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Stochastic separated flow models
with applications in numerical
computations of supersonic
particle-laden turbulent flows

Bing Wang, Zhaoxin Ren and Huiqiang Zhang

Abstract
In this article, three stochastic separated flow models were applied to predict the dispersion of inertial fuel particles in
the supersonic turbulent flows. The flow field of continuous phase was simulated by means of Reynolds-averaged
Navier–Stokes method with a two-equation turbulence model. Clift’s expression was used to modify the drag force on
the particle considering the compressibility effects. The particle-phase statistics were obtained by a secondary-order
time-weighed Eulerian method. The ability of those stochastic separated flow models was then compared for predicting
the mean particle velocity and the particle dispersion. For obtaining a statistically stationary solution, the stochastic sepa-
rated flow model required the largest number of computational particles, whereas the improved stochastic separated
flow model was found to need the least. The time-series stochastic separation flow model lay in-between. Compared
with the other two models, the particle dispersion was over-predicted by the stochastic separated flow model in the
supersonic particle-laden boundary layer flow, while the improved stochastic separated flow model was less predictable
for the particle spatial distribution in the particle-laden strut-injection flow. Three models could well predict the mean
velocities of the particle phase. This study is valuable for selecting a validated model used for predicting the particle dis-
persion in supersonic turbulent flows.
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Introduction

The low-speed two-phase turbulent flows are com-
monly encountered in abundant industrial applications,
such as energy conversion devices and propulsion sys-
tems. These incompressible two-phase flows have been
successfully studied by means of computation methods.
As the scramjet engine achieves the supersonic combus-
tion, in which the liquid fuel is atomized into spray dro-
plets before the evaporation and the ignition occur, the
supersonic particle-laden flows in the scramjet combus-
tor have attracted increasing attention.1 Fuel droplets
are quickly transported by high-speed air streams and

reside in the combustor within several microseconds.
Hence, the knowledge based on the dispersion of fuel
droplets/particles in supersonic flows is fundamental
for illustrating the combustion process in scramjet com-
bustors.2 However, the research on the supersonic
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particle-laden flows is far from sufficient, compared
with the low-speed two-phase flows.

Compared with the expensive experiments, the
numerical simulation has been an effective tool to inves-
tigate the two-phase flows. When solving the two-phase
flow equations, the continuous phase is best represented
by an Eulerian description. The particle dispersion in
the flow field can be modeled by either the Eulerian
description or the Lagrangian description.3 Since the
particle pseudo-fluid model based on the closure of
modified kinetic theory of the granular flow has not
been adaptable for the supersonic flow, the Lagrangian
particle trajectory models are usually utilized by many
researchers. Ren et al.4 studied the turbulent dispersion
of non-evaporating droplets in the supersonic shear
layer and found that the smaller the diameter of the
droplets, the more rapidly momentum and heat
exchanges between two phases are achieved. The turbu-
lent mixing between fuel droplets and supersonic air
streams dominates the gas-phase combustion process.5,6

Wu et al.7 investigated the characteristics of the droplet
dispersion in supersonic shear vortexes based on the
Eulerian–Lagrangian numerical simulations. However,
the droplet dispersion in high-speed turbulent flows has
not been investigated enough.8,9

The Reynolds-averaged Navier–Stokes (RANS)
model is an effective approach to predict the turbulent
flows, and the stochastic separated flow (SSF) models
are applied to simulate the trajectories of Lagrangian par-
ticles. Hennick and Lightstone10 presented a comparison
of the SSF models for two-phase incompressible flows.
However, the applications of the SSF models in compres-
sible/supersonic particle-laden flows have not been suffi-
ciently discussed. The complicated flow structures, such
as compression waves and expansion waves, can affect
the particle dispersion. Furthermore, the model of the
drag force acting on the Lagrangian particles should be
modified, considering the compressibility effects. In this
investigation, we attempt to show the advantages and dis-
advantages of three different SSF models through numeri-
cal predicting of the gas-particle supersonic flows. We
take the supersonic boundary layer flow and the superso-
nic flow over a strut in a channel as the research objects.

Governing equations and numerical
methods

Governing equations of continuous phase

The Lagrangian transport of particles through a contin-
uous carrier gas flow is characterized by the following
governing equations after applying the Favre filter
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where k is the turbulence kinetic energy and �e is the
internal energy. Hence, the perfect gas state equation
can be expressed as

p=(g � 1)~r(�e� k) ð3Þ

The viscous stress is �tij = �tij, L + �tij, T, including lami-
nar and turbulent components, and �qi = � k∂�T=∂xi is
the heat conduction. The viscosity is m=mL +mT and
the thermal conductivity is k= kL + kT. Both the tur-
bulence viscosity and the turbulent thermal conductiv-
ity are calculated by means of turbulence closures.

The turbulence model of k–e proposed by Hwang
and Lin11 is employed as follows
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The reduction turbulence dissipations is ~e= e� ê
where ê= 2~rmL(r

ffiffiffi
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)2. The turbulence viscosity is
then calculated as

mT = ~r
k2

~e

� �
Cmfm(yl) ð6Þ

where yl = s=lt. lt =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
is the Taylor scale and

s is the minimum distance to the near wall. fm = 1�
exp (� 0:01yl � 0:008y3

l), sk = 1:4� 1:1 exp½�(yl=10)�
and se = 1:3� 1:0 exp½�(yl=10)�.

The source terms in equations (4) and (5) are �Sk =
tij, L∂ �Ui=∂xj � ~r(ê+ ~e) and �S~e =Ce1~e=ktij, T∂ �Ui=∂xj�
Ce2~r~e2=k, respectively.

The empirical closure coefficients in the above mod-
els are taken as Cm = 0:09, Ce1 = 1:44, and Ce2 = 1:92,
respectively.

The compressibility correction model postulated by
Wilcox12 is applied for the compressibility effects, and
the turbulent kinetic energy dissipation rate is given by
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r~e= r~es + r~ed ð7Þ

where ~es is the solenoidal dissipation rate, and the dila-
tation dissipation rate ~ed is defined as

~ed = j�F(MT)~es ð8Þ

where MT =
ffiffiffiffiffiffiffiffiffiffiffiffi
2k=a2

p
is the turbulence Mach number

and the empirical coefficient j�= 1:5. F(MT) is
expressed as follows

F(MT)= ½M2
T �M2

T0�H(MT �MT0) ð9Þ

where the function H is the Heaviside step function and
MT0= 0:25.

A finite difference methodology is used to solve the
governing equations of gas phase. A two-step explicit
Runge–Kutta time-integration methodology is applied,
obtaining a second-order time-accurate computation.
The inviscid flux is discretized by utilizing the Roe-type
Riemann solver and the second-order spatial accuracy
is obtained by the Monotonic Upstream Centered
Scheme for Conservation Laws (MUSCL)-type scheme.
A modified Harten–Hyman entropy condition is used
to avoid unrealistic solutions caused by the Roe-type
Riemann solver. The viscous flux is discretized by a
second-order central difference scheme.

Governing equations of discrete phase

The particles are tracked individually in a Lagrangian
manner. It is assumed that the density of the particles is
much larger than that of the continuous phase such that
only the drag force is significant. The particle collision and
dense particulate effects are neglected. In addition, all the
particles are assumed to collide with the walls elastically.

The Lagrangian particle equations for the position
and the velocity are given by
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Here, Xp is the particle position vector, Up is the parti-
cle velocity vector and Ug@p is the gas velocity seen by

the particle. Rer = rdp Up �Ug@p

�� ��=mL is the particle

Reynolds number and trp = rpd2
p=(18mL) is the aerody-

namics relaxation time, where dp is the particle dia-
meter. The drag coefficient, CD, corrected by Schiller
and Naumann,13 is defined as
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A fourth-order Lagrange interpolation procedure is
employed to obtain the gas-phase velocities at the parti-
cle locations as the particles do not locate at the grid

points. When the particle is located at (Xp, Yp, Zp) inside
the computational cells where coordinates are
(x0, y0, z0) . . . (xl, yl, zl), the Lagrangian interpolation for
the particle velocity can be expressed as
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where the subscripts i, j, k, and l represent the cell
indexes, different from those used in the previous sec-
tions, and n=6.

The Lagrangian particle equations are integrated by
a third-order Adams–Bashforth approach. The integra-
tion of the particle position is given by
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and the particle velocity is integrated as
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where f denotes the right-hand side of the equation of
motion for the particle and is divided by the particle
mass, mp.

Eulerian statistics of discrete phase

The discrete particles are tracked individually in a
Lagrangian manner. Therefore, an Eulerian stationary
statistics would be achieved when sufficient particles
are calculated. The mean velocity of the discrete phase
in each control volume is obtained by a second-order
time-weighed Eulerian statistical approach

�Up(i, j, k)=

P
m

uL
p,mDt(i, j, k),mP

m

Dt(i, j, k),m
ð15Þ

where Dt is the characteristic time for the mth discrete
particle residing in the computational volume, as shown
in Figure 1.

Inter-phase coupling and compressibility effects

The one-way coupling is employed in this study, which
refers to the dilute two-phase flows with relatively small
particle mass loading ratios, and the presence of the
particles does not significantly affect their surrounding
continuous phase.
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The effects of turbulence on the particle motion are
concerned. In addition, the particle motion in the super-
sonic flows can be affected by the high compressibility.
The effects of compressibility on the particle motion are
considered via the correction of the drag coefficient

CD,Kn,Rer =
24

Rer
(1+ 0:15Re0:687

r )f (Kn) ð16Þ

Clift et al.’s14 expression, considering the compressi-
bility effects, is given by

f (Kn)=
1

1+Kn 2:514+ 0:8 exp (� 0:55=Kn)ð Þ ð17Þ

where Kn=
ffiffiffiffiffiffiffiffiffiffiffi
pg=2

p
(Mr=Rer) is the Knudsen number

and Mr = Up �Ug@p

�� ��=ag is the relative Mach number.
The particle spreading in a uniform supersonic air

flow (U=1000m/s and T=300K) is utilized to illus-
trate the effects of compressibility on the drag coeffi-
cient, as shown in Figure 2. The particle density is
800 kg/m3 and the particle diameters are 2 and 20mm,
respectively. For the momentum relaxation of particles,
the compressibility decreases the drag coefficient, and
the compressibility effects become stronger with a
decrease in the two-phase velocity slip. The two-phase

velocity slip becomes smaller as the particle tends to be
in the relaxation equilibrium.

SSF models

Along the trajectory of Lagrangian particles, the con-
tinuous phase velocity seen by the discreet particle is
decomposed into a time-averaged velocity and a fluctu-
ating velocity

Ug@p = �Ug@p + u0g ð18Þ

Turbulent eddies create the velocity fluctuations,
which is modeled via using the Monte Carlo method.
The velocity fluctuations of the gas phase are generated
from the random sampling of a zero-mean Gaussian
probability density function with a standard deviation,
s2 = 2=3k = u0g

2, that is

u0g = j(u0g
2) ð19Þ

The interval time during which the particle interacts
with the local turbulence is identified by two time
scales, that is, the eddy lifetime, tfl, and the transit time
required for the particle to cross the eddy, tp, respec-
tively. If the particle moves almost as fast as the local
fluid, it could be captured by the turbulent eddy and
remains in the eddy during the whole eddy lifetime.
Whereas if there is a significant velocity slip between the
two phases, the particle can cross the eddy before the
eddy decays. Therefore, the interaction time, Dt, is deter-
mined by the minimum of the two time scales, that is

Dt = min (tfl, tp) ð20Þ

The eddy lifetime is then evaluated by
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where the dissipation length scale of the eddy is given
by
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The transit time required for the particle crossing the
eddy is expressed as
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Although several researchers15–17 have proposed cor-
rections for the SSF models, the difficulty of determin-
ing the action time of a given fluctuating continuous

Figure 1. Schematic of the Eulerian statistical method.

Figure 2. Temporal variation in the drag coefficient.
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phase velocity seen by the particle still remains unsolved.
The SSF model has long been used in predicting the
two-phase turbulent flows because of its simplicity and
robustness.

An improved stochastic separated flow (ISSF)
model, considering the intermittent action of the turbu-
lence, has been proposed to obtain a reasonable statisti-
cal characteristic of the dispersed phase. In this model
proposed by Chan et al.,18 the velocity of the dispersed
phase, including the mean velocity and the fluctuating
velocity, is transported along its stochastic trajectory

Xp =

ð
(Up + u0p)dt ð24Þ

where the particle fluctuating velocity, u0p, is obtained
by a random number generator, j, obeying a zero-mean
Gaussian probability density function with a standard
deviation, s2 = u0p

2, that is

u0p = j(u0p
2) ð25Þ

In order to involve the temporal variation in the par-
ticle fluctuating velocity, a Lagrangian transport equa-
tion is given as follows
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where the two-phase fluctuation correlation term is
closed by
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here, Bk=0.5 and tT =CTk=e where CT=0.165.
Wang et al.19 have compared and evaluated different
closure models of the two-phase fluctuating velocity
correlation terms.

Due to the consideration of the intermittent action
of the turbulence, the ISSF model predicts good results
for the particle fluctuating velocity and uses less sample
particles, compared with the SSF model. However, the
two conventional SSF models, including the SSF and
ISSF models, predict the concerned particle dispersion
poorly. Therefore, the time-series stochastic separation
flow (TSSSF) model has been developed.20

In the TSSSF model, the instantaneous fluctuating
velocity of the gas phase, u0g

(n), is sampled using the
Monte Carlo method at the calculation time step n. It
is kept to act on the change in the particle instanta-
neous velocity until its action can be neglected accord-
ing to the real-time calculation of the auto-correlation
coefficient between the u0g

(n) and u0g
(n�1). It means that

the TSSSF model considers the temporal and spatial
correlations of the continuous phase fluctuating velo-
city, achieved by the low-order model
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Table 1 lists all the governing equations of the three
SSF models.

Table 1. SSF, ISSF, and TSSSF models.

SSF model ISSF model TSSSF model
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SSF: stochastic separated flow; ISSF: improved stochastic separated flow; TSSSF: time-series stochastic separation flow.
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Results and discussions

Supersonic particle-laden boundary layer flow

The transverse spray-jet is one of the main fuel injec-
tion approaches in the scramjet combustor. As shown
in Figure 3, the liquid fuel is injected into the superso-
nic turbulent boundary layer (TBL) flow and atomizes
into the droplets because of the primary and secondary
breakup mechanisms.21,22

The atomization process is not concerned in this
study. Therefore, the whole flow prototype, shown in
Figure 3(a), is simplified as the supersonic particle-laden
boundary layer flow, shown in Figure 3(b). Moreover,
the flow is assumed to be fully developed due to the high
speed of the inflow. The computation domain is speci-
fied as Lx=244mm and Ly=5.57mm in the stream-
wise and wall-normal directions, respectively.

The calculation parameters of two-phase flow are
shown in Table 2. The droplet material density is taken
as 800kg/m3. The sizes of spray droplets are very small
due to the high efficiency of the atomization in superso-
nic streams. Here, spray droplets are assumed as sphere
particles with the same diameter of 20mm. All particles
are vertically injected into the supersonic flow with the
same wall-normal velocity equal to 20m/s. The air
inflow Mach number is 2.25 and the flow Reynolds
number is 25,000 per unit millimeter.

Figure 4 shows the distributions of velocity compo-
nents, turbulence kinetic energy, and turbulence kinetic
dissipation rate, respectively. It is found that the super-
sonic TBL is very thin. The turbulence fluctuations
mainly exist close to the wall and show a very high level
of turbulence kinetic energy.

Figure 5 shows the particle dispersion in the bound-
ary layer. The contours represent the particle number
density, which is obtained statistically by

C(x, y, z)=
ncell(x, y, z)

ntotal
ð32Þ

where ncell(x, y, z) is the number of computational parti-
cles in one cell volume at the position (x, y, z) and ntotal
is the total number of computational particles.

It is shown that the dispersion is over-predicted by
means of the SSF model. The results predicted by the
ISSF and TSSSF models are consistent with each other,
and the spatial distributions of particles are more con-
centrated, compared with the prediction by the SSF
model.

At the profiles of y/D=1 and 2, closing to the injec-
tion inlet, the velocities of discrete particles predicted
by three models are the same in the wall-normal and
streamwise directions, respectively. Furthermore, if the
same number of particles is employed in the three mod-
els, the smoother statistics of particle velocities can be
obtained by the ISSF model, compared with that of the
other two models. The particle-phase velocities pre-
dicted by the three SSF models are different in the
downstream region. Especially for the conventional
SSF model, the statistical velocities are distributed
extensively in the streamwise direction due to the large
streamwise velocity of the particles (Figure 6).

For different particle sizes, the profiles of the pre-
dicted velocity at y/D=4 are shown in Figure 7. With

Figure 3. Sketch of the injection of droplets into boundary
layer flow: (a) transverse-jet flow and (b) simplified particle-
laden boundary layer flow.

Table 2. Two-phase flow parameters for simulation TBL.

Continuous phase Discrete phase

Fluid medium Air Droplet material density rp (kg/m3) 800
Inflow Mach number 2.25 Diameter dp (mm) 20
Flow Reynolds number/mm 25,000 Injection velocity Vj (m/s) 20
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the increase in the particle diameter, particles accelerate
more slowly in both wall-normal and streamwise direc-
tions and need more time to catch up with the sur-
rounding gas. Hence, large-sized particles disperse in a

relative narrow range and the three models predict
nearly the same velocity distributions for the particles
with the diameter of 50mm. The penetration depth is a
very important measurement parameter in the study of
the high-speed jet flow and affects the mixing and ato-
mization processes. The wall-normal velocity of the
particle phase represents the penetration depth, and
then, the large-sized particles with high wall-normal
speed have a deep penetration depth, since the large-
sized ones have long aerodynamic response time and
motion almost with their initial speed. However, large-
sized particles distribute in a small range along the
streamwise direction since the initial streamwise velo-
city is 0, and the weak dispersion could hinder the mix-
ing between the fuel droplets and the air.

The required particle numbers for obtaining the
above steady statistical results are shown in Table 3.
The ISSF model is found to need around 1000 compu-
tational particles to obtain a statistically stationary
solution of the mean particle velocities, while the SSF
model needs almost 6000 computational particles. The
TSSSF model requires less than 5000 computational
particles, which are much larger than that of the SSF
model but still less than that of the ISSF model.

Strut-injection particle-laden flow

The strut injection (SJ) is another important method
for the fuel injection and flame holding in the scramjet
combustor, as shown in Figure 8. In this study, we
focus on the flow downstream the strut, and the com-
putation domain is specified as Lx=300mm and
Ly=100mm in the streamwise and wall-normal direc-
tions, respectively.

The calculation parameters of the two-phase flow
are shown in Table 4. The inflow conditions are speci-
fied according to the experiment by Deutsches Zentrum
für Luft- und Raumfahrt (DLR).23 The inflow velocity
is 732m/s, the static pressure 100kPa, and the static
temperature is 340K. The strut has a wedge shape with
an apex angle of 12� and a length of L=32mm.

The non-evaporating droplets (kerosene) are injected
from the strut bottom plate with the streamwise velocity
equal to 100m/s. The particles are assumed to have the
same diameter of 20mm and the particle density is spec-
ified as 800kg/m3. The inflow Mach number is 2.0. The
flow Reynolds number is 270,000 based on the wedge
thickness (H=6.73mm).

Figure 9 shows the flow field of the continuous
phase downstream the strut. The supersonic inflow is
deflected at the tip of the strut, and the two shocks are
formed symmetrically on each side. After impacting the
upper and down walls, the shock waves reflect back
toward the centerline of the channel. The l-shock
waves are observed in the downstream region. On the
other hand, the supersonic flow forms expansion waves

Figure 4. Continuous phase flow field of simulation TBL: (a)
streamwise velocity �U, (b) wall-normal velocity �V, (c) turbulence
kinetic energy k, and (d) turbulence kinetic energy dissipation
rate e.

Figure 5. Particle spatial dispersion predicted by different SSF
models in TBL: (a) SSF model, (b) ISSF model, and (c) TSSSF model.
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at the strut bottom corners. The expansion waves inter-
act with the shock waves, and they both interact with
the shear layers generated by the strut. The recircula-
tion zone forms behind the strut and could hold the
flame stability in the supersonic combustion process.

It is found that the turbulence fluctuations mainly
exist in the shear regions, which are illustrated by the
high level of turbulence kinetic energy and the corre-
sponding large turbulence kinetic dissipation rate, as
shown in Figure 9(c) and (d).

Figure 7. Predictions of the particle-phase velocity at y/D = 4 in TBL: (a) wall-normal component of particle-phase velocity and (b)
streamwise component of particle-phase velocity.

(a) (b)

Figure 6. Predicted particle-phase velocities by different SSF models in TBL: (a) wall-normal component of particle-phase velocity
and (b) streamwise component of particle-phase velocity.
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Figure 10 shows the particle dispersion predicted by
three different SSF models, and these figures focus on
the particle dispersion in the recirculation region down-
stream the strut. The particles with the size of 20mm
have a short aerodynamic response time and follow the
continuous phase quickly. Furthermore, the highest
concentration of the particles is found in the recircula-
tion region. The particles disperse widely downstream
the strut due to the transportation of the supersonic
streams. Three models predict similar spatial distribu-
tions of the particles, and therefore, the particle concen-
trations are similar. It is also found that the particles
mainly accumulate in the shear layer. The concentrated
distributions of the particles predicted by the SSF and
TSSSF models are consistent with each other. Whereas

the ISSF model predicts the particle dispersion more
weakly, which is different from those predicted by the
other two models.

The particle spatial distributions downstream the strut
are depicted in Figure 11. The particles spread out of the
recirculation regions and diffuse transversely. The SSF
model predicts a similar particle spatial distribution, com-
pared with that of the TSSSF model, whereas the ISSF
model reports that the particles accumulate densely in the
particular regions and not as uniformly as the results
from other models. Figure 12 shows the statistical veloci-
ties of the particle phase at four different profiles down-
stream the strut. The predictions of the three models are
almost the same. In the ISSF model, the turbulence
kinetic energy transport equation of particle phase is
solved along the particle path. Hence, the particle velocity
can be obtained more smoothly with less sample particle
amount in the statistics than the other two models. It is
also noticed that the particle velocities in both streamwise
and transverse directions yield self-similarity.

Compared with the supersonic particle-laden bound-
ary layer flow, the SSF model needs more computa-
tional particles to obtain the steady statistical results in
the SJ particle-laden flow, while the ISSF and TSSSF
models remain almost unchanged, as shown in Table 5.
Hence, the SSF model is more sensitive for the required
tracking particles than the other two models.

Conclusion

The accurate numerical simulations of supersonic
particle-laden flows are the emerging topics, company-
ing with the development of scramjet technologies.
This study is aimed at the numerical solution of the dis-
crete particles by successfully utilizing three different
SSF models. Two simplification prototype flows,

Table 3. Particle number for different SSF models in TBL.

SSF model Particle number

SSF ~6000
ISSF ~1000
TSSSF ~5000

SSF: stochastic separated flow; ISSF: improved stochastic separated flow;

TSSSF: time-series stochastic separation flow.

Figure 8. Sketch of strut-injection particle-laden flow.

Table 4. Two-phase flow parameters for simulation SJ.

Continues phase Discrete phase

Fluid medium Air Droplet material
density rp (kg/m3)

800

Inflow Mach
number

2.0 Diameter dp (mm) 20

Flow Reynolds
number

270,000 Injection velocity Uj (m/s) 100

Wang et al. 9



Figure 9. Continuous phase flow field of simulation SJ: (a) streamwise velocity �U, (b) transverse velocity �V, (c) turbulence kinetic
energy k, and (d) turbulence kinetic energy dissipation rate e.

Figure 10. Particle spatial dispersion predicted by different SSF models in SJ: (a) SSF model, (b) ISSF model, and (c) TSSSF model.
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involved in fuel injection approaches for the scramjet
combustor, that is, the supersonic particle-laden
boundary layer flow and the SJ particle-laden flow, are
numerically simulated by means of RANS coupled
with the SSF, ISSF, and TSSSF models. The statistical
particle-phase velocities and the particle spatial disper-
sions are obtained.

The particle dispersion in the supersonic boundary
layer is over-predicted via the SSF model. Therefore,
the statistical distribution of particle-phase velocities
spreads widely in the streamwise direction downstream
the injection. Large-sized particles concentrate nar-
rowly along the streamwise direction but penetrate
deeply. The ISSF model underestimates the particle dis-
persion in the SJ supersonic flow. In addition, three

particle trajectory-tracking models predict similar statis-
tical velocities of the particle phase downstream the
strut. The ISSF model is capable of obtaining a statisti-
cally stationary solution with very few computational
particles, whereas the SSF model requires the largest
number of computation particles among the three
models.
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Figure 11. Particle spatial dispersion downstream the
recirculation region: (a) SSF model, (b) ISSF model, and (c)
TSSSF model.

(a)

(b)

Figure 12. Predicted particle-phase velocities by different SSF
models in SJ: (a) streamwise component of particle-phase
velocity and (b) transverse component of particle-phase velocity.

Table 5. Particle number for different SSF models in SJ.

SSF model Particle number

SSF ~8000
ISSF ~1000
TSSSF ~5000

SSF: stochastic separated flow; ISSF: improved stochastic separated flow;

TSSSF: time-series stochastic separation flow.
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Appendix 1

Notation

a speed of sound
CD drag coefficient
Cm, Ce1, Ce2 closure coefficients
d diameter of particle
e internal energy
E total energy
k turbulent kinetic energy
Kn Knudsen number
MT turbulence Mach number
Mr relative Mach number
P pressure
q heat conduction
Rer particle Reynolds number
Sij strain tensor
T temperature
ui, Ui instantaneous velocity in tensor

notation
U, V, W instantaneous velocity components in

x-, y-, and z-directions
u0i fluctuating velocity in tensor notation
x, y, z rectangular Cartesian coordinates

g specific heat ratio
e turbulent kinetic energy dissipation

rate
ed dilatation dissipation rate
es solenoidal dissipation rate
k thermal conductivity
lt Taylor microscale
m viscosity
r density
sk, se closure coefficients
tfl eddy lifetime
tij Reynolds stress tensor
trp aerodynamics relaxation time
tp eddy transit time

Superscripts

- temporal average
~ Favre average
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Subscripts

g gas phase
g@p gaseous variable seen by particle
i, j, k unit vectors in x-, y-, and z-directions
L laminar flow
p particle phase
T turbulent flow
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