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Abstract

Machine Learning (ML) has been a transformative technology in society by automating
otherwise difficult tasks such as image recognition and natural language understand-
ing. The performance of Deep Learning (DL), in particular, has improved to the point
where it can be applied to automotive vehicles – a situation in which trust is placed on
the ML systems to operate correctly and safely. Yet, while fundamental ML algorithms
can be formally verified for safety without much trouble, the same may not be said
for DL. A key problem preventing the trustworthiness of DL is the existence of adver-
sarial examples, where small changes in input result in catastrophic misclassifications,
thereby undermining their use in safety-critical systems.

Using pre-existing knowledge from domain experts has been shown to successfully in-
crease not only the performance but critically the resilience of DL models to adversarial
examples. The current thesis developed four different strategies of integrating prior
expert knowledge into DL models: feature specialisation, specialised information pro-
cessing, stimulation of attention mechanisms, and augmentation of training data. Prior
knowledge from three scientific domains was used (Quantum Chemistry, Corpus Lin-
guistics and Astrophysics) as case studies to provide a comprehensive framework for
evaluation of the strategies performance given different types of data (i.e., text-based,
image-based, and graph-based) and model architectures (e.g. recurrent, graph, and
convolutional). For the Quantum Chemistry and Corpus Linguistics case studies, two
novel datasets are introduced to facilitate the training of prior knowledge informed
DL models. Each of the four proposed strategies were tested independently on the
case studies to understand their isolated contribution, as well as combined with other
strategies to evaluate their interaction.

The results show that, combined, the four prior knowledge integration strategies (a)
are an effective method of increasing model performance; (b) result in fewer misclas-
sifications as a result of misleading features; (c) lead to increased model robustness
to adversarial examples; (d) create informative representations by visualising learnt
representations of prior knowledge; (e) lessen the number of training samples needed
to achieve adequate model performance; and (f) lead to better generalisation to dif-
ferent problem tasks other than those the model was trained for. The findings show
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the prior knowledge integration strategies used here improve the performance of ML
while being more resilient to adversarial examples. This can lead to more trustworthy
ML systems in practice.
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Chapter 1

Introduction

While Deep Neural Network (DNN)s are good at learning to perform tasks such as
image recognition with high degrees of accuracy, they can be susceptible to slight
changes (often called perturbations) to the input data [3, 4, 5]. For instance, given
a DNN that learns to recognise if an image contains a car, slight changes to a small
number of pixels within this image (even those that are not located on the car itself)
may alter the DNNs output to now predict the image contains a plane [6]. If the DNN’s
decision changes due to this perturbation, the resulting image that creates this change
of decision is called an adversarial or counterexample.

This issue of DNN sensitivity to perturbation poses a troubling question for the commu-
nity: If systems use DNNs - especially those systems where safety is paramount [7] - it
could be difficult to predict if they will operate correctly in the face of slight erroneous
input. Consequentially, predicting and detecting failures in systems composed of Deep
Learning (DL) models could be challenging to determine. For instance, as there is
evidence to show that image-recognition systems can be rendered inaccurate through
small changes to specific pixels, it becomes more challenging to trust an autonomous
vehicle, where slight defects can occur due to sub-optimal camera conditions such
as damage or object occlusion [8, 9]. Predicting and troubleshooting these types of
issues in safety-critical systems is necessary, but it is not simple to interpret the deci-
sions made by Machine Learning (ML) classifiers as with the traditional logic-based
methods.

If indistinguishable changes to specific pixels in an image may lead to a misclassifi-
cation, one may question the modelling mechanisms (such as feature learning) the
DNN is attending to for its classification. Are these features an artifact present in the
training and testing data but would not realistically occur in real-world scenarios? Fur-
thermore, are these features consistent with what an expert in this domain might say
are essential when classifying the same data?
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One way to help address this concern of trustworthiness is with prior knowledge. Here
the pre-existing wealth of knowledge from domain experts can inform the DL model
and improve the confidence in trusting the output of the DL model. This inclusion
of prior knowledge may help the model in four aspects. Firstly, DNNs, as opposed to
other more traditional ML methods, require far less data pre-processing and feature
extraction to be accurate models. The consequence is that it is possible to encode the
data in a format applicable for the DNN and have the model learn from the supervi-
sion of examples. However, given that real-world data can be noisy and sometimes
erroneous [10, 11, 12], one may be less confident that what the model is learning
is beneficial for its task. If, for example, the errors occur only in one of two classes
the model needs to discriminate between, it may use the occurrence of these errors to
justify its class prediction. The DNN, in this case, is performing the task as instructed –
finding and using discriminatory features available in the data – but these features it is
finding during the learning process are superfluous and are not helpful for real-world
tasks, thus rendering the DNN ineffective for its task. Prior knowledge may improve
the learning process by constraining the features that it may attend to for classification
or regression. By helping the model attend to particular, and indeed, essential features
for classification, it may help the DNN improve its performance on a task and be more
resilient to minimal changes in the input space. Moreover, using prior knowledge, one
may adapt and specialise computation mechanisms of the DNN to match the knowl-
edge of the problem better. For instance, this thesis introduces methods to specialise
recurrent and graph-based DNNs to known representations in the domain. The latent
representations of the examples are more useful for the classification or regression
and possibly provide more informative visualisations of these latent representations to
understand the DNN’s decision processes.

Secondly, features could become more informed by the domain constraints, making
features more informative for the decision process [13]. These features, when visu-
alised, could give analysts more indication as to why inputs result in specific classifi-
cation labels. As a simple example, visualising the DNN’s attentiveness to important
features may lead to insights as to what the model is learning for its decision process.
With the expert’s insight of feature importance these visualisations can be tailored to
check for inconsistencies with the expert’s opinion.

Thirdly, DNNs can learn many different functions, with some being more accurate and
less sensitive to noisy data than others. The learning process is then searching through
the possible functions to find one that minimises the errors on the dataset. Through
the introduction of priors, the functions it is possible to learn may be restricted and
reduced [14], thereby making it easier to find the optimal function, where this optimal
function is both more accurate and more robust to noise, and closer to how the expert
would deal with the same task.

Finally, DNNs typically require large amounts of annotation to infer general statisti-
cal patterns in supervised tasks, and increasing the amount of annotations can also
improve the effectiveness of existing models [15]. However, when the number of an-
notations is limited, so too may be the performance of these models. In scientific
domains outside of ML research, such as physics, medical, and social sciences, it is
common to have a substantial amount of data without any annotations, thereby lim-
iting the usability of supervised learning with DNNs on these datasets. Methods such
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as weak supervision, few shot learning, and transfer learning, can help to address the
small amounts of annotation. Indeed, these methods are also used in this thesis, but
our results show that prior knowledge may be another complementary way to address
this problem, helping DNNs learn from the small amount of annotations by providing
an inductive bias to the learning process.

The aim of this research is to make DNNs more trustable or trustworthy, where trust
in this sense that the model is not using superfluous or erroneous indicators in the
data, that it is less susceptible to noise and limited amounts of annotations; that it
is generally more accurate; and that it provides a means of communicating feature
importance via visualisation. To address this aim, methods to integrate prior expert
knowledge were developed. There may be other methods to make an ML system
more trustworthy. Principle candidates include formal verification or the introduction
of logic into DNNs. However, we focus on prior knowledge for two reasons: firstly,
the work of formal verification introduces issues of scalability – it can be impractical
to formally verify transformers due to their size and non-linear complexity. Secondly,
while logic can be used to represent the knowledge of experts, creating representations
of this knowledge in logical forms for these scientific domains can be challenging.
Therefore, in order to produce a reasonable solution to the questions posed in the
scientific domains and case studies, we propose the use of integrating knowledge into
the design of DNNs better take advantage of prior knowledge and the success of newer
ML techniques.

This research has explored the theoretical and general perspectives and concrete ex-
amples by working with experts from Quantum Chemistry, Corpus Linguistics, and
Astrophysics. In these ventures, the thesis has outlined the fundamental principles
on integrating prior expert knowledge into DNNs to improve its performance and ro-
bustness in these domain-specific tasks, and visualise the outputs to ensure the clas-
sification and the attended features match what is understood by the experts. These
methods were thoroughly evaluated using many different forms of architectures, in-
cluding recurrent, graph, and convolution-based models, various problem tasks that
demonstrate how well these principles help. The principles behind integrating prior
expert knowledge are shown to be effective at improving task performance, providing
means of visualisation, and addressing situations with small amounts of training data.
This work has additionally shown that these strategies can be generalised to many net-
works and tasks, thus leading to potential improvements in other domains other than
those used here.

While we work with experts from different scientific domains, the methods presented
in this thesis take advantage of varying levels of knowledge – from the knowledge
located within the data itself (such as adversarial training); or some basic understand-
ing that can be gained from a principled investigation of the data or domain; to the
knowledge of domain experts (of which examples of this knowledge appear in this
thesis: understanding of online grooming tactics, feature properties of Type II bursts,
etc.). Our work is advantaged by this approach as, more basic forms of knowledge
may be easier to integrate, but more complex forms provide larger benefits. These
various forms of methods ultimately provide flexibility to the implementer of the DNN
in the domain and may be applicable to a wider audience other than the expert in said
domain.
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Table 1.1: The use of different prior integration strategies in each of the case studies.

Prior strategy
Quantum
Chemistry

OG Detection
Solar Burst
Detection

Feature Specialisation - Indirect x x x
Feature Specialisation - Direct x

Specialised Information Processing x x
Attention on Data x

Augm. Training Data - Adversarial Training x
Augm. Training Data - Data-specific Augm. x

1.1 Methods

The strategy to incorporate prior knowledge into DNNs may take many forms. In
this thesis, various approaches are explored and evaluated to create viable strategies
that practitioners may use when adapting DNNs to their problem tasks. Each of these
approaches receives a dedicated chapter within this body of work. The strategies that
make up this work are:

1. Feature specialisation – the process of making latent features more specialised
towards the task via two complementary approaches: a) indirect specialisation
with multi-task learning; b) direct specialisation by modifying existing features.

2. Specialised information processing – additional internal model computations
that provide specialised feature extractor networks each with unique parameters.

3. Attention on data – improve the model’s attentiveness to important input fea-
tures through stimulation of the model’s activation towards these features.

4. Augmenting training data – enhancing the training data through adversarial
training and data-specific augmentations. These augmentations aim to improve
the DNN’s robustness towards noisy and misleading features using the prior
knowledge to determine meaningful augmentations.

Not all methods are applicable for each of the various case studies (discussed in the
next section). Table 1.1 outlines how each prior strategy was tested, where checked
columns indicate that this case study was used to evaluate this strategy.

1.2 Case Studies

The objective of this thesis was the design of strategies for the integration of prior
domain knowledge into DNNs. Following this objective, it was necessary to work
with experts in different domains to find common themes of using prior knowledge to
leverage DL in their domain. Three case studies were used to cover different aspects
of scientific research. These case studies enabled the testing of the prior integration
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strategies on varying architectures, in addition to various forms of data such as graphs,
text, and images.

As one would expect, each of these areas had challenges it wished to address using DL.
Therefore, the relevant strategies were selected and used to design implementations
suited to the data available and the DNN architecture in question. The data available
for the problem task and the DNNs used are described in Chapter 4.

These three areas are:

1. Quantum Chemistry – using graph representations and graph-based DNN re-
gressors.

2. Corpus Linguistics – using textual representations along with recurrent and
transformer classifiers.

3. Solar Physics – using image representations with object detectors.

1.2.1 Quantum Chemistry

The first case study considers the domain of chemistry. In this study, chemicals can be
represented as graphs and processed by graph-based DNNs to estimate their properties
traditionally computed using chemical simulations. Chemical simulations have prac-
tical industrial applications, e.g. drug or material discovery [16]. Simulating crystal
systems, in particular, provides useful properties such as surface absorption, chemical
reactions, and surface magnetism [17]. Simulations can also be used for the calcu-
lation of potential energies under different physical conditions (known as Equation of
State), such as the positions of interacting atoms. By varying the atomic positions
and calculating the energy values at these different positions, it is possible to find the
positions at which the atomic interactions are at their most stable. Despite chemical
simulations being capable of this task, they typically require large amounts of comput-
ing resources and do not scale well to larger system sizes [18, 19], even when sim-
plified using Kohn-Sham Density Functional Theory (DFT) [20] based on electronic
density in place of individual electrons [21]. As many interesting and realistic systems
are formed from a large number of atoms, a computationally efficient, scalable, and
accurate method for chemical property estimation would be desirable [22].

DNNs may help in the discovery of stable chemical systems by quickly estimating the
potential energy at different spatial configurations, thereby reducing the search of pos-
sible configurations to be later verified with classical chemical simulations. Therefore,
in this case study, we were concerned with estimating the potential energy of Out-of-
equilibrium (OoE) molecular and crystalline systems, where the atoms are at positions
that are not at the minimum of potential energy. These energies are determined at the
electronic ground-state at given positions of atoms for static systems.

This study was supported with new datasets of diverse and OoE molecules and crys-
tals. The MD17 [24] and ISO17 [16] datasets provide the potential energy and inter-
atomic forces for eight small organic molecules (MD17) and 129 isomers of C7O2H10
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Figure 1.1: Overview of applying Deep Learning to a graph-based quantum chemical scenario. A
Molecular/Crystalline system defined by the properties of positional coordinates of atoms, type of
atoms, and types of bonds are fed to a Deep Learning network to predict the energy of a system.
Graph representation of a molecule (left from [23]) for the estimation of potential energy through
passing of messages between interacting atoms. Nodes are atoms and colour denotes different atom
types. Edges link chemically bonded atoms and colour denotes different bond types. Non-bonded
atoms may also share edges in fully connected graphs, but these edges are not represented for
readability.

(ISO17), with (independent) perturbations of their atoms’ positions. QM9 [25, 26]
contains a more diverse set of 134k molecules using carbon, hydrogen, oxygen, ni-
trogen, and fluorine atoms, but at their stable configuration only. The QM9 dataset
was augmented [25, 26] with OoE configurations for 10k of its molecules at a [90%,
150%] range of interatomic distances. In addition, two datasets composed of infinite
crystals and finite growing crystals of Aluminium (Al) and Copper (Cu) atoms were
created. The details of these datasets can be found in Chapter 4.

Through this case study, this work has demonstrated that integrating prior knowledge
on the problem into DNNs improves both the accuracy of potential energy estimation
and the applicability of the DNN to estimate well for more diverse chemical systems.
At the same time, it has highlighted the applicability of graph-DNN for the energy
prediction of OoE molecular and crystalline systems, where the atoms are at positions
that are not at the DFT calculated minimum of potential energy. Such systems are
represented as chemical graphs, with nodes denoting individual atoms and edges the
type of bond between them, as illustrated in Figure 1.1.

Integrating prior physics knowledge into the design of the DNN was shown to be an
effective strategy, leading to an improvement in accuracy and generalisation power to
more diverse chemical systems. Specifically, two physics integration strategies were
used: (1) the prior knowledge of the covalent bonding of atoms to produce a spe-
cialised architecture that takes advantage of the input bonding information; (2) intro-
duction of auxiliary estimations to further relate internal representations to relevant
physical properties. Knowledge of covalent bonds between pairs of atoms was used to
improve the DNNs’ accounting for atomic interaction. While auxiliary estimations was
used to further relate internal representations to relevant atom-wise and system-wise
physical properties. These enhancements were applied to both graph-based MPNN
and Convolutional Neural Network (CNN) SchNet, to significantly improve their per-
formance and produce the new state-of-the-art models to the estimation of energy of
OoE chemical systems.
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Figure 1.2: The online grooming detection process. Text-representation of chat logs are converted
into a tokenised representation, where tokens represent words, or sub-words. Tokens are further
represented by vector-based forms (word embeddings) where clustered vectors mean similar things.
These vectors are used by DNN to produce a ’grooming’ score. Higher scores indicates an increased
level of grooming occuring within the conversation. This process is the basic example of classifica-
tion of conversations with DL, to which we apply CL prior knowledge.

1.2.2 Corpus Linguistics

This second study has provided a means of testing the integration strategies with text
data. For the classification of this type of data, recurrent and transformers were used
and adapted from the domain knowledge of Corpus Linguistics. Corpus Linguistics
(CL) uses a set of texts (corpora) to study the usage of language within text and
provides quantitative analysis of the patterns within the usage of language through
statistical methods [27, 28]. Common examples of the output of CL analysis include
the co-occurrence of words that form common collocations, where such insights might
be invaluable for discriminatory analysis in other classification tasks.

The objective of this case study was the identification of Online Grooming (OG) using
a combination of CL and DNNs. OG is a communicative process of entrapment in
which an adult lures a minor into taking part in sexual activities online and, at times,
offline [29, 30]. The work aimed to detect instances of OG through the classification
of whole conversations. In the context of a law enforcement investigation, the main
aim of such automatic processing of large databases is to allow human investigators
to review conversations that are flagged as at risk in more detail. Classification in this
context then requires the ability to capture subtleties in the language used by groomers
and provide this knowledge to the law enforcement investigators.

The groomer messages’ theme and immediate purpose may vary throughout the con-
versation to achieve the overarching goal of entrapping the victims [29]. Groomers
use a series of inter-connected "sub-goals", or communicative processes, referred to as
OG processes here, namely gaining the child’s trust, through sharing personal informa-
tion, planning activities, building a relationship, isolating them emotionally and phys-
ically from their support network, checking their level of compliance, with groomer-
proposed activities, introducing sexual content and in some cases, trying to secure a
meeting offline. The language used within these processes is not always sexually ex-
plicit, which makes their detection more challenging. However, CL analysis also flags
some contexts associated with the OG processes, in the form of word collocations (i.e.
words that occur within the same window of 7 words) that tend to occur more fre-
quently and therefore can be associated with OG processes. We propose to exploit the
relations between the OG processes and their overarching goal of OG to improve the
final OG classification. We use the CL identified context windows to guide the learning
of our DNN.
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In this case study, combining the two disciplines of CL and DL has helped to cre-
ate a classifier to detect grooming chat logs. This study has enabled the testing of the
prior integration strategies in text-based classifiers, specifically recurrent networks and
transformers. This base case of classification of text can be seen in Figure 1.2. This
basic process was augmented to include CL prior knowledge to enhance the classi-
fier’s performance while also providing mechanisms for an explanation of the decision
process. The work demonstrates that, when integrated into DNNs, the products of
CL analysis may allow the better capture of language subtleties while simplifying and
guiding the learning task. Furthermore, it was shown that CL knowledge may help
law enforcement interpret the DNN decision process towards producing evidence for
potential prosecution.

1.2.3 Solar/Astrophysics

Our third and final case study tested our proposed prior knowledge integration strate-
gies in image-based object detectors. For this scenario, we used the study of Solar
physics. Solar physics is the study of mechanisms behind Solar activity and the rela-
tionship between our Sun and its environment. One solar phenomenon of interest are
Solar Radio Burst (SRB)s. These bursts are caused by plasma ejecting from the Sun
creating friction with solar windows, creating a low-frequency electromagnetic signal.

While historically SRBs were defined by their morphology, SRBs can be categorised
based on their physical properties, such as the frequency range in which they occur,
duration, intensity, and the speed of the decay of the frequency [31]. These categories
are labelled Type I, Type II, Type III and so on. In Figure 1.3, we show the regular
depiction (a spectrogram) of solar bursts with time along the x-axis and frequency
along the y-axis. From this, we see background radiation, a group of Type III bursts,
and a labelled Type II burst. Type II drifts decay slower than Type III bursts, creating a
distinctive visual difference between these two types of bursts.

While SRBs may be caused by various factors, Type II SRBs can be indicative of coronal
mass ejections (CME), where energy stored in the magnetic fields of a star build up and
result in an explosive release of electromagnetic and particle radiation. Usually a CME
has no noticeable effect on Earth. However, in rare cases, the electromagnetic radiation
interacts with the Earth’s magnetosphere causing disruptions to radio transmissions,
satellites, and electrical transmission lines [32, 31]. In some cases, electrical devices
can either be impaired or operate incorrectly, such as with cosmic bit flips where binary
data stored in a computer’s memory can change from a 0 to a 1 and vice versa. This
event is known to have caused an error in the 2003 Belgian election, where a candidate
received more votes than is possible [33]. Thus it may be necessary to expect the
arrival of a CME in order to shut down devices to prevent any damage. CMEs not only
have an effect on our computer hardware, but they may also pose more direct damage
to the health of astronauts and pilots, so detecting them early may be essential to
protecting the health of these individuals.

As SRBs travel at a speed of light, it is possible to use the presence of Type II SRBs to
predict an upcoming CME event. However, detecting these solar bursts could require
individuals to constantly monitor the data captured by solar burst detectors. Neverthe-
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Figure 1.3: Different types of SRBs that are used as image-based inputs to the object detector.
(Left) example of background noise and interference with no burst present. (Middle) includes a
Type II burst outlined with a white square. (Right) examples of Type III bursts. Due to the presence
of Type III overlapping with Type II bursts, in addition to various bands of noise, detection of Type
II bursts can sometimes be a difficult task.

less, recent ML solutions attempt to automate this detection process [32, 2, 34, 35].
However, detecting Type II bursts is more challenging due to their shape and their fre-
quent overlap with Type III bursts, and therefore efforts for automated classification of
Type II bursts are met with limited success.

This case study has used an object-detection model to detect Type II bursts. Given that
there is a small amount of annotated data, this study has relied on pre-trained weights,
and prior expert knowledge to improve the robustness of the detection model. To in-
tegrate prior knowledge in this domain, feature specialisation of the Type II and back-
ground properties of the data was used. Further experiments were conducted using
adversarial training and data-specific augmentation, making use of the prior knowl-
edge present in data to define searchable regions with which to construct adversarial
examples.

1.3 Summary of Thesis Objective

The work of this thesis aims to develop strategies to integrate prior knowledge into
the design DNNs. For this, we must introduce the general principles behind how prior
knowledge can form inductive biases and help the DNN to learn by constraining the
learning process. These principles are organised into four chapters by how each of the
methods are incorporating the knowledge into the design DNNs.

In addition to developing the strategies, we aim to give a comprehensive evaluation of
how well these strategies perform in different scenarios such as different DNN architec-
tures, and different types of input/output data. To achieve this aim, we have selected
three case studies in very different scientific domains test the integration strategies. Us-
ing these case studies has enabled the fully realisation of the proposed principles and
has demonstrated their usage in realistic scenarios for various types of data. These

9



CHAPTER 1. INTRODUCTION

case studies have provided insights into the performance and generalisability of each
method and allowed the exploration of how each of these methods complements other
methods..

For two of our case studies, namely the detection of online grooming, and estimation
of quantum chemical energy, our objective involves the construction and use of two
novel datasets to facilitate the training of DNN models. These datasets are designed
and annotated with specific properties to allow the use of prior knowledge, an essential
criterion for the success of the methods presented in this work. For example, our
new OG dataset includes annotations of grooming strategies or processes by expert
linguists, our various chemical systems provide examples of OoE systems at different
scales of systems for DNNs to learn atomic properties at various sizes of chemical
systems.

Our final objective is to demonstrate not just how each of these methods work in its
isolation, but also their additive effects and interaction when incorporated into a single
DNN. We aim to show that it is possible to make best use of prior knowledge, even if
the source of knowledge is the same, by using a combination of techniques that adapt
the design of the DNN in different ways.

1.4 Contributions

The contributions of this thesis are:

1. A set of methods to integrate prior knowledge strategies covering a wide range
of different DNN architectural types.

• Methods for specialising existing features within DNNs to enhance the use-
fulness of the representation for classification performance and visualisa-
tion.

• Specialised information processing to provide distinct representations of
specialised concepts in the domain being modelled.

• Excitation and stimulation-based mechanisms for recurrent and transformer
architectures to help DNNs focus on essential inputs.

• A method for providing domain-meaningful data augmentations. This con-
sists of two methods: 1) adversarial training; and 2) data-specific augmen-
tations. Our method of adversarial training is made to be conscious of the
data being perturbed with the addition of adaptive neighbourhoods to de-
termine the maximum amount of perturbation that can be applied to each
data point. This method firstly allows the adversarial generation algorithm
to modulate its strength to the individual sample of its data that its per-
turbing. Secondly, it may enable existing adversarial generation techniques
(such as FGSM and C&W) in situations where the potential adversarial can-
not be inspected visually, such as with non-image data.

2. Concrete implementations of these prior integration strategies in three case stud-
ies. The experimental results of each of the strategies show how they may work
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in practice while also demonstrating the potential benefits and limitations of the
approach.

• Three methods for modifying semantic relationships with word embed-
dings. We leverage the identification of preferred variants from CL analysis
to propose a selective text normalisation by modifying word embeddings in
support of the classification. We propose and compare three implementa-
tions.

• Three competing methods for providing specialised representations of chem-
ical bond-types into GNN architectures. We leverage the existence of differ-
ent types of node relations to modulate the information flow within the
GNN. To this end, we formulate and compare the three strategies, namely
specialised message production, specialised node update, and specialised
update function. We provide different implementations of the specialised
node update for GRU and dense layer-based update functions.

• A method for providing specialised representations of grooming commu-
nicative strategies into recurrent networks. We leverage the identification
of key themes from CL analysis to exploit their relationship to text class for
improved classification.

• A method for stimulating recurrent networks to provide attention to essen-
tial grooming strategies into the input conversations. Identifying critical
themes from CL analysis is used to exploit their relationship to text class for
improved classification.

3. A thorough evaluation of prior knowledge integration strategies both individu-
ally and jointly. They have been applied to the base models (DNNs with no prior
integration strategies) of each case study to demonstrate their flexibility.

4. Novel datasets for training DNNs:

• Chat logs of online grooming.

• Three new datasets for training quantum chemical systems to learn from
OoE molecular/crystalline systems.

5. State-of-the-art models for:

• Interpretable OG detection.

• Quantum chemical energy predictions of unstable systems.

• Solar burst detection

1.5 Organisation of Thesis

The organisation of this thesis is as follows: firstly, in Chapter 2, we give a general
background into DL. Secondly, in Chapter 3, we discuss the existing literature sur-
rounding the use and integration of prior knowledge into ML models is evaluated.
This literature review is not limited to only DNNs (as is the focus of this work), but
instead, explores a variety of solutions that help make the wider space of ML more
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trustworthy. Thirdly, the datasets and base models behind each case study are pre-
sented in Chapter 4. Fourthly, the proposed prior integration strategies are described
in Chapters 5 through 8. For clarity, the different strategies have been separated into
their respective chapter that consists of: (1) a general principle behind the method;
(2) specific implementation styles for the case studies; and finally (3) experimental
results given the selected case studies. This presentation style is intended to keep the
focus on one strategy at any one point to aid the reader. In Chapter 9, many strategies
are combined into a single DNN for each case study, and the performance of the DNNs
were evaluated on the desired task against comparison models. Finally, our concluding
remarks and recommendations are given in Chapter 10.

12



Chapter 2

Preliminaries

Given the scope of research and case studies presented in this work, many different
concepts are introduced. To aid readers unfamiliar with these concepts, this chapter
describes, in general, the application of these concepts to this thesis. Further and more
specific background on topics is given at the beginning at each method chapter.

We begin with the definition of core concepts in DL. Most importantly, for DL to suc-
ceed, one needs a dataset with which to learn from. In general, a dataset is a collection
of input samples, accompanied by output labels (in the context of supervised learning
methods). From these samples, a DL model can learn the input-output relationships
that, if the data is representative of real-world processes, can generalise to other un-
seen input samples.

Data A set of inputs X contains many observations or instances X = {x1, x2, ..., xn},
where each instance is composed of a set of features xi = {x(i)1 , x

(i)
2 , ..., x

(i)
m }. X is

said to contain n instances, of m dimensions with the total size n × m. As is often
the focus of this thesis, for the scheme of supervised learning, an additional set Y is
the known (true) result of applying some unknown function f over an instance x ∈ X
such that f(xi) = yi. The domain of data is a set of tuples from input and output sets,
D = {(x1, y1), (x2, y2), ..., (xn, yn)}.

Given a set of data, a learning algorithm can be used to learn to recognise patterns
that occur within the data and produce a predictive model. Our learning algorithm
of choice for our work is the DNN, an architectural type of ML model that has en-
joyed recent success in a variety of tasks from image recognition to natural language
understanding.

DNN The goal of DL is to find an approximate function f̂ from a set of possible func-
tions F that minimises an error inherent to the problem (cross entropy for classifica-
tion, mean squared error for regression for example), such ∀xi ∈ X , f̂(xi) ≈ f(xi)
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where the prediction made by the DNN is approximately close to the ground-truth as
it may be infeasible to find the true function f that created the ground-truth. f̂ is
considered to be the DNN that takes xi as an input, returns ŷ as an output, with hk the
hidden representation in the k-th layer of the DNN.

As DNNs are architectural types of ML models, one can vary the architecture itself
and the modality in which the architecture operates. The result is a different DNN
that follows varying styles of architecture, and indeed several styles are used in this
thesis. We give here a brief description of each of the different DNN architectures
and in which type of learning task they may be useful. However, it is not within the
scope of this thesis to comprehensively explain each of the models in great detail.
Readers should refer to resources such as [36] to gain a detailed understanding of the
traditional architectures and [37] for Transformer architectures.

Fully-connected networks are the most basic form of DNN where each neuron per-
forms a simple weighted sum of its inputs, applies a non-linear activation function,
and passes the output to all neurons in the proceeding layer. Activation functions
allow DNNs to learn non-linear relationships and ultimately increase the complexity
it can learn. Non-linear activation functions are applied to the linear output of each
neuron. One typical example of an activation function is the Sigmoid activation,

σ(x) =
1

(1 + e−x)

where σ the Sigmoid activation function and x is the output of the linear part of the
neuron. One useful property of the Sigmoid function is: ∀x ∈ R;σ(x) ∈ [0, 1] and
therefore is often used in a binary classification task where σ(x) < 0.5 denotes the
negative class, else a positive class. Other examples include the Rectified Linear Unit
(ReLU),

ReLU(x) = max(x, 0)

in which we have two linear parts of this non-linear function. Due to its simplicity,
ReLU is computationally efficient while often out-performing other, more complex, ac-
tivation functions and therefore has become the initial choice for non-linear activation
of hidden layers in a DNN. Another activation function that maybe used in the hidden
layer is the hyperbolic tangent (tanh) functions

φ(x) =
ex − e−x

ex + e−x

where the output of the function is always within the range of [−1, 1].

For situations where there are more than two possible classes, a Softmax activation
function may be used:
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softmax(x)i =
exi∑K
j e

xj
for i = 1, ...,K

where K is the number of class outputs. This function is used to normalise the
distribution of outputs such that for the output of the Softmax function we have∑

i softmax(x)i = 1, providing a distribution where we can interpret the values as
pseudo-likelihoods of the input being labelled as class i and the most likely class is
arg maxi softmax(x)i.

Unless specified, we use the ReLU activation function for hidden layers of the DNN,
with the Sigmoid function in the output neuron of binary classification tasks, and a
Softmax activation function for multi-class tasks.

Convolutional networks convolve over the input using a kernel, and are often used
to process images due to their inherent ability to capture spatial relationships in the
data. Convolutional networks are typically composed of three types of layers: (1)
convolutional layers where a kernel of learnt weights convolve over the input to extract
a feature representation; (2) pooling layers to down-sample the feature space thereby
reducing computational size of the network; and (3) fully-connected layers to project
the feature representation into a separable space for classification.

Recurrent networks, as opposed to capturing spatial relationships like Convolutional
networks, instead aim to capture temporal relationships by processing input in steps.
For example, by processing a sentence one word at a time. It is able to capture tem-
poral dependencies between words by using the activation of one input in a cell’s
‘memory’ state to be used in later inputs.

Transformer networks, while able to learn dependencies between inputs like Recur-
rent networks, do so by processing all the inputs at once and computing the attention
between each input and every other input. Despite its original design for natural lan-
guage understanding tasks, Transformer architectures have been used for many data
types including audio and images.

A DNN, regardless of architecture, is trained to approximate a true function f by opti-
mising its internal representation or weights and biases, given its accuracy on previous
predictions. To measure its accuracy, or rather, its in-accuracy of the DNN’s predictions,
a cost function is used.

Cost Function The process of ‘learning’ consists of updating a DNN’s weights and
biases to produce increasingly accurate outputs. In order to know how to update
a DNN’s internal weights and biases to become better at predicting, a measure for
determining its current performance is used. A cost (or loss) function uses the DNN’s
predictions ŷ and the ground-truth output y to produce a loss L for the DNN–how
badly a DNN is currently performing. The internal weights and biases of the DNN
will be updated in a way that reduces the loss, often with gradient descent. The
learning objective is therefore the minimisation of loss for a training set. A common
cost function for regression tasks is the mean-squared error (MSE) L = 1

n

∑n
i (ŷi− yi)2

that measures the average distance between predictions and ground-truth values in
the dataset.
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This measurement of distance between the predictions and the ground-truth labelling
is the same as the topological sense of distance. In the introduction of metric space,
one has a set of points X in the metric space and a distance metric g(x, y) to provide
a meaning to the expression that point x lies near point y [38]. The simplest distance
metric, as in Euclidean Space, is the L2 or Euclidean distance. In this way, the MSE
cost function is the average euclidean distance between predicted and ground-truth
labels. Unless specified, the distance metric is assumed to be L2. Though other distance
metrics are available, such as L1, and L∞

As the cost function allows the DNN to update the internal weights by measuring how
incorrect it was with its prediction, it is encoding and learning information from the
data. To help this process of learning, in this thesis, we often give examples of how
it is helpful to provide further hints to the network to become more accurate with
its predictions. Originating from the terminology of [39], hints are the introduction
indirect ’help’ to the DNN on how to solve a certain problem. For example, a hint on
how to improve on a classification task can be introduced via auxiliary loss terms.

Definition 2.0.1. Hints are the method of indirectly helping a DNN or providing more
information (such as with auxiliary loss functions) to improve it’s performance on a
desired task.

To learn an accurate approximate function, DNNs are typically created through three
phases: training, validation, and testing.

Training The DNN is given an observation xi and creates a prediction ŷi. This predic-
tion may be a scalar value such as the case with a regression prediction; a probability
distribution denoting a class assignment; or a scalar probability value that the input
conforms to a positive class. Based on its prediction ŷi and the true value yi, the DNN
will update its weight based on an cost function. Updating the internal weights of
the DNN will allow it to iteratively predict values that are closer to the correct value.
Training often consists of a number of epochs where the dataset it shown to the DNN
multiple times. A single epoch is one complete iteration of a dataset.

Validation During training, it is possible to overfit. This concept represents the state
where the DNN performs well on the training data, but badly with unseen data–it is not
generalising. Often, this is due to the DNN simply ‘remembering’ the seen input, and
not learning any useful representations that would allow it to predict well on unseen
data. Detection of overfitting is done through the second phase, validation. This phase
consist of checking the DNN against a very small sample (usually 10\some predictions
for this validation data, but will not be able to update it’s weights. This then give some
interpretation of how well the DNN is generalising during training.

Testing After the DNN has been trained and before the DNN is deployed, the DNN will
be finally tested on data that it has never seen before, the test set. This test set will give
another representation of how well the DNN generalises, but it does not suffer from
data leakage - the modification of hyper-parameters and DNN architectures in order to
perform well on the validation data. The DNN’s performance on the real-world data
is its generalisation performance. How well it is able to learn a useful representation
from the training data that can generalise to the real-world.
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Despite the accuracy DNN’s can achieve through this process of learning, existing work
(e.g. [6]), show that DNNs can be susceptible to so-called adversarial examples. These
are examples of input that, although being often indistinguishable from the original
input, result a very different output value causing a misclassification. The prototypical
example of an adversarial example where the modification of a few (selective) pixels of
an image of a pandas results in the DNN outputting a classification of a gibbon. Though
the example is not particularly concerning in this context, adversarial examples have
been known to occur in reality due to natural occlusion or noise [9], that can affect
self-driving vehicles from detecting stop-signs [40].

Definition 2.0.2. Given f , the classification implemented by a DNN, and some small
perturbation ε of an input x, an adversarial x? is ε-close to x with f(x?) 6= f(x), while
x? belongs to the same class as x.

To measure how susceptible to adversarial examples DNNs are, a robustness measure
can be introduced. One common measurement of robustness is created by the average
distance between original and adversarial examples. However, many more sophisti-
cated, and indeed informative measures of robustness can be used. (e.g. [41])

When creating an adversarial example, modifications are made to the original input,
but are usually bounded by some maximum distance, i.e. some maximum amount of
perturbation can be applied to the input to create the adversarial example. If we use a
bounded range of perturbation, we are specifying a neighbourhood of potential inputs
surrounding the original input to which an adversarial example could be created from.

Neighbourhoods capture some information as to the set of reachable points from some
point x given a maximum distance of travel away from x. We often use neighbourhood
in this thesis to refer to the set of points constructed via perturbation to an original
data point.

Definition 2.0.3. A neighbourhood to point x is the set of adherent points inside an
n-ball B defined by a radius r > 0. The open set or neighbourhood to x is {x̄|x̄ + ε <
B(x, r)}.
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Chapter 3

Literature Review

Integrating prior knowledge into DNNs is not the only way to increase the trustwor-
thiness of a system. There are many novel research methods one may use to create
trustworthy ML systems. Notable examples are: improving the interoperability and ex-
plainability of DNNs [42, 43, 44]; and the formal verification of specific DNN proper-
ties concerning the problem task [45, 46]. However, it would be untenable to research
all methods within a single thesis where each method is given adequate consideration
for its design. Thus, for this work, we concentrate on the distillation of expert knowl-
edge into the design and computation of DNNs. Through this focused approach, we
hope to create suitable solutions of how one may create trustworthy ML systems for
various other research disciplines.

In this chapter, we discuss the existing literature surrounding methods to integrate do-
main knowledge into ML. Though the purpose of this thesis is to focus on strategies for
DL, this review of literature is not limited to only DNNs. Due to the breadth of research
discussed here, we will reintroduce the most relevant works during the methodology
chapters.

The structure of this chapter follows the approaches we have set out: Feature Special-
isation, Specialised Information Processing, Attention on data, and Adversarial Exam-
ples. Nevertheless, it also includes other potential methods from the wider community,
such as logic-based methods.

3.1 Feature Selection & Extraction

Many traditional ML methods require more data processing than DNNs. With these
traditional methods and some insight into the data, practitioners can use feature en-
gineering to improve the performance of their chosen algorithm. Feature engineering
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may include feature selection where features are specifically chosen for their perceived
importance in the classification, or feature extraction where new features are gener-
ated from others to create more useful ones [47]. Indeed, feature extraction can re-
duce the complexity of the dataset and improve the representation of the data, making
it easier to learn from them.

One way of transforming the data is through automatic feature extraction. These can
take the form of dimensionality reduction using: principal component analysis (PCA)
[48], non-linear reduction with manifold learning [49], t-SNE [50], Laplacian eigen-
map [51], locally-linear embeddings [52], or spectral methods [53]. These methods
algorithmically select a subset of features that best describes the dataset, and become
especially important when the data has a large number of dimensions that the ML
algorithm cannot appropriately learn from.

However, if the dataset is small enough in terms of dimensionality, an alternative is
transforming the original dataset through a manual process of identifying and selecting
essential features. Similar to our case study of using CL analysis, this method has
been used to select relevant features for the detection of grooming in chat rooms.
This method is based on the assumption that a person’s societal cultural context can
determine which words they will use. For example, a computer scientist may use words
such as matrix or dimensions more than a psychologist. Therefore it may be possible
to use this particular usage of words as discriminative for the classifier. For example,
Hidalgo and Díaz [54] combine both linguistic and chat-based features to improve
the effectiveness of detecting OG in chat-rooms. Linguistic features can take the form
of the traditional term frequency-inverse document frequency (tf-idf) [55] statistics as
well as existing text analysis software to perform linguistic inquiry and word count
(LICW) [56], which provides categorical relationships between the usage of words
and the personality background of those who use them. Chat-based features are low-
level features that consist of the average length of messages in the chat room, the
time the messages were sent, the time between messages. They found that high-
level linguistic features improved over the baseline methods. The best combination of
features for the classifier was both linguistic features (tf/idf) and chat-based features.
These results may contradict the assumption that the usage of particular words can
implicate a person’s context, but it perhaps is a reflection of the classification method
(supper vector machine and logistic regression) not being sophisticated enough to take
advantage of the high-level information these features provide. Therefore, one can
manually select essential features as long as the model is capable to taking advantage
of the information that is provided to it. The work in this current thesis supports this
suggestion.

Instead of manually deciding upon the features, Ahmed et al. [57] use correlation-
based feature selection (CFS) and minimum redundancy maximum relevance (MRMR)
methods to select features from a set of magnetic features to predict solar flares. Both
CFS and MRMR select a subset of features that are correlated with a class (solar flare or
not solar flare), in addition to being un-correlated with other features. Through these
methods, the authors are able to remove features that are redundant or irrelevant.
With the removal of these features the classifier produced more precise predictions
while also not having a substantial impact on the number of false-positives.
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Even though the aforementioned approaches of feature engineering can benefit tra-
ditional ML techniques, there are interesting examples where feature engineering can
benefit DNNs also. Best et al. [58] apply temporal transformations to audio spectrums,
in addition to the mixup method of Thulasidasan et al. [59] to classify the vocalisa-
tions of orca whales using a CNN. Zhang et al. [60] use tf/idf and clustering to extract
relevant logs to predict future IT system failures with an LSTM network. van den
Oord et al. [61] apply a fourier transformation to music to recommend relevant songs
with a CNN. In these approaches, feature transformations are used to make features
more relevant, bringing forward the useful information from the raw data, to make
classification easier for the DNN.

3.2 Feature Specialisation

3.2.1 Indirect Specialisation

By using indirect specialisation to augment the latent feature representation, knowl-
edge of domain constraints and quantities can improve the trustworthiness of the
DNNs by encouraging the model to learn from the prior expert knowledge to perform
well at the intended task.

When training a DNN, there are two opposing methods for training:

• Single-Task Learning – Single-Task Learning (STL) is a more typical example
of how DNNs are used to learn on a single task, such as image classification or
regression.

• Multi-Task Learning – Multi-Task Learning (MTL) is the strategy of sharing in-
ternal DNN parameters between many auxiliary tasks as an approach to help the
model generalise better than STL alone [62]. For a full review of MTL see [63].

There are two approaches for how to incorporate MTL in the training process of DNNs,
which differ by how the model’s parameters are shared between the auxiliary tasks:

• Hard-parameter sharing – In hard-parameter sharing, there are generally a set
of hidden layers shared between all tasks. In order to produce the output for
each of the auxiliary tasks, there are some task-specific output layers. Examples
of using hard-parameter sharing in MTL tasks are: [64, 65].

• Soft-parameter sharing – Soft-parameter sharing differs from hard-parameter
sharing in that each task has its own set of layers (and therefore its own pa-
rameters), and the distance between the representations are regularised using
some distance metric, such as the euclidean distance. Usages of soft-parameter
are demonstrated by Duong et al. [66], where the authors create a cross-lingual
text-parser using a DNN with soft-parameter sharing. The parameters between
tasks are regularised using the L2 distance metric.
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Hard-parameter sharing is the most common approach for MTL [62], and can be appli-
cable for a most applications. Sener and Koltun [64] demonstrate its applicability to a
variety of DL problems from digit classification to scene classification, and DNN archi-
tectures. Yang and Hospedales [67] use hard-parameter sharing to perform sequence
tagging across different languages simultaneously.

Many standard practices for indirect specialisation, particularly in MTL, use common
representations via hard- or soft-parameter sharing. This technique has been success-
fully demonstrated in [64, 65, 66]. However, intelligently selecting shared represen-
tations has also proposed. For example, Sun et al. [68] demonstrates an algorithms
that learns to select the best DNN layers for sharing parameters between tasks. This
algorithm, when applied to a DNN, can produce a model that outperforms other mod-
els using hard-parameter and soft-parameter. Intelligently selecting shared representa-
tions is also explored in Standley et al. [69], where three techniques (optimal solution,
early-stopping approximation, and higher-order approximation) are introduced to de-
termine which auxiliary tasks should share which shared representations. Although it
is able to find the best parameter sharing, they find optimal solution to be computa-
tionally costly during training time. These technique of Standley et al. [69] may be
more applicable to different forms of DNNs other than Sun et al. [68], as it does not
require learning connections between representations in the architecture but rather
just the output of the DNN.

Application of indirect specialisation can be accomplished via auxiliary tasks. These
tasks are related to the main task for the DNN, but produce secondary outputs. From
these secondary outputs, domain knowledge may be integrated into the DNN. Fur-
thermore, these auxiliary tasks may assist with sparse and low-quality data. Auxiliary
tasks may help improve the generalisation of the DNN and provide potentially more
informative predictions with multiple outputs.

Using auxiliary tasks is a common method to estimate proprieties in physical or chem-
ical problems. For example, Raissi et al. [70] combined a DNN module that estimates
mass and momentum, and this new module constrains the solutions by implement-
ing partial differential equations of fluid dynamics using automatic differentiation and
estimating the equations’ parameters. Schütt et al. [71] used a similar approach to im-
prove SchNet’s predictions of both energies and their derivatives w.r.t. atom positions
into interaction forces. Yang et al. [72] use the same approach into a generative ad-
versarial networks (GAN) framework to solve stochastic differential equations. These
approaches have shown auxiliary tasks is a useful method learning.

Gülçehre and Bengio [39] integrate prior knowledge using auxiliary predictions into
the hidden layer of simple Multi-layer Perceptrons (MLPs) to predict whether three
Tetris sprites in a 64x64 pixel image are of the same shape. The MLP learns to predict
auxiliary features such as the presence and location of the sprites. These auxiliary
predictions are made from the intermediate layer of the MLP from the experimental
observations that DNNs are more easily trained when they are given hints about the
representation the intermediate layers should be modelling [73, 74, 75].

Indirect specialisation has also been tested as a method to encode logical formulas.
Muralidhar et al. [76] penalise a DNN’s output violating logical rules w.r.t. the input
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features. Hu et al. [77] use the posterior regularisation framework of Ganchev et al.
[78] to encode domain constraints for generative models. A teacher-student architec-
ture in Hu et al. [79] incorporates first-order logic rules used by the teacher network to
create an additional loss for the student network. Overall, losses efficiently integrate
priors in several application domains, and the additional loss approach is explored in
this thesis.

Overall, indirect specialisation can be a practical approach to promote trust in DNNs:

• Encoding multiple properties can reduce over-fitting on a single task.

• It may focus attention on informative inputs for predictions [62].

• Multiple output predictions resulting from auxiliary tasks may provide more in-
formation for the human to make informed decisions.

3.2.2 Direct Specialisation

While indirect specialisation implicitly encodes the prior knowledge into the DNN
through the use of auxiliary tasks, direct specialisation makes direct modification to
the representation following the domain knowledge. Sometimes the information en-
coded structures in these hidden representations is known to the human, and in these
situations, it is possible to make modifications to these structures that enable the adap-
tion to prior domain knowledge.

Word embeddings are one such DNN representation a human observer can understand.
In word embeddings, each word is represented by a coordinate in an $N$-dimensional
space. The structure of word embeddings is trained to exhibit semantic and lexical
relationships [80], where the distance between embeddings is trained to be roughly
equal to the semantic information of these words. For example, words that mean
similar things should have embeddings that are positioned closer together within the
representation, e.g. doctor and nurse may be positioned closer together, while doctor
and farmer will be further apart.

Gender bias has been a critical topic for the direct specialisation of word embeddings
[81, 82, 83, 84]. As many large corpora for training language-learning DNNs contain
biased data concerning the male/female gender, techniques have been put forth to
mitigate the effect the bias will have on the usability of a DNN trained on the data. To
combat this effect, Bolukbasi et al. [82] reduces the gender bias in word embeddings
through direct modification of embedding coordinates. Given an embedding space,
the singular dimension is statistically related to the concept of gender. For gendered
words of the same usage (such as he or she), the words are moved closer together in
the embedding space. Wang et al. [85] compute a subset of dimensions using PCA of
the top 500 male- and female-biased words identified in GloVe. The un-biased em-
beddings are computed by reducing the distance of the orthogonal direction of the
gendered dimension. This appearance of bias in word embeddings is further explored
for contextualised embeddings by Zhao et al. [84]. The authors analyse the contextu-
alised word embeddings of ELMo and find two dimensions corresponding to gender,
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unlike the single dimension from the GloVe representation of Bolukbasi et al. [82].
Two approaches are used to produce non-biased embeddings: 1) data-augmentation
by swapping words with the opposite gender during training, following the approach
of Zhao et al. [83]; 2) generating gender-swapped versions of the input text to obtain
embeddings of both original and gender-swapped texts and then average the embed-
dings. The first method, although more successful in reducing gender bias in contex-
tualised embeddings, requires retraining ELMo. Gender bias here has been a pivotal
topic for demonstrating how prior knowledge can used to adapt learnt representations.
In this example, the knowledge that words of different genders should not affect how
the word is perceived by the DNN. This is incorporated directly into the representation
of word embeddings.

3.3 Specialised Information Processing

Specialised information processing, as opposed to sharing representations like indirect
specialisation, provide unique parameters for different concepts in the domain. These
different parameters enable the learning of specialised concepts that may be helpful in
improving performance on a task or improving trustworthiness.

Specialised information processing have been adapted to recurrent cells, specifically
Long-short Term Memory (LSTM) cells. For instance, Lu et al. [86] combine the MTL
paradigm of Feature Specialisation with a specialised information processing method
to create a new LSTM cell. This specialised processing channel learns task-specific
information to perform natural language tasks, such as named-entity recognition and
part-of-speech tagging. The LSTM-cell proposed by Lu et al. [86], Shared-Cell LSTM
(SC-LSTM), similar to our design of Specialised information processing discussed in
Chapter 6, carries specialised representations for individual tasks, and performs the
final task. The specialised representations are concatenated with general representa-
tion. A different method by Kim et al. [87] shares a similar design philosophy where
a single general LSTM is used to capture information from many inputs, and single
specialised LSTMs capture information from a single input. The representations from
these general and specialised LSTM cells are additively combined to produce the final
output.

These methods of Lu et al. [86] and Kim et al. [87] differ by how the specialised infor-
mation processing feed back into the generalised representation for the final predic-
tion. While both of these proposed methods use sub-networks to capture task-specific
information, in Lu et al. [86], the sub-network uses: (1) the previous specialised cell
state; and (2) the current cell state of the generalised cell to create a new specialised
cell state. The output of this timestep is the concatenation of both specialised cell state
and hidden state. In Kim et al. [87], the sub-networks are less connected during each
timestep, and the final output is only the addition of all cells.

Instead of using sub-networks to capture task-specific information, Liu et al. [88] op-
erate under the principle that many layers of stacked LSTMs each contain within itself
different information for a specific task. However, in normal stacked LSTMs, the pre-
ceding layers require information from the previous layers. It, therefore, becomes
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harder to use each of the layers of information independently. In their work, in an
attempt to leverage the task-specific information available in each layer of the stacked
LSTM, they fully connect the input of each LSTM layer with all of the preceding layers,
enabling pruning of some of the subsequent layers without dramatically changing the
information. This idea of task-specific representations at different layers is shared by
Søgaard and Goldberg [89], who apply multi-task learning to only the lower-levels of
DNNs, allowing higher-level layers to form higher semantic representations, and also
Alonso and Plank [90] where different auxiliary tasks are added to different layers of
a stacked-RNN.

The design of specialised information processing are not limited to recurrent net-
works. Other methods have been designed to incorporate specialisation communica-
tions within graph structures. For example, Schlichtkrull et al. [91] propose relational
graph convolutions to handle large multi-relational graph structures. For this, unique
parameters are associated with each of the different types of relations, thereby provid-
ing a specific processing channel per concept in the domain. Instead of using a single
DNN for the entire graph like Schlichtkrull et al. [91], Ying et al. [92] compose the
graph into hierarchical layers, and at each layer, a unique GNN is used to produce
graph embeddings for the downstream task. Wang et al. [93] use specialised infor-
mation processing to combine the features from different levels of attention (e.g. the
attention over a single node or the attention between multiple nodes).

From these works, specialised information processing may be appropriately integrated
into the design of DNNs to account for domain knowledge. In doing so, each of the
concepts modelled by the specialised information processing methods may help in
improving the performance of the DNN by feeding back into the generalised represen-
tation. It is also common for specialised information processing to be combined with
indirect feature specialisation [86, 89, 87, 94, 90]. Combining these approaches pro-
vide hints to DNN on how each of the domain concepts should be represented, thereby
helping the learning process of the DNN. This strategy is compared within this thesis.

3.4 Attention on Data

From Section 3.1, we highlight that some features are more critical or informative
for the classification or regression task. When training a DNN, we would like to at-
tend to these critical features (both input and latent representations) automatically
through the supervised learning process. However, in situations where the feature
importance is already known, the attention of DNNs to these features may be im-
proved via supervised or unsupervised attentional approaches. In supervised atten-
tion, ground-truth labels are used to guide attention during training. Though some-
times called self-supervised attention, in unsupervised attention, no labels are used
to train the attention mechanism, in principle, it is optimised via back-propagation
with the downstream task of classification, detection, or regression. The distinction
between supervised and unsupervised attention refers to how attention is optimised,
i.e. with or without prior knowledge. Even if the DNN is trained via a supervised pro-
cess, such as with language translation, the attention implemented in such DNN could
still be unsupervised. Attention mechanisms have been adapted to various forms of
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DNNs: Recurrent Neural Networks [95, 96, 97, 98, 99], Transformers [37, 100], and
Convolutional Neural Networks [101, 102, 98, 99]

Unsupervised attention is one of the more popular techniques due to the recent Trans-
former architecture by Vaswani et al. [37], which has been a quickly emerging topic
for improving the performance of many DNNs. Unsupervised attention was first intro-
duced for language translation tasks by Bahdanau et al. [96], where the concept of op-
timising the hidden-state communication with attention between Encoder-Decoder ar-
chitectures was introduced. This idea was further pursued for a number of applications
including NLP [37, 103, 1, 104], image recognition [102, 105], image-to-image trans-
lation [106], speech recognition [107, 95], and reinforcement learning [108, 109].
Further improvements onto this design of unsupervised attention were developed by
Luong et al. [1] in which two modes of attention via global optimisation (using all
hidden-states) and local optimisation (considering only a subset) were presented, in
addition to the Dot-Product attention that is further refined with a scaling factor to ac-
count for very small gradients. The result is the method Scaled Dot-Product Attention
used as a key computation used in the Transformer architecture. These improvements
have cemented the usage of attention as key component for many different topics in
ML.

Saliency is a cornerstone method for incorporating attention mechanisms into the de-
sign of CNN architectures. Saliency describes the ability of an object or feature to stand
out from its neighbours. Saliency estimation may help in attending to particular fea-
tures within the scene [110]. Zhang et al. [101] use multiple levels of features (from
different layers of the CNN) to create attention weights that can be used as saliency
maps for an object detection task. These attention weights can be optimised using
target saliency maps, providing ground truth annotation for supervised attention. In
this work, the authors find that applying supervision to attention weights improves the
performance of object detection. Wang et al. [111] use DNNs to estimate the saliency
of objects using local and global information of the image. Into the global estimation
DNN, the authors use known priors such as contrast and background information to
improve saliency estimation performance.

Supervision may be used to guide the attention mechanism through the use of target
labels. The training procedure can integrate priors without modifying the DNN’s archi-
tecture. For example, Derakhshani et al. [112] use assisted excitation of CNN neurons
in the images’ areas of interest, thus providing localisation and semantic information
to the DNN. An attention mechanism was used in a supervised way to focus a DNN
on essential words in Nguyen and Nguyen [97]. Cornia et al. [99] use eye fixation
of humans as the ground-truth saliency map. Saliency predictions are optimised in
CNN+LSTM architectures using the ground truth annotations. For a language trans-
lation task, Mi et al. [113] add an alignment (quantification of attention the decoder
is placing on each word) distance to the cost function during training. These works
provide strong evidence that prior knowledge may be help improve attention onto
important features.

Attention can be used to optimise the compression of large amounts of information.
For tasks such as sentiment analysis with long sequences and image caption genera-
tion, compressing large amounts of information into a fixed-sized vector can be chal-
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lenging, and some information will be lost in the process [114]. Luong et al. [1]
addresses this with local attention that focuses only on a few words in the source lan-
guage of a translation task. This local attention includes a smaller context window
over which the attention algorithm is applied over. Indeed attention can provide hints
to the DNN on what features to attend to when performing this compression process
and possibly result in a set of features that are richer and more descriptive for their
intended task.

In some cases, attention can be used to focus on essential features and improve the
computational speed through this focus of attention, thus leading to a reduction of
model parameters (see Mnih et al. [98]). Through the use of supervision, attention
could be adapted to include prior domain knowledge following the expert’s under-
standing of important features (see Chapter 7).

3.5 Generating Adversarial Examples

Despite the improvements in performance that DNNs bring for many ML applications,
they are susceptible to so-called adversarial examples, where very small and specific
changes to the input result in a different classification. These adversarial examples
undermine the trustworthiness of DNNs as the adversarial example, from the perspec-
tive of the human, appears to be identical to the original input. In this section, we
will highlight some of the key works that introduce methods that generate adversarial
examples.

A DNNs susceptibility to adversarial examples was first shown by [6]. In this work they
had demonstrated that, even for state-of-the-art image classifiers, by modifying the in-
put with very small changes, i.e. perturbations, they were able to change the output
classification of DNNs. To generate these perturbations they used a box-constrained
optimisation method, that locates small-probability ‘pockets’ around the original im-
age that produces the misclassification of a target class. Moreover, this work shows the
susceptibility to adversarial examples is not simply an artefact of the training meth-
ods (as a model trained on a different subset of the data would produce the same
miss-classification), but rather propose there is a deeper and not fully understood the
meaning behind the effect. Though these adversarial examples undermine the trust-
worthiness of DNNs, creating methods to generate them is useful for improving the
DNNs robustness to these forms of attacks.

One way to classify adversarial example generation methods is by how much model
information they use in the generation process. These two types are black-box (using
very little information) and white-box (where more model information is used).

White-box – White-box algorithms relies on direct information about the model archi-
tecture or how the image is processed. For example, standard white-box methods use
the gradient of the DNN’s loss function w.r.t. the input image to compute the adver-
sarial example from this image. While this method can quickly and easily find adver-
sarial examples, this kind of gradient information would not be available in real-world
scenarios, i.e. deploying the DNN in an online web-application. Despite white-box
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methods not necessarily being applicable for exploiting and attack DNNs in these real-
world scenarios, they are still useful for improving the robustness of DNNs through
the use of adversarial training. Many research methods have shown that despite the
methods using targeted DNNs, exploiting the information of the image gradients, the
computed adversarial examples are often transferable to other types of models, even
those with very different architectures. Common types of white-box methods include:
using gradient information, manifold sparsity, and selected pixel manipulation.

Black-box – Black-box methods may be more applicable in real-world scenarios as
they use no information of the model they wish to attack. These methods can often
perform multiple queries (i.e. repeated inputs with varying values) against the model
they wish to create adversarial examples for. This process of querying can take much
longer to find adversarial examples than the white-box methods. Common methods
for black-box include: multiple querying, and surrogate models.

Another way to classify adversarial attacks is by how they target the resulting classifi-
cation of the adversarial example. Targeted attacks are those methods that specify a
misclassification label that should be assigned to the adversarial example. For exam-
ple, given an image of a car, one may want to find the perturbation that results in the
classification being a plane. While un-targeted attacks do not require a misclassifica-
tion label of a specific type, in these cases, it is enough for any misclassification label.
In the example of the image of the car, any different classification label apart from the
original true label is desired.

Adversarial examples for image-classifiers are more common than object detectors as
the problem task is more straightforward. For example, given an input image, a single
classification label is output from the DNN. Thus to make an adversarial example for
this DNN, a perturbation would need to apply to the input that results in a different
classification label.

3.5.1 Creating Adversarial Examples for Image Classifiers

For image classifiers, many methods have been proposed. While Szegedy et al. [6]
proposed to use the adversarial examples as part of the training set, the optimisation
process was computationally expensive. Later work by Goodfellow et al. [3] creates a
faster method for creating adversarial examples (Fast Gradient Sign Method, FSGM).
FGSM adds the sign of the gradient w.r.t. the cost function to the original image.
Doing so is purposefully pushing the pixel value of the image in the direction that
increases the loss of the prediction and thus creating a misclassification. This approach
is computationally quick enough such that the method can be included during training
time to increase the model’s robustness against these forms of attacks.

Whereas in FGSM, imperceptible changes are made to the entire image, a different
method by Papernot et al. [115] makes a prominent and noticeable change to a small
region, while the rest of the image remains untouched. This method works by comput-
ing the Jacobian matrix of the input image to find the most significant or salient pixels
of the image in which to perturb. While showing their method can outperform many
other adversarial attacks in various scenarios, its reliance on computing the Jacobian,
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a potentially slow computation, restricts its usability in many applications.

Many of these previous methods perform a single computation step to modify the pixel
values, though other iterative methods have been proposed. One effective iterative
method comes from Carlini and Wagner [116] where they introduce the C&W attack.
Their work improves upon the objective function of Szegedy et al. [6]. Moreover, to
improve the optimisation of the method, in this work, they proposed many alternatives
objective function candidates as well as distance metrics. The C&W method can often
outperform many of the existing approaches to more easily fool DNNs.

Despite many methods being proposed to easily fool DNNs, very few quantify and
compute the robustness w.r.t. adversarial examples. The DeepFool algorithm proposed
by Moosavi-Dezfooli et al. [117] aims to compute adversarial examples and compare
the robustness of various classifiers to particular types of perturbations. DeepFool
iteratively perturbs the original image in the direction of the closest hyperplane and
thus creates a misclassification with a minimal Euclidean distance to the original image
in a potentially quicker time than Goodfellow et al. [3].

Instead of using the gradients to manipulate the image like [3], Huang et al. [118] ap-
plies small perturbations to the output of activation functions in the DNNs. By slightly
manipulating the activation in each layer of the DNN, they test for the existence of an
adversarial using an Satisfiability Modulo Theory (SMT) solver to check whether the
perturbed activations would result in a misclassification. If these perturbations create
an adversarial example, the activations are propagated backwards towards the input
layer, where the image that results in the misclassification is generated. One of the
discretisation methods to find adversarial examples possible–the Lipshitz continuity
assumption, has been further explored for sigmoid and hyperbolic tangent nonlinear
functions in Ruan et al. [119]. They use this continuity to evaluate the reachability of
the network with the aim of both proving properties of the output ranges in addition
to generating adversarial examples.

The benefit from using knowledge of the model, i.e. white-box methods, whether it
is through activation analysis or gradients, is that adversarial examples are created
quickly and with a minimal number of perturbations, enabling the knowledge of ad-
versarial existence to be used within the training process and therefore creating a more
robust model that is less susceptible to adversarial attacks. However, it is often the case
that these white-box methods generate adversarial examples that may only be applica-
ble for a small selection of DNN architectures. Black-box methods, on the other hand,
may find adversarial examples that are more applicable to a broader rand of models.

One type of black-box formalisation is shown in Zheng et al. [120], where adversar-
ial examples are constructed using realistic constructs such as JPEG compression and
other image artefacts by adding Gaussian noise to all pixels. Guo et al. [121] show
that given randomly picked dimensions in the input space, an ε can be either added
or subtracted from the dimension in a way that reduces the probability of the target
class. In order to find adversarial examples using this method, multiple queries must
be made against the model before one can be found. However, given the simplicity of
modification made, this random method minimises the number of queries posed to the
black-box model and yet achieves a 100% success rate of attacking the model in most
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cases.

By not using direct model information, the many approaches instead focus on salient
features in the input to generate adversarial examples more quickly and with fewer
queries. Wicker et al. [122] use the Scale Invariant Feature Transform (SIFT) method
to detect salient features from within images. Pixels within these features are manip-
ulated by sampling from a Gaussian Mixture Model. They show through the SIFT
algorithm that realistic camera movements such as rotation can create adversarial
examples, creating concerns for the use of any automated driving systems. Other
techniques for detecting salient pixels has been explored by [123], where pixel-wise
decomposition to detect necessary pixels for classification is used. Decomposition here
involves two competing methods: 1) Taylor-type decomposition, where Taylor expan-
sion approximates the prediction and finds the classification boundaries. 2) layer-wise
relevance back-propagation where the relevance of each pixel can be computed at each
layer and accumulated at the input. By modifying these particularly important pixels,
they can flip the classification made by the DNNs with a high degree of confidence.
These methods, though not being always successful due the limitations on the model
information that can be exploited, do demonstrate that DNNs can be attacked with
adversarial examples in realistic scenarios such as when they are deployed as part of
a web-application, thus further highlighting the need for the improved robustness to
perturbation.

While many of these existing methods aim to generate adversarial examples for the
means of demonstrating their methods efficiency in doing so, while also highlighting
DNNs susceptibility, research has also been conducted to quantify the robustness of
DNNs. Using the adversarial attack method of Huang et al. [45], Duncan et al. [124]
evaluates quantised networks’ robustness. Quantisation decreases the floating-point
precision of DNNs from the normal 32-bit to 16-bit or lower. The authors find that
when transferring DNN weights from 32-bit to quantised forms, the robustness of the
DNN is often preserved if not enhanced. This observation may coincide with the no-
tion that half-precision DNNs generalise better due to reduced over-fitting [125]. The
role of quantisation on the measure of robustness is further explored by Gorsline et al.
[126], who vary the strength of adversarial attacks and the amount to which quanti-
sation is applied. In this work, the authors find a point at which further quantisation
does not affect the defence of adversarial attacks. However, this work considers only
MLPs, leading to possible future work to consider alternate architectures to determine
if this trend continues.

3.5.2 Creating Adversarial Examples for Object Detectors

Since [6] has shown DNNs are susceptible to adversarial attacks, much research has
provided both exploitation of this weakness and defences. However, these methods
are often developed solely for image classifiers, where a single image is given a single
classification label. Little work has considered the case of object detectors and image
segmentation models, where individual objects or pixels are classified within a scene.
These detectors are generally more challenging to create adversarial examples due to
the number of bounding boxes at various scales that could be considered for object
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detection. A typical object detector could create thousands of potential regions for
classification, in contrast to the single classification made by traditional image classi-
fiers.

However, recent research has proposed methods to enable the generation of adversar-
ial examples for object detectors, and therefore also allow the adversarial examples to
be used as part of adversarial training – potentially boosting the models’ robustness to
these types of adversarial attacks.

These methods, much like the methods created for image classifiers, rely on bounded
variations of input space. More specifically, the perturbations made to regions of the
image are bounded by a single shared value. Our work on generating neighbourhoods
(Chapter 8) aims to improve and augment these adversarial attack methods by making
the bounded variations more specific and unique for each sample of the dataset. This
method consider the density (or conversely the sparsity) of the input space and the
estimated class boundaries that may be close to these samples. The complete method
can be found in Chapter 8.

Adversarial examples for image classifiers can only create misclassifications, while ob-
ject detectors are prone to two types of errors as a result of perturbation:

Misclassification – As object-detectors predict a classification label for each of the
bounding boxes estimated to contain an object, adversarial examples can be created
through the misclassification of these bounding boxes. For example, by taking an
object of type dog in a scene, the object detector can place a bounding box over the
dog but label it as a horse. In this situation, while it has correctly predicted that this
region of the image contains an object, it is incorrect as to what object the region
contains.

Mislocalisation – Mislocalisation differs from misclassification in that it does not mat-
ter what the final classification of the object is. In this type of attack, the object-
detector would predict bounding boxes for superfluous objects or objects that do not
exist in the scene.

Many of these types of attacks for object detectors can be categorised by how they
intend to create the adversarial examples. These categories are Disappearance attack
and Creation attack [9]. The disappearance attack aims to fool the object detector into
missing or not recognising the ground-truth object that exists within the image, while
the creation attack performs the opposite: this attack fools the detector to classify and
mislocalise objects that do not appear in the image.

Disappearance attack – In disappearance attacks, the input to the detector is manip-
ulated in a way such that the ground-truth is not detected by the model. This type of
attack is often used for image-classifiers, where the image is manipulated to give the
incorrect class label. To achieve this type of adversarial example for object detectors,
however, pixels of the object to make disappear can be manipulated [127, 9, 40], or
more salient targets within the scene can be created [128].

Creation attack – The creation attack’s aim is to fool the object detector to detect non-
existent objects within the scene. Examples of these types of attacks can often take
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the form of ‘patch’ type manipulations, where a small subset of the image undergoes
a large amount of perturbation while the rest of the image remains untouched. These
patches could be physical stickers placed in the scene [9] or applied directly to the
image before detection with the DNN [129]. While patches have been used to create
mislocalisations, less strict complete image manipulations can achieve the same attack
[130, 131].

A popular trend in demonstration the applicability of adversarial examples for object
detectors is causing a United States-based stop sign to disappear [40, 9, 132, 127, 128].
This case is the epitome of a safety concern should a fully autonomous vehicle (using
an object detector as its main source of checking environmental hazards) fail to spot
a stop sign and continue driving without stopping safely. These signs are made to
disappear by manipulating the red background of the sign [40, 9, 132, 127], or by
causing the object detector to focus on a more salient part of the image [128]. Often
we see these adversarial examples tested at different viewpoints: indoors/outdoors, at
different distances, and different angles; before being applied to viewpoints of vehicles
travelling down the road next to the sign [132, 40].

Many methods for generating adversarial examples have been proposed for the simple
problem of image classification but far less for object detection. Attacking an object
detector is usually more complex than an image classifier, as the detector model will
produce multiple bounding boxes at varying scales. Xie et al. [131] propose Dense
Adversarial Generation (DAG), an optimisation procedure that suppresses the confi-
dence in the true correct class while also increasing the targeted incorrect class. DAG
applies back-propagation from the pixels in the image for image segmentation or to
the proposals. However, the authors find that, for object detection, it is necessary to in-
crease the number of proposals made by the Region Proposal Network (RPN) in order
to make proposals denser and thus have more probability of being close to the input
proposals to the rest of the network.

DAG can often require many iterations to generate an adversarial example. To address
this, Wang et al. [130] propose using Project Gradient Descent (PGD) to attack an ob-
ject detection model, Faster R-CNN. Their method consists of using the total combined
(summed) loss of the two-stage detector, which can more quickly find adversarial ex-
amples more often than the current state-of-the-art Dense Adversary Generation (DAG)
method. While their method proposes using the summed loss of the network to create
the examples most optimally, they show the contribution of the individual loss terms
towards the success rate of fooling the detector. They find the classification loss terms
are generally more susceptible than the bounding-box regression loss terms, and the
Fast R-CNN loss terms more susceptible than the RPN loss terms.

As object detectors aim to detect and locate objects within a scene, some methods
have been proposed to perform real-world manipulations to the scene. Chen et al.
[40] propose the adaptation of the change-of-variable attack and Expectation-over-
Transformation. In this work, the red colouring of a stop sign was perturbed in a way
that makes DNNs fail to detect the sign’s presence. For instance, Song et al. [9] improve
an existing /Robust Physical Perturbations (RP2) technique of creating physical adver-
sarial examples for image classifiers for object detectors. More physical variation, such
as object position and rotation, is added to the distribution of perturbations that can
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Table 3.1: Summary of Adversarial example generation methods for object detectors.

Model Information Attack Type

Citation Year Black-box White-box Disappearance Creation

Lu et al. [8] 2017 x x
Xie et al. [131] 2017 x x x x
Song et al. [9] 2018 x x x x

Zhao et al. [127] 2018 x x x
Chen et al. [40] 2019 x x

Huang et al. [128] 2019 x x x
Lee and Kolter [129] 2019 x x x

Wei et al. [133] 2019 x x x
Wang et al. [130] 2020 x x x x

Liao et al. [134] 2020 x x x

be made. An additional smoothness constraint is added to reduce the pixelated per-
turbations to improve the success of misclassification at various distances. Lu et al. [8]
propose to create adversarial examples that are invariant to viewing conditions. This
method, tested on a video scene of a stop sign, maps a base texture (e.g. red of the
stop sign) to each from of the scene. Through this mapping, this method may perturb
certain pixels of the stop sign that may be invariant to the viewing condition of stop
sign at any one frame in the video.

In Table 3.1, each of the categories to which each method uses model information,
and which attack type they perform are shown. For all cases, white-box methods are
used with the majority of attacks being of disappearance. For instance, using model
information to make a stop sign to disappear. Though other methods do use surrogate
models to test the transferability of the generated adversarial examples to other object
detectors.

In certain cases, in particular when the generation method is computationally quick
enough, these adversarial examples can be included during training to improve the
DNN’s robustness to certain types of perturbations. This method of training, adver-
sarial training, can increase the DNNs robustness to perturbation by including the loss
w.r.t. the perturbed input in the final loss of the network, thereby enforcing the resis-
tance against this type of perturbation while also providing a small variation on the
training samples seen during training.

The existence of adversarial examples demonstrates why it can be difficult to trust
decisions made by DNNs. The presented methods may improve the trustworthiness
by either using fast and efficient generation methods to apply adversarial training
and thus improve the DNNs robustness against possible future adversarial attacks, or
aims to systematically quantify the DNN’s robustness and therefore understand when
a model may be more susceptible than others in certain situations.
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3.6 Knowledge Representation & Logic-based Methods

It can be difficult for many of the existing DNN architectures to perform inductive
reasoning and exploit existing domain knowledge encoded in symbolic forms [135].
The field of Knowledge Representation is concerned with how information can be
represented to allow computer systems, and indeed ML models, to reason and make
decisions given the existing knowledge base. These methods combine formal reasoning
with probabilistic systems. At a high level, some of these methods consist of:

• Representation of knowledge as graphs, such as ontologies, in a way that classical
DNNs can use the information.

• Fuzzy Logic to relax the domain constraints and learn the relations between
concepts.

• Using Markov Logic Networks, where nodes are atoms of a formula, and edges
are connectives.

• Using Logic Tensor Networks to convert the real logic formula into computational
graphs using a combination of real features (vectors and matrices) and fuzzy
semantics to model connectives.

• Verification of DNNs using Linear Programming or SMTs.

• Automated reasoning and theorem proving.

3.6.1 Knowledge Graphs

Knowledge graphs are representations of knowledge bases where edges interlink en-
tities. These edges may exhibit different properties about how entities are linked de-
pending on the usage of the knowledge graph. For instance, MUTAG [136], one such
knowledge graph dataset, contains chemical compounds as entities with edges rep-
resenting bonds between atoms. [91], using MUTAG and other knowledge graphs,
predict edges between entities to enhance entity classification performance.

One such method of embedding knowledge within a graph data structure is with an
ontology. Ontologies are the formalisation of terms or a system in a vocabulary. They
can provide a mechanism to use automated reasoning over a knowledge base to de-
rive information about the system that is not explicitly defined, for example, through
axioms. Several ontologies exist within the biomedical domain. However, combining
these different knowledge representations can prove difficult due to the inconsistency
in the expression of classes, instances, and relations within the ontology. Moreover,
contradictions within a single ontology can occur due to the use of ambiguous rela-
tions. These various factors can limit the ability to use these ontologies and perform
high-level queries for knowledge extraction.

Biological data and knowledge bases are being increasingly reliant on Semantic Web
Technologies and other graph representations. However, feature learning methods
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within the biomedical domain are not widely applied to use these formats. To address
this, Alshahrani et al. [137] propose a method to learn ontological object proprieties.
This is done by inferring a graph representation of ontologies, creating graph em-
beddings, and creating a multiple logistic regression classifier (one for each object
property) that predicts an edge between the vertices. Three ontological databases are
considered: Gene Ontology (GO), the Human Phenotype Ontology, and the Disease
Ontology. From these, a knowledge graph (a graph-based representation of entities in
the world and how they interact with each other) is constructed. Finally, the knowl-
edge graph is iterated over using the Deepwalk Perozzi et al. [138] algorithm to create
an embedding representation of the connected edges and vertices, used by multiple
logistic regression models (one for each object property in the ontology). Sufficed to
say, while they use logistic regression models, it would be possible to develop to DNNs
to operate over ontologies by using these embedding representations that is seen in ap-
plications such as with DeepGO1, Kulmanov et al. [139], where a hierarchical DNN is
used to encode the transitivity of the sub-class relations in the ontology. The structure
of the ontology may be encoded in the DNN in different ways. While Alshahrani et al.
[137] create graph embeddings, Kulmanov et al. [140] generate a geometric repre-
sentation of GO using description logics. This method works by creating differentiable
loss functions that mimic the set of EL description logic rules.

3.6.2 First Order & Fuzzy Logic

Various methods have been proposed for using logic (first-order logic, fuzzy logic) in
addition to ontology knowledge bases for the construction of interpretable and accu-
rate ML classifiers. Prior domain knowledge and the high-dimensional ML learning
processes may be combined in a way that provides a benefit to the trustworthiness of
the system, in addition to the overall accuracy of the final model.

Logic may be integrated into DNNs via indirect specialisation. Diligenti et al. [141]
propose two strategies of integrating domain knowledge into DNNs. The first inves-
tigates the use of indirect specialisation as a means of regularisation. The second
method uses a first-order logic knowledge base with fuzzy logic rules. This latter fuzzy
logic representation of the knowledge base is used to compute an additional loss which
is added to the training loss of the DNN. Experimental results show significant perfor-
mance improvements when combining CNNs (AlexNet in particular) with these Fuzzy
Logic rules for a partially labelled dataset. However, if the entire dataset is labelled,
combining a CNN with logic rules only has a marginal improvement. While Diligenti
et al. [141] use additional losses, more sophisticated methods may use teacher-student
architectures. [79] show a method to distil prior knowledge from logic-rules (teacher
network) into the weights of a DNN (student network). Here the distance between
weights of these two networks are optimised to be reduced. These methods high-
light the approach of using indirect specialisation as a form of knowledge distillation
without fundamental changes to the architecture of DNNs.

Other methods have proposed to use DNNs to model directly the logical forms us-
ing Logic Tensor Networks (LTN) [142]. LTNs provide a framework for incorporating

1https://github.com/bio-ontology-research-group/deepgoplus
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symbolic rules using fuzzy logic. In LTNs, each concept or predicate is represented as
distinct points within the feature space, and the model is trained to optimise the rep-
resentation of each function or predicate to satisfy known formulas. Using the concept
of LTN provides an interesting method of including reasoning in DNNs. Bianchi and
Hitzler [143] evaluate the deductive reasoning capabilities of these types of models
by showing the model only partial knowledge, such as only true predicates and only
some axioms. They show that using very small datasets, LTNs can produce decisions
that can be manually inspected for where the LTN fails to produce the correct answer.
A simple implementation of logic rules has been used by Krüger et al. [144] to model
large latent spaces using computational state-space models. Each state space contains
a probability of a predicate being true, and models are trained through an extension on
the KL-divergence–Jensen-Shannon distance. They show that using partial predicates,
they are not only able to increase the accuracy of the model predicting the activity, but
‘spikes’ in predicate probabilities increase the interpretability of the model’s decision
process. This method of applying the activation of simple predicate could also apply to
other models that operate using states such as RNNs. As opposed to [142] that adapts
the architecture of the DNN to encode logical formulas, the work of [145] encodes
the logical specifications via loss functions that allows them to train DNNs to meet
these logical specifications. While this work demonstrates how, like [140], logical con-
straints can be incorporated into the training regime with loss functions, it goes further
to incorporate a declarative language for querying the DNNs, such as searching for an
adversarial example. The query language is then translated into a loss to be minimised
with LBFGS-B to locate a solution to the query.

Markov Logic Networks (MLN) are one such alternative to LTNs, whereas a graph,
Markov Networks consist of atomic formulas as vertices and edges between atoms are
first-order logical connectives. For example, Khot et al. [146] uses MLNs for question
answering of extracted knowledge from a US-based 4th-grade textbook. Their method
outperforms other solutions, including satisfiability with an SMT solver. However, this
only results in a 55% success rate. They question whether the constriction of the
acyclic nature of the graph in the MLN limits the inference that can be made in this
task. Perhaps including another model into the sub-task of inference would help the
MLN to perform better. Kok and Domingos [147] aims to solve the problem of learning
long formulas through structural motifs. Learning using structural motifs assumes that
re-occurring patterns are underlying the data to reduce the number of computations.
However, while MLNs can combine probabilistic models with first-order formulas, ini-
tial methods are limited with the number of objects represented in the formulas due
to the exponentially sized resulting MLN where inference becomes intractable.

These logic-based methods provide some interesting applications to incorporate do-
main knowledge through various methods. These range from those methods that im-
plicitly encode the domain constraints with indirect specialisation, to methods that
recreate the logic rules in a DNN architecture with differentiable formulas. While
some are limited in success when compared with traditional DL, they do provide in-
sight into how symbolic and probabilistic models may be combined in the future to
create trustworthy hybrid-DNNs.
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3.6.3 Verification of Deep Learning

Trustworthiness of DNNs may also be improved using formal verification techniques.
After a DNN has been trained, formal verification can test that, under certain con-
ditions, properties of the DNN hold. For example, using the adversarial attacks as
motivation, we may want to ensure that all perturbations within a small range result
in an output classification that are consistent with the class label of the original data.
By using verification techniques, such as SMT solving or optimisation using Linear Pro-
gramming, these properties can be tested, thereby making DNNs suitable for safety-
critical systems as properties under certain conditions of the DNN can be specified and
formally verified for certification.

One method to verify properties of DNNs is with SMT solvers. However, an SMT solver
expects logical (and most often Boolean) formulas as input. Therefore, to enable the
use of SMT solvers, an alternate logical representation of the DNN must be made. One
issue in creating this representation is the non-linear activation functions present in
DNNs. These non-linear functions cannot be easily translated into logical formulas,
thus different approaches have been proposed. For instance, Pulina and Tacchella
[148] introduce the use of abstraction of non-linear activation functions using piece-
wise approximation. Ehlers [149] also uses piece-wise approximations of non-linear
activation functions, but use an approximation of the SMT search process to improve
the speed and scale to which DNNs can be verified. Kokke et al. [150] demonstrate a
framework for verifying DNNs using SMT. Their framework, implemented in Haskell
and F ?, can create an encoding of a DNN by making using of linear approximation
for the non-linear functions. More accurate approximations can be made with more
components of the linear approximation, but it also increases the complexity of the
formula to test for satisfiability.

Other methods use optimisation over a constrained formulaic representation of the
DNN. Katz et al. [151] extend the Simplex method to enable the use of ReLU activation
functions. This extension involves splitting each ReLU activation into two forward- and
backward facing nodes in a Simplex formula. These two parts van then be satisfied
independently before ensuring the lower bound of the forward facing node is equal to
the maximum of the input or 0, thus replicating ReLU. Instead of Simplex, Dutta et al.
[152] propose the use of a local optimisation with gradient optimisation and a global
optimisation using Linear Programming. This method when compared against Katz
et al. [151], can prove properties of much larger feed-forward DNNs (127 layers, with
6845 neurons per layer) more quickly.

While various methods for the formal verification of DNNs have been proposed, many
of these methods do not scale well to large networks, certainly not to the scale of
DNN that would be used in a system such as fully-autonomous vehicles, for example.
Therefore, for this field of verification of DNNs to progress, research into allowing the
verification technique to scale to large logical formulas, or abstracting DNNs in way
such the output logical formula is small but still accurate, is needed. Nevertheless,
verification within small DNNs, verification can give provable guarantees as to the
computation of the DNN under varying conditions and therefore does improve the
trustworthiness of DNNs.
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3.6.4 Combining Machine Learning with Interactive Theorem Proving

In the preceding examples, the focus of the approach is ML: how does one integrate
logic into the ML model? There are, however, other interesting approaches where logic
is the focus and aided by the use of ML. One such example is adding an ML model to
assist in the interactive theorem proving process.

Applications of the combination of ML and theorem proving can be divided into Sym-
bolic via inductive logic programming (ILP) [153, 154] or abductive logic program-
ming (ALP) [155], numeric with DNNs or kernels, or a hybrid approach that combines
both symbolic and numerical methods [156, 157, 158, 159, 160]. Methods have been
devised to combine the pattern recognition power of ML with theorem proving to ei-
ther automate the proof search or aid the user in solving the proof with potential tactics
to use.

Theorem proving with automated systems (automated theorem proving or ATP) and
have been steadily improving in computational performance [156], while interactive
theorem proof (ITP), where interactive input from the user to deduce the series of
steps to prove a formula has added richer programming environments with expanded
language implementations of type systems. For instance, Komendantskaya et al. [161]
integrate Weka2 into Proof General3 to provide statistically prompted proof guidance
through data-mind proof heuristics. Clustering algorithms are used to group related
proof strategies and help the user to decide how to proceed with the proof. In this
work, a feature extraction method is demonstrated (named the proof trace method)
enabling the abstraction from the implementation of the ITP language. This allows
the ML algorithm of choice to find statistical patters where it might otherwise have
difficult and enable the use of the method for ITP languages outside of its intended
use. Proof trace method works on the basis of recording properties of proof tactics to
form a matrix representation, where tactics types of the tactics arguments). Using this
representation for training a DNN may be complemented from our method outlined
in Chapter 7, where depending on the different context of the current goal, attention
of different parts of the proof trace could fluctuate as per the annotation of the ex-
pert logician training the DNN. While Komendantskaya et al. [161] ’s representation
provide a description of each tactic with multiple properties, a more recent attempt
Gauthier et al. [158] to combine ITP and ML use a single descriptor for each tactic
for their clustering algorithm. Heras and Komendantskaya [164] test the capabili-
ties of the feature extraction method of Komendantskaya et al. [161] using different
clustering algorithms (such as k-means, FarthestFirst, and Expectation maximisation).
Another method that combines clustering methods from ML and ITP is presented in
Heras et al. [160]. In this work, they suggest one of the limitations of Komendantskaya
et al. [161] that the suggestions by ML are not fully explainable are rows, and proper-
ties of the tactics are columns (such as the type of tactic and or apparent to the user
why they have been chosen as suggestions. Therefore, Heras et al. [160] use a lemma
generation approach which ML aids to reduce the number of possible suggestions. Fur-

2Weka (https://www.cs.waikato.ac.nz/ml/weka/) is an open-source toolbox of ML algorithms im-
plemented in Java, supporting a variety of different algorithms from unsupervised clustering to DL [162].

3Proof general (https://proofgeneral.github.io/) provides a generalised interface for proof as-
sistants written for Emacs [163].
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thermore, these generated lemmas are customised to the current problem to aid the
user in understanding why the suggestions occur.
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Chapter 4

Datasets & Base Models

For much of DL research, the concern is improving optimisation procedures, designing
new architectural paradigms, or improving existing tasks and score well on leader-
boards. In these situations, standard datasets are often used to compare and contrast
existing methods with the proposed state-of-the-art methods by the researchers. For
the case studies used in this thesis, however, data is not always readily available.
Therefore, to facilitate the training of DNNs, the work has necessitated the collection,
and annotation of data. With exception of dataset used for the detection of Type II
bursts (see Section 4.3.1), where upon the dataset of Type II bursts was originally
introduced by [2], the OG detection and crystallography datasets were created for the
production of this thesis.

This chapter explains each of these datasets designed to solve a specific problem in
each scientific domain. Furthermore, each of these datasets has been carefully con-
structed and annotated by domain experts to aid the task of training DNNs. For each
dataset, this chapter describes:

• The construction process of the datasets.

• Examples of the data (with additional examples highlighted in the appendices).

• Statistical properties of the data.

• Format and available variables in the dataset that may aid other researchers in
these areas.

• The base models that were used for comparison when evaluating the prior inte-
gration strategies.

• The metrics by which the experiments were evaluated.
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4.1 Energy Estimation of Quantum Chemical Systems

The first case study was the use of physics knowledge to improve the estimation ca-
pabilities of DNNs in non-stable chemical systems. For this, three novel datasets of
both molecular and crystalline structures at various interatomic distances were gener-
ated. Secondly, the knowledge integration techniques were evaluated on two different
architectural types, using two of the state-of-the-art models for comparison.

4.1.1 Augmented-QM9 & Crystal Datasets

Many previous ML approaches and associated datasets only consider molecules and
crystals at their stable configuration, thereby learning the interaction of atoms only
at equilibrium. QM9 [25, 26] is one such dataset that contains a diverse set of 134k
molecules using carbon, hydrogen, oxygen, nitrogen, and fluorine atoms, but at their
stable configuration only. The MD17 [24, 16, 165] and ISO17 [71, 16, 166] datasets
provide potential energies of OoE molecules with (independent) perturbations of their
atoms’ positions. However, they are limited to 8 small organic molecules (MD17) and
129 isomers (i.e. molecules of the same size and atomic composition) of C7O2H10
(ISO17). To support our work, three new datasets were created consisting of OoE
molecules that includes more diverse sizes (i.e. number of atoms) and compositions.
These datasets are: 1) an augmented QM9 dataset of molecules; 2) a dataset of infinite
crystals; and 3) a dataset of finite crystals at various system sizes.

An augmented QM9 dataset was created by taking the first 10,000 molecules of QM9
and modifying the interatomic distances at ten regular intervals between 90 and 150%
of the original stable configuration. This dataset, therefore, contains 100K different
systems. At each interval, the potential energy is calculated using DFT to calculate the
potential energies to serve as the target energy for the supervised learning task.
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Figure 4.1: Example energy curve where
the stable configuration occurs where the en-
ergy value is at its lowest.

Performing this compression/dilation of the
interatomic distances creates an energy curve
with the stable configuration found at the
lowest energy (see Figure 4.1 for an exam-
ple where the interatomic distances are com-
pressed/dilated around the 100% stable posi-
tions). This exposes the DL models trained on
such datasets varying compound structures
and varying stabilities.

The first crystal dataset, infinite crystals, has
enabled the learning of regular bonding pat-
terns that arise in periodic structures. Learn-
ing to estimate the potential energy for an in-
finitely sized crystal might benefit from the
regular pattern in the lattice structure, possi-
bly reducing the ML algorithm’s complexity.
Although not necessarily relevant from a physical point of view, a dataset of infinite-
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Figure 4.2: Infinite Crystal (left) and Growing Crystal (centre: seed, right: growing) structures.

sized crystals is an interesting case study for the design and training of ML methods.

To generate the infinite crystal, the simple Face-Centred Cubic (FCC) Bravais lattice
was used as illustrated in Figure 4.2 (left) for both Al and Cu crystals following the unit
cell pattern of Equation 4.1. From this base lattice structure, the interatomic distances
were compressed/dilated isometrically (i.e. the same change in all spatial axes), and
the potential energies were computed using DFT at 20,000 uniform intervals from
90-150% of the stable configuration.

[x1, ..., x4] =


0 0 0
1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

 (4.1)

with atom xi being at the x, y, z position from row i of the matrix w.r.t the stable lattice
size.

Thirdly, growing crystals of increasing (finite) size and complexity enable experiment-
ing with large scale atomic interactions in non-regular patterns. In contrast to the
regular lattice pattern created by an infinite crystal, crystal growth allows for learn-
ing over more complex atomic interactions in non-regular systems. Starting from a
basic fcc crystal seed of 14 atoms (Figure 4.2 centre), new systems were generated
by iteratively placing atoms at a random location on the surface of the growing crys-
tal following its lattice pattern (Figure 4.2 right), with sizes ranging from 15 to 114
atoms. Such a dataset enables evaluating an ML method’s ability to learn how each
atom contributes to the final potential energy. The DFT calculator presumes an infinite
system, and thus for the finite crystals data, a 10Å vacuum was added to the system to
prevent electronic interactions over duplicated images of the system.

Two subsets of this dataset were created: one that included the compression/dilation
of the interatomic distances at ten regular intervals between 90 to 150% of the stable
distance referred to as the Unstable Crystal Growth (UCG) subset, and another that
contained only stable configurations referred to as the Stable Crystal Growth (SCG)
subset. The latter aims to evaluate an ML model’s capability to estimate energy values
at varying system sizes (i.e. the number of atoms) without the added complexity of
learning energy as a function of distance. Both subsets contain Al and Cu crystalline
systems. 20 random seeds were used for each atom type for SCG, thus creating 40

43



CHAPTER 4. DATASETS & BASE MODELS

Table 4.1: Number of stable and OoE systems in our datasets

Augmented Infinite Crystal Growth
QM9 Crystal Stable Unstable

# stable 10k 2 4k 1k
Total # 100k 40k 4k 10k

Table 4.2: Statistics on the Augmented QM9’s molecules

Mean STD Min Max

Number of Atoms (per molecule) 17.95 2.95 5 29
Number of Molecules (each composition) 269.54 652.82 10 4,690

varied crystal growths and 4,000 crystalline systems. For the Unstable Crystal Growth
subset, 5 of these random seeds were selected for each atom type to consider 1,000
basic configurations, each being compressed/dilated for a total of 10,000 crystalline
systems.

In all three new datasets, OoE systems were obtained through compressing/dilating all
interatomic distances at regular intervals within 90-150% of stable configuration, thus
generating isometric compressions/dilations of the whole system, which are referred to
as ‘scaling’ in the rest of the thesis. The ground-truth potential energy was calculated
using CP2K1’s DFT at each spatial configuration. An example input to CP2K can be
found in Appendix A.

The total numbers of stable and stable+OoE systems, for each dataset, are provided
in Table 4.1. Statistics on the composition of the Augmented QM9’s molecules are in
Table 4.2 and Figure 4.3.

The properties available in the Augmented-QM9 dataset are shown in Table 4.4. In
addition, for the continuous variables of this data, the summary statistics are provided
in table 4.3. A concrete example of the data is shown in Appendix D.

4.1.2 Base Models

The physics knowledge integration were evaluated on a graph-DNN and CNN. The
corresponding MPNN and SchNet are the current state-of-the-art for estimating po-
tential energies. However, neither base models were used in the same conditions as
in their original papers. For example, MPNN was only used on stable systems, and
neither model was tested on crystals. Furthermore, in the experiments presented in
this thesis, the DNNs were trained on perturbations of molecules/crystals of different
sizes and compositions at once, and generalise to unseen sizes and compositions. In
[71], SchNet was trained on perturbations of a single molecule (MD17) or of isomers
(ISO17). The datasets created here has several compositions and the sizes are more
complex, but the integration of physics knowledge allows preserving high accuracy.

1https://www.cp2k.org/
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Table 4.3: Summary statistics of continious variables in Augmented-QM9 dataset.

Characteristic Test set, N = 10,000 Training set, N = 80,000

simulated_energy
Median (IQR) -74 (-80, -68) -74 (-80, -68)
Mean (SD) -74 (10) -74 (10)
Range -124, -40 -130, -19

volume
Median (IQR) 7,389 (6,532, 8,387) 7,394 (6,538, 8,383)
Mean (SD) 7,519 (1,268) 7,511 (1,233)
Range 4,163, 14,835 3,541, 13,426
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Figure 4.3: Frequency of system sizes available in the Augmented QM9 dataset out of 10K
molecules.

Graph-DNN: MPNN learns to predict potential energy from an undirected graph G,
where atoms are nodes and edges evw describe the relation between two nodes v and
w (i.e. their distance). MPNN applies three functions for 3 to 8 iterations: 1) the Mes-
sage function (Mt in Equation 4.2, implemented with a perceptron) creates a message
packet that symbolises the action of a neighbouring atom on node v. This function
does not replicate the physics of atomic interactions, but processes information in a
physics-inspired way. A final message vector mt

v for node v combines the actions of all
neighbours (Equation 4.2). 2) An Update function (Ut in Equation 4.3, implemented
by a Gated Recurrent Unit (GRU)) updates the hidden state htv of node v using its
previous hidden state ht−1v and interaction message mt

v. 3) A Readout function uses
the set of hidden state of all nodes at all timesteps to estimate the system’s potential
energy through minimising a mean-squared error loss. See [167] for full details on the
implementation of these functions.

mt+1
v =

∑
w∈N(v)

Mt

(
htw, evw

)
(4.2)

ht+1
v = Ut

(
htv,m

t+1
v

)
(4.3)

CNN: SchNet implements three layers of interactions followed by atom-wise convolu-
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Table 4.4: Available properties in both the Augmented-QM9 and all Crystalline datasets.

Characteristic Data Type Description

category String The molecule for which the data is calcu-
lated (Augmented-QM9 only)

cell_lengths List[Float64] Cell lengths in the xyz and rotational an-
gles

center_mass List[Float64] Xyz position of the molecule’s centre of
mass

chemical_formula String Chemical formula for molecule
chemical_symbols List[String] List of chemical non-unique symbols
smiles String SMILES representation of molecule

(Augmented-QM9 only)
distances List[List[Float64]] Pairwise matrix of distances from one

atom to all others
positions List[List[Float64]] Xyz position of each atom
simulated_energy Float64 Simulated potential energy using DFT
input_a Float64 Push/Pull amount of molecule in the x di-

rection
input_b Float64 Push/Pull amount of molecule in the y di-

rection
input_c Float64 Push/Pull amount of molecule in the z di-

rection
pdf Float64 Calculated PDF of current positions from

a Gaussian distribution centred at stable
position.

volume Float64 Volume of molecule with vacuum

tions, non-linearities, and a final sum pooling to obtain an energy estimate. Similar to
Equation 4.2, each interaction layer l considers the sum of actions of all atoms on atom
v (Equation 4.4). These actions are computed through element-wise multiplication of
the neighbour’s internal state with a radial filter W l that depends on the distance dvw
between the two atoms. W l is implemented by two softplus dense layers. This inter-
action ‘message’ is used to update atom v’s internal state within a block of interaction
and atom-wise convolutions (Equation 4.5). See [71] for full details on these layers’
implementation.

ml+1
v =

∑
w

hlw ◦W l (dvw) (4.4)

hl+1
v = hlv + Vl

(
hlv,m

l+1
v

)
(4.5)
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4.1.3 Experimental Setup

All models were trained using an Nvidia Tesla V-100 with PyTorch 1.2.0, Python 3.7.2,
and CUDA 10.1. Each model was trained for a maximum of 360 epochs, with 50
epochs of no validation loss improvement as the criteria for early stopping. The best
model (determined by the validation loss) was saved to be used for testing during
training.

The base models used the default hyper-parameters for both original and augmented
versions. While, for the graph-DNNs, the number of iterations has been varied, we
observed MPNN’s default of three iterations worked best for all versions. A compre-
hensive list of the hyper-parameters used to train both MPNN and SchNet can be found
in Appendix B.

The Augmented QM9 training set consists of all ten scaling operations for 80% of the
molecules, so 8,000 molecules, totalling 80,000 training samples. Following the same
rules, the testing and validation set contain 10% of the dataset, so 10,000 samples. As
the Infinite Crystal dataset has two different crystal types (Cu and Al crystals), 8 data
points were uniformly sampled from their respective range of scaling for training. The
rest of the data were split evenly between validation and test. For the Crystal Growth
dataset, a 60/20/20 split was used with the same procedure.

4.1.4 Evaluation Metrics

We report absolute error (AE) and relative error (RE = |ŷ−y|
|y| ) between true y and

predicted ŷ energies in atomic units (a.u.). We also report the Distance to Stable
Geometry (DSG). For molecules, it is computed as the absolute difference between the
scaling where the predicted energy is minimal (optimised by multiple DNN queries for
various scales) and the ground-truth at-equilibrium scaling (100%). We use the lattice
size (expressed as the half diagonal of a face of the fcc lattice in Angström) instead of
scaling.

Mean and standard deviation were computed over chemical systems, with std indicat-
ing the ability to handle a large variety of systems.

4.2 Online Grooming Detection

The second case study used CL knowledge with DL. To enable the design of appropriate
strategies for this case study, the work relied on the annotation by experts on grooming
language and linguistics. These strategies were experimentally tested using two base
models to provide state-of-the-art baselines.

47



CHAPTER 4. DATASETS & BASE MODELS

4.2.1 Online Grooming Chat Logs

To facilitate training of a DNN to distinguish from grooming and non-grooming in text-
based chat logs, we introduced a new dataset referred to here as simply OG dataset.
This dataset has built on the previous standard: PAN2012 [168], used in many studies
for OG detection [169, 170, 54, 171, 172, 173]. PAN2012 was gathered from Omegle
(one-to-one conversations with random users), IRC (technical discussions in groups),
and the Perverted Justice (PJ) website2 (chat logs from convicted groomers interacting
with trained adult decoys, for a debate on the usability of this data, see [30, 174], with
396 groomers and 5700 / 216,121 OG / non-OG conversations. Some non-OG chat
logs contain sexual wording, making the OG classification more challenging. Conver-
sations are truncated to 150 messages each, which limits both CL and ML analyses. To
resolve this limitation, the corpus was augmented with entire conversations (avg. 431
messages per conversation) and the addition of new groomers from PJ, totalling 623
groomers in 6204 OG conversations (same negatives).

This OG dataset has also included the results of a CL analysis of the new corpus using
the method described in [29], which involved a heavy use of manual analysis by CL
experts. As part of the data preparation for CL analysis, the groomer subset of the
corpus had undergone word-standardisation, where spelling or intentional variations
of words were changed to a standard form. For example, ‘looool’ was standardised
to ‘lol’, and ‘not comfy’ was standardised to ‘uncomfortable’. This process considers
the context in which the variations on spellings (from this point referred to as word
variants), and required the manual study by CL experts to determine whether a word
had the same intended meaning as another, more standard word. This standardisation
process had yielded a set of pairs of words with the same intended meaning.

While these variants were not specific to OG, but are valid for other scenarios of real-
world chat conversations, the CL analysis then identified the variants that were most
used by groomers. Word variants that were frequently used and highly dispersed (often
used by many groomers) were selected to determine salient collocates. From these
collocates a set of 2100 3-word collocates were annotated with a strategy employed
by the groomer. These strategies, or OG processes, give an indication as to the type
of entrapment tactic used by the groomer that may help in discriminating between
grooming and non-grooming conversations. There are a total of seven different OG
processes used in both base models. These were characterised into five main categories
as seen in Table 4.5. For each of these categories, the number of annotated collocations
and an example collocate (in italic text) in its context are reported. The summarised
construction process of this dataset is presented in Figure 4.4.

Therefore, for evaluating the prior knowledge integration strategies with CL, two com-
ponents of CL knowledge was used: (1) a set of word variants where each item in the
pair has the same sentiment; (2) a set of 3-word collocates in context, and annotated
by one of the seven OG processes. These CL components were used to test our prior
knowledge strategies, but the DNN does not require these annotations at its testing
phase.

2http://perverted-justice.com. As of 2019, the organisers behind the Perverted-Justice website
have ceased further collection of newer chat logs from convicted groomers.
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Table 4.5: Processes used by groomers in order to establish a connection with a child.

OG Process # Coll. Collocate Usage in Context

Approach: Reference to the
groomer’s intention to meet with the
child.

622 "...lots more peaceful lol i know
rightand i could come over
right?"

Compliance Testing: Checking like-
lihood of victim agreeing to proposed
behaviour.

23 "do u like talking to older guys?"

Deceptive Trust
Development: Building
trust with the victim with
the ulterior motive of
eliciting sexual activities.

Activities 61 "ok so any plans for this week-
end?"

Personal
Information

33 "so can you tell me how me
about how far it is from you to
allendale"

Relationship 357 "i couldn’t stop thinking about
u"

Isolation: Groomer distance the
victim physically/emotionally from
their support circle.

112 "we meet some where alone
near your neighborhood..."

Sexual Gratification: Groomer’s at-
tempt to involve their victim in sex-
ual talk/activities.

892 "just you and me touching each
other ... feeling each other"

Table 4.6: Breakdown of the conversations, sessions, and messages between groomer and non-
groomer users.

Stats Name OG / Non-OG Total

# Conversations 623 / 316500 317,123
# Sessions 6204 / 216242 222,446

# Messages 648463 / 1197875 1,846,338
# Words 27388 / 134075 161,463

This OG corpus contains chat logs from 317,123 users (623 groomer and 316,500 non-
groomers). A user may be engaged into one or several conversations (chat logs) with
other individuals, and each conversation is made up of messages sent during one or
several sessions. The statistics of conversations, sessions and messages are summarised
in Tables 4.6 and 4.7. The splits between train and testing sets follows the same design
as PAN2012 to give a more realistic interpretation that grooming conversations are far
less frequent than non-grooming conversations.

The properties available in the compiled OG chat log corpus are shown in Table 4.8.
In addition to the chat log corpus, there is the complementary collocate dataset, the
properties of which are shown in Table 4.9. An example conversation is shown in
Appendix E.
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Figure 4.4: Overview process of constructing OG chatlog corpus. CL analysis is required to gener-
ate a series of word variant pairs and 3-word collocates. The output of this analysis is combined
with the original conversations from PJ and the non-grooming subset of PAN2012.

Table 4.7: Message statistics for the groomer subset of the corpus.

Stats Name Min / Max Mean (STD)

# Mess./Groomer 2 / 28389 2,163 (3,224)
# Mess./OG Conv. 13 / 49207 4,228 (6,032)

# Mess./OG Session 2 / 32351 431 (1,414)

4.2.2 Base Models

The general applicability of the CL integration strategies has been demonstrated by
applying them to two DNN architecture types representative of the two NLP standards
of recurrent and transformer models. The recurrent DNN of [175] is the current state-
of-the-art for OG. It is comprised of a language model that builds a Word Semantic
Representation and an OG classifier with:

1. A language model: a word embedding layer and two Long-Short Term Memory
(LSTM) that model word semantic and extract sentence vectors as the last hidden
state of the LSTM.

2. An OG classifier: two LSTMs and a linear projection with Binary cross-entropy
(BCE) loss.

In many forms of ML, an embedding is the mapping from one concept into a coordi-
nate space. This is especially useful in language learning tasks where one can learn
a the mapping of words to a unique n− dimensional vector in the coordinate space,
where the distance between vectors is roughly equivalent with the semantic similarity.
However, distances in embedding spaces do not always carry this same notion, thus
we make our definition more precise with WSR. We are stating that such embedding
is encoding the semantic representation of words.
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Table 4.8: Available properties in OG Chatlog dataset

Characteristic Data Type Description

conversation_id String Unique identifier for each conversation
author String Name of the user that authored the mes-

sage
is_groomer Bool Truthy value indicating if current message

is from a groomer
line Integer Line number in the conversation (i.e. each

conversation begins at line 1)
origin_file String Where the conversation was extracted

from PAN2012 or CL analysis
text List[String] Tokenised text contained within message
time String Time of message if it is known
contains_groomer Bool Indicates if a groomer is present at any

point within conversation
subset Categorical Specifies if conversation should be en-

tered into training or testing set
grooming_themes List[List[Float64]] PDF value for each of the 7 grooming

themes. The value is the result of a gaus-
sian centred on a detected grooming pro-
cess.

Table 4.9: Data properties of OG collocates

Characteristic Data Type Description

3word_collocate Categorical Group for which collocate is part of
Text ID String Origin conversation ID
Context before String Message before the occurence of collocate
Query item String Search word to determine collocate
Context after String Message after the occurence of collocate
theme Categorical Category of one of the 7 grooming themes
borderline Bool Annotation confidence in usage of theme

Definition 4.2.1. A Word Semantic Representation (WSR) is an embedding space that
captures the semantic relationship between words through the distance between vec-
tors in this embedding space.

To test the prior knowledge integration strategies for Online Grooming Detection
(OGD), two different base models were used based on these two sub-components.
These two models are Online Grooming Detector - Recurrent (OGD-R) and Online
Grooming Detector - Transformer Embedding (OGD-T).

Our OGD-R is a modified version (Figure 4.5 left) with the WSR of the language
model’s word embedding layer provided as input to the OG classifier in place of a
sentence embedding. It may be replaced by similar WSRs. This is demonstrated in the
results by also using the pre-trained GloVe WSR [176]. Further, to compensate for the
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Figure 4.5: OGD-R (left) & OGD-T (right), for integration of CL priors. Orange and green
indicate where word variants and OG processes priors may be integrated, respectively.

loss of sentence structure modelling previously provided by the sentence embedding
and to account for the longer sequences of inputs into the classifier, an unsupervised
attention mechanism was added [1] into the classifier.

The XLNet [100] transformer model is the state-of-the-art for NLP. It iteratively refines
word embeddings, from a WSR similar to that of [175] to richer word representa-
tions to account for their relationships, to be classified by linear projection, with cross-
entropy loss. This projection fails to handle the class imbalance of the OG corpus, and
thus a two-layer LSTM was added to form OGD-T (Figure 4.5 right).

Both original and modified OGD-R were trained from random weights on the OG
dataset. Experiments with the GloVe WSR used pre-trained weights from Common
Crawl 840B [176]. The XLNet part of OGD-T was pre-trained on BookCorpus and En-
glish Wikipedia (see [100] for more information on the construction and training of
XLNet).

Input to the models – The text analysis was performed on whole conversations, with
conversation messages separated by the [SEP] token, so that inter-text representations
can be modelled. Messages from both users were included with no distinction. The
final OG/non-OG classification was obtained for the whole conversation rather than
per message. All base and CL-augmented DNNs take raw text as input only. The only
text preparation before the DNN was the tokenisation of named entities, as actual
names are irrelevant to OG detection. Text normalisation was not applied such as with
[177], since the methodological premise of this thesis is the design of prior knowledge
integration strategies.

4.2.3 Experiment Environment

All DNNs were trained using an Nvidia 2080Ti with Python 3.7.5 and PyTorch 1.7.1 on
a system running CentOS 7. These DNNs used best estimates for the hyper-parameters,
though different values may improve the results. Where appropriate, specific hyper-
parameters relating to the prior knowledge integration strategy is discussed in the
experiment sections of this thesis. A comprehensive list of the hyper-parameters used
to train both base models can be found in Appendix C.

The corpus was divided into 30% of users for training, 70% for testing, and 30% of
training for validation, using a similar ratio as [168]. This division was based on
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users ensures that the model may not recognise the specific language of a groomer but
focuses on trends in OG language. Each DNN was trained continuously while tracking
the validation loss at the end of each epoch. If the validation loss did not improve
within a set number of epochs (OGD-R: 50 epochs, OGD-T: 100 epochs), the training
was halted, the best model weights restored, and the test set predictions were made.

4.2.4 Evaluation Metrics

OG classification is evaluated by: Area Under Precision-Recall (AUPR) to account for
the class label imbalance, F1 score using the default 0.5 threshold on Sigmoid output,
and the F0.5 score used in [168] to weight the precision metric higher. The effects of
selective normalisation are further measured by their proportion of distance reduction
between selected variants

∆D =
1

N

∑
k

|D(vik, v
j
k)
new −D(vik, v

j
k)
old|

D(vik, v
j
k)
old

(4.6)

and resulting average distance

D =
1

N

∑
k

D(vik, v
j
k). (4.7)

4.3 Detection of Type-II Solar Bursts

The objective of the third case study is the automated detection of Type II solar bursts.
For this, the existing WAVES dataset was used, along with an object-detection models
to predict bounding boxes over the spectrograms.

4.3.1 WAVES Dataset

The WAVES dataset (originally created by [2]) was collected from instruments onboard
the Wind spacecraft located between Earth and the Sun in order to measure properties
of the solar wind in situ. These instruments have been collecting data on radio activity
since 1994 at different frequency ranges. This data, collected by [2] from NASA’s
public archive, has been catalogued into samples (background, Type II, Type III), and
each of the types of solar bursts present in these samples has been annotated with a
class label, as a well as a pixel-wise mask over the occurrence of the burst. For the full
description of the construction of this data set and the pre-processing that has been
applied to the samples, readers should consult the original source of the data [2].

The events in which different bursts occur are presented in a spectrogram format with
time along the x-axis and frequency (MHz) along the y-axis (Figure 4.6). For the
construction of WAVES, the spectrogram was cut into positive and negative samples
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Figure 4.6: Example of WAVES spectrogram.

with the same duration. For each sample, each element represents the intensity values
at this time (column) and frequency (row). For the positive subset of the data, these
spectrograms are accompanied by a binary mask which provides a pixel-wise mask
as to the location of the Type II solar burst. Binary masks were not provided for
Background and Type III classes but rather focus solely on the task of detecting Type
II bursts. For our task, the binary mask was used to construct a bounding box to
encompass the Type II burst.

4.3.2 Base Model

The Faster R-CNN [178] was used as the base model for the experiments of this case
study. Faster R-CNN performs object detection on images by first producing a feature
map at various scales that can be shared between different sub-networks, thereby
improving the speed at which it may make detections. The feature maps are passed to a
Region Proposal Network (RPN) where potential objects are detected. These proposals
are passed to the Region of Interest (ROI) sub-network, along with the feature map to
regress the proposals to the original image dimensions. This model takes an image as
input, and produces many outputs: (1) a bounding box; (2) a class label associated
with outputs with the bounding box; and (3) a objectness score for the outputs. In our
learning task, there is only 1 class label, that of the Type II burst.

The success of Faster R-CNN for object detection has spawned a number of method-
ological improvements, such as Mask R-CNN [179]. Mask R-CNN, in addition to per-
forming bounding box detection, adds an additional sub-network to predict a pixel-
wise mask for each object. While Mask R-CNN was not used in this thesis, the methods
presented here are transferable to this network as they have an identical methodolog-
ical base network. However, in future work, we shall investigate how our methods
affect the pixel-wise segmentation as well as the bounding box detection.
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Table 4.10: Number of samples in the train and test set per burst and activity type. Data is shown
in the format: frequency (percentage).

Dataset

All Training Testing

Total 731 511 (100) 220 (100)

Burst Category
Background 245 (33.5) 172 (33.7) 73 (33.2)

Type II 244 (33.4) 170 (33.3) 74 (33.6)
Type III 242 (33.1) 169 (33.1) 73 (33.2)

Solar Activity
Low 144 (19.7) 101 (19.8) 43 (19.5)

Medium 266 (36.4) 186 (36.4) 80 (36.4)
High 321 (43.9) 224 (43.8) 97 (44.1)

4.3.3 Experimental Setup

For all experiments presented in this work, the same training process was used. In this
section, the process of training the DNNs to detect Type II solar bursts is described.

The implementation of Faster R-CNN is non-deterministic. Therefore, the DNN was
trained ten times and the mean and standard deviations of the results were reported.
This reduced the possibility of a perceived improvement in performance being a re-
sult of the random process. Faster R-CNN used a pre-trained ResNet-50 backbone to
compute the feature maps from the input. The last 3 layers of the backbone were fine-
tuned during training. Pre-trained weights (trained on the COCO dataset) were used
for the rest of the Faster R-CNN architecture and were also fine-tuned. The weights
were optimised using SGD (learning rate 5e-3, momentum 0.9, and weight decay of
5e-5). The learning rate were warmed up during the first epoch to minimise large
weight gradients due to the pre-trained weights. The Faster R-CNN were continually
trained on the training set until the loss on the validation set did not improve for ten
epochs. The model weights with the lowest validation loss was saved to disk. After
Faster R-CNN completed training, the model’s weights that had the lowest validation
error during training was re-loaded and used to create the test predictions. PyTorch
1.6.0 and a single Nvidia 2080 GPU was used to train the Faster R-CNN, which for this
dataset completes training in approximately 1 hour.

To facilitate the training of a DNN, WAVES was split into 70% for training and 30%
for testing. To create these splits, stratified random sampling was applied to the 3
types of burst categories (background, Type II, and Type III) and solar activity (low,
medium, high). Performing random sampling in this manner ensures that the model
is exposed to all types of solar activity and burst categories equally during training.
During training, 15% of the training data was used for validation at the end of each
epoch.

Table 4.10 shows the number of samples used for training and testing. Approximately
33% of each of the different burst categories were included in the training and test-
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ing set. However, the original WAVES dataset includes different proportions of solar
activity examples. Therefore, these samples were distributed among the training and
testing sets with respect to these original proportions, i.e. 19.7% of the original data
is of low solar activity, therefore, both training/testing splits have approximately this
amount as well.

4.3.4 Evaluation Metrics

To evaluate the model’s effectiveness, we follow the evaluation method of [2], where
the Precision, Recall, and their harmonic mean: F1 score was calculated from the test
predictions. These classification metrics were induced from the intersection of the
predicted bounding box with the ground-truth bounding box of the different segments
of the Type II burst. If these bounding boxes did indeed intersect, this was counted as
true-positive. False-positives occurred when a predicted bounding box did not intersect
with a ground-truth bounding box. If Type II bursts were predicted where there were
none, this was flagged as a true-negative. While bounding boxes were used to detect
Type II bursts, due to the shape of the burst, they will often contain large portions of
the background, and scores based on this bounding box may change dramatically if
small and faint segments of the burst are missed. This can make the metrics extremely
sensitive if such an implementation was used for a real-world solar burst detector. In
future, pixel-wise masks should be computed, such as with Mask R-CNN, to reduce the
sensitivity of metrics.

The Intersection over Union (IoU) score was used an additional form of comparison
between experiments. This metric evaluates how closely the predicted boxes match
the ground truth boxes through the ratio between the area of intersection and the area
of their union. Those situations where the boxes are very similar in size and placement
will result in an IoU score closer to 1 as the intersection and union areas will also be a
very similar number. On the other hand, boxes that are not very similar in placement
or size will result in an IoU score closer to zero. The IoU score is in the range [0, 1],
where higher values indicate better performance.

As a Type II burst could be made up of multiple segments, there is a possibility for
the model to produce many true-positives and false-negatives per image. If the model
places a single large bounding box over many segments of the burst, this will count
as many true-positives, but also reduce the IoU score as much of the background is
included within the predicted bounding box. Therefore, when analysing the results,
both metrics should be considered. If a model misses a segment of a Type II burst,
it is counted as a false-negative even if the main part of the burst has correctly been
detected. Therefore to achieve a good F1 score, all segments of the burst will need to
be localised within the image.

This method of measuring the classification score follows the design presented in [2].
However, for the detections using bounding boxes, rather than pixel-wise masks, the
classification metrics communicate less information individually as they require only
single pixel overlaps, which may be background noise. The IoU metric will inform
how well the DNN is able to align the bounding box to the ground truth, while the
classification metric is a quantification of the ability to detect Type II bursts while
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avoiding other misleading features such as Type III bursts. Thus, in all evaluations of
this work, we show the IoU metrics in combination with the classification metrics to
better investigate the relative performance of the DNNs.

A further analysis is provided in Chapter 9 with the use of Receiver Operating Charac-
teristic (ROC). This type of analysis provides deep insight into the trade-off between
sensitivity and specificity at different positive prediction threshold values of the bound-
ing box made by Faster R-CNN.
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Chapter 5

Feature Specialisation

In the process of learning, DNNs optimise a set of weight matrices and bias vectors
that, when applied to the input, can create meaningful latent representations of the
input for the downstream task, be it classification or regression. While through the
process of learning DNNs could produce informative latent representations of the data
in order to perform their task, these latent representations may be optimised by prior
knowledge provided by the domain expert. This chapter, recognising this process of
learning, evaluates how prior knowledge may be integrated into this process to further
enhance the feature specialisation process.

These feature specialisation methods are sorted into two distinct categories. The first is
indirect specialisation. This type of specialisation is complementary to the already exist-
ing learning process where additional constraints are placed on the objective function
that can improve the model’s generalisation and prediction capabilities. As this type
of specialisation is implemented through the objective function, it is possible to in-
directly add domain knowledge to enhance the latent feature extraction capabilities
of the model through the use of back-propagation. It is indirect in that it does not
precisely specify how the latent representations should be improved through their us-
age of these methods. In this chapter, indirect specialisation is used to integrate prior
knowledge of OG processes into an OG detector. We also used indirect specialisation to
add knowledge of Type II and background properties for the detection of solar bursts.
Finally, physics knowledge of the chemical makeup of molecules and crystals was used
to improve energy estimations of quantum chemical systems.

The second method is direct specialisation, where the DNN’s latent representation is
updated to reflect the known relationships in the data as told by the domain knowl-
edge. These methods are direct in so far as they specify exactly how the representation
should be updated to match the domain knowledge instead of being inferred through
the learning process. To test these direct specialisation methods, prior knowledge of
how groomers usage certain words to mean similar things is used to augmented the
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base DNNs. Specifically, this knowledge of word usage is used to update a pre-trained
word-embedding, for which three potential methods have been provided.

5.1 Background Study on Indirect Specialisation

DNNs are inductive learners. Using the training signal (the error between its prediction
and ground-truth output), the model will infer the relationship between the input and
output to improve its generalisation performance, providing there is enough variety
of data to infer such relationships. To create this training signal, the DNN learning
process will typically include a cost function and use the output ground-truth for the
singular task the DNN is being designed for. This type of learning is called Single-task
Learning (STL) [62].

Take for example the following objective function:

Lθ =
1

n

n∑
i

(ŷi − yi)2

where the loss of the model is measured by the average squared difference between
the model’s prediction of each input ŷi and the ground-truth label yi with respect to
the model’s parameters θ. This objective function provides a feedback signal on how
to improve θ through back-propagation to reduce the residuals on the training data.

While STL is certainly successful at producing an accurate model with enough input
data, it misses potential gains in performance from the process of Multi-task Learning
(MTL).

MTL, as opposed to training for a single task, can improve learning through the addi-
tion of complementary and related tasks. These related tasks help the DNN in learning
by providing more hints (Definition 2.0.1) as to the input-output relationship in the
form of prior domain knowledge, thus enhancing the training signal, and ultimately,
improving it’s generalisation performance on the singular intended task.

While there may be many methods to incorporate a MTL process (see Zhang and Yang
[180] for a comprehensive review), one method is simply to combine many objective
function in the learning process:
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where the loss is measured over J outputs and modulated by an optional α value to
denote the importance of the task. In this example, residuals for all tasks are measured
using the mean squared errors. Nevertheless, it is perfectly reasonable to combine both
classification and regression loss terms providing the magnitude of each residual does
not overpower each other. This magnitude may also be controlled through the use of
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the (possibly learnable) α modulation. In some cases, the use of homoscedastic un-
certainty w.r.t. the auxiliary tasks may better help control each of the task weightings
than manually selecting a value prior to training [181].

There are many reasons why MTL may work in favour of STL:

1. Reduces over-fitting by providing many training signals which the model must
perform well at.

2. Act as a form of regularisation [182]. Indeed, methods of applying L2 or L1 to
the objective function also serve the purpose of MTL. In this case, the regulariser
term is performing the task of reducing the magnitude of the weights. Though
this is not directly related to the main task, it can still provide generalisation
benefits commonly seen with MTL.

3. Constrains the model’s internal representation as it must be shared between
tasks. These auxiliary tasks must share an internal representation, and thus to
perform well on these many tasks simultaneously, it must find a representation
that fits all these tasks.

4. It may act as a constraint on the hypothesis class as an inductive bias [14]. Since
these tasks are related, the intersection of the respective hypothesis class for each
task may contain the optimal solution for the intended usage of the model, but
also reduce the search space through this intersection:

f̂ ∈ Hi ∩Hj

where f̂ here is our optimal function for f̂ ≈ f , f is the true-labelling function
to approximate, and Hi,Hj are the hypothesis classes of tasks i, j respectively.

5.2 Application of Indirect Specialisation

MTL via auxiliary tasks, through the process of indirectly specialisation the latent
representation, provides a opportunity to integrate prior expert knowledge into the
training process of DNNs. To evaluate the use of auxiliary tasks for integrating prior
knowledge, we have used auxiliary tasks to integrate the knowledge of OG processes
for the OGD case study, integrated the physics knowledge of chemical properties for
the Quantum Chemistry case study, and added auxiliary losses to predict Type II and
background properties in the Solar Burst detection case study.

5.2.1 Integrating Knowledge on OG Processes

To enhance an OGD detector, auxiliary tasks were used to encourage our OG detectors
to better model the themes of groomers. The annotated samples of OG processes were
associated to three-word collocates, which were used to identify contexts of interest.
The presence of the seven OG processes (Table 4.5) were defined using continuous
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Figure 5.1: An additional OG process detection branch (green) is added to the classifier module
(in OGD-E for illustration). This additional OG process branch predicts the a pseudo-likelihood of
OG process for each word in the conversation.

representation with a Gaussian Mixture Model (GMM) whose components are centred
on the associated three-word collocates and standard deviation being the span of each
collocate (max. seven words as mentioned in Section 4.2.1). Seven GMMs are defined
for the seven OG processes. The GMMs, G, provide a pseudo-probability of an OG
process occurring at word wt at timestep t for each of the seven OG processes.

To predict the response of G, a second output branch was added to the DNN after
the LSTMs (Figure 5.1), where the output of the LSTM is the hidden state at each
timestep. In creating the grooming prediction, an attention layer uses the state of all
timesteps to create a single vector representation of the entire conversation that is
used for classification. For estimating the pseudo probability of OG processes for each
word, a fully-connected layer was applied at each timestep and optimised using the
mean-squared error loss over all timesteps in the conversation:

LGMM =
1

T

T∑
t

[
σ(W × h(t) + b)− G(w(t))

]2

where h(t) is the hidden state at timestep t. W and b are the weight matrix and bias
vector of the fully-connected layer, σ is the ReLU non-linear activation function, and G
is the response of the seven GMMs for the word w(t).

For OGD-R, we experimented with adding an attention block as in the main branch,
but found that this did not help with the OG process detection, probably because this
task is more local and does not need to consider as large a context as classification of
the whole conversation.

The new branch also served as additional regularisation to prevent overfitting given
the class imbalance between (non-)OG chat logs, where the non-OG chat logs con-
sisted of ~96% of the test set. Further, it allowed for an OG process-based interpreta-
tion of what the DNN considers relevant clues for OG classification. For each word in
the conversation, the DNN outputs seven values corresponding to the seven grooming
processes. Non-zero values indicates the model is predicting a grooming process is oc-
curring at these words given the surrounding context. This prediction that a grooming
process is occurring is indicative of the DNN classifying the conversation as grooming.
Therefore, these auxiliary tasks, while indirectly specialising the latent features for the
classification task, have also helped in enhancing the interpretability of the model.
These interpretations will be explored and visualised in Section 5.4.1.

62



5.2. APPLICATION OF INDIRECT SPECIALISATION

The loss of this secondary task was added to the original classification loss and modu-
lated with a α term:

Ltotal = Lclass + αLGMM

For the experiments we used α = 0.3, though other values may yield better results.

5.2.2 Estimating Auxiliary Physical Properties

Using the MTL technique, the GNN’s node states are specialised to relate more to
relevant physical properties. We experimented with a combination of low- and high-
level physical property estimation using auxiliary tasks:

1. The number of atoms of each type present in the system. This low-level property
can be correlated with the system energies, as heavier atoms will generally re-
quire more energy to bind or separate but release less net energy as part of the
process.

2. The number of orbitals associated with each atom type provides clues to infer the
potential energies. As DFT approximates the system energies from the electronic
density, therefore by estimating the number of orbitals associated with each atom
type provides some clue as to the potential energies.

3. A probability distribution for the scaling to the stable geometry, estimated as
a Gaussian function as in [183]. This high-level property may encourage the
model to infer the relationship between system-wise property of energy and sta-
ble Angström distances.

For each auxiliary estimation, a new output layer was added, and a mean-squared
error loss term was minimised during training. Each auxiliary loss term was weighted
by an empirical α = 0.3 hyper-parameter while the original potential energy loss kept
a weight of 1 to emphasise the energy loss more:

Ltotal = LMSE(y, ŷ) + α
∑
a∈A

LMSE(a, â) (5.1)

with y and ŷ the ground-truth and predicted potential energies, and A the set of aux-
iliary quantities a being used. In future works, we may investigate auxiliary quantities
linked to the physics of individual atoms/nodes in addition to the system-wise proper-
ties.

5.2.3 Predicting Solar Burst Properties

Whereas in the case study of chemistry physics knowledge that estimates different lev-
els of system-wise properties, the auxiliary predictions of the solar physics case study
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differed by predicting two classes of properties: the Type II burst and background. The
Type II burst properties included the frequency range and time duration of the burst.
For these properties, we might expect the DNN to better understand the shape of the
burst in order to jointly predict the low-level features as well as predicting locality.

To create these predictions, a small sub-network used the feature representation of the
image, and predicts the frequency and time duration ranges of the burst. This feature
representation was passed to both RPN and classifier sub-networks in addition to this
new sub-network for Type II burst range predictions. An auxiliary mean-squared error
loss was added to train this sub-network and proceeding feature extraction layers.

For the prediction of the background properties, the different levels of solar activity
was used. While the solar activity varies over many months, as the WAVES dataset
is segmented into fixed periods of time, the amount of solar activity in WAVES can
vary from one image to the next. This level of solar activity may be indicative of how
much surrounding noise1 is present that may distract the object detector. For example,
with more intense levels of solar activity, the Type II burst may be obscured by Type
III bursts, thus making the detection task more difficult. This auxiliary estimate has
aimed at making the DNN more aware of the varying background properties and able
to account for them.

Therefore, providing hints as to the amount of solar activity (low, medium, high)2

may help the object detector to be more accurate in its prediction of Type II bursts. To
accomplish this task, an auxiliary task was added object detector to predict the level of
solar activity (Equation 5.2). From the encoded feature representation of the image,
the class label of the solar activity was predicted, and additionally passed to the RPN
and classifier sub-networks for prediction of objects.

Lactivity = −
K∑
k=1

yko log(pko) (5.2)

where we have 3 K classes for the low, medium, and high solar activity for image o.
yko ∈ {0, 1}, and 1 if the image was of this solar activity. This cross-entropy loss was
added to the total loss of the Faster R-CNN.

5.3 Direct Specialisation

In contrast to indirect specialisation, where the model is encouraged to find a latent
representation that better matches the problem tasks, direct specialisation aims to
improve the existing internal representation by applying direct and specific changes
to better reflect the knowledge of the domain expert. Using domain knowledge of

1Noise in this context refers to the signals other than the target i.e. the Type II solar burst. Noise
could therefore refer to Type III bursts and other background radiation that makes the object detection
task more difficult.

2See [2] for details on how these categorisations of solar activity were created.
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linguistics, word embedding spaces, and the semantic representation found in such
spaces, are used in this work to demonstrate this process of direct specialisation.

5.3.1 Latent Representations for Word Semantics

Learning a useful representation of language can be difficult. Firstly, there are many
tens-of-thousands of words and to encode each one in a one-hot representation would
be impractical from a computational perspective. Secondly, this one-hot representation
does not capture the knowledge of similarity between words, where some words mean
very similar things.

A popular technique to represent language and overcome these challenges are word
embeddings or word vectors, where every word is instead represented by a fixed-length
vector [184]. These representations of words are interesting as we find each word’s
distance to each other roughly equivalent to its semantic similarity [185].

However, to correctly and accurately model these semantic relationships requires sub-
stantial amounts of text for training. Indeed, the larger the corpora to learn such
representations, the more useful they become [186]. It is, therefore, a challenging
task to correctly learn the correct semantics of words from groomers when the data of
grooming conversation is very small. Therefore this work relies on specialist knowl-
edge of how groomers communicate in order to better model this information.

5.3.2 Direct Specialisation of Usage of Grooming Language

Using the knowledge of Word Semantics Representation (WSR), our methods have
been designed to improve the existing structure to better encode the domain knowl-
edge of how groomers have used language that the DNN may not recognise due to the
small amount of positive grooming data.

During the CL analysis process (Section 4.2.1), the linguistic experts have normalised
the usage of words in context, based upon their intended meaning. Word variants be-
ing words with the same semantic meaning, was used by linguistics used to reduce the
variance within the text. This reduction in variation of language enables the linguistics
to analyse statistical patterns that may otherwise be hidden through misspellings and
alternative vocabulary. Therefore, integrating this knowledge into DNNs to capture the
same word semantic representation used by linguistics may allow the DNN to exploit
the same statistical patterns.

Although variants have the same intended meaning, some may be discriminative of
groomers’ language. Hence, it may be helpful for OG classification to keep them apart
in the WSR space. The significance of word w for classification is determined based
on the absolute difference of empirical occurrence in OG and non-OG conversations
within the training set:

δp(w) = |p(w|ypos)− p(w|yneg)|. ,
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Table 5.1: Comparison of occurrence frequencies for selected variants and all words in the corpus.

Mean Standard Deviation

Word Frequency 3.922 · 10−05 0.001
Variant Frequency 0.001 0.002

where p(w) gives the probability of word w occurring in the positive or negative la-
belled subset of the data. If δp(vik) or δp(vjk) are high (i.e. within the last 5 percentiles
for all words), we do not use the pair for modification of the WSR. We considered in-
creasing the separation between these variants, but we found that this modifies the
word embedding too much and reduces its semantics representation power. Out of
4590 pairs of variants, 2955 were retained for modification of the WSR. In effect, this
selective WSR modification applies an implicit and selective text normalisation which
supports the OG classification.

The final set of word variants is defined as:

S = (vi1, v
j
1), (v

i
2, v

j
2), ..., (v

i
n, v

j
n)

The effectiveness of WSR modification using selected variants is emphasised by the
frequency of usage of these variants within the corpus: modifying the WSR space
around frequently used words may have a larger impact on subsequent text analysis
than adjusting it around rare words. The frequency of any word wi was calculated
as: Fwi = count(wi)

N , where N is the total number of words in the corpus. Occurrence
frequencies for the selected variants and other words are provided in Table 5.1. We
see that the average frequency of selected variants is significantly larger than for other
words in the corpus by two orders of magnitude. This may explain in part the effec-
tiveness of the selective WSR normalisation.

The mean occurrence frequency of variants in the OG corpus is significantly larger, by
two orders of magnitude than that of all words (Table 5.1). Therefore, using these
common words to modify the WSR may have a strong impact on classification.

Three strategies have been proposed to modify the WSR based on our set of n pairs of
variants using the principle that words with the same semantic should be moved closer
to each other in the WSR space. These three different implementations may apply to
different usage scenarios, such as training a new language space (supervised WSR
modification) or modifying an existing one before training a new classifier (manifold-
based) or before fine-tuning an already existing classifier (elastic pulling). While these
integration strategies have been evaluated using the manipulation of word embeddings
to improve the WSR in our case study, these strategies can be generalised to many other
forms of latent representations, provided the availability of suitable prior knowledge
of which representations should be pulled together in the latent space.
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5.3.3 Supervised WSR Modification

Prior to the classification of OG chat logs, two-layer LSTM language model was trained
to learn semantically related word embeddings.

To incorporate domain knowledge of the word variants, a regularisation term was
added with weight λ to the language modelling loss LWSR to minimise the L2 distance
D between the selected word variants’ word embeddings:

L̃WSR = (1− λ)LWSR + α

[
1

n

n∑
k=1

D(vik, v
j
k)

]
.

5.3.4 Manifold Learning

Supervised WSR requires a training process to incorporate the knowledge of word
variants. Manifold learning, on the other hand, allows the direct modification of WSR
with the modification of computed pairwise distances of words.

Using the pre-trained WSR, a pairwise distance matrix was computed using the L2

distance metric D. The distance entry for each word variant was reduced:

D̃(vik, v
j
k) = λD(vik, v

j
k)

where λ ∈ [0, 1] modulates the strength of distance reduction between selected vari-
ants. While in our work, a single λ value was used for all word variants, in future
work, different λ values may be used to modulate the strength of reduction with re-
spect to how often the two word variant pairs have the same sentiment. If two words
are most often used with the same sentiment, the distance between these two words
in the WSR should be further decreased.

After reducing all word variants, a Robust Diffusion Map [187] was used to project
from a distance matrix back into WSR space. Robust Diffusion Map was used as it con-
veniently computed a WSR based on the distance matrix, but other manifold learning
methods could be explored.

This implementation requires re-training subsequent layers of the DNN from scratch,
as words’ new embeddings may be very different from initial ones.

Note that this is an unusual use of manifold learning for WSR modification rather
than for dimensionality reduction. It is also possible to reduce dimensionality, which
may help to combat overfitting for classification, as discussed in [188]. However, the
dimensionality of the WSR is unchanged in our experiments.
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5.3.5 Elastic Pulling

The third implementation modifies the existing WSR space in place through local move-
ments that pull together the selected variants. This process is depicted in Figure 5.2.
Elastic Pull pulls two selected word variants closer together in the WSR, while also
having a small effect on these variant’s neighbouring words. This mostly preserves all
words’ original word embeddings, thus limiting the amount of change needed for the
classifier to simple fine-tuning.

Figure 5.2: Depiction of the Elastic Pulling process between two word-pair variants. Two variants
wi and wj are pulled together in the WSR while each of its neighbouring words are also pulled
closer to preserve the initial semantic relationship with the variants. The influence of this pulling
process is determined by an RBF centred on each of the word variants. Each of the neighbouring
words are pulled in the direction of each word variant.

Two variants vik and vjk of coordinates xik and xjk are pulled towards their geometric
centre:

x̂k =
xik + xjk

2

by the amount in the direction of

δxik
= x̂k − xik

where this movement towards the centre of word pairs is modulated by

λ ∈ [0, 1] : x̃ik = xik + λδxik
.

Like Manifold Learning, we used a single λ value to modulate the movement for all
word variants. However, providing a λ value for each word variant would enable
greater control over the movement of word variant pairs.

The pull operation propagates to neighbouring words, with strength of pull decreasing
with distance (i.e. modulated by a radial basis function (RBF) φik centred on xik), so as
to preserve the pairwise relationships between variants and their neighbours:

x̃ = x + λ φik(x) δxik
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Table 5.2: Impact of each CL augmentation on OG classification. Bold are improved results.

Model Strategy AUPR Fmax F1 F0.5

OGD-R
No augmentation 0.867 0.832 0.829 0.851
Aux. OG process detection 0.873 0.825 0.825 0.863

OGD-T
No augmentation 0.940 0.889 0.886 0.894
Aux. OG process detection 0.943 0.895 0.889 0.906

For our experimentation, we used an inverse multiquadric:

φik(x) = (||x− xik||2 + γ2)−
β
2

The inverse multiquadric provides global support so that all words can be considered
without costly intersection tests needed, and with β and γ tuning the RBF’s decay rate
i.e. the locality of propagated pull. The method is not very sensitive to these values as
long as the pull’s reach is sufficient, within a radius of the order of magnitude of δxik

,
and we set them empirically to 1.0 and 3.0 respectively.

5.4 Experiments

To verify our feature specialisation approaches, the indirect feature specialisation meth-
ods were implemented for all three case studies: OG detection in chat logs, energy
estimation, and detection of Type II bursts. While for direct specialisation, we im-
plemented all three proposed direct specialisation methods to update the WSR of the
OGD base models.

5.4.1 Indirect Specialisation

The experiments begin with the indirect specialisation using the auxiliary tasks of pre-
dicting the results of GMM-based annotation. This method was compared against both
base models OGD-R & OGD-T for the detection of OG. The results are presented in Ta-
ble 5.2.

For both base models, we observed that the auxiliary task of predicting the GMM anno-
tations of grooming processes helps improve the models’ performance. This was more
clear for OGD-T where all metrics improve. This has provided us with some indication
that the auxiliary tasks are enabling the models to detect the more subtle nuances in
the grooming strategies by providing more hints during the training process.

While these performance improvements are very slight in these cases of indirect spe-
cialisation, we demonstrate in a later chapter (Chapter 9) how the combination and
interaction of the indirect methods with other integration strategies can lead to more
significant improvements.
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Table 5.3: Impact of each physics integration strategy on energy estimation on the Augm. QM9
dataset for MPNN (top) and SchNet (bottom) base models. Results are presented in the format:
mean (std). The specialised interaction methods that optimise at best energy and geometry are
highlighted in bold for each model.

Strategy AE RE DSG

MPNN base model 0.242 (1.318) 0.0029 (0.015) 0.034 (0.074)

Aux.
estimates of

# atoms of each type 0.171 (0.986) 0.0021 (0.011) 0.031 (0.046)
# orbitals 0.195 (0.545) 0.0025 (0.006) 0.033 (0.046)

distance to stable geom. 0.119 (0.698) 0.0015 (0.008) 0.033 (0.046)

SchNet base model 0.038 (0.037) 0.0005 (0.0005) 0.020 (0.031)

Aux.
estimates of

# atoms of each type 0.038 (0.036) 0.0005 (0.0005) 0.032 (0.033)
# orbitals 0.036 (0.035) 0.0005 (0.0005) 0.022 (0.032)

distance to stable geom. 0.049 (0.044) 0.0007 (0.0006) 0.037 (0.033)

Since the augmented models make use of OG processes’ recognition to capture the
language associated with grooming, their auxiliary OG process detection may be used
to highlight, at the word level, those parts of the conversation that the model associates
to OG processes. These are visualised in Figure 5.3, where the estimated likelihood
of the Compliance testing process is indicated in shades of red. The DNN focused
on questions about a personal situation and on invitations to talk over the phone as
indicators of compliance testing happening, in line with our general understanding of
this OG process. While these elements of discussion may seem neutral enough and may
not be captured by generic OG classifiers, the DNN’s understanding of OG processes
and of their relation to OG made it increase the OG classification score. The words
and local contexts associated with these OG process detections are indications of the
language cues which supported the OG classification.

Figure 5.3: Graphical representation of the DNN’s predicted likelihood of the Compliance testing
OG process. Higher likelihood values are indicated in red, while lower values are represented by
black colours.

The next experiment uses the quantum chemistry case study. Once more, the two base
models of this study are used and each of the auxiliary proprieties were applied in
turn. The results of these experiments are presented in Table 5.3.

The auxiliary estimation of physical properties has improved the performance for both
MPNN and SchNet base models. Estimating the distance to stable configuration was
the most effective strategy for augmenting MPNN, while SchNet benefited more from
estimating the number of orbitals. We interpret the overall improvements as the mod-
els implicitly discovering and encoding useful physics representations required for ac-
curate predictions. Indeed, the numbers of atoms of each type and of orbitals are
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Figure 5.4: Effect on DSG and AE performance when the auxiliary outputs are incrementally
added.

related to the global properties of the molecule and its atoms. The distance to stable
configuration is related to a high-level system optimisation, with the DNN learning to
estimate the energy and at the same time assess how close/far it is from the minimum.
Its improved performance may indicate that the DNN’s features better capture the de-
pendency of energy on geometry. In the case of MPNN, we reckon that these more
geometry-related features compensate the less complete accounting of atomic interac-
tion in MPNN, which is due to only considering bonded (neighbour) atoms, and which
hinders a complete capture of geometry in the non-augmented base model.

In order to explore the potential performance improvement to be gained through mul-
tiple auxiliary outputs, each of the outputs were added to Augmented-SchNet in turn
and train the model using Augmented-QM9. First by adding the auxiliary prediction of
number of atoms of each type (labelled ’Atoms’), then adding to this by including the
number of orbitals prediction, and so on. The performance impact for both the DSG
and AE metric are shown in Figure 5.4. From this experiment, the DSG metric has
improved through the addition of more auxiliary estimations, while the AE metric has
slightly worsened (from 0.026 to 0.031). This result indicates the auxiliary estimations
are contributing to help with the downstream task of estimating stable configurations
of molecules more accurately, even while being very slightly less accurate for the im-
mediate task of energy estimation. This positive result encourages us to continue to
use all three auxiliary tasks for the final Augmented-SchNet model.

Finally, an experiment was conducted by adding an auxiliary tasks to the Solar Burst
detection model. In this experiment, the Type II auxiliary tasks (predicting frequency
and time ranges) and background property task (predicting the level of solar activity)
were added to the DNN. To create the solar activity prediction, a two-layer CNN sub-
network was used to condense the feature representation from the ResNet101 head.
After the CNN sub-network, a linear layer projected the feature representation from
ResNet101 into the classification space.

In Table 5.4, the results for the base model Faster R-CNN and Faster R-CNN with
the different auxiliary tasks separately are shown. Despite the hypothesis about the
information regarding the level of solar activity, the background auxiliary task here
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Table 5.4: Comparative performance results between base Faster R-CNN and Faster R-CNN with
auxiliary target prediction of solar activity. Results are shown over 10 trails in the format: mean
(standard deviation).

Model Precision Recall F1 Score IoU IoU (Type II)

Baseline 0.335 (0.090) 0.854 (0.104) 0.468 (0.071) 0.661 (0.013) 0.172 (0.009)
with Type II aux. 0.507 (0.066) 0.350 (0.043) 0.412 (0.044) 0.667 (0.003) 0.195 (0.009)

with Background aux. 0.392 (0.040) 0.481 (0.078) 0.427 (0.032) 0.668 (0.008) 0.192 (0.013)

does not help the model improve on its object detection task. This is also true for
the Type II tasks. While being more precise in its prediction, the F1 score decreases
due to the significant decrease in recall. While these methods have not had a entirely
positive effect on F1 score, the IoU score has increased suggesting that with a different
implementation choice, these auxiliary tasks may yield more promising results. These
different implementation choices could be tested in the future for a fuller evaluation
of the potential of these auxiliary tasks.

Despite the decrease in F1 performance, when measuring the IoU scores for all ex-
periments, we observe the IoU score for the Type II bursts increased, meaning that
when the auxiliary predictions are added to the model, the model, although failing to
detect some Type II bursts, has created better-aligned bounding boxes when true Type
II bursts are detected. This was further demonstrated by the increased IoU scores for
the Type II events for both type of auxiliary predictions.

From this case study, we see that it may be possible to use the auxiliary tasks to reduce
the false-positives created by the detector, while also creating more accurate locali-
sations for the Type II bursts. This work may be further tested in future works by
considering segmentation performance.

5.4.2 Direct Specialisation

The individual effects of the different WSR algorithms are evaluated in Table 5.5 in
comparison to non-augmented models. To test these algorithms, the WSR method was
applied to a pre-trained word embedding. For this, two versions were used, the first
was a simple two-layer LSTM language model trained using the grooming chat logs.
The second was with all varieties of the pre-trained GloVE representations. As GloVe
includes many pre-trained variations (these variations are from the different number
of tokens, dimensionality, and training data source location), thus we trail each of the
WSR algorithms with each of the variations.

The 300 dimensional language model of OGD-R was trained from random weights on
the OG dataset, then the WSR was fine-tuned while the classifier was trained from ran-
dom weights on OG classification. To demonstrate the general applicability of the se-
lective text normalisation based on CL knowledge, the results are initially presented us-
ing the GloVe WSR [176] with 300 dimensions, pre-trained on Common Crawl 840B3

and fine-tuned on OG classification. Further experiments were conducted with all vari-
3http://commoncrawl.org/
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Table 5.5: Impact of each CL augmentation on OG classification. Bold are improved results.

Model Strategy Precision Recall AUPR F1 F0.5 ∆D/D

OGD-R

No augmentation 0.867 0.794 0.867 0.829 0.851 – / 3.72
Supervised modif. 0.834 0.765 0.824 0.798 0.819 0.75/0.91
Manifold learning 0.916 0.753 0.881 0.827 0.878 0.65/1.29
Elastic pulling 0.878 0.808 0.877 0.841 0.863 0.83/0.61

OGD-R using
840B - 300d
GloVe

No augmentation 0.834 0.775 0.849 0.803 0.822 – / 5.87
Supervised modif. 0.836 0.781 0.828 0.808 0.825 0.90/0.93
Manifold learning 0.824 0.796 0.854 0.810 0.818 0.89/0.53
Elastic pulling 0.905 0.761 0.880 0.827 0.872 0.92/0.73

Table 5.6: average distance between pairs of selected variants Dvar and all other pairs of words
Dnon var in the wsr spaces

Method Dvar Dnon var
Base Model #1’s original WSR 3.72 2.86
Supervised WSR modification 0.91 2.78

Manifold Learning 1.29 2.86
Elastic Pull 0.61 2.82

eties of GloVe to demonstrate the methods transferrability to different training sources
as well as different dimensionality of WSR.

In Table 5.6 we show the average pairwise distances between pairs of variants and
non-variants. This demonstrates each of the WSR normalisation algorithms ability to
preserve the semantic power of the space.

We observed a performance improvement over the baseline when adding the direct
specialisations to the WSR. Here Manifold Learning and Elastic Pulling increased the
AUPR from 0.867 (baseline) to 0.877 (Elastic Pulling) and 0.881 (Manifold Learning)
this improvement is considerable given the number of variants accounts for less than
6% of the overall word embeddings in the WSR.

While both Manifold Learning and Elastic Pulling have helped the model generalise
better, the supervised approach has unfortunately reduced the performance of the re-
sulting classifier. This may be explained by the new loss term conflicting with the orig-
inal word embedding loss. This hypothesis may be further exhibited when Supervised
modification is applied to the GloVe word embedding. In this situation, the algorithm
was more successful in improving the performance over the baseline, as there could be
less conflict between the original word embedding loss and the new less term as the
word embedding loss is generally lower due to the word embeddings being pre-trained
and only fine tuned with the supervised WSR modification.

It is worth noting, for OGD-R, that D the average distance between the representa-
tions of two selected variants is at 3.72, higher than the average distance between all
other pairs of words which is at 2.86. Therefore, OGD-R, even though fully trained
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Table 5.7: WSR algorithms applied to varying GloVe representations. Bold values denote the
improvement over no augmentation.

Augmentation Precision Recall AUPR F1 F0.5

6B - 300d
No augmentation 0.834 0.775 0.849 0.803 0.822
Supervised modif. 0.881 0.745 0.838 0.807 0.850
Manifold Learning 0.799 0.778 0.855 0.788 0.794

Elastic Pulling 0.871 0.759 0.851 0.811 0.846

27B - 200d
No augmentation 0.839 0.774 0.839 0.805 0.825
Supervised modif. 0.865 0.762 0.837 0.811 0.843
Manifold Learning 0.796 0.804 0.854 0.800 0.797

Elastic Pulling 0.874 0.763 0.877 0.815 0.849

42B - 300d
No augmentation 0.870 0.759 0.847 0.811 0.845
Supervised modif. 0.861 0.791 0.846 0.824 0.846
Manifold Learning 0.832 0.762 0.854 0.796 0.817

Elastic Pulling 0.879 0.763 0.870 0.817 0.853

840B - 300d
No augmentation 0.834 0.775 0.849 0.803 0.822
Supervised modif. 0.836 0.781 0.828 0.808 0.825
Manifold Learning 0.824 0.796 0.857 0.810 0.818

Elastic Pulling 0.905 0.761 0.880 0.827 0.872

on OG classification, was not able to discover on its own the knowledge that some
variants have the same semantic meaning while not being discriminative for the OG
classification task, and could therefore have the same or similar representations. This,
together with the improved results from modifying the word embedding, demonstrate
the usefulness of integrating this knowledge into the model.

These results for each of these various forms of GloVe WSRs are presented in Table
5.7. We have seen that for most of the variations of GloVe, Supervised modification
improves the F1 and F0.5 score but not the AUPR and almost always improves the pre-
cision of the classifier (except for 42B - 300d), while the opposite is true for Manifold
Learning. Elastic Pull has appeared to be the most consistent in improving the results.
While the largest improvement in AUPR performance was applying Elastic Pulling to
27B - 200d, we observed the best classification results when using the largest GloVe
word embeddings (840B - 300d). This result might be explained by the larger training
corpus and dimensionality providing a richer WSR before the direct specialisation was
applied.
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5.5 Chapter Summary

This chapter has investigated the method of feature specialisation. DNNs, in the pro-
cess of learning, already perform a method of feature specialisation - the internal rep-
resentation is updated to perform well at a classification or regression task. Yet, many
opportunities are missed to improve the generalisation and visualisation abilities of
these features due to the concentration on a singular task.

In addition to relying on auxiliary tasks to optimise the representation, providing the
intuition surrounding what it represents, it is possible to modify the representation
to reflect prior knowledge directly. This was applied to word embeddings, where the
representations of words are roughly equal to semantic distances. For these word
embeddings, distances were reduced between words to reflect the expert’s knowledge
about how words are used by online groomers.

From the experimentation presented in this chapter, this direct manipulation of rep-
resentation has been found to be more fruitful regarding the resulting model perfor-
mance. However, the auxiliary tasks do, by their design, provide means to graphically
represent potential criteria for the model’s decision processes, aiding the user in mak-
ing decisions based upon the predicted classification of the DNN.

The goal throughout this chapter has served to categorise and design methods to en-
hance these learnt features. These methods were tested on many different architec-
tures and data types with potential successes in each case.

The contributions from this chapter are:

• A theoretical formation of indirect and direct specialisation. Where indirect spe-
cialisation can be accomplished via a multi-task learning process with auxiliary
tasks that encourage the DNN to learn more informative feature relevant to the
task. For direct specialisation, specific modifications guided by prior knowledge
are made to the features that improve the representation.

• To verify the approach for indirect specialisation, different implementations of
these key ideas were developed and tested using three case studies: detection of
online groomers, energy estimation of chemical systems, and detection of Type II
solar bursts. In both OGD and energy estimation studies (each consisting of very
different architectures), we observed the performance of these models improved
while providing an additional means of graphical representations (such as Figure
5.3) to help the users of the model understand a part of the decision process.

• We present three novel methods for applying direct feature specialisation to em-
bedding spaces, or in the context of the OG detection study, a WSR. Each of these
methods optimise the representation of word embeddings by reducing the dis-
tances between word variants to conform to the prior knowledge of how these
words have been used in online grooming chat logs.

The key points from this chapter are:
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• DNNs perform feature specialisation as part of their routine process of training.

• However, this process of training can be enhanced through the integration of
prior knowledge, providing more hints to the DNN.

• This chapter outlines two categories of prior integration methods for feature
specialisation: Indirect and direct specialisation.

• Indirect specialisation is the combination of complementary auxiliary tasks that
provides the DNN with more hints during training time. These hints can possibly
improve the feature representation of the model and therefore performs better
at the task of classification and regression.

• Direct specialisation is the process of taking already learnt representations and
augmenting them using prior knowledge of how these representations could be
improved and become more accurate. Once again, we find that this method
outlined here can have a positive effect on the performance of DNNs.

• Better performance improvements can be gained via direct modifications to the
internal representations of the model than with indirect hints via multi-task
learning and auxiliary estimates. However, it does require an intuition about
the representation that is not always known to modify such a representation.
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Chapter 6

Specialised Information Processing

In the previous chapter, different methods were introduced that specialise the latent
representation of DNNs using domain knowledge. These methods either directly ma-
nipulate the model’s latent representations of data or indirectly provide hints in auxil-
iary related tasks to the model during the training process. These auxiliary tasks then
help the model improve in generalisation by forced sharing of internal representation
between many related tasks.

As opposed to specialising the representation, this method of specialised information
processing provide specific channels for processing representations. Each specialised
processing channel represents a concept within the domain being modelled. These
specialised information processing methods are implemented by unique weights and
biases for each of the concepts. Whereas in the previous chapter the feature specialisa-
tion acts on the existing latent representations, this chapter demonstrates how separate
and specialised information processing on the latent representations may better model
domain concepts relating to the downstream task.

This chapter discusses the intuition behind specialised information processing, and ex-
plains the implementation of these mechanisms for recurrent and graph-based DNNs.
This approach of using specialised information processing was tested using the OG
detection case study, where specialised RNNs are used to learn the patterns of commu-
nicative processes. The specialised information processing in GNNs was tested through
the chemical energy prediction case study.
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6.1 Background on Encoding Specialised Concepts with Spe-
cialised Information Processing

In many cases, experts can leverage feature specialisation, such as indirect specialisa-
tion, to enhance the generalisability of DNNs by finding a representation that learns
to fit many tasks jointly. If the tasks are closely related and are on the same semantic
level, it is common to see small performance improvements [89, 90]. However, to
properly use indirect specialisation, one must weight each of these different tasks to
ensure that the loss term of one task does not over power another, especially the main
task the DNN is being trained for, otherwise one may see optimisation conflicts [86].

Specialised information processing, in contrast to feature specialisation, provides a
specialised processing channel to act on the latent representation, where channels are
defined by unique and learnable parameters that process specific information/concepts
in the domain. By adding a separate and unique information processing channel for
each of the different concepts being modelled, the DNN has the additional capacity to
find meaningful representations. Instead of enforcing the model to find a joint rep-
resentation and information processing function to suit all tasks, the model can learn
meaningful concepts that are added to the original and generalised representation for
the final classification or regression prediction.

Definition 6.1.1. A channel is a distinct pathway of computation, implemented with
unique weights and biases.

In specialised information processing, there are two types of information process-
ing channels. The first is the generalised processing channel. This type of channel
is created as if there were no unique specialisation through related tasks. The sec-
ond representation is the specialised processing channel. This second channel learns
unique parameters to process specific concepts in the domain, and there can be one or
many specialised information channels, one for each concept being modelled. These
specialised information channels, though distinct from the generalised representation
used to create the main task, helps the model improve in performance with this main
task through the combination of channels. For example, in the case study of quan-
tum chemistry, the generalised processing channel computes messages from all atoms,
while the specialised processing channels only compute messages from certain atoms
bonded with particular types of bonds. Here there is a specialised processing channel
for each of the bond types.

Like indirect specialisation, specialised information processing additionally allows for
user exploration of the domain concepts with visualisation of the specialised infor-
mation processing channels. As each channel should model a unique concept in the
domain, visualisation of these should provide some insight into the model’s learnt un-
derstanding of the data.
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6.2 Specialised Information Processing in Recurrent Networks

In general, RNNs take a sequence as input, while for each entry in the sequence, the
RNN updates an intermediate state representing the cell’s memory. For the purpose
of classification, this intermediate state or the hidden state, has encoded a represen-
tation of the entire sequence that may be classified with some logistic regressor. With
specialised information processing, specialised cells are used to learn concepts from
the domain, and feed back into the general representing according to the hierarchy of
tasks. To demonstrate this method, we use the case study of OGD.

Both OGD base models use recurrent layers, specifically LSTM cells, to accumulate
the word embeddings and provide a fixed-sized vector representation of the entire
conversation. This fixed-sized vector can then be used for the final projection into the
classification space.

LSTMs are composed of multiple probabilistic and differentiable logic gates (Equation
6.1). The LSTM cells use an input, forget, and output gate while storing an internal
memory into a cell state and hidden state.

i(t) = σ(Wix
(t) + Uih

(t−1))

f (t) = σ(Wfx
(t) + Ufh

(t−1))

o(t) = σ(Wox
(t) + Uoh

(t−1))

c(t) = φ(Wcx
(t) + Uch

(t−1))

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c(t)

h(t) = o(t) ◦ φ(c(t))

(6.1)

where i, f ,o, c are the input, forget, output, and candidate gate activations used in the
creating of a new cell state c and the hidden state h. W,U are the learnt parameters
for each of the logic gates. σ, φ are the sigmoid and hyperbolic tangent activation
functions. ◦ represents the Hadamard product between vectors.

A potential limitation of using this traditional LSTM cell structure is that the cell must
accurately model an internal hidden state h that is useful for predicting the classifi-
cation of an entire conversation. This is made difficult if there is a lot of important
information needed to be encoded into the memory of the cell. For example, if there
are several sub-tasks that contribute to the main task that can be expressed in different
ways. The LSTM may have difficulty compressing this information into a fixed vector
size. Specialised information processing may overcome this challenge by providing a
unique processing channel for each of the different concepts. In the case of OG, this is
each of the different grooming processes.

In the work of Lu et al. [86], a separate LSTM was used to learn task-specific infor-
mation on language understanding tasks. However, the information learnt from these
specific tasks does not interact with the generalised LSTM cell. In our specialised in-
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formation processing method, the generalised representation is created from both the
previous generalised representation state, and the representation processed by the spe-
cialised processing. We argue this enables more frequently communication between
the general and specialised channels that better leverages both low-level representa-
tions.

The specialised LSTM closely follows the processes of Equation 6.1, though with its
own parameters:

i(t)s = σ(W s
i x

(t) + U si h
(t−1)
s )

f (t)s = σ(W s
fx

(t) + U sfh
(t−1)
s )

o(t)s = σ(W s
ox

(t) + U soh
(t−1)
s )

c(t)s = φ(W s
c x

(t) + U sch
(t−1)
s )

c(t)s = f (t)s ◦ c(t−1)s + i(t)s ◦ c(t)s
h(t)
s = o(t)s ◦ φ(c(t)s )

At each time-step t the general hidden state takes into account the detection of the
OG processes and the general hidden state from the previous timestep (Equation 6.2).
At this stage, the model is encouraged to find a relation between the conversation
semantic representation and the OG processes.

o(t)r = σ(W s
r x

(t) + U srh
(t−1))

h(t) = o(t)r ◦ φ(c(t)s ) + o(t) ◦ φ(c(t))
(6.2)

The additional activation o
(t)
r modulates the amount of information used from the

specialised representation to produce a new hidden state candidate.

To help the specialised channel in learning to detect grooming processes, hints (Defi-
nition 2.0.1) are provided to the specialised channel through an auxiliary loss:

LGMM =
1

T

T∑
t

(Wh(t)
s + b− G(w(t)))2 (6.3)

The design of specialised information processing for recurrent networks is not limited
to LSTMs, however. This concept can be generalised to add a specialised channel to
the Gated Recurrent Unit (GRU) cell. This cell, instead of having a separate cell state
and hidden state, fuses these two states together into a single hidden state (Equation
6.4). It also uses fewer parameters as it lacks an output gate, further reducing its
probability of over-fitting on smaller datasets [189].
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z(t) = σ(Wzx
(t) + Uzh

(t−1))

r(t) = σ(Wrx
(t) + Urh

(t−1))

ĥ(t) = φ(Whx
(t) + Uh(r(t) ◦ h(t−1)))

h(t) = (1− z(t)) ◦ h(t−1) + z(t) ◦ ĥ(t)

(6.4)

where z, r, ĥ are the update, reset activations, and candidate hidden state, respectively.

To add a specialised processing channel for this type of cell, a specialised candidate
state ĥs is created and a relation gate or (Equation 6.5) is used to update the general
state from both general and specialised processes.

z(t)s = σ(W s
z x

(t) + U szh
(t−1)
s )

r(t)s = σ(W s
r x

(t) + U srh
(t−1)
s )

ĥ(t)
s = φ(W s

hx
(t) + U sh(r(t) ◦ h(t−1)

s ))

h(t)
s = (1− z(t)s ) ◦ h(t−1)

s + z(t)s ◦ ĥ(t)
s

(6.5)

and condition the generalised hidden state on the specialised candidate state:

o(t)r = σ(W s
r x

(t) + U srh
(t−1))

h(t) = (1− z(t) − o(t)r ) ◦ h(t−1) + z(t) ◦ ĥ(t) + o(t)r ◦ ĥ(t)
s

(6.6)

A pictorial representation of the communication between the generalised and spe-
cialised channels is shown in Figure 6.1.

6.3 Specialised information processing in Graphs

For graph representations where edges can be used to denote different relational con-
cepts between nodes, specialised information processing can be used to process the
messages between nodes in different ways according to the type of edges between
nodes. To demonstrate the use of this method, we use the quantum chemistry case
study.

The bonds between atoms are an important factor when considering atomic interac-
tions and their contribution to the system’s energy. Therefore, when estimating the
potential energy of a system as a function of geometry, it may be beneficial to account
for the contribution of different Bond Type (BT). Accordingly, Gilmer et al. [190] in-
troduced BT information as edge input features, combined with inter-atomic distance
when computing interaction messages (Equation 4.2). This additional feature im-
proved energy estimates over using distance alone.
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Figure 6.1: Visualisation of the OG process information processing for LSTM (left) and GRU
(right). Activation gates are shown in squares, with addition, subtraction, and multiplication of
vectors in circles.

These encouraging results have inspired us to take this physics integration principle
further and to design the information exchange within the GNN to reflect the physics
of atomic interactions. Similar to Schlichtkrull et al. [191], specialised communica-
tion channels are introduced based on BT1. While [191] focused on the production of
messages that are specialised to the edge relation, two strategies are explored for spe-
cialising either the message production (Equations 4.2 & 4.4), or the message usage in
updating node states (Equations 4.3 & 4.5).

6.3.1 Specialised Message Production

Separate messages mr
vw (t or l are omitted for readability) for each type of relation r

between nodes (in our application scenario r denotes the BT) are produced by relation-
specialised mechanisms, i.e. with relation-specialised Mr (MPNN) and Rlr (SchNet).
In the case of a perceptron-based Mr, this is equivalent to the method of [191]. The
new message production equations for MPNN and SchNet become respectively:

mt+1
v = α

∑
w∈Nv

M
(
htw, x

e
vw

)
+ (1− α)

∑
r∈R

∑
w∈N rv

Mr

(
htw, x

e
vw

)
(6.7)

ml+1
v = α

∑
w∈Nv

hlw ◦Rl (dvw) + (1− α)
∑
r∈R

∑
w∈N rv

hlw ◦Rlr (dvw) (6.8)

with α modulating the strength of the relation-specialised message production with
regards to the original generic message production. R is the set of relation types.

1BT is predetermined using RDKit (https://www.rdkit.org/), and Antechamber [192], for
molecules with Canonical SMILES representation and others, respectively.
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In this application, it is the set of bond types, that may include a ‘no bond’ element
for pairs of atoms that do not share a bond but that we still want to consider (fully
connected graph), as in SchNet. N r

v is the set of neighbour nodes that share a relation
of type r with node v.

6.3.2 Specialised Node Update

Another possible strategy for specialised interaction is to produce generic messages
mvw using a single message function but to handle the messages in a specialised man-
ner when updating node states. We explore following different implementations:

Specialised weighting of the messages

A simple approach to differentiating the messages coming from nodes of different re-
lation types is to weight them by a relation-specialised and learnable (scalar or vector)
weight λr:

mv = α
∑
w∈Nv

mvw + (1− α)
∑
r∈R

λr
∑
w∈N rv

mvw (6.9)

In the case of a perceptron-based message function M (MPNN), this approach is equiv-
alent to the basis-decomposition regularisation proposed by [191] as a means to re-
duce the number of learnable parameters associated with specialised message produc-
tion.

Specialised update functions

The second approach is to implement separate relation-specialised update functions
and sum their contributions. The node update equations for MPNN and SchNet thus
become respectively:

ht+1
v = αU

(
htv,m

t+1
v

)
+ (1− α)

∑
r∈R

Ur

htv,
∑
w∈N rv

mt+1
vw

 (6.10)

hl+1
v = hlv + αV l

(
hlv,m

l+1
v

)
+ (1− α)

∑
r∈R

V l
r

hlv,
∑
w∈N rv

ml+1
vw

 (6.11)

In the case of MPNN (Equation 6.10), where the update function is implemented by a
GRU unit, we experiment with three different ways of specialising Ur:

Option 1) A separate GRU cell, one per relation type, to implement the different Ur.

Option 2) a single GRU cell, so that all relation channels share the GRU’s internal state.
The GRU’s Wz, Wr and Wh weight matrices contain weights that are specialised for
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the different relation types. In practice, this amounts to concatenating the different
messages from each relation type before providing them to the GRU cell:


∑

w∈N 1
v

mvw

...∑
w∈N |R|

v
mvw

 (6.12)

Option 3) a single GRU cell with concatenated messages from different relation types,
but the number of free GRU parameters are reduced in Wz, Wr and Wh by sharing
them between relation channels:

Wz/r/h =

Qz/r/h
...

Qz/r/h

 (6.13)

with Qz, Qr and Qh being matrices.

6.4 Experiments

The first experiments examined how effective the specialised communications were
for detecting OG in chat logs. This experiment used the methods of Section 6.2 to
integrate the prior knowledge groomer communicative processes with specialised RNN
processors.

The type of recurrent cell was varied for each of the base models, and whether spe-
cialised information processing was used. The results are shown in Table 6.1. In this
table, the specialised information processing methods are compared with their non-
augmented counterpart to detect OG. Specialised communication channels or not, we
observed the GRU cell generally performed better than LSTM on this dataset, perhaps
due to less over-fitting on the small number of positive examples as the GRU cell has
fewer parameters than the LSTM cell. When a specialised processing channel was
added to the recurrent cell, the classifier was more precise with its predictions, indi-
cating the specialised channel was enabling the DNN to attend to the labelled groomer
processes. As not all positive cases of grooming were labelled with groomer processes,
this also has had an effect of slightly reducing the recall of the classifier by possibly
making the DNN reliant on the annotations. However, with some exceptions, we have
generally seen a higher AUPR, F1, and F0.5 metrics for the specialised information
processing. These encouraging results prompt us to use this prior integration strategy
when building our final OG detector in Chapter 9.

Our next experiment has evaluated the methods presented in Section 6.3. The indi-
vidual effects of the different knowledge integration methods in comparison to non-
augmented base models were evaluated on Augmented QM9. Results of (non-augmented)
base models are provided in rows 1 and 8 of Table 6.2. When compared against these
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Table 6.1: Performance of both base models OGD-R and OGD-T when using Specialised informa-
tion processing with LSTM and GRU cells. Metrics are compared against their baseline cells.

Base Model Recurrent Cell Type Precision Recall AUPR F1 F0.5

Baseline 0.867 0.794 0.867 0.829 0.851
LSTM

Specialised 0.912 0.789 0.899 0.846 0.884

Baseline 0.875 0.772 0.893 0.820 0.852
OGD-R

GRU
Specialised 0.899 0.775 0.889 0.832 0.871

Baseline 0.900 0.871 0.940 0.886 0.894
LSTM

Specialised 0.954 0.835 0.936 0.891 0.928

Baseline 0.943 0.847 0.936 0.892 0.922
OGD-T

GRU
Specialised 0.914 0.863 0.938 0.888 0.903

base models, and considering only the best performing methods for specialised in-
teractions, all integration strategies of domain knowledge tend to have improved the
energy estimation and/or finding stable geometries. The impact of BT information
was the strongest for both architecture types. This confirms [167] ’s observation that
BT is relevant for estimating energy. This suggests that specialised interactions better
capture the physics of atomic interactions. For MPNN, we found the specialised update
function to be the best performing method of integrating different BTs into the model,
while the specialised weighted messages are better for SchNet. This observation comes
from the lower AE metric. However, after evaluating the DSG metric, we have seen
that for both architectures, the specialised update function was the best performer.
This appears to coincide with the effect shown in Figure 5.4 in which the best predic-
tor of the stable configuration was not necessarily the model with the lowest residual
errors.

In our implementations of the specialised processing for different BTs, we included an
learnt α (trained via back-propagation) value that determines how much information
from the specialised process to include in the node state. The α value is learnt through
the back-propagation of the network while training to estimate energy. Interestingly,
the model learnt a similar α value for each of the BT specialisations, indicating that
it perhaps was able to find an intrinsic relationship in the specialised messages and
general messages that does not change with how specialised messages are created.

For the previous experiment, the α value was learnable, and the model can optimise
the modulation between specialised and general messages. To evaluate the effective-
ness of the specialised messages, α was set to 0 and the models were re-trained. Table
6.3 presents this further assessment of the different specialised interaction strategies.
While the AE was lower for these experiments, the DSG and RE metric was generally
higher. With a learnable α we found that all metrics are usually improved, indicat-
ing there is a benefit to allowing the network to find a suitable modulation between
specialised and general messages.

Given these results, when combing augmentations for this case study, we shall continue
a learnable α with Equation 6.10 (implementation 2) for MPNN and Equation 6.9 for
SchNet.
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Table 6.2: Impact of each domain knowledge integration strategy on MPNN (top) and SchNet
(bottom) for Augm. QM9. Results are in the format: mean (std). The specialised interaction
methods that optimise at best energy and geometry are highlighted in bold for each GNN.

Strategy AE RE DSG

MPNN base model with no BT information 0.242 (1.318) 0.0029 (0.015) 0.034 (0.074)

Specialised
interactions

(Eq. 6.7) (α = 0.624) 0.272 (1.293) 0.0034 (0.014) 0.051 (0.080)
(Eq. 6.9) scalar λr (α = 0.628) 0.122 (0.431) 0.0016 (0.005) 0.032 (0.057)
(Eq. 6.9) vector λr (α = 0.627) 0.105 (0.502) 0.0013 (0.005) 0.050 (0.049)
(Eq. 6.10) impl. 1) (α = 0.615) 0.106 (0.253) 0.0014 (0.003) 0.023 (0.048)
(Eq. 6.10) impl. 2) (α = 0.635) 0.073 (0.170) 0.0010 (0.002) 0.030 (0.048)
(Eq. 6.10) impl. 3) (α = 0.618) 0.131 (0.436) 0.0017 (0.005) 0.025 (0.055)

SchNet base model 0.038 (0.037) 0.0005 (0.0005) 0.020 (0.031)

Specialised
interactions

(Eq. 6.8) (α = 0.734) 0.036 (0.035) 0.0005 (0.0005) 0.022 (0.032)
(Eq. 6.9) scalar λr (α = 0.529) 0.020 (0.018) 0.0003 (0.0002) 0.025 (0.032)
(Eq. 6.9) vector λr (α = 0.570) 0.024 (0.028) 0.0003 (0.0003) 0.034 (0.034)

(Eq. 6.11) (α = 0.727) 0.031 (0.032) 0.0004 (0.0004) 0.015 (0.028)

Table 6.3: Impact of each specialised interaction strategy for MPNN with α = 0 (no generic
interaction used) on Augmented QM9. Results are in the format: mean (std) over molecules

Strategy AE RE DSG

(Eq. 6.7) 0.171 (0.513) 0.0022 (0.006) 0.046 (0.055)
(Eq. 6.9) scalar λr 0.067 (0.141) 0.0009 (0.002) 0.037 (0.048)
(Eq. 6.9) vector λr 0.121 (0.295) 0.0016 (0.004) 0.044 (0.050)
(Eq. 6.10) impl. 1) 0.114 (0.142) 0.0015 (0.002) 0.048 (0.056)
(Eq. 6.10) impl. 2) 0.182 (0.582) 0.0023 (0.006) 0.047 (0.080)
(Eq. 6.10) impl. 3) 0.108 (0.121) 0.0012 (0.002) 0.046 (0.074)

Using specialised information processing may also provide an opportunity to explore
the use of visualisations for DNNs’ learnt ‘understanding’ of atomic principles. In
Figure 6.2, the different BT messages were extracted during the specialised update
function of Augmented-MPNN (Equation 6.10 implementation 2). The t-Distributed
Stochastic Neighbour Embedding (t-SNE) [50] algorithm was used to reduce the di-
mensionality of the messages from the initial 73 to 2 dimensions for the purpose of
visualisation. From this visualisation, we observed the different messages of different
BTs lay in a different space, meaning that messages of different types were sufficiently
different for the TSNE visualisation to place them in different locations.

For each of the messages, the colour value was mapped to the normalised contribution
of each atom during the readout function of MPNN. During this readout function, the
contribution of each atom was summed to create the final energy estimation for the
molecule. Therefore, the observation is that most single-bonded messages contributed
to a higher energy value, while double and triple bonded messages have reduced the
energy during the readout phase. From this visualisation, we observed MPNN, through
prior knowledge augmentations, was correctly demonstrating physical properties.
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Figure 6.2: One TSNE visualisation of different BT messages produced by Augm-MPNN for first
1000 molecules in the testing data. For clarity, the different BT messages (single, double, triple
bonds) are split into three separate plots, with a fourth plot showing all BT messages together in
a single plot. Messages were extracted from the output of the final BT specialised update function
(Equation 6.10 implmentation 2) before the final scalar energy prediction is made.

This visualisation was uniquely driven by the interrogation of visualising the strategies
of prior knowledge integration. In this case, we have seen the double and triple bonds
contributes to the node state that produces a lower energy state more than single
bonds.

6.5 Chapter Summary

In this chapter, we discussed how specialised information processing helped DNNs
internalise and represent domain knowledge. Specialised information processing pro-
vides specialised computations resembling the concepts within the domain. This method
is implemented by unique parameters of the network to act on the representation as
computed by the general processing channel. These specialised channels feedback into
the general representation.

For OG detection, we used specialised channels of OG processes for recurrent cells that
contribute back into the generalised representation. The specialised representation
was modelled in a supervised manner, where the expert’s annotation of groomer pro-
cesses was used to update the specialised channel’s parameters during back-propagation.
The specialised channel can then additionally output a visualisation of the predicted
groomer processes as in Figure 5.3. For quantum chemical property predictions, the
GNNs have been augmented by combining the general messages and their specialised
BT messages to update the node states in graphs. Unlike the specialised recurrent cells,
an auxiliary loss was not used to provide hints the specialised BT processing channels.
Despite this, the specialised BT processing channels helps estimate the system energies
without the need for more expert annotations.

The contributions of this chapter are:

• A theoretical formulation of specialised information processing of distinct chan-
nels of concepts, where the addition of separate and unique information process-
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ing channel for the concept within the domain being modelled. For example, in
OG detection, a specialised channel of the OG processes was used. In quantum
chemical systems, these specialised information processing channels represented
the different chemical BTs.

• A method to incorporate specialised information process in recurrent networks.
This method can generalise to both LSTM and GRU cells, and has been tested on
the OG detection case study.

• A method to adapt graph-based DNNs with specialised information processing.
The estimation of chemical system energies was used to test this method.

The key points from this chapter are:

• Specialised information processing channels can be added to DNNs. The purpose
of these processing channels was to allow the DNN to learn specialised parame-
ters to represent and improve the latent representations of the concepts without
competition with the downstream tasks.

• Hints with auxiliary losses can help the DNN to create specialised information
processing channels for the domain concepts.

• A method was shown to apply specialised information processing to recurrent
cells (LSTM and GRU). When these specialist cells were used to model OG pro-
cesses, there was an improved performance of detecting OG, while also providing
an additional means of visualisation.

• Another method has been explained to create specialised channels for GNNs.
To test this method the quantum chemical case study was used. In these tests,
specialised information processing was used to represent each of the different
BTs present in molecular and crystalline systems.

• We have seen an improved performance when using specialised information pro-
cessing channels as opposed to only using the generalised representations.
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Chapter 7

Attention on Data

DNNs typically require less feature engineering than other ML techniques [193], where
the model automatically learns the importance and relations between features. How-
ever, when starting the learning process, the DNN must process and consider each
of the input features with equal or random weighting, despite any prior known im-
portance of features. Therefore, there is a unique opportunity to encode the expert’s
domain knowledge of the importance of certain features for the classification or re-
gression task.

Intuitively, this feature importance corresponds to the attentiveness of the DNN, where
the model learns to focus or pay attention to selective parts of the input to produce its
output. For instance, a simple MLP may increase the weight of certain features, while
the weights of other features remain relatively close to 0. In NLP, a recurrent network
may learn to attend to certain words by increasing the activation of it’s input gate
during the context of its occurrence. Or in image recognition, where the presence of
certain patterns is more conducive for prediction of one class over other classes. De-
spite the DNN already performing an implicit form of attention during the process of
learning, the attentiveness of DNNs can be improved with additive attention mecha-
nisms, thereby improving its performance in many domains.

An Attention mechanism was first introduced by [96], where the performance on lan-
guage translation tasks is improved for Encoder-Decoder architectures. The authors
hypothesise that the architecture is limited by the amount of information that can be
passed from the Encoder to the Decoder in a fixed-sized vector between these two sub-
models. With their proposed attentive mechanism, the important features relevant to
language translation can be further enhanced in this vector and therefore providing
more useful information to Decoder.

Though originally designed for language translation, attention has become one of most
important concepts in DL, with applications ranging from NLP [37, 103, 1, 104], im-
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age recognition [102, 105], speech recognition [107, 95], and reinforcement learning
[108, 109].

To specify feature importance during the training process, attention can be used to
help the DNN to focus on particular features or parts of the input, as identified by the
prior expert knowledge, that may help with the classification or regression task. In this
chapter, the method of how one may use prior domain knowledge to provide added
attention on data is discussed. Two methods are introduced to integrate attention on
data using both recurrent and the attention mechanisms of transformer models. These
methods were tested using the OG detection case study where the presence of OG
processes was used to increase focus of the DNN on particular phrases, indicative of
grooming strategies, present in the chat logs.

7.1 Background on Attention

Certain features are more important than others. For instance, in a language under-
standing tasks, certain words are more relevant to understanding of what meaning the
sentence is attempting to convey, other words such as stop-words may be omitted but
yet the meaning is still understood. In the task of image recognition, the presence of
certain objects in an image is more relevant to determine what class label this image
has – more relevant than the background. To incorporate this notion of relevance,
attention mechanisms are designed to learn feature importance and shift the focus of
DNNs towards these features.

The concept of attention in DNNs is often inspired by the human psychological pro-
cesses [98, 194, 195, 196, 197]. Humans have the ability to attend to more features
in sounds and images. For example, a human does not process an entire image, but
instead attends to selective parts of the scene and combines this information in order
to make an assessment [98]. Moreover, they would recognise an object in a scene as
well as the object isolated from the surrounding environment [198]. Likewise, a DNN
will learn to give some features certain weight, but will, however, evaluate the entire
scene.

For tasks such as sentiment analysis with long sequences and image caption genera-
tion, compressing large amounts of information into a fixed-sized vector can be chal-
lenging, and some information will be lost in the process [114]. To overcome this
challenge, Bahdanau et al. [96] allows the Decoder network of an Encoder-Decoder
architecture to access the entire sequence of hidden states from the Encoder. By intro-
ducing attention weights over these hidden states, an optimised and more informative
fixed-sized vector can be computed as input for the Decoder network. Luong et al. [1]
provides two approaches of this method with global and local attention. Global atten-
tion, like [96], applies attention weights over all state positions, while local attention
considers a subset of positions. From these methods, both have been successful in
improving the performance in language translation tasks.

The method of attention can be generalised as Equation 7.1 in which the optimised
feature vector z is created from the weighted sum of the hidden states of all time-steps
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t and the learnt attention weights a.

zi =
T∑
t=1

a
(t)
i h

(t) (7.1)

where
∑
ai = 1.

Scaled Dot-Product Attention is an alternative method of computing attention that
is used in the state-of-the-art Transformer architectures [37] and builds on the dot-
product score method of [1] by adding a scaling factor to account for very small gradi-
ents during training. In this form of attention a (Equation 7.2), three representations
are used to compute the optimised vector: a K or key from a linear projection hid-
den state of the Encoder; Q or query from a linear projection the hidden state of the
Decoder; and V or value another linear projection of the same hidden state of the
Encoder.

a(Q,K,V) = softmax(
QK>√
n

)V (7.2)

where n is the length of the sequence. QK> calculates the self-attention score for the
relevance of each word for every other word. This score is scaled by the square root
of the length of the sequence and Softmax is applied to ensure the weights sum to 1.
The final attention scores are obtained by multiplying these weights against V.

Attention helps DNNs to attend to important features when performing the compres-
sion process of converting an entire sequence of states into a fixed-length vector, result-
ing in a vector that are richer and more descriptive for their intended task. In addition
to just improving performance, the learnt attention weights in NLP provides insight
into the importance of words for the natural language understanding task [199]. Such
an example is constructing an N ×N matrix with English words as columns and Ger-
man words as rows (Figure 7.1). Each entry in this matrix shows the attention weights
between two-word pairs and can be interpreted as the relevance of each English word
for the prediction of each translated German word [96, 1].

Figure 7.1: Visualisation of attention weights from [1] for local attention (left) and global atten-
tion (right). Entries in these matrices demonstrate the importance of each English word (column)
for its German translation (row).
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With attention on data, one can also avoid situations where the DNN is using features
that occur in the data due to misrepresentation or errors, creating a classifier that, al-
though performances with high accuracy on the test data, is not useful for its intended
task. One prime example is in the husky-vs-wolf task [44], where the DNN trained to
recognise the difference between an image of a husky and a wolf, would often use the
presence of a snowy background to determine if the image contains a husky. This ex-
ample highlights the ease with which the DNN can attend to spurious features in data.
Furthermore, the analysis of feature importance is one method by which practitioners
may understand some decision processes made by a trained DNN [200].

7.2 Stimulating Attention

We propose to use this idea of attention as a method for shifting the focus of DNNs
to relevant features or inputs as determined by the domain expert. Like some of the
existing methods for attention, this prior knowledge integration of domain knowledge
is not only applicable for NLP, but may also help in making DNNs in domains such as
image or speech recognition more attentive to prior knowledge.

In principle, we would like to allow the DNN to continue to learn attention in an unsu-
pervised manner, as the method has already proved to be successful for many domains.
To help the DNN to succeed in recognising important features, especially early on in
the learning process, however, we may augment this unsupervised attention through a
direct action that boosts the attention weights at strategic inputs using the prior knowl-
edge of the expert. This direction of attention helps to highlight the important features
for the DNN, even if its unsupervised attention has not yet learnt this importance.

One may use an alternative method of stimulating attention following the design prin-
ciple of Indirect Specialisation (Chapter 5). Instead of directly stimulating the atten-
tion, one may supervise the process of learning attention and provide hints as to the
important features. This auxiliary task may still shift the focus of attention like the
excitation method but requires selecting an appropriate task weighting to ensure all
tasks are not conflicting, which may result in reduction the performance of the DNN.

While this method of supervising attention uses an auxiliary task, it is not indirect
in the same way as indirect feature specialisation that acts indirectly on learnt fea-
tures through the auxiliary output task. Rather, supervised attention directly acts on
attention weights which are considered in the loss function. Nevertheless, both indi-
rect feature specialisation and supervised attention can be implemented via auxiliary
tasks, highlighting the generalisability auxiliary tasks has in helping to train DNN to
great effect.

Using OG detection as a case study for integrating stimulated attention, two imple-
mentations methods of stimulating attention were created. These implementations
were designed to increase the OG detectors’ focus on particular phrases used in the
context of grooming. These phrases have been identified by the expert annotator as
constituting of a grooming communication process. By using these methods of stim-
ulating attention on these grooming processes, the DNN may be more sensitive to
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the occurrence, expression, and context of these processes, despite their implicit and
unassuming verbiage.

7.2.1 Direct Attention Stimulation

For many applications of DNNs in NLP, these DNNs use attention mechanisms weights
to attend to important words/features. In transformer architectures, attention energy
et are explicitly computed for each word at position t. In recurrent cells, update gates
in effect implement an implicit attention mechanism that selects important input fea-
tures to update the latent cell state of the RNN. Therefore, the RNN cell input/update
activation it may be considered an attention weight and thus our methods will also be
applicable.

To compute an attention energy et for word at position t, it may be stimulated during
training to guide the DNN’s attention on occurrences of OG processes1. Using the prior
knowledge of the grooming processes via the GMMs, we have directly augmented the
attention of the DNNs. We show two examples of how direct attention stimulation can
be implemented for different forms of attention: self-attention, and input-gate activa-
tion in RNNs. We use this method to stimulate the activation of both self-attention and
recurrent modules in locations containing OG processes indicated by G, encouraging
the DNN to recognise the contexts of OG processes to improve the information carried
in its hidden state during sequence modelling.

Direct stimulation of attention mechanisms inspired by Derakhshani et al. [112]
that augmented CNN’s activations to speed up localisation learning in images. This
work inspired us to augment the attention weights by the grooming communication
processes regulated by the attention energies:

ẽt = et + G(t) et (7.3)

In OGD-T, there are several attention energies for each word. In this circumstance, the
direct stimulation is applied independently over each attention energy for each word.

In addition to Equation 7.3, we provided an alternative direct attention stimulation
(Equation 7.4) with an unregulated prior on ẽt that may be more useful during the
start of training when the attention weights are random. The effectiveness of this
modification will be tested in Section 7.3. While in this work we consider Equations 7.3
and 7.4 to be separate methods, future work could explore using Equation 7.4 at the
start of the training process, before adding the regulation term after the unsupervised
attention has had time to learn from the data.

ẽt = et + G(t). (7.4)

Direct input-gate activations stimulation of recurrent cells. The input/update gate

1No annotation of OG processes (i.e. GMM) is required at testing time.
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activation it of the RNN is augmented during OG processes, indicated by a peak of G,
through:

ĩt = it +
G(t)

D

D∑
d=1

hd
t . (7.5)

The D components of hd
t of the hidden state are averaged, by analogy to the work of

[112] that averaged over all channels of a CNN’s activation map. In addition, G(t) is
scaled by the dimensionality D of the hidden state.

7.2.2 Supervised Attention Stimulation

An alternative (or complement) to directly augmenting existing attention weights is
to supervise the attention weights of the DNN. Like the previous method of directly
stimulating the attention of DNNs, the method of supervised stimulation can apply to
both self-attention and RNN cells.

Supervision of self-attention by the sum G of GMMs used as ground-truth distribution
of the salient locations and attention energies:

Lattention =
1

T

T∑
t=1

(et − G(t))2 , (7.6)

with T the length of messages from both users.

Nguyen and Nguyen [97] employ a similar tactic to encourage their DNN to learn sim-
ilar attention weights. For their method, the occurrence of single and low-level target
words are used as prior knowledge of the classification. Using a Gaussian distribution
centred on this target word, the authors eliminate the DNN learning binary attention
values, where the attention has the value 1 at the target word, and 0 elsewhere. Sim-
ilar to [97], our work used the sum of GMM, but instead of a single target word, this
GMM highlights seven higher-level OG processes.

Supervision of input-gate activations by minimising the loss between the average
input/update gates’ activation it and the combined GMMs:

Lstimulation =
1

T

T∑
t=1

(it − G(t))2 ; (7.7)

These two methods of augmenting the attentiveness of the DNN may be both employed
at the same time. For instance, the attention energies of self-attention may be directly
augmented by G while also being supervised by the auxiliary task using the same prior.
Through this process, the self-attention energies may benefit more during inference
(where the annotations to compute G are not available) than either method applied
singularly.
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Figure 7.2: AUPR results of OGD-T with direct augmentation and stimulation using different
layers of self-attention. Performance is shown by solid lines and dotted lines are the trend lines.

7.3 Experiments

To better understand how the direct stimulation affects the self-attention of OGD-T we
varied the self-attention layer to which the stimulation methods were applied. The
results of this experiment are shown in Figure 7.2. Though there were very small
fluctuations in the performance of the model from using one layer to the next, we
observed a general trend of increasing performance when using the higher layers.
The increasing trend was more noticeable for direct stimulation than for supervision
perhaps due to the direct augmentation being more direct with its attention processes.
Using higher layers for attention may correspond with the higher level of OG processes
where instead of the occurrence of single target words, the OG processes operate at
a higher cognitive level. As we have seen generally better performance, though not
significantly, improvements, when using the highest layers of self-attention for this
method, we were motivated to continue to use the final layer of attention to applying
both supervision and direct stimulation.

To compare all stimulation strategies, they were added to the base models (OGD-R and
OGD-T) independently, and combined together to understand their interaction. Both
of these base models include an unsupervised attention mechanisms to optimise the
hidden states of the conversation. OGD-R uses the unsupervised attention of [1], and
OGD-T uses self-attention layers of [100]. For this experimental setup, XLNet were
used as the self-attention as it is the best performing transformer for our data. LSTM
cells were used to test the stimulated RNN method in both models, but the method
can also apply to various forms of recurrent cells, e.g. GRU [189]. The stimulated
attention methods were applied to the final layers of the mechanisms, i.e. the final
layer of XLNet’s self-attention and the final LSTM layer.

The results are presented in Table 7.1. All methods of augmenting attention using
knowledge of OG processes improved the performance of the DNNs. This has demon-
strated that focusing the DNNs’ attention on the language associated with OG processes
does help capture the subtleties of grooming language.

95



CHAPTER 7. ATTENTION ON DATA

Table 7.1: Impact of each CL knowledge integration on OG classification. Bold are improved
results with respect to no augmentation, i.e. base models.

Model Strategy Precision Recall AUPR F1 F0.5

OGD-R

No augmentation 0.867 0.794 0.867 0.829 0.851

Unsupervised attention

supervision 0.839 0.804 0.879 0.821 0.832
direct stim. (Eq. 7.3) 0.822 0.817 0.877 0.820 0.821
direct stim. (Eq. 7.4) 0.870 0.808 0.906 0.838 0.857
supervision+direct stim. (Eq. 7.3) 0.859 0.819 0.897 0.838 0.851
supervision+direct stim. (Eq. 7.4) 0.929 0.741 0.908 0.824 0.884

Last LSTM layer
supervision 0.924 0.752 0.891 0.829 0.883
direct stim. 0.856 0.797 0.863 0.825 0.843
supervision+direct stim. 0.906 0.781 0.901 0.839 0.878

OGD-T

No augmentation 0.900 0.871 0.940 0.886 0.894

Last self-attention layer

supervision 0.919 0.862 0.943 0.890 0.907
direct stim. (Eq. 7.3) 0.894 0.885 0.945 0.889 0.892
direct stim. (Eq. 7.4) 0.916 0.866 0.940 0.891 0.906
supervision+direct stim. (Eq. 7.3) 0.891 0.881 0.941 0.886 0.889
supervision+direct stim. (Eq. 7.4) 0.918 0.862 0.941 0.889 0.906

Last LSTM layer
supervision 0.938 0.857 0.944 0.896 0.921
direct stim. 0.896 0.896 0.944 0.887 0.892
supervision+direct stim. 0.960 0.846 0.945 0.899 0.935

When exploring the attention energies on the test set for (non-augmented) OGD-R, we
observed that the contexts the model learnt to focus on are not related to our labelled
instances of OG processes: the average (std) attention energy for these instances is
0.0009 (0.0002), lower than energy across all conversations at 0.0016 (0.0128). A
similar observation is made for OGD-T, where tokens’ energies are obtained from the
last self-attention layer similarly by Sood et al. [201] through retaining the max pair-
wise energy for each token (row) normalising by the sum of retained energies. This
was done for each attention head before averaging across heads. The resulting aver-
age (std) energy for our instances of OG processes was 0.110 (0.072), slightly lower
than the energy across all conversations at 0.120 (0.088). Thus, neither models were
able to discover on their own the sub-goals the CL analysis of Lorenzo-Dus et al. [29]
identified and their associated language. This knowledge is, therefore, an added value
for the models, as also demonstrated by the improved results.

In comparing the method of direct stimulation with and without regulation by learnt
attentions (Equations 7.3 and 7.4), we observed the method generally performing bet-
ter without the regulation term (Equation 7.4), possibly due to the random attention
weighting during the start of training. This improvement was seen both with direct
stimulation applied singularly and when it was combined with supervision.

The two stimulation strategies seem roughly equally helpful at focusing the DNN’s at-
tention and capturing the subtleties of grooming language. In addition, improvements
are more consistent for AUPR and precision (and consequently F0.5), thanks to fewer
false positives. This reduction in false positives may be due to a more straightforward
distinction of OG conversations from neutral but sexually-oriented ones.

In Figure 7.3, we show the confusion matrices for the base models and the combination
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of supervision and direct stimulation in LSTMs. Here we observed a reduction in the
number of false-positive predictions made by the DNN if the attention augmentations
are applied during training. This was true for both base models. For OGD-R we have
seen a 33.66% reduction in the number of false-positives, while for OGD-T there was
a 49.14% reduction.

Furthermore, these cases of false-positives appeared to be somewhat sexually explicit
in nature. Using the presence of sexual wording from the vocabulary list of [202] as a
criterion for determining sexually explicit conversations, the number of false-positives
with this explicit behaviour decreased from 131 of the OGD-R base model to 97 using
augmented attention (25.95% reduction). While for OGD-T, the base model flags 76
false-positive sexually explicit conversations, whereas it only produced 36 sexually
explicit false-positives with the augmentation (52.63% reduction). This suggested the
attention was shifting the focus away from misleading sexual language to more implicit
and discrete strategies of groomers.

While there is a reduction in the number of false-positives created by the DNN, we
also experienced a small increase in the number of false-negatives as a result of the
augmentation. However, these increases are far smaller than the reduction in false-
positives. For example, while we observed a 33.66% reduction in false-positives, the
false-negatives only increased by 3.55% for OGD-T, likewise for OGD-R where the
increase due to augmentation is 6.3%.

Finally, we observed both self-attention and LSTM input gates, combining the super-
vision and direct stimulation approaches provided better results than using them in-
dividually. This suggested that these two processes supported each other during op-
timisation. Indeed, improved DNN’s attention (expressed in et and it) from direct
stimulation may assist with the supervised attention task. In addition, improved at-
tention from supervision may also reinforce the direct augmentation and work at its
best.

7.4 Conclusion

For classification or regression, different features have a different order of importance.
The role of the DNN is to learn this feature importance and weight them appropriately.
However, instead of solely relying on the DNN to find important features in data, and
if the importance is already known, an expert may integrate this known knowledge
via stimulation of attention. This stimulation is designed to improve the model’s focus
and shift focus away from potentially misleading or erroneous features.

To demonstrate the use of stimulation of attention, the case study of OG detection was
used. In this study, the OG processes (collocation of words) was used to promote the
feature importance in the DNN during training. This increase of feature importance
was integrated with two methods: the first was via the stimulation or direct stimulation
of attention, and the second was a supervised auxiliary task.

We observed that attention is a useful strategy of improving DNN performance and
reducing the number of false-positives due to potentially misleading features. Fur-
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(a) OGD-R base model. (b) OGD-R with superv.+direct stim.
LSTM.

(c) OGD-T base model. (d) OGD-T with superv.+direct stim. LSTM.

Figure 7.3: Comparison of confusion plots of OGD-R/OGD-T without prior knowledge augmenta-
tions and with supervision+direct stimulation LSTM. Colour intensity of cells denotes the log scale
of number of conversations for readability.

thermore, we have seen the best method for increasing performance to be combining
both supervision and direct stimulation of attention as each approach can support each
other during the learning process.

The contributions of this chapter are:

• A formulation of how attention networks (transformer- and recurrent-based) can
be stimulated to shift focus onto important features using prior knowledge via
stimulation of the existing (and self-learning) attention mechanisms.

• A method to stimulate the attention of RNN cells (tested with LSTM and GRU
cells) to important features of the input, and another method to stimulate the
learnt self-attention mechanisms of transformer networks.

The key points for this chapter are:
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• DNNs learn feature importance throughout the training process. However, one
does not need to rely solely on this process if the important features are known
before training. It is then possible to encode the importance of these known fea-
tures with stimulated attention, thus providing an increased focus of the model
and helping with the learning process.

• This stimulation of attention may also help to shift the DNN’s focus off of po-
tentially misleading or erroneous features, leading to a more trustworthy model
overall.

• We created methods of applying stimulated attention to our OG detector to help
focus the detector onto the grooming communication processes.

• In case study for OGD, these stimulation methods are applied to both LSTM/GRU
recurrent cells and for attention mechanisms in transformers and unsupervised
attention mechanisms.

• In experimenting with these different methods for stimulating attention in DNNs,
some methods have been found to be more effective than others. For instance,
LSTMs can benefit from both supervision and direct stimulation than either
method applied singularly.
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Chapter 8

Augmenting Training Data

To successfully train DNNs, typically, a large and diverse set of training data is needed.
This data, in being diverse, exposes the model to wide variety of inputs from which it
can learn and estimate class boundaries to inputs. In many scientific domains, how-
ever, the existence of readily-annotated datasets with which to train DNNs is not usu-
ally available.

In some cases, annotated datasets in these scientific domains exist, but may be too
small to train large and complex DNNs without over-fitting to the small amount of
data. To overcome these issues, researchers have relied on techniques that include
augmentation of the dataset, where specific changes are applied to the existing dataset
in order to enrich and expand the variety of data available. However, the synthetic
samples as a result of the augmentation need to be realistic and simulate the process to
which the data was originally recorded. Otherwise, the DNN may shortcut the learning
process and rely on artefacts in the synthesised data to make predictions. Therefore,
we advocate for the use of prior knowledge in making these augmentations realistic
and meaningful to the domain of data in which they are being applied.

To avoid misleading features and become more robust to small changes in input, this
chapter is dedicated to the topic of performing data augmentations in a domain-
meaningful way as to enhance the training data. The first method, manual crafting
of data-specific augmentations, focuses on the type of data being augmented and uses
the prior knowledge of the data to construct domain-meaningful augmentations that
provide the DNN with a larger variety of inputs.

Even if a DNN is trained with a large and diverse dataset, the DNN may still be sus-
ceptible to adversarial examples. This phenomenon is a concern for the use of DNNs
in many safety-critical systems, as the existence of adversarial examples may indeed
occur in the real world [9]. While the stimulated attention methods of the previous
chapter can be used to provide focus for the DNN using prior knowledge and po-
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tentially avoiding misleading features, DNNs, despite the shifted focus, may still be
susceptible to these adversarial examples.

Our second method, adversarial training, provides automatic perturbations that are
intended to fool the DNN to produce a misclassification, and through the process of in-
cluding these perturbations with the correct classifications during training, potentially
make the DNN more robust to small changes in input. In order to enhance and be
more data-conscious with automated process of augmenting data through adversarial
attacks, our method determines what constitutes as a small change to create an ad-
versarial example, where small depends on the data, and each specific sample of this
data. This prior knowledge then of what are small changes is used to inform the DNN
during training to improve the robustness of the DNN with respect to small changes
in input. Our method consists of generating neighbourhoods (Definition 2.0.3) sur-
rounding each data point that defines the search region for adversarial examples and
can be used to sample additional training data in the process of adversarial training.
The size of each neighbourhood is adapted and unique for each data point by esti-
mating local class boundaries relative to the centre of the neighbourhood, while also
accounting for lack of information (due to small amount of sampling data) to estimate
class boundaries.

While recent work by [41] illuminates the distinction between different forms of train-
ing DNNs to be more robust, and therefore data augmentation and adversarial training
are both separate methods, we present them together in this chapter under the notion
that both these methods are simply modifying the training data. The first method, with
data-meaningful transformations, is the modification of data prior to training. The sec-
ond method, via adversarial training, is the modification of data during the process of
training. Though each method may modify the data, as [41] points out, these methods
may indeed provide different definitions of robustness to the DNN, an advantage we
can exploit by combining them in later chapters.

To evaluate both of these methods, the case study of detecting Type II solar bursts was
used. This case study was chosen due to its issue concerning the small training set for
DNNs. To enhance this dataset and make it viable for training DNNs, we implemented
both methods and compared them with the original dataset.

8.1 Data-meaningful Transformations

Our first method of data augmentations considers the manual process of crafting aug-
mentations that are domain-meaningful to the data they are being applied to. While
a variety of common augmentations exist (e.g. image cropping, colour shifting, and
affine transformations), more specific augmentations should be applied to cover the
variety of possible signals and backgrounds that may occur in the real data. These
augmentations should be informed by the prior knowledge of how the data was gener-
ated and then recorded. For example, in the classic MNIST dataset where handwritten
digits from 0 to 9 were recorded to train an ML model to recognise these digits, one
augmentation may be the reduction or increase of the stroke width of the digit to sim-
ulate different pen pressures when writing the digit. Another augmentation may be
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a shearing of part of the digit to replicate an italicised style of writing that originates
from the inclination of the hand with regards to the text line. Both of these example
augmentations manipulate the properties of the digit in a way that simulate different
conditions of the pen stroke in the process of handwriting.

These augmentations enrich the training data and provide the DNN with a larger va-
riety of input, thereby potentially leading to improved generalisation performance.
Moreover, specific augmentations could be designed to alleviate potentially mislead-
ing features that could occur in the data. By exposing these misleading features to the
DNN during training, the DNN will be given an opportunity to learn to avoid these
features when making its predictions.

To demonstrate this method, we have used the WAVES dataset (Section 4.3.1). These
augmentations were designed from the use of prior knowledge of solar physics to be
physically-meaningful to how Type II bursts can appear on spectrograms in the WAVES
dataset.

8.1.1 Enhancing WAVES Spectrograms with Data Augmentations

The amount of annotated data available in the WAVES dataset for training and ML
model is limited, especially so for DNNs. While we used pre-trained weights to miti-
gate this issue of limited data in the WAVES dataset, further measures can be taken to
further alleviate this issue. Four augmentations were designed to improve this varia-
tion in the data. These augmentations were:

• D1 – Removal of burst segments.

• D2 – Dilation/erosion of bursts.

• D3 – Horizontal/vertical lines of noise at varying widths.

• D4 – Addition of Type III bursts.

The first augmentation, D1, randomly removes segments of the Type II burst. First,
individual or separate parts of the burst were identified. Then, with these burst seg-
ments, zero or one of them was removed (while also being careful to remove the
positive mask label) from the image. D1 is shown in Figure 8.1. This type of augmen-
tations aims to replicate the physical property of the full burst rarely being visible.

D2 either dilates or erodes the Type II burst. Erosion lessens the intensity of the burst,
in this case the pixel values, while the dilation increases the burst intensity. The erosion
and dilation simulates the physics-related property of the burst varying in intensity and
width where, for example, the natural occurrence of erosion Type II bursts occurs at
higher frequencies. Equation 8.1 describes the formula for both erosion and dilation
of the Type II burst with respect to the frequency used in this data augmentation:

x = x± λx f

fmax
(8.1)
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Figure 8.1: Original image (left) and augmented version with the removal of a random segment
(right). The red rectangle highlights the difference between the original and augmented image.

where x is the augmented pixel value and λ is a user-defined modulation parameter
that increases/decreases the amount of erosion/dilation. f and fmax is the frequency
of the burst and maximum frequency in the image. An example of both erosion and
dilation can be seen in Figure 8.2.

Figure 8.2: Example of D4 augmentation. Left figure shows the erosion of Type II burst, where
the higher frequencies are more eroded than those at lower frequencies. Right figure dilates the
same burst, increasing the dilation for lower frequencies.

D3 adds horizontal or vertical lines to the image to represent noise from varying
sources of interference (Figure 8.3). The horizontal noise was varied on the frequency
range by increasing the height of the noise, while the vertical noise covers all frequen-
cies for a varied amount of time by increasing the width. This type of augmentation
aims to replicate the natural occurrence of interference.

From the preliminary experiments, it was shown that Faster R-CNN had often mistaken
a Type III burst for a Type II. The D4 augmentation aimed to combat this effect by
increasing the number of Type III bursts the model is exposed to during training. From
this, Faster R-CNN may better discern between these two different types of bursts more
easily. To create this augmentation, ten different examples of Type III bursts in the
training set were found and isolated, and then randomly inserted into other images.

It is relatively frequent for both Type II and Type III bursts to occur simultaneously or
just before/after. Therefore, in order to insert additional Type III bursts into images,
we used two different methods. The additional Type III bursts were either randomly
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Figure 8.3: Augmented image with horizontal noise (left) and vertical noise (right).

placed along the time domain or correlated with the Type II burst to appear just before
or just after (by 20 pixels) the occurrence of the Type II burst. An example of the
additional Type III bursts are shown in Figure 8.4.

Figure 8.4: Original (left) and D4 augmented (right) event.

From the combination of these four augmentations, the training subset of the WAVES
dataset can be augmented to provide a richer variety of examples for training Faster
R-CNN to detect Type II solar bursts. In Section 8.3.2, we experiment with each of
these four augmentations to demonstrate how they affect the test performance in the
object detection task.

8.2 Adversarial Examples

To make DNNs more robust against adversarial examples, it is common to use these
adversarial attacks as a form of defence by introducing a measure of the DNN’s sus-
ceptibility to the adversarial examples in the loss function. Through this process, the
DNN is exposed to samples of the training set with small changes that could potentially
lead to adversarial examples. This form of adversarial training can improve the DNNs
robustness.
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8.2.1 A Background on Adversarial Examples

Adversarial examples (Definition 2.0.2) occur when small changes or perturbations
to the input result in a change of class output. These small changes can often be
unnoticeable from the perspective of a human observer, as is the case in the work of
Goodfellow et al. [3], or the perturbations result in a large amount of recognisable
change but in an unimportant part of the input, as can be found in Papernot et al.
[203].

It is well known that adversarial examples exist within small regions around the train-
ing data. Szegedy et al. [6] showed how the presence of adversarial examples con-
tradicts a general belief that DNN’s complexity makes them good at generalising to
unseen examples. Later work by Goodfellow et al. [3] proposed the Fast Gradient Sign
Method (FGSM) to generate adversarial examples from a closed n − ball around the
input. This method perturbed the input pixel values in the direction of the cost func-
tion’s gradient. While [3] employed gradient information of the model, [204] used a
black box assumption to find adversarial examples by choosing a random dimension
(or pixel) on the input space [204] or on activation maps [118] for which an ε is added
and subtracted from the original value. The model is repeatedly queried to determine
if the perturbation would result in a misclassification. [205] applied a diffusion map al-
gorithm to generate a reduced data space. The authors synthesised new points within
sparse regions of the data space under the assumption that more adversarial exam-
ples will occur due to the lack of information in these areas. While we also used the
assumption that adversarial examples may preferably appear in under-sampled areas
where DNNs are under-trained, we also considered these areas very carefully, as the
location of class boundaries are more uncertain there. Hence, we argue these areas
should not be used blindly to search for adversarial examples, but the areas should be
restricted based on uncertainty on class boundary location. We address this question
of estimating uncertainty on class boundaries in Section 8.2.3.

Indeed, while in the context of these studies, the proposed algorithms are targeted at
image-based classifiers in which small perturbations don’t generally cause a change
of class, and can be visually inspected for class type, the same algorithms may pose
problems for other types of data. In datasets with jagged class boundaries, small
changes may inadvertently push data across true class decision boundaries and thus
incorrectly label the data. The focus of our study is therefore to provide a mechanism
to quantify the amount of perturbation that can be safely applied (without change
of class) to a dataset. This quantification may enable the use of existing adversarial
generation algorithms, and allow their use for non-image types of data. Our proposed
method estimates the density of samples within the data manifold to identify areas
where true class boundaries may be uncertain. This allows defining regions where
adversarial generation algorithms may be safely used in future work.

Many approaches for the automated construction of adversarial examples use a fixed-
sized ε for the local neighbourhoods around training points [4, 3, 36]. To ensure
these local neighbourhoods are within class boundaries, we propose the use of dataset
complexity and of density analysis of the data manifold to provide an adaptive ε for
each sample.
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The adaptive definition of neighbourhoods relies on the properties of the data man-
ifold, detailed in Section 8.2.2. In particular, they involve the notion of sampling
density of the data manifold (Section 8.2.3) to assist in iteratively building neigh-
bourhoods that may remain within class boundaries according to the available class
information.

8.2.2 Manifold Properties

Many ML applications and learning techniques operate under the assumption of a
manifold hypothesis [206, 207], where real/natural high-dimensional data lie on a
low-dimensional manifold embedded within their high-dimensional space. The man-
ifold hypothesis is often interesting for ML as it provides some explanation for the
success of DNNs, as, in the process of accurately classifying data, DNNs may transform
and twist the manifold on which the data lies into a form that can be separated by a
hyperplane [208].

The consequence of this manifold assumption is that data has a local homeomor-
phism with a Euclidean space of lower dimensionality that is a local approximation
to the manifold [207]. The data, when observed locally share the same properties
as Euclidean space, but this is not the case when globally considering the entirety of
the manifold. Therefore when analysing points relatively close together, i.e. the lo-
cal neighbourhood of data points, the distance between points may be approximately
measured with an Euclidean-based metric.

Definition 8.2.1. [38] Let (X , d) be a metric space with X the space of data points X
and d the Euclidean distance. The ε-neighbourhood of a point xi ∈ X is defined as:

Nε(xi) := {x | d(x,xi) < ε} (8.2)

Under the assumption of the manifold hypothesis, our method of creating adaptive
neighbourhoods considered two properties of the dataset:

• M1 The geometric complexity of the class boundaries.

• M2 The sparsity/density of sampling from the data manifold that constitutes the
training data.

M1 refers to situations where differently labelled data points lay close together in the
topological space, and therefore any perturbation of the data points could result in
passing the class boundaries, while wrongly labelling the perturbation the same as
the original (Figure 8.5). This example may be mistakenly labelled as an adversarial
example, despite the DNN having correctly learnt the true class boundaries. In this
case, the DNN would produce a different output label for the perturbed input as the
perturbation results in an input past the true class boundary.
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xi
ε Class decision

boundary

Figure 8.5: Example where a data point xi lies close to the class decision boundary. In these
situations, too large ε values may push the synthetically generated point over true class boundaries.

(a) Sparse regions of the manifold may ap-
pear simple due to the lack of information.

(b) More data points enable more precise es-
timation of the class boundary.

Figure 8.6: Example scenario where true class boundaries are revealed when more data is col-
lected.

M2 concerns the number of samples from different regions of the data manifold. In
sparse regions (i.e. a small numbers of samples from a region of the manifold), esti-
mated class boundaries may seem deceivingly simple, e.g. linear with a wide margin
[209] (Figure 8.6a). By increasing the number of examples (i.e. collecting more
data), the true complexity of the classification task may become apparent (Figure
8.6b). Therefore, we should be cautious when estimating the class boundaries, and
take into consideration how much information there is to gain from the surrounding
data points to estimate such boundaries.

8.2.3 Estimating Sparsity/Density

The sparsity/density of the manifold provides some indication as to the amount of
information to estimate class boundaries. If there are many points sampled within a
small region of the manifold, then we can be more confident in estimating the class
boundaries. Therefore, in regions of the manifold space where sampling density is
low, i.e. sparse regions of the manifold, we will want to be cautious in expanding the
adaptive neighbourhoods as there is less information to estimate these boundaries.

To measure the sparsity of the manifold, a radial basis function (RBF) ϕ is used. This
is a function of the distance between some point x (the centre or origin) and another
point x. This function results in a value in range of [0, 1], where values approaching 1
indicates that x, x are sampled very close together within the manifold. Though many
RBF functions may be applicable, we use the inverse-multiquadric function (Equation
8.3) as it has a non-shrinking value away from the origin. The RBF provides an appro-
priate measure of the sampling density/sparsity with respect to each data point in the
data.
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ϕ(x;x) =
1√

1 + (γr)2
, where r =‖ x− x ‖ (8.3)

and γ controls the width of the RBF. Providing the RBF’s width parameter is suitably
chosen, we achieve a good measure of the density through the sum of the RBFs centred
on all data points Xc of class c (Equation 8.4) producing a kernel density estimation
(KDE) of the sampling density.

ρc(x) =
∑

xj∈Xc

ϕ(x;xj) (8.4)

8.2.4 Constructing Neighbourhoods

Adaptive neighbourhoods are constructed for each point of our dataset, as a sphere
of finely tuned radius. The neighbourhoods for all data points are created by jointly
maximising the individual volumes of the spheres, under the constraint that sphere
of different classes do not overlap. In addition, to account for lack of knowledge in
under-sampled areas, the sphere’s volume is limited to a linear function of the local
sampling density ρc(x) for the class. This is expressed by the following Lagrangian
function, where the problem of finding the region size for each data point is expressed
as an optimisation problem. This Lagrangian function (Equation 8.5) determines the
maximum size of each adaptive neighbourhood with respect to our two constraints.

L(ε1, · · · , εn,x1, · · · ,xn, λ) = v(ε1, · · · , εn)

+ λgg(ε1, · · · , εn,x1, · · · ,xn)

+ λhh(ε1, · · · , εn,x1, · · · ,xn)

(8.5)

where v is the volume function, from Rn to Rn, to be maximised:

v(ε1, · · · , εn) =

ε
D
1
...
εDn

 (8.6)

and

g(ε1, · · · , εn,x1, · · · ,xn) =


∑

j 6=1
c(j) 6=c(1)

min(‖ d (x1,xj)− (ε1 + εj) ‖, 0)

...∑
j 6=n

c(j) 6=c(n)
min(‖ d (xn,xj)− (εn + εj) ‖, 0)

 (8.7)
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Algorithm 1 Calculate εi for data point xi

∆εmin ← 1e− 20 {Stop condition for ∆ε decay}
n← 1 {Iteration number}
for all xi ∈ X do
εi ← 0
stopi ← false

end for
while ∃i such that stopi = false do

for all xi ∈ X such that stopi = false do
for all xj 6∈ Xc(i) do

if d(xi,xj) ≤ εi + εj then
stopi ← true

end if
end for
if stopi = false then

∆εi ← e−ρc(i)(xi)n

if ∆εi ≤ ∆εmin then
stopi ← true

else
εi ← εi + ∆εi

end if
end if

end for
n← n+ 1

end while

h(ε1, · · · , εn,x1, · · · ,xn) =

ε
D
1
...
εDn

 − α

ρc(1)(x1)
...

ρc(n)(xn)

 + β (8.8)

are the Lagrangian constraints for no intersection and volume depending linearly on
density, respectively, which should be both equal to zero. c(i) is the class label of point
i. Note that when two spheres of different classes are too close to each other, they may
not simultaneously respect both constraints of not intersecting while attaining their full
size depends on local density for their respective classes. Therefore, the optimisation
problem needs to be relaxed.

We developed an iterative algorithm which yields approximate results of the relaxed
optimisation (Figure 8.7). This iterative version (Algorithm 1) is reminiscent of classi-
fication algorithms by [210] where an iterative algorithm continually expands neigh-
bourhoods centred at each data point until it meets a neighbourhood of a different
class. These neighbourhoods are used to make class predictions by determining un-
der which neighbourhood does the unseen point adhere to. Other works [209, 211]
perform an iterative method for complexity analysis algorithms. However, we further
develop on these approaches to incorporate a decay function that limits the expansion
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Figure 8.7: Iterative ε-expansion process in a binary class scenario. The two classes are distin-
guished by the dotted and solid circles.

of the neighbourhood based on the local density.

Sufficiently small initial neighbourhoods (e.g. neighbourhoods of size 1e − 20) are
progressively expanded, with their radius at iteration n being εni = εn−1i +∆εni , subject
to avoiding overlap of neighbourhoods from different classes (Equation 8.7), and with
an exponentially decreasing expansion that further depends on the local density of
samples for the related class (Equation 8.8):

∆εni = e−ρc(i)(xi)·n (8.9)

In areas of low density, so with an insufficient number of samples to safely determine
the location of class boundaries, the expansion is slower and generates a conserva-
tive small final neighbourhood. The expansion stops when it reaches a low threshold
∆εmin making it insignificant. This method may be further improved in future work
by also accounting for the complexity of class boundaries in Equation 8.9, e.g. using
complexity metrics of Ho and Basu [209].

8.3 Experiments

To evaluate the effectiveness that augmenting training data has on the generalisation
performance and robustness of DNNs, we investigate each method in turn. We begin
by first experimenting with the use of automated augmentation with adversarial at-
tacks and adversarial training to improve the robustness of DNNs. Later experiments
evaluate how effective the manual data-specific augmentations are for improving the
generalisation performance of the Type II object detector.

8.3.1 Adversarial Training

Two experiments were performed to test the approach of adaptive neighbourhoods,
where an ε value was created for each data point. The first was a simple experiment
by using the Iris dataset. This experiment aimed to demonstrate how existing adversar-
ial attacks can be generalised to non-image datasets where the potential adversarial
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Figure 8.8: Proposed adaptive neighbourhoods for the Iris dataset. The three classes of flower
are represented by different shaped markers. The size of the neighbourhood for each sample is
indicated with a circle centred on the data point. Intersections between neighbourhoods of different
classes are not real but are visualisation artefacts coming from the 2D projection of 4 dimensions.

examples cannot be visually inspected to determine if it is in-fact a true adversarial
example. The second was a more complicated learning task using our solar burst
detection case study. This case study tested the scalability of our approach of adap-
tive neighbourhoods to a more complicated dataset with a high dimensionality, and
further aims to show the usefulness of the method for adversarial training. In both
experiments, various forms of adversarial attacks were used to test the robustness of
DNNs, in addition to using these same attacks as part of an adversarial training pro-
cess. To evaluate the effectiveness of the adaptive neighbourhoods, we replaced the
bound constraints of each of the adversarial attack algorithms with the learnt neigh-
bourhoods for each data point. We show the results for adversarial attacks/defences
with and without the adaptive neighbourhoods.

Adversarial Training with Iris Dataset

The experimentation begins with a non-image based dataset, the classic Iris dataset.
This dataset contains 150 samples of three types of flowers (Virginica, Setosa, and
Versicolour). Each sample of the dataset contains four features (Petal/Sepal’s length-
/width) with which a classification label may be induced. While this dataset is small
(in terms of dimensionality and number of samples), it showcases the usage of adver-
sarial training with adaptive neighbourhoods for non-image data. Later experiments
focus on more complex datasets like using WAVES for solar burst detection.

Using this dataset, the iterative adaptive neighbourhood method (Algorithm 1) is ap-
plied to the Iris dataset to generate a unique ε value for every data point (Figure
8.8). These ε values enable the adaption of existing adversarial generation algorithms
for non-image data. For this, FGSM [3], and un-targeted PGD [212] were selected.
Though many other existing algorithms can be applicable, these algorithms were se-
lected due to their coverage of approaches. For instance, FGSM performs a single step
in the direction of the gradients, and un-targeted PGD is an iterative method in the
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Table 8.1: F1 score of DNN for the Iris dataset using various adversarial defence methods. Scores
are in the format: mean (standard deviation) over 10 k-folds. Bold font face indicates the best
form of attack for each type of defence method.

Attack

Defence None FGSM PGD FGSM+AN PGD+AN

None 0.9745 (0.0413) 0.9278 (0.0618) 0.8572 (0.1036) 0.7764 (0.0813) 0.8461 (0.0968)
FGSM 0.9811 (0.0396) 0.9408 (0.0757) 0.8468 (0.1080) 0.7873 (0.0785) 0.8448 (0.0698)
PGD 0.9867 (0.0400) 0.9462 (0.0740) 0.8680 (0.0740) 0.8508 (0.0746) 0.8759 (0.0823)

Random+AN 0.9936 (0.0193) 0.9272 (0.0620) 0.8274 (0.0918) 0.7935 (0.0822) 0.8454 (0.0864)
FGSM+AN 0.9936 (0.0193) 0.9406 (0.0745) 0.8420 (0.0987) 0.8140 (0.1085) 0.8588 (0.1157)
PGD+AN 0.9936 (0.0193) 0.9472 (0.0642) 0.9472 (0.0642) 0.8679 (0.0899) 0.8753 (0.0864)

path of the steepest gradient. To combine these algorithms with the adaptive neigh-
bourhoods, the ε bound constraint in the original algorithm was replaced with the
learnt adaptive ε for each data point.

To learn a classifier from the Iris dataset, a simple MLP was trained with a single
hidden layer of 10 neurons. This DNN was trained until the validation loss did not
improve within 100 epochs, at which point, the model weights of the best network
were reloaded to create the test predictions. The model’s parameters were optimised
using the Adam optimiser with a learning rate empirically selected at 5e − 2. We ran
training procedure over 10 k-folds and report the mean and standard deviation of the
F1 scores averaged over the three classes. The results are shown for both adversarial
generation algorithms with and without adaptive neighbourhoods (labelled AN for
conciseness).

When using adversarial attack algorithms as a form of defence by using them for ad-
versarial training, an additional loss term was added for the adversarial loss with a
weighting of α = 0.5 to equally prioritise the learning of perturbed and un-perturbed
data:

Ltotal = (1− α)Lcls + αLadv

where Lcls and Ladv are the cross-entropy losses of the un-perturbed and perturbed
data, respectively1. We used the following hyper-parameters2 for FGSM: ε = 0.1, and
for PGD: α = 2/255, ε = 0.1, with 100 iterations. For the random perturbation with
adaptive neighbourhoods (labelled Random+AN), the training data was perturbed by
a sample of a normal distribution bounded by the adaptive neighbourhoods.

The cross-tabulation of results for the various forms of adversarial attacks and defences
1This method of adversarial training closely follows [3].
2These hyper-parameters are either set as the default for the algorithm, or, as in the case with the ε

bounds, are suitably selected given the close proximity of some data points within the Iris dataset. For
the adversarial attacks/defence without the adaptive neighbourhoods, the ε parameter is fixed for the
entire dataset. Optimisation of these values may produce better results for with and without adaptive
neighbourhoods.
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are shown in Table 8.1. Firstly, we observed that PGD is a more effective adversarial at-
tack than FGSM further decreasing the results from 0.9278 (no defence, FGSM attack)
to 0.8572 (no defence, PGD attack). This trend continued for all forms of defences.
When adversarial attacks were combined with the adaptive neighbourhoods (AN), the
attack success was more substantial. For instance, we have seen with FGSM attack the
F1 score lowers from 0.9278 to 0.7764 (no defence, FGSM+AN attack). Though the
advantage that adaptive neighbourhoods brings is stronger in FGSM, we observed that
it helps both attack algorithms. As the neighbourhood sizes are larger than the default
ε in some areas of the training data, the consequence is the adversarial generation
algorithm can use a stronger attack (i.e. closer to the estimated decision boundary)
in order to attempt to create an adversarial example. This illustrates the clear ad-
vantage that adaptive neighbourhoods has for using adversarial attacks in non-image
data, as it can allow the attack strength to modulate according to the true classes of
the surrounding data points and sparsity of the data.

When we used the adversarial generation as a form of defence (i.e. adversarial train-
ing), we have seen the F1 score increase from 0.9475 (no defence, no attack) to 0.9867
(PGD defence, no attack), and to 0.9811 (FGSM defence, no attack), indicating the ad-
versarial defence was not only helping to increase the robustness but also helped with
over-fitting through the refinement of the classification boundary due to more data.
This effect was made stronger with the inclusion of adaptive neighbourhoods, rais-
ing the F1 score from 0.9867 (PGD defence, no attack) to 0.9936 (all neighbourhood
variants defence).

Using PGD for defence also seemed to improve the robustness against both FGSM and
PGD attacks, this was perhaps due to the fact that an un-targeted PGD attack operates
as an iterative form of FGSM. This improved robustness also continued for defence
against the AN variants of these attacks, where for example, the F1 raised from 0.7764
(no defence, FGSM+AN attack) to 0.8505 (PGD defence, FGSM+AN attack).

However, when using the AN variants as a form of defence, the robustness against
adversarial attacks is further improved. For example, the largest improvement was
where the F1 score after PGD attack raise from 0.8680 (PGD defence, PGD attack) to
0.9472 (PGD+AN defence, PGD attack).

The Random+AN defence had little impact on the defence of the network as it was not
using any model information, other than providing some protection against FGSM+NBS,
we did not see any significant change from performing no defence.

From these results, we may conclude that adaptive neighbourhoods are an effective
adaptation for existing adversarial attacks, enabling an automatic modulation of at-
tack intensity. There is also some benefit to using the adaptive neighbourhoods for a
defence also, as we have observed an increased in robustness against adversarial at-
tacks, perhaps due to the same modulation of attack intensity during training of the
DNN.

Adversarial Training for Solar Burst Detection

To create adversarial examples and test the effectiveness of our adaptive neighbour-
hood algorithm for object detection, complementary adversarial example generation
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Figure 8.9: Adversarial example generation methods applied to an solar event containing both
Type II and Type III bursts. Top row shows the original predictions made without applying any
adversarial attacks. The second row shows PGD, third FGSM, and bottom row DAG method. Left
column images are the original event with a red rectangle to highlight the Type II burst, with the
centre column being the amount of pixel-wise perturbation. The result of the perturbation is shown
in the right column with predicted detections made by Faster R-CNN in blue rectangles.

algorithms were selected. These algorithms were PGD [130], DAG [131], and a mod-
ified method of [130] to use the more simple FGSM instead of PGD. We used the
following hyper-parameters for FGSM: ε = 0.1; for PGD: ε = 0.1 α = 2/255, for
40 iterations; and for DAG: γ = 0.07 for 200 iterations. Similar to our previous ex-
periment, we replaced the bound constraints of these algorithms with the calculated
adaptive neighbourhoods to form the +AN variant of each algorithm. Due the com-
putational time required to compute adversarial examples with DAG, this algorithm is
used for attack only, and not adversarial training.

The effectiveness and amount of perturbation can be seen in Figure 8.9. In this ex-
ample, PGD had mostly perturbed the edges of the Type II and Type III bursts, while
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Table 8.2: F1 score performance on the WAVES dataset using Faster R-CNN. Numbers highlighted
in a bold font face indicate the best achieving adversarial attack for each form of defence.

Attack

Defence None FGSM FGSM+AN PGD PGD+AN DAG DAG+AN

None 0.568 0.539 0.486 0.198 0.105 0.399 0.251
FGSM 0.463 0.458 0.178 0.013 0.012 0.055 0.028

FGSM+AN 0.480 0.465 0.462 0.007 0.007 0.043 0.023
PGD 0.421 0.425 0.379 0.391 0.359 0.378 0.259

PGD+AN 0.364 0.359 0.330 0.339 0.324 0.330 0.212

Table 8.3: IoU performance on the WAVES dataset using Faster R-CNN. Numbers highlighted in
bold indicate the best achieving type of adversarial attack for each form of defence.

Attack

Defence None FGSM FGSM+AN PGD PGD+AN DAG DAG+AN

None 0.611 0.589 0.527 0.438 0.318 0.556 0.485
FGSM 0.679 0.676 0.520 0.456 0.412 0.390 0.343

FGSM+AN 0.684 0.676 0.667 0.315 0.302 0.350 0.316
PGD 0.681 0.676 0.658 0.665 0.645 0.636 0.565

PGD+AN 0.678 0.673 0.655 0.663 0.648 0.639 0.565

adding perturbations to the background. This appears to have caused the object de-
tector to create many mislocalisations of Type II bursts in the background of the event.
FGSM, despite also modifying the background, caused fewer mislocalisations com-
pared with PGD, but was still successful in creating adversarial examples. These ex-
amples were very similar to those created by DAG, which mostly perturbed particular
objects in the event, i.e. the Type III burst in the bottom of the image and some of
the horizontal/vertical noise. These perturbations were again enough to fool Faster
R-CNN.

Similar to [130], adversarial examples were created via all loss terms of the object de-
tector, thereby perturbing both objectness scores and bounding box detection. There-
fore, to compare the methods, we show the resulting IoU score and F1 score of Faster
R-CNN with these perturbations that demonstrates the methods ability to create ad-
versarial examples for both objectness and bounding box detection.

The results of applying adversarial attacks and defences to Faster R-CNN is shown in
Table 8.3. Similar to the results of Table 8.1, we have seen PGD is a more successful
attack than FGSM, lowering the IoU score from 0.611 (No defence, no attack) to 0.438
(No defence, PGD attack). With the inclusion of adaptive neighbourhoods, both FGSM
and PGD were more effective. For instance, we have seen FGSM reduce the IoU score
from 0.589 (No defence, FGSM attack) to 0.527 (No defence, FGSM+AN attack), and
from 0.438 with (No defence, PGD attack) to 0.318 (No defence, PGD+AN attack).

By using FGSM for adversarial training, we observed the same increase in generalisa-
tion performance as we did with the Iris set. Here we have seen the IoU score raise
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from 0.611 (No defence, no attack) to 0.679 (FGSM defence, no attack). Using FGSM
as a form of defence, the original adversarial attack algorithms were less successful,
while their adaptive neighbourhood variants were more successful. For example, the
IoU score after a PGD+AN attack with no defence was 0.486, while when using FGSM
for adversarial training, the IoU score was 0.390.

However, when evaluating the F1 score, we have observed the score decrease upon
using adversarial training. For example, without adversarial training, the F1 score was
0.568, while using FGSM for adversarial training reduced the resulting score to 0.468.
The reduced F1 scores are further enhanced by the stronger forms of attack, such as
PGD and PGD+AN. The contrast between the IoU and F1 scores suggest adversarial
training was making the object detector fail to detect Type II bursts, but when they
were detected, they are better localised, thus improving the IoU score. Furthermore,
using FGSM adversarial training with this object-detector had also made the model
more susceptible to different types of attacks. For instance when using FGSM+AN
as a defence, we observed the F1 drop to 0.007 with the PGD attack, where it was
previously higher. This further highlights adversarial training for this dataset and this
model type may not produce a more robust model to different forms of adversarial
attacks.

In the majority of cases, by using the adaptive neighbourhoods with the adversarial
attacks, the attack success was increased for both F1 and IoU scores. This was for the
case for all forms of adversarial attacks: FGSM, PGD, and DAG. However, contrary to
the results in Table 8.3, we did not observe the same generalisation benefit from the
adaptive neighbourhoods. Only in one case did the adaptive neighbourhoods increase
the generalisation IoU performance from 0.679 (FGSM defence, No attack) to 0.684
(FGSM+AN defence, No attack). This further highlights that potentially stronger ad-
versarial training does not help the model to generalise better.

These results have demonstrated that adaptive neighbourhoods are an effective method
for improving the attack success of existing adversarial attacks. However, in the case
study of solar burst detection, attack success may not be entirely helpful for improving
generalisation with adversarial training, as it serves to only decrease the F1 score, even
if the IoU is improved.

8.3.2 Contribution of Data-specific Augmentations

Our next set of experiments evaluate the effectiveness of the data-specific augmen-
tations for the generalisation performance of Faster R-CNN to detect Type II bursts.
We first investigate the individual performance of each of these augmentations, before
combining the best performing augmentations and comparing the performance with
the original WAVES dataset.

Faster R-CNN was trained on the WAVES dataset without applying any augmentations
to provide a baseline measure to compare the augmentations. This baseline measure
can be found in Table 8.4. We report the precision, recall, and F1 score for predictions
made on the test set. Before creating these predictions, we filter out any bounding
boxes with an objectness score less than 0.3. This score was created by finding an
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Table 8.4: Performance results for Faster R-CNN trained with different augmentations applied
to the training data. Results are in the format: Mean (Standard Deviation) of 10 trails. Best
performance over 10 trails is highlighted using a bold font face.

Experiment Precision Recall F1 Score

Baseline 0.335 (0.090) 0.854 (0.104) 0.468 (0.071)
Remove Segment (D1) 0.480 (0.147) 0.694 (0.164) 0.533 (0.059)

Dilation (D2) 0.351 (0.071) 0.850 (0.058) 0.492 (0.068)
Erosion (D2) 0.397 (0.143) 0.839 (0.107) 0.515 (0.089)

Horizontal Line (D3) 0.420 (0.131) 0.835 (0.122) 0.536 (0.073)
Vertical Line (D3) 0.429 (0.103) 0.801 (0.103) 0.544 (0.063)

Type III Bursts (D4) 0.468 (0.103) 0.791 (0.128) 0.571 (0.072)

optimal threshold hold for filtering based on the objectness score. These classification
scores are made with respect to each of the different segments of the bursts, i.e. a
burst will have multiple segments (Section 4.3.4).

Individual Augmentations

In this experiment, augmentations were individually applied. Experimenting in this
way indicates the contribution of each type of augmentation when they are all applied
to the image in later experiments.

From these results, we observed all augmentations increased the mean performance
of the F1 score slightly while often reducing the standard deviations. This effect was
made more clear with aid of a box plot (Figure 8.10). When individually applied, the
augmentations did not drastically improve the mean performance of the model but did
help in increase the lower quantile of results. In later experiments augmentations are
combined to create a greater statistical change.

The D4 augmented (additional Type III bursts) appeared to be the best performing
augmentation, with each metric gaining the largest increase over the baseline. This
helped the model differentiate between the Type III and Type II bursts (a major cause
for failure in the baseline model). The second-best performing augmentation was the
Erosion of the Type II bursts, as the real Type II bursts are often not fully visible and
some segments of the burst tend to be very faint, the DNN is getting more experience
of this as a result of this augmentation. Furthermore, in these results, the removal
of segment augmentation lead to generally worse performing results. Interestingly
though, if the erosion effect is made strong enough, it would converge to the same
result as entirely removing the segment. Therefore, by modulating the strength of the
erosion and increasing it further, slightly worse results from erosion should be shown.

We tested the effect that increasing the amount of erosion has on the test results by
increasing λ = 0.5 to λ = 2.0 when augmenting the training data. The difference
between these two parameters are demonstrated in Figure 8.11.

In Table 8.5 and Figure 8.12, there are slightly different results between the two set λ
parameters. With increased erosion, the resulting model was much more precise in its
predictions and but also failed to detect more Type II bursts. This effect follows that
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Figure 8.10: Boxplot of F1 score for Faster R-CNN trained with varying data augmentations.

Figure 8.11: Effect of λ parameter on the amount erosion. In the left figure λ = 0.5 and right
λ = 2.0. Figure (right) demonstrates an increased erosion of burst segments in higher frequencies
than those of left figure.

of the removal segment augmentation where the precision increased while the recall
also decreases. In both of these augmentations the DNN is perhaps requiring stronger
signals to confirm the presence of Type II bursts given the small visible segments,
thereby leading to increased precision of the results.

Augmentation vs Non-Augmentation

In this experiment, multiple augmentations were applied simultaneously for compar-
ison against the baseline model in Table 8.4. From the analysis in Section 8.3.2, the
following augmentations were observed to be the most helpful in improving the detec-
tion performance of Faster R-CNN:

• D2 – Erosion of Type II bursts.

• D3 – Horizontal and Vertical lines of noise.

• D4 – Additional Type III bursts.

Therefore only these three types of augmentations were used when training Faster
R-CNN as one experiment while also applying them all regardless of performance in
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Table 8.5: Comparitive performance for the effect of λ in Equation 8.1.

λ Precision Recall F1 Score

0.5 0.397 (0.143) 0.839 (0.107) 0.515 (0.089)
2.0 0.677 (0.140) 0.518 (0.127) 0.563 (0.083)

0.5 2.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision

λ

0.5 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

λ

0.5 2.0

0.35

0.40

0.45

0.50

0.55

0.60

0.65

F1 Score

λFigure 8.12: Boxplot of Precision, Recall, and F1 score between two different forms of erosion.

previous experiments as another experiment. The results of this comparison are pre-
sented in Table 8.6. The best-performing augmentations (labelled "Best Performing
Augm."), when applied to the data, improved the performance of Faster R-CNN from
0.468 ("Baseline") to 0.562 F1 score. This score, while improving on the baseline, is
not as performant as the additional Type III bursts individually applied. This may be
due to too many augmentations being applied in parallel, as when all augmentations
were applied (labelled "All Augm."), a slight mean increase (from 0.468 to 0.525) was
shown. We may experience larger improvements over the baseline by only applying
one augmentation per image.

From these scores, applying the augmentations may result in a positive outcome. How-
ever, when analysed in a different manner, such as with a Receiver Operating Char-
acteristic (ROC) curve, the advantage is not so clear. Figure 8.13 shows the PR and
ROC curves for the best performing model out of the ten trails. Here we see a different
interpretation of the performance of the models. While in Table 8.6 we see augmen-
tations slightly increasing the mean values for the F1 score, the ROC and PR curves
show the model trained on the non-augmented data to be generally better performing.
Figures 8.13 (a) and (c) show Faster R-CNN trained on augmented data to be more
‘/conservative/’ with its predictions, i.e. requiring more evidence of the existence of
Type II burst before predicting the positive class.

In Figure 8.14 we show the PR Gain curves for all ten trails of training the base model
(a Faster R-CNN trained using the original WAVES dataset), and ten Faster R-CNN
models trained using the augmentations. From this visualisation, a model trained
using augmented data generally predicts Type II bursts with lower scores, indicating
its decreased in confidence in the decision. Generally, there was tighter grouping of PR
Gain curves when using the augmented data, indicating the augmentations are helping
the DNN to predict correctly from samples that would otherwise reduce the PR Gain
scores. However, the area under these curves usually were lower than the baseline
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Table 8.6: Comparative results between training Faster R-CNN with and without Augmentations.

Experiment Precision Recall F1 Score

Baseline 0.335 (0.090) 0.854 (0.104) 0.468 (0.071)
Best Performing Augm. 0.514 (0.124) 0.715 (0.200) 0.562 (0.097)

All Augm. 0.500 (0.109) 0.628 (0.196) 0.525 (0.074)
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Figure 8.13: PR and ROC curves for Faster R-CNN trained on augmented and non-augmented
data. Figures (a) and (b) are for the augmented data, while (c) and (d) are for non-augmented
data. For each plot, the area under curve (AUC) score is shown where higher numbers are better.

results.

We visually interrogate the predictions made by each model. In Figure 8.15a we show
the non-augmented input. Figure 8.15b shows the predictions (in blue) and ground
truth (red) bounding boxes surrounding the Type II bursts. In this case, the burst itself
has been detected. While the Faster R-CNN trained on augmented data misses the
burst (Figure 8.15c). This is due to the model generally requiring more evidence to
predict Type II.

In other examples, we found that the additional Type III bursts help Faster R-CNN dif-
ferentiate between Type II and Type III bursts. Figure 8.15h shows predictions inter-
secting with the much more salient Type III burst, while in Figure 8.15i the predictions
were isolated to the Type II burst. In Figures 8.15e and 8.15i, in both cases, the Type II
burst has been detected, yet there were many more bounding boxes created with the
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Figure 8.14: PR Gain curves for Faster R-CNN trained with non-augmented data (‘Base model’,
left) and trained with augmented data (‘Using augmented data’, right).

Table 8.7: IoU scores for best performing Faster R-CNN trained with (non)-augmented WAVES
data.

Dataset IoU Score

Non-augmented 0.6743
Augmented 0.7119

Non-augmented (Type II only) 0.2478
Augmented (Type II only) 0.2786

non-augmented data. Faster R-CNN trained with augmented data was undoubtedly
more precise in its prediction for this example, yet both models failed to detect the
small segment to the Type II burst, perhaps due to the more salient Type III burst.

From these visualisations, we might expect the model trained from augmented data
to be more precise. To further investigate the differences between these models, we
evaluate the bounding box detection using the IoU metric. Taking once more the most
accurate Type II detectors from our baseline and best augmentations, mean IoU scores
are calculated. These results are presented in Table 8.7. From this metric, there was an
improvement over the non-augmented data from 0.6743 to 0.7119. We also calculated
the IoU scores only for the images that contain Type II bursts (the positive case). Once
more, we see an improvement in IoU performance when using the augmented data.
These scores suggest that while augmenting the dataset did not drastically improve the
ability of Faster R-CNN to detect Type II bursts, its positive predictions, when made,
were closer to the ground truth in shape and size. In addition, Faster R-CNN trained
with augmentation data was also observed to be more robust to salient features such
as Type III bursts and noise that might otherwise be incorrectly labelled as Type II
bursts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.15: Three example inputs to the Faster R-CNN. Images in the first column are the input
to the trained models. Middle column images are the predictions by Faster R-CNN trained on non-
augmented data. Right column are the predictions made by Faster R-CNN trained with augmented
data.

8.4 Chapter Summary

Through the construction of meaningful augmentations, DNNs can improve in per-
formance as well as robustness to avoid potentially misleading or noisy features. In
this chapter, we have demonstrated an automatic and manual method of creating aug-
mentations. This first manual method consists of crafting domain-meaningful data
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augmentations using the prior knowledge of how the data was created, measured, and
the environment in which it occurs.

In creating data-specific augmentations, we used the WAVES dataset from the solar
burst detection case study. In this study, a series of four augmentations were created
using the knowledge of the physical properties of how the bursts are measured (i.e. the
types of interference patterns that can occur), how the bursts can appear in the spec-
trograms (i.e. the erosion or dilation at different frequency ranges), and how DNNs
can be mislead into detecting a Type III burst as a Type II (i.e. additional Type III bursts
being correlated with the appearance of Type II bursts). These data-specific augmen-
tations were used to enhance and effectively improve the detection performance of
Faster R-CNN in localising Type II bursts.

To improve the automated process of adversarial training, our second method con-
structs adaptive neighbourhoods to each sample of the data. These adaptive neigh-
bourhoods allow the adversarial generation method to be more data-specific and al-
lows the adversarial attack to modulate their strength to each individual data point.
By doing so, the attacks can more effectively generate adversarial examples in regions
of the manifold space where the sampling density is higher, thereby increasing the
information with which to estimate class boundaries. The adversarial attack, by in-
creasing the intensity of perturbation, can explore a larger neighbourhood around the
data point to find an adversarial example that fools the classifier or detector. Ulti-
mately, this enhanced modulation can increase the robustness of DNNs while also not
inadvertently confusing the detector with false adversarial examples that are past true
class boundaries.

To evaluate the adaptive neighbourhoods, two experiments were performed. The first
used a simple non-image dataset, the Iris data. At this point, we observed using adap-
tive neighbourhoods may help the test performance of the classifier, while also boost-
ing the robustness against forms of adversarial attacks. Our second experiment, using
the solar burst detection case study, has further demonstrated the usefulness of adap-
tive neighbourhoods for increasing the intensity of perturbation w.r.t. the data point
being perturbed. In this study, we have observed an increase in attack success for these
forms of adversarial attacks.

The contributions of this chapter are:

• A formulation of how augmentation of data can incorporate prior knowledge.
Furthermore, adversarial training can aid in this process by using a fixed-sized
region to limit the amount of perturbation that can be made as a result of a
adversarial algorithm.

• A implementation of adaptive neighbourhoods to calculate the maximum size of
perturbation for each data point. This method was tested using the detection of
Type II bursts case study.

The key points for this chapter are:

• Augmenting the training data is an effective method of improving the perfor-
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mance and robustness of DNNs. By the introduction of prior expert knowledge,
these augmentations can be made domain-meaningful w.r.t. the data being used
to train DNNs.

• Adversarial training, while already an automated process of augmentation, can
be made more data conscious through the addition of adaptive neighbourhoods.

• Adaptive neighbourhoods is the process of expanding the neighbourhood of ad-
herent points around each data point. This process takes into consideration both
the estimated class boundaries and the sampling density with which to make
such an estimation.

• The neighbourhoods can be used to adapt existing adversarial generation algo-
rithms to enhance the success of these algorithms.

• The use of adaptive neighbourhoods may improve both the generalisation per-
formance of the classifier or detector by providing more input with more variety
thanks to the increased range of perturbation that can be applied to each data
point in certain parts of the manifold.

• When combined with adversarial generation algorithms, the attack success is
increased. This helps both the attacker, but also the defence, by using the same
algorithm during the training process.

• Data-specific augmentations can be created by considering the properties of how
data was created. From this knowledge, more meaningful data augmentations
can be created to improve the task performance of DNNs.
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Chapter 9

Combining Prior Integration Strategies

In previous chapters, methods to integrate domain knowledge into DNNs were char-
acterised and tested using three different case studies: (1) detection of OG in chat
logs; (2) estimation of energies in molecular and crystalline systems; and (3) detec-
tion of Type II solar bursts. For these case studies, each prior integration strategy was
considered in its isolation, and no strategy was combined with another to improve it’s
effectiveness. In this chapter, however, the interaction of different strategies are eval-
uated to investigate their combined ability to improve performance on the objective of
the case study.

Furthermore, in this chapter, we shall create the final augmented classifiers and de-
tectors using the most effective prior integration strategies. Taking each of the base
models from the different case studies, the best performing integration strategies are
added to the DNNs and compared to the original non-augmented base models. For a
thorough comparison with existing research, these final augmented DNNs are evalu-
ated against the current state-of-the-art models, and other non-DL approaches.

9.1 Online Grooming Detection

A summary of the results presented in previous chapters is shown in Table 9.1. The
most effective methods for integrating domain knowledge of the discourse of groomers
were:

1. Indirect feature specialisation from estimating the OG processes using a shared
representation. In applying this method, the seven different OG processes were
estimated using the hidden states of the LSTM that was also used for classifica-
tion.
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2. Direct feature specialisation using the Elastic Pulling technique, where the dis-
tance between OG word variants were reduced within the WSR. In this case
study, both Manifold Learning and Elastic Pulling could be effective for improv-
ing the performance of the OG detector. However, as Elastic Pulling was the best
performer in the majority of experiments, this technique was chosen for the final
OG classifier.

3. Combined supervision and direct stimulation (B) of both self-attention, unsu-
pervised and recurrent cells. In both strategies the attention mechanisms were
stimulated during training upon the occurrence of OG processes.

Therefore, to create the final classifier, these best performing integration strategies
were combined to create the final augmented OGR-R and OGD-T DNNs1. The OGD-R
and OGD-T base models were retrained with the prior integration strategies to form
their augmented counterpart, Augmented OGD-R and Augmented OGD-T. The perfor-
mance results of the base, augmented, non-DL baselines, and state-of-the-art models
are presented in Table 9.2. Although the base model OGD-R performed slightly worse
than [175], its augmented version outperformed it by large difference. XLNet of OGD-
T was the best performing non-CL-augmented model. Through the combination of
CL knowledge on word variants and OG processes, the results were improved and
produced the new state-of-the-art.

In order to verify that the improved results come from a better understanding of lan-
guage provided by CL knowledge, rather than merely from additional regularisation,
we also compared against L1 and L2 regularised version of both base models. Al-
though regularisation did improve the results, the performance gains from integrating
CL knowledge were superior for both models.

Using the area under the PR-Gain curves (AUPRG) [213] metric for both base and
augmented models (Table 9.3), we observed that due to the large number of true
negatives predicted by the classifiers, the performance of each model was relatively
close. Despite the closeness of the metrics, we still observed that the DNNs slightly
improve when using the prior knowledge integrations.

In Table 9.4, the individual augmentations were applied to the simple LSTM model
to determine the effect each augmentation had on the final result. At each succes-
sive stage of augmentation, the performance of the classifier had improved, with the
largest increase being the first augmentation of supervision and direct stimulation of
the LSTM cells. The improvements have highlighted that these methods are comple-
mentary, even those that use similar priors, such as the case with stimulated LSTM and
stimulated attention. We observed that at each additional stage of augmentation, the
model improved in performance.

Swapping of discriminative word variants – When the two components of all dis-
1OGD-R base model consists of a standard embedding layer followed by two layers of LSTM cells.

All hidden states from the final layer of the LSTM’s are used in an attention mechanism to optimise the
encoding of the conversation for the final classification using a linear projection into the classification
space. OGD-T follows the same logical process as OGD-T, but we use a transformer to build potentially
more meaningful word-representations. For full details on the architectural design of these two base
models, we refer the reader to Section 4.2.2.
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Table 9.1: Summary of knowledge integration strategies applied singularly to the base models.
Bold are improved results with respect to no augmentation, i.e. the base model.

Model Strategy Precision Recall AUPR F1 F0.5 ∆D/D

OGD-R

No augmentation 0.867 0.794 0.867 0.829 0.851 – / 3.72
Supervised word embed. modif. 0.834 0.765 0.824 0.798 0.819 0.75/0.91
Manifold learning 0.916 0.753 0.881 0.827 0.878 0.65/1.29
Elastic pulling 0.878 0.808 0.877 0.841 0.863 0.83/0.61
Aux. OG process detection 0.890 0.768 0.873 0.825 0.863 –
Specialised proc. channels (LSTM) 0.912 0.789 0.899 0.846 0.884 –

Stim. attention

supervised 0.839 0.804 0.879 0.821 0.832 –
direct stim. (A) 0.822 0.817 0.877 0.820 0.821 –
direct stim. (B) 0.870 0.808 0.906 0.838 0.857 –
superv.+direct stim. (A) 0.859 0.819 0.897 0.838 0.851 –
superv.+direct stim. (B) 0.929 0.741 0.908 0.824 0.884 –

Stim. LSTM
supervised 0.924 0.752 0.891 0.829 0.883 –
direct stim. 0.856 0.797 0.863 0.825 0.843 –
superv.+direct stim. 0.906 0.781 0.901 0.839 0.878 –

OGD-R
w. GloVe

No augmentation 0.834 0.775 0.849 0.803 0.822 – / 5.87
Supervised word embed. modif. 0.836 0.781 0.828 0.808 0.825 0.90/0.93
Manifold learning 0.824 0.796 0.854 0.810 0.818 0.89/0.53
Elastic pulling 0.905 0.761 0.880 0.827 0.872 0.92/0.73

OGD-T

No augmentation 0.900 0.871 0.940 0.886 0.894 –
Aux. OG process detection 0.918 0.861 0.943 0.889 0.906 –
Specialised proc. channels (LSTM) 0.954 0.835 0.936 0.891 0.928 –

Stim. attention

supervised 0.919 0.862 0.943 0.890 0.907 –
direct stim. (A) 0.894 0.885 0.945 0.889 0.892 –
direct stim. (B) 0.916 0.866 0.940 0.891 0.906 –
superv.+direct stim. (A) 0.891 0.881 0.941 0.886 0.889 –
superv.+direct stim. (B) 0.918 0.862 0.941 0.889 0.906 –

Stim. LSTM
supervised 0.938 0.857 0.944 0.896 0.921 –
direct stim. 0.896 0.896 0.944 0.887 0.892 –
superv.+direct stim. 0.960 0.846 0.945 0.899 0.935 –

criminative variants pairs were swapped (i.e. those that were not moved closer in the
word embedding) within the testing corpus, there was a decrease in performance of
the base models (Table 9.5). This drop in performance indicates that the language bias
captured by these variants is indeed indicative of OG. However, it is important to note
that any such difference in language could represent the socio-economic background
rather than specific to grooming online. Therefore, it would be dangerous to classify
a conversation based solely on this language bias. Both the LSTM and XLNet models
may exploit this language bias, but they also account for the context of words, which
may help alleviate these risks, especially for XLNet, which was less affected by the vari-
ants’ swap. In the OG corpus, positive and negative conversations come from similar
or identical online platforms and should therefore contain an equal representation for
each socio-economic group present. Furthermore, upon examination, it was estimated
that the variants used preferably by groomers may be primarily related to the goal of
online grooming, with attempts to look more friendly and laid back to a young audi-
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Table 9.2: Comparative evaluation of OG classification methods. Best performing metrics are
presented in a bold font face.

Method Precision Recall F1 F0.5 AUPR

Naive Bayes 0.240 0.974 0.385 0.283 0.727
SVM 0.997 0.337 0.504 0.716 0.748

Decision Tree 0.693 0.642 0.667 0.682 0.637
Random Forest 0.987 0.400 0.569 0.763 0.718
Liu et al. [175] 0.919 0.735 0.817 0.875 0.885

BERT 0.837 0.711 0.711 0.808 0.815

OGD-R 0.867 0.794 0.829 0.851 0.867
OGD-R + L1 Regularisation 0.880 0.759 0.815 0.853 0.857
OGD-R + L2 Regularisation 0.896 0.783 0.835 0.871 0.890

OGD-T 0.900 0.871 0.886 0.894 0.940
OGD-T + L1 Regularisation 0.885 0.881 0.883 0.883 0.940
OGD-T + L2 Regularisation 0.913 0.865 0.888 0.903 0.941

Augm. OGD-R 0.930 0.777 0.847 0.895 0.924
Augm. OGD-T 0.953 0.853 0.900 0.931 0.948

Table 9.3: Area under PR Gain curves for both base and augmented models.

Model Base Augmented

OGD-R 0.99903 0.99983
OGD-T 0.99987 0.99988

ence2. This examination is vital to understand the grounds of language bias captured
by the word variants and should be performed for any new application of the selective
word normalisation.

In the CL knowledge integration paradigm, the goal was not to reinforce any language
bias but to exploit it towards a selective text normalisation that reduces variance within
the corpus while preserving the bias. In effect, this may indeed make the bias more
prominent. When swapping the word variants, the models augmented by selective
word normalisation (i.e. knowledge on word variants) only see a more substantial
drop in performance than base models, indicating that this CL knowledge integration
makes the models more sensitive to the language used.

However, in this study, the proposed strategies capitalise on two key aspects: the
low-level language used (through knowledge on variants) and the high-level use of
conversational strategies (through knowledge on themes). Therefore, the fully aug-
mented models are sensitive to both aspects, which helps counterbalance possible bias
to a language associated with a socio-economic group. Indeed, when evaluated on the
variant-swapped testing corpus, the fully augmented models are less sensitive to the
effect of swapping variants than when using selective text normalisation only.

2Common examples of this occurs through intentional misspellings, such as wowww → wow, whaaaaat
→ what, wayyyy → way, thnx → thanks, and thingz → things.
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Table 9.4: Progressive additions of CL-augmentations to a simple LSTM model similar to OGD-R
with no pre-training of WSR

Method Accuracy Precision Recall AUPR F1 F0.5

Standard LSTM 98.96 0.850 0.741 0.808 0.792 0.826
+ Superv. & excit. LSTM 99.2 0.933 0.757 0.872 0.836 0.891

+ Elastic pulling 99.22 0.913 0.783 0.883 0.843 0.884
+ Superv. & excit. attn 99.21 0.915 0.779 0.913 0.841 0.884

Table 9.5: Performance of base models and their augmented counterpart when swapping word
variants in the testing data.

Architecture Precision Recall AUPR F1 F0.5

OGD-R 0.921 0.497 0.779 0.646 0.787
Augmented OGD-R 0.943 0.713 0.898 0.812 0.885

OGD-T 0.924 0.851 0.940 0.886 0.909
Augmented OGD-T 0.953 0.853 0.947 0.900 0.931

To further reduce the risk of bias towards a socio-economic group, for use in a given
socio-economic context, it would be possible to train the models using conversations
from this group only, at least for the negative class.

9.1.1 Conclusion of Combining Corpus Linguistics and Deep Learning

This case study has explored the integration of prior CL knowledge into a DNN. It
considered two types of CL knowledge: 1) variants of semantically equivalent words
that are, or not, discriminative of OG, and which were used to perform a selective text
normalisation in support of the classification. Existing normalisation methods would
apply to full text with no such distinction, thus failing to provide this support. 2) The
identification of some OG processes and their associated language, which was used to
focus the attention of the DNN on subtle language clues. This work compared several
integration approaches, including a new method for stimulating an LSTM’s attention
directly through its input gates, without the need for an external attention mechanism.
For the final augmented model, a gentle pulling method was selected for selective text
normalisation as well as a combination of auxiliary tasks and supervision and direct
stimulation for stimulated attention and stimulated LSTM, whose benefits combined
to produce the state-of-the-art for OG detection. The general applicability of our ap-
proaches was demonstrated using two architecture types of recurrent and transformer
neural networks and two-word embeddings of different complexities. The results have
shown the performance improvements over the base and state-of-the-art models for
both architectures while allowing for a CL based interpretation of the classification
decision through visualisation of predicted OG processes and DNN’s attention.

Using the integration strategies for prior knowledge improves both base models OGD-
R and OGD-T, highlighting the generalisability of said strategies for different architec-
tural types of DNNs. The extensive range of experiments highlight:
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1. Stimulated attention generally performs better with both supervision and direct
stimulation.

2. Auxiliary outputs improve performance while providing an additional means of
visualisation.

3. Elastic Pull is an effective method for modifying the positions of word vectors in
existing or pre-trained WSRs. While this has been shown for OG detection, we
encourage the use of these methods for other language tasks where applicable.

While the applicability of these methodologies have been demonstrated for CL knowl-
edge on OG, there is a potential for other domains that use similar representations
or model architectures. For instance, the selective text normalisation that we propose
is more generally applicable to other classification tasks from chat conversations, and
its proposed implementations are usable on other DNNs that use word embeddings
to capture word semantic. The decomposition of conversations into sub-goals may
be obtained from CL studies on other applications. For example, a large corpus of
works have identified strategies for persuasion and manipulation in extreme ideology
groups, e.g. [214, 215, 216, 217] for radical right hate speech and [218] for jihadi
radicalisation. Some of the proposed strategies may also allow the integration of other
(non-CL) domain knowledge. It may be generally helpful to estimate auxiliary quan-
tities that are known to be relevant to the task and may usefully constrain the DNN’s
attention and learnt features. The two other methods for focusing the DNN’s attention
(i.e. stimulated attention and stimulated LSTM input gates) may be generally used to
weight more critical elements of the training data.

Perspectives for OG prevention – The proposed OG classification method has been
designed based on requirements from specialised law enforcement to assist in the in-
vestigation of large quantities of chat logs. Its intended usage is to facilitate triage by
law enforcement of digital materials seized from suspected offenders after enough ev-
idence allowed launching the procedure. Flagged conversations are to be investigated
more thoroughly by a trained human operator following law enforcement’s strict ro-
bustness and security protocols to ensure integrity. Within this usage scenario, there
is, therefore, no risk of innocents being automatically prosecuted. However, this may
happen should the tool be used in an unintended usage scenario, as its detection re-
sults might bias the decision of a human operator. This work aims not to address the
possible biases in human decisions, which are addressed by law enforcement’s proto-
cols. Accordingly, mitigation measures should be put in place to avoid intentional and
non-intentional misuse of the system, but these are outside the scope of this work.
Nevertheless, a statement may accompany the deployment of this system that includes
accuracy rates to inform users of risks of false detection and alert them that the sys-
tem’s flagging of a conversation should not be taken as evidence. However, it is worth
noting that the system may allow a more thorough and fairer investigation of the
flagged conversations through the proposed visualisation that helps to focus on cru-
cial aspects of the conversation, together with the reduced workload and associated
lowered time pressure.
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Table 9.6: Impact of each domain knowledge integration strategy on MPNN (top) and SchNet
(bottom) for Augm. QM9. Results are in the format: mean (std). The specialised interaction
methods that optimise at best energy and geometry are highlighted in bold for each GNN.

Strategy AE RE DSG

MPNN base model with no BT information 0.242 (1.318) 0.0029 (0.015) 0.034 (0.074)
MPNN-BTF 0.091 (0.476) 0.0012 (0.005) 0.039 (0.056)

Specialised
proc.
channels

(Eq. 6.7) (α = 0.624) 0.272 (1.293) 0.0034 (0.014) 0.051 (0.080)
(Eq. 6.9) scalar λr (α = 0.628) 0.122 (0.431) 0.0016 (0.005) 0.032 (0.057)
(Eq. 6.9) vector λr (α = 0.627) 0.105 (0.502) 0.0013 (0.005) 0.050 (0.049)
(Eq. 6.10) impl. 1) (α = 0.615) 0.106 (0.253) 0.0014 (0.003) 0.023 (0.048)
(Eq. 6.10) impl. 2) (α = 0.635) 0.073 (0.170) 0.0010 (0.002) 0.030 (0.048)
(Eq. 6.10) impl. 3) (α = 0.618) 0.131 (0.436) 0.0017 (0.005) 0.025 (0.055)

Indirect
feature
spec.

# atoms of each type 0.171 (0.986) 0.0021 (0.011) 0.031 (0.046)
# orbitals 0.195 (0.545) 0.0025 (0.006) 0.033 (0.046)

distance to stable geom. 0.119 (0.698) 0.0015 (0.008) 0.033 (0.046)

SchNet base model 0.038 (0.037) 0.0005 (0.0005) 0.020 (0.031)

Specialised
proc.
channels

(Eq. 6.8) (α = 0.734) 0.036 (0.035) 0.0005 (0.0005) 0.022 (0.032)
(Eq. 6.9) scalar λr (α = 0.529) 0.020 (0.018) 0.0003 (0.0002) 0.025 (0.032)
(Eq. 6.9) vector λr (α = 0.570) 0.024 (0.028) 0.0003 (0.0003) 0.034 (0.034)

(Eq. 6.11) (α = 0.727) 0.031 (0.032) 0.0004 (0.0004) 0.015 (0.028)
Indirect
feature
spec.

# atoms of each type 0.038 (0.036) 0.0005 (0.0005) 0.032 (0.033)
# orbitals 0.036 (0.035) 0.0005 (0.0005) 0.022 (0.032)

distance to stable geom. 0.049 (0.044) 0.0007 (0.0006) 0.037 (0.033)

9.2 Chemical Energy Estimation with Deep Learning

A highlight of the individual prior knowledge augmentations applied to the base mod-
els is shown in Table 9.6. From these results, it was observed that both the specialised
information processing and the indirection specialisation through auxiliary tasks can
be beneficial for the production of the augmented models.

All the physics integration methods were combined into final Augmented-MPNN and
Augmented-SchNet DNNs. For Augmented-MPNN Equation 6.10 implementation 2
was used, and Equation 6.9 scalar was used for Augmented-SchNet. These types of
specialised information processing methods were chosen due to their best performance
in both AE and DSG metrics. For both augmented models, all indirect feature special-
isations were selected. All models (both augmented and non-augmented) were then
tested on the different scenarios of the three datasets3.

The results of combining all augmentations for all chemical datasets are shown in
Table 9.7. Firstly, when compared to the individual integrations, we observed that it
was beneficial to combine all auxiliary estimations and BT information.

When using the Augmented-QM9 dataset, SchNet out-performed MPNN, possibly due
3For the Growing Crystal dataset, we consider system sizes from 15 to 75 atoms instead of the maxi-

mum 114 due to memory restrictions in MPNN.
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Table 9.7: Evaluation of the base (left) and augmented (right) models. For each DNN, best results
between base and augmented models are highlighted in bold.

Base Augmented
Model Dataset AE DSG AE DSG

MPNN

Augm. QM9 0.24 (1.32) 0.034 (0.074) 0.07 (0.20) 0.033 (0.047)
Inf. Crystal 0.04 (0.03) 0.201 (0.211) 0.03 (0.04) 0.048 (0.035)

SCG 2.80 (3.80) – 0.51 (0.53) –
UCG 2.89 (3.82) 0.532 (0.595) 2.39 (3.56) 0.162 (0.2367)

SchNet

Augm. QM9 0.04 (0.04) 0.020 (0.031) 0.02 (0.02) 0.021 (0.031)
Inf. Crystal 13.44 (15.98) 0.214 (0.357) 13.68 (17.54) 0.311 (0.180)

SCG 2.02 (1.83) – 0.3 (0.3) –
UCG 5.86 (4.38) 0.569 (0.604) 1.1 (1.0) 0.528 (0.623)

to the better accounting of long-range atomic interactions and more efficient oper-
ations. The same observation applied to the SCG subset, while SchNet performed
worse than base MPNN on UCG. Furthermore, SchNet performed particularly poorly
on Infinite Crystals. The reason why the CNN cannot handle this dataset is to be inves-
tigated in future work, but it may be related to the fact that SchNet struggles to handle
small periodic chemical systems. Both base (non-augmented) MPNN and SchNet pro-
duced worse results on the Growing Crystal datasets than Augmented-QM9, which
is likely due to the wider variety of geometries and number of atoms in the dataset.
For example, while Augmented-QM9 contains chemicals of up to 29 atoms (only one
chemical at this size), the Growing Crystal datasets each span up to 75 atoms with ran-
dom placements of atoms. These differences increase the chemical complexities with
which the models are expected to learn from. Base MPNN did slightly better than base
SchNet on USG, but SchNet benefits more from our integration of physics knowledge
and Augmented SchNet obtained the best results on this subset.

Both MPNN and SchNet benefited from the prior integration strategies. Overall, the
augmented DNNs performed as well (2 cases) or better (all other cases) than their base
models at finding stable geometries. The improvement was particularly strong on the
Growing Crystal datasets, hinting that the augmented models were able to generalise
better to new geometries of this dataset. Consequently, on the Infinite Crystal dataset,
which contains only two mono-atomic infinite crystals, we expect to see further im-
provements in future works by considering structures outside the fcc lattice and a
wider variety of atom types. On the UCG subset, where base SchNet under-performed
at energy estimation, the CNN benefited more from the integration of physics knowl-
edge than MPNN, and Augmented-SchNet obtained the best energy estimations on
this subset. On the other hand, still on the same subset, MPNN’s optimisation of stable
geometries benefited more from the augmentation and produces the best DSG results.
These successful augmentations reinforced the two DNNs’ respective advantages at
estimating accurate energies and stable geometries.

MPNN suffered from a high std, especially for DSG. SchNet also had high std on Aug-
mented QM9 and Crystal Growth. Upon examination, this might be explained by some
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Figure 9.1: Performance of base and augmented models on the UCG dataset. For the augmented
models, we test with all augmentations and without the auxiliary atom type prediction.

difficult cases4 where estimations were close to the true energy values but do not con-
tain a minimum. On the other hand, while the energy estimates of the augmented
models were slightly worsened by an offset on these cases, they still account for the
repulsive effect of atoms getting close to each other to predict an energy minimum at
a reasonable geometry. The energy offset may be addressed in future works, e.g. by a
different loss term or new auxiliary estimates.

9.2.1 Ablation Study

In testing the effectiveness of combining specialised information processing and indi-
rect feature specialisation, an ablation study was performed using the UCG dataset.
As the indirect specialisations aimed at estimating the atom-level features (number of
atoms of each type and number of interacting electrons), the auxiliary predictions of
the number of atoms were removed. Firstly, in Figure 9.1, it is shown the augmen-
tations have an observable effect on the performance of the GNNs. For each of the
GNNs, there is a consistent pattern where estimations are more accurate for Al crystals
than for Cu, possibly due to the larger energy values seen in Cu. When the auxiliary
prediction for atom types were removed from the augmented models, however, the ab-
solute errors for Cu were slightly improved. The reason for this effect is unknown, but
perhaps suggests the weighting of the auxiliary tasks can be optimised as the higher
errors of Cu may be overpowering the auxiliary tasks in the loss during training.

To understand if this effect only occurs for the atom type auxiliary task, a complete ab-
lation study with all augmentations was performed, and the results are shown in Table
9.8. For Al crystals, the auxiliary tasks were helping produce a more accurate energy
estimate (as the results are worsened with the task removed), while for Cu crystals,
the methods make the estimate slightly worse. As this pattern occurs for every auxil-
iary task, it further suggests we may optimise the weighting of tasks during training.
Despite the slightly worsened energy estimates, we observed that the DSG measure

4These more difficult cases differ between models, and their cause will be investigated in future work.
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Table 9.8: Ablation study and effect on handling different atom types in crystals of UCG

Al Cu

Method AE DSG AE DSG

MPNN 0.643 (0.495) 0.428 (0.480) 6.250 (4.772) 0.566 (0.514)
Augm.-MPNN 0.150 (0.120) 0.111 (0.135) 1.160 (0.878) 0.361 (0.410)

Augm.-MPNN w/o spec. interaction 0.180 (0.144) 0.178 (0.130) 0.638 (0.582) 0.237 (0.236)
Augm.-MPNN w/o aux. # atoms 0.179 (0.129) 0.040 (0.098) 0.928 (0.760) 0.328 (0.419)

Augm.-MPNN w/o aux. # orbitals 0.190 (0.141) 0.071 (0.121) 0.906 (0.724) 0.267 (0.245)
Augm.-MPNN w/o aux. DSG 0.177 (0.151) 0.124 (0.136) 0.834 (0.680) 0.276 (0.340)

SchNet 6.357 (3.159) 0.803 (0.592) 5.355 (5.278) 0.336 (0.525)
Augm.-SchNet 0.333 (0.247) 0.246 (0.254) 0.368 (0.259) 0.006 (0.025)

Augm.-SchNet w/o spec. interaction 0.444 (0.358) 0.287 (0.257) 1.424 (1.490) 0.113 (0.200)
Augm.-SchNet w/o aux. # atoms 0.395 (0.169) 0.365 (0.085) 0.304 (0.238) 0.004 (0.029)

Augm.-SchNet w/o aux. # orbitals 0.241 (0.146) 0.022 (0.073) 0.286 (0.176) 0.179 (0.102)
Augm.-SchNet w/o aux. DSG 0.296 (0.203) 0.125 (0.174) 0.328 (0.220) 0.000 (0.000)

would sometimes improve as a result of using the auxiliary atom type predictions. For
example, we see the Augmented SchNet DSG result increased from 0.246 to 0.365
when the auxiliary atom types were removed.

9.2.2 Effectiveness for Estimating Stable Configurations

The task for the GNNs was to estimate stable configurations, i.e. configurations in
which the energy of the system is at its minimum potential state. While for the results,
we have used DSG as a metric to give a quantitative measure of the capability of
each network in carrying out this task, the predicted energy curves were visualised to
evaluate each model’s effectiveness for this task quantitatively.

To quantitatively evaluate the performance of the DNNs, we selected examples of the
lowest and highest energy errors for different type of molecules. In Figure 9.2 (top),
all GNNs (augmented and non-augmented) were able to closely match the simulated
energy curves for this molecule from the Augmented-QM9 dataset. However, for other
molecules (Figure 9.2 bottom), the non-augmented versions of the GNNs failed to
create plausible energy curves as it doesn’t have a correctly placed minimum. In such
cases, the prior knowledge augmentations can rectify the deficiencies of their non-
augmented counterparts.

9.2.3 Generalisation to Larger Systems

The models’ ability to scale to larger systems was evaluated using the UCG subset.
The increasing energy errors for larger system sizes (Figure 9.4 left) suggest that the
models struggle with handling too many and long-range interactions (although the
CNN performs better than the graph-DNN overall). When examining examples of such
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Figure 9.2: Energy estimations at different scalings of picked molecules for base (left) and aug-
mented (right) GNNs. Top: C5H9NO2, bottom: C6H6O3.

systems (Figure 9.3), we observe energy minima at correct stable geometries for small
systems (e.g. 15 atoms) even when the energy estimations have an offset. However,
in extreme cases (e.g. 75 atoms), the predicted energies no longer have a correctly
located minimum. This failure to correctly learn energy curves at a higher number
of atoms highlights our models’ current limitation and indicates that further work is
needed towards better accounting for atomic interactions in large structures.

Figure 9.4 presents energy AE on UCG as a function of system size for base and aug-
mented GNNs when trained on all system sizes (up to 75 atoms) or on small systems
only (up to 25 atoms), keeping the testing set equal. For Augmented-SchNet, the better
accuracy from the augmentations maintains the AE in the best achieved range when
training on small systems only. For Augmented-MPNN, when training on small systems
only, the range of AE was also improved by a factor ~100 compared to base MPNN.
Furthermore, accuracy correlates with system size only marginally stronger than when
training on all sizes (Pearson coef. 0.200 against 0.193). This was an improvement
from base MPNN, where Pearson correlation increased from 0.171 to 0.364. There-
fore, the augmentations has allowed MPNN for learning of some basic principles about
the atomic interactions that are applicable to larger, unfamiliar systems. When using
the specialised interaction method of Equation 6.9 with scalar λr, Pearson correlation
was similar at 0.224, and the range of AE was improved by a factor ~400. We explain
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a small (15 atoms, left) and large (75 atoms, right) crystalline system. Blue is ground truth.
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Figure 9.4: Impact of system size on accuracy when trained on systems of up to 75 (top) and 25
(bottom) atoms from UCG.

this better AE by the different complexities of Equations 6.10 and 6.9, which made the
model more or less robust to smaller training sets.

9.2.4 Interpretation of the Atoms’ Hidden States

Since the DNNs do not precisely simulate the physics of atomic interaction, investi-
gating their learnt representations may help understanding how to interpret and trust
their estimates and ability to generalise to new systems. We may visualise the hidden
states of the atoms during the readout phase of the graph-DNN and after sum pooling
for the CNN. These steps both conveniently reduce the atoms’ vectors to scalar val-
ues before producing the energy estimate. After normalising across all atoms, these
reduced values may be considered the atoms’ contributions to the energy estimate.

After training Augmented-SchNet on UCG, we considered an atom newly added to a
(stable) crystal seed of 14 atoms. When scaling the distance of this (single) atom to
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Figure 9.5: Contribution of a moving atom (left, red curve) and mean contribution of static atoms
(right, red curve) toward the energy estimate of a crystal (black curves) by Augmented-SchNet.

the rest of the crystal, we examined its contribution and that of the rest of the (static)
atoms (Figure 9.5)5. At its stable location, the atom’s contribution was marginal while
static atoms contribute maximally, in line with the crystal being at its minimum en-
ergy driven by its regular structure. As the atom was moved closer or pulled away,
its contribution increases simultaneously with energy. At the same time, the relative
contributions of static atoms slightly decreased to give way to the perturbation of the
moving atom. This strongly suggested that the model learnt to pay attention to the
location of individual atoms, although it was trained on systems that are isometrically
scaled. This confirmed the previous experiment’s conclusion that Augmented-SchNet
learnt transferable principles of atomic interaction.

This visualisation method could further inform improvements in the model, such as
the issues mentioned earlier of large range atomic interactions. It may also be helpful
in the simulation of crystal growth where a lattice is not imposed by pinpointing stable
atomic positions that entail equal contributions of all atoms to the system’s energy.

9.2.5 Conclusion of Combining Chemical Physics Knowledge and Deep
Learning

Physics knowledge has been integrated into DNNs to improve its accuracy and gener-
alisation to estimate potential energies and stable geometries of both molecules and
crystals. Two strategies were proposed for the physics knowledge integration, namely
(1) specialised information passing within a DNN to better account for interaction
types within the system, and (2) further relating the learnt representations to the
underlying physics of the studied phenomenon using indirect feature specialisation.
These methods were incorporated into two architecture types, graph-based and CNN,
to form the new state-of-the-art. These models have different advantages and draw-
backs, with the augmented CNN favouring accuracy of energy estimation and the aug-
mented graph-DNN obtaining more stable geometries and better generalisation and

5This scenario differs from the previous whole system scaling, but our models produce plausible energy
estimates.
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scalability. These models proved to be able to learn the principles of atomic interac-
tions, including capturing the contributions of single atoms to the total energy. These
principles have allowed handling new geometries, including new chemical systems of
varying sizes and new perturbations of their atoms’ locations. When working with
crystals, the models can also train on smaller datasets, while generalising better to
larger systems to their non-augmented counterparts. More work on long-range atomic
interactions may further help with handling larger chemical systems.

Perspective for chemistry research and material engineering – DNNs may trans-
form the current practice in chemistry research and material engineering by providing
considerably faster estimations than traditional numerical simulations. Thus, the mod-
els may be used for a fast scan of an extensive range of conditions and atomic configu-
rations. In addition, they may be used straightforwardly for estimating a large range of
physical properties of chemical systems and discovering new materials. Finally, their
improved capturing of principles of atomic interaction may also allow the simulation of
crystal growth in future works to further help with material discovery. However, DNNs
cannot always guarantee sufficiently chemically accurate results for unseen molecules
and suffer from well known and documented problems such as adversarial examples.
Therefore, although our methods improve their robustness, numerical simulations re-
main necessary to verify a DNN’s output.

9.3 Solar Burst Detection with Deep Learning

In previous chapters, methods were designed to provide auxiliary predictions and per-
form adversarial training with adaptive neighbourhoods. Though the auxiliary pre-
dictions have not had an impact on the detection results (which may be addressed
in future work by performing the auxiliary predictions from the proposals instead of
intermediate feature network), we used the adaptive neighbourhoods as a form of de-
fence, as well as the data-specific augmentations to enhance the WAVES dataset for
training.

9.3.1 Comparison with Baselines

With the best performing data augmentations, and the prior integration strategies pre-
sented in the preceding chapters, the final Augmented Faster R-CNN detector was
created. This detector used the following strategies:

• Data augmentation using best performing augmentations: D2, D3 and D4.

• Adversarial training using FGSM+AN to modulate the intensity of attack.

To create our final detector, we add each strategy onto the base Faster R-CNN in series,
thereby allowing us to evaluate the contributive effect of each augmentation to the
final performance metrics. This final augmented detector is compared against the
baseline detector with no augmentations, and the current state-of-the-art model for
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Table 9.9: Performance on WAVES dataset for different models. With exception of [2], whose
model type is determinisic, metrics are reported over 10 trials in the format: mean (standard
deviation).

Model Precision Recall F1 score IoU IoU (Type II only)

[2] 0.247 (0.000) 0.550 (0.000) 0.341 (0.000) 0.724 (0.000) 0.273 (0.000)

Base Faster R-CNN 0.335 (0.090) 0.350 (0.043) 0.468 (0.044) 0.667 (0.003) 0.195 (0.000)
+ Data augmentation 0.514 (0.124) 0.715 (0.200) 0.562 (0.097) 0.628 (0.064) 0.281 (0.057)
+ Adv. training 0.540 (0.034) 0.626 (0.051) 0.577 (0.008) 0.671 (0.018) 0.274 (0.014)

Type II burst detection using the WAVES dataset from Jenkins et al. [2]. The non-DL
model of [2] used a curved region of interest (ROI) to integrate the knowledge of
physics of Type II drift rates. These curved ROI followed the drift pattern of Type II
bursts and flattens the representation, thereby enabling the use a rectangular sliding
window detection. At each step of the sliding window, the Histogram of oriented
Gradients (HOG) were computed, and used as inputs to a logistic regressor to create
the detection of bursts.

The performance of each detector model is shown in Table 9.9. Firstly, we observed the
detector of Jenkins et al. [2], to although provide a high IoU score relative to the DNN-
based models, created more false-positives resulting in a lower precision and overall
F1 score. The base Faster R-CNN detector produced a higher F1 score than [2], but
perhaps due to the small amount of data needed to train a DNN model, the localisation
as shown by the IoU was not as effective. When we used data augmentations with
Faster R-CNN, we found the F1 score to increase further to 0.562, an improvement over
the base Faster R-CNN with 0.468. While the IoU score did decrease as a result of the
data augmentations, we found the IoU scores for the Type II classes to improve from
0.195 to 0.281. Finally, by adding the adversarial training regime with FGSM+AN, the
Faster R-CNN produced the best F1 score thus far with 0.577 as well as matching the
IoU Type II score with 0.274.

From these results, we observed how the augmentations have enabled the Faster R-
CNN to produce the state-of-the-art F1 scores, while also matching (or in the case
of Type II only) IoU scores with the previous state-of-the art. To better improve this
detector, further integration of domain knowledge may be used through specialised
information processing or attention on data.

9.3.2 Conclusion on Combining Solar Physics Knowledge with Deep Learn-
ing

Through the combination of pre-trained weights, data augmentation, and our prior
knowledge integration strategies, a state-of-the-art DNN has been created to detect
Type II solar radio bursts. When compared with the previous state-of-the-art model,
this new object detector is much more precise with its detection, while also spotting
more Type II bursts than previous methods. This improvement is the result of aug-
menting the WAVES dataset through a series of data augmentations, thereby helping
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the DNN train from a limited set of data. These results are further improved by the
addition of adversarial training. In this method of adversarial training, adaptive neigh-
bourhoods were created for each sample of data to allow the adversarial generation
method to self-modulate its strength of perturbation with respect to the sample. This
allows the adversarial algorithm to effectively improve its success of generating an
adversarial and thus improve the robustness of the object detector.

Though indirect specialisation has had a small impact on the performance of this ob-
ject detector, future work should consider more direct methods of integrating the prior
knowledge of the morphology of Type II solar bursts. These direct methods, when
integrated into the design of the DNN, may have substantial improvements over these
previous methods by helping the DNN to avoid misleading features present in the
WAVES dataset, such as the salient Type III bursts and background noise that fool the
detector into detecting the presence of Type II bursts. Our augmentations of addi-
tional Type III bursts, and adversarial training has helped in this regard, though more
methods are available to use from this thesis.

9.4 Effect of Prior Knowledge on the Amount of Required
Data

One of the critical barriers to entry for practitioners to use DL is the availability of ready
to use annotated datasets. Indeed, most of the research within the DL community itself
revolve around existing or toy datasets to demonstrate the advances their contributions
provide. However, when the research objective is not to further DL milestones but
other pursuits entirely, making use of DNN becomes more troublesome.

The use of prior knowledge has been suggested as one method for reducing the amount
of training data needed to achieve a competitive computational model [182]. Further-
more, using prior knowledge and incorporating it into the DNNs may help the learning
process, and thus may also reduce the necessity of large amounts of training data to
extrapolate key insights, but rather, partly rely on the insights provided by the expert
in the respective field. [219] describe the general laws of ML where a model aims to
learn a function f̂ from a set of functions F . If a model picks a function f based upon
the samples from the training set, then the generalisation error depends on the num-

ber of examples as
√

V C(F)
l , where V C(F) is the VC (Vapnik-Chervonekis) dimension

[220] that measures the complexity and expressiveness of functions in F , and l is the
number of examples. Concerning classification algorithms, V C describes how complex
the resulting model is. As the number of examples is proportional to the hypothesis
class complexity, integrating prior knowledge to help the learning process may allow
us to use fewer examples without much impact on performance.

9.4.1 Data-Sampling Process

To show the effect of limited data on the performance of DNNs, the training set size
(while leaving the validation and testing size fixed) was reduced through a random
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sampling process.

Molecular & Crystalline Datasets

The training set was reduced in 10% increments from 100% of the original size to
10%. So, for example, a single model was trained on 50% of the possible training
data and then tested on 100% of the available testing data. This test was performed
for the Augmented-QM9 and SCG datasets as these have thus far provided the most
interesting insights into the comparative measures between the augmented and non-
augmented models.

In the Augmented-QM9 dataset, there are 10k molecules of various sizes, where each
molecule was compressed/expanded from 90% to 150% of the stable inter-atomic dis-
tance. To randomly sample from this dataset, it was filtered by molecular compounded.
For example, when testing the performance on 50% of training, 50% of the molecules
were selected from the training set. Each of these molecules includes all variations
of inter-atomic distance from 90% to 150%. This sampling method contrasts SCG
where the data contains only crystals at their most stable inter-atomic distance. In this
dataset, all system scales were randomly sampled.

An alternate method of sampling was performed for the Augmented-QM9. Instead
of sampling molecules, we sampled from the different system scalings. Therefore, all
potential molecules were included in the training data, but with some scalings filtered
out of the dataset.

Online Grooming Chat logs

The annotations provided by the expert linguists are available for a small portion of
the positive data. Therefore, in order best find a comparative difference for using the
prior knowledge integrations, we will want to ensure these annotations are available
in the training data irregardless of the training set size. This dataset we have labelled
set A.

However, this form of sampling from the training set does not vary the number of
annotations. Thus in this case, OG theme detection was not tested for robustness by
the smaller amounts of data. We view this as the optimal case for OG theme detec-
tion: having the largest number of annotations possible. However, we would also
want to find out how OG theme detection performs when there are a limited number
of annotations. For this, we create another dataset that also reduces the number of
annotations. This dataset we have labelled set B.

In summary, from the sampling, there are two resulting datasets at different sizes from
10% to 90%:

1. A – Stratified sampling of grooming/non-grooming labels, but the number of
grooming annotations remains at its maximum.

2. B – Stratified sampling of both grooming/non-grooming labels, but also groom-
ing annotations. Thus the number of annotations is small at 10% and increases
with respect to the sample size.
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Figure 9.6: Robustness of base and augmented models to smaller training sets for Augmented
QM9, when sampling on molecule types. Top: effect on energy estimation accuracy (AE), bottom:
effect on finding stable configuration (DSG). Left: MPNN, right: SchNet. Blue: base model, red:
augmented model.

Our sampling process consists of the following steps: (1) Stratified samples were cre-
ated of grooming/non-grooming data at 10% intervals between 10% and 90% of the
original training data. (2) At each interval, 10% of all the available training data was
added to the training set, ensuring the grooming samples included all possible anno-
tated examples to fulfil the criteria of set A. In cases where the number of grooming
samples in the stratified sample was less than the number of annotated examples, an-
notated examples were randomly sampled to fit the stratified sample. (3) Again, at
each interval, a stratified sample was taken of the annotations and (non)-grooming
conversations, to creating set B.

9.4.2 Results of Energy Estimation with Limited Data

On both datasets, as expected, all models improved their energy estimates (mean AE)
and their ability to find stable configurations (DSG) when training on a wider variety of
molecules or crystals. However, on Augmented QM9 (Figure 9.6), both the augmented
variants of MPNN and SchNet, given enough data, produced generally better energy
estimations and were better at producing a plausible energy curve as shown by the
DSG metric. However, these augmented models required a small amount of data (5%)
in order to surpass the base models. On the SCG subset (Figure 9.7), both augmented
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Figure 9.7: Robustness of base and augmented models to smaller training sets for the SCG subset.
Left: MPNN, right: SchNet. Blue: base model, red: augmented model.

models did see a sharper and earlier drop in mean AE when increasing the dataset
size. This indicates that, in the case of crystals, a smaller training set is required
by the augmented models to reach a good performance, this is perhaps due to the
augmentations providing insights to the models that did not need to be learnt from
data, hence reducing the need for annotated training samples.

We also note, in two cases out of four, the non-augmented models obtained worse re-
sults than base models for extremely small training sets. This may be explained by the
increased model complexity (due to additional learnt parameters and auxiliary tasks)
requiring a minimal amount of data to train effectively. However, these additional
complexities does not prevent the augmented models reaching adequate performance
as soon as or earlier than the base models, and to outperform them with larger dataset
sizes.

We further tested the robustness to smaller training sets brought by our augmentations,
by training on random subsets of the compressions and dilations of all the molecules of
Augmented QM9 (Figure 9.8). We find that MPNN and SchNet did not improve from
training on additional scaling samples, while its augmented version is able to slightly
improve its performance using the additional examples.

9.4.3 Results of Limited Online Grooming Detection Chat Logs

Both OGD-R and OGD-T were trained using the two different datasets of varying sizes.
In Figure 9.9, we observed the F1 -score improve for all models with the increasing
dataset sizes. This shows that both augmented and non-augmented models are able to
take advantage of the extra variety and examples that larger training set sizes affords.

However, the augmented version of OGD-R (top row) improved more quickly, and
when only 30% of the available data is used, augmented OGD-R achieved its highest
score yet. This quick improvement is perhaps due to the prior integration strategies
helping the augmented model learn from a small amount of data. A similar effect can
be seen in Figure 9.9b when using dataset B. However, the increases in performance for
dataset B were less drastic as the number of annotations were smaller than in dataset
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Figure 9.8: Robustness of base and augmented models to smaller training sets for Augmented
QM9, when sampling on molecule’s scaling. Top: effect on energy estimation accuracy (AE),
bottom: effect on finding stable configuration (DSC). Left: MPNN, right: SchNet. Blue: base
model, red: augmented model.

A and, therefore, the prior integration strategies have less annotations with which to
learn from. Nevertheless, with the exception of training set size (40%), the augmented
OGD-R outperformed base OGD-R highlighting the improvement that prior integration
strategies affords.

Like OGD-R, the augmentations helped OGD-T (Figure 9.9 bottom row) take advan-
tage of the annotations, thereby leading to better performance in all but one interval
(90%). When all of the annotations were used (as is the case for dataset A, Figure
9.9c), the augmented OGD-T performed consistently better than base OGD-T. When
the annotations were sampled randomly (dataset B, Figure 9.9d), there was less of a
difference in performance between models, and in some intervals such as 30%, the
non-augmented model performed better. These results demonstrate the methods re-
liance on the expert annotations during training.

In our experiments, we have seen the prior integration strategies help with limited
sizes of data. Specifically for OGD-R, the best-achieved score occurs at 30% of the
available data. As for OGD-T, while the prior integrations certainly helped improve
the accuracy of the classifier, they did not necessarily benefit from small amounts of
data, with both augmented and non-augmented models improving performance at the
same rate. Despite this, prior integration strategies have shown to be an effective
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Figure 9.9: Performance of augmented and non-augmented OGD-R (top) and OGD-T (bottom)
on varying sizes of training datasets. Dotted grey lines indicate the highest performance.

method for situations where the amount of data is limited and consistently improve
with more data.

9.5 Chapter Summary

In previous chapters, the methods by which prior knowledge can be integrated into
DNNs were introduced. However, these methods were tested in isolation. This chapter
has improved on the analysis combining these strategies to test their effect. The final
augmented classifier or regressors were tested and compared against the current state-
of-the-art in their respective domains

To further evaluate the interaction between prior integration strategies, ablation stud-
ies were performed. Finally, we evaluated the performance of the augmented and
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non-augmented models with varying training set sizes, finding that prior knowledge
augmentations can help boost performance when training set sizes are relatively small.

The key points from this chapter are:

• It is possible to use a combination of prior integration strategies to further en-
hance the performance of DNNs. Even if the strategies are built from the same
priors, the DNN still increase accuracy with each additional strategy. For exam-
ple, we observed an improvement when combining indirect feature specialisation
with supervised/excited attention mechanisms.

• Using prior knowledge helps in situations where there is a small number of train-
ing samples. It is possible to improve the performance of DNNs by providing an
inductive bias using prior knowledge.

• Through the combination of CL prior knowledge a state-of-the-art OG detec-
tor was created. This detector, while providing the state-of-the-art classification
performance of OG in text-based chat logs, also includes additional output visu-
alisations of predicted grooming communication processes that may be helpful
for human decision making.

• The methods for integrating physics knowledge into GNNs can improve the mod-
els’ accuracy, while also improving its effectiveness for handling OoE chemical
systems, and even generalising better to systems larger than the model has been
trained on. These two generalisation properties may be instrumental for gener-
ating novel chemical compounds that will be explored in future work.

• The methods for augmenting the training data enabled the production of the
state-of-the-art Type II detector. The augmentations enhanced and enriched the
dataset used to train the DNN.

The contributions of this chapter are:

• A demonstration of how prior knowledge integration strategies can be combined
to improve upon their individual performance. We show that, even if the strate-
gies use the same prior, DNNs can benefit for the combination of methods.

• State-of-the-art classifier for OG detection, energy estimation of OoE chemical
systems, and the detection of Type II bursts.

• An evaluation of how prior knowledge can help DNNs learn with smaller datasets.
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Chapter 10

Conclusion

DNNs have quickly become one of the most prolific types of model in ML. This is due,
in part, to their ease of construction (through the facilitation of high-level DL frame-
works), the reduction in the need to perform feature extraction or feature engineering,
and their state-of-the-art performance in many tasks from many different domains, in-
cluding those that could be considered safety-critical. Despite these advancements,
practitioners can gain further improvements to the performance of DNNs by using
their existing domain knowledge and take advantage of the strategies presented in
this thesis for encoding this knowledge into the architectural design of DNNs.

The current research has aimed to identify these strategies that enable the use of prior
domain knowledge for DNNs. These strategies, whether they are added to the DNN
singularly, or combined, aid the DNN in producing more accurate and trustworthy pre-
dictions, and in some cases, also provide additional representations for visualisation,
both essential characteristics for informed decision making.

This work has demonstrated four methods to integrate prior knowledge into the design
and training of DNNs. Our proposed prior knowledge integrations are:

• Feature specialisation where the prior knowledge can be used to inform and
shape existing feature representations of the DNN.

• Specialised information processing where processing channels are used to
replicate concepts within the domain to learn specialised parameters that help
the performance in the downstream tasks.

• Attention on data by attending to critical features of a section of the input.

• Augmenting training data where, using the prior knowledge of the data, aug-
mentations are applied in a domain-meaningful way to enrich the existing dataset.
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This manual process of augmentation is complemented by an automated method
of adversarial training with adaptive neighbourhoods.

Firstly, the method of feature specialisation uses indirect or direct specialisation that
modifies the learnt features to better reflect the domain knowledge. The results show
that indirect feature specialisation can provide a small performance improvement,
while also creating an auxiliary output that is useful for visualisation. Direct speciali-
sation, while not providing the same useful output as indirect specialisation, benefits
more (in terms of task performance) than indirect specialisation as the inductive bias
is stronger. We have proposed three novel methods of applying direct specialisation to
the semantic relationships of word-embeddings. However, these methods are general
enough as to extend to tasks where the distance between points in a coordinate system
need to be reduced or expanded to accommodate prior knowledge.

Secondly, specialised information processing provides the DNN with specialised infor-
mation processing channels for each concept from the domain. Like indirect feature
specialisation, these representations can be useful for visualisation and understanding
what the DNN has learnt. Moreover, we proposed the combined use of MTL with spe-
cialised information processing to better represent the domain concept. In these cases
auxiliary tasks can be used to provide hints to the DNN as to how to represent the
domain concept.

Thirdly, attention on data helps the DNN to shift focus onto important features. By
doing so, this work has shown how the attention on data method can help the DNN
avoid misleading features that result in false-positives. For this method of increas-
ing attention onto important features using prior knowledge as a guide, we proposed
methods for stimulating the activations of RNNs, self-attention, and unsupervised at-
tention mechanisms.

Finally, data augmentations can be used to enhance the training of DNNs. We demon-
strated two methods (one automatic and one manual) for performing augmentations.
The first method of data-specific augmentations used prior knowledge to determine
domain-meaningful augmentations to enrich the variety of data the DNN can use to
train. The second automatic method of adversarial training can help the DNN be more
robust to small changes in the input. By combining existing adversarial generation
algorithms with our proposed adaptive neighbourhoods method, the attack success of
these algorithms increases due to the adaptive neighbourhoods increasing/decreasing
the perturbation strength with respect to the input, and thereby helps the DNN to be-
come more robust to perturbation than the original adversarial generation algorithm.

To compare and test these prior integration strategies, three case studies were used.
The different case studies have enabled the development of implementations for a
wide range of evaluation of the strategies in different use cases, and to also experiment
with different DNN architectures to explore the method’s generalisability to different
frameworks. To facilitate the training of these DNNs for the case studies (the detec-
tion of online grooming and the energy estimation of molecular/crystalline systems
in particular), novel datasets have been created, in addition to providing additional
expert annotations that enable the use of the prior integration strategies. Through
these case studies, we have shown our proposed methods to be helpful in improving
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the performance of DNNs, while also providing means of visualisation of the indicative
functions of decision process as well as the latent representations, thereby improving
the trustworthiness of the DNNs.

In many of the case studies presented in this thesis, it was shown how auxiliary annota-
tions of the positive cases (e.g. examples of OG processes and auxiliary predictions of
Type II bursts) have resulted in a more accurate classifier that also reduces the number
of false-positives. Based on the conclusions of our research, when using these methods,
consideration should also be given to the prior knowledge of the background/negative
examples, where there is further room for exploration and potential for an increase in
classification accuracy.

Future work should consider expanding and adapting these methods for domains other
than those demonstrated here. For instance, logic is one form of prior knowledge that
has not been explored in this work. Therefore, one may investigate the use of prior
domain knowledge for logic-based models or evaluate mechanisms to include first-
order logic knowledge into DNNs using the paradigm presented here. However, to
do so, one must consider how to efficiently store the knowledge of experts through
knowledge representation.

Other work may wish to consider how these strategies incorporate negative enforce-
ment of prior knowledge that extends further than the absence of positive annotation.
For example, consider the case study of online grooming detection, where the prior
knowledge is encoded as annotations of grooming processes. In this example, nega-
tive examples use only the absence of positive annotations to distinguish themselves
from the positive.

Finally, our methods have shown the advantage of incorporating prior knowledge into
the design of DNNs. This work demonstrates the various potential methods that re-
searchers in scientific domains can make use of when considering how to improve the
robustness, accuracy, and trustworthiness when designing and implementing DNNs.
Our recommendation to these pursuits is to carefully analyse one form of prior, and
explore the various means of including this prior into the model. As demonstrated in
this work, one can use a combination of strategies to take full advantage of a single
prior.
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Appendix A - CP2K Input

Example CP2K input file for a infinite FCC crystal composed of Al atoms.

&GLOBAL
PROJECT Al−Crys ta l −01
RUN_TYPE ENERGY
!RUN_TYPE GEO_OPT
PRINT_LEVEL LOW

&END GLOBAL

&FORCE_EVAL
METHOD Quickstep
&DFT

BASIS_SET_FILE_NAME BASIS_MOLOPT
POTENTIAL_FILE_NAME POTENTIAL

&POISSON
PERIODIC XYZ

&END POISSON
&QS

EXTRAPOLATION USE_GUESS ! requ i red fo r K−Point sampling
&END QS
&SCF

! SCF_GUESS ATOMIC
SCF_GUESS RESTART
EPS_SCF 1.0E−10
MAX_SCF 1000

ADDED_MOS 4
&SMEAR ON

METHOD FERMI_DIRAC
ELECTRONIC_TEMPERATURE [K] 300

&END SMEAR
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&DIAGONALIZATION
ALGORITHM STANDARD
EPS_ADAPT 0.01

&END DIAGONALIZATION
&MIXING

METHOD BROYDEN_MIXING
ALPHA 0.2
BETA 1.5
NBROYDEN 8

&END MIXING
&END SCF
&XC

&XC_FUNCTIONAL PADE
&END XC_FUNCTIONAL

&END XC
&KPOINTS

SCHEME MONKHORST−PACK 2 2 2
SYMMETRY OFF
WAVEFUNCTIONS REAL
FULL_GRID .TRUE .
PARALLEL_GROUP_SIZE 0

! KPOINT 0.0 0.0 0.0 1.0
! KPOINT 1 . / 2 . 0.0 0.0 1.0
! KPOINT 0.0 0.0 0.0 1.0

&BAND_STRUCTURE
ADDED_MOS 4
FILE_NAME Al−bands . bs
&KPOINT_SET

UNITS CART_BOHR ! work around a bug in CP2K , should be B_VECTOR
SPECIAL_POINT 0.0 0.0 0.0
SPECIAL_POINT 1 . / 2 . 0.0 0.0
SPECIAL_POINT 1 . / 2 . 1 . / 2 . 0.0
SPECIAL_POINT 1 . / 2 . 1 . / 2 . 1 . / 2 .
NPOINTS 10

&END
&END BAND_STRUCTURE

&END KPOINTS
&PRINT

# &EFIELD_CUBE
# &END EFIELD_CUBE
# &ELF_CUBE
# &END ELF_CUBE
# &E_DENSITY_CUBE
# &END E_DENSITY_CUBE
# &TOT_DENSITY_CUBE
# &END TOT_DENSITY_CUBE
# &V_HARTREE_CUBE
# &END V_HARTREE_CUBE



# &MO_CUBES
# WRITE_CUBE T
# NHOMO 1
# NLUMO 1
# &END MO_CUBES

&END PRINT
&END DFT

&SUBSYS
&CELL

# Experimental va lues f o r a face−centered cubic Aluminum c r y s t a l
ABC [ angstrom ] 4.04958*1.0 4.04958*1.0 4.04958*1.0
ALPHA_BETA_GAMMA 90. 90. 90.
SYMMETRY CUBIC
PERIODIC XYZ
MULTIPLE_UNIT_CELL 1 1 1

&END CELL
&COORD

SCALED
Al 0.0 0.0 0.0
Al 1 . / 2 . 1 . / 2 . 0.0
Al 1 . / 2 . 0.0 1 . / 2 .
Al 0.0 1 . / 2 . 1 . / 2 .

&END
&KIND Al

BASIS_SET DZVP−MOLOPT−SR−GTH
POTENTIAL GTH−PADE−q3

&END KIND
&END SUBSYS

&END FORCE_EVAL





Appendix B - Hyper-parameters for
energy predictions

The following hyperparameters were used for all experiments:

• Batch size: 20 for the Augmented QM9 and Infinite Crystal datasets, and 5 for
the Crystal Growth dataset due to memory constraints.

• Learning rate: 1e-4

• Learning rate decay: 0.6

• Early stopping: 50 stable epochs

• Auxiliary alpha: 0.3

• Size of BT-specialised message mv|BT (MPNN): 73

• Number of bond types: 4

• Number of message passing iterations (MPNN): 3

When training with the different implementations of the BT integration, though the
size of the BT-specialised messagemv|BT remains consistent at 73 dimensions in MPNN,
in case b) the concatenation of bond type messages entails that the nodes’ hidden state
size is 292. For clarity, we detail the size of MPNN’s nodes’ hidden state here for each
of the methods:

• a: 73

• b: 292

• c: 73
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Appendix C - Hyper-parameters for
online grooming detection

• Optimiser: RMSprop (using the default learning rate)

• Scheduler: Cyclic Learning Rate (RMSprop base, 5e-3 max)

• Early stopping (tracking validation loss metric)

– OGD-R: 50 epochs

– OGD-T: 100 epochs

• Batch-size:

– ODG-E: 128

– OGD-T: 8 (with gradient accumulation over 16 batches)

• Gradient clipping: ±0.5

• WSR Dimensionality:

– OGD-R: 300

– OGD-T: 768

• Pre-trained Glove embedding: 840B-300D crawl.

• Pre-trained XLNet: xlnet-base-cased (https://github.com/zihangdai/xlnet/
& https://github.com/huggingface/transformers).

• Out-of-vocabulary (OOV) default embedding vector: random coordinates fol-
lowing a normal distribution of mean 0 and std 1 (i.e. close to the centre of the
embedding manifold).

• LSTM hidden size (both base models): 256

• LSTM # layers (both base models): 2
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• Classification layer (both base models): 1 fully connected layer

• Dropout rate between LSTM layers and classification layer: 20%

• Training/validation split: 70/30 (stratified)

• Training/testing split: 30/70 (stratified)

• Maximum sequence length: 2,000 - sorted & bucketed batches

• λ (weights of the additional losses): 1, 1, 1/3 for Stimulation of LSTM, Stimula-
tion of attention, and Aux. OG process estimations, respectively

• Random weight initialisation seed: 42

Tokenisation details

As a standard step in NLP, we tokenise named entities prior to OG classification. The
criteria for tokenisation and word replacement are as follows:

• All Spacey entities (see https://spacy.io/api/annotation#named-entities)
are encoded to their respective categories, in addition to LONGWORD for words
with more than 35 characters, and URL for URLs.

• Stemming using SnowballStemmer (NLTK).

• Tokenised using Spacey ‘en’ (English) model (https://spacy.io/models).

• Tokens with less than 5 occurrences in the corpus are replaced by OOV.

https://spacy.io/api/annotation#named-entities
https://spacy.io/models


Appendix D - Example data from the
Quantum Chemistry case study

For each of the three datasets used in the Quantum Chemistry case study, the data
is stored in the same format. Therefore, as an example, we use an example from
Augmented-QM9 to demonstrate the storage of molecular and crystalline data.

{"category":"dsgdb9nsd_050902.xyz",
"cell_lengths":[25.5229999320,19.3680963191,18.9482609838,90.0,90.0,90.0],
"center_mass":[12.443108345300001,9.157760554199999,9.4207166133],
"chemical_formula":"C5H6N2O2",
"chemical_symbols":["O","C","N","C","O","N","C","C","C","H","H","H","H","H","H"],
"distances":[[0.0,1.7971037271, 3.4781958382, 4.4556783376, ...],

[1.7971037271, 0.0, 2.0850125271, 3.7638974253, ...],
[4.4556783376, 3.7638974253, 2.1192687483, ...]
...],

"energy":"output\/calc-dsgdb9nsd_050902.xyz-9.inp",
"index":99979,
"input_a":1.5,
"input_b":1.5,
"input_c":1.5,
"pdf":0.136503849499564,
"positions":[[7.9179381322,7.499313307,8.2436204744],

[8.2030742278,9.0144709281,9.1669712181],
[10.0189409416,9.7012658599,9.927377713],
...],

"simulated_energy":-82.1097602424,
"smiles":"O=CNC(=O)NCC#C",
"volume":9366.730252523799209,
"uid":199999}

For details on the information stored in this data, please refer to Table 4.4.
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Appendix E - Example data from OG
dataset

Here we show some examples of the data (and the format in which it is stored) for the
OG dataset.

{"id":"0002de15312dc33d78b6e9e4b5f61f1f",
"input":"hi is there anybody there hy asl",
"target":false,
"tokenized":["hi","is","there","anybodi","there","hy","asl"],
"themes":[[0.0,0.0,0.0,0.0,0.0,0.0,0.0],

[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
[0.0,0.0,0.0,0.0,0.0,0.0,0.0]]}

This example contains the an id key as a unique identifier. It also contains the original
input, as well as the tokenized input by the Spacey tokenizer. In addition, themes
indicates the presence of the seven grooming processes per word. As this is a negative
example, there are no grooming processes present.

This data, though currently formatted into multiple lines for readability, is stored in
a JSON-lines (.jsonl) format. This allows the streaming of conversations instead of
holding the entire corpus in memory.
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Appendix F - Application of Meth-
ods

These strategies presented in this thesis, though general in their design, have been
tested with concrete implementations for our three case studies. It is possible to use
varying implementation styles for each of the different case studies. In Table 10.1, we
show the basic implementation detail to use prior knowledge.

Table 10.1: High level implementation style for the different case studies presented in this thesis.

Section Case Study Description Implementation Style

Feature Specialisation
5.2.1 Aux. OG process Auxiliary loss
5.2.2 Aux. Atom Properties Auxiliary loss
5.2.3 Aux. Type II properties Auxiliary loss
5.3.3 Supervised WSR modification Auxiliary loss
5.3.4 Elastic pull Algorithm external to the DNN
5.3.5 Manifold learning Algorithm external to the DNN

Specialised Information Processing
6.2 Specialised OG channels Additional information channel

+ auxiliary loss
6.3 Specialised bond type channels Additional information channel

Attention on Data
7.2 Stimulating attention on OG processes Algorithm internal to the DNN

Data Meaningful Transformations
8.1 Meaningful transformations of Type II

bursts
Algorithm external to the DNN

8.2 Adversarial training for Type II bursts Algorithm external to the DNN
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