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Abstract

Let M be a connected compact Riemannian manifold possibly with a boundary
∂M , let V ∈ C2(M) such that µ(dx) := eV (x)dx is a probability measure, where dx is
the volume measure, and let L = ∆+∇V . As a continuation to [14] where convergence
in the quadratic Wasserstein distance W2 is studied for the empirical measures of the
L-diffusion process (with reflecting boundary if ∂M 6= ∅), this paper presents the exact
convergence rate for the subordinated process. In particular, letting (µαt )t>0 (α ∈ (0, 1))
be the empirical measures of the Markov process generated by Lα := −(−L)α, when
∂M is empty or convex we have

lim
t→∞

{
tEx[W2(µαt , µ)2]

}
=

∞∑
i=1

2

λ1+α
i

uniformly in x ∈M,

where Ex is the expectation for the process starting at point x, {λi}i≥1 are non-trivial
(Neumann) eigenvalues of −L. In general,

Ex[W2(µαt , µ)2]


� t−1, if d < 2(1 + α),

� t−
2

d−2α , if d > 2(1 + α),

� t−1 log(1 + t), if d = 2(1 + α), i.e. α = 1
2 , d = 3

holds uniformly in x ∈M , where in the last case Ex[W1(µαt , µ)2] � t−1 log(1 + t) holds
for M = T3 and V = 0.
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1 Introduction

Recently, sharp convergence rate in the Wasserstein distance has been derived in [14] for
empirical measures of symmetric diffusion processes on compact Riemannian manifolds, see
[10, 11, 12, 13] for further study of Dirichlet diffusion processes and SDEs/SPDEs, and see
[1, 2, 5] and references within for earlier results on i.i.d. random variables and discrete time
Markov chains. In this paper, we aim to extend the main results of [14] to jump processes,
for which a natural model is the subordination of diffusion processes.

Let M be a d-dimensional connected compact Riemannian manifold possibly with a
smooth boundary ∂M . Let V ∈ C2(M) such that µ(dx) = eV (x)dx is a probability measure
on M , where dx is the Riemannian volume measure on M . Then the (reflecting, if ∂M 6= ∅)
diffusion process Xt generated by L := ∆ + ∇V on M is reversible; i.e. the associated
diffusion semigroup {Pt}t≥0 is symmetric in L2(µ), where

Ptf(x) := Exf(Xt), t ≥ 0, f ∈ Bb(M).

Here, Ex is the expectation taken for the diffusion process {Xt}t≥0 with X0 = x, and we will
use Px to denote the associated probability measure. In general, for ν ∈ P (the set of all
probability measures on M), let Eν and Pν be the expectation and probability taken for the
diffusion process with initial distribution ν. For any ν ∈P and t ≥ 0, νPt := Pν(Xt ∈ ·) is
the distribution of Xt with initial distribution ν.

A function B ∈ C∞((0,∞); [0,∞)) ∩ C([0,∞); [0,∞)) is called a Bernstein function if

(−1)n−1 dn

drn
B(r) ≥ 0, n ∈ N, r > 0.

We will use the following classes of Bernstein functions:

B :=
{
B : B is a Bernstein function with B(0) = 0, B′(0) > 0

}
,

B :=

{
B ∈ B :

∫ ∞
1

r
d
2
−1e−tB(r)dr <∞ for t > 0

}
.

For each B ∈ B, there exists a unique stable process SBt on [0,∞) with Laplace transform

(1.1) Ee−λS
B
t = e−tB(λ), t, λ ≥ 0.

Moreover, for any α ∈ [0, 1], let

Bα :=
{
B ∈ B : lim inf

λ→∞
λ−αB(λ) > 0

}
, Bα :=

{
B ∈ B : lim sup

λ→∞
λ−αB(λ) <∞

}
.

For any B ∈ B, let XB
t be the Markov process on M generated by B(L) := −B(−L),

which can be constructed as the time change (subordination) of Xt:

XB
t = XSBt

, t ≥ 0,

where (SBt )t≥0 is the stable process satisfying (1.1) independent of (Xt)t≥0. We consider the
empirical measure

µBt :=
1

t

∫ t

0

δXB
s

ds, t > 0.

2



Let ρ be the Riemiannian distance (i.e. the length of shortest curve linking two points)
on M . For any p > 0, the Lp-Wasserstein distance Wp is defined by

Wp(µ1, µ2) := inf
π∈C (µ1,µ2)

(∫
M×M

ρ(x, y)pπ(dx, dy)

) 1
p∨1

, µ1, µ2 ∈P,

where C (µ1, µ2) is the set of all probability measures on M ×M with marginal distributions
µ1 and µ2. A measure π ∈ C (µ1, µ2) is called a coupling of µ1 and µ2.

Since M is connected and compact, L has discrete spectrum and all eigenvalues {λi}i≥0

of −L listed in the increasing order counting multiplicities satisfy (see for instance [3])

(1.2) κ−1i
2
d ≤ λi ≤ κi

2
d , i ≥ 0

for some constant κ > 1. Our main results are stated as follows, which cover the correspond-
ing assertions derived in [14] for B(λ) = λ.

Theorem 1.1 (Lower bound estimates). Let B ∈ B.

(1) There exists a constant c ∈ (0, 1] with c = 1 when ∂M is empty or convex, such that

lim inf
t→∞

inf
x∈M

{
tEx[W2(µBt , µ)2]

}
≥ c

∞∑
i=1

2

λiB(λi)
.

(2) Let B ∈ Bα for some α ∈ [0, 1]. If d > 2(1 + α), then for any p > 0,

lim inf
t→∞

inf
x∈M

{
t

2
d−2α

(
Ex[Wp(µ

B
t , µ)]

) 2
p∧1
}
> 0.

(3) Let B(λ) = λα for some α ∈ [0, 1]. If d = 2(1 + α) (i.e. α = 1 and d = 4, or α = 1
2

and d = 3), M = Td and V = 0, then

lim inf
t→∞

inf
x∈M

{ t

log t

(
Ex[W1(µBt , µ)]

)2
}
> 0.

Theorem 1.2 (Upper bound estimates). Let B ∈ Bα for some α ∈ [0, 1].

(1) If d < 2(1 + α), then

lim sup
t→∞

sup
x∈M

{
tEx[W2(µBt , µ)2]

}
≤

∞∑
i=1

2

λiB(λi)
<∞.

(2) If d > 2(1 + α), then

lim sup
t→∞

sup
x∈M

{
t

2
d−2αEx[W2(µBt , µ)2]

}
<∞.
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(3) If d = 2(1 + α), i.e. either α = 1 and d = 4, or α = 1
2

and d = 3, then

lim sup
t→∞

sup
x∈M

{ t

log t
Ex[W2(µBt , µ)2]

}
<∞.

The following is a straightforward consequence of Theorems 1.1 and 1.2.

Corollary 1.3. Let B ∈ Bα ∩ Bα for some α ∈ [0, 1].

(1) If ∂M is empty or convex, then

(1.3) lim
t→∞

{
tEx[W2(µBt , µ)2]

}
=
∞∑
i=1

2

λiB(λi)

uniformly in x ∈ M , where the limit is finite if and only if d < 2(1 + α). In general,
there exists a constant c ∈ (0, 1] such that

c
∞∑
i=1

2

λiB(λi)
≤ lim inf

t→∞
inf
x∈M

{
tEx[W2(µBt , µ)2]

}
≤ lim sup

t→∞
sup
x∈M

{
tEx[W2(µBt , µ)2]

}
≤

∞∑
i=1

2

λiB(λi)
.

(1.4)

(2) If d > 2(1 + α), then for any ε ∈ (0, α) there exist constants c > c(ε) > 0 such that

c(ε)t−
2

d−2α ≤ inf
x∈M

(
Ex[Wε(µ

B
t , µ)]

) 2
ε

≤ inf
x∈M

Ex[W2(µBt , µ)2] ≤ sup
x∈M

Ex[W2(µBt , µ)2] ≤ ct−
2

d−2α , t ≥ 1.

(3) Let d = 2(1 + α), i.e. either d = 3 and α = 1
2
, or α = 1 and d = 4. Then there exists

a constant c > 0 such that

sup
x∈M

Ex[W2(µBt , µ)2] ≤ ct−1 log t, t ≥ 2.

On the other hand, when B(λ) = λα,M = Td and V = 0, then there exists a constant
c′ > 0 such that

inf
x∈M

Ex[W1(µBt , µ)2] ≥ c′t−1 log t, t ≥ 2.

Finally, we have the following result on the weak convergence of tW2(µBt , µ)2.

Theorem 1.4. Let B ∈ Bα for some α ∈ [0, 1], and let ∂M be empty or convex. If d <
2(1 + α), then

lim
t→∞

sup
x∈M
|Px(tW2(µBt , µ)2 < a)− F (a)| = 0, a ≥ 0,

where F (a) := P(ξ < a) for

ξ :=
∞∑
i=1

2ξ2
i

λiB(λi)

and i.i.d. random variables {ξi} with the standard normal distribution N(0, 1).
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Following the line of [14], we will first study the modified empirical measure µBt,r := µBt Pr
for r > 0 in Section 2, present some lemmas in Section 3, and finally prove Theorems 1.1,
1.2 and 1.4 in Sections 4, 5 and 6 respectively.

2 Modified empirical measures

In this part, we allow M to be non-compact, but assume that the (Neumann) semigroup Pt
generated by L is ultracontractive, i.e.

(2.1) ‖Pt‖1→∞ := sup
µ(|f |)≤1

‖Ptf‖∞ <∞, t > 0.

Consequently, −L has discrete spectrum and the heat kernel pt(x, y) of Pt with respect to µ
satisfies

(2.2) pt(x, y) = 1 +
∞∑
i=1

e−tλiφi(x)φi(y) ≤ ‖Pt‖1→∞ <∞, t > 0, x, y ∈M,

where {λi}i≥0 are all eigenvalues of −L and {φi}i≥0 is the eigenbasis, i.e. φ0 ≡ 1 and {φi}i≥0

is an orthonormal basis of L2(µ) with Lφi = −λiφi.
For any p ≥ 1 and f ∈ Lp(µ), let ‖f‖p := {µ(|f |p)}

1
p be the Lp(µ)-norm of f . Then there

exists a constant c > 0 such that

‖Ptf‖p ≤ ce−λ1t‖f‖p, t ≥ 0, p ∈ [1,∞], f ∈ Lp0(µ),

where Lp0(µ) := {f ∈ Lp(µ) : µ(f) :=
∫
M
fdµ = 0}. Consequently, for any B ∈ B,

(2.3) ‖PB
t f‖p = ‖EPSBt f‖p ≤ c‖f‖pEe−λ1S

B
t = ce−B(λ1)t‖f‖p, t ≥ 0, p ∈ [1,∞], f ∈ Lp0(µ).

As in [14], we consider the modified empirical measure

µBt,r := µBt Pr, r, t > 0.

By (2.2), we have

(2.4) ft,r :=
dµBt,r
dµ

= 1 +
1√
t

∞∑
i=1

e−rλiψi(t)φi, ψi(t) :=
1√
t

∫ t

0

φi(X
B
s )ds, r, t > 0.

The main result in this section is the following.

Theorem 2.1. Let B ∈ B, M be a d-dimensional connected complete Riemannian manifold
possibly with a boundary such that (2.1) holds.

(1) For any r > 0,

lim
t→∞

sup
x∈M

∣∣∣∣∣tEx[W2(µBt,r, µ)2]−
∞∑
i=1

2

λiB(λi)e2rλi

∣∣∣∣∣ = 0.
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(2) For any C > 0, let

P(C) := {ν ∈P : ν = hνµ, ‖hν‖∞ ≤ C}.

Then for any C > 1,

lim
t→∞

sup
ν∈P(C)

∣∣Pν(tW2(µBt,r, µ)2 < a)− Fr(a)
∣∣ = 0, a ∈ R,

where for i.i.d. random variables ξi with distribution N(0, 1), Fr := P(ξr < ·) is the
distribution function of

ξr :=
∞∑
i=1

2ξ2
i

λiB(λi)e2λir
, r > 0.

To prove this result, we first present some lemmas, where the first follows from [14,
Lemma 2.3], which goes back to [1, Proposition 2.3].

Lemma 2.2. Let B ∈ B, M (a, b) := a−b
log a−log b

1{a∧b>0}. Then

W2(µBt,r, µ)2 ≤
∫
M

|∇L−1(ft,r − 1)|2

M (ft,r, 1)
dµ, t, r > 0.

By the ergodicity we have limt→∞M (ft,r, 1) = 1 (see Lemma 2.4 below), so that this
lemma implies that tW2(µBt,r, µ)2 is asymptotically bounded above by

(2.5) Ξr(t) := tµ
(
|∇L−1(ft,r − 1)|2

)
, t, r > 0,

where µ(f) :=
∫
M
fdµ for f ∈ L1(µ). Thus, we first estimate Ξr(t).

Lemma 2.3. Let B ∈ B. There exists a constant c > 0 such that

(2.6)

∣∣∣∣∣EνΞr(t)−
∞∑
i=1

2

λiB(λi)e2rλi

∣∣∣∣∣ ≤ c‖hν‖∞
t

∞∑
i=1

1

λiB(λi)e2rλi
, t ≥ 1, r > 0,

holds for any probability measure ν = hνµ. Consequently,

(2.7) sup
x∈M

∣∣∣∣∣ExΞr(t)−
∞∑
i=1

2

λiB(λi)e2rλi

∣∣∣∣∣ ≤ c‖P r
2
‖2

2→∞

t

∞∑
i=1

1

λiB(λi)erλi
, t ≥ 1, r > 0.

Proof. By (2.2), (2.4), (2.5), Lφi = −λiφi and µ(φiφj) = 1{i=j} for i, j ≥ 0, we obtain

(2.8) Ξr(t) =
∞∑
i=1

|ψi(t)|2

λie2rλi
, t, r > 0.

Since PB
t is the Markov semigroup of XB

t , the Markov property implies

Eν(φi(XB
t )|XB

s ) = PB
t−sφi(X

B
s ) = e−B(λi)(t−s)φi(X

B
s ), i ≥ 0, t ≥ s ≥ 0.
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So, ψi(t) := 1√
t

∫ t
0
φi(X

B
s )ds satisfies

Eν |ψi(t)|2 =
1

t
Eν
∣∣∣∣∫ t

0

φi(X
B
s ) ds

∣∣∣∣2 =
2

t

∫ t

0

ds1

∫ t

s1

Eν [φi(XB
s1

)φi(X
B
s2

)] ds2

=
2

t

∫ t

0

Eν |φi(XB
s1

)|2 ds1

∫ t

s1

e−B(λi)(s2−s1) ds2

=
2

B(λi)t

∫ t

0

ν(PB
s φ

2
i )(1− e−B(λi)(t−s)) ds, t > 0.

(2.9)

This together with (2.8) imply

(2.10) EνΞr(t) =
2

t

∞∑
i=1

1

λiB(λi)e2rλi

∫ t

0

ν(PB
s φ

2
i )(1− e−B(λi)(t−s)) ds =: I1 + I2,

where

I1 :=
2

t

∞∑
i=1

∫ t

0

1− e−(t−s)B(λi)

λiB(λi)e2rλi
ds =

∞∑
i=1

2

λiB(λi)e2rλi
− 2

t

∞∑
i=1

1− e−B(λi)t

λiB(λi)2e2rλi
,(2.11)

and due to ν(PB
s φ

2
i ) = µ(hνP

B
s φ

2
i ) = µ(φ2

iP
B
s hν),

I2 := EνΞr(t)− I1 =
2

t

∞∑
i=1

∫ t

0

1− e−(t−s)B(λi)

λiB(λi)e2rλi
µ(φ2

iP
B
s hν − 1) ds.

Since µ(φ2
i ) = 1, by (2.3), there exists a constant c0 > 0 such that

|µ(φ2
iP

B
s hν − 1)| = |µ((PB

s hν − 1)φ2
i )| ≤ ‖PB

s (hν − 1)‖∞ ≤ c0e−B(λ1)s‖hν‖∞, s ≥ 0.

Therefore, we find a constant c1 > 0 such that

(2.12) |I2| ≤
c1

t
‖hν‖∞

∞∑
i=1

1

λiB(λi)e2rλi
<∞.

Combining (2.10), (2.11) and (2.12), we find a constant c2 > 0 such that∣∣∣∣∣EνΞr(t)−
∞∑
i=1

2

λiB(λi)e2rλi

∣∣∣∣∣ ≤ c2‖hν‖∞
t

∞∑
i=1

1

λiB(λi)e2rλi
.

When ν = δx, (2.10) becomes

(2.13) ExΞr(t) ≤ I1 + I2(x),

where I1 is in (2.11) and

I2(x) :=
2

t

∞∑
i=1

∫ t

0

1− e−B(λi)(t−s)

λiB(λi)e2rλi
PB
s {φ2

i − 1}(x) ds.
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Since µ(φ2
i ) = 1, (2.3) implies ‖PB

s φ
2
i − 1‖∞ ≤ ce−B(λ1)s‖φi‖2

∞. Combining this with

‖φi‖2
∞ = erλi‖P r

2
φi‖2
∞ ≤ eλir‖P r

2
‖2

2→∞,

we find a constant c3 > 0 such that

I2(x) ≤ 2

t

∞∑
i=1

∫ t

0

c

λiB(λi)erλi
e−B(λ1)s‖P r

2
‖2

2→∞ds ≤
c3‖P r

2
‖2

2→∞

t

∞∑
i=1

1

λiB(λi)erλi
.

This together with (2.11) and (2.13) implies (2.7).

The following Lemma shows that limt→∞M (ft,r, 1) = 1, r > 0.

Lemma 2.4. Let ‖ft,r − 1‖∞ = supy∈M |ft,r(y) − 1|. Then there exists a function c : N ×
(0,∞)→ (0,∞) such that

sup
x∈M

Ex[‖ft,r − 1‖2k
∞] ≤ c(k, r)t−k, t ≥ 1, r > 0, k ∈ N.

Proof. For fixed r > 0 and y ∈M , let f = pr(·, y)− 1. For any k ∈ N, we consider

Ik(s) := Ex
∣∣∣∣∫ s

0

f(XB
t ) dt

∣∣∣∣2k = (2k)!Ex
∫

∆k(s)

f(XB
s1

) · · · f(XB
s2k

) ds1 · · · ds2k,

where ∆k(s) := {(s1, · · · , s2k) ∈ [0, s] : 0 ≤ s1 ≤ · · · ≤ s2k ≤ s}.
By the proof of [14, Lemma 2.5] with XB

t replacing Xt, we obtain

(2.14) Ik(t) ≤ sup
s∈[0,t]

Ik(s) ≤ {2k(2k − 1)}k
(∫

∆1(t)

(Ex|g(r1, r2)|k)
1
k dr1 dr2

)k
,

where g(r1, r2) = (fPB
r2−r1f)(XB

r1
), r2 ≥ r1 ≥ 0.

By (2.1) we have
‖f‖∞ = ‖pr(·, y)− 1‖∞ ≤ 2‖Pr‖1→∞ <∞,

which together with (2.3) implies

|g(r1, r2)|k ≤ ‖fPB
r2−r1f‖

k
∞ ≤ ce−B(λ1)(r2−r1)k‖f‖2k

∞ ≤ c1‖Pr‖2k
1→∞e−B(λ1)(r2−r1)k

for some constant c1 > 0. Thus, there exists a constant c2 > 0 such that∫
∆1(t)

(Ex|g(r1, r2)|k)
1
k dr1 dr2 ≤

∫ t

0

dr1

∫ t

r1

c1‖Pr‖2
1→∞e−B(λ1)(r2−r1) dr2 ≤ c2‖Pr‖2

1→∞t.

Combining this with (2.14), we find a constant c3 > 0 such that

sup
x,y∈M

Ex[|ft,r(y)− 1|2k] = t−2kIk(t) ≤ c3‖Pr‖2k
1→∞t

−k, t ≥ 1, r > 0.

Noting that ft,r − 1 = P r
2
(ft, r

2
− 1), this implies that for some constant c > 0

sup
x∈M

Ex[‖ft,r − 1‖2k
∞] = sup

x∈M
Ex[‖P r

2
(ft, r

2
− 1)‖2k

∞]

≤ ‖P r
2
‖2k

2k→∞ sup
x∈M

Ex[µ(|ft, r
2
− 1|2k)] ≤ c‖P r

2
‖4k

1→∞t
−k.
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Proof of Theorem 2.1. (1) It suffices to verify the following estimates for any r > 0:

(2.15) lim inf
t→∞

inf
x∈M
{tEx[W2(µBt,r, µ)2]} ≥

∞∑
i=1

2

λiB(λi)e2rλi
,

(2.16) lim sup
t→∞

sup
x∈M
{tEx[W2(µBt,r, µ)2]} ≤

∞∑
i=1

2

λiB(λi)e2rλi
.

Let Bσ := {‖ft,r − 1‖∞ ≤ σ
2
3} for σ > 0. By the proofs of [14, (2.53) and (2.54)] for XB

t

replacing Xt, there exists a constant c > 0 such that

(2.17) tW2(µBt,r, µ)2 ≥ 1Bσ
{

Ξr(t)− ctσ
5
3

}
, r, t, σ > 0.

Taking σ = t−γ for some γ ∈ (3
5
, 3

4
), we have tσ

5
3 ↓ 0 as t ↑ ∞, and according to Lemma 2.4,

lim
t→∞

sup
x∈M

Px(Bc
σ) ≤ lim

t→∞
sup
x∈M

t
4γ
3 Ex[‖ft,r − 1‖2

∞] = 0,

so that by (2.7)

lim sup
t→∞

sup
x∈M

Ex[1BcσΞr(t)] ≤ c(r) lim sup
t→∞

sup
x∈M

Px(Bc
σ) = 0,

where c(r) :=
∑∞

i=1
2

λiB(λi)e2λir
<∞. Thus, (2.17) yields

lim inf
t→∞

inf
x∈M

Ex
[
tW2(µBt,r, µ)2

]
≥ lim inf

t→∞
inf
x∈M

Ex
[
Ξr(t)

]
,

which together with (2.7) implies (2.15).
Since µ(φ2

i ) = 1 and λ1 > 0, by taking x = y in (2.2) and integrating with respect to
µ(dx), we obtain

∞∑
i=1

1

λiB(λi)e2rλi
≤ 1

λ1B(λ1)

∞∑
i=1

e−2rλi <∞.

For any η ∈ (0, 1), let
Aη = {‖ft,r − 1‖∞ ≤ η}.

Noting that ft,r(y) ≥ 1− η implies

M (1, ft,r(y)) ≥
√
ft,r(y) ≥

√
1− η,

by Lemma 2.2 and (2.7), we find a constant c(r) > 0 such that

t sup
x∈M

Ex[1AηW2(µBt,r, µ)2] ≤ sup
x∈M

Ex
{

Ξr(t)√
1− η

}
≤ 1√

1− η

∞∑
i=1

2

λiB(λi)e2rλi

(
1 +

c(r)

t

)
, t > 0, η ∈ (0, 1).

9



Thus,

t sup
x∈M

Ex[W2(µBt,r, µ)2]

≤ 1√
1− η

∞∑
i=1

2

λiB(λi)e2rλi

(
1 +

c(r)

t

)
+ t sup

x∈M
Ex[1AcηW2(µBt,r, µ)2]

≤ 1 + c(r)t−1

√
1− η

∞∑
i=1

2

λiB(λi)e2rλi
+ t sup

x∈M

√
Px(Acη)Ex[W2(µBt,r, µ)4].

(2.18)

As shown in the proof of [14, Proposition 2.6], we have

(2.19) ExW2(µBt,r, µ)4 ≤ ‖Pr‖1→∞(µ× µ)(ρ4) <∞.

Moreover, Lemma 2.4 implies that for some constant c(k, r) > 0

sup
x∈M

Px(Acη) ≤ η−2kc(k, r)t−k.

By taking k = 4 and applying (2.18) and (2.19), we conclude that

lim sup
t→∞

{
t sup
x∈M

Ex[W2(µBt,r, µ)2]
}
≤ 1√

1− η

∞∑
i=1

2

λiB(λi)e2rλi
.

Then (2.16) follows by letting η → 0.
(2) By Lemma 2.3, it suffices to prove that for any C > 1

(2.20) lim
t→∞

sup
ν∈P(C)

|Pν(Ξr(t) < a)− P(ξr < a)| = 0, a ≥ 0.

Recall that

Ξr(t) =
∞∑
i=1

|ψi(t)|2

λie2λir
, t, r > 0.

Define for any n ≥ 1,
Ψn(t) := (ψ1(t), · · · , ψn(t)), t > 0.

Then, for any ϑ ∈ Rn, we have

〈Ψn(t), ϑ〉 =
1√
t

∫ t

0

(
n∑
i=1

ϑiφi(X
B
s ))ds.

By [15, Theorem 2.4′], when t→∞, the law of 〈Ψn(t), ϑ〉 under Pν converges weakly to the
Gaussian distribution N(0, σn,ϑ) uniformly in ν ∈P(C) with variance

σn,ϑ := lim
t→∞

Eµ〈Ψn(t), ϑ〉2

= lim
t→∞

2

t

n∑
i=1

ϑ2
i

∫ t

0

ds1

∫ t

s1

e−B(λi)(s2−s1)ds2 =
n∑
i=1

2ϑ2
i

B(λi)
.

10



Thus, for any ϑ ∈ Rn,

lim
t→∞

Eνei〈Ψn(t),ϑ〉 =

∫
Rn

ei〈x,ϑ〉
n∏
i=1

N(0, 2B(λi)
−1)(dxi) uniformly in ν ∈P(C),

so that the distribution of Ψn(t) under Pν converges weakly to
∏n

i=1 N(0, 2B(λi)
−1) as t→∞.

Therefore, letting

Ξ(n)
r (t) :=

n∑
i=1

|ψi(t)|2

λiB(λi)e2λir
, ξ(n)

r :=
n∑
i=1

2ξ2
i

λiB(λi)e2λir
,

we have

(2.21) lim
t→∞

sup
ν∈P(C)

|Pν(Ξ(n)
r (t) < a)− P(ξ(n)

r < a)| = 0, a ≥ 0.

On the other hand, by (2.8) and (2.9), we find some constant C1 > 0 such that

sup
ν∈P(C)

Eν |Ξr(t)− Ξ(n)
r (t)|

=
2

t
sup

ν∈P(C)

∞∑
i=n+1

e−2λir

λiB(λi)

∫ t

0

ν(PB
s φ

2
i )(1− e−B(λi)(t−s))ds ≤ C1εn,

where εn := 2
∑∞

i=n+1
2

λiB(λi)e2λir
→ 0 as n → ∞. This together with (2.21) implies (2.20).

3 Some lemma

From now on, we assume that M is compact. For any q ≥ p ≥ 1, let ‖ · ‖p→q be the operator
norm from Lp(µ) to Lq(µ). When p = q, we simply denote ‖ · ‖p = ‖ · ‖p→p. Then there exist
constants κ, λ > 0 such that

(3.1) ‖Pt − µ‖p→q ≤ κ(1 ∧ t)−
d
2

(p−1−q−1)e−λ1t, t > 0, q ≥ p ≥ 1.

Next, by the triangle inequality of W2, we obtain

(3.2) E[W2(µBt , µ)2] ≤ (1 + ε)E[W2(µBt,r, µ)2] + (1 + ε−1)E[W2(µBt , µ
B
t,r)

2], ε > 0.

As shown in [14] forB(λ) = λ that, to prove Theorem 1.1, we need to estimate E[W2(µBt , µ
B
t,r)

2]
and to refine the estimate on E[W2(µBt,r, µ)2] for compact M . These are included in the fol-
lowing lemmas.

Lemma 3.1. Let B ∈ B and µBt,r,ε = (1−ε)µBt,r +εµ, ε ∈ [0, 1]. There exists a constant c > 0
such that

(3.3) Eν [W2(µBt , µ
B
t,r)

2] ≤ c‖hν‖∞r, ν = hνµ,

(3.4) W2(µBt,r,ε, µ
B
t,r)

2 ≤ cε, t, r ≥ 0, ε ∈ [0, 1].

11



Proof. Since for t > 0,

πt(dx, dy) :=

(
1

t

∫ t

0

pr(x, y)δXB
s

(dx) ds

)
µ(dy) ∈ C (µBt , µ

B
t,r),

we have

W2(µBt,r, µ
B
t )2 ≤

∫
M

ρ(x, y)2 πt(dx, dy)

=
1

t

∫ t

0

ds

∫
M

pr(X
B
s , y) ρ(XB

s , y)2µ(dy).

(3.5)

Since ν = hνµ, by the PB
t -invariance of µ, we find a constant c1 > 0 such that

Eν
∫
M

pr(X
B
s , y)ρ(XB

s , y)2µ(dy) ≤ ‖hν‖∞µ
[
PB
s

(∫
M

pr(x, y)ρ(·, y)2µ(dy)

)]
= ‖hν‖∞Eµ[ρ(X0, Xr)

2] ≤ c1‖hν‖∞r, s ≥ 0,

(3.6)

where the last step is due to [14, Lemma 3.1]. Substituting this into (3.5), we prove (3.3).
On the other hand, let D be the diameter of M . Since

π(dx, dy) := (1− ε)µBt,r(dx)δx(dy) + εµ(dx)µBt,r(dy) ∈ C (µBt,r,ε, µ
B
t,r),

we obtain

W2(µBt,r,ε, µ
B
t,r)

2 ≤
∫
M×M

ρ(x, y)2π(dx, dy) ≤ εD2, t, r > 0, ε ∈ [0, 1].

Then the proof is finished.

Lemma 3.2. Let B ∈ Bα for some α ∈ [0, 1], and let d < 2(1 + α).

(1) For any q ∈ (d
2
∨ 1, d

d−2α
), there exists a constant c > 0, such that

(3.7) sup
y∈M

Eµ[|ft,r(y)− 1|2] ≤ c

tr
d
2q

, t ≥ 1, r ∈ (0, 1].

(2) For any q ∈ (d
2
∨ 1, d

d−2α
) and γ ∈ (1, 2q

d
),

(3.8) lim
t→∞

sup
y∈M

Eµ[|M ((1− t−γ)ft,t−γ (y) + t−γ, 1)−1 − 1|p] = 0, p > 0.

Proof. (1) For fixed y ∈M , simply denote f = pr(·, y)− 1. Then

(3.9) Eµ
[
|ft,r − 1|2

]
=

2

t2
Eµ
∫ t

0

f(XB
r1

)dr1

∫ t

r1

f(XB
r2

)dr2,

12



Since PB
t is invariant with respect to µ, we obtain

Eµ[f(XB
r1

)f(XB
r2

)] = µ
(
PB
r1

(fPB
r2−r1f)

)
= µ(fPB

r2−r1f)

≤ ‖f‖ q
q−1
‖PB

r2−r1f‖q ≤ ‖f‖ q
q−1
‖PB

r2−r1
2

‖1→q‖PB
r2−r1

2

f‖1, r2 > r1 ≥ 0.
(3.10)

By f = pr(·, y)− 1 and (3.1), we find some constants c1 > 0 such that

‖f‖ q
q−1
≤ 1 + ‖pr(·, y)‖ q

q−1
≤ 1 + ‖P r

2
‖1→ q

q−1
≤ c1r

− d
2q , r ∈ (0, 1], q ≥ 1.(3.11)

Moreover, since PB
t is the semigroup of XB

t := XSBt
, by (3.1) and noting that B ∈ Bα implies

(3.12) B(r) ≥ k0(r ∧ rα) ≥ k1r
α − k2, r ≥ 0

for some constants k0, k1, k2 > 0, we find a constant c2 > 0 such that

‖PB
r ‖1→q ≤ E‖PSBr ‖1→q ≤ cE

[
(1 ∧ SBr )−

d(q−1)
2q
]

≤ c+ cE
[
(SBr )−

d(q−1)
2q
]

= c+
c

Γ(d(q−1)
2q

)

∫ ∞
0

t
d(q−1)

2q
−1e−rB(t)dt

≤ c2(r−
d(q−1)
2αq + 1), r > 0.

Since d(q−1)
2αq

< 1, by combining this with (2.3), (3.9) and (3.11), we find constants c3, c4 > 0
such that

Eµ[|ft,r(y)− 1|2] ≤ c3

r
d
2q t2

∫ t

0

dr1

∫ t

r1

((r2 − r1)−
d(q−1)
2αq + 1)e−λ

α
1 (r2−r1) dr2 ≤

c4

r
d
2q t
, t, r > 0.

(2) Let θ > 0 be small enough such that γ( d
2q

+ θp
2

) < 1. According to the proof of the

[14, Lemma 3.3], there exists a map C : (0, 1)→ (0,∞) such that

sup
y∈M

Eµ[|M ((1− r)ft,r(y) + r, 1)−1 − 1|p] ≤ δη + (1 + θ−1r−
θ
2 )p sup

y∈M
Pµ({|ft,r(y)− 1| > η})

≤ δη + C(η)t−1r−
d
2p
− θp

2 , t ≥ 1, r, η ∈ (0, 1),

holds for δη =
∣∣∣ 1√

1−η −
2

2+η

∣∣∣q , η ∈ (0, 1). This implies (3.8) by taking r = t−γ and letting

first t→∞ then η → 0.

Lemma 3.3. Let B ∈ Bα for some α ∈ [0, 1]. For any p ∈ [1, 2], there exists a constant
c > 0 such that

(3.13) Eµ[|ψi(t)|2p] ≤ cλ
α(p−2)+(p−1)( d

2
−2α)

i , i ≥ 1.

Proof. Since PB
t φi = e−B(λi)tφi, we have

(3.14) g(r1, r2) := (φiP
B
r2−r1φi)(X

B
r1

) = e−(r2−r1)B(λi)φi(X
B
r1

)2.
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By (2.14), µ(PB
r1
φ2
i ) = µ(φ2

i ) = 1 and (3.12), we find a constant c1 > 0 such that

tEµ[|ψi(t)|2] ≤ c1

∫ t

0

dr1

∫ t

r1

Eµ[g(r1, r2)] dr2

= c1

∫ t

0

dr1

∫ t

r1

e−(r2−r1)B(λi)µ(PB
r1
φ2
i ) dr2 ≤

c1t

λαi
, t ≥ 1, i ∈ N.

(3.15)

On the other hand, by (2.14), (3.12) and (3.14), we find a constant c2 > 0 such that

t2Eµ[|ψi(t)|4] ≤ c2

(∫ t

0

dr1

∫ t

r1

(Eµ[|g(r1, r2)|2])
1
2 dr2

)2

≤ c2

(∫ t

0

dr1

∫ t

r1

e−(r2−r1)λαi

√
µ(PB

r1
φ4
i ) dr2

)2

.

(3.16)

Moreover, (3.1) and Ptφi = e−λitφi yield

‖φi‖∞ = inf
t>0
{eλit‖Ptφi‖∞} ≤ inf

t>0
{eλit‖Pt‖2→∞} ≤ c3λ

d
4
i , i ≥ 1

for some constant c3 > 0, so that√
µ(PB

r φ
4
i ) =

√
µ(φ4

i ) ≤
√
‖φi‖2

∞µ(φ2
i ) ≤ c3λ

d
4
i , i ≥ 1.

This together with (3.16) implies that for some constant c4 > 0

Eµ[|ψi(t)|4] ≤ c4λ
d
2
−2α

i , i ≥ 1.

Combining this with (3.15) and using Hölder’s inequality, we find a constant c5 > 0 such
that

Eµ[|ψi(t)|2p] = Eµ[|ψi(t)|4−2p|ψi(t)|4(p−1)]

≤ (Eµ[|ψi(t)|2])2−p(Eν [|ψi(t)|4])p−1 ≤ c5λ
α(p−2)+(p−1)( d

2
−2α)

i .

Lemma 3.4. Let B ∈ Bα for some α ∈ [0, 1]. If d < 2(1 + α), then there exists a constant
p > 1 such that

lim sup
t→∞

sup
r>0

{
tpEµ

∫
M

|∇L−1(ft,r − 1)|2p dµ
}
<∞.

Proof. According to the proof of [14, Lemma 3.5], for any p > 1 and ε > p− 1, there exists
a constant c1(p, ε) > 0 such that

tpEµ
∫
M

|∇L−1(ft,r − 1)|2p dµ ≤ c1(p, ε)
∞∑
i=1

iελ
d(p−1)

2
−1

i Eµ[|ψi(t)|2p].
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Combining this with Lemma 3.3 and (1.2), we find a constant c2(p, ε) > 0 such that

(3.17) Eµ
∫
M

|∇L−1(ft,r − 1)|2p dµ ≤ c2(p, ε)t−p
∞∑
i=1

iδp,ε

holds for

δp,ε := ε+
2

d
{(p− 1) (d− 2α) + αp− (2α + 1)} .

So, it remains to show that δp,ε < −1 holds for some constants p > 1 and ε > p − 1. This
follows from the fact that for ε > 0 and pε := 1 + ε

2
we have ε > pε − 1 and

lim
ε↓0

δpε,ε = −2(1 + α)

d
< −1.

Finally, the following lemma reduces arbitrary initial values to initial distributions with
bounded density.

Lemma 3.5. Let B ∈ B and p ∈ (0, 2]. Then for any ε > 0,

αε := ‖PB
ε2‖1→∞ <∞,

sup
x∈M

Ex
[
Wp(µ

B
t , µ)1∨p] ≤ (1 + ε) sup

ν∈P(αε)

Eν
[
Wp(µ

B
t , µ)1∨p]+

ε(1 + ε)Dp

t
,

inf
ν∈P(αε)

Eν
[
Wp(µ

B
t , µ)1∨p] ≤ (1 + ε) inf

x∈M
Ex
[
Wp(µ

B
t , µ)1∨p]+

ε(1 + ε)Dp

t
, t > ε2,

where D is the diameter of M .

Proof. There exists a constant c > 0 such that

‖Pt‖1→∞ ≤ c(1 + t−
d
2 ), t > 0.

This together with (1.1) and
∫∞

1
r
d
2
−1e−tB(r)dr <∞ implies

‖PB
t ‖1→∞ = sup

µ(|f |)≤1

sup
x∈M
|Exf(XSBt

)| ≤ E‖PSBt ‖1→∞ ≤ c+ cE(SBt )−
d
2

= c+
c

Γ(d
2
)

∫ ∞
0

r
d
2
−1e−tB(r)dr <∞, t > 0.

Next, for any x ∈M and ε > 0, let νx,ε be the distribution of XB
ε2 . Then∥∥∥dνx,ε

dµ

∥∥∥
∞

= sup
µ(|f |)≤1

|PB
ε2f(x)| ≤ ‖PB

ε2‖1→∞ = αε,

so that

(3.18) νx,ε ∈P(αε), x ∈M, ε > 0.
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Let

µ̃Bε,t :=
1

t

∫ ε2+t

ε2
δXB

s
ds, t > 0.

By Markov property, we have

(3.19) Ex
[
W2(µ̃Bε,t, µ)2

]
= Eνx,ε

[
W2(µBt , µ)2

]
, x ∈M, t, ε > 0.

Moreover, it is easy to see that for any t > ε2 > 0,

π :=
1

t

∫ t

ε2
δ(XB

s ,X
B
s )ds+

1

t

∫ ε2

0

δ(XB
s ,X

B
t+s)

ds ∈ C (µBt , µ̃
B
ε,t),

so that

|Wp(µt, µ)−Wp(µ̃
B
ε,t, µ)|1∨p ≤

{
Wp(µt, µ̃

B
ε,t)
}1∨p ≤

∫
M×M

ρpdπ ≤ ε2Dp

t
.

Combining this with (3.18) and (3.19), we obtain

sup
x∈M

Ex
[
Wp(µt, µ)1∨p] ≤ (1 + ε) sup

x∈M
Ex
[
Wp(µ̃

B
ε,t, µ)1∨p]+ (1 + ε−1)

ε2Dp

t

≤ (1 + ε) sup
ν∈P(αε)

Eν
[
Wp(µ

B
t , µ)1∨p]+

ε(1 + ε)Dp

t
.

Similarly, the last estimate also holds.

4 Proof of Theorem 1.1

4.1 Proof of Theorem 1.1(1)

Since M is compact and V ∈ C2(M), there exists a constant K > 0 such that

RicV := Ric− HessV ≥ −K,
where Ric is the Ricci curvature.

When ∂M is either convex or empty, then

(4.1) Wp(µ, νPr)
2 ≤ e2KrWp(µ, ν)2, r > 0, p ≥ 1,

see for instance [8, 9]. Since µBt,r = µBt Pr, this and (2.15) imply

e2Kr lim inf
t→∞

{
t inf
x∈M

Ex[W2(µ, µBt )2]

}
≥ lim inf

t→∞

{
t inf
x∈M

Ex[W2(µ, µBt,r)
2]

}
≥

∞∑
i=1

2

λiB(λi)e2rλi
, r > 0.

By letting r → 0, we prove the desired estimate for c = 1.
When ∂M is non-convex, the desired inequality follows by using the following estimate

due to [4, Theorem 2.7] replacing (4.1): there exist constants c, λ > 0 such that

cW2(νPr, µ) ≤ eλrW2(ν, µ), ν ∈P, r > 0.
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4.2 Proof of Theorem 1.1(2)

It suffices to prove for p ∈ (0, α). The proof is modified from that of the proof of [14,
Theorem 1.1], the only difference is that we have to use Wp for p ∈ (0, α) replacing W1,
since in this case we have E[(SBt )p] <∞.

For any t ≥ 1 and N ∈ N, we consider µBN := 1
N

∑N
i=1 δXB

ti
, where ti := (i−1)t

N
, 1 ≤ i ≤ N .

By taking the Wasserstein coupling

1

t

N∑
i=1

∫ ti+1

ti

δXB
s

(dx)δXB
ti

(dy) ds ∈ C (µBt , µ
B
N),

we obtain

Wp(µ
B
t , µ

B
N) ≤ 1

t

N∑
i=1

∫ ti+1

ti

ρ(XB
s , X

B
ti

)p ds.

By [14, (3.6)] that
sup
x∈M

Exρ(X0, Xt)
2 ≤ ct, t ≥ 0

holds for some constant c > 0. So, by Jensen’s inequality, for any p ∈ (0, α), there exists a
constant c1 > 0 such that

sup
x∈M

Ex[ρ(XB
0 , X

B
r )p] = sup

x∈M
Ex[ρ(X0, XSBr

)p] ≤ cp/2E
[
(SBr )

p
2

]
≤ c1r

p
2α , r ∈ [0, 1],

where the last step follows from (1.1) and B ∈ Bα from which we find constants c2, c3 > 0
such that for ε := p

2
,

E
[
(SBr )ε

]
=

ε

Γ(1− ε)

∫ ∞
0

(1− e−rB(t))t−ε−1dt

≤ c2

∫ ∞
0

(1− e−c2r−c2rt
α

)t−ε−1dt ≤ c2ec2r
∫ ∞

0

(1− e−c2rt
α

)t−ε−1dt ≤ c3r
ε
α , r ∈ [0, 1].

Therefore, there exists a constant c4 > 0 such that

(4.2) sup
x∈M

Ex
[
Wp(µ

B
t , µ

B
N)
]
≤ c4(tN−1)

p
2α , t ≥ 1, N ∈ N.

On the other hand, since M is compact, there exists a constant c5 > 0 such that

µ({ρ(x, ·)p ≤ r}) ≤ c5r
d
p , r > 0, x ∈M.

By [6, Proposition 4.2], this implies

Wp(µ
B
N , µ) ≥ c6N

− p
d , N ∈ N, t ≥ 1

for some constant c6 > 0. This and (4.2) yield

inf
x∈M

Ex[Wp(µ, µ
B
t )] ≥ inf

x∈M
Ex[Wp(µ, µ

B
N)]− sup

x∈M
Ex[Wp(µ

B
t , µ

B
N)]
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≥ c6N
− p
d − c4(tN−1)

p
2α , t ≥ 1, N ∈ N.

By taking N := inf{n ∈ N : n ≥ δt
d

d−2α} for small δ > 0, find a constant c7 > 0 such that
for large enough t > 1,

inf
x∈M

Ex[Wp(µ, µ
B
t )] ≥ c7t

p
d−2α .

Hence, the desired estimate holds.

4.3 Proof of Theorem 1.1(3)

We only consider the case that α = 1
2
, d = 3, since the proof for α = 1 and d = 4 has been

presented in [14]. In this case, the assertion is implied by the following two lemmas which
essentially due to [14] for α = 1.

Lemma 4.1. Let B(λ) = λ
1
2 and d = 3. If for any constant C > 1 there exist constants

γ, ε, t0 > 0, such that

(4.3) {EνW1(µBt,t−γ , µ)}2 ≥ εEνµ(|∇(−L)−1(ft,t−γ − 1)|2), ν ∈P(C), t > t0,

then the estimate in Theorem 1.1(3) holds.

Proof. By Lemma 3.5 for p = 1, it suffices to prove that for any constant C > 1,

(4.4) lim inf
t→∞

t(log t)−1 inf
ν∈P(C)

{EνW1(µBt , µ)}2 > 0.

By (2.6) and (4.3), there exists a constant c1, t1 > 0 such that

inf
ν∈P(C)

{EνW1(µBt,t−γ , µ)}2 ≥ c1

t

∞∑
i=1

1

λ
3
2
i e2t−γλi

, t > t1.

Since d = 3, (1.2) implies λi ≤ ci
2
3 for some constant c > 0, so that we find constants

c2, c3 > 0 such that

inf
ν∈P(C)

{EνW1(µBt,t−γ , µ)}2 ≥ 1

c2t

∫ ∞
1

ds

sec2t−γs
2
3

≥ c3 log t

t
, t > t1.

Combining this with (4.1), we find a constant c4 > 0 such that

inf
ν∈P(C)

{EνW1(µBt , µ)}2 ≥ c4e−2Kt−γ log t

t
, t > t1.

This implies (4.4).

Lemma 4.2. Let M = T3, V = 0 and B(λ) = λ
1
2 . Then for any γ ∈ (0, 2

5
) there exist

constants ε, t0 > 0 such that

(4.5) {EνW1(µBt,t−γ , µ)}2 ≥ εEνµ(|∇(−∆)−1(ft,t−γ − 1)|2), ν ∈P, t > t0.
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Proof. The proof is similar to that of [14, Proposition 5.3] with XB
t replacing Xt.

Let ft = (−∆)−1(ft,t−γ − 1). It is shown in the proof of [14, Proposition 5.3] that

W1(µBt,t−γ , µ) ≥ β−1µ(|∇ft|2)−K1β
−3µ(|∇ft|4), β > 0

holds for some constant K1 > 0. If there exist a constant K2 > 0 such that

(4.6) Eνµ(|∇ft|4) ≤ K2[Eνµ(|∇ft|2)]2, t ≥ 2,

then
EνW1(µBt,t−γ , µ) ≥ β−1Eνµ(|∇ft|2)− β−3K1K2[Eνµ(|∇ft|2)]2, β > 0.

Taking β = NEν [µ(|∇ft|2)
1
2 ] for large enough N > 1, we prove (4.5) for some constant c > 0.

So, it remains to prove (4.6).
We identify T with [0, 2π) by the one-to-one map

[0, 2π) 3 s 7→ eis,

where i is the imaginary unit. In this way, a point in T3 is regarded as a point in [0, 2π)3, so
that {ei〈m,·〉}m∈Z3 consist of an eigenbasis of ∆ in the complex L2-space of µ, where µ is the

normalized volume measure on T3. Since XB
t is generated by −(−∆)

1
2 , we have

(4.7) Exei〈m,XB
t 〉 = e−|m|tei〈m,x〉, t ≥ 0, x ∈ T3,m ∈ Z3.

Moreover,

ft := (−∆)−1(ft,t−γ − 1) =
∑

m∈Z3\{0}

bme−i〈m,·〉,

where

(4.8) bm :=
e−|m|

2t−γ

|m|2t

∫ t

0

ei〈m,XB
s 〉 ds, m ∈ Z3.

Then
|∇ft(x)|2 = −

∑
m1,m2∈Z3\{0}

〈m1,m2〉bm1bm2e
−i〈m1+m2,x〉,

|∇ft(x)|4 =
∑

m1,··· ,m4∈Z3\{0}

〈m1,m2〉〈m3,m4〉bm1bm2bm3bm4e
−i〈m1+m2+m3+m4,x〉.

Noting that, µ(e−i〈m,·〉) = 0 when m 6= 0, we get

(4.9) Eνµ(|∇ft|2) =
∑

m∈Z3\{0}

|m|2Eν [bmb−m],

(4.10) Eνµ(|∇ft|4) =
∑

(m1,m2,m3,m4)∈S

〈m1,m2〉〈m3,m4〉Eν [bm1bm2bm3bm4 ],
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where S := {(m1,m2,m3,m4) ∈ Z3\{0} : m1 +m2 +m3 +m4 = 0}.
By (4.8), we have

Eν [bmb−m] =
e−2|m|2t−γ

|m|4t2

∫
[0,t]2

Eνei〈m,XB
s2
−XB

s1
〉 ds1ds2.

The Markov property and (4.7) yield

(4.11) Eν(ei〈m,XB
s2
−XB

s1
〉|Fs1∧s2) = e−|m||s1−s2|, s1, s2 ≥ 0.

Then we find a constant κ > 0 such that

Eν [bmb−m] =
e−2|m|2t−γ

|m|4t2

∫
[0,t]2

e−|m||s1−s2| ds1ds2 ≥
κe−2|m|2t−γ

|m|5t
, t ≥ 2.

Using this and (4.9), we get that

Eνµ(|∇ft|2) ≥
∑

m∈Z3\{0}

κe−2|m|2t−γ

|m|3t
≥ κ1

t

∫ ∞
1

e−2s2t−γ

s
ds

≥ κ1

te2

∫ t
γ
2

1

s−1 ds =
κ1γ

2e2
(t−1 log t), t ≥ 2.

(4.12)

Let S be the set of all the permutations of {1, 2, 3, 4}, D(t) = {(s1, s2, s3, s4) ∈ [0, t]4 :
0 ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ t}. We have

Eν [bm1bm2bm3bm4 ]

=
e−

∑4
p=1 |mp|2t−γ

t4
∏4

p=1 |mp|2

∫
[0,t]4

Eν [ei〈m1,XB
s1
〉ei〈m2,XB

s2
〉ei〈m3,XB

s3
〉ei〈m4,XB

s4
〉] ds1ds2ds3ds4

=
e−

∑4
p=1 |mp|2t−γ

t4
∏4

p=1 |mp|2
∑

(i,j,k,l)∈S

∫
D(t)

Eν [ei〈mi,XB
s1
〉ei〈mj ,XB

s2
〉ei〈mk,XB

s3
〉ei〈ml,XB

s4
〉] ds1ds2ds3ds4

Since m1 +m2 +m3 +m4 = 0, by (4.7) and the Markov property we obtain

Eν [ei〈mi,XB
s1
〉ei〈mj ,XB

s2
〉ei〈mk,XB

s3
〉ei〈ml,XB

s4
〉] = e−|ml|(s4−s3)−|ml+mk|(s3−s2)−|mi|(s2−s1).

Thus,

t4
∏4

p=1 |mp|2

e−
∑4
p=1 |mp|2t−γ

Eν [bm1bm2bm3bm4 ]

=
∑

(i,j,k,l)∈S

∫
D(t)

e−|ml|(s4−s3)−|ml+mk|(s3−s2)−|mi|(s2−s1) ds1ds2ds3ds4.
(4.13)
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If ml +mk = 0, then∫
D(t)

e−|ml|(s4−s3)−|ml+mk|(s3−s2)−|mi|(s2−s1) ds1ds2ds3ds4

=

∫ t

0

∫ t

s1

∫ t

s2

∫ t

s3

e−|ml|(s4−s3)e−|mi|(s2−s1) ds4ds3ds2ds1 ≤
t2

|mi||ml|
.

If ml +mk 6= 0, then∫
D(t)

e−|ml|(s4−s3)−|ml+mk|(s3−s2)−|mi|(s2−s1) ds1ds2ds3ds4

=

∫ t

0

∫ t

s1

∫ t

s2

∫ t

s3

e−|ml|(s4−s3)e−|ml+mk|(s3−s2)e−|mi|(s2−s1) ds4ds3ds2ds1

≤ t

|mi||ml +mk||ml|
.

Combining these with (4.13) leads to

Eν [bm1bm2bm3bm4 ] ≤
e−

∑4
p=1 |mp|2t−γ∏4
p=1 |mp|2

∑
(i,j,k,l)∈S

{
t−21{ml+mk=0}

|mi||ml|
+

t−31{ml+mk 6=0}

|mi||ml +mk||ml|

}
.

Therefore, by (4.10), we find a constant c > 0 such that

(4.14) Eνµ(|∇ft|4) ≤ c(I1 + I2), t ≥ 2,

holds for

I1 :=
1

t2

∑
a,b∈Z3\{0}

1

|a|3|b|3
e−2(|a|2+|b|2)t−γ ,

I2 :=
1

t3

∑
m1,m2,m3,m4∈Z3\{0}

m3+m4 6=0

e−
∑4
p=1 |mp|2t−γ

|m1|2|m2||m3||m3 +m4||m4|2
.

It is easy to see that there exists constants c1, c2 > 0, such that

(4.15) I1 ≤
c1

t2

(∫ ∞
1

e−2s2t−γ

s
ds

)2

≤ c2(t−1 log t)2, t ≥ 2,

and similarly ∑
m∈Z3\{0}

e−|m|
2t−γ

|m|2
≤ c2t

γ
2 ,

∑
m∈Z3\{0}

e−|m|
2t−γ

|m|
≤ c2t

γ, t ≥ 2,

Then by reformulating I2 as

I2 =
1

t3

 ∑
m1∈Z3\{0}

e−|m1|2t−γ

|m1|2

 ∑
m2∈Z3\{0}

e−|m2|2t−γ

|m2|

 ∑
m3,m4∈Z3\{0}
m3+m4 6=0

e−(|m3|2+|m4|2)t−γ

|m3||m3 +m4||m4|2
,
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we find a constant c3 > 0 such that

(4.16) I2 ≤ c2
3t

3γ
2
−3

∑
m4∈Z3\{0}

e−|m4|2t−γ

|m4|2
∑

m3∈Z3\{0,−m4}

e−|m3|2t−γ

|m3||m3 +m4|
.

Write ∑
m3∈Z3\{0,−m4}

e−|m3|2t−γ

|m3||m3 +m4|
=: J1 + J2 + J3(4.17)

for

J1 :=
∑

m3∈Z3\{0,−m4}
|m3|≤ |m4|

2

e−|m3|2t−γ

|m3||m3 +m4|
,

J2 :=
∑

m3∈Z3\{0,−m4}
|m4|
2
<|m3|≤2|m4|

e−|m3|2t−γ

|m3||m3 +m4|
,

J3 :=
∑

m3∈Z3\{0,−m4}
|m3|>2|m4|

e−|m3|2t−γ

|m3||m3 +m4|
.

On the region {m3 ∈ Z3\{0,−m4} : |m3| ≤ |m4|
2
} we find a constant c4 > 0 such that

(4.18) J1 ≤
2

|m4|
∑

m3∈Z3\{0}

e−|m3|2t−γ

|m3|
≤ c4t

γ

|m4|
, t ≥ 2.

Next, on the region {m3 ∈ Z3\{0,−m4} : |m3| > 2|m4|}, we have |m3 + m4| ∼ |m3| and

|m3|2 ≥ |m3|2
2

+ 2|m4|2, so we find a constant c5 > 0 such that

J3 ≤ 4
∑

m3∈Z3\{0}
|m3|>2|m4|

e−|m3|2t−γ

|m3|2
≤ 4e−2|m4|2t−γ

∑
m3∈Z3\{0}

e−
|m3|

2t−γ
2

|m3|2
≤ c5t

γ
2 e−2|m4|2t−γ .

This together with e−s ≤ s−
1
2 gives

(4.19) J3 ≤
c5t

γ

|m4|
, t ≥ 2.

Finally, on the region {m3 ∈ Z3\{0,−m4} : |m4|
2
< |m3| ≤ 2|m4|}, we have |m3| ∼ |m4| and

1 ≤ |m3 +m4| ≤ 3|m4|, so that there for a constant c6 > 0

J2 ≤
2e−

|m4|
2t−γ
4

|m4|
∑

1≤|m3+m4|≤3|m4|

1

|m3 +m4|
≤ c6|m4|e−

|m4|
2t−γ
4 .
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By e−s ≤ s−1, we get the upper estimate of J2,

J2 ≤
c7t

γ

|m4|
, t ≥ 2.

Combining this with (4.16),(4.17),(4.18) and (4.19), we find a constant c8 > 0 such that

I2 ≤ c8t
5
2
γ−3 log t, t ≥ 2.

Substituting this and (4.15) into (4.14), and combining with (4.12), we prove (4.6). The
proof is finished.

5 Proof of Theorem 1.2

(1) By Lemma 3.5 for p = 2, it suffices to prove

(5.1) lim sup
t→∞

sup
ν∈P(C)

{
tEν [W2(µBt , µ)2]

}
≤

∞∑
i=1

2

λiB(λi)
, C > 1.

By the triangle inequality of W2 and Lemma 3.1, for any ε > 0 there exists a constant
c(ε) > 0 such that

Eν [W2(µBt , µ)2]

≤ (1 + ε)Eν [W2(µBt,rt,rt , µ)2] + 2(1 + ε−1)
{
Eν [W2(µBt,rt , µ

B
t,rt,rt)

2] + Eν [W2(µBt , µ
B
t,rt)

2]
}

≤ (1 + ε)Eν [W2(µBt,rt,rt , µ)2] + c(ε)rt,

where rt = t−β, β ∈ (1, 2q
d

), q ∈ (d
2
∨ 1, d

d−2α
), t ≥ 1. Since

dµt,rt,rt
dµ

= (1 − rt)ft,rt + rt, by
combining this with Lemma 2.2 and Hölder’s inequality, we obtain

Eν [W2(µBt,rt,rt , µ)2] ≤ Eν
∫
M

|∇L−1(ft,rt − 1)|2

M ((1− rt)ft,rt + rt, 1)
dµ

≤ Eν
∫
M

{
|∇L−1(ft,rt − 1)|2 + |∇L−1(ft,rt − 1)|2|M ((1− rt)ft,rt + rt, 1)−1 − 1|

}
dµ

≤ Eν
∫
M

|∇L−1(ft,rt − 1)|2 dµ+

(
Eν
∫
M

|∇L−1(ft,rt − 1)|2p dµ
) 1

p

×
(
Eν
∫
M

|M ((1− rt)ft,rt + rt, 1)−1 − 1|
p
p−1

) p−1
p

.

Since B ∈ Bα, by Lemma 2.3, Lemma 3.4 and (3.8), this implies

lim sup
t→∞

sup
ν∈P(C)

{
tEν [W2(µBt,rt,rt , µ)2]

}
≤

∞∑
i=1

2

λiB(λi)
.

23



Combining this with Lemma 3.1 for ε = r = rt := t−β where β > 1, we prove (5.1).
(2) By Lemma 3.5 for p = 2, it suffices to prove

(5.2) lim sup
t→∞

sup
ν∈P(C)

{
t

2
d−2αEν [W2(µBt , µ)2]

}
<∞, C > 1.

Let r : (1,∞)→ (0, 1) to be determined. By [7], we have

tW2(µBt,r, µ)2 ≤ 4Ξr(t), t, r > 0.

Combining this with Lemma 3.1 and Lemma 2.3, we find a constant c0 > 0 such that

Eν [W2(µBt , µ)2] ≤ 2Eν [W2(µBt , µ
B
t,rt)

2] + 2Eν [W2(µBt,rt , µ)2]

≤ c0rt + c0
‖hν‖∞
t

∞∑
i=1

1

λ1+α
i e2rtλi

, t > 1.
(5.3)

By (1.2), there exists constants c2, c3 > 0 such that
∞∑
i=1

1

λ1+α
i e2rtλi

≤ c2

∫ ∞
1

s−
2(1+α)

d e−c3rts
2
d ds,

so that (5.3) implies

(5.4) sup
ν∈P(C)

Eν [W2(µBt , µ)2] ≤ crt +
c

t

∫ ∞
1

s−
2(1+α)

d e−c3rts
2
d ds, t > 1, rt > 0

for some constant c > 0 depending on C.
Since d > 2(1 + α), we find a constant c4 > 0 such that∫ ∞

1

s−
2(1+α)

d e−c3rts
2
d ds =

∫ ∞
r
d
2
t

(r
− d

2
t u)−

2(1+α)
d e−c3u

2
d r
− d

2
t du ≤ c4r

− d−2(1+α)
2

t , t > 1.

Combining this with (5.4) and taking

rt = t−
2

d−2α , t > 1,

we prove (5.2).
(3) Since d = 2(1 + α), for any c > 0 there exists a constant c1 > 0 such that there exist

a constants c1 > 0 such that∫ ∞
1

s−
2(1+α)

d e−crts
2
d ds ≤ c1 ln(1 + r−1

t ), t > 1,

so that (5.4) implies

Eµ[W2(µBt , µ)2] ≤ c′rt + c′t−1 log(1 + r−1
t ), t > 1

for some constant c′ > 0. Taking rt = t−1 log(1 + t−1) for t ≥ 2, we find a constant c2 > 0
such that

Eµ[W2(µBt , µ)2] ≤ c2t
−1 log(1 + t), t ≥ 2.

Since Eν ≤ ‖hν‖∞Eµ for ν = hνµ, combining this with Lemma 3.5 for p = 2 and ε = 1, we
obtain

lim sup
t→∞

t

log t
sup
x∈M

Ex[W2(µBt , µ)2] <∞.
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6 Proof of Theorem 1.4

Proof. By (3.18), (3.19) and noting that the Markov property implies

Px(tW2(µ̃Bε,t, µ)2 < a) = Pνx,ε(tW2(µBt , µ)2 < a), a ≥ 0,

it suffices to prove that for any C > 1,

(6.1) lim inf
t→∞

inf
ν∈P(C)

Pν(tW2(µBt , µ)2 < a) ≥ F (a), a ≥ 0,

(6.2) lim sup
t→∞

sup
ν∈P(C)

Pν(tW2(µBt , µ)2 < a) ≤ F (a), a ≥ 0.

It is easy to see that (6.2) follows from Theorem 2.1(2) and (4.1).
To prove (6.1), let γ > 1 be in Lemma 3.2(2), and denote

Ξ̃(t) := t

∫
M

|∇L−1(ft,t−γ − 1)|2

M ((1− t−γ)ft,t−γ + t−γ, 1)
dµ,

Ξ(t) := Ξt−γ (t) = tµ
(
|∇L−1(ft,t−γ − 1)|2

)
, t > 1.

Then Lemma 3.2(2) and Lemma 3.4 yield

lim sup
t→∞

sup
ν∈P(C)

Pν(|Ξ̃(t)− Ξ(t)| > ε) = 0, ε > 0.

Combining this with Lemma 2.2, (2.6) and noting that
∑∞

i=1
1

λiB(λi)
<∞, we prove (6.1).
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