Wasserstein Convergence for Empirical Measures of Subordinated Diffusions on Riemannian Manifolds *

Feng-Yu Wang $^{a),b)}$ Bingyao Wu $^{a)}$

^{a)} Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

^{b)} Department of Mathematics, Swansea University, Bay Campus, Swansea, SA1 8EN, United Kingdom wangfy@tju.edu.cn, F.-Y.Wang@swansea.ac.uk; bingyaowu@163.com

February 17, 2022

Abstract

Let M be a connected compact Riemannian manifold possibly with a boundary ∂M , let $V \in C^2(M)$ such that $\mu(\mathrm{d}x) := \mathrm{e}^{V(x)}\mathrm{d}x$ is a probability measure, where $\mathrm{d}x$ is the volume measure, and let $L = \Delta + \nabla V$. As a continuation to [14] where convergence in the quadratic Wasserstein distance \mathbb{W}_2 is studied for the empirical measures of the L-diffusion process (with reflecting boundary if $\partial M \neq \emptyset$), this paper presents the exact convergence rate for the subordinated process. In particular, letting $(\mu_t^{\alpha})_{t>0}$ ($\alpha \in (0, 1)$) be the empirical measures of the Markov process generated by $L^{\alpha} := -(-L)^{\alpha}$, when ∂M is empty or convex we have

$$\lim_{t \to \infty} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t^{\alpha}, \mu)^2] \right\} = \sum_{i=1}^{\infty} \frac{2}{\lambda_i^{1+\alpha}} \text{ uniformly in } x \in M,$$

where \mathbb{E}^x is the expectation for the process starting at point x, $\{\lambda_i\}_{i\geq 1}$ are non-trivial (Neumann) eigenvalues of -L. In general,

$$\mathbb{E}^{x}[\mathbb{W}_{2}(\mu_{t}^{\alpha},\mu)^{2}] \begin{cases} \asymp t^{-1}, & \text{if } d < 2(1+\alpha), \\ \asymp t^{-\frac{2}{d-2\alpha}}, & \text{if } d > 2(1+\alpha), \\ \preceq t^{-1}\log(1+t), & \text{if } d = 2(1+\alpha), \text{i.e. } \alpha = \frac{1}{2}, d = 3 \end{cases}$$

holds uniformly in $x \in M$, where in the last case $\mathbb{E}^{x}[\mathbb{W}_{1}(\mu_{t}^{\alpha},\mu)^{2}] \succeq t^{-1}\log(1+t)$ holds for $M = \mathbb{T}^{3}$ and V = 0.

AMS subject Classification: 60D05, 58J65.

Keywords: Empirical measure, subordinated diffusion process, Riemannian manifold, Wasserstein distance, eigenvalues.

^{*}Supported in part by NNSFC (11831014, 11921001) and the National Key R&D Program of China (No. 2020YFA0712900).

1 Introduction

Recently, sharp convergence rate in the Wasserstein distance has been derived in [14] for empirical measures of symmetric diffusion processes on compact Riemannian manifolds, see [10, 11, 12, 13] for further study of Dirichlet diffusion processes and SDEs/SPDEs, and see [1, 2, 5] and references within for earlier results on i.i.d. random variables and discrete time Markov chains. In this paper, we aim to extend the main results of [14] to jump processes, for which a natural model is the subordination of diffusion processes.

Let M be a d-dimensional connected compact Riemannian manifold possibly with a smooth boundary ∂M . Let $V \in C^2(M)$ such that $\mu(dx) = e^{V(x)}dx$ is a probability measure on M, where dx is the Riemannian volume measure on M. Then the (reflecting, if $\partial M \neq \emptyset$) diffusion process X_t generated by $L := \Delta + \nabla V$ on M is reversible; i.e. the associated diffusion semigroup $\{P_t\}_{t>0}$ is symmetric in $L^2(\mu)$, where

$$P_t f(x) := \mathbb{E}^x f(X_t), \quad t \ge 0, f \in \mathscr{B}_b(M).$$

Here, \mathbb{E}^x is the expectation taken for the diffusion process $\{X_t\}_{t\geq 0}$ with $X_0 = x$, and we will use \mathbb{P}^x to denote the associated probability measure. In general, for $\nu \in \mathscr{P}$ (the set of all probability measures on M), let \mathbb{E}^{ν} and \mathbb{P}^{ν} be the expectation and probability taken for the diffusion process with initial distribution ν . For any $\nu \in \mathscr{P}$ and $t \geq 0$, $\nu P_t := \mathbb{P}^{\nu}(X_t \in \cdot)$ is the distribution of X_t with initial distribution ν .

A function $B \in C^{\infty}((0,\infty); [0,\infty)) \cap C([0,\infty); [0,\infty))$ is called a Bernstein function if

$$(-1)^{n-1}\frac{\mathrm{d}^n}{\mathrm{d}r^n}B(r) \ge 0, \quad n \in \mathbb{N}, r > 0.$$

We will use the following classes of Bernstein functions:

$$\mathbf{B} := \left\{ B : B \text{ is a Bernstein function with } B(0) = 0, B'(0) > 0 \right\}.$$
$$\mathbb{B} := \left\{ B \in \mathbf{B} : \int_{1}^{\infty} r^{\frac{d}{2} - 1} \mathrm{e}^{-tB(r)} \mathrm{d}r < \infty \text{ for } t > 0 \right\}.$$

For each $B \in \mathbf{B}$, there exists a unique stable process S_t^B on $[0, \infty)$ with Laplace transform

(1.1)
$$\mathbb{E}e^{-\lambda S_t^B} = e^{-tB(\lambda)}, \quad t, \lambda \ge 0.$$

Moreover, for any $\alpha \in [0, 1]$, let

$$\mathbb{B}^{\alpha} := \Big\{ B \in \mathbb{B} : \liminf_{\lambda \to \infty} \lambda^{-\alpha} B(\lambda) > 0 \Big\}, \quad \mathbb{B}_{\alpha} := \Big\{ B \in \mathbb{B} : \limsup_{\lambda \to \infty} \lambda^{-\alpha} B(\lambda) < \infty \Big\}.$$

For any $B \in \mathbf{B}$, let X_t^B be the Markov process on M generated by B(L) := -B(-L), which can be constructed as the time change (subordination) of X_t :

$$X_t^B = X_{S_t^B}, \quad t \ge 0,$$

where $(S_t^B)_{t\geq 0}$ is the stable process satisfying (1.1) independent of $(X_t)_{t\geq 0}$. We consider the empirical measure

$$\mu_t^B := \frac{1}{t} \int_0^t \delta_{X_s^B} \mathrm{d}s, \quad t > 0.$$

Let ρ be the Riemiannian distance (i.e. the length of shortest curve linking two points) on M. For any p > 0, the L^p -Wasserstein distance \mathbb{W}_p is defined by

$$\mathbb{W}_p(\mu_1,\mu_2) := \inf_{\pi \in \mathscr{C}(\mu_1,\mu_2)} \left(\int_{M \times M} \rho(x,y)^p \pi(\mathrm{d}x,\mathrm{d}y) \right)^{\frac{1}{p \vee 1}}, \ \mu_1,\mu_2 \in \mathscr{P},$$

where $\mathscr{C}(\mu_1, \mu_2)$ is the set of all probability measures on $M \times M$ with marginal distributions μ_1 and μ_2 . A measure $\pi \in \mathscr{C}(\mu_1, \mu_2)$ is called a coupling of μ_1 and μ_2 .

Since M is connected and compact, L has discrete spectrum and all eigenvalues $\{\lambda_i\}_{i\geq 0}$ of -L listed in the increasing order counting multiplicities satisfy (see for instance [3])

(1.2)
$$\kappa^{-1}i^{\frac{2}{d}} \le \lambda_i \le \kappa i^{\frac{2}{d}}, \quad i \ge 0$$

for some constant $\kappa > 1$. Our main results are stated as follows, which cover the corresponding assertions derived in [14] for $B(\lambda) = \lambda$.

Theorem 1.1 (Lower bound estimates). Let $B \in \mathbb{B}$.

(1) There exists a constant $c \in (0, 1]$ with c = 1 when ∂M is empty or convex, such that

$$\liminf_{t \to \infty} \inf_{x \in M} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} \ge c \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i)}.$$

(2) Let $B \in \mathbb{B}_{\alpha}$ for some $\alpha \in [0, 1]$. If $d > 2(1 + \alpha)$, then for any p > 0,

$$\liminf_{t \to \infty} \inf_{x \in M} \left\{ t^{\frac{2}{d-2\alpha}} \left(\mathbb{E}^x [\mathbb{W}_p(\mu_t^B, \mu)] \right)^{\frac{2}{p \wedge 1}} \right\} > 0.$$

(3) Let $B(\lambda) = \lambda^{\alpha}$ for some $\alpha \in [0, 1]$. If $d = 2(1 + \alpha)$ (i.e. $\alpha = 1$ and d = 4, or $\alpha = \frac{1}{2}$ and d = 3), $M = \mathbb{T}^d$ and V = 0, then

$$\liminf_{t \to \infty} \inf_{x \in M} \left\{ \frac{t}{\log t} \left(\mathbb{E}^x [\mathbb{W}_1(\mu_t^B, \mu)] \right)^2 \right\} > 0.$$

Theorem 1.2 (Upper bound estimates). Let $B \in \mathbb{B}^{\alpha}$ for some $\alpha \in [0, 1]$.

(1) If $d < 2(1 + \alpha)$, then

$$\limsup_{t \to \infty} \sup_{x \in M} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} \le \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i)} < \infty.$$

(2) If $d > 2(1 + \alpha)$, then

$$\limsup_{t \to \infty} \sup_{x \in M} \left\{ t^{\frac{2}{d-2\alpha}} \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} < \infty$$

(3) If
$$d = 2(1 + \alpha)$$
, i.e. either $\alpha = 1$ and $d = 4$, or $\alpha = \frac{1}{2}$ and $d = 3$, then

$$\limsup_{t \to \infty} \sup_{x \in M} \left\{ \frac{t}{\log t} \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} < \infty.$$

The following is a straightforward consequence of Theorems 1.1 and 1.2. Corollary 1.3. Let $B \in \mathbb{B}^{\alpha} \cap \mathbb{B}_{\alpha}$ for some $\alpha \in [0, 1]$.

(1) If ∂M is empty or convex, then

(1.3)
$$\lim_{t \to \infty} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} = \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i)}$$

uniformly in $x \in M$, where the limit is finite if and only if $d < 2(1 + \alpha)$. In general, there exists a constant $c \in (0, 1]$ such that

(1.4)
$$c\sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i)} \leq \liminf_{t \to \infty} \inf_{x \in M} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\}$$
$$\leq \limsup_{t \to \infty} \sup_{x \in M} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} \leq \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i)}.$$

(2) If $d > 2(1 + \alpha)$, then for any $\varepsilon \in (0, \alpha)$ there exist constants $c > c(\varepsilon) > 0$ such that

$$c(\varepsilon)t^{-\frac{2}{d-2\alpha}} \leq \inf_{x \in M} \left(\mathbb{E}^{x}[\mathbb{W}_{\varepsilon}(\mu_{t}^{B},\mu)] \right)^{\frac{2}{\varepsilon}}$$

$$\leq \inf_{x \in M} \mathbb{E}^{x}[\mathbb{W}_{2}(\mu_{t}^{B},\mu)^{2}] \leq \sup_{x \in M} \mathbb{E}^{x}[\mathbb{W}_{2}(\mu_{t}^{B},\mu)^{2}] \leq ct^{-\frac{2}{d-2\alpha}}, \quad t \geq 1.$$

(3) Let $d = 2(1 + \alpha)$, i.e. either d = 3 and $\alpha = \frac{1}{2}$, or $\alpha = 1$ and d = 4. Then there exists a constant c > 0 such that

$$\sup_{x \in M} \mathbb{E}^x[\mathbb{W}_2(\mu_t^B, \mu)^2] \le ct^{-1}\log t, \quad t \ge 2.$$

On the other hand, when $B(\lambda) = \lambda^{\alpha}$, $M = \mathbb{T}^d$ and V = 0, then there exists a constant c' > 0 such that

$$\inf_{x \in M} \mathbb{E}^x[\mathbb{W}_1(\mu_t^B, \mu)^2] \ge c' t^{-1} \log t, \quad t \ge 2.$$

Finally, we have the following result on the weak convergence of $t \mathbb{W}_2(\mu_t^B, \mu)^2$.

Theorem 1.4. Let $B \in \mathbb{B}^{\alpha}$ for some $\alpha \in [0,1]$, and let ∂M be empty or convex. If $d < 2(1+\alpha)$, then

$$\lim_{t \to \infty} \sup_{x \in M} |\mathbb{P}^x(t \mathbb{W}_2(\mu_t^B, \mu)^2 < a) - F(a)| = 0, \quad a \ge 0,$$

where $F(a) := \mathbb{P}(\xi < a)$ for

$$\xi := \sum_{i=1}^{\infty} \frac{2\xi_i^2}{\lambda_i B(\lambda_i)}$$

and i.i.d. random variables $\{\xi_i\}$ with the standard normal distribution N(0,1).

Following the line of [14], we will first study the modified empirical measure $\mu_{t,r}^B := \mu_t^B P_r$ for r > 0 in Section 2, present some lemmas in Section 3, and finally prove Theorems 1.1, 1.2 and 1.4 in Sections 4, 5 and 6 respectively.

2 Modified empirical measures

In this part, we allow M to be non-compact, but assume that the (Neumann) semigroup P_t generated by L is ultracontractive, i.e.

(2.1)
$$||P_t||_{1\to\infty} := \sup_{\mu(|f|) \le 1} ||P_t f||_{\infty} < \infty, \quad t > 0.$$

Consequently, -L has discrete spectrum and the heat kernel $p_t(x, y)$ of P_t with respect to μ satisfies

(2.2)
$$p_t(x,y) = 1 + \sum_{i=1}^{\infty} e^{-t\lambda_i} \phi_i(x) \phi_i(y) \le ||P_t||_{1 \to \infty} < \infty, \quad t > 0, x, y \in M,$$

where $\{\lambda_i\}_{i\geq 0}$ are all eigenvalues of -L and $\{\phi_i\}_{i\geq 0}$ is the eigenbasis, i.e. $\phi_0 \equiv 1$ and $\{\phi_i\}_{i\geq 0}$ is an orthonormal basis of $L^2(\mu)$ with $L\phi_i = -\lambda_i\phi_i$.

For any $p \ge 1$ and $f \in L^p(\mu)$, let $||f||_p := \{\mu(|f|^p)\}^{\frac{1}{p}}$ be the $L^p(\mu)$ -norm of f. Then there exists a constant c > 0 such that

$$||P_t f||_p \le c e^{-\lambda_1 t} ||f||_p, \quad t \ge 0, p \in [1, \infty], f \in L^p_0(\mu)$$

where $L_0^p(\mu) := \{ f \in L^p(\mu) : \mu(f) := \int_M f d\mu = 0 \}$. Consequently, for any $B \in \mathbb{B}$,

(2.3)
$$\|P_t^B f\|_p = \|\mathbb{E}P_{S_t^B} f\|_p \le c \|f\|_p \mathbb{E}e^{-\lambda_1 S_t^B} = ce^{-B(\lambda_1)t} \|f\|_p, \quad t \ge 0, p \in [1, \infty], f \in L_0^p(\mu).$$

As in [14], we consider the modified empirical measure

$$\mu_{t,r}^B := \mu_t^B P_r, \quad r, t > 0.$$

By (2.2), we have

(2.4)
$$f_{t,r} := \frac{\mathrm{d}\mu_{t,r}^B}{\mathrm{d}\mu} = 1 + \frac{1}{\sqrt{t}} \sum_{i=1}^{\infty} \mathrm{e}^{-r\lambda_i} \psi_i(t) \phi_i, \quad \psi_i(t) := \frac{1}{\sqrt{t}} \int_0^t \phi_i(X_s^B) \mathrm{d}s, \quad r, t > 0.$$

The main result in this section is the following.

Theorem 2.1. Let $B \in \mathbf{B}$, M be a d-dimensional connected complete Riemannian manifold possibly with a boundary such that (2.1) holds.

(1) For any r > 0,

$$\lim_{t \to \infty} \sup_{x \in M} \left| t \mathbb{E}^x [\mathbb{W}_2(\mu_{t,r}^B, \mu)^2] - \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}} \right| = 0.$$

(2) For any C > 0, let

$$\mathscr{P}(C) := \{ \nu \in \mathscr{P} : \nu = h_{\nu} \mu, \|h_{\nu}\|_{\infty} \le C \}.$$

Then for any C > 1,

$$\lim_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} \left| \mathbb{P}^{\nu}(t \mathbb{W}_2(\mu_{t,r}^B, \mu)^2 < a) - F_r(a) \right| = 0, \quad a \in \mathbb{R},$$

where for i.i.d. random variables ξ_i with distribution N(0,1), $F_r := \mathbb{P}(\xi_r < \cdot)$ is the distribution function of

$$\xi_r := \sum_{i=1}^{\infty} \frac{2\xi_i^2}{\lambda_i B(\lambda_i) e^{2\lambda_i r}}, \quad r > 0.$$

To prove this result, we first present some lemmas, where the first follows from [14, Lemma 2.3], which goes back to [1, Proposition 2.3].

Lemma 2.2. Let $B \in \mathbf{B}$, $\mathscr{M}(a, b) := \frac{a-b}{\log a - \log b} \mathbb{1}_{\{a \land b > 0\}}$. Then

$$\mathbb{W}_2(\mu_{t,r}^B,\mu)^2 \le \int_M \frac{|\nabla L^{-1}(f_{t,r}-1)|^2}{\mathscr{M}(f_{t,r},1)} \,\mathrm{d}\mu, \quad t,r>0.$$

By the ergodicity we have $\lim_{t\to\infty} \mathscr{M}(f_{t,r}, 1) = 1$ (see Lemma 2.4 below), so that this lemma implies that $t W_2(\mu^B_{t,r}, \mu)^2$ is asymptotically bounded above by

(2.5)
$$\Xi_r(t) := t \mu (|\nabla L^{-1}(f_{t,r} - 1)|^2), \quad t, r > 0,$$

where $\mu(f) := \int_M f d\mu$ for $f \in L^1(\mu)$. Thus, we first estimate $\Xi_r(t)$.

Lemma 2.3. Let $B \in \mathbf{B}$. There exists a constant c > 0 such that

(2.6)
$$\left| \mathbb{E}^{\nu} \Xi_r(t) - \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}} \right| \le \frac{c \|h_\nu\|_{\infty}}{t} \sum_{i=1}^{\infty} \frac{1}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}}, \quad t \ge 1, r > 0,$$

holds for any probability measure $\nu = h_{\nu}\mu$. Consequently,

(2.7)
$$\sup_{x \in M} \left| \mathbb{E}^x \Xi_r(t) - \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}} \right| \le \frac{c \|P_{\frac{r}{2}}\|_{2\to\infty}^2}{t} \sum_{i=1}^\infty \frac{1}{\lambda_i B(\lambda_i) \mathrm{e}^{r\lambda_i}}, \quad t \ge 1, r > 0.$$

Proof. By (2.2), (2.4), (2.5), $L\phi_i = -\lambda_i\phi_i$ and $\mu(\phi_i\phi_j) = 1_{\{i=j\}}$ for $i, j \ge 0$, we obtain

(2.8)
$$\Xi_r(t) = \sum_{i=1}^{\infty} \frac{|\psi_i(t)|^2}{\lambda_i \mathrm{e}^{2r\lambda_i}}, \quad t, r > 0.$$

Since P_t^B is the Markov semigroup of X_t^B , the Markov property implies

$$\mathbb{E}^{\nu}(\phi_i(X_t^B)|X_s^B) = P_{t-s}^B\phi_i(X_s^B) = e^{-B(\lambda_i)(t-s)}\phi_i(X_s^B), \quad i \ge 0, t \ge s \ge 0.$$

So, $\psi_i(t) := \frac{1}{\sqrt{t}} \int_0^t \phi_i(X_s^B) ds$ satisfies

$$\mathbb{E}^{\nu} |\psi_{i}(t)|^{2} = \frac{1}{t} \mathbb{E}^{\nu} \left| \int_{0}^{t} \phi_{i}(X_{s}^{B}) \, \mathrm{d}s \right|^{2} = \frac{2}{t} \int_{0}^{t} \, \mathrm{d}s_{1} \int_{s_{1}}^{t} \mathbb{E}^{\nu} [\phi_{i}(X_{s_{1}}^{B})\phi_{i}(X_{s_{2}}^{B})] \, \mathrm{d}s_{2}$$

$$(2.9) \qquad = \frac{2}{t} \int_{0}^{t} \mathbb{E}^{\nu} |\phi_{i}(X_{s_{1}}^{B})|^{2} \, \mathrm{d}s_{1} \int_{s_{1}}^{t} \mathrm{e}^{-B(\lambda_{i})(s_{2}-s_{1})} \, \mathrm{d}s_{2}$$

$$= \frac{2}{B(\lambda_{i})t} \int_{0}^{t} \nu(P_{s}^{B}\phi_{i}^{2})(1-\mathrm{e}^{-B(\lambda_{i})(t-s)}) \, \mathrm{d}s, \quad t > 0.$$

This together with (2.8) imply

(2.10)
$$\mathbb{E}^{\nu}\Xi_{r}(t) = \frac{2}{t} \sum_{i=1}^{\infty} \frac{1}{\lambda_{i}B(\lambda_{i})e^{2r\lambda_{i}}} \int_{0}^{t} \nu(P_{s}^{B}\phi_{i}^{2})(1 - e^{-B(\lambda_{i})(t-s)}) \,\mathrm{d}s =: I_{1} + I_{2},$$

where

$$(2.11) I_1 := \frac{2}{t} \sum_{i=1}^{\infty} \int_0^t \frac{1 - e^{-(t-s)B(\lambda_i)}}{\lambda_i B(\lambda_i) e^{2r\lambda_i}} \,\mathrm{d}s = \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i) e^{2r\lambda_i}} - \frac{2}{t} \sum_{i=1}^{\infty} \frac{1 - e^{-B(\lambda_i)t}}{\lambda_i B(\lambda_i)^2 e^{2r\lambda_i}},$$

and due to $\nu(P_s^B \phi_i^2) = \mu(h_\nu P_s^B \phi_i^2) = \mu(\phi_i^2 P_s^B h_\nu),$

$$I_2 := \mathbb{E}^{\nu} \Xi_r(t) - I_1 = \frac{2}{t} \sum_{i=1}^{\infty} \int_0^t \frac{1 - e^{-(t-s)B(\lambda_i)}}{\lambda_i B(\lambda_i) e^{2r\lambda_i}} \mu(\phi_i^2 P_s^B h_\nu - 1) \, \mathrm{d}s.$$

Since $\mu(\phi_i^2) = 1$, by (2.3), there exists a constant $c_0 > 0$ such that

$$|\mu(\phi_i^2 P_s^B h_\nu - 1)| = |\mu((P_s^B h_\nu - 1)\phi_i^2)| \le ||P_s^B (h_\nu - 1)||_\infty \le c_0 e^{-B(\lambda_1)s} ||h_\nu||_\infty, \quad s \ge 0.$$

Therefore, we find a constant $c_1 > 0$ such that

(2.12)
$$|I_2| \le \frac{c_1}{t} ||h_\nu||_{\infty} \sum_{i=1}^{\infty} \frac{1}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}} < \infty.$$

Combining (2.10), (2.11) and (2.12), we find a constant $c_2 > 0$ such that

$$\left| \mathbb{E}^{\nu} \Xi_r(t) - \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}} \right| \le \frac{c_2 \|h_{\nu}\|_{\infty}}{t} \sum_{i=1}^{\infty} \frac{1}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}}.$$

When $\nu = \delta_x$, (2.10) becomes

(2.13)
$$\mathbb{E}^x \Xi_r(t) \le I_1 + I_2(x),$$

where I_1 is in (2.11) and

$$I_2(x) := \frac{2}{t} \sum_{i=1}^{\infty} \int_0^t \frac{1 - e^{-B(\lambda_i)(t-s)}}{\lambda_i B(\lambda_i) e^{2r\lambda_i}} P_s^B\{\phi_i^2 - 1\}(x) \, \mathrm{d}s.$$

Since $\mu(\phi_i^2) = 1$, (2.3) implies $\|P_s^B \phi_i^2 - 1\|_{\infty} \leq c e^{-B(\lambda_1)s} \|\phi_i\|_{\infty}^2$. Combining this with $\|\phi_i\|_{\infty}^2 = e^{r\lambda_i} \|P_{\frac{r}{2}}\phi_i\|_{\infty}^2 \le e^{\lambda_i r} \|P_{\frac{r}{2}}\|_{2\to\infty}^2,$

we find a constant $c_3 > 0$ such that

$$I_{2}(x) \leq \frac{2}{t} \sum_{i=1}^{\infty} \int_{0}^{t} \frac{c}{\lambda_{i} B(\lambda_{i}) \mathrm{e}^{r\lambda_{i}}} \mathrm{e}^{-B(\lambda_{1})s} \|P_{\frac{r}{2}}\|_{2\to\infty}^{2} \mathrm{d}s \leq \frac{c_{3} \|P_{\frac{r}{2}}\|_{2\to\infty}^{2}}{t} \sum_{i=1}^{\infty} \frac{1}{\lambda_{i} B(\lambda_{i}) \mathrm{e}^{r\lambda_{i}}}.$$

This together with (2.11) and (2.13) implies (2.7).

The following Lemma shows that $\lim_{t\to\infty} \mathcal{M}(f_{t,r}, 1) = 1, r > 0.$

Lemma 2.4. Let $||f_{t,r} - 1||_{\infty} = \sup_{y \in M} |f_{t,r}(y) - 1|$. Then there exists a function $c : \mathbb{N} \times \mathbb{N}$ $(0,\infty) \to (0,\infty)$ such that

$$\sup_{x \in M} \mathbb{E}^{x}[\|f_{t,r} - 1\|_{\infty}^{2k}] \le c(k,r)t^{-k}, \quad t \ge 1, r > 0, k \in \mathbb{N}.$$

Proof. For fixed r > 0 and $y \in M$, let $f = p_r(\cdot, y) - 1$. For any $k \in \mathbb{N}$, we consider

$$I_k(s) := \mathbb{E}^x \left| \int_0^s f(X_t^B) \, dt \right|^{2k} = (2k)! \mathbb{E}^x \int_{\Delta_k(s)} f(X_{s_1}^B) \cdots f(X_{s_{2k}}^B) \, \mathrm{d}s_1 \cdots \mathrm{d}s_{2k},$$

where $\Delta_k(s) := \{(s_1, \cdots, s_{2k}) \in [0, s] : 0 \le s_1 \le \cdots \le s_{2k} \le s\}.$ By the proof of [14, Lemma 2.5] with X_t^B replacing X_t , we obtain

(2.14)
$$I_k(t) \le \sup_{s \in [0,t]} I_k(s) \le \{2k(2k-1)\}^k \left(\int_{\Delta_1(t)} (\mathbb{E}^x |g(r_1, r_2)|^k)^{\frac{1}{k}} \, \mathrm{d}r_1 \, \mathrm{d}r_2 \right)^k,$$

where $g(r_1, r_2) = (f P^B_{r_2 - r_1} f)(X^B_{r_1}), r_2 \ge r_1 \ge 0.$ By (2.1) we have

$$||f||_{\infty} = ||p_r(\cdot, y) - 1||_{\infty} \le 2||P_r||_{1 \to \infty} < \infty,$$

which together with (2.3) implies

$$|g(r_1, r_2)|^k \le ||fP^B_{r_2 - r_1} f||_{\infty}^k \le c e^{-B(\lambda_1)(r_2 - r_1)k} ||f||_{\infty}^{2k} \le c_1 ||P_r||_{1 \to \infty}^{2k} e^{-B(\lambda_1)(r_2 - r_1)k}$$

for some constant $c_1 > 0$. Thus, there exists a constant $c_2 > 0$ such that

$$\int_{\Delta_1(t)} (\mathbb{E}^x |g(r_1, r_2)|^k)^{\frac{1}{k}} \, \mathrm{d}r_1 \, \mathrm{d}r_2 \le \int_0^t \, \mathrm{d}r_1 \int_{r_1}^t c_1 \|P_r\|_{1 \to \infty}^2 \mathrm{e}^{-B(\lambda_1)(r_2 - r_1)} \, \mathrm{d}r_2 \le c_2 \|P_r\|_{1 \to \infty}^2 t.$$

Combining this with (2.14), we find a constant $c_3 > 0$ such that

$$\sup_{x,y\in M} \mathbb{E}^{x}[|f_{t,r}(y) - 1|^{2k}] = t^{-2k}I_{k}(t) \le c_{3}||P_{r}||_{1\to\infty}^{2k}t^{-k}, \quad t \ge 1, r > 0.$$

Noting that $f_{t,r} - 1 = P_{\frac{r}{2}}(f_{t,\frac{r}{2}} - 1)$, this implies that for some constant c > 0

$$\sup_{x \in M} \mathbb{E}^{x}[\|f_{t,r} - 1\|_{\infty}^{2k}] = \sup_{x \in M} \mathbb{E}^{x}[\|P_{\frac{r}{2}}(f_{t,\frac{r}{2}} - 1)\|_{\infty}^{2k}]$$

$$\leq \|P_{\frac{r}{2}}\|_{2k \to \infty}^{2k} \sup_{x \in M} \mathbb{E}^{x}[\mu(|f_{t,\frac{r}{2}} - 1|^{2k})] \leq c \|P_{\frac{r}{2}}\|_{1 \to \infty}^{4k} t^{-k}.$$

_

Proof of Theorem 2.1. (1) It suffices to verify the following estimates for any r > 0:

(2.15)
$$\liminf_{t \to \infty} \inf_{x \in M} \{ t \mathbb{E}^x [\mathbb{W}_2(\mu_{t,r}^B, \mu)^2] \} \ge \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}},$$

(2.16)
$$\limsup_{t \to \infty} \sup_{x \in M} \{ t \mathbb{E}^x [\mathbb{W}_2(\mu_{t,r}^B, \mu)^2] \} \le \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}}$$

Let $B_{\sigma} := \{ \|f_{t,r} - 1\|_{\infty} \leq \sigma^{\frac{2}{3}} \}$ for $\sigma > 0$. By the proofs of [14, (2.53) and (2.54)] for X_t^B replacing X_t , there exists a constant c > 0 such that

(2.17)
$$t \mathbb{W}_2(\mu_{t,r}^B, \mu)^2 \ge 1_{B_\sigma} \{ \Xi_r(t) - ct\sigma^{\frac{5}{3}} \}, \quad r, t, \sigma > 0.$$

Taking $\sigma = t^{-\gamma}$ for some $\gamma \in (\frac{3}{5}, \frac{3}{4})$, we have $t\sigma^{\frac{5}{3}} \downarrow 0$ as $t \uparrow \infty$, and according to Lemma 2.4,

$$\lim_{t \to \infty} \sup_{x \in M} \mathbb{P}^x(B^c_{\sigma}) \le \lim_{t \to \infty} \sup_{x \in M} t^{\frac{4\gamma}{3}} \mathbb{E}^x[\|f_{t,r} - 1\|_{\infty}^2] = 0,$$

so that by (2.7)

$$\limsup_{t \to \infty} \sup_{x \in M} \mathbb{E}^x [\mathbf{1}_{B^c_{\sigma}} \Xi_r(t)] \le c(r) \limsup_{t \to \infty} \sup_{x \in M} \mathbb{P}^x(B^c_{\sigma}) = 0,$$

where $c(r) := \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i) e^{2\lambda_i r}} < \infty$. Thus, (2.17) yields

$$\liminf_{t \to \infty} \inf_{x \in M} \mathbb{E}^x \left[t \mathbb{W}_2(\mu_{t,r}^B, \mu)^2 \right] \ge \liminf_{t \to \infty} \inf_{x \in M} \mathbb{E}^x \left[\Xi_r(t) \right],$$

which together with (2.7) implies (2.15).

Since $\mu(\phi_i^2) = 1$ and $\lambda_1 > 0$, by taking x = y in (2.2) and integrating with respect to $\mu(dx)$, we obtain

$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}} \le \frac{1}{\lambda_1 B(\lambda_1)} \sum_{i=1}^{\infty} \mathrm{e}^{-2r\lambda_i} < \infty.$$

For any $\eta \in (0, 1)$, let

$$A_{\eta} = \{ \|f_{t,r} - 1\|_{\infty} \le \eta \}.$$

Noting that $f_{t,r}(y) \ge 1 - \eta$ implies

$$\mathscr{M}(1, f_{t,r}(y)) \ge \sqrt{f_{t,r}(y)} \ge \sqrt{1-\eta},$$

by Lemma 2.2 and (2.7), we find a constant c(r) > 0 such that

$$t \sup_{x \in M} \mathbb{E}^{x} [1_{A_{\eta}} \mathbb{W}_{2}(\mu_{t,r}^{B}, \mu)^{2}] \leq \sup_{x \in M} \mathbb{E}^{x} \left\{ \frac{\Xi_{r}(t)}{\sqrt{1-\eta}} \right\}$$
$$\leq \frac{1}{\sqrt{1-\eta}} \sum_{i=1}^{\infty} \frac{2}{\lambda_{i} B(\lambda_{i}) \mathrm{e}^{2r\lambda_{i}}} \left(1 + \frac{c(r)}{t}\right), \quad t > 0, \eta \in (0, 1).$$

Thus,

$$(2.18) \qquad t \sup_{x \in M} \mathbb{E}^{x} [\mathbb{W}_{2}(\mu_{t,r}^{B}, \mu)^{2}] \\ \leq \frac{1}{\sqrt{1-\eta}} \sum_{i=1}^{\infty} \frac{2}{\lambda_{i} B(\lambda_{i}) \mathrm{e}^{2r\lambda_{i}}} \left(1 + \frac{c(r)}{t}\right) + t \sup_{x \in M} \mathbb{E}^{x} [\mathbf{1}_{A_{\eta}^{c}} \mathbb{W}_{2}(\mu_{t,r}^{B}, \mu)^{2}] \\ \leq \frac{1 + c(r)t^{-1}}{\sqrt{1-\eta}} \sum_{i=1}^{\infty} \frac{2}{\lambda_{i} B(\lambda_{i}) \mathrm{e}^{2r\lambda_{i}}} + t \sup_{x \in M} \sqrt{\mathbb{P}^{x}(A_{\eta}^{c}) \mathbb{E}^{x} [\mathbb{W}_{2}(\mu_{t,r}^{B}, \mu)^{4}]}.$$

As shown in the proof of [14, Proposition 2.6], we have

(2.19)
$$\mathbb{E}^{x} \mathbb{W}_{2}(\mu_{t,r}^{B}, \mu)^{4} \leq \|P_{r}\|_{1 \to \infty}(\mu \times \mu)(\rho^{4}) < \infty.$$

Moreover, Lemma 2.4 implies that for some constant c(k, r) > 0

$$\sup_{x \in M} \mathbb{P}^x(A^c_\eta) \le \eta^{-2k} c(k, r) t^{-k}.$$

By taking k = 4 and applying (2.18) and (2.19), we conclude that

$$\limsup_{t \to \infty} \left\{ t \sup_{x \in M} \mathbb{E}^x [\mathbb{W}_2(\mu_{t,r}^B, \mu)^2] \right\} \le \frac{1}{\sqrt{1-\eta}} \sum_{i=1}^\infty \frac{2}{\lambda_i B(\lambda_i) \mathrm{e}^{2r\lambda_i}}.$$

Then (2.16) follows by letting $\eta \to 0$.

(2) By Lemma 2.3, it suffices to prove that for any C > 1

(2.20)
$$\lim_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} |\mathbb{P}^{\nu}(\Xi_r(t) < a) - \mathbb{P}(\xi_r < a)| = 0, \quad a \ge 0.$$

Recall that

$$\Xi_r(t) = \sum_{i=1}^{\infty} \frac{|\psi_i(t)|^2}{\lambda_i e^{2\lambda_i r}}, \quad t, r > 0.$$

Define for any $n \ge 1$,

$$\Psi_n(t) := (\psi_1(t), \cdots, \psi_n(t)), \quad t > 0.$$

Then, for any $\vartheta \in \mathbb{R}^n$, we have

$$\langle \Psi_n(t), \vartheta \rangle = \frac{1}{\sqrt{t}} \int_0^t (\sum_{i=1}^n \vartheta_i \phi_i(X_s^B)) ds.$$

By [15, Theorem 2.4'], when $t \to \infty$, the law of $\langle \Psi_n(t), \vartheta \rangle$ under \mathbb{P}^{ν} converges weakly to the Gaussian distribution $N(0, \sigma_{n,\vartheta})$ uniformly in $\nu \in \mathscr{P}(C)$ with variance

$$\sigma_{n,\vartheta} := \lim_{t \to \infty} \mathbb{E}^{\mu} \langle \Psi_n(t), \vartheta \rangle^2$$

=
$$\lim_{t \to \infty} \frac{2}{t} \sum_{i=1}^n \vartheta_i^2 \int_0^t \mathrm{d}s_1 \int_{s_1}^t \mathrm{e}^{-B(\lambda_i)(s_2 - s_1)} \mathrm{d}s_2 = \sum_{i=1}^n \frac{2\vartheta_i^2}{B(\lambda_i)}.$$

Thus, for any $\vartheta \in \mathbb{R}^n$,

$$\lim_{t \to \infty} \mathbb{E}^{\nu} \mathrm{e}^{\mathrm{i}\langle \Psi_n(t), \vartheta \rangle} = \int_{\mathbb{R}^n} \mathrm{e}^{\mathrm{i}\langle x, \vartheta \rangle} \prod_{i=1}^n N(0, 2B(\lambda_i)^{-1})(\mathrm{d}x_i) \text{ uniformly in } \nu \in \mathscr{P}(C),$$

so that the distribution of $\Psi_n(t)$ under \mathbb{P}^{ν} converges weakly to $\prod_{i=1}^n N(0, 2B(\lambda_i)^{-1})$ as $t \to \infty$. Therefore, letting

$$\Xi_r^{(n)}(t) := \sum_{i=1}^n \frac{|\psi_i(t)|^2}{\lambda_i B(\lambda_i) e^{2\lambda_i r}}, \quad \xi_r^{(n)} := \sum_{i=1}^n \frac{2\xi_i^2}{\lambda_i B(\lambda_i) e^{2\lambda_i r}},$$

we have

(2.21)
$$\lim_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} |\mathbb{P}^{\nu}(\Xi_r^{(n)}(t) < a) - \mathbb{P}(\xi_r^{(n)} < a)| = 0, \quad a \ge 0$$

On the other hand, by (2.8) and (2.9), we find some constant $C_1 > 0$ such that

$$\sup_{\nu \in \mathscr{P}(C)} \mathbb{E}^{\nu} |\Xi_r(t) - \Xi_r^{(n)}(t)|$$

= $\frac{2}{t} \sup_{\nu \in \mathscr{P}(C)} \sum_{i=n+1}^{\infty} \frac{\mathrm{e}^{-2\lambda_i r}}{\lambda_i B(\lambda_i)} \int_0^t \nu(P_s^B \phi_i^2) (1 - \mathrm{e}^{-B(\lambda_i)(t-s)}) \mathrm{d}s \le C_1 \varepsilon_n,$

where $\varepsilon_n := 2 \sum_{i=n+1}^{\infty} \frac{2}{\lambda_i B(\lambda_i) e^{2\lambda_i r}} \to 0$ as $n \to \infty$. This together with (2.21) implies (2.20).

3 Some lemma

From now on, we assume that M is compact. For any $q \ge p \ge 1$, let $\|\cdot\|_{p\to q}$ be the operator norm from $L^p(\mu)$ to $L^q(\mu)$. When p = q, we simply denote $\|\cdot\|_p = \|\cdot\|_{p\to p}$. Then there exist constants $\kappa, \lambda > 0$ such that

(3.1)
$$||P_t - \mu||_{p \to q} \le \kappa (1 \land t)^{-\frac{d}{2}(p^{-1} - q^{-1})} e^{-\lambda_1 t}, \quad t > 0, q \ge p \ge 1.$$

Next, by the triangle inequality of \mathbb{W}_2 , we obtain

(3.2)
$$\mathbb{E}[\mathbb{W}_{2}(\mu_{t}^{B},\mu)^{2}] \leq (1+\varepsilon)\mathbb{E}[\mathbb{W}_{2}(\mu_{t,r}^{B},\mu)^{2}] + (1+\varepsilon^{-1})\mathbb{E}[\mathbb{W}_{2}(\mu_{t}^{B},\mu_{t,r}^{B})^{2}], \quad \varepsilon > 0.$$

As shown in [14] for $B(\lambda) = \lambda$ that, to prove Theorem 1.1, we need to estimate $\mathbb{E}[\mathbb{W}_2(\mu_t^B, \mu_{t,r}^B)^2]$ and to refine the estimate on $\mathbb{E}[\mathbb{W}_2(\mu_{t,r}^B, \mu)^2]$ for compact M. These are included in the following lemmas.

Lemma 3.1. Let $B \in \mathbb{B}$ and $\mu^B_{t,r,\varepsilon} = (1-\varepsilon)\mu^B_{t,r} + \varepsilon\mu, \varepsilon \in [0,1]$. There exists a constant c > 0 such that

(3.3)
$$\mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t}^{B},\mu_{t,r}^{B})^{2}] \leq c \|h_{\nu}\|_{\infty}r, \quad \nu = h_{\nu}\mu,$$

(3.4)
$$\mathbb{W}_2(\mu^B_{t,r,\varepsilon},\mu^B_{t,r})^2 \le c\varepsilon, \quad t,r \ge 0, \varepsilon \in [0,1].$$

Proof. Since for t > 0,

$$\pi_t(\mathrm{d}x, dy) := \left(\frac{1}{t} \int_0^t p_r(x, y) \delta_{X^B_s}(\mathrm{d}x) \,\mathrm{d}s\right) \mu(\mathrm{d}y) \in \mathscr{C}(\mu^B_t, \mu^B_{t, r}),$$

we have

(3.5)

$$\mathbb{W}_{2}(\mu_{t,r}^{B}, \mu_{t}^{B})^{2} \leq \int_{M} \rho(x, y)^{2} \pi_{t}(\mathrm{d}x, \mathrm{d}y) \\
= \frac{1}{t} \int_{0}^{t} \mathrm{d}s \int_{M} p_{r}(X_{s}^{B}, y) \rho(X_{s}^{B}, y)^{2} \mu(\mathrm{d}y)$$

Since $\nu = h_{\nu}\mu$, by the P_t^B -invariance of μ , we find a constant $c_1 > 0$ such that

(3.6)
$$\mathbb{E}^{\nu} \int_{M} p_{r}(X_{s}^{B}, y) \rho(X_{s}^{B}, y)^{2} \mu(\mathrm{d}y) \leq \|h_{\nu}\|_{\infty} \mu \left[P_{s}^{B} \left(\int_{M} p_{r}(x, y) \rho(\cdot, y)^{2} \mu(\mathrm{d}y) \right) \right]$$
$$= \|h_{\nu}\|_{\infty} \mathbb{E}^{\mu} [\rho(X_{0}, X_{r})^{2}] \leq c_{1} \|h_{\nu}\|_{\infty} r, \quad s \geq 0,$$

where the last step is due to [14, Lemma 3.1]. Substituting this into (3.5), we prove (3.3).

On the other hand, let D be the diameter of M. Since

$$\pi(\mathrm{d}x,\mathrm{d}y) := (1-\varepsilon)\mu_{t,r}^B(\mathrm{d}x)\delta_x(\mathrm{d}y) + \varepsilon\mu(\mathrm{d}x)\mu_{t,r}^B(\mathrm{d}y) \in \mathscr{C}(\mu_{t,r,\varepsilon}^B,\mu_{t,r}^B),$$

we obtain

$$\mathbb{W}_2(\mu^B_{t,r,\varepsilon},\mu^B_{t,r})^2 \le \int_{M \times M} \rho(x,y)^2 \pi(\mathrm{d}x,\mathrm{d}y) \le \varepsilon D^2, \quad t,r > 0, \varepsilon \in [0,1].$$

Then the proof is finished.

Lemma 3.2. Let $B \in \mathbb{B}^{\alpha}$ for some $\alpha \in [0, 1]$, and let $d < 2(1 + \alpha)$.

(1) For any $q \in (\frac{d}{2} \vee 1, \frac{d}{d-2\alpha})$, there exists a constant c > 0, such that

(3.7)
$$\sup_{y \in M} \mathbb{E}^{\mu}[|f_{t,r}(y) - 1|^2] \le \frac{c}{tr^{\frac{d}{2q}}}, \quad t \ge 1, r \in (0, 1].$$

(2) For any $q \in (\frac{d}{2} \vee 1, \frac{d}{d-2\alpha})$ and $\gamma \in (1, \frac{2q}{d})$,

(3.8)
$$\lim_{t \to \infty} \sup_{y \in M} \mathbb{E}^{\mu} [|\mathscr{M}((1 - t^{-\gamma})f_{t,t^{-\gamma}}(y) + t^{-\gamma}, 1)^{-1} - 1|^{p}] = 0, \quad p > 0.$$

Proof. (1) For fixed $y \in M$, simply denote $f = p_r(\cdot, y) - 1$. Then

(3.9)
$$\mathbb{E}^{\mu} \left[|f_{t,r} - 1|^2 \right] = \frac{2}{t^2} \mathbb{E}^{\mu} \int_0^t f(X_{r_1}^B) \mathrm{d}r_1 \int_{r_1}^t f(X_{r_2}^B) \mathrm{d}r_2,$$

Since P^B_t is invariant with respect to $\mu,$ we obtain

(3.10)
$$\mathbb{E}^{\mu}[f(X_{r_{1}}^{B})f(X_{r_{2}}^{B})] = \mu\left(P_{r_{1}}^{B}(fP_{r_{2}-r_{1}}^{B}f)\right) = \mu(fP_{r_{2}-r_{1}}^{B}f) \\ \leq \|f\|_{\frac{q}{q-1}}\|P_{r_{2}-r_{1}}^{B}f\|_{q} \leq \|f\|_{\frac{q}{q-1}}\|P_{\frac{r_{2}-r_{1}}{2}}^{B}\|_{1\to q}\|P_{\frac{r_{2}-r_{1}}{2}}^{B}f\|_{1}, \quad r_{2} > r_{1} \geq 0$$

By $f = p_r(\cdot, y) - 1$ and (3.1), we find some constants $c_1 > 0$ such that

(3.11)
$$||f||_{\frac{q}{q-1}} \le 1 + ||p_r(\cdot, y)||_{\frac{q}{q-1}} \le 1 + ||P_{\frac{r}{2}}||_{1 \to \frac{q}{q-1}} \le c_1 r^{-\frac{d}{2q}}, \quad r \in (0, 1], q \ge 1.$$

Moreover, since P_t^B is the semigroup of $X_t^B := X_{S_t^B}$, by (3.1) and noting that $B \in \mathbb{B}^{\alpha}$ implies

(3.12)
$$B(r) \ge k_0 (r \wedge r^\alpha) \ge k_1 r^\alpha - k_2, \quad r \ge 0$$

for some constants $k_0, k_1, k_2 > 0$, we find a constant $c_2 > 0$ such that

$$\begin{aligned} \|P_r^B\|_{1\to q} &\leq \mathbb{E} \|P_{S_r^B}\|_{1\to q} \leq c \mathbb{E} \left[(1 \wedge S_r^B)^{-\frac{d(q-1)}{2q}} \right] \\ &\leq c + c \mathbb{E} \left[(S_r^B)^{-\frac{d(q-1)}{2q}} \right] = c + \frac{c}{\Gamma(\frac{d(q-1)}{2q})} \int_0^\infty t^{\frac{d(q-1)}{2q}-1} \mathrm{e}^{-rB(t)} \mathrm{d}t \\ &\leq c_2 (r^{-\frac{d(q-1)}{2\alpha q}} + 1), \quad r > 0. \end{aligned}$$

Since $\frac{d(q-1)}{2\alpha q} < 1$, by combining this with (2.3), (3.9) and (3.11), we find constants $c_3, c_4 > 0$ such that

$$\mathbb{E}^{\mu}[|f_{t,r}(y) - 1|^2] \le \frac{c_3}{r^{\frac{d}{2q}}t^2} \int_0^t \mathrm{d}r_1 \int_{r_1}^t ((r_2 - r_1)^{-\frac{d(q-1)}{2\alpha q}} + 1) \mathrm{e}^{-\lambda_1^{\alpha}(r_2 - r_1)} \,\mathrm{d}r_2 \le \frac{c_4}{r^{\frac{d}{2q}}t}, \quad t, r > 0.$$

(2) Let $\theta > 0$ be small enough such that $\gamma(\frac{d}{2q} + \frac{\theta p}{2}) < 1$. According to the proof of the [14, Lemma 3.3], there exists a map $C: (0, 1) \to (0, \infty)$ such that

$$\begin{split} \sup_{y \in M} \mathbb{E}^{\mu} [|\mathscr{M}((1-r)f_{t,r}(y)+r,1)^{-1}-1|^{p}] &\leq \delta_{\eta} + (1+\theta^{-1}r^{-\frac{\theta}{2}})^{p} \sup_{y \in M} \mathbb{P}^{\mu}(\{|f_{t,r}(y)-1| > \eta\}) \\ &\leq \delta_{\eta} + C(\eta)t^{-1}r^{-\frac{d}{2p}-\frac{\theta p}{2}}, \ t \geq 1, r, \eta \in (0,1), \end{split}$$

holds for $\delta_{\eta} = \left| \frac{1}{\sqrt{1-\eta}} - \frac{2}{2+\eta} \right|^q$, $\eta \in (0,1)$. This implies (3.8) by taking $r = t^{-\gamma}$ and letting first $t \to \infty$ then $\eta \to 0$.

Lemma 3.3. Let $B \in \mathbb{B}^{\alpha}$ for some $\alpha \in [0,1]$. For any $p \in [1,2]$, there exists a constant c > 0 such that

(3.13)
$$\mathbb{E}^{\mu}[|\psi_i(t)|^{2p}] \le c\lambda_i^{\alpha(p-2)+(p-1)(\frac{d}{2}-2\alpha)}, \quad i \ge 1.$$

Proof. Since $P_t^B \phi_i = e^{-B(\lambda_i)t} \phi_i$, we have

(3.14)
$$g(r_1, r_2) := (\phi_i P^B_{r_2 - r_1} \phi_i)(X^B_{r_1}) = e^{-(r_2 - r_1)B(\lambda_i)} \phi_i(X^B_{r_1})^2.$$

By (2.14), $\mu(P_{r_1}^B \phi_i^2) = \mu(\phi_i^2) = 1$ and (3.12), we find a constant $c_1 > 0$ such that

(3.15)
$$t\mathbb{E}^{\mu}[|\psi_{i}(t)|^{2}] \leq c_{1} \int_{0}^{t} \mathrm{d}r_{1} \int_{r_{1}}^{t} \mathbb{E}^{\mu}[g(r_{1}, r_{2})] \,\mathrm{d}r_{2}$$
$$= c_{1} \int_{0}^{t} \mathrm{d}r_{1} \int_{r_{1}}^{t} \mathrm{e}^{-(r_{2}-r_{1})B(\lambda_{i})} \mu(P_{r_{1}}^{B}\phi_{i}^{2}) \,\mathrm{d}r_{2} \leq \frac{c_{1}t}{\lambda_{i}^{\alpha}}, \quad t \geq 1, i \in \mathbb{N}$$

On the other hand, by (2.14), (3.12) and (3.14), we find a constant $c_2 > 0$ such that

(3.16)
$$t^{2} \mathbb{E}^{\mu}[|\psi_{i}(t)|^{4}] \leq c_{2} \left(\int_{0}^{t} \mathrm{d}r_{1} \int_{r_{1}}^{t} (\mathbb{E}^{\mu}[|g(r_{1}, r_{2})|^{2}])^{\frac{1}{2}} \mathrm{d}r_{2} \right)^{2} \leq c_{2} \left(\int_{0}^{t} \mathrm{d}r_{1} \int_{r_{1}}^{t} \mathrm{e}^{-(r_{2}-r_{1})\lambda_{i}^{\alpha}} \sqrt{\mu(P_{r_{1}}^{B}\phi_{i}^{4})} \, \mathrm{d}r_{2} \right)^{2}.$$

Moreover, (3.1) and $P_t \phi_i = e^{-\lambda_i t} \phi_i$ yield

$$\|\phi_i\|_{\infty} = \inf_{t>0} \{ e^{\lambda_i t} \|P_t \phi_i\|_{\infty} \} \le \inf_{t>0} \{ e^{\lambda_i t} \|P_t\|_{2\to\infty} \} \le c_3 \lambda_i^{\frac{4}{4}}, \quad i \ge 1$$

for some constant $c_3 > 0$, so that

$$\sqrt{\mu(P_r^B \phi_i^4)} = \sqrt{\mu(\phi_i^4)} \le \sqrt{\|\phi_i\|_{\infty}^2 \mu(\phi_i^2)} \le c_3 \lambda_i^{\frac{d}{4}}, \quad i \ge 1.$$

This together with (3.16) implies that for some constant $c_4 > 0$

$$\mathbb{E}^{\mu}[|\psi_i(t)|^4] \le c_4 \lambda_i^{\frac{d}{2}-2\alpha}, \quad i \ge 1.$$

Combining this with (3.15) and using Hölder's inequality, we find a constant $c_5 > 0$ such that

$$\mathbb{E}^{\mu}[|\psi_{i}(t)|^{2p}] = \mathbb{E}^{\mu}[|\psi_{i}(t)|^{4-2p}|\psi_{i}(t)|^{4(p-1)}]$$

$$\leq (\mathbb{E}^{\mu}[|\psi_{i}(t)|^{2}])^{2-p}(\mathbb{E}^{\nu}[|\psi_{i}(t)|^{4}])^{p-1} \leq c_{5}\lambda_{i}^{\alpha(p-2)+(p-1)(\frac{d}{2}-2\alpha)}.$$

Lemma 3.4. Let $B \in \mathbb{B}^{\alpha}$ for some $\alpha \in [0,1]$. If $d < 2(1 + \alpha)$, then there exists a constant p > 1 such that

$$\limsup_{t \to \infty} \sup_{r>0} \left\{ t^p \mathbb{E}^{\mu} \int_M |\nabla L^{-1}(f_{t,r} - 1)|^{2p} \, d\mu \right\} < \infty.$$

Proof. According to the proof of [14, Lemma 3.5], for any p > 1 and $\varepsilon > p - 1$, there exists a constant $c_1(p,\varepsilon) > 0$ such that

$$t^{p} \mathbb{E}^{\mu} \int_{M} |\nabla L^{-1}(f_{t,r}-1)|^{2p} d\mu \le c_{1}(p,\varepsilon) \sum_{i=1}^{\infty} i^{\varepsilon} \lambda_{i}^{\frac{d(p-1)}{2}-1} \mathbb{E}^{\mu}[|\psi_{i}(t)|^{2p}]$$

Combining this with Lemma 3.3 and (1.2), we find a constant $c_2(p,\varepsilon) > 0$ such that

(3.17)
$$\mathbb{E}^{\mu} \int_{M} |\nabla L^{-1}(f_{t,r}-1)|^{2p} d\mu \leq c_2(p,\varepsilon) t^{-p} \sum_{i=1}^{\infty} i^{\delta_{p,\varepsilon}}$$

holds for

$$\delta_{p,\varepsilon} := \varepsilon + \frac{2}{d} \left\{ (p-1) \left(d - 2\alpha \right) + \alpha p - (2\alpha + 1) \right\}.$$

So, it remains to show that $\delta_{p,\varepsilon} < -1$ holds for some constants p > 1 and $\varepsilon > p - 1$. This follows from the fact that for $\varepsilon > 0$ and $p_{\varepsilon} := 1 + \frac{\varepsilon}{2}$ we have $\varepsilon > p_{\varepsilon} - 1$ and

$$\lim_{\varepsilon \downarrow 0} \delta_{p_{\varepsilon},\varepsilon} = -\frac{2(1+\alpha)}{d} < -1.$$

Finally, the following lemma reduces arbitrary initial values to initial distributions with bounded density.

Lemma 3.5. Let $B \in \mathbb{B}$ and $p \in (0, 2]$. Then for any $\varepsilon > 0$,

$$\begin{split} &\alpha_{\varepsilon} := \|P_{\varepsilon^{2}}^{B}\|_{1\to\infty} < \infty, \\ &\sup_{x\in M} \mathbb{E}^{x} \left[\mathbb{W}_{p}(\mu_{t}^{B}, \mu)^{1\vee p} \right] \leq (1+\varepsilon) \sup_{\nu\in\mathscr{P}(\alpha_{\varepsilon})} \mathbb{E}^{\nu} \left[\mathbb{W}_{p}(\mu_{t}^{B}, \mu)^{1\vee p} \right] + \frac{\varepsilon(1+\varepsilon)D^{p}}{t}, \\ &\inf_{\nu\in\mathscr{P}(\alpha_{\varepsilon})} \mathbb{E}^{\nu} \left[\mathbb{W}_{p}(\mu_{t}^{B}, \mu)^{1\vee p} \right] \leq (1+\varepsilon) \inf_{x\in M} \mathbb{E}^{x} \left[\mathbb{W}_{p}(\mu_{t}^{B}, \mu)^{1\vee p} \right] + \frac{\varepsilon(1+\varepsilon)D^{p}}{t}, \quad t > \varepsilon^{2}, \end{split}$$

where D is the diameter of M.

Proof. There exists a constant c > 0 such that

$$||P_t||_{1\to\infty} \le c(1+t^{-\frac{d}{2}}), \quad t>0.$$

This together with (1.1) and $\int_1^\infty r^{\frac{d}{2}-1}{\rm e}^{-tB(r)}{\rm d}r<\infty$ implies

$$\begin{aligned} \|P_t^B\|_{1\to\infty} &= \sup_{\mu(|f|) \le 1} \sup_{x \in M} |\mathbb{E}^x f(X_{S_t^B})| \le \mathbb{E} \|P_{S_t^B}\|_{1\to\infty} \le c + c \mathbb{E}(S_t^B)^{-\frac{d}{2}} \\ &= c + \frac{c}{\Gamma(\frac{d}{2})} \int_0^\infty r^{\frac{d}{2}-1} \mathrm{e}^{-tB(r)} \mathrm{d}r < \infty, \quad t > 0. \end{aligned}$$

Next, for any $x \in M$ and $\varepsilon > 0$, let $\nu_{x,\varepsilon}$ be the distribution of $X^B_{\varepsilon^2}$. Then

$$\left\|\frac{\mathrm{d}\nu_{x,\varepsilon}}{\mathrm{d}\mu}\right\|_{\infty} = \sup_{\mu(|f|) \le 1} |P^B_{\varepsilon^2} f(x)| \le \|P^B_{\varepsilon^2}\|_{1 \to \infty} = \alpha_{\varepsilon},$$

so that

(3.18)
$$\nu_{x,\varepsilon} \in \mathscr{P}(\alpha_{\varepsilon}), \quad x \in M, \varepsilon > 0.$$

Let

$$\tilde{\mu}^B_{\varepsilon,t} := \frac{1}{t} \int_{\varepsilon^2}^{\varepsilon^2 + t} \delta_{X^B_s} \mathrm{d}s, \quad t > 0.$$

By Markov property, we have

(3.19)
$$\mathbb{E}^{x} \left[\mathbb{W}_{2}(\tilde{\mu}^{B}_{\varepsilon,t},\mu)^{2} \right] = \mathbb{E}^{\nu_{x,\varepsilon}} \left[\mathbb{W}_{2}(\mu^{B}_{t},\mu)^{2} \right], \quad x \in M, t, \varepsilon > 0.$$

Moreover, it is easy to see that for any $t > \varepsilon^2 > 0$,

$$\pi := \frac{1}{t} \int_{\varepsilon^2}^t \delta_{(X^B_s, X^B_s)} \mathrm{d}s + \frac{1}{t} \int_0^{\varepsilon^2} \delta_{(X^B_s, X^B_{t+s})} \mathrm{d}s \in \mathscr{C}(\mu^B_t, \tilde{\mu}^B_{\varepsilon, t}),$$

so that

$$|\mathbb{W}_p(\mu_t,\mu) - \mathbb{W}_p(\tilde{\mu}^B_{\varepsilon,t},\mu)|^{1\vee p} \le \left\{\mathbb{W}_p(\mu_t,\tilde{\mu}^B_{\varepsilon,t})\right\}^{1\vee p} \le \int_{M\times M} \rho^p \mathrm{d}\pi \le \frac{\varepsilon^2 D^p}{t}.$$

Combining this with (3.18) and (3.19), we obtain

$$\begin{split} \sup_{x \in M} \mathbb{E}^x \Big[\mathbb{W}_p(\mu_t, \mu)^{1 \lor p} \Big] &\leq (1 + \varepsilon) \sup_{x \in M} \mathbb{E}^x \Big[\mathbb{W}_p(\tilde{\mu}^B_{\varepsilon, t}, \mu)^{1 \lor p} \Big] + (1 + \varepsilon^{-1}) \frac{\varepsilon^2 D^p}{t} \\ &\leq (1 + \varepsilon) \sup_{\nu \in \mathscr{P}(\alpha_{\varepsilon})} \mathbb{E}^{\nu} \Big[\mathbb{W}_p(\mu^B_t, \mu)^{1 \lor p} \Big] + \frac{\varepsilon (1 + \varepsilon) D^p}{t}. \end{split}$$

Similarly, the last estimate also holds.

4 Proof of Theorem 1.1

4.1 Proof of Theorem 1.1(1)

Since M is compact and $V \in C^2(M)$, there exists a constant K > 0 such that

 $\operatorname{Ric}_V := \operatorname{Ric} - \operatorname{Hess}_V \ge -K,$

where Ric is the Ricci curvature.

When ∂M is either convex or empty, then

(4.1)
$$\mathbb{W}_p(\mu, \nu P_r)^2 \le e^{2Kr} \mathbb{W}_p(\mu, \nu)^2, \quad r > 0, p \ge 1,$$

see for instance [8, 9]. Since $\mu_{t,r}^B = \mu_t^B P_r$, this and (2.15) imply

$$e^{2Kr} \liminf_{t \to \infty} \left\{ t \inf_{x \in M} \mathbb{E}^x [\mathbb{W}_2(\mu, \mu_t^B)^2] \right\}$$

$$\geq \liminf_{t \to \infty} \left\{ t \inf_{x \in M} \mathbb{E}^x [\mathbb{W}_2(\mu, \mu_{t,r}^B)^2] \right\} \geq \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i) e^{2r\lambda_i}}, \quad r > 0.$$

By letting $r \to 0$, we prove the desired estimate for c = 1.

When ∂M is non-convex, the desired inequality follows by using the following estimate due to [4, Theorem 2.7] replacing (4.1): there exist constants $c, \lambda > 0$ such that

$$c \mathbb{W}_2(\nu P_r, \mu) \le e^{\lambda r} \mathbb{W}_2(\nu, \mu), \quad \nu \in \mathscr{P}, r > 0.$$

-	-	-	-
			1
			1

4.2 Proof of Theorem 1.1(2)

It suffices to prove for $p \in (0, \alpha)$. The proof is modified from that of the proof of [14, Theorem 1.1], the only difference is that we have to use \mathbb{W}_p for $p \in (0, \alpha)$ replacing \mathbb{W}_1 , since in this case we have $\mathbb{E}[(S_t^B)^p] < \infty$.

For any $t \ge 1$ and $N \in \mathbb{N}$, we consider $\mu_N^B := \frac{1}{N} \sum_{i=1}^N \delta_{X_{t_i}^B}$, where $t_i := \frac{(i-1)t}{N}, 1 \le i \le N$. By taking the Wasserstein coupling

$$\frac{1}{t}\sum_{i=1}^{N}\int_{t_{i}}^{t_{i+1}}\delta_{X_{s}^{B}}(\mathrm{d}x)\delta_{X_{t_{i}}^{B}}(\mathrm{d}y)\,\mathrm{d}s\in\mathscr{C}(\mu_{t}^{B},\mu_{N}^{B}),$$

we obtain

$$\mathbb{W}_p(\mu_t^B, \mu_N^B) \le \frac{1}{t} \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \rho(X_s^B, X_{t_i}^B)^p \,\mathrm{d}s.$$

By [14, (3.6)] that

$$\sup_{x \in M} \mathbb{E}^x \rho(X_0, X_t)^2 \le ct, \quad t \ge 0$$

holds for some constant c > 0. So, by Jensen's inequality, for any $p \in (0, \alpha)$, there exists a constant $c_1 > 0$ such that

$$\sup_{x \in M} \mathbb{E}^{x}[\rho(X_{0}^{B}, X_{r}^{B})^{p}] = \sup_{x \in M} \mathbb{E}^{x}[\rho(X_{0}, X_{S_{r}^{B}})^{p}] \le c^{p/2} \mathbb{E}\left[(S_{r}^{B})^{\frac{p}{2}}\right] \le c_{1} r^{\frac{p}{2\alpha}}, \quad r \in [0, 1],$$

where the last step follows from (1.1) and $B \in \mathbb{B}_{\alpha}$ from which we find constants $c_2, c_3 > 0$ such that for $\varepsilon := \frac{p}{2}$,

$$\mathbb{E}\left[(S_r^B)^{\varepsilon}\right] = \frac{\varepsilon}{\Gamma(1-\varepsilon)} \int_0^\infty (1-\mathrm{e}^{-rB(t)}) t^{-\varepsilon-1} \mathrm{d}t$$

$$\leq c_2 \int_0^\infty (1-\mathrm{e}^{-c_2r-c_2rt^{\alpha}}) t^{-\varepsilon-1} \mathrm{d}t \leq c_2 \mathrm{e}^{c_2r} \int_0^\infty (1-\mathrm{e}^{-c_2rt^{\alpha}}) t^{-\varepsilon-1} \mathrm{d}t \leq c_3 r^{\frac{\varepsilon}{\alpha}}, \quad r \in [0,1].$$

Therefore, there exists a constant $c_4 > 0$ such that

(4.2)
$$\sup_{x \in M} \mathbb{E}^x \left[\mathbb{W}_p(\mu_t^B, \mu_N^B) \right] \le c_4 (tN^{-1})^{\frac{p}{2\alpha}}, \quad t \ge 1, N \in \mathbb{N}.$$

On the other hand, since M is compact, there exists a constant $c_5 > 0$ such that

$$\mu(\{\rho(x,\cdot)^p \le r\}) \le c_5 r^{\frac{d}{p}}, \ r > 0, x \in M.$$

By [6, Proposition 4.2], this implies

$$\mathbb{W}_p(\mu_N^B,\mu) \ge c_6 N^{-\frac{p}{d}}, \quad N \in \mathbb{N}, t \ge 1$$

for some constant $c_6 > 0$. This and (4.2) yield

$$\inf_{x \in M} \mathbb{E}^x[\mathbb{W}_p(\mu, \mu_t^B)] \ge \inf_{x \in M} \mathbb{E}^x[\mathbb{W}_p(\mu, \mu_N^B)] - \sup_{x \in M} \mathbb{E}^x[\mathbb{W}_p(\mu_t^B, \mu_N^B)]$$

$$\geq c_6 N^{-\frac{p}{d}} - c_4 (tN^{-1})^{\frac{p}{2\alpha}}, \quad t \geq 1, N \in \mathbb{N}.$$

By taking $N := \inf\{n \in \mathbb{N} : n \ge \delta t^{\frac{d}{d-2\alpha}}\}$ for small $\delta > 0$, find a constant $c_7 > 0$ such that for large enough t > 1,

$$\inf_{x \in M} \mathbb{E}^x[\mathbb{W}_p(\mu, \mu_t^B)] \ge c_7 t^{\frac{p}{d-2\alpha}}.$$

Hence, the desired estimate holds.

4.3 Proof of Theorem 1.1(3)

We only consider the case that $\alpha = \frac{1}{2}, d = 3$, since the proof for $\alpha = 1$ and d = 4 has been presented in [14]. In this case, the assertion is implied by the following two lemmas which essentially due to [14] for $\alpha = 1$.

Lemma 4.1. Let $B(\lambda) = \lambda^{\frac{1}{2}}$ and d = 3. If for any constant C > 1 there exist constants $\gamma, \varepsilon, t_0 > 0$, such that

(4.3)
$$\{\mathbb{E}^{\nu}\mathbb{W}_{1}(\mu^{B}_{t,t^{-\gamma}},\mu)\}^{2} \geq \varepsilon \mathbb{E}^{\nu}\mu(|\nabla(-L)^{-1}(f_{t,t^{-\gamma}}-1)|^{2}), \quad \nu \in \mathscr{P}(C), t > t_{0},$$

then the estimate in Theorem 1.1(3) holds.

Proof. By Lemma 3.5 for p = 1, it suffices to prove that for any constant C > 1,

(4.4)
$$\liminf_{t \to \infty} t(\log t)^{-1} \inf_{\nu \in \mathscr{P}(C)} \{ \mathbb{E}^{\nu} \mathbb{W}_1(\mu_t^B, \mu) \}^2 > 0.$$

By (2.6) and (4.3), there exists a constant $c_1, t_1 > 0$ such that

$$\inf_{\nu \in \mathscr{P}(C)} \{ \mathbb{E}^{\nu} \mathbb{W}_1(\mu^B_{t,t^{-\gamma}}, \mu) \}^2 \ge \frac{c_1}{t} \sum_{i=1}^{\infty} \frac{1}{\lambda_i^{\frac{3}{2}} \mathrm{e}^{2t^{-\gamma}\lambda_i}}, \quad t > t_1.$$

Since d = 3, (1.2) implies $\lambda_i \leq c i^{\frac{2}{3}}$ for some constant c > 0, so that we find constants $c_2, c_3 > 0$ such that

$$\inf_{\nu \in \mathscr{P}(C)} \{ \mathbb{E}^{\nu} \mathbb{W}_1(\mu^B_{t,t^{-\gamma}}, \mu) \}^2 \ge \frac{1}{c_2 t} \int_1^\infty \frac{\mathrm{d}s}{s \mathrm{e}^{c_2 t^{-\gamma} s^{\frac{2}{3}}}} \ge \frac{c_3 \log t}{t}, \quad t > t_1$$

Combining this with (4.1), we find a constant $c_4 > 0$ such that

$$\inf_{\nu \in \mathscr{P}(C)} \{ \mathbb{E}^{\nu} \mathbb{W}_1(\mu_t^B, \mu) \}^2 \ge \frac{c_4 \mathrm{e}^{-2Kt^{-\gamma}} \log t}{t}, \quad t > t_1.$$

This implies (4.4).

Lemma 4.2. Let $M = \mathbb{T}^3, V = 0$ and $B(\lambda) = \lambda^{\frac{1}{2}}$. Then for any $\gamma \in (0, \frac{2}{5})$ there exist constants $\varepsilon, t_0 > 0$ such that

(4.5)
$$\{\mathbb{E}^{\nu}\mathbb{W}_1(\mu^B_{t,t^{-\gamma}},\mu)\}^2 \ge \varepsilon \mathbb{E}^{\nu}\mu(|\nabla(-\Delta)^{-1}(f_{t,t^{-\gamma}}-1)|^2), \quad \nu \in \mathscr{P}, t > t_0.$$

Proof. The proof is similar to that of [14, Proposition 5.3] with X_t^B replacing X_t .

Let $f_t = (-\Delta)^{-1}(f_{t,t-\gamma} - 1)$. It is shown in the proof of [14, Proposition 5.3] that

$$\mathbb{W}_{1}(\mu^{B}_{t,t^{-\gamma}},\mu) \geq \beta^{-1}\mu(|\nabla f_{t}|^{2}) - K_{1}\beta^{-3}\mu(|\nabla f_{t}|^{4}), \quad \beta > 0$$

holds for some constant $K_1 > 0$. If there exist a constant $K_2 > 0$ such that

(4.6)
$$\mathbb{E}^{\nu}\mu(|\nabla f_t|^4) \le K_2[\mathbb{E}^{\nu}\mu(|\nabla f_t|^2)]^2, \quad t \ge 2,$$

then

$$\mathbb{E}^{\nu} \mathbb{W}_1(\mu_{t,t^{-\gamma}}^B,\mu) \ge \beta^{-1} \mathbb{E}^{\nu} \mu(|\nabla f_t|^2) - \beta^{-3} K_1 K_2 [\mathbb{E}^{\nu} \mu(|\nabla f_t|^2)]^2, \quad \beta > 0.$$

Taking $\beta = N\mathbb{E}^{\nu}[\mu(|\nabla f_t|^2)^{\frac{1}{2}}]$ for large enough N > 1, we prove (4.5) for some constant c > 0. So, it remains to prove (4.6).

We identify \mathbb{T} with $[0, 2\pi)$ by the one-to-one map

$$[0, 2\pi) \ni s \mapsto e^{is},$$

where i is the imaginary unit. In this way, a point in \mathbb{T}^3 is regarded as a point in $[0, 2\pi)^3$, so that $\{e^{i\langle m, \cdot \rangle}\}_{m \in \mathbb{Z}^3}$ consist of an eigenbasis of Δ in the complex L^2 -space of μ , where μ is the normalized volume measure on \mathbb{T}^3 . Since X_t^B is generated by $-(-\Delta)^{\frac{1}{2}}$, we have

(4.7)
$$\mathbb{E}^{x} \mathrm{e}^{\mathrm{i}\langle m, X_{t}^{B} \rangle} = \mathrm{e}^{-|m|t} \mathrm{e}^{\mathrm{i}\langle m, x \rangle}, \quad t \ge 0, x \in \mathbb{T}^{3}, m \in \mathbb{Z}^{3}.$$

Moreover,

$$f_t := (-\Delta)^{-1} (f_{t,t^{-\gamma}} - 1) = \sum_{m \in \mathbb{Z}^3 \setminus \{0\}} b_m \mathrm{e}^{-\mathrm{i}\langle m, \cdot \rangle},$$

where

(4.8)
$$b_m := \frac{\mathrm{e}^{-|m|^2 t^{-\gamma}}}{|m|^2 t} \int_0^t \mathrm{e}^{\mathrm{i}\langle m, X_s^B \rangle} \,\mathrm{d}s, \ m \in \mathbb{Z}^3.$$

Then

$$|\nabla f_t(x)|^2 = -\sum_{m_1, m_2 \in \mathbb{Z}^3 \setminus \{0\}} \langle m_1, m_2 \rangle b_{m_1} b_{m_2} \mathrm{e}^{-\mathrm{i} \langle m_1 + m_2, x \rangle},$$
$$|\nabla f_t(x)|^4 = \sum_{m_1, \cdots, m_4 \in \mathbb{Z}^3 \setminus \{0\}} \langle m_1, m_2 \rangle \langle m_3, m_4 \rangle b_{m_1} b_{m_2} b_{m_3} b_{m_4} \mathrm{e}^{-\mathrm{i} \langle m_1 + m_2 + m_3 + m_4, x \rangle}$$

Noting that, $\mu(e^{-i\langle m,\cdot\rangle}) = 0$ when $m \neq 0$, we get

(4.9)
$$\mathbb{E}^{\nu}\mu(|\nabla f_t|^2) = \sum_{m \in \mathbb{Z}^3 \setminus \{0\}} |m|^2 \mathbb{E}^{\nu}[b_m b_{-m}],$$

(4.10)
$$\mathbb{E}^{\nu}\mu(|\nabla f_t|^4) = \sum_{(m_1, m_2, m_3, m_4) \in \mathbb{S}} \langle m_1, m_2 \rangle \langle m_3, m_4 \rangle \mathbb{E}^{\nu}[b_{m_1}b_{m_2}b_{m_3}b_{m_4}],$$

where $S := \{(m_1, m_2, m_3, m_4) \in \mathbb{Z}^3 \setminus \{0\} : m_1 + m_2 + m_3 + m_4 = 0\}.$ By (4.8), we have

$$\mathbb{E}^{\nu}[b_{m}b_{-m}] = \frac{\mathrm{e}^{-2|m|^{2}t^{-\gamma}}}{|m|^{4}t^{2}} \int_{[0,t]^{2}} \mathbb{E}^{\nu} \mathrm{e}^{\mathrm{i}\langle m, X_{s_{2}}^{B} - X_{s_{1}}^{B} \rangle} \,\mathrm{d}s_{1} \mathrm{d}s_{2}.$$

The Markov property and (4.7) yield

(4.11)
$$\mathbb{E}^{\nu}(\mathrm{e}^{\mathrm{i}\langle m, X_{s_2}^B - X_{s_1}^B \rangle} | \mathscr{F}_{s_1 \wedge s_2}) = \mathrm{e}^{-|m||s_1 - s_2|}, \quad s_1, s_2 \ge 0.$$

Then we find a constant $\kappa>0$ such that

$$\mathbb{E}^{\nu}[b_m b_{-m}] = \frac{\mathrm{e}^{-2|m|^2 t^{-\gamma}}}{|m|^4 t^2} \int_{[0,t]^2} \mathrm{e}^{-|m||s_1 - s_2|} \,\mathrm{d}s_1 \mathrm{d}s_2 \ge \frac{\kappa \mathrm{e}^{-2|m|^2 t^{-\gamma}}}{|m|^5 t}, \quad t \ge 2.$$

Using this and (4.9), we get that

(4.12)
$$\mathbb{E}^{\nu}\mu(|\nabla f_t|^2) \ge \sum_{m \in \mathbb{Z}^3 \setminus \{0\}} \frac{\kappa e^{-2|m|^2 t^{-\gamma}}}{|m|^3 t} \ge \frac{\kappa_1}{t} \int_1^\infty \frac{e^{-2s^2 t^{-\gamma}}}{s} \, \mathrm{d}s$$
$$\ge \frac{\kappa_1}{t e^2} \int_1^{t^{\frac{\gamma}{2}}} s^{-1} \, \mathrm{d}s = \frac{\kappa_1 \gamma}{2e^2} (t^{-1} \log t), \quad t \ge 2.$$

Let **S** be the set of all the permutations of $\{1, 2, 3, 4\}$, $D(t) = \{(s_1, s_2, s_3, s_4) \in [0, t]^4 : 0 \le s_1 \le s_2 \le s_3 \le s_4 \le t\}$. We have

$$\begin{split} & \mathbb{E}^{\nu} [b_{m_{1}} b_{m_{2}} b_{m_{3}} b_{m_{4}}] \\ &= \frac{\mathrm{e}^{-\sum_{p=1}^{4} |m_{p}|^{2} t^{-\gamma}}}{t^{4} \prod_{p=1}^{4} |m_{p}|^{2}} \int_{[0,t]^{4}} \mathbb{E}^{\nu} [\mathrm{e}^{\mathrm{i}\langle m_{1}, X_{s_{1}}^{B} \rangle} \mathrm{e}^{\mathrm{i}\langle m_{2}, X_{s_{2}}^{B} \rangle} \mathrm{e}^{\mathrm{i}\langle m_{3}, X_{s_{3}}^{B} \rangle} \mathrm{e}^{\mathrm{i}\langle m_{4}, X_{s_{4}}^{B} \rangle}] \,\mathrm{d}s_{1} \mathrm{d}s_{2} \mathrm{d}s_{3} \mathrm{d}s_{4} \\ &= \frac{\mathrm{e}^{-\sum_{p=1}^{4} |m_{p}|^{2} t^{-\gamma}}}{t^{4} \prod_{p=1}^{4} |m_{p}|^{2}} \sum_{(i,j,k,l) \in \mathbf{S}} \int_{D(t)} \mathbb{E}^{\nu} [\mathrm{e}^{\mathrm{i}\langle m_{i}, X_{s_{1}}^{B} \rangle} \mathrm{e}^{\mathrm{i}\langle m_{j}, X_{s_{2}}^{B} \rangle} \mathrm{e}^{\mathrm{i}\langle m_{k}, X_{s_{3}}^{B} \rangle} \mathrm{e}^{\mathrm{i}\langle m_{l}, X_{s_{4}}^{B} \rangle}] \,\mathrm{d}s_{1} \mathrm{d}s_{2} \mathrm{d}s_{3} \mathrm{d}s_{4} \end{split}$$

Since $m_1 + m_2 + m_3 + m_4 = 0$, by (4.7) and the Markov property we obtain

$$\mathbb{E}^{\nu} \left[\mathrm{e}^{\mathrm{i}\langle m_i, X_{s_1}^B \rangle} \mathrm{e}^{\mathrm{i}\langle m_j, X_{s_2}^B \rangle} \mathrm{e}^{\mathrm{i}\langle m_k, X_{s_3}^B \rangle} \mathrm{e}^{\mathrm{i}\langle m_l, X_{s_4}^B \rangle} \right] = \mathrm{e}^{-|m_l|(s_4 - s_3) - |m_l + m_k|(s_3 - s_2) - |m_i|(s_2 - s_1)|}.$$

Thus,

(4.13)
$$\frac{t^4 \prod_{p=1}^4 |m_p|^2}{e^{-\sum_{p=1}^4 |m_p|^2 t^{-\gamma}}} \mathbb{E}^{\nu} [b_{m_1} b_{m_2} b_{m_3} b_{m_4}] \\ = \sum_{(i,j,k,l) \in \mathbf{S}} \int_{D(t)} e^{-|m_l|(s_4 - s_3) - |m_l + m_k|(s_3 - s_2) - |m_i|(s_2 - s_1)} \, \mathrm{d}s_1 \mathrm{d}s_2 \mathrm{d}s_3 \mathrm{d}s_4.$$

If $m_l + m_k = 0$, then

$$\int_{D(t)} e^{-|m_l|(s_4-s_3)-|m_l+m_k|(s_3-s_2)-|m_i|(s_2-s_1)} ds_1 ds_2 ds_3 ds_4$$

=
$$\int_0^t \int_{s_1}^t \int_{s_2}^t \int_{s_3}^t e^{-|m_l|(s_4-s_3)} e^{-|m_i|(s_2-s_1)} ds_4 ds_3 ds_2 ds_1 \le \frac{t^2}{|m_i||m_l|}.$$

If $m_l + m_k \neq 0$, then

$$\begin{split} &\int_{D(t)} e^{-|m_l|(s_4-s_3)-|m_l+m_k|(s_3-s_2)-|m_i|(s_2-s_1)} \, ds_1 ds_2 ds_3 ds_4 \\ &= \int_0^t \int_{s_1}^t \int_{s_2}^t \int_{s_3}^t e^{-|m_l|(s_4-s_3)} e^{-|m_l+m_k|(s_3-s_2)} e^{-|m_i|(s_2-s_1)} \, ds_4 ds_3 ds_2 ds_1 \\ &\leq \frac{t}{|m_i||m_l+m_k||m_l|}. \end{split}$$

Combining these with (4.13) leads to

$$\mathbb{E}^{\nu}[b_{m_1}b_{m_2}b_{m_3}b_{m_4}] \leq \frac{\mathrm{e}^{-\sum_{p=1}^4 |m_p|^2 t^{-\gamma}}}{\prod_{p=1}^4 |m_p|^2} \sum_{(i,j,k,l) \in \mathbf{S}} \left\{ \frac{t^{-2}\mathbf{1}_{\{m_l+m_k=0\}}}{|m_i||m_l|} + \frac{t^{-3}\mathbf{1}_{\{m_l+m_k\neq 0\}}}{|m_i||m_l+m_k||m_l|} \right\}.$$

Therefore, by (4.10), we find a constant c > 0 such that

(4.14)
$$\mathbb{E}^{\nu}\mu(|\nabla f_t|^4) \le c(I_1 + I_2), \quad t \ge 2,$$

holds for

$$I_{1} := \frac{1}{t^{2}} \sum_{\substack{a,b \in \mathbb{Z}^{3} \setminus \{0\} \\ a,b \in \mathbb{Z}^{3} \setminus \{0\}}} \frac{1}{|a|^{3}|b|^{3}} e^{-2(|a|^{2}+|b|^{2})t^{-\gamma}},$$
$$I_{2} := \frac{1}{t^{3}} \sum_{\substack{m_{1},m_{2},m_{3},m_{4} \in \mathbb{Z}^{3} \setminus \{0\} \\ m_{3}+m_{4} \neq 0}} \frac{e^{-\sum_{p=1}^{4} |m_{p}|^{2}t^{-\gamma}}}{|m_{1}|^{2}|m_{2}||m_{3}||m_{3}+m_{4}||m_{4}|^{2}}.$$

It is easy to see that there exists constants $c_1, c_2 > 0$, such that

(4.15)
$$I_1 \le \frac{c_1}{t^2} \left(\int_1^\infty \frac{\mathrm{e}^{-2s^2t^{-\gamma}}}{s} \,\mathrm{d}s \right)^2 \le c_2(t^{-1}\log t)^2, \quad t \ge 2,$$

and similarly

$$\sum_{m \in \mathbb{Z}^3 \setminus \{0\}} \frac{\mathrm{e}^{-|m|^2 t^{-\gamma}}}{|m|^2} \le c_2 t^{\frac{\gamma}{2}}, \quad \sum_{m \in \mathbb{Z}^3 \setminus \{0\}} \frac{\mathrm{e}^{-|m|^2 t^{-\gamma}}}{|m|} \le c_2 t^{\gamma}, \quad t \ge 2,$$

Then by reformulating I_2 as

$$I_{2} = \frac{1}{t^{3}} \left(\sum_{m_{1} \in \mathbb{Z}^{3} \setminus \{0\}} \frac{\mathrm{e}^{-|m_{1}|^{2}t^{-\gamma}}}{|m_{1}|^{2}} \right) \left(\sum_{m_{2} \in \mathbb{Z}^{3} \setminus \{0\}} \frac{\mathrm{e}^{-|m_{2}|^{2}t^{-\gamma}}}{|m_{2}|} \right) \sum_{\substack{m_{3}, m_{4} \in \mathbb{Z}^{3} \setminus \{0\} \\ m_{3} + m_{4} \neq 0}} \frac{\mathrm{e}^{-(|m_{3}|^{2} + |m_{4}|^{2})t^{-\gamma}}}{|m_{3}||m_{3} + m_{4}||m_{4}|^{2}},$$

we find a constant $c_3 > 0$ such that

(4.16)
$$I_2 \le c_3^2 t^{\frac{3\gamma}{2}-3} \sum_{m_4 \in \mathbb{Z}^3 \setminus \{0\}} \frac{\mathrm{e}^{-|m_4|^2 t^{-\gamma}}}{|m_4|^2} \sum_{m_3 \in \mathbb{Z}^3 \setminus \{0, -m_4\}} \frac{\mathrm{e}^{-|m_3|^2 t^{-\gamma}}}{|m_3||m_3 + m_4|}.$$

Write

(4.17)
$$\sum_{m_3 \in \mathbb{Z}^3 \setminus \{0, -m_4\}} \frac{\mathrm{e}^{-|m_3|^2 t^{-\gamma}}}{|m_3||m_3 + m_4|} =: J_1 + J_2 + J_3$$

for

$$J_{1} := \sum_{\substack{m_{3} \in \mathbb{Z}^{3} \setminus \{0, -m_{4}\} \\ |m_{3}| \leq \frac{|m_{4}|}{2}}} \frac{e^{-|m_{3}|^{2}t^{-\gamma}}}{|m_{3}||m_{3} + m_{4}|},$$

$$J_{2} := \sum_{\substack{m_{3} \in \mathbb{Z}^{3} \setminus \{0, -m_{4}\} \\ \frac{|m_{4}|}{2} < |m_{3}| \leq 2|m_{4}|}} \frac{e^{-|m_{3}|^{2}t^{-\gamma}}}{|m_{3}||m_{3} + m_{4}|},$$

$$J_{3} := \sum_{\substack{m_{3} \in \mathbb{Z}^{3} \setminus \{0, -m_{4}\} \\ |m_{3}| > 2|m_{4}|}} \frac{e^{-|m_{3}|^{2}t^{-\gamma}}}{|m_{3}||m_{3} + m_{4}|}.$$

On the region $\{m_3 \in \mathbb{Z}^3 \setminus \{0, -m_4\} : |m_3| \leq \frac{|m_4|}{2}\}$ we find a constant $c_4 > 0$ such that

(4.18)
$$J_1 \le \frac{2}{|m_4|} \sum_{m_3 \in \mathbb{Z}^3 \setminus \{0\}} \frac{e^{-|m_3|^2 t^{-\gamma}}}{|m_3|} \le \frac{c_4 t^{\gamma}}{|m_4|}, \quad t \ge 2.$$

Next, on the region $\{m_3 \in \mathbb{Z}^3 \setminus \{0, -m_4\} : |m_3| > 2|m_4|\}$, we have $|m_3 + m_4| \sim |m_3|$ and $|m_3|^2 \geq \frac{|m_3|^2}{2} + 2|m_4|^2$, so we find a constant $c_5 > 0$ such that

$$J_3 \le 4 \sum_{\substack{m_3 \in \mathbb{Z}^3 \setminus \{0\} \\ |m_3| > 2|m_4|}} \frac{\mathrm{e}^{-|m_3|^2 t^{-\gamma}}}{|m_3|^2} \le 4\mathrm{e}^{-2|m_4|^2 t^{-\gamma}} \sum_{m_3 \in \mathbb{Z}^3 \setminus \{0\}} \frac{\mathrm{e}^{-\frac{|m_3|^2 t^{-\gamma}}{2}}}{|m_3|^2} \le c_5 t^{\frac{\gamma}{2}} \mathrm{e}^{-2|m_4|^2 t^{-\gamma}}$$

This together with $e^{-s} \le s^{-\frac{1}{2}}$ gives

(4.19)
$$J_3 \le \frac{c_5 t^{\gamma}}{|m_4|}, \quad t \ge 2.$$

Finally, on the region $\{m_3 \in \mathbb{Z}^3 \setminus \{0, -m_4\} : \frac{|m_4|}{2} < |m_3| \le 2|m_4|\}$, we have $|m_3| \sim |m_4|$ and $1 \le |m_3 + m_4| \le 3|m_4|$, so that there for a constant $c_6 > 0$

$$J_2 \le \frac{2\mathrm{e}^{-\frac{|m_4|^2 t^{-\gamma}}{4}}}{|m_4|} \sum_{1 \le |m_3 + m_4| \le 3|m_4|} \frac{1}{|m_3 + m_4|} \le c_6 |m_4| \mathrm{e}^{-\frac{|m_4|^2 t^{-\gamma}}{4}}$$

By $e^{-s} \leq s^{-1}$, we get the upper estimate of J_2 ,

$$J_2 \le \frac{c_7 t^{\gamma}}{|m_4|}, \quad t \ge 2.$$

Combining this with (4.16), (4.17), (4.18) and (4.19), we find a constant $c_8 > 0$ such that

$$I_2 \le c_8 t^{\frac{5}{2}\gamma - 3} \log t, \quad t \ge 2.$$

Substituting this and (4.15) into (4.14), and combining with (4.12), we prove (4.6). The proof is finished.

5 Proof of Theorem 1.2

(1) By Lemma 3.5 for p = 2, it suffices to prove

(5.1)
$$\limsup_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} \left\{ t \mathbb{E}^{\nu} [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} \le \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i)}, \quad C > 1.$$

By the triangle inequality of \mathbb{W}_2 and Lemma 3.1, for any $\varepsilon > 0$ there exists a constant $c(\varepsilon) > 0$ such that

$$\begin{split} & \mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t}^{B},\mu)^{2}] \\ & \leq (1+\varepsilon)\mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t,r_{t},r_{t}}^{B},\mu)^{2}] + 2(1+\varepsilon^{-1})\left\{\mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t,r_{t}}^{B},\mu_{t,r_{t},r_{t}}^{B})^{2}] + \mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t}^{B},\mu_{t,r_{t}}^{B})^{2}]\right\} \\ & \leq (1+\varepsilon)\mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t,r_{t},r_{t}}^{B},\mu)^{2}] + c(\varepsilon)r_{t}, \end{split}$$

where $r_t = t^{-\beta}, \beta \in (1, \frac{2q}{d}), q \in (\frac{d}{2} \vee 1, \frac{d}{d-2\alpha}), t \geq 1$. Since $\frac{d\mu_{t,r_t,r_t}}{d\mu} = (1 - r_t)f_{t,r_t} + r_t$, by combining this with Lemma 2.2 and Hölder's inequality, we obtain

$$\begin{split} & \mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t,r_{t},r_{t}}^{B},\mu)^{2}] \leq \mathbb{E}^{\nu} \int_{M} \frac{|\nabla L^{-1}(f_{t,r_{t}}-1)|^{2}}{\mathscr{M}((1-r_{t})f_{t,r_{t}}+r_{t},1)} \, d\mu \\ & \leq \mathbb{E}^{\nu} \int_{M} \left\{ |\nabla L^{-1}(f_{t,r_{t}}-1)|^{2} + |\nabla L^{-1}(f_{t,r_{t}}-1)|^{2} |\mathscr{M}((1-r_{t})f_{t,r_{t}}+r_{t},1)^{-1}-1| \right\} \, d\mu \\ & \leq \mathbb{E}^{\nu} \int_{M} |\nabla L^{-1}(f_{t,r_{t}}-1)|^{2} \, d\mu + \left(\mathbb{E}^{\nu} \int_{M} |\nabla L^{-1}(f_{t,r_{t}}-1)|^{2p} \, d\mu \right)^{\frac{1}{p}} \\ & \times \left(\mathbb{E}^{\nu} \int_{M} |\mathscr{M}((1-r_{t})f_{t,r_{t}}+r_{t},1)^{-1}-1|^{\frac{p}{p-1}} \right)^{\frac{p-1}{p}}. \end{split}$$

Since $B \in \mathbb{B}^{\alpha}$, by Lemma 2.3, Lemma 3.4 and (3.8), this implies

$$\limsup_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} \left\{ t \mathbb{E}^{\nu} [\mathbb{W}_2(\mu^B_{t, r_t, r_t}, \mu)^2] \right\} \le \sum_{i=1}^{\infty} \frac{2}{\lambda_i B(\lambda_i)}.$$

Combining this with Lemma 3.1 for $\varepsilon = r = r_t := t^{-\beta}$ where $\beta > 1$, we prove (5.1).

(2) By Lemma 3.5 for p = 2, it suffices to prove

(5.2)
$$\limsup_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} \left\{ t^{\frac{2}{d-2\alpha}} \mathbb{E}^{\nu} [\mathbb{W}_2(\mu_t^B, \mu)^2] \right\} < \infty, \quad C > 1.$$

Let $r: (1, \infty) \to (0, 1)$ to be determined. By [7], we have

$$t \mathbb{W}_2(\mu^B_{t,r},\mu)^2 \le 4\Xi_r(t), \quad t,r>0.$$

Combining this with Lemma 3.1 and Lemma 2.3, we find a constant $c_0 > 0$ such that

(5.3)

$$\mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t}^{B},\mu)^{2}] \leq 2\mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t}^{B},\mu_{t,r_{t}}^{B})^{2}] + 2\mathbb{E}^{\nu}[\mathbb{W}_{2}(\mu_{t,r_{t}}^{B},\mu)^{2}] \\
\leq c_{0}r_{t} + c_{0}\frac{\|h_{\nu}\|_{\infty}}{t}\sum_{i=1}^{\infty}\frac{1}{\lambda_{i}^{1+\alpha}\mathrm{e}^{2r_{t}\lambda_{i}}}, \quad t > 1.$$

By (1.2), there exists constants $c_2, c_3 > 0$ such that

$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i^{1+\alpha} e^{2r_t \lambda_i}} \le c_2 \int_1^{\infty} s^{-\frac{2(1+\alpha)}{d}} e^{-c_3 r_t s^2} \, \mathrm{d}s,$$

so that (5.3) implies

(5.4)
$$\sup_{\nu \in \mathscr{P}(C)} \mathbb{E}^{\nu} [\mathbb{W}_{2}(\mu_{t}^{B}, \mu)^{2}] \leq cr_{t} + \frac{c}{t} \int_{1}^{\infty} s^{-\frac{2(1+\alpha)}{d}} e^{-c_{3}r_{t}s^{\frac{2}{d}}} ds, \quad t > 1, r_{t} > 0$$

for some constant c > 0 depending on C.

Since $d > 2(1 + \alpha)$, we find a constant $c_4 > 0$ such that

$$\int_{1}^{\infty} s^{-\frac{2(1+\alpha)}{d}} e^{-c_3 r_t s^{\frac{2}{d}}} ds = \int_{r_t^{\frac{d}{2}}}^{\infty} (r_t^{-\frac{d}{2}} u)^{-\frac{2(1+\alpha)}{d}} e^{-c_3 u^{\frac{2}{d}}} r_t^{-\frac{d}{2}} du \le c_4 r_t^{-\frac{d-2(1+\alpha)}{2}}, \quad t > 1.$$

Combining this with (5.4) and taking

$$r_t=t^{-\frac{2}{d-2\alpha}}, \quad t>1,$$

we prove (5.2).

(3) Since $d = 2(1 + \alpha)$, for any c > 0 there exists a constant $c_1 > 0$ such that there exist a constants $c_1 > 0$ such that

$$\int_{1}^{\infty} s^{-\frac{2(1+\alpha)}{d}} e^{-cr_t s^{\frac{2}{d}}} \, \mathrm{d}s \le c_1 \ln(1+r_t^{-1}), \quad t > 1,$$

so that (5.4) implies

$$\mathbb{E}^{\mu}[\mathbb{W}_{2}(\mu_{t}^{B},\mu)^{2}] \leq c'r_{t} + c't^{-1}\log(1+r_{t}^{-1}), \quad t > 1$$

for some constant c' > 0. Taking $r_t = t^{-1} \log(1 + t^{-1})$ for $t \ge 2$, we find a constant $c_2 > 0$ such that

$$\mathbb{E}^{\mu}[\mathbb{W}_{2}(\mu_{t}^{B},\mu)^{2}] \leq c_{2}t^{-1}\log(1+t), \quad t \geq 2.$$

Since $\mathbb{E}^{\nu} \leq ||h_{\nu}||_{\infty} \mathbb{E}^{\mu}$ for $\nu = h_{\nu}\mu$, combining this with Lemma 3.5 for p = 2 and $\varepsilon = 1$, we obtain

$$\limsup_{t \to \infty} \frac{t}{\log t} \sup_{x \in M} \mathbb{E}^x [\mathbb{W}_2(\mu_t^B, \mu)^2] < \infty.$$

6 Proof of Theorem 1.4

Proof. By (3.18), (3.19) and noting that the Markov property implies

$$\mathbb{P}^x(t\mathbb{W}_2(\tilde{\mu}^B_{\varepsilon,t},\mu)^2 < a) = \mathbb{P}^{\nu_{x,\varepsilon}}(t\mathbb{W}_2(\mu^B_t,\mu)^2 < a), \quad a \ge 0,$$

it suffices to prove that for any C > 1,

(6.1)
$$\liminf_{t \to \infty} \inf_{\nu \in \mathscr{P}(C)} \mathbb{P}^{\nu}(t \mathbb{W}_2(\mu_t^B, \mu)^2 < a) \ge F(a), \quad a \ge 0,$$

(6.2)
$$\limsup_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} \mathbb{P}^{\nu}(t \mathbb{W}_2(\mu_t^B, \mu)^2 < a) \le F(a), \quad a \ge 0.$$

It is easy to see that (6.2) follows from Theorem 2.1(2) and (4.1).

To prove (6.1), let $\gamma > 1$ be in Lemma 3.2(2), and denote

$$\begin{split} \tilde{\Xi}(t) &:= t \int_{M} \frac{|\nabla L^{-1}(f_{t,t^{-\gamma}} - 1)|^2}{\mathscr{M}((1 - t^{-\gamma})f_{t,t^{-\gamma}} + t^{-\gamma}, 1)} \mathrm{d}\mu, \\ \Xi(t) &:= \Xi_{t^{-\gamma}}(t) = t \mu \left(|\nabla L^{-1}(f_{t,t^{-\gamma}} - 1)|^2 \right), \quad t > 1. \end{split}$$

Then Lemma 3.2(2) and Lemma 3.4 yield

$$\limsup_{t \to \infty} \sup_{\nu \in \mathscr{P}(C)} \mathbb{P}^{\nu}(|\tilde{\Xi}(t) - \Xi(t)| > \varepsilon) = 0, \quad \varepsilon > 0.$$

Combining this with Lemma 2.2, (2.6) and noting that $\sum_{i=1}^{\infty} \frac{1}{\lambda_i B(\lambda_i)} < \infty$, we prove (6.1).

Data Availability Statements. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Acknowledgement. The authors would like to thank the referee for corrections.

References

- L. Ambrosio, F. Stra, D. Trevisan, A PDE approach to a 2-dimensional matching problem, Probab. Theory Relat. Fields 173(2019), 433–477.
- [2] E. Boissard, T. Le Gouic, On the mean speed of convergence of empirical and occupation measures in Wasserstein distance, Ann. Inst. Henri Poincar Probab. Stat. 50(2014), 539–563.
- [3] I. Chavel, *Eigenvalues in Riemannian Geometry*, Academic Press, 1984.
- [4] L.-J. Cheng, A. Thalmaier and J. Thompson, Functional inequalities on manifolds with non-convex boundary, Science China Math. 61(2018), 1421–1436.

- [5] N. Fournier, A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Relat. Fields 162(2015), 707–738.
- [6] B. Kloeckner, Approximation by finitely supported measures, ESAIM Control Optim. Calc. Var. 18(2012), 343–359.
- [7] M. Ledoux, On optimal matching of Gaussian samples, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 457, Veroyatnost' i Statistika. 25(2017), 226–264.
- [8] F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl. 94(2010), 304–321.
- [9] F.-Y. Wang, Analysis for Diffusion Processes on Riemannian Manifolds, World Scientific, Singapore, 2014.
- [10] F.-Y. Wang, Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes, J. Funct. Anal. 280(2021), 108998.
- [11] F.-Y. Wang, Convergence in Wasserstein Distance for empirical measures of Dirichlet diffusion processes on manifolds, to appear in J. Eur. Math. Soc. arXiv:2005.09290.
- [12] F.-Y. Wang, Wasserstein convergence rate for empirical measures on noncompact manifolds, Stoch. Proc. Appl. 144(2022), 271–287.
- F.-Y. Wang, Convergence in Wasserstein distance for empirical measures of semilinear SPDEs, arXiv:2102.00361.
- [14] F.-Y. Wang, J.-X. Zhu, Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds, to appear in Ann. IInst. H. Poinc. arXiv:1906.03422.
- [15] L. Wu, Moderate deviations of dependent random variables related to CLT, Ann. Probab. 23(1995), 420–445.