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Abstract

Zoothamnium intermedium is an obligate epibiont ciliate and has been found in a diverse 

array of hosts and environments. Different studies have reported conflicting distribution patterns 

and host preferences, even though studies in Chesapeake Bay have suggested that the ciliate has a 

strong host specificity for two calanoid copepod species. We examined the life cycle, host 

preferences, and ecological conditions conducive to Z. intermedium presence on copepods in 

Chesapeake Bay, the largest estuary in North America. The York River tributary was sampled 

biweekly from fall 2014 through summer 2015 for plankton, peritrichs and bacteria in the water 

column. Bacterial abundance in the water column peaked in fall and late spring, coinciding with 

increased abundance and species richness of non-epibiont peritrichs. Among the plankton, only 

the calanoid copepods Acartia tonsa and Centropages hamatus were colonized by Z. intermedium. 

The peritrich epibiont displayed higher colonization rates on C. hamatus even when A. tonsa was 

far more abundant. Multivariate correlation analysis of infestation prevalence on A. tonsa showed 

a strong correlation with dissolved oxygen, salinity and water temperature. Such correlations, 
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along with differences in host species biology, might be driving the seasonality of this epibiotic 

relationship.

Keywords: epibiosis, host interaction, Peritrichia, microbial ecology, 
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Introduction

Epibiosis, broadly defined as one species living and growing on the body surface of another, 

is widely observed in aquatic systems between unicellular epibionts from bacteria to algae, 

flagellates and ciliates, and multicellular hosts including crustaceans (Carman and Dobbs 1997). 

This life strategy often requires investment in special attachment mechanisms (Bickel et al. 2012) 

and some epibiont species exhibit host specificity (Gilbert and Shröder 2003), suggesting that the 

life cycle and ecological functions of these epibionts are strongly dependent on the particular hosts. 

Epibionts can derive considerable benefits from their attachment to hosts, such as increased 

mobility and filtration efficiency (Magagnini and Verni 1988, Regali-Seneghim and Godinho 

2004, Pane et al. 2014). On the other hand, the effects of epibiosis on hosts are less clear. Although 

some investigators reported that colonization presents no measurable consequences for the hosts 

(Scott and Thune 1986, Hudson and Lester 1992), others have observed detrimental effects on the 

host’s fecundity, feeding, locomotion, reproduction, growth and survivorship, and increased 

predation risk and sensitivity to contaminants (Kankaala and Eloranta 1987, Weissmann et al. 

1993, Threlkeld and Willey 1993, Hanamura et al. 2010, Bickel et al. 2012). 

Zoothamnium intermedium is a common peritrich epibiont, first described over 80 years ago 

(Precht 1935). Its zooids are bell-shaped and it attaches to a host’s cuticle, forming clonal colonies. 

It was found on ascidians, shrimp and amphipods in Kiel Bay, Germany, where it was first 

discovered (Precht 1935), and it was subsequently reported to colonize a variety of crustacean 

hosts from other parts of the world (Valbonesi and Guglielmo 1988, Fernandez-Leborans and von 

Rintelen 2010, Nekuie Fard et al. 2015). In North American waters, the ciliate uses the planktonic 

copepods Acartia tonsa and Eurytemora affinis as its primary hosts, colonizing other hosts such 

as barnacle nauplii and harpacticoid copepods only in the absence of suitable primary hosts (Utz 
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and Coats 2008). While capable of forming short-lived telotroch stages for dispersion, Z. 

intermedium otherwise is thought to reside entirely on the carapaces of these crustaceans, in a 

symbiosis that defies facile characterization. Most likely, the ciliate is primarily a commensal, 

benefitting from the food environment made accessible by planktonic crustaceans swimming 

through the water column. 

Planktonic copepods play a vital role in the marine pelagic food web, both as prey for fish 

larvae and other zooplanktivorous consumers, as well as grazers of phytoplankton (Turner 2004). 

Acartia tonsa is the dominant copepod species in Chesapeake Bay and a major component of fish 

diets (Sedlacek and Marcus 2005, Chen and Hare 2008), but eutrophication and overfishing have 

adversely affected this species by creating a favorable environment for its predators such as 

ctenophores, and causing non-predatory mortality due to hypoxia (Keister et al. 2000, Purcell and 

Decker 2005, Kimmel et al. 2006, Condon and Steinberg 2008, Kimmel et al. 2012, Elliot et al. 

2013). Anthropogenic impacts also affect water temperatures (Lomas et al. 2005), and elevated 

temperatures are known to prompt other ciliate taxa to infest copepods (Walkusz and Rolbiecki 

2007). 

Utz and Coats (2005) found that Z. intermedium reached over 6% colonization prevalence 

on A. tonsa in March along the main axis of Chesapeake Bay in Maryland, while Peng (2013) 

found up to 78% colonization prevalence in the York River in lower Chesapeake Bay at the same 

time of the year. Although both studies found Z. intermedium colonizing A. tonsa in Chesapeake 

Bay, those authors investigated different habitats, with Utz and Coats (2005) sampling in deeper 

waters, along the main axis of the bay, and Peng (2013) sampling in a shallow coastal zone of the 

York River. Such differences in habitat could explain the lower number of A. tonsa copepods 

available as host in the samples of Utz and Coats (2005).
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Zoothamnium intermedium colonization can have consequences for both the hosts and the 

broader food webs in which these hosts reside, yet the potentially important role of colonization 

by this epibiont has received little attention from parasitologists and ecologists over the years. 

Previous research on Z. intermedium has reported conflicting data on its seasonality and host 

preferences (Precht 1935, Valbonesi and Guglielmo 1988, Utz and Coats 2005, Fernandez-

Leborans and Von Rintelen 2010, Nekuie Fard et al. 2015). By examining the epibiont-host 

dynamics in relation to the plankton community compositions, we sought to provide a better 

spatial-temporal resolution on the driving factors of this relationship. To achieve this, we surveyed 

target host species, as well as other members of the plankton, including bacteria, peritrichs and 

alternative potential plankton hosts. We also applied molecular methods to confirm the 

identification of the peritrich epibiont. The findings altogether improve our understanding of the 

ecological significance of peritrich epibiosis in Chesapeake Bay.

Materials and Methods

Collection and Preservation of Samples 

The York River, a tributary of Chesapeake Bay, USA, is a partially mixed microtidal sub-

estuary (Lin and Kuo 2001). Biweekly samples were collected from September 2014 to August 

2015 from a fishing pier at Gloucester Point (37.247N, 76.499W), in the mesohaline part of the 

estuary where salinity is typically 15 or more. Zooplankton were collected by five-minute tows of 

a plankton net (0.5-m diameter; 200-μm mesh). Subsamples were fixed with 8% formaldehyde 

(Dias et al. 2009) for enumeration and selected colonized copepod specimens with 95% ethanol 

for molecular analysis. Major planktonic taxa were quantified and microscopically identified to 

order level (Steinberg and Condon 2009). The zooplankton fixed in formaldehyde were examined 
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under a dissecting microscope for the presence of Z. intermedium. The specimens fixed with 95% 

ethanol were also screened for the epibiont. Colonized hosts were further identified by DNA 

analysis (see below). The epibiont was microscopically identified as Z. intermedium by its colonial 

coenobium, alternate branching pattern, contractile stalk, continuous spasmoneme, bell-shaped 

zooid, absence of a macrozooid, and zooid length (Utz et al. 2008). The specimens were also used 

to enumerate epibiont colonies per host and zooids per colony (sensu Utz and Coats 2005). 

Epibiont species identification as well was further confirmed by DNA analysis (see below).

Other sessile peritrichs, i.e. those that are not obligate epibionts on other organisms, were 

sampled by submerging glass slides for two-week intervals during the same time period by 

suspending them from a pier just down-estuary from the plankton sampling site; afterward the 

slides were screened for peritrichs and colonies present within a cover slip area (Safi et al. 2014). 

Water quality data were obtained from a monitoring station at the sampling site as a part of 

the Virginia Estuarine and Coastal Observing System (VECOS). Water temperature, salinity, 

dissolved oxygen, pH, and total chlorophyll were recorded every 15 minutes during the study 

period, both at the water surface and bottom.

Water samples for bacterial cell counts were collected with 5-mL FalconⓇ tubes and fixed 

with freshly prepared 1% paraformaldehyde at 4°C for 30-60 minutes. Samples were then frozen 

in liquid nitrogen and kept at -80°C. Samples were later thawed, stained with a 1% solution of 

SYBR-I (ThermoFisher, Waltham, MA) in the dark for 10 minutes, and then run through a BD 

Influx cell sorter (Benton Dickson, San Jose, California, USA), following Gasol and Del Giorgio 

(2000). Flow cytometry of samples was run for 3-5 minutes each, and data were acquired in log 

mode until around 10,000 events. The volume delivered to the cell sorter was calculated as the 

difference between the remaining volume and the initial volume.
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DNA Analyses 

Since we did not observe any clear morphological differences between the colonies from the 

two hosts, we further investigated the potential molecular diversity among them. A PCR-

sequencing approach was used to confirm the identification of Zoothamnium epibiont specimens 

found on different copepods. We designed primers targeting the SSU rDNA gene region, VIMS-

ZISSU-82F (5’-CGAAACTGCGAATGGCTCAT-3’) and VIMS-ZISSU-1616R (5’-

TTTGCAGGGACGTAATCAGCAC-3’), which were expected to produce an amplicon of ~1500 

bp. DNA from peritrich-colonized zooplankton subsamples fixed in ethanol was extracted with a 

DNeasy Blood and Tissue Kit (Qiagen, Valencia, California, USA) following the manufacturer’s 

protocol.

Each PCR tube contained 3-10 ng of template DNA (3-10 ng), 1x PE buffer, bovine serum 

albumin 10 mg/mL, 10mM of each primer, and 0.6 U of AmpliTaq DNA polymerase 

(ThermoFisher, Waltham, MA) for a total volume of 25 µL. PCR was then run with the following 

cycling parameters: 1 cycle at 94°C for 4 min, followed by 35 cycles of 94 °C for 30 s, 58 °C for 

1 min, and 72 °C for 2 min, with a final extension of 72 °C for 10 min. PCR products were checked 

by agarose electrophoresis and sent to Macrogen, Inc. (Rockville, Maryland, USA) for purification 

and direct Sanger sequencing. 

For confirmation of peritrich-colonized zooplankter identification, a ~700-bp region of the 

mitochondrial cytochrome oxidase I gene (mtCO1) was amplified using primers LCO1490 and 

HCO2198 following parameters described in Folmer et al. (1994). Products were again analyzed 

by agarose electrophoresis and sent to Macrogen Inc. for purification and sequencing.

SSU rDNA sequences from peritrich epibionts were aligned with other Zoothamnium 

sequences available on GenBank using MAFFT version 7.407 (Katoh et al. 2002, Katoh and 
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Standley 2013) in Mesquite version 3.6 (build 917) (Maddison 2008), with refinement by eye. 

Sequence similarity search for copepod mtCO1 sequences was done by BLAST (Altschul et al. 

1990). 

Statistical Analyses

Multivariate correlation analysis (Spearman-Rho correlation) was performed using R v.3.6.1 

(Team 2019) to evaluate relationships between epibiont prevalence (i.e. percentage of hosts 

colonized) and environmental variables. Two-way ANOVA tests were also performed in R to 

evaluate the differences in infestation density (colonies per host) and load (zooids per colony) 

between copepod host species and water quality parameters. All life stages (i.e. copepodite or 

adult) of the hosts were accounted for. 

Results

Distribution of Zoothamnium intermedium

Zoothamnium intermedium was found on the calanoid copepods Acartia tonsa and 

Centropages hamatus, mostly colonizing the cephalothorax and abdomen of these hosts. It showed 

a seasonally varied pattern of host preference in the York River (Figs. 1, 2, 3, and 4). It was found 

to colonize both copepod species in spring, but only A. tonsa during summer and only C. hamatus 

during fall and winter (Fig. 5). Interestingly, the epibiont was observed to colonize only C. 

hamatus even when A. tonsa was 300 times more abundant than C. hamatus. Mean prevalence of 

colonization varied from 0 to 20% in A. tonsa, but it exceeded 35% in C. hamatus. The number of 

colonies per individual host specimen varied from 0 to 19 on A. tonsa, with 1 to 73 zooids per 

colony, and 0 to 11 colonies with 1 to 52 zooids per colony on C. hamatus, but those numbers 

varied throughout the year, and no colonization was found in October and November (Fig. 6).
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The plankton tows also retrieved a variety of unidentified calanoid copepods, as well as 

cyclopoid and harpacticoid species. Other zooplankton taxa included Rotifera, Polychaeta, 

Cladocera, Decapoda and Cirripaedia larvae, Amphipoda, Isopoda, and Mysidacea. The peritrich 

epibiont, however, was not found on any of these taxa, even during periods of high abundance of 

other potential hosts, such as different copepod species (September to November and June to 

August) and cirripedia larvae (December to February).

Salinity at the collection site ranged from 10.5 to 16.0, and temperature from 6.2 to 27.3°C 

(Fig. 7). Bacterial concentrations in the water column ranged from 9.9 × 105 to 5 × 106 cells mL-

1, with abundance peaks in fall and late spring. The concentrations of non-epibiont peritrichs were 

synchronous with bacterial concentrations in the water column, with spring and summer peaks 

(Fig. 6). Concentration and species richness of sessile peritrichs decreased markedly during the 

colder months, possibly due to the decrease in bacterial concentration as well as temperature. From 

December 2014 to March 2015, no peritrich ciliates were found on the submerged glass slides.

Rank correlation analyses showed significant negative correlations of infestation prevalence 

on A. tonsa with dissolved oxygen (p = 0.03) and salinity (p = 0.004), and positive correlation with 

water temperature (p = 0.044), and a nearly significant negative correlation with total suspended 

solids (p = 0.052) (Table 2). In contrast, infestation prevalence on C. hamatus was not correlated 

with any of the environmental variables. The ANOVA tests retrieved no significant differences for 

infestation density and zooid load between A. tonsa and C. hamatus for the studied period.

Genetic Identification

A total of four SSU rDNA epibiont sequences and three copepod mtCO1 sequences were 

analyzed. The Zoothamnium epibiont sequences of ~1435 bp were deposited in GenBank 

(MH374528, MH374523, MH374506, and MH376893). When compared to the original Z. 
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intermedium SSU rDNA sequence (KF790904), they scored ≥ 99.85% similarity in BLAST 

search.

Copepod mtCO1 sequences of ~660 bp were deposited in GenBank as Acartia tonsa 

(MH493899) and Centropages hamatus (MH549185). Both species showed a high percentage of 

identification of sequences on BLAST, ≥ 99.84 and 99.31, respectively, and have been previously 

reported for the sampling area (Van Engel and Tan 1965).

Discussion

The peritrich epibiont Z. intermedium, confirmed by SSU rDNA sequencing, colonized only 

the calanoid copepods A. tonsa (Fig. 1) and C. hamatus (Fig. 2), which were confirmed by mtCO1 

sequence analysis. While no traditional protargol staining was performed to evaluate the species 

infraciliature of the ciliate, previous studies found no differences in the oral apparatus morphology 

among the specimens found on different hosts (Utz and Coats 2005). In vivo morphometry was 

also consistent among the specimens found on both copepod hosts. Furthermore, this was the only 

epibiont from genus Zoothamnium found colonizing the copepods collected throughout the 

sampling period. None of the other potential host taxa was colonized by Z. intermedium in our 

study, which is also consistent with previous observations (Utz and Coats 2005). The high 

similarity among the epibiont SSU rDNA sequences (≥ 99.85%) is evidence that this is indeed the 

same peritrich species colonizing both copepods. 

Colonization rates were appreciable in A. tonsa (up to 11% during spring) and substantially 

higher in C. hamatus (~30% in spring and up to 70% in fall) even when A. tonsa abundances were 

1-2 orders of magnitude higher than C. hamatus in the samples (Fig. 4). This may be attributed to 

differences in how the two species occupy the water column. While A. tonsa is considered a pelagic 

species (Nagasawa et al. 1987, Gaudy et al. 2000), C. hamatus has been described as more of an 
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epibenthic copepod (Beyst et al. 2000, Vallet and Dauvin 2004). During this study, the total 

suspended solids and turbidity were generally higher in the bottom layer than in the surface layer 

(Fig. 7), which may reflect a higher food supply for Z. intermedium attaching to an epibenthic 

copepod host. A similar behavior was reported by Jones et al. (2018), who reported density and 

prevalence of an Epistylis epibiont on an estuarine copepod varied with turbidity and organic 

matter content. Nevertheless, we failed to find significant correlations between epibiont prevalence 

and total suspended solids or turbidity (Table 2). However, we did find a significant negative 

correlation between the infestation prevalence on A. tonsa and dissolved oxygen (p = 0.03) and 

salinity (p = 0.004), as well as a significant positive correlation with water temperature (p = 0.044). 

Such correlations were not reported in previous studies of Z. intermedium, but research on other 

peritrich epibionts of copepods show some similar patterns. The presence of certain peritrich 

species has been generally regarded as an indication of saprobiotic conditions in freshwater 

systems (Curds and Cockburn 1970, Sládecek 1981, Salvado et al. 1995), as have the presence of 

certain peritrich epibionts (Cabral et al. 2018). However, little has been published on the 

relationship of peritrichs with dissolved oxygen in estuarine and marine environments, except for 

Hudson and Lester (1992), who found a significant positive correlation between peritrich epibionts 

on prawns and biological oxygen demand. Fortunately, more data are available on the relationships 

of salinity and temperature with epibiosis. Jones et al. (2019), in laboratory studies, found that high 

salinity was responsible for the mortality of an Epistylis sp. and a combined effect of high salinity 

and turbidity significantly affected its survivorship. Goh et al. (2019) investigated another 

Zoothamnium sp. epibiont of copepods and found that infestation was more prevalent after the 

establishment of a power plant, which increased the sea surface temperature of their study site by 

0.58°C.
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None of the other analyzed plankton taxa (Rotifera, Polychaeta, Cladocera, Decapoda and 

Cirripaedia larvae, Amphipoda, Isopoda, and Mysidacea) were colonized by the peritrich epibiont. 

The investigation of other plankton taxa aimed to validate previous reports of host preference for 

the species with multiple crustacean hosts, as well as to confirm laboratory experiments in which 

Z. intermedium preferred the calanoid copepods A. tonsa and E. affinis as hosts (Utz and Coats 

2008). Other host biological factors, such as the vertical distribution of copepods and epibionts in 

the water column, as well as velocity shear due to swimming movements, were suggested to be 

important in determining epibiont prevalence. However, these are also different among A. tonsa 

and C. hamatus (Mauchline 1998). Host density, known to modulate infestation rates for other 

peritrich epibionts in a freshwater lake (Xie et al. 2001), also does not seem to be a factor. As 

mentioned earlier, the epibiont was found colonizing only C. hamatus even when A. tonsa was 

much more abundant. Conversely, Z. intermedium was found colonizing both copepod species 

when that host ratio was closer to 1. A similar pattern was reported with Zoothamnium sp. and 

copepods Centropages abdominalis and Acartia clausi by Nagasawa (1986) in a saline lake.

The epibiont species also showed different seasonal trends from the non-epibiotic sessile 

peritrichs found in the same period, the latter of which seemed to be synchronized to bacterial 

abundances in the water column (Fig. 8). This was expected, since peritrichs are primarily 

bacterivorous (Henebry and Ridgeway 1979, Stabell 1996). It was interesting, however, to find Z. 

intermedium colonizing C. hamatus in periods of low availability of food, i.e., bacteria, and low 

water temperatures (Fig. 4). Epibionts can benefit from a reduced boundary layer around them 

relative to free-living forms, while improving their feeding rates when compared to non-epibionts, 

as they save energy from not generating their own feeding currents (Reynoldson 1955, Bickel et 

al. 2012). Additionally, the epibiotic life strategy can be advantageous for Z. intermedium in the 
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aforementioned scenario for using the host motility to better explore food patches (Kankaala and 

Eloranta 1987). 

The same does not apply to the host, however. There are numerous reports of damage from 

Zoothamnium species on copepod hosts (Herman and Mihurski 1964, Feigebaum 1975, Couch 

1983, Scott and Thune 1986, Nagasawa 1986, Hudson and Lester 1992, Souissi et al. 2013), 

especially in food-limited environments (Xu and Burns 1991). Colonial peritrichs have been 

shown to be detrimental to another Acartia species, A. hudsonica, potentially affecting its 

population fitness by decreasing sinking and egg production rates, as well as survival of nauplii 

(Weissman et al. 1993). Although our sampling method was not designed specifically for 

epibenthic species, the number of individuals retrieved for C. hamatus and A. tonsa was drastically 

different. Van Engel and Eng-Chow Tan (1965) investigated copepod abundance and composition 

in Chesapeake Bay, and reported C. hamatus as “one of the less numerous species”, with April 

being its period of greatest abundance, which is consistent with our data. 

It is not possible to determine if the original Z. intermedium described by Precht (1935) is 

the same species we found in our samples, but if that is indeed the case, it indicates a cosmopolitan 

distribution and variable host specificity. However, without definitive genetic evidence as we 

presented here, the peritrich could be easily misidentified or confused with other Zoothamnium 

species (Sun et al. 2012, Shen et al. 2016). As shown in our results, Z. intermedium exhibited 

strong host specificity and seasonality in Chesapeake Bay. By understanding the driving factors in 

this relationship, we can make better predictions on specific threats to copepod host species 

accordingly.

Here we documented the distribution of Z. intermedium on calanoid copepods from the York 

River in Chesapeake Bay. The epibiont was found only on C. hamatus from fall to spring, but 
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shifted to a mixed host preference with A. tonsa from spring through summer. Statistical analysis 

revealed that the epibiont colonization on A. tonsa had a strong negative correlation with dissolved 

oxygen and salinity, as well a strong positive correlation with water temperature. Next steps of the 

research should explore other water bodies, so other environments and potential hosts can be 

investigated.
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Table 1 Number of copepods retrieved from biweekly collections and percent colonized. 

At/Ch is the ratio of Acartia tonsa to Centropages hamatus found in the samples. A value of 1 was 

added for C. hamatus on 9/12 to avoid division by 0.

Table 2 Correlation coefficients (C) and p-values (p) for Spearman’s rho rank correlations 

between infestation prevalence and water quality parameters in the York River (VA) between 

September 2014 and July 2015. p-values < 0.05 in bold. n = number of pooled samples). DO = 

dissolved oxygen, TSS = total suspended solids, Wtemp = Water temperature. ‘b’ corresponds to 

bottom and ‘s’ to surface.

Fig. 1. Copepod host Acartia tonsa (female adult) displaying heavy colonization by 

Zoothamnium intermedium. 

Fig. 2. Copepod host Centropages hamatus (male adult) displaying heavy colonization by 

Zoothamnium intermedium. 

Fig. 3. Detail of a Zoothamnium intermedium colony on a copepod host.

Fig. 4. Zoothamnium intermedium colony separated from host.
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Fig. 5. Colonization of Zoothamnium intermedium on copepod hosts relative to host 

abundance. Left axis shows mean colonization (number of colonized individuals/total number of 

individuals, in percentage) of hosts Acartia tonsa and Centropages hamatus. Right axis is the ratio 

of host A. tonsa to C. hamatus abundance ratio, represented by the dashed line. Data obtained from 

the York River from September 2014 to August 2015.

Fig. 6. Monthly means of infestation density (a) and infestation load (b) on copepod hosts in 

the York River from September 2014 to August 2015. Line represents standard errors.

Fig. 7. Water quality parameters from the sampling site in the York River from September 

2014 to August 2015. Solid lines represent bottom measurements, dashed lines represent surface 

measurements. 

Fig. 8. Mean colonization density and species richness found on submerged glass slides 

deployed every two weeks in the York River from September 2014 to August 2015. Solid line 

represents peritrich abundance (colonies cm-2), dashed line represents peritrich species diversity 

(species cm-2). Grey area represents number of bacterial cells x103 mL-1.

Table 1. Number of copepods retrieved from biweekly collections and percent colonized. 

At/Ch is the ratio of Acartia tonsa to Centropages hamatus individuals found in the samples. 

Numbers for A. tonsa and C. hamatus are shown as number of colonized copepods/ total number 

of copepods of that species, followed by (% copepods colonized). A value of 1 was added for C. 
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hamatus on 9/12 to avoid division by 0. “Other copepods” refers to all other species present in the 

sample that were not A. tonsa or C. hamatus.

Table 2. Correlation coefficients (C) and p-values (p) for Spearman’s rho rank correlations 

between infestation prevalence and water quality parameters in the York River (VA) between 

September 2014 and July 2015. p-values<0.05 in bold. n = number of pooled samples). DO = 

dissolved oxygen, TSS = total suspended solids, Wtemp = Water temperature. ‘b’ corresponds to 

bottom and ‘s’ to surface.
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Collection 
date

Other 
copepods A. tonsa C. 

hamatus At/Ch

12-09-
2014 97 42/449 

(9.35%)
0/0 

(0.0%) 449

26-09-
2014 14 0/407 (0.0%) 0/1 

(0.0%) 407

10-10-
2014 113 0/326 (0.0%) 0/6 

(0.0%) 54.3

24-10-
2014 167 0/360 (0.0%) 0/17 

(0.0%) 21.2

07-11-
2014 220 0/543 (0.0%) 0/39 

(0.0%) 13.9

21-11-
2014 313 0/1284 

(0.0%)
0/12 

(0.0%) 107

05-12-
2014 42 0/1153 

(0.0%)
12/45 

(26.67%) 25.6

19-12-
2014 15 0/613 (0.0%) 2/20 

(10.00%) 30.7

02-01-
2015 29 0/165 (0.0%) 0/4 

(0.0%) 41.3

14-01-
2015 11 0/89 (0.0%) 0/1 

(0.0%) 89

29-01-
2015 194 0/565 (0.0%) 1/18 

(5.56%) 31.4

14-02-
2015 171 0/608 (0.0%) 0/9 

(0.0%) 67.6

27-02-
2015 151 0/559 (0.0%) 0/16 

(0.0%) 34.9

13-03-
2015 331 1/275(0.36%) 0/12 

(0.0%) 22.9

26-03-
2015 93 4/158 

(2.53%)
1/9 

(11.11%) 17.6
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09-04-
2015 98 4/29 

(13.79%)
0/18 

(0.0%) 1.6

23-04-
2015 84 0/48 (0.0%) 5/9 

(0.0%) 5.3

09-05-
2015 344 19/850 

(2.24%)
3/36 

(0.0%) 23.6

22-05-
2015 20 7/412 

(1.70%)
0/4 

(0.0%) 103

06-06-
2015 26 67/347 

(19.65%)
0/5 

(0.0%) 68.2

18-06-
2015 35 9/265 

(3.40%)
0/6 

(0.0%) 44.2

02-07-
2015 53 2/136 

(1.47%)
0/0 

(0.0%) 128

17-07-
2015 208 0/128 (0.0%) 0/1 

(0.0%) 128

31-07-
2015 109 4/945 

(0.42%)
1/3 

(33.33%) 315

14-08-
2015 101 5/55 (9.09%) 1/1 

(100%) 55

28-08-
2015 180 85/783 

(10.86%)
2/5 

(40.00%) 156.6



37

Infestation Prevalence
Variable Depth

A. tonsa C. 
hamatus

b  
C=-0.131, 
p=0.532, 

n=25
DO

s

C=-
0.435, 

p=0.03, 
n=25

 

b  
C=0.055, 
p=0.794, 

n=25
pH

s
C=0.001, 
p=0.995, 

n=25
 

b  
C=-0.184, 
p=0.379, 

n=25
Salinity

s

C=-
0.551, 

p=0.004, 
n=25

 

b  
C=-0.108, 
p=0.608, 

n=25
TSS

s
C=0.393, 
p=0.052, 

n=25
 

b  
C=-0.102, 
p=0.627, 

n=25
Turbidity

s

C=-
0.147, 

p=0.483, 
n=25

 

Wtemp b  
C=0.082, 
p=0.698, 

n=25
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s
C=0.406, 
p= 0.044, 

n=25
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