of the pions in the magnetic side of 
the duality. To this end we will introduce a three-form flux G3 “ F3 ´ τ H3 in the type IIB background following [9,10]. F3 and H3 are RR 
and NSNS three-form fluxes. As we shall see in a moment the flux encodes the quark mass matrix pmqqi j .

The action of a D3 brane in a background that includes a three-form flux is given by [9] and contains the following terms.

Lsoft “ ... ` i
gs

6
p‹6G3 ´ iG3qI J K φ Iφ J φK

` i
gs

96
p‹6G3 ´ iG3qI J K Q γ rIγ J γ K s Q ` h.c. (4.1)

Substituting the following components for the three-form term.

p‹6G3 ´ iG3qI J K “ C I J K “
´1

48
Trpmqpε

I1 J 1 K 1

I J K γrI1γ J 1γK 1s ´ iγrIγ J γK sqq (4.2)

which we derive in the appendix, we find that the three-form coupling confers a fermion mass term to the electric theory of the form 
Q ipmqqi j Q j where we have full control over the entries of the matrix mq .

The reader will recall, from section 2, that in [1] the scalar fields of the electric theory acquire cut-off scale masses and decouple. 
Consequently, only the flux-induced quark mass term of (4.1) carries into the electric theory. However, in the magnetic theory, the scalar 
fields are where the critical behaviours of the physics are realised, and as such only the scalar coupling term of (4.1) is of interest to the 
magnetic theory. Our specific aim is to relate the quark masses and pion masses due to this three-form coupling, therefore we introduce 
the scalar coupling in (4.1) as a perturbation around the fuzzy sphere vacuum (2.9) of the original magnetic theory potential.

V 1
“ V 0 `

igs

6
TrpC I J K φ Iφ J φK

q (4.3)

Where V 0 is the potential (2.6). The trace is over the gauge group of the magnetic theory S O p2N ´ 1q. For simplicity we will consider the 
case with N “ 2, namely S O p3q. The generalisation to arbitrary N is straightforward.

We introduce perturbations to the scalar fields of the following form

φ I
“ xφ I

y ` δφ I (4.4)

where δφ1„3 “ 0, δφ I“4„6 “ δAI
a Ja .

Substituting this into the three-form coupling term in (4.3) we obtain several terms of varying order in the vev and perturbations, but 
most important for our purposes is the following

Tr C I J K pxφ I
y ` δφ I

qpxφ J
y ` δφ J

qpxφK
y ` δφK

q “ (4.5)

... ` 3 Tr C I J K pxφ I
yδφ J δφK

q ` ...

The terms we omit include those which are linear in the scalar perturbation, these are ‘tadpoles’ in the language of QFT, and do not 
contribute to the dynamics. There are also terms which are cubic in the perturbation, while these do contribute to the dynamics of the 
perturbed fields they are interaction terms, and are not relevant to questions about the pion masses. We find then that this is a mass 
term for the pions, as they are quadratic in the perturbed scalar fields. We know also, by construction, that the background three-form 
C is linear in the quark masses, what emerges then, is that the quark and pion masses are related schematically as M2

π „ m. This result 
is known from the chiral Lagrangian of QCD and is often referred to as the Gell-Mann, Oakes, Renner (GMOR) relation. We wish to go 
further than a schematic comparison however, rather we aim to extract the full, general relationship between the quark and pion masses 
under the duality.

To proceed we examine (4.5) in more detail. Note that the trace over the scalar fields in the magnetic theory potential is a trace over 
S O p3q, namely the gauge group of the magnetic theory. While the three-form C contains a trace over S O p4q. So in (4.5) we are dealing 
with a term which involves a nested trace over two different groups.

3 TrS O p3qpC I J K xφ I
yδφ J δφK

q “
´1

16
TrS O p3qpTrS O p4qpmqpε

I1 J 1 K 1

I J K γrI1γ J 1γK 1s ´ iγrIγ J γK sqqxφ I
yδφ J δφK

q (4.6)

Note, in our expression for the components of the background three-form C I J K , we are free to use our non-chiral expression which is 
derived in the appendix, as the first portion which contracts with the epsilon is not significant to calculations concerning the pion masses. 
With this in mind, we can greatly simplify our term.

3 TrS O p3qpC I J K xφ I
yδφ J δφK

q “
´1

8
TrS O p3qpTrS O p4qpmqγrIγ J γK sqxφ I

yδφ J δφK
q (4.7)

The nested trace of (4.7) is a bar to progress, as it mixes the S O p4q language of the electric theory with the S O p3q language of the 
gauge symmetry of the magnetic theory. However, we can resolve this by reconsidering the space our pions live in. Our magnetic theory 
5
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pions are Nambu-Goldstone bosons, which take values as the generators of the coset pS O p6q{pS O p3q ̂ S O p3qqq, associated with the 
dynamical symmetry breaking. We can show that in this case the Nambu-Goldstone bosons transform under the symmetry group of the 
vacuum, and as such the trace taken over (4.7) should be a trace over the bifundamental representation space of S O p3q ̂ S O p3q. This is 
achieved by making a ‘colour-flavour’ identification, that is, we identify the S O p3q gauge symmetry of the magnetic theory with one of 
the copies of S O p3q which lives in the S O p4q symmetry of the electric theory (recall the isomporphism S O p4q » S O p3q ̂ S O p3q), i.e.

S O p3qcol. „ S O p3qflav.

ùñ TrS O p3q TrS O p4q Ñ TrS O p3qˆS O p3q

Of course in order to perform an S O p3q ˆ S O p3q trace over the pion mass term, all the factors must be in the bi-fundamental 
representation of S O p3q ̂ S O p3q. However, from the outset, mq and the Dirac matrices γ I belong to a representation space of S O p4q. 
mq is a real, symmetric, 4 ̂ 4 matrix, which we may view as having two components, a traceful, and a traceless. Both of these parts 
may be treated as representation spaces of S O p4q. The traceless part of mq is a nine dimensional representation with the S O p4q action 
m Ñ OmO , where m P traceless, symm. Mat(4, R). The traceful component of mq is the one dimensional ‘singlet’ representation of S O p4q. 
Furthermore, in [1] representation of the Dirac algebra, the elements of which we have labelled γ I are generators of S O p4q, which can in 
turn be viewed as a double copy of the Lie algebra of S O p3q.

To arrive at a mass term for the pions which can be fully evaluated in the language which is the natural to the magnetic theory 
moduli space, we must map the traceful and traceless components of mq from their respective S O p4q the appropriate representations of 
S O p3q ̂ S O p3q. To be explicit, we wish to map,

pS O p4qq : m14ˆ4 ` mμTμ Ñ pS O p3q ˆ S O p3qq : m11 b 1 ` m1 a
ã Ja b J ã (4.8)

Where Tμ (with μ “ 1, ..., 9), are a basis of traceless, symmetric Mat(4, R). J a, J ã (with a, ̃a “ 1, 2, 3), are generators of the Lie algebra 
sop3q.

We are only concerned with mapping mq of the form mq “ diagpm1, m2, m3, m4q, as this corresponds to the most general quark mass 
term in our electric theory. Therefore we may decompose mq to the form given on the left-hand side of (4.8) as follows

mq “
1

4
pm1 ` m2 ` m3 ` m4q1`

1

4
pm1 ` m2 ´ m3 ´ m4q diagp1,1,´1,´1q (4.9)

`
1

4
pm1 ` m4 ´ m2 ´ m3q diagp1,´1,´1,1q `

1

4
pm2 ` m4 ´ m1 ´ m3q diagp´1,1,´1,1q

The pion mass term (4.7) may then be expressed in a form which makes the realisation of the map (4.8) straightforward.

TrpM2
πδφδφq “

´1

8
Trppm14ˆ4 ` mμTμqxφ I

yγIδφ
J γ J δφ

K γK q (4.10)

Note that m “ p
m1`m2`m3`m4

4 q and mμ has non-zero components p m1`m2´m3´m4
4 q, p m1`m4´m2´m3

4 q, p m2`m4´m1´m3
4 q.

We now implement the isomorphism S O p3q ˆ S O p3q » S O p4q. Naturally, the traceful part of S O p4q is mapped to the singlet of 
S O p3q ̂ S O p3q. The traceless, diagonal matrices of (4.9) (Tμ), are mapped to elements of the bifundamental algebra of S O p3q ̂ S O p3q. 
The Dirac matrices (γa) are mapped to basis elements ( Ja) of the Lie algebra sop3q. Finally, the factor of xφ I yγI , which the singlet of 
the vacuum symmetry, is mapped to the singlet of S O p3q b S O p3q, multiplied by the constant (a) which we associate with the fermion 
bilinear condensate. To summarise the map, we tabulate the transformation of each factor in (4.10) below

S O p4q S O p3q ˆ S O p3q

m1 2m11 b 1

T μ Ja b J ã

mμ m1 a
ã

xφ I yγI a1 b 1

Note that the isomorphism S O p3q ̂ S O p3q » S O p4q is actually an isomorphism at the level of the Lie algebras of both groups. As such 
we are at liberty to map Tμ Ñ Ja b J ã in whatever way is convenient. For reasons of neatness further along in the process, we have 
chosen (T1 Ñ J1 b J 1̃, T2 Ñ J2 b J 2̃, T3 Ñ J3 b J 3̃). This gives (m1 a

ã) as follows

m1 a
ã “

¨

˝

m1`m2´m3´m4
4 0 0
0 m1`m4´m2´m3

4 0
0 0 m2`m4´m1´m3

4

˛

‚ (4.11)

and in addition m1 “ m “ 1
4 pm1 ` m2 ` m3 ` m4q, see appendix B.

We can now express the pion mass term fully in terms of the S O p3q ̂ S O p3q language.

TrpM2
πδφδφq “

´a

8
Trpp2m11 b 1 ` m1 a

ã Ja b J ã
qpδAb

b̃
J b̃

b JbqpδAc
c̃ J c̃

b Jcqq (4.12)

There is subtlety we need to address: the matrix mq acts on Dirac fermions. For this reason the group we need to consider is actually 
the group SUp2q ̂ SUp2q and we therefore choose J i ” σi , the Pauli matrices. Note that Trp Ja Jbq “ 2δab , Trp Ja Jb Jcq “ 2iεabc .
6
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We can now begin to explicitly evaluate our pion mass term.

Trpm1
pδAb

b̃
J b̃

b JbqpδAc
c̃ J c̃

b Jcqq “ m1δAb
b̃
δAc

c̃ Trp J b̃
b Jb J c̃

b Jcq (4.13)

“ 4m1δAb
b̃
δAc

c̃δ
b̃c̃δbc

Trppm1 a
ã Ja b J ã

qpδAb
b̃

J b̃
b JbqpδAc

c̃ J c̃
b Jcqq “ m1 a

ã δAb
b̃
δAc

c̃ Trp Ja b J ã
qp J b̃

b Jbqp J c̃
b Jcq (4.14)

“ ´4m1 a
ã δAb

b̃
δAc

c̃ε
ãb̃c̃εabc

Our full mass term for the magnetic theory pions is then,

M2
πδAa

ãδAa
ã “

´a

8
p8m1δAa

ãδAa
ã ´ 4m1 a

ãδAb
b̃
δAc

c̃ε
ãb̃c̃εabcq (4.15)

We see that this is the pion mass term derived from the chiral Lagrangian in (3.9). The radius of the fuzzy sphere, namely the constant 
a, is identified with the value of the quark condensate c in field theory.

However, (4.15) is not yet an entirely sensible mass-squared term for our pions, as is apparent when we contract the indices on the 
right-hand side of the equation. The first portion is well-behaved as we get nine terms of the form m1pδAã

aq2, but a problem occurs in the 
second portion.

m1 a
ã δAb

b̃
δAc

c̃ε
ãb̃c̃εabc “ m1 1

1̃
pδA2

2̃
δA3

3̃
` δA3

3̃
δA2

2̃
´ δA2

3̃
δA3

2̃
´ δA3

2̃
δA2

3̃
q` (4.16)

m1 2
2̃

pδA3
3̃
δA1

1̃
` δA1

1̃
δA3

3̃
´ δA1

3̃
δA3

1̃
´ δA3

1̃
δA1

3̃
q`

m1 3
3̃

pδA1
1̃
δA2

2̃
` δA2

2̃
δA1

1̃
´ δA2

1̃
δA1

2̃
´ δA1

2̃
δA2

1̃
q

The complication that emerges here is that we have terms in this sum which have coefficients which are dimensionally mass-squared, 
but the factors of the fields are mixed. That is, rather than terms of the form M2

π pδA1
1̃
q2 as is usual for a scalar mass-term, we instead 

have terms like M2
π pδA1

1̃
δA2

2̃
q.

It is easy to see that six NG bosons will admit eigenvalues proportional to: m1 ˘ m1 1
1̃

, m1 ˘ m1 2
2̃

, m1 ˘ m1 3
3̃

, namely, M2
i j “ apmi ` m jq, 

with i ‰ j. The other three eigenvalue are obtained by diagonalising the matrix
¨

˚

˝

m1 m1 1
1̃

m1 2
2̃

m1 1
1̃

m1 m1 3
3̃

m1 2
2̃

m1 3
3̃

m1

˛

‹

‚
(4.17)

The eigenvalues of the remaining three NG bosons are therefore M2
π “ 2apm1 ` �1,2,3q, where �1,2,3 are the three roots of the cubic 

equation

�3
´ �ppm1 1

1̃
q

2
` pm1 2

2̃
q

2
` pm1 3

3̃
q

2
q ´ 2m1 1

1̃
m̃1 2

2̃
m̃1 3

3̃
“ 0 . (4.18)

In appendix C we discuss in detail the solution of this cubic equation and the resulting masses of the pions in various special cases.
The nine masses of the NG bosons obtained by S-duality using the S O p3q ̂ S O p3q language match the masses obtained by the chiral 

lagrangian using the S O p4q language, upon the relation a „ c. Thus the radius of the fuzzy sphere is identified with the value of the quark 
condensate.

5. Conclusions

In this paper we used a non-supersymmetric S-duality to explore the dynamics of a QCD-like theory. Our main result is the derivation 
of the GMOR relation from the dual magnetic theory. It is interesting to compare the self interactions of the pions that arise from the 
chiral Lagrangian with those that arise from the magnetic theory. In principle, it is not a hard task: all the terms could be attributed to 
the self interactions of the scalars in the magnetic theory.

Another open question that deserves further investigation is to identify of the η1 meson within the magnetic theory. The η1 transforms 
together with the nine NG bosons in the coset Up4q{S O p4q. In terms of the chiral Lagrangian that we described in section 3 it is the 
‘missing component’ of the two-index symmetric representation of S O p4q, namely the 4 ̂ 4 unit matrix.

The presence of massive W bosons in the magnetic theory suggests a ‘hidden local symmetry’. It is tempting to identify the W boson 
with the ρ-meson. Similar to the discussion in ref. [11] we expect a rich phenomenology, in particular the relation MW “ gv automatically 
translates into M2

ρ “ 2g2
ρππ f 2

π .
It will be interesting to further explore the dynamics of other non-supersymmetric gauge theories using S-duality. Some works [12–14]

have already been carried out in this direction. In particular, based on S-duality in ref. [13] it was argued that there is no dynamical 
symmetry breaking in 3d QCD with matter in the adjoint/symmetric/anti-symmetric representations.

We hope to return to these issues in a future work.
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Appendix A. Three-form flux components

The full, general relation between the quark masses and pion masses under Sugimoto’s duality not only allows us to compare the 
form of the quark mass/pion mass relation with chiral QCD, but will also facilitate comparison between specific cases of quark mass 
degeneracies and how they affect the distribution of pion masses. In order that we should be able to tune the electric theory fermion 
masses at will, and to extract the exact relationship between the quark and pion masses under the S-duality, we first must have an explicit 
expression of the 3-form C .

To derive an expression for C , we first look at a general term which couples a 3-form, which we will call G , to the fermions in our 
electric theory.

G I J K pγ I J K
qi j “ pmqqi j (A.1)

Where mq is a symmetric, 4 ̂ 4 matrix with real eigenvalues. I,J,K are indices of the S O p6q space, taking values (1, ..., 6). i,j are indices 
over the S O p4q space and take values (1, ..., 4). We progress with the following procedure.

γ I J K
“ γ rIγ J γ K s (A.2)

G I J K γ I J K γ rI1
γ J 1

γ K 1s
“ mqγ

rI1
γ J 1

γ K 1s (A.3)

Given that γ I satisfy the Dirac algebra rγ I , γ J s “ 2pγ Iγ J ´ δ I J1q we can show that,

Trpγ rIγ J γ K sγ rI1
γ J 1

γ K 1s
q “ (A.4)

4δK I1
δ J J 1

δ I K 1
´ 4δK I1

δ I J 1
δ J K 1

` 4δ I I1
δK J 1

δ J K 1
´ 4δ I I1

δ J J 1
δK K 1

` 4δ J I1
δ I J 1

δK K 1
´ 4δ J I1

δK J 1
δ I K 1

Which we substitute into (A.3) and evaluate.

TrpG I J K γ I J K γ rI1
γ J 1

γ K 1s
q “ Trpmqγ

rI1
γ J 1

γ K 1s
q (A.5)

“ G I J K p4δK I1
δ J J 1

δ I K 1
´ 4δK I1

δ I J 1
δ J K 1

` 4δ I I1
δK J 1

δ J K 1
´ 4δ I I1

δ J J 1
δK K 1

` 4δ J I1
δ I J 1

δK K 1
´ 4δ J I1

δK J 1
δ I K 1

q

“ 4G K 1 J 1 I1
´ 4G J 1 K 1 I1

` 4G I1 K 1 J 1
´ 4G I1 J 1 K 1

` 4G J 1 I1 K 1
´ 4G K 1 I1 J 1

“ ´24GrI1 J 1 K 1s
“ Trpmqγ

rI1
γ J 1

γ K 1s
q

The reader will notice that we have derived an expression for the components of a vector field, with raised indices, whereas we started 
this procedure with the aim of finding the components of a three-form, which would have lowered indices. To lower the indices we use 
the flat metric on the 6-dimensional space transverse to the D3 branes.

As G I J K are the components of a 3-form, we drop the brackets on the lower indices, which indicate an antisymmetrisation that from 
here on we will assume tacitly. Therefore, we have,

G I J K “
´1

24
TrpmqγrIγ J γK sq (A.6)

A.1. Anti-self-duality of C

So far we have an expression for a three-form, that we’ve called G , which contracts with the anti-symmetric product of three Dirac 
matrices to give the 4 ̂ 4 symmetric, real matrix M . This criterion being satisfied is sufficient to support the interpretation of the coupling 
of G to the fermions as a sensible mass term. However, the three-form which contracts with the γ triple index used in [15] was anti-
self-dual, and so far G is not. We must therefore go further to assimilate this property into a new three-form, C , which is derived from 
G .

Let us see what this anti-self-dual property requires: First, recall that on a Riemannian manifold, the square of the Hodge dual upon a 
3-form evaluates to ´1, i.e.

p˚6q
2ω “ ´ω

Where ω is a three-form.
Uranga gives us the expression for the anti-self-dual three-form C in terms of an arbitrary three-form, which he calls G , the components 

of which we have derived explicitly such that its coupling to the fermions is a reasonable mass term. From [15] we have:

C “ p˚6G ´ iGq (A.7)

6 ˚6C “ p´i ˚6 G ´ Gq “ ´iC

The Hodge dual convention we follow here is as follows

p˚ωqI J K “ iε I1 J 1 K 1

I J K ω I1 J 1 K 1 (A.8)

Therefore we substitute our expression for the components of G into (A.7) to derive the anti-self-dual components of C

C I J K “
´1

Trpmqpε I J K I1 J 1 K 1
γrI1γ J 1γK 1s ´ iγrIγ J γK sqq (A.9)
48
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Appendix B. The relation between mq and m1, m1 ã
a

In this work, our approach to investigating Sugimoto’s duality in [1] has been to realise it in a massive theory, and to then employ it 
to demonstrate the existence a GMOR-like relation between quark and pion masses in the dual theories. To achieve this means to show 
explicitly the relationship between the matrix mq , which encodes the quark mass spectrum in the electric theory, and m1 and m1 ã

a which 
form the mass-squared term of the pions in the magnetic theory. We can do this in a schematic way very easily, as our derivation of the 
components for the three-form C shows it is linear in mq , and therefore the pion mass-squared is too, i.e. M2

π „ mq .
However, to calculate the exact mass-squared spectrum of the pions in terms of the quark masses is a more subtle undertaking. 

Fundamentally this is a representation theory problem, to appreciate why, recall the symmetry breaking which manifests in both sides of 
the duality independently:

In the electric theory we initially have a global SUp4q symmetry, which is broken to S O p4q when we couple the theory to our three-
form flux, that we have derived to confer a sensible mass term to the quarks.

Meanwhile, in the magnetic theory we start with a global S O p6q symmetry, which is dynamically broken to S O p3q ̂ S O p3q by the 
fuzzy sphere vacuum.

These symmetry-breaking patterns are equivalent, as we have the well known isomorphism (S O p6q » SUp4q), and (S O p3q ̂ S O p3q »
S O p4q) (for which we refer to a publication by Pegoraro [16]). However, while these groups are isomorphic they are not the same. They 
form actions on different spaces, and this difference is significant as we wish to transport eigenvalues between these representation 
spaces, specifically, the quark masses from the S O p4q space to the S O p3q ̂ S O p3q space, where they constitute the pion mass-squared 
spectrum.

In [16], Pegoraro discusses two such representation spaces. In one he realises R9 as the linear space of real, traceless, symmetric 4 ̂ 4
matrices, with an action of S O p4q defined as follows

S O p4q : m̂ Ñ Om̂O (B.1)

Where O  P S O p4q, and m̂ P traceless, sym. Mat(4, Rq.
In the other representation, R9 is realised as the linear space of real 3 ̂ 3 matrices, with the following action of S O p3q ̂ S O p3q

S O p3q ˆ S O p3q : m̂1
Ñ O 1

1m̂1 O 1
2 (B.2)

Where O 1
1 P S O p3q1, O 1

2 P S O p3q2 and m̂1 P Mat(3, R).
The quark mass matrix mq is constrained by our derivation of C to take values in the space of symmetric, real 4 ̂ 4 matrices. Also, it 

transforms under S O p4q, ergo we can identify mq with m̂ in (B.1) with the caveat mq also contains a traceful component (the singlet of 
S O p4q), which we will address separately.

To bring the overall picture together the mass terms our electric and magnetic theories can each be identified as belonging to a 
representation space of S O p4q and S O p3q ̂ S O p3q respectively. These groups are isomorphic. We also know that as these representation 
spaces are both isomorphic to R9 there must exist a map between them.

In [16], Pegoraro provides the map we require. For a given matrix pm1 ã
a q in the repn. space of (B.2), the corresponding mq in (B.1) has 

components

mq “

¨

˚

˚

˚

˚

˝

m1 1̃
1 ` m1 2̃

2 ` m1 3̃
3 m1 3̃

2 ´ m1 2̃
3 m1 1̃

3 ´ m1 3̃
1 m1 2̃

1 ´ m1 1̃
2

m1 3̃
2 ´ m1 2̃

3 m1 1̃
1 ´ m1 2̃

2 ´ m1 3̃
3 m1 2̃

1 ` m1 1̃
2 m1 1̃

3 ` m̃1 3̃
1

m1 1̃
3 ´ m1 3̃

1 m1 2̃
1 ` m1 1̃

2 ´m1 1̃
1 ` m1 2̃

2 ´ m1 3̃
3 m̃1 3̃

2 ` m̃1 2̃
3

m1 2̃
1 ´ m1 1̃

2 m1 1̃
3 ` m1 3̃

1 m1 3̃
2 ` m1 2̃

3 ´m1 1̃
1 ´ m1 2̃

2 ` m1 3̃
3

˛

‹

‹

‹

‹

‚

Since we only wish to consider matrices mq of the form mq “ diagpm1, m2, m3, m4q, this simplifies inverting the map. By direct evalu-
ation we see the following

m1 1̃
1 “

1

4
pm1 ` m2 ´ m3 ´ m4q (B.3)

m1 2̃
2 “

1

4
pm1 ` m3 ´ m2 ´ m4q

m1 3̃
3 “

1

4
pm1 ` m4 ´ m2 ´ m3q

With all other entries zero. In addition the S O p3q ̂ S O p3q singlet admits

m1
“

1

4
pm1 ` m2 ` m3 ` m4q . (B.4)

Appendix C. Properties of the cubic equation and pion masses

In section 4 we derived the pion mass term of the magnetic theory under Sugimoto’s S-duality. We stated that six of the pions have 
masses M2

i j “ apmi ` m jq where i ‰ j, and that the remaining three pions have masses 2apm1 ` �1,2,3q, where �1,2,3 are the roots of the 
following polynomial.

�3
´ �ppm1 1

q
2

` pm1 2
q

2
` pm1 3

q
2
q ´ 2m1 1m1 2m1 3

“ 0 (C.1)

1̃ 2̃ 3̃ 1̃ 2̃ 3̃

9
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This is a depressed cubic equation, which has a set of known solution methods. The method we employ here is Vieta’s substitution, 
which proceeds as follows.

For the general depressed cubic

t3
` pt ` q “ 0 (C.2)

We make the substitution t “ w  ́ p
3w , which transforms (C.2) to the form

pw3
q

2
` qpw3

q ´
p3

27
“ 0 (C.3)

We can solve this quadratic by the standard formula. For W , any non-zero root of the quadratic (C.3), let w1, w2, w3 be the cube-roots. 
The roots of the initial cubic (C.2) are then t1,2,3 “ w1,2,3 ´

p
3w1,2,3

.
Applying Vieta’s substitution to (C.1) yields, firstly, the following quadratic

�2
´ �p2m1 1

1̃
m1 2

2̃
m1 3

3̃
q `

ppm1 1
1̃

q2 ` pm1 2
2̃

q2 ` pm1 3
3̃

q2q3

27
“ 0 (C.4)

Which has a root

� “ m1 1
1̃

m1 2
2̃

m1 3
3̃

`

d

pm1 1
1̃

m1 2
2̃

m1 3
3̃

q2 ´

ppm1 1
1̃

q2 ` pm1 2
2̃

q2 ` pm1 3
3̃

q2q3

27
(C.5)

Our aim for this paper is, of course, the extraction of GMOR-like relations, which requires that we express our pion masses in terms of 
the electric-theory quark masses. In section 4 we stated m1 1

1̃
, m1 2

2̃
, m1 3

3̃
in terms of the quark masses, and repeat here for convenience.

m1 1
1̃

“
m1 ` m2 ´ m3 ´ m4

4
(C.6)

m1 2
2̃

“
m1 ` m4 ´ m2 ´ m3

4

m1 3
3̃

“
m1 ` m3 ´ m2 ´ m4

4

When we expand the factors of m1 1
1̃

, m1 2
2̃

, m1 3
3̃

in (C.5) in terms of m1, m2, m3, m4, we derive a pair of very large polynomials, which we 
shall label Q pmqq, Ppmqq. For convenience we express the quadratic root � in terms of these polynomials.

� “
Q pmqq

64
`

1

48
?

3

b

P pmqq (C.7)

Ppmqq is related to the discriminant of the depressed cubic by a real, negative factor. It is known for cubic polynomials that a positive 
discriminant implies that the equation has three real, distinct roots. It can be shown that the polynomial Ppmqq is non-positive for any 
choice of the quark masses, and therefore the discriminant is non-negative. There are specific cases of quark mass degeneracy which yield 
a discriminant of zero, and the effect of this in the magnetic theory pion masses will be explored in example calculations. Excluding these 
special cases however, we are assured that we will always have real pion masses.

To be complete, we provide the full expressions of Q pmqq and Ppmqq.

Q pmqq “ pm1q
3

` pm2q
3

` pm3q
3

` pm4q
3

´m1pm2q
2

´ m1pm3q
2

´ m1pm4q
2

´m2pm1q
2

´ m2pm3q
2

´ m2pm4q
2

´m3pm1q
2

´ m3pm2q
2

´ m3pm4q
2

´m4pm1q
2

´ m4pm2q
2

´ m4pm3q
2

`2m1m2m3 ` 2m1m2m4 ` 2m1m3m4 ` 2m2m3m4

P pmqq “ ´p9pm1q
4
pm2q

2
´ 9pm1q

4
pm2qpm3q ´ 9pm1q

4
pm2qpm4q ` 9pm1q

4
pm3q

2
´ 9pm1q

4
pm3qpm4q

` 9pm1q
4
pm4q

2
´ 14pm1q

3
pm2q

3
` 3pm1q

3
pm2q

2
pm3q ` 3pm1q

3
pm2q

2
pm4q ` 3pm1q

3
pm2qpm3q

2

` 24pm1q
3
pm2qpm3qpm4q ` 3pm1q

3
pm2qpm4q

2
´ 14pm1q

3
pm3q

3
` 3pm1q

3
pm3q

2
pm4q ` 3pm1q

3
pm3qpm4q

2

´ 14pm1q
3
pm4q

3
` 9pm1q

2
pm4q

4
` 3pm1q

2
pm2q

3
pm3q ` 3pm1q

2
pm2q

3
pm4q ´ 3pm1q

2
pm2q

2
pm3q

2

´ 12pm1q
2
pm2q

2
pm3qpm4q ´ 3pm1q

2
pm2q

2
pm4q

2
` 3pm1q

2
pm2qpm3q

3
´ 12pm1q

2
pm2qpm3q

2
pm4q

´ 12pm1q
2
pm2qpm3qpm4q

2
` 3pm1q

2
pm2qpm4q

4
` 9pm1q

2
pm3q

4
` 3pm1q

2
pm3q

3
pm4q

´ 3pm1q
2
pm3q

2
pm4q

2
` 3pm1q

2
pm3qpm4q

3
` 9pm1q

1
pm4q

4
´ 9pm1qpm2q

4
pm3q

´ 9pm1qpm2q
4
pm4q ` 3pm1qpm2q

3
pm3q

2
` 24pm1qpm2q

3
pm3qpm4q ` 3pm1qpm2q

3
pm4q

2

` 3pm1qpm2q
2
pm3q

3
´ 12pm1qpm2q

2
pm3q

2
pm4q ´ 12pm1qpm2q

2
pm3qpm4q

2
` 3pm1qpm2q

2
pm4q

3

10
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´ 9pm1qpm2qpm3q
4

` 24pm1qpm2qpm3q
3
pm4q ´ 12pm1qpm2qpm3q

2
pm4q

2
` 24pm1qpm2qpm3qpm4q

3

´ 9pm1qpm2qpm4q
4

´ 9pm1qpm3q
4
pm4q ` 3pm1qpm3q

3
pm4q

2
` 3pm1qpm3q

2
pm4q

3

´ 9pm1qpm3qpm4q
4

` 9pm2q
4
pm3q

2
` 9pm2q

4
pm3qpm4q ` 9pm2q

4
pm4q

2
´ 14pm2q

3
pm3q

3

` 3pm2q
3
pm3q

2
pm4q ` 3pm2q

3
pm3qpm4q

2
´ 14pm2q

3
pm4q

3
` 9pm2q

2
pm3q

4
` 3pm2q

2
pm3q

3
pm4q

´ 3pm2q
2
pm3q

2
pm4q

2
` 3pm2q

2
pm3qpm4q

3
` 9pm2q

2
pm4q

4
´ 9pm2qpm3q

4
pm4q ` 3pm2qpm3q

3
pm4q

2

` 3pm2qpm3q
2
pm4q

3
´ 9pm2qpm3qpm4q

4
` 9pm3q

4
pm4q

2
´ 14pm3q

3
pm4q

3
` 9pm3q

2
pm4q

4
q

Note that in the most general case (where m1 ‰ m2 ‰ m3 ‰ m4), Q pmqq and Ppmqq cannot be factorised such that the cube-roots of 
� and the roots of (C.1) can be expressed generally and explicitly in linear terms of the quark masses. Therefore, in order to calculate the 
resulting pion masses explicitly it is necessary to fix the degeneracy of the quark masses a priori.

In terms of the polynomials Q pmqq, Ppmqq, the roots of (C.1) are given as follows.

�1,2,3 “
3

d

Q pmqq

64
`

1

48
?

3

b

P pmqq

`
3pm1q2 ` 3pm2q2 ` 3pm3q2 ` 3pm4q2 ´ 2m1m2 ´ 2m1m3 ´ 2m1m4 ´ 2m2m3 ´ 2m2m4 ´ 2m3m4

48 3

c

Q pmqq

64 `
1

48
?

3

a

P pmqq

C.1. Special degeneracy cases

C.1.1. m1 “ m2 “ m3 “ m4

For the case of full quark mass degeneracy, we see immediately that m1 1
1̃

, m1 2
2̃

, m1 3
3̃

all vanish. Therefore Q pmqq and Ppmqq (equivalent 
to the discriminant of (C.1)) also vanish, giving trivial roots for (C.1), which means the three non-trivial pions receive no shift from m1 . To 
state it explicitly

�1,2,3 “ 0

M2
π Degeneracy

2am1 9

C.1.2. m1 ‰ m2 , m2 “ m3 “ m4

m1 1
1̃

“
1

4
pm1 ´ m2q

m1 2
2̃

“
1

4
pm1 ´ m2q

m1 3
3̃

“
1

4
pm1 ´ m2q

This reduces (C.5) to

� “
1

64
pm1 ´ m2q

3 (C.8)

We see again that Ppmqq has vanished, hence the discriminant of (C.1) is also zero in this case.
(C.8) has cube-roots

3?
� “ ω1,2,3 “

1

4
pm1 ´ m2q,

?
3 ` i

8
pm1 ´ m2q,

?
3 ´ i

8
pm1 ´ m2q (C.9)

As stated previously, the cube-roots ω1,2,3 relate to �1,2,3 as follows

�1,2,3 “ ω1,2,3 `

pm1 1
1̃

q2 ` pm1 2
2̃

q2 ` pm1 3
3̃

q2

3ω1,2,3
(C.10)

Evaluating this with the roots (C.9), we find the following values for the mass shifts

�1 “
1

4
pm1 ´ m2q `

3p
1
4 pm1 ´ m2qq2

3p
1
4 pm1 ´ m2qq

“
1

2
pm1 ´ m2q

�2 “

?
3 ` i

8
pm1 ´ m2q `

3p
1
4 pm1 ´ m2qq2

3p
1
4 pm1 ´ m2qqp

?
3`i
2 q

“

?
3 ` i

pm1 ´ m2q `

?
3 ´ i

pm1 ´ m2q

8 8
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“

?
3

4
pm1 ´ m2q

�3 “

?
3 ´ i

8
pm1 ´ m2q `

3p
1
4 pm1 ´ m2qq2

3p
1
4 pm1 ´ m2qqp

?
3´i
2 q

“

?
3 ´ i

8
pm1 ´ m2q `

?
3 ` i

8
pm1 ´ m2q

“

?
3

4
pm1 ´ m2q

Summarily

�1 “
1

2
pm1 ´ m2q, �2 “ �3 “

?
3

4
pm1 ´ m2q (C.11)

M2
π Degeneracy

apm1 ` m2q 3

2am2 3

ap
3m1`m2

2 q 1

a p1`
?

3qm1`p3´
?

3qm2
2 2

Note that while these masses at first look dubious, they are consistent with the result of the previous degeneracy case. If one takes 
m1 “ m2, the above pion masses reduce appropriately to 2am1 with a degeneracy of 9.

C.1.3. pm1 “ m2q ‰ pm3 “ m4q

This degeneracy yields the following

m1 1
1̃

“
1

2
pm1 ´ m4q, m1 2

2̃
“ m1 3

3̃
“ 0

Substituting into (C.1) we get

�3
´

pm1 ´ m4q2

4
� “ 0 (C.12)

Which by inspection has the solution

�1 “ 0, �2 “
1

2
pm1 ´ m4q, �3 “

1

2
pm4 ´ m1q (C.13)

This yields the pion spectrum

M2
π Degeneracy

apm1 ` m4q 5

2am4 2

2am1 2
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