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Abstract

Let M be a connected compact Riemannian manifold possibly with a boundary
OM, let V € C?(M) such that u(dz) := e¥(®)dz is a probability measure, where dz is
the volume measure, and let L = A+VV. As a continuation to [14] where convergence
in the quadratic Wasserstein distance Wy is studied for the empirical measures of the
L-diffusion process (with reflecting boundary if 9M ## (), this paper presents the exact
convergence rate for the subordinated process. In particular, letting (u$)¢~0 (o € (0,1))
be the empirical measures of the Markov process generated by L := —(—L)%, when
OM is empty or convex we have

[ee]
2
: T o 2 _ e . .
thjgo {tE"[W(ug, n)*]} = E_l \[Fa uniformly in z € M,

where E* is the expectation for the process starting at point z, {\;};>1 are non-trivial
(Neumann) eigenvalues of —L. In general,

=t 1 ifd<2(1+ ),
2

B [Wo(ul, u)?] =<t~ a2a, if d>2(1+a),
<t llog(l+t), ifd=2(1+a)ie.a=3d=3

holds uniformly in o € M, where in the last case E*[W1(u$, u)?] = t~!log(1 +t) holds
for M =T? and V = 0.
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1 Introduction

Recently, sharp convergence rate in the Wasserstein distance has been derived in [14] for
empirical measures of symmetric diffusion processes on compact Riemannian manifolds, see
[10, 11, 12, 13] for further study of Dirichlet diffusion processes and SDEs/SPDEs, and see
[1, 2, 5] and references within for earlier results on i.i.d. random variables and discrete time
Markov chains. In this paper, we aim to extend the main results of [14] to jump processes,
for which a natural model is the subordination of diffusion processes.

Let M be a d-dimensional connected compact Riemannian manifold possibly with a
smooth boundary OM. Let V € C?(M) such that p(dz) = e”@dz is a probability measure
on M, where dz is the Riemannian volume measure on M. Then the (reflecting, if IM # ()
diffusion process X; generated by L := A 4+ VV on M is reversible; i.e. the associated
diffusion semigroup { P, };>o is symmetric in L?(u), where

Pf(x) =Ef(Xy), t>0,f¢€ %B(M).

Here, E” is the expectation taken for the diffusion process {X;}+>0 with Xy = x, and we will
use P* to denote the associated probability measure. In general, for v € & (the set of all
probability measures on M), let E” and P” be the expectation and probability taken for the
diffusion process with initial distribution v. For any v € &2 and t > 0, vP, :=P¥(X; € -) is
the distribution of X, with initial distribution v.

A function B € C*°((0,00);[0,00)) N C([0, 00); [0,00)) is called a Bernstein function if
%B(r) >0, neN;r>0.

We will use the following classes of Bernstein functions:

(-1

B := {B: B is a Bernstein function with B(0) =0, B'(0) > 0},

B:= {B c€B: / r%_le_tB(’")dr < oo for ¢t > O}.
1

For each B € B, there exists a unique stable process SZ on [0, 00) with Laplace transform
(1.1) Ee 7 = ¢ tBM ¢ A > 0.
Moreover, for any « € [0, 1], let

B .= {B €B: liminf \"*B()\) > 0}, B, = {B €B: limsup A\ “B()\) < oo}
A—00 A—o00
For any B € B, let XP be the Markov process on M generated by B(L) := —B(—L),
which can be constructed as the time change (subordination) of X;:

XP = Xgp, t>0,

where (SP);> is the stable process satisfying (1.1) independent of (X;)s>o. We consider the

empirical measure

1

t
uf ::—/ dxsds, t>0.
t Jo
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Let p be the Riemiannian distance (i.e. the length of shortest curve linking two points)
on M. For any p > 0, the LP-Wasserstein distance W, is defined by

1
WP(MDMZ) = inf (/ p(may)p,]r(dx?dy)) o M1, 2 € y?
MxM

TEE (11,12)

where € (1, p12) is the set of all probability measures on M x M with marginal distributions
w1 and po. A measure m € € (uy, po) is called a coupling of py and ps.

Since M is connected and compact, L has discrete spectrum and all eigenvalues {\;}i>0
of —L listed in the increasing order counting multiplicities satisfy (see for instance [3])

&.\l\)

(1.2) kVid < N < wid, 0> 0

for some constant £ > 1. Our main results are stated as follows, which cover the correspond-
ing assertions derived in [14] for B(\) = A.

Theorem 1.1 (Lower bound estimates). Let B € B.

(1) There exists a constant ¢ € (0, 1] with ¢ =1 when OM is empty or convez, such that
ot ot {01} 2 ¢33 gy

(2) Let B € B, for some a € [0,1]. If d > 2(1 + «), then for any p > 0,

lim inf inf {tﬁ(Ef[wp(utB,u)])p%} > 0.

t—oo xeEM

(3) Let B(A) = A\* for some a € [0,1]. Ifd=2(1+a) (ie. a=1andd=4, ora =1
and d =3), M =T and V = 0, then

liminf inf {logt(Ex[Wl(,ut U )])2} > 0.

t—oo xeM

Theorem 1.2 (Upper bound estimates). Let B € B* for some a € [0, 1].

(1) Ifd <2(1 + «), then

= 2
lim sup su {ﬂEzW b }
n s sup T (Wa e ;)\ZB()\Z

(2) If d > 2(1 + «), then

lim sup sup {tﬁEx[Wz(ﬂfa M)Q]} < 0.

t—oo xeEM



= + «), t.e. eithera=1 an =4, ora=3; an = 3, then
(3) Ifd =2(1+ «) h 1 and d = 4, Land d =3, th

I R W, (U, }<.
1ﬂgp§gg{lot [Wa(pug, )% < 00

The following is a straightforward consequence of Theorems 1.1 and 1.2.
Corollary 1.3. Let B € B* N B, for some o € [0, 1].
(1) If OM is empty or convex, then

(1.3) lim {tEI[Wg 1l }

t—o00

/\B

uniformly in x € M, where the limit is finite if and only if d < 2(1+ «). In general,
there ezists a constant ¢ € (0,1] such that

2 N .
CZZI/\ZB—(/\J < liminf inf {tE [WQ(,LLtB,/,L)z]}

t—oo xzeEM

(1.4)

2
<l {ﬂE Wa(p', p }
< lim sup sup [Wa (i — \iB(\)

(2) If d > 2(1 + «), then for any € € (0, ) there exist constants ¢ > c(g) > 0 such that

c(e)t T < inf (E*[W.(u?,p)])*

zeM

< inf BT [Wy(ul, )% < sup BT [Wy(pl, p)?) < ct 72, £ >1.
zeM zeEM

(3) Let d =2(1+ ), i.e. eitherd=3 and a =3, or a =1 and d = 4. Then there exists
a constant ¢ > 0 such that
sup B*[Wy(uf, )% < et~ 'logt, t>2.
zeM
On the other hand, when B(\) = X\, M =T and V = 0, then there exists a constant

c > 0 such that
inAEEx[Wl(uf,u)Z] >t tlogt, t>2.
xe

Finally, we have the following result on the weak convergence of tW(uP, u)?.

Theorem 1.4. Let B € B* for some o € [0,1], and let OM be empty or convex. If d <
2(1+ «), then
lim sup [P*(tWy(ul, 1)? < a) — F(a)| =0, a >0,

=00 pe M
where F(a) :==P(§ < a) for

&= ~— \B(N)

and i.i.d. random variables {&;} with the standard normal distribution N(0,1).

4



Following the line of [14], we will first study the modified empirical measure . := p’ P,
for r > 0 in Section 2, present some lemmas in Section 3, and finally prove Theorems 1.1,
1.2 and 1.4 in Sections 4, 5 and 6 respectively.

2 Modified empirical measures

In this part, we allow M to be non-compact, but assume that the (Neumann) semigroup P,
generated by L is ultracontractive, i.e.

(2.1) | P]|1—00 := sup HPtfHOO < oo, t>0.
w(fD<

Consequently, —L has discrete spectrum and the heat kernel p;(x,y) of P, with respect to u
satisfies

(2.2) pe(z,y) _1+Z i ()i (y) < |Pll1see < 00, t> 0,2,y € M,
=1

where {\;};>0 are all eigenvalues of —L and {¢; }i>¢ is the eigenbasis, i.e. ¢g =1 and {¢;}i>0
is an orthonormal basis of L?(u) with Lo; = —\;¢;.

For any p > 1 and f € LP(u), let || f]l, == {u(|f|p)}% be the LP(u)-norm of f. Then there
exists a constant ¢ > 0 such that

1Bfllp < ce™ || fllp, ¢ >0,p € [1,00], f € Lij(p),
where L§(p) :={f € LP(u) : u(f) := [,, fdu = 0}. Consequently, for any B € B,
(2:3) 1PFllp = IEPsp fllp < el fllyBe™ 5 = ce™ "0 fll,, 2 0,p € [1,00], f € Lf(p).
As in [14], we consider the modified empirical measure
,uB = Ly PT, r,t > 0.
By (2.2), we have

o d'ug" _ —r)\; B
(24) ft,r L W - \/— Z ¢z ¢Z7 ¢z . / ¢z X S, T,t > O

The main result in this section is the following.

Theorem 2.1. Let B € B, M be a d-dimensional connected complete Riemannian manifold
possibly with a boundary such that (2.1) holds.

(1) For anyr >0,

. 2
lim sup |tE [Wz(utmﬂ) ] — ZW -

t—=00 1M



(2) For any C >0, let
2C)={veZ: v=hulhlw <C}
Then for any C > 1,

lim sup ‘PV@WQ(/’%T?M) ) o F”‘(a)| =0, ae€ R?
100 e 2(C)

where for i.i.d. random variables & with distribution N(0,1), F, P(¢,. < ) is the
distribution function of

£ = Z —)\iB()\i)e”‘“"’ r > 0.
i=1

To prove this result, we first present some lemmas, where the first follows from [14,
Lemma 2.3], which goes back to [1, Proposition 2.3].

Lemma 2.2. Let B € B, .#(a,b) := Lianbs0y- Then

log a— 1og b

VL fir
Mtr?ﬂ | ft )| d,u/a t,T>O.
ft7’7 )

By the ergodicity we have lim;,o, 4 (fi,,1) = 1 (see Lemma 2.4 below), so that this
lemma implies that tW, (ufr, ©)? is asymptotically bounded above by

(2.5) E(t) =tu(|VL T (fi, = DI?), t,r>0,
where p(f) := [,, fdp for f € L'(n). Thus, we first estimate =, (t).

Lemma 2.3. Let B € B. There exists a constant ¢ > 0 such that

o

2

el || s -
)\iB()\Z’)GQT)‘i =

t — )\iB()\Z’)GZT)‘i ’

(26)  |EYE.(t) —

i=1

t>1,r>0,

holds for any probability measure v = h,u. Consequently,

[e.o] [e.9]

2
= )\iB<>\7;)e2T)‘i

c||Pr

||2—>oo

2.7
( ) sup t — >\7;B<>\i)er)\i7 - 5

zeM

EE,(t) —

Proof. By (2.2), (2.4), (2.5), L¢; = —Xi¢; and u(¢ip;) = 1gi—jy for 4,7 > 0, we obtain

¥
(2.8) }:Aém, t,r > 0.

Since PP is the Markov semigroup of X2, the Markov property implies

E"(¢:(X[P)|XP) = PP (X D) = e PO, (XP), i >0,t > s> 0.



So, i(t) = L [ ¢:(XP)ds satisfies

/tébz‘(XsB)dS
0

2 t t .
(2.9) = / E”|¢s(X2)|? ds, / e B)(s2=s1) (4,
0

S1

2 9

1
E"[¢;(1)]* = gEV

2

t
= PB#2)(1 — e BOE=9Y s ¢ > 0.
o | e - yds, t>

This together with (2.8) imply

t ¢
- ?/o o / B [0s(X3)6:(X.)] ds

_ 2 — 1 ¢ RO
(210) Eu:r(t) == E Z W/ V(PSB¢Z2)<1 — € Bt 8)) ds =: [1 + IQ,
=1 "t 0
where
1—e —(t—s)B(A 2 o 1— e*B()\i)t
(2.11) Z/ ) Z NBON em T F L NBOwe

and due to v(PP¢?) = u(h,PP¢?) = u(¢?PPh,),

o0

9 t] — e~ (t=5)B(Xi)
>[5 p(GFPhy 1) ds.
1 0

L =FEZ.(t) -, = -
2 ( ) 1 ¢ - )\iB()\i)egw\i

Since u(¢?) = 1, by (2.3), there exists a constant ¢y > 0 such that
(@ P hy, = 1) = |n(Phy — 1)e7)] < 1P (hy = D)oo < coe™ P%[|hy ||,

Therefore, we find a constant ¢; > 0 such that

(&1
(2.12) | 12| < 7|Ihu||ooz NBON em < 00

Combining (2.10), (2.11) and (2.12), we find a constant ¢, > 0 such that

oo

2
= )\iB(Ai)GQT)‘i

< callhy || - 1

E"=.(t) — .
( ) t — )\iB(Ai)GZTAi

When v = §,, (2.10) becomes
(2.13) E°Z,(t) < I + L(z),

where 7 is in (2.11) and

e BOW(=s)
32 [ S e - s



Since u(¢?) = 1, (2.3) implies HPngbZ - 1”00 < ce™BO3||¢;[|2.. Combining this with
Igilla, = s ill5 < e

we find a constant c¢3 > 0 such that

0 <2V [ e Py s < T
= — J, )\Z'B(Ai)e’"/\ 2—00 = t - )\iB()\Z‘)er)\i'

This together with (2.11) and (2.13) implies (2.7). O

HQ*}OO’

The following Lemma shows that lim; o A (fi,, 1) = 1,7 > 0.

Lemma 2.4. Let || f;, — 1l|oc = supyen | fir(y) — 1. Then there exists a function ¢ : N x
(0,00) — (0,00) such that

sup B*[|| frr — 1|**] < c(k,r)t™, t>1,r>0,keN.
zeM
Proof. For fixed r > 0 and y € M, let f = p,(-,y) — 1. For any k € N, we consider

s 2k
— E* B d
| rxya

where Ay(s) 1= {(s1, -+ ,50) €[0,8] : 0 <57 <o <syp < s}
By the proof of [14, Lemma 2.5] with X replacing X;, we obtain

= (Qk)!E”/A ( )f(ij) e f(XE Y dsy - dsyy,

(2.14) Ii(t) < sup I(s) < {2k(2k — 1)}* (/A (t)(Ex]g(rl,rgﬂk)i dry drg) ,

s€0,t]

where g(r1,72) = (fP5_, [)(X]P),rs >r > 0.
By (2.1) we have
[ flloo = P (s y) = Lloo < 2[[Pr][1500 < 00,

which together with (2.3) implies
lg(ri,r2)|* S AFP fllS < cem PODNETR|FIIE8 < | B[, oo P2t

for some constant ¢; > 0. Thus, there exists a constant ¢y > 0 such that

t t
[ Elsratandr, < [an [ alB e o0 an <ol B
1( 1

Combining this with (2.14), we find a constant ¢z > 0 such that

sup E7[|fir(y) — 1] = 72 1(t) < es|| Pl ot ™, ¢ 2 L1 > 0.
z,yeM

Noting that f;, — 1 = P%( frr — 1), this implies that for some constant ¢ > 0
sup B[l fur — 1[[5] = sup B{[| P (fe; - D)I%]

< HPTHQ;HOO SUAI}]E“"[ (Ift s = 1P5)] < cll Py 1R ot



Proof of Theorem 2.1. (1) It suffices to verify the following estimates for any r > 0:

(2.15) hggf;&\%{ﬂﬁl [Wa (g, 1))} > Z NEO 62”\
2.16 1 tE Wy
(2.16) im sup sup {#E7[Wa (s} 1)’]} < Z B0 em

Let By == {|| frr — 1]|oc < o3} for o > 0. By the proofs of [14, (2.53) and (2.54)] for Xp
replacing X;, there exists a constant ¢ > 0 such that

(2.17) tWo(up, p)* > 1, {E.(t) — ctag}, r,t,o > 0.
Taking o = ¢~ for some v € (,2), we have tos 1 0ast 1 oo, and according to Lemma 2.4,

lim sup P*(B¢) < hm suptS E*[|| fir — 1]|2] =0
=00 pe M O reM

so that by (2.7)

lim sup sup E*[15: =, (t)] < ¢(r) limsup sup P*(B;) = 0,

t—oo xeM t—oo xzeM

where ¢(r) ==Y 00, W < 00. Thus, (2.17) yields

liminf inf E*[tWy(u/,, 1)?] > liminf inf E*[Z,(¢)],

t—oo xeM t—oo xzeM

which together with (2.7) implies (2.15).
Since u(¢?) = 1 and A; > 0, by taking = y in (2.2) and integrating with respect to

p(dz), we obtain
1 - —27’)\1'
Z B0 e?M = NBOW) ;e =00

For any n € (0,1), let
Ay =A{llfer = Ul < n}-
Noting that f;,.(y) > 1 —n implies

A S) 2\ Trly) > VT,

by Lemma 2.2 and (2.7), we find a constant ¢(r) > 0 such that

=, (t) }
tsup E*[14 W , < sup E*
161\2 [ Ay 2(Mtr :U’) ] er\B {m

1+@), t>0,n€(0,1).

1 00
<

2
- \/ 1— n ; )\iB<)\i)€2r>‘i (

9




Thus,

t sup E*[Wy(u),, 1)’]

reM
I o(r)
< 1 t sup E*[1 4. W
(2.18) = FZAZB e ( T >+ sup [Lag Wa (g 11)%]
1+C N x c x B 4
S \ 1 - Z )\ B 62 i +t§2}8 \/IP) <AT])]E [WQ(/’Lt,W/'I’) ]

As shown in the proof of [14, Proposition 2.6], we have

(2.19) E*Wa (ks 1) < 1P llisoo (10 X 1) (p*) < 0.

Moreover, Lemma 2.4 implies that for some constant c¢(k,r) > 0

sup P*(A}) < n2ke(k,r)tF.
zeM

By taking k = 4 and applying (2.18) and (2.19), we conclude that

oo

2

1
lim su {t sup E*[Wa(p,,, } .
me (S B Wi )] < = 2 S E e
Then (2.16) follows by letting n — 0.
(2) By Lemma 2.3, it suffices to prove that for any C' > 1
(2.20) lim sup |P"(Z.(t) <a)—P& <a)|=0, a>0.

t=00 e p(C)

Recall that

o0
i)
= Z o t,r > 0.
i=1 "
Define for any n > 1,

W (t) := (o), -+ Pa(t), >0,

Then, for any v € R", we have

(W,,(1),0) = % /0 (Zﬁiéi(XSB))ds

By [15, Theorem 2.4], when ¢ — oo, the law of (U,,(¢),?) under P” converges weakly to the
Gaussian distribution N (0, 0,,9) uniformly in v € & (C') with variance

Ony 1= tliglo EX (W, (1), 9)?

o2&, [ b B (sa—s1) "L 202
= lim ;Zﬁ ds; e dsy = BV

i=1 0 51 i=1

10



Thus, for any ¢ € R,

n

lim E”el{¥»(1):9) — / @) HN(O, 2B(\;) ) (dz;) uniformly in v € 2(C),

t—o00
i=1

so that the distribution of ¥,,(¢) under P” converges weakly to [/, N(0,2B()\;)™!) ast — oo.
Therefore, letting

- )\iB()\i)e2)‘lT - )\iB()\i)eQ’\”"
=1 =1
we have

(2.21) lim sup |PY(E™(t) <a) —PE™ <a)|=0, a>0.
t=o0 ez (0)

On the other hand, by (2.8) and (2.9), we find some constant C; > 0 such that
sup E”|Z,(t) — = (2)]
veZ(C)

9 e —2)\;7

= — sup
A e) Z.;l AiB(A;)

@

t
/ W(PPG2)(1 — e~ B0\ ds < e,
0

where &, := 237 W — 0 as n — oo. This together with (2.21) implies (2.20).
[

3 Some lemma

From now on, we assume that M is compact. For any ¢ > p > 1, let || - ||, be the operator
norm from LP(p) to L9(p). When p = ¢, we simply denote || - ||, = || - || ,—p- Then there exist
constants k, A > 0 such that

(3.1) 1P = pillpsg < BOLAE)TECT =0 D™ 50,0 > p > 1.
Next, by the triangle inequality of W5, we obtain
(3:2)  EWs(u, 1)*] < (14 &)E[Wa(ug,, 0)°] + (1 + e DEWa(ug, i), € > 0.

As shown in [14] for B(X) = X that, to prove Theorem 1.1, we need to estimate E[Wy(u/, 11f.)?]
and to refine the estimate on E[Wy(uf,, 11)?] for compact M. These are included in the fol-
lowing lemmas.

Lemma 3.1. Let B € B and pp.. = (1—e)uf. +ep, e € [0,1]. There exists a constant ¢ > 0

such that
(3.3) B (W, niy)’] < cllbwlloor, v = hop,
(3.4) Wo (g oo pen)® < ce, t,r>0,e€0,1].

11



Proof. Since for t > 0,

1 t
o dy) = (3 [ prlo)bxs(an) ) uia) € 6P ),
0
we have

WVﬂuﬁanYZSE/‘p@nyf7u&hady)
M

1 t
= ;/ dS/ pe(X7y) p(X7,y) p(dy).
0 M

Since v = h,u, by the PP-invariance of 1, we find a constant ¢; > 0 such that

(3.5)

E”/Mpr(XsB,y)p(Xst)?u(dy) < o || oo {PSB (/Mpr(rv,y)p(-,y)%(dy)ﬂ
= || A [l B [p(Xo, X,)?] < crllhu|ser, s >0,

(3.6)

where the last step is due to [14, Lemma 3.1]. Substituting this into (3.5), we prove (3.3).
On the other hand, let D be the diameter of M. Since

m(dz, dy) = (1 = e)pg, (de)da(dy) + ep(da) ), (dy) € (e, 1),

we obtain

WQ(MET,E?MET)2 < / p(x,y)QW(d:E,dy) < €D2> t>T > 076 S [Oa 1]

MxM

Then the proof is finished.
Lemma 3.2. Let B € B* for some a € [0,1], and let d < 2(1 + «).

1) For any q € (2 Vv 1, %), there exists a constant ¢ > 0, such that
Yy 2 d—2a

(3.7) sup BX[|fir(y) — 112 < ——, > 1,7 € (0,1].
yeM tr2q
(2) For any q € (g V1, ﬁ) and v € (1, %q),
(38)  lim sup B (1 — ) o () 41, 1P =0, p> 0.

t—o00 yeM

Proof. (1) For fixed y € M, simply denote f = p,(-,y) — 1. Then

(3.9) E*[|fir — 17] W/fxﬁm/f 5)drs,

12



Since PP is invariant with respect to p, we obtain

E“[f(XB)f(XB)] WP (P, 1)) = ulf P, f)

3.10
B0 g 1PE Pl < 1 P il P Fl, 72> 70 2 0

By f =p.(-,y) — 1 and (3.1), we find some constants ¢; > 0 such that

B e <1+ lpCp)le <1+ [Pl s S, re(©1a21
Moreover, since P/ is the semigroup of X;” := Xgp, by (3.1) and noting that B € B* implies
(3.12) B(r) > ko(r Ar%) > kyr® — kg, 7 >0

for some constants ko, k1, ks > 0, we find a constant ¢y > 0 such that

q 1)
IPP1q < B[l Psplling < cE[(1ASP) 5]

<c+cE [(STB)_ (ngl)} =c+ %)/ td(%igl)—lefrB(t)dt
0

d(g—1)

< co(r 200 4 1), r>0.

Since d(qu_ql) < 1, by combining this with (2.3), (3.9) and (3.11), we find constants c3,cq > 0
such that

t t _d(Q*l) 7)\(1(,,, —_r ) C4
dry [ ((re—r1)” 200 +1De 127 dry < —— t,r > 0.
r2at

B (| fer(y) — 11°] <

7242

2 2
[14, Lemma 3.3], there exists a map C' : (0,1) — (0, 00) such that

Q

(2) Let 6 > 0 be small enough such that (£ + %) < 1. According to the proof of the
0

SélﬂgE“[l///((l — ) for(y) + 1) = 1P <8y + (14672 SgAI;IP’“({Vt,T(y) — 1] >n})

<6, +Ct BT, t>1rne(0,1),

q
ﬁ , n € (0,1). This implies (3.8) by taking r = ¢~7 and letting

first t — oo then n — 0. m

holds for 9, = ‘ﬁ —

Lemma 3.3. Let B € B for some a € [0,1]. For any p € [1,2], there exists a constant
¢ > 0 such that

(3.13) EF [y (1) 7] < eAZPTDTEDE2 s g
Proof. Since PP¢; = e BXtg, we have
(3.14) gri,r2) = (05—, 0:) (X)) = 72BN, (X2,
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By (2.14), u(PP¢?) = p(¢?) = 1 and (3.12), we find a constant ¢; > 0 such that

ﬂE'u ‘wz <C1/ dT1/ E# T'l,T'Q dT'Q

t
—cl/drl/ ~(rmr)BOY L (PE g2 drry % t>1,ieN.

i

(3.15)

On the other hand, by (2.14), (3.12) and (3.14), we find a constant ¢, > 0 such that

2

QEM“,% < Cy (/ d’f’l/ EM |g 7“1,7‘2 ]);d’l“g)
2
</ drl/ (27 ”’ u(PP 4)dr2> :

Moreover, (3.1) and P,¢; = e ¢, yield

(3.16)

d
oo} S e3)f, i>1

16ille = inf{e™|| Pigilloc} < inf e

for some constant ¢z > 0, so that

JuPEol) = \Juleh) < Jlodznten) <epf, iz 1

This together with (3.16) implies that for some constant ¢4 > 0

2c

B (] < cad? ™, 0> 1.

Combining this with (3.15) and using Holder’s inequality, we find a constant ¢5 > 0 such
that

B [[ohs(8) 7] = EX ([ ()1 aba()*P )
< (B[P P E a7 < eshi TR,

]

Lemma 3.4. Let B € B* for some a € [0,1]. If d < 2(1 + «), then there exists a constant
p > 1 such that

lim sup sup {tpE“/ VL (for = 1) du} < oo
M

t—oo >0

Proof. According to the proof of [14, Lemma 3.5], for any p > 1 and € > p — 1, there exists
a constant ¢;(p,e) > 0 such that

d(p—1

[e.e] )_
v [ VL - D du < el AT B )
M i=1
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Combining this with Lemma 3.3 and (1.2), we find a constant cy(p, &) > 0 such that

(3.17) E¥ / VL (for — DPPdu < ea(pr o)t ? Y i
M

i=1
holds for 5
Ope :zg—l—a{(p—1)(d—2a)+ap—(2a+1)}.

So, it remains to show that d,. < —1 holds for some constants p > 1 and € > p — 1. This
follows from the fact that for € > 0 and p. := 1+ 5 we have € > p. — 1 and

2(1
lim 4, . = 24y

el0 ’ d
O

Finally, the following lemma reduces arbitrary initial values to initial distributions with
bounded density.

Lemma 3.5. Let B € B and p € (0,2]. Then for any e > 0,

e 1= | PEll oo < 00,

e(l+¢e)DP
ap B[P0 ] < (142) sup By + LD
zeM veP(ae)

e(l+¢e)Dr )

inf B [Wy(u, )"7] < (142) inf BY[W, (), )] + =————, t>¢",

ve (ae)
where D 1is the diameter of M.
Proof. There exists a constant ¢ > 0 such that
1P l1seo < c(1+172), t>0.

This together with (1.1) and [~ re~1e B0 dr < oo implies

_d
1P e = sup sup [E*f(Xgp)| < El|Psp 1o < ¢+ cB(S) 72
w(f)<1aeM

C 4
=c+ —/ rz e B0 qr < 00, ¢ > 0.
L(5) Jo

Next, for any x € M and ¢ > 0, let v, . be the distribution of X 5. Then

dv, .
|Z22]| = sup [PEF@)] < IPEl1n = o,
Ko Too p(| <t
so that
(3.18) Vpe € P(a:), v € M,e>0.

15



Let
1 e“+t
ﬁ,gBt = —/ (SdeS, t> 0.
) t 52 s

By Markov property, we have

(3.19) E* [Wy(i2,, 1)?] = B [Wa(ul, pn)?], =€ M,t,e>0.
Moreover, it is easy to see that for any t > ¢ > 0,
1 [ 1 (e 5 -
= z /2 5(X§,X53)d8 + ;/0 5(X§,ng)ds € Cg(ﬂt 7la€,t)7
so that
. g2DP
Wiz, 1) = W (i, )| < W, 3B)} " < [ pPdm <
MxM
Combining this with (3.18) and (3.19), we obtain
_ g2Dp
sup B [W, (ur, 1) %] < (1 + ) sup E* [W, (a2, )] + (1 +71)
xeM zeM
e(1+¢)DP
<(1+¢) sup E¥ [Wp(u?,u)wp] + %
veZ(ae)

Similarly, the last estimate also holds.

4 Proof of Theorem 1.1

4.1 Proof of Theorem 1.1(1)
Since M is compact and V' € C*(M), there exists a constant K > 0 such that
Ricy := Ric — Hessy > — K,

where Ric is the Ricci curvature.
When 0M is either convex or empty, then

(4.1) W (v B)? < MWy (u,v)?, 7> 0,p > 1,
see for instance [8, 9]. Since yi}. = puf Py, this and (2.15) imply

t—o00

57 lim inf {t inf E*[Wo(u, uP) ]}

> h{gg}f {t inf E*[Wy(u, ,u” } Z)\B ez r> 0.

By letting » — 0, we prove the desired estimate for ¢ = 1.
When OM is non-convex, the desired inequality follows by using the following estimate
due to [4, Theorem 2.7] replacing (4.1): there exist constants ¢, A > 0 such that

Wy (P, 1) < XWo(v, 1), veP,r>0.

16



4.2 Proof of Theorem 1.1(2)

It suffices to prove for p € (0,a). The proof is modified from that of the proof of [14,
Theorem 1.1}, the only difference is that we have to use W, for p € (0, «) replacing Wy,
since in this case we have E[(SP)?] < co.

For any ¢ > 1 and N € N, we consider p§ := L 3, dxp, where t; := D <i<N.

By taking the Wasserstein coupling

N
1 o+
P [ S (os ) ds € b ),
i=1 Jti '

we obtain

By [14, (3.6)] that

sup E?p(Xo, X;)* < ct, t>0
xeM

holds for some constant ¢ > 0. So, by Jensen’s inequality, for any p € (0, a), there exists a
constant ¢; > 0 such that

SUE]Ex[p(Xf,Xf)p] = suEEm[p(Xo,ng)p} < cp/QE[(SF)g} <e¢ri, rel0l],
TE e

where the last step follows from (1.1) and B € B, from which we find constants cs,c3 > 0

such that for € := £,

c %
E SB e] — —/ 1 — —rB(t) tfz-:fldt
|:( T ) i| F(l _ 8) 0 ( € )
< ¢y / (1 — e c2r—ert®y—e=1qt < cye2” / (1 —e @y ==7tdt < egra, re0,1].
0 0

Therefore, there exists a constant ¢4 > 0 such that

(4.2) sup B [W, (1P, uR)] < eatN~1)2a, t > 1,N € N,
zeM

On the other hand, since M is compact, there exists a constant c5 > 0 such that
pw({p(x, )P <r}) < 057“%, r >0,z M.
By [6, Proposition 4.2], this implies
W, (u5, ) > ceN"4, NeNit>1
for some constant ¢g > 0. This and (4.2) yield

inf E7[W, (s 1)) > inf E*[W,(u, u2)] — sup E'W, (7, 1)
zeM xeM xeM
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> N4 —c(tN"Y )2, t>1,NeN,

By taking N :=inf{n e N:n > 5tﬁ} for small § > 0, find a constant c¢; > 0 such that
for large enough ¢t > 1,

inf B (W, (1, 1)) > crt .

Te

Hence, the desired estimate holds.

4.3 Proof of Theorem 1.1(3)
We only consider the case that o = %, d = 3, since the proof for = 1 and d = 4 has been
presented in [14]. In this case, the assertion is implied by the following two lemmas which

essentially due to [14] for o = 1.

Lemma 4.1. Let B(\) = A2 and d = 3. If for any constant C > 1 there exist constants
v,€,tg > 0, such that

(43)  ABWL (B, )F > B (Y (—L) (o — D), v € P(O)t> 1o,
then the estimate in Theorem 1.1(3) holds.

Proof. By Lemma 3.5 for p = 1, it suffices to prove that for any constant C' > 1,

(4.4) liminft(logt)™ inf {E*W,(uZ 1)}? > 0.
veP(C)

t—00

By (2.6) and (4.3), there exists a constant ¢y,¢; > 0 such that

. C1 > 1
inf {E*W,(uB_,, 0)}?* > — — t > 1.
1/632’(0){ g WY 2 t ; A2 2t '

Since d = 3, (1.2) implies \; < ci3 for some constant ¢ > 0, so that we find constants
Ca, c3 > 0 such that

1 [~ ds cslogt
inf {E"W,(u?_ 2>—/ > ot >t
Vel;(c){ 1(:ut,t by )} > ot |/, secﬁ_“% 2 ; 1

Combining this with (4.1), we find a constant ¢, > 0 such that

e 2B og t

C
inf {E"W,(uZ, p)}? > . > .
%gwﬁ D) ; 1
This implies (4.4). O

Lemma 4.2. Let M = T3V = 0 and B(\) = A2. Then for any v € (0,2) there eist
constants €,tyg > 0 such that

(45)  {EWi(Wl, ) 2 B (Y (=A) " (fun — V), vE Pt > .

18



Proof. The proof is similar to that of [14, Proposition 5.3] with X replacing X;.
Let fy = (—A)"'(fi 4~ — 1). It is shown in the proof of [14, Proposition 5.3] that

Wi(pry 1) = B u(IVfi*) = Kap2u(IV A1), 8> 0
holds for some constant K > 0. If there exist a constant K5 > 0 such that
(4.6) E' u(IV fil") < Kao[B u(IV i), > 2,

then
EYW1(pfy, 1) = BB u(|V fi) — B KL KB w([V £, 8> 0.

Taking 8 = NE”[u(]V f,|?)2] for large enough N > 1, we prove (4.5) for some constant ¢ > 0.
So, it remains to prove (4.6).
We identify T with [0,27) by the one-to-one map

[0,27) > 5 €,
where i is the imaginary unit. In this way, a point in T® is regarded as a point in [0, 27)3, so
that {e'™"},,czs consist of an eigenbasis of A in the complex L?-space of u, where y is the
normalized volume measure on T3. Since X7 is generated by —(—A)%, we have

(4.7) Erel(mX7) = e~Imlteltma) ¢ > 0,2 € T%, m € Z3.

Moreover,

fi = <_A)71(ft,tfw —-1) = Z bmeii<m">>

mezZ3\ {0}
where
e—|m|2t"y t 5
(48) bm = —/ el<m7Xs ) dS, m € Z?)‘
im|*t - Jy
Then |
|Vft(x>|2 - Z <m17 m2>bm1bm2€f1<m1+m2,$),
m1,ma€Z3\{0}
‘Vft(x) |4 = Z <m1, m2> <m3, m4>bmlmebmsbm4e*i<m1+m2+m3+m4,x).
mi,- ,ma€Z3\{0}
Noting that, u(e”'"7) = 0 when m # 0, we get
(4.9) E'u((VAP) = > [mfE [bpb_n),
meZ3\ {0}
(4.10) E'u(IVAY = 3 (masmo)(ma, ma)EY (b bingbmg b

(m1,m2,m3,m4)€S
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where S := {(my, ma, m3,my) € Z*\{0} : my + my + mz + my = 0}.
By (4.8), we have

_ 24—
e 2|m|“t

|m|4t2

E [byub_m] = / EVel ™ X=X ds,dss.
[0,

The Markov property and (4.7) yield
(4.11) EY (/MY =X 2, ) = e mllsi=sl g 60 >0,

Then we find a constant x > 0 such that

— 24— — 24—
e 2|m|*t 2|m|“t

- —lmllsi—s2] g, dg, > re t> 9.
WMZAM RS T pe T

Using this and (4.9), we get that

) Ke—2|m|2t_7 Ky [ e—252t_7
Eu(VED) > Y ————>—/ s
1

3 —_

~

EY[bpb_im] =

2
K1 -1 1
— ds = t " logt t> 2.
~ te? /) 5= 2e2< og 1), -
Let S be the set of all the permutations of {1,2,3,4}, D(t) = {(s1, 52, 83,54) € [0,¢]*
0 <5 <s9<s535<s4 <t} Wehave

B b, bbb
- 24:1 [mp|2t=7 . . .
- 6;4 1—;4 | |2 / ]EV[el<m1’XSBl>el<m2’X‘P2>el<m3’X£;>el<m4’ ]d81d82d83d84
=1 1p [0,¢]*
o S g0
T AT Iyl > / B [e! o) il Xy hm X5 o10m X507 d gy dspd sy
p=1 1"MW1™ (i kes /D)

Since my + mgy + mg +my = 0, by (4.7) and the Markov property we obtain

EY [ei<mi:XsBl)ei<mj7XsBz>ei<mk7XsB;)>ei<thsB;>] — o Imul(sa=s3)—[mitmp|(s3—s2)—|mi|(s2—s1)
Thus,

4
t4 Hp:l |mp‘2
e~ Z; 1 Imp |2t

E / e~ Imul(sa—s3)—[mi+my|(s3—s2)—|mi|(s2—s1) dsydsydssds,.
D(t
(i.4,k,1)€S

]EV [bml bm2 bm3 bm4]
(4.13)
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If m; + my, = 0, then

/ e~ Imul(sa=s3)—[mitmy|(s3—s2)—|mi|(s2—s1) dsydsydszds,
D

(t)
t ptopto gt 2
:/ / //e"ml|(S4_53)e_|mi|(52_51)ds4d33d32d51§—.
0 Js1 Jsy Js3 |mZHml|

If m; + my # 0, then

/ e lmil(sa=sa)—lmrmi|(sa—s2)—lmil(2=51) s, dsydsadsy
D

)
t t t t
_ / / / / o mul(sa—s2) g—lmi+mal(sa—s2) o —lmil(s2—51) qg, dgdlsydls,
0 s1 Js2 Js3
t
<

= mgl|my 4 |||

Combining these with (4.13) leads to

e_Z;:HmpIZrW {t21{ml+mk=0} tisl{mﬂrmk;ﬁo} }
O P g U mallmd " Toallm =+

]EV [bml bm2 bm3 bm4] <

Therefore, by (4.10), we find a constant ¢ > 0 such that

(4.14) Eu(|V Y < c(ly + 1), t>2,
holds for ) )
]1 = o Z ﬁe—2(|a|2+\b|2)t777
|al3]b]
a,beZ3\{0}
1 e~ 22:1 [mp |2t~
=g 2 o Pimalimellma mm?
m1,ma,m3,mqsCZ3\{0}
m3+mq7#0

It is easy to see that there exists constants cq, co > 0, such that

2
1 2 2 -1 2
(4.15) I < 2\ . ds | <co(t " logt)”, t>2,
and similarly
—|m|?t= —|m|?t=
e o' e
—F—F < Cgti, - < CQt’Y> > 27
2. TP 2. T

mezZ3\{0} mez3\{0}

Then by reformulating I, as

I2:tl3 Z

m1€Z3\{0}

o—lmal?t= o—Imal?t=7 e~ (Ims|*+|mal?)t=7

2

m2€Z3\{0}

> 3
2ty Tl il
m3+ma7#0

[y |2 [ma|
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we find a constant ¢z > 0 such that

e—|m4|2t*7 e—|m3\2t*“f

(4.16) L<dt?® Y

2
ma€Z3\{0}

Z Ims||ms + my|
4}

m
’ 4 m3€Z3\{0,—m

Write

(4.17) >

mg€Z3\{0,—m.

e—|m3‘2t_7

= J1 + JQ + J3
N |ms||ms + my|

for )
ef|mg| t—

Jy = Z

mSGZS\{Oz_m4}
jma| <24l

Jo = Z

mSGZS\{Oz_m4}

[mal <jms| <2ima|

J3 = Z

m3€Z3\{0,—m4}
|msg|>2|my4]

[ms||ms 4 myl|’

ef|m3\2t*7

Ims||ms + my|’

e—|m3|2t*W

[ms|[ms + myl|

On the region {m3 € Z3\{0, —my} : |ms| < @} we find a constant ¢4, > 0 such that

92 —|ms |t~ Y
(4.18) n<— 3 ° )

|m4|m3623\{0} ms| 7 [mal

Next, on the region {ms € Z3\{0,—m4} : |m3| > 2|my|}, we have |m3 + my| ~ |ms| and
Ims|? > @ + 2|my|?, so we find a constant cs > 0 such that

e_|m3‘2t7,\/ e_\m3\22t*’Y ,
J3 <4 Z | ‘2 < 4e—2|m4|2t*7 Z ﬁ < CSt%e—2|m4| ol
m3€Z3\{0} ms3 m3€Z3\{0} ms
|m3\>2\m4|
This together with e™® < 573 gives
cst”
(4.19) Jp < = t>2
N

Finally, on the region {m3 € Z3\{0, —m4} : |m—;| < |ms| < 2|my|}, we have |ms| ~ |my4| and
1 < |mg + my| < 3|myl, so that there for a constant ¢g > 0

lmy| 2t =7

9 1 my 2t~
P SELEE rpp— colmale T
|m4‘ 1<|m3+my|<3|ma| ’mg ma

22



By e™® < 57!, we get the upper estimate of J,,

Combining this with (4.16),(4.17),(4.18) and (4.19), we find a constant c¢g > 0 such that
I, < cst3"3logt, t>2.

Substituting this and (4.15) into (4.14), and combining with (4.12), we prove (4.6). The
proof is finished.
[

5 Proof of Theorem 1.2

(1) By Lemma 3.5 for p = 2, it suffices to prove

(5.1) limsup sup {tE"[Ws(u/, p Z 5 C>1.

t—oo  veZ(C)

By the triangle inequality of Wy and Lemma 3.1, for any € > 0 there exists a constant
c(e) > 0 such that

]EV[W2(/’L1§7 :U’)Q]
< (L4 ) B [Wo(pgy, o 1))+ 20 + e B [Wo (g, 15, )]+ B (Wl 1y, )]}
< (14 ) B [Walpui, 0o )] + c()r,

where r; = t77,3 € (,d)qe( ViAot > 1 Since%%:(l—rt)fwt%-rt, by

combining this with Lemma 2.2 and Holder’s inequality, we obtain

VL (fir, — 1)
v A (L =7¢) for, + 11, 1)

E“/M (VL (fery = DF + VLT (frgy = DAL = 10) frr, 76, 1)7 = 1} dp

E¥ / |VL—1<ft,m—1>|2du+<E” / |VL—1<ft7m—1)|2pdu)”
M M

p—1

. (EV/ |‘//<<1 - rt)ftﬂ‘t + 7, 1)71 - 1‘I£1> p
M

Since B € B*, by Lemma 2.3, Lemma 3.4 and (3.8), this implies

B [Wa(uf, ., 1)%) < B

o0

limsup sup {{E"[Wa(p, . 1)
t—oo  veZ(C)
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Combining this with Lemma 3.1 for € = r = r, := t~# where 3 > 1, we prove (5.1).
(2) By Lemma 3.5 for p = 2, it suffices to prove

(5.2) limsup sup {tﬁE”[Wg(ufg,u)Q]} < oo, C>1
=00 veP(C)

Let r: (1,00) — (0,1) to be determined. By [7], we have
tWo(up., 1) <AZ,(t), t,r>0.
Combining this with Lemma 3.1 and Lemma 2.3, we find a constant ¢y > 0 such that
B’ [Wa(u, 1)*] < 2B"[Wa(py', iy, )?] + 2B [Wa(pg,,, 1)°]

1

(5.3) 17 lloo -
< cory + ¢ ; Zzl)\zl+ t>1.

05627‘,5 A

By (1.2), there exists constants ¢y, c3 > 0 such that

o0
1 X S14a) 2
< —— —c3resd
2 :)\1+a62r,§/\i =6 1 5 ¢ ds,
(]

i=1
so that (5.3) implies
00 o 2
(5.4) sup EY[Wy(uP, 1)?] < ery + ;/ P L ds, t>1,r,>0
ve?(C) 1

for some constant ¢ > 0 depending on C.
Since d > 2(1 + «), we find a constant ¢, > 0 such that

> 2(1+a) 2 ©  _d 2(1+a) 2 _d _d=2(0+a)

/ s d e @ ds = /d (r, 2u)"" @ e "', 2du<cr, 2 , t>1
1 r?

Combining this with (5.4) and taking

2

r=t"aTm, > 1,

we prove (5.2).
(3) Since d = 2(1 + «), for any ¢ > 0 there exists a constant ¢; > 0 such that there exist
a constants ¢; > 0 such that

0 20te) 2 1
s da e T ds<cln(l+r7), t>1,
1

so that (5.4) implies
EX[Wo(ul, )% < dry+dtHog(1+r7h), t>1
for some constant ¢ > 0. Taking r; =t 'log(1 + ¢ ') for ¢ > 2, we find a constant c; > 0

such that

EX[Wa(uy, 1)?] < et Hlog(1+1), t>2.
Since E” < ||h, || E# for v = h,p, combining this with Lemma 3.5 for p = 2 and ¢ = 1, we
obtain

t
lim sup —— sup E*[W,(u?Z, )% < occ.
t—o00 Ogt xeM
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6 Proof of Theorem 1.4

Proof. By (3.18), (3.19) and noting that the Markov property implies
Px(tWQ(ﬂgt7M)2 < CL) = P (tW2<MtBaﬂ)2 < a’)? a =0,

it suffices to prove that for any C' > 1,

(6.1) liminf inf PY(tWy(uP,p)* < a) > F(a), a >0,
t—oo veZ(C)
(6.2) limsup sup P”(tWy(uZ, 1)* < a) < F(a), a > 0.

t—oo veZ(C)

It is easy to see that (6.2) follows from Theorem 2.1(2) and (4.1).
To prove (6.1), let v > 1 be in Lemma 3.2(2), and denote

VL (fror = P
v A (L=t fre— +177,1)
(>-=~m()—tu(|VL (ft,m—l)l), t>1

Then Lemma 3.2(2) and Lemma 3.4 yield

[I]z

[I]

limsup sup PY(|Z(t) —Z(t)| >¢) =0, > 0.
t—oo  veP(C)

Combining this with Lemma 2.2, (2.6) and noting that » 7%, - B(/\ 7 < 00, we prove (6.1).
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