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2 

ABSTRACT: Groundwater recharge (GWR) is one of the most challenging water fluxes to estimate, as it 21 

relies on observed data that are often limited in many developing countries. This study developed an 22 

innovative water budget method using satellite products for estimating the spatially distributed GWR at 23 

monthly and annual scales in tropical wet sedimentary regions despite cloudy conditions. The distinctive 24 

features proposed in this study include the capacity to address 1) evapotranspiration estimations in tropical 25 

wet regions frequently overlaid by substantial cloud cover; and 2) seasonal root-zone water storage 26 

estimations in sedimentary regions prone to monthly variations. The method also utilises satellite-based 27 

information of the precipitation and surface runoff. The GWR was estimated and validated for the 28 

hydrologically contrasting years 2016 and 2017 over a tropical wet sedimentary region located in North-29 

eastern Brazil, which has substantial potential for groundwater abstraction. This study showed that applying 30 

a cloud-cleaning procedure based on monthly compositions of biophysical data enables the production of 31 

a reasonable proxy for evapotranspiration able to estimate groundwater by the water budget method. The 32 

resulting GWR rates were 219 (2016) and 302 (2017) mm yr-1, showing good correlations (CC = 0.68 to 33 

0.83) and slight underestimations (PBIAS = -13 to -9%) when compared with the referenced estimates 34 

obtained by the water table fluctuation method for 23 monitoring wells. Sensitivity analysis shows that 35 

water storage changes account for +19% to -22% of our monthly evaluation. The satellite-based approach 36 

consistently demonstrated that the consideration of cloud-cleaned evapotranspiration and root-zone soil 37 

water storage changes are essential for a proper estimation of spatially distributed GWR in tropical wet 38 

sedimentary regions because of their weather seasonality and cloudy conditions. 39 

40 

Keywords: Remote sensing, water balance, groundwater recharge, water table fluctuation, tropical climate, 41 

sedimentary aquifer. 42 
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1. Introduction 43 

Understanding the factors constraining groundwater recharge (GWR) is important for management 44 

and planning purposes of this water resource that is only slowly renewed (Cuthbert et al., 2019). In some 45 

regions, for instance, the abstracted groundwater over the past decades are taken from non-renewable 46 

groundwater (Döll et al., 2014), which increases, even more, the need for a better understanding of such 47 

factors. These abstractions need to be regionally regulated (Aeschbach-Hertig and Gleeson, 2012), since 48 

groundwater serves as the key strategic reserve for supplying water to societies during long-lasting droughts 49 

(Famiglietti, 2014). Such regulation, in turn, requires accurate information about the spatiotemporal 50 

distribution of natural GWR rates (Jasechko et al., 2014), including their variability and uncertainty in 51 

estimations, which are strongly sensitive to climate forcing factors, land uses and covers, watershed 52 

geomorphology and local hydrogeology (Moeck et al., 2020). 53 

Since GWR is a key component used in many hydrological models to assess groundwater resource 54 

worldwide (Graaf et al., 2017; Wada et al., 2010), its accurate estimation constitutes a priority for 55 

stakeholders and a research challenge for the scientific community (Jasechko et al., 2014; Mohan et al., 56 

2018). Many methods have been developed to estimate natural GWR at various spatiotemporal scales, with 57 

a wide range of complexity (Walker et al., 2019), given that GWR cannot be directly measured (Melo et 58 

al., 2015). Making use of these methods often depends on data availability, desired spatiotemporal 59 

resolution, and result representations (Walker et al., 2019). 60 

The following five methods are commonly used to estimate GWR: 1) tracer techniques, which 61 

estimate aquifer renewal via substances in the water or specific concentrations of chemical elements, such 62 

as the chloride mass-balance method (e.g., Brunner et al., 2004; Hornero et al., 2016); 2) groundwater level 63 

monitoring in unconfined aquifers, which include examples such as water table fluctuation method (e.g., 64 

Cai and Ofterdinger, 2016; Wendland et al., 2007) and cumulative rainfall departure methods (e.g., Ahmadi 65 

et al., 2015; Weber and Stewart, 2004); 3) Darcy’s law application, which allows calculating the velocity 66 

of soil water percolation and requires knowledge of hydraulic gradient and vertical hydraulic conductivity 67 

(e.g., Callahan et al., 2012; Yin et al., 2011); 4) numerical modelling, which consists of a mathematical 68 

representation of the GWR process (e.g., Melo et al., 2015; Melo and Wendland, 2017); and 5) the water 69 

balance method, which considers the main variables of the hydrological cycle as inputs and outputs of the 70 

system (e.g., Hornero et al., 2016; Wendland et al., 2007). 71 



  

4 
 

Most of the aforementioned methods are based on point-scale observations (e.g., meteorological 72 

stations or boreholes), which may cause serious issues when spatial variability in the regions of concern is 73 

great (e.g., Melo and Wendland, 2017). Although such a problem can be simply ignored for regions with 74 

extremely dense observation networks, it remains persistent in most regions worldwide, especially in 75 

developing countries. For instance, in Brazil, the national ground-based monitoring network consists of 76 

about 400 wells distributed over the country, complemented by a small number of observation wells 77 

monitored in only 21 active experimental basins (Melo et al., 2020). Therefore, the chief challenge for many 78 

hydrologists is to find and utilise alternative sources of data to estimate the spatial information of GWR 79 

(Brunner et al., 2007). 80 

The use of cutting-edge satellite-derived remote sensing technology has played a crucial role in 81 

assimilating valuable distributed observation and in modelling water resources, which would otherwise be 82 

impossible with relatively sparse ground-based measurements alone (Famiglietti et al., 2015). However, 83 

the remote sensing contributions are rather inconsistent at quantifying and estimating GWR because all 84 

current data from satellite data can only detect patterns and processes related to water resources on and 85 

above the surface (Brunner et al., 2007; Coelho et al., 2017; Lucas et al., 2015). Satellite-based observations 86 

of time-variable gravity, such as the joint mission of the Gravity Recovery and Climate Experiment 87 

(GRACE), are sensitive to variations of terrestrial water storage, including the groundwater storage changes 88 

(Tapley et al., 2004; Vasco et al., 2019; Wahr et al., 2004). Unfortunately, the low spatial resolution of 89 

GRACE-derived data limits its ability to provide localised groundwater information at an appropriate scale 90 

(Alley and Konikow, 2015; Lakshmi et al., 2018). Thus, an innovative use of satellite data to estimate GWR 91 

at local and regional scales has been recently proposed, where most of data are applied to a simplified water 92 

budget approach that uses precipitation and evapotranspiration products (e.g., Crosbie et al., 2015; Gokmen 93 

et al., 2013; Lucas et al., 2015; Munch et al., 2013; Szilágyi et al., 2012; Szilagyi et al., 2011). This approach 94 

disregards other water balance components, such as surface runoff and soil water storage changes, which 95 

could considerably alter the estimation accuracy of GWR in some regions for short time scales (e.g., 96 

monthly). 97 

In this context, some studies also have considered uniform surface runoff (Khalaf and Donoghue, 98 

2012), as well as spatially distributed information about surface runoff (Coelho et al., 2017) and irrigation 99 

(Usman et al., 2015). The aforementioned studies used different remote sensing products and algorithms, 100 

but all of them were developed in regions with arid, semiarid, continental or Mediterranean climate 101 
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conditions where the cloud cover is limited (Coelho et al., 2017). For some tropical regions such as Brazil, 102 

the estimation of GWR using this approach remains challenging, mainly because of the difficulties in 103 

obtaining continuous information of actual evapotranspiration data by remote sensing without substantial 104 

cloud cover. In parallel, soil moisture information from satellite observations is currently available at the 105 

global scale and can provide valuable data to update the water budget approach with information regarding 106 

water storage changes in unsaturated soil layers (Reichle et al., 2018). Accounting for this component is 107 

particularly important for understanding GWR in sedimentary aquifers, where the unsaturated vadose zone 108 

width may vary from thin to thick soil layers (Rossetti et al., 2012). Unfortunately, some satellite-based 109 

datasets are only recently available, but some applications require earlier data. 110 

Based on this information, this study develops an innovative water budget method using satellite-111 

based data for estimating natural spatially distributed GWR rates at annual and monthly scales in tropical 112 

wet sedimentary regions, taking into account cloudy conditions. Accordingly, this study hypothesizes that 113 

such an approach enables local and regional scale perspectives in ungauged tropical wet regions. The 114 

general and transferable strategy would be relevant to account for 1) the substantial cloud cover and 2) the 115 

water storage changes in sedimentary regions prone to monthly variations. The method also utilises 116 

spatially distributed information on precipitation and surface runoff estimated from satellite products. The 117 

major limitation of this residual approach is that the accuracy of the GWR depends on the accuracy of the 118 

other components considered in the water balance (Scanlon et al., 2002), i.e., its application is appropriated 119 

when the errors of these components are small relative to the water flux. This limitation, when a satellite-120 

based approach is considered, is mainly identified in regions that present ground-truth measurements 121 

discrepant with the estimated products used in the water balance, especially the main input (precipitation) 122 

and output (evapotranspiration) of the system. On the other hand, ground-based evaluations are punctual 123 

and representative of small areas, hardly integrating the spatial heterogeneity of meteorological processes, 124 

especially in urban areas (Maier et al., 2020). This study used ground-truth measurements to assess the two 125 

main estimated components of the water balance (i.e., precipitation and evapotranspiration) and the GWR 126 

rates. 127 
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2. Materials and methods 128 

2.1 Study area 129 

The study was carried out over an area of 1,032 km2 in João Pessoa (JPA) (Paraíba, NE Brazil), 130 

which includes the metropolitan region and surrounding rural areas (Fig. 1). It consists in 1) the Gramame 131 

river basin (589.1 km2; 57.1% of the area), and 2) the right bank of the Baixo Paraíba river basin (442.9 132 

km2; 42.9% of the area). The main source of water of the JPA metropolitan region (~1 million inhabitants) 133 

is the Gramame-Mamuaba reservoir, with maximum volume capacity of 56.9 hm3. The water supply is 134 

complemented by more than 756 wells (CPRM – Geological Service of Brazil, 2020), pumped mostly for 135 

the public, industry, and irrigation, which are essential during periods of surface water shortage. 136 

INSERT FIG. 1 HERE 137 

Fig. 1. Location of (a) Brazil, (b) Paraíba state, and (c) João Pessoa (JPA) study area with the monitoring 138 

network, (d) land use and land cover, and (e) soil types. 139 

The JPA has a tropical wet climate with a dry summer (i.e., As, according to the Köppen climate 140 

classification), with a mean temperature of 26°C and well-distinguished rainy and dry seasons (Alvares et 141 

al., 2013). The average annual precipitation is 1,700 mm, of which ~70% occurs from March to August 142 

during the austral autumn and winter. The potential evapotranspiration is relatively high in JPA, with mean 143 

annual values greater than 1,500 mm. The predominant land use and land cover (LULC) types in JPA are 144 

cropland (30.7%), Atlantic Forest (28.4%), pasture (26.3%), and urban areas (9.5%). The forest areas are 145 

Atlantic remnants, and the cropland areas contain mainly sugarcane and pineapple crops. Moreover, the 146 

main soil types in JPA are acrisols (58.7%), fluvisols (12.0%), podzols (10.8%), lixisols (9.1%) and 147 

histosols (5.5%). The fluvisols and histosols surround the rivers and the JPA urban area. 148 

The hydrogeological framework mainly consists in 1) a coastal multi-layered sedimentary aquifer 149 

system near the littoral (i.e., the Paraíba Basin) and 2) a regional substratum that outcrops upstream in the 150 

more continental area (i.e., the Borborema Province). This latter corresponds to the crystalline regional 151 

basement that was affected by rifting processes due to the Cretaceos Atlantic aperture. This resulted in a 152 

graben that was progressively and sequentially filled by sediments as follows: 1) up to 360 m-thick fluvial 153 

sandstones of the Beberibe Formation from the Coniacian–Santonian age; 2) a 70 m-thick fossiliferous 154 
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calciferous sandstones and muddy siltstones of the Itamaracá Formation formed in marine transitional 155 

settings during the Santonian-Campanian age; 3) a 50-m thick phosphatic rocks and calciferous shales of 156 

the marine Gramame Formation from the Campanian-Maastrichtian age; and 4) a nearly 70 m-thick 157 

succession of fluvial sandstones and mudstones of the Barreiras Formation from the Early/Middle Miocene 158 

ages (Rossetti et al., 2012, 2011). 159 

2.2 Satellite-based water budget approach 160 

The actual GWR rates, defined as the rate at which water arrives at the table of an aquifer (Mathias 161 

et al., 2017), were spatially estimated from the residual terms of the water budget equation using satellite-162 

based information. This estimation was performed for two hydrologically contrasting years 2016 and 2017, 163 

in which ground-based information was measured to evaluate the results. The GWR rates were then 164 

calculated at the monthly and annual scales by Eq. (1). 165 

GWR = {
P − ET − ∆S − Q ,        if P − ET − ∆S − Q > 0
0                            ,        if P − ET − ∆S − Q ≤ 0

  (1) 

where GWR is the groundwater recharge, P is the precipitation, ET is the actual evapotranspiration, ∆S is 166 

the water storage change at a root-zone scale (100-cm depth), and Q is the surface runoff. Other input and 167 

output water balance components were not investigated in this study because 1) they frequently represent 168 

relatively small contributions to the root zone (e.g., water pumping) or are implicitly considered in the 169 

aforementioned components (e.g., irrigation and interception), and 2) there are no reliable in situ data  170 

available for the JPA. Moreover, horizontal groundwater flow was also neglected because it refers to a 171 

slower GWR mechanism rather than the direct contribution of vertical infiltration (e.g., Coelho et al., 2017; 172 

Crosbie et al., 2015; Munch et al., 2013), since ~70% of the study area has terrain slope ranging from 0 to 173 

92 m km-1, which means that the topography predominantly presents weak slopes. All the used remote 174 

sensing products and other input data are summarised in Fig. 2 and described thoroughly in the next sub-175 

items of this sub-section. 176 

INSERT FIG. 2 HERE 177 

Fig. 2. Satellite-based water budget approach showing the remote sensing products and other input data 178 

used to estimate the water balance components and groundwater recharge. 179 
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2.2.1 Precipitation 180 

P was estimated by the Global Precipitation Measurement (GPM) mission, which is an 181 

international network of satellites undertaken by the National Aeronautics and Space Administration 182 

(NASA) of the USA and the Japanese Aerospace Agency (JAXA) (Huffman et al., 2018). This mission 183 

provides rainfall and snowfall information globally via the Integrated Multi-satellitE Retrievals for GPM 184 

(IMERG) products at 0.1° (~10 km) and 30-min resolutions (Huffman et al., 2018). IMERG is an algorithm 185 

that combines microwave and infrared estimates from the GPM constellation. This study used version 186 

V05B of the IMERG Final Run product. The IMERG Final Run product also incorporates monthly gauge 187 

observations from the Global Precipitation Climatology (GPCC) and other ancillary data to improve the 188 

satellite estimations (Skofronick-Jackson et al., 2017). This product is ready for use after 3.5 months of the 189 

data acquisition (Skofronick-Jackson et al., 2018). The advantage of IMERG is the high spatial resolution 190 

when compared to other satellite-based products. On the other hand, the weakness of this product is its 191 

latency (~3.5 months), which is inappropriate for real-time applications. 192 

IMERG P is a valuable source of information for global and regional applications mainly because 193 

of its high spatiotemporal resolution. However, for medium- and small-scale hydrological studies, the 194 

spatial resolution of 0.1° of the IMERG product is still coarse (Sharifi et al., 2019). Due to the dimension 195 

of the study area, the IMERG data was downscaled to a resolution of 0.0045° (~500 m), similarly to Lu et 196 

al. (2019). The bilinear interpolation method was used to downscale the IMERG product, as it can provide 197 

consistent data disaggregation (Moghim et al., 2016). The 30-min IMERG data were accumulated 198 

aggregated to daily, monthly, and annual P scales. 199 

The accuracy of remote sensing P products can be hampered by various factors, such as calculation 200 

algorithms and satellite sensor characteristics (Semire et al., 2012). The assessment carried out by Gadelha 201 

et al. (2019) found that in comparison with the ground-based rainfall data, the IMERG V05B effectively 202 

captures the P spatial patterns over most of the Brazilian territory, except for the entire coastal zone of NE 203 

Brazil, where underestimates occurs. For this reason, a linear-scaling bias correction procedure was applied 204 

(Lenderink et al., 2007), using a single correction factor per month calculated by the ratio between the 205 

monthly averages of rain gauges and the IMERG data (Le et al., 2018) rather than a grid-box correction 206 

(i.e., pixel-per-pixel) to preserve the original spatial distribution of the IMERG data. 207 

P data measured from 16 rain gauges that are subjected to quality control were used for the IMERG 208 

bias correction and comparison purposes (Fig. 1c). The gridded observed rainfall data were estimated by 209 
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inverse distance weighting interpolation. For comparison purposes, Quantile-Quantile plots between the 210 

bias-corrected IMERG interpolated data (henceforth IMERG-C) and ground-based interpolated data were 211 

built at the monthly and annual scales for every 10% percentiles (i.e., 0, 10, …, 90, 100%). Over these 212 

estimates, the linear regressions were plotted, and their slope and y-intersect values were calculated. 213 

Moreover, the rain gauges interpolated data were used as input to spatially estimate the runoff and the GWR 214 

from the water budget equation. The estimates were then compared with the estimated components obtained 215 

from the satellite-based approach. 216 

2.2.2 Actual evapotranspiration 217 

The ET was estimated using the Penman-Monteith equation (Monteith, 1965), which was also 218 

adopted by Mu et al. (2007) to create the first global ET product (MOD16). The MOD16 is a product from 219 

NASA based on the MODerate Resolution Imaging Spectroradiometer (MODIS) sensors installed on two 220 

satellites (Terra and Aqua), as well as reanalysis-derived meteorological inputs. Currently, the MOD16 221 

dataset provides ET at the global scale with a spatial resolution of 500 m and three different timescales (8-222 

d, monthly, and annual scales). Unlike the algorithm used by Mu et al. (2011) to generate the current 223 

MOD16 product, this study calculated the ET based on the algorithm developed by Mu et al. (2007), using 224 

the biome-property-look-up-table shown by Running et al. (2017). The algorithm proposed by Mu et al. 225 

(2007) was based on Eq. (2) and assumes that night-time ET is small and in turn negligible. 226 

ΛE = ΛEtransp + ΛEsoil  =
ΔA + ρCp(es − ea)/ra

Δ + γ(1 +
rs

ra
)

 (2) 

where Λ is the latent heat of evaporation (=2.45 MJ kg-1), ΛE is the latent heat flux density (W m-2) 227 

consisting of the plant transpiration (ΛEtransp) and soil evaporation (ΛEsoil), i.e., the total daily ET (mm) 228 

after multiplying by the conversion factor (=3.53×10-2 mm d-1 W-1 m2); A is the available energy commonly 229 

determined as the daily net radiation of the land surface (Rn) (W m-2); ρ is the air density (=1.2 kg m-3); Cp 230 

is the specific heat capacity of air at constant pressure (=1005 J kg-1 °C-1); ra is the aerodynamic resistance 231 

(s m-1), rs is the surface resistance (s m-1); ea is the actual water vapour pressure (kPa); es is the saturated 232 

water vapour pressure (kPa); Δ is the slope of the curve relating saturated water vapour pressure to the 233 

temperature (kPa °C-1); and γ is the psychrometric constant (kPa °C-1).  234 



  

10 
 

The MOD16 algorithm is only suitable to use under clear sky conditions, as MODIS satellite 235 

sensors cannot measure cloud base parameters (Sur et al., 2015). This occurs because the MOD16 generates 236 

the ET  based on some 8-day MODIS products (i.e., pixels of the best observations from the last eight days) 237 

with 500-m spatial resolutions (e.g., MOD15A2H and MCD43A2/A3). These 8-d products remain 238 

insufficient to attenuate cloudy condition effects on ET estimations in some regions (Running et al., 2017). 239 

The available MOD09Q1 (Terra) and MYD09Q1 (Aqua) reflectance products were used in this 240 

study due to their suitable 250-m and 8-d resolutions to obtain the biophysical data, namely, 1) the leaf area 241 

index (LAI) using the soil adjusted vegetation index (SAVI) (Bastiaanssen et al., 1998; Huete, 1988), 2) 242 

the vegetation cover fraction calculated by the enhanced vegetation index (EVI2) proposed by Jiang et al. 243 

(2008), and 3) the surface albedo (ALB) computed by the equation proposed by Teixeira et al. (2013). To 244 

address the shortcomings related to cloudy conditions, this study carried out monthly map compositions 245 

with 8-d grid biophysical inputs (i.e., EVI2, LAI, and ALB). The monthly compositions were based on the 246 

selection of pixels with higher values of LAI and EVI2 obtained from the eight images available per month 247 

(i.e., four MOD09Q1 and four MYD09Q1), assuming that lower or negative values of these two biophysical 248 

parameters were possibly contaminated by clouds. Conversely, for the monthly compositions of ALB, only 249 

the lower values per pixel from the eight images available per month were considered, assuming that higher 250 

values of albedo were possibly contaminated by clouds. These new data then assumed clear sky conditions 251 

to indicate fixed input parameters throughout a month and were used to generate daily ET data. 252 

The MOD16 product also uses global LULC classification from MODIS land cover type 253 

(MCD12Q1) as an input to obtain information about canopy conductance and plant transpiration. However, 254 

the global representation of the MCD12Q1, which is associated with the limited number of classes (17), 255 

can misidentify some local and regional specificities of the vegetation and introduce considerable errors in 256 

the estimation of ET for medium and small areas (Ruhoff et al., 2013). Therefore, we used a regional LULC 257 

classification (SEEG/OC, 2015), namely, the MapBiomas Project (http://mapbiomas.org). MapBiomas 258 

provides Landsat-based annual LULC maps associated with 27 classes at a 30-m spatial resolution 259 

processed from 1985. In this study, MapBiomas LULC collection 3.1 was reclassified into six general 260 

classes (barren land, forest, cropland, pasture, urban, and water body) before being used to generate ET 261 

data. 262 

The MOD16 product uses the global meteorological reanalysis data provided by NASA’s Global 263 

Modelling and Assimilation Office (GMAO) at a 0.5° × 0.6° or 1.0° × 1.25° spatial resolution as inputs of 264 

http://mapbiomas.org/
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the original algorithm (Mu et al., 2011, 2007; Running et al., 2017). GMAO incorporates ground- and 265 

satellite-based observations to provide information with a 6-h temporal resolution. Unlike the MOD16 266 

product, this study used the GLDAS NOAH L4 V2.1 meteorological product provided by the NASA Global 267 

Land Data Assimilation System (GLDAS) (Rodell et al., 2004). It allowed providing the following 268 

meteorological data with 3-h and 0.25° resolutions: downward shortwave radiation, air pressure, air 269 

temperature, and specific humidity. The meteorological data were retrieved from four pixels covering most 270 

of JPA and were averaged and used as inputs for the ET estimation. 271 

The daily mean estimated ET was tested against the Penman-Monteith equation, which is 272 

considered the universal standard approach for calculating daily reference evapotranspiration (ET0) (Allen 273 

et al., 1998). Such a comparison does not validate the estimates but only assess if both evapotranspiration 274 

time series oscillate and peak with similar amplitudes and magnitudes, respectively. The meteorological 275 

data used to calculate the ET0 were acquired from a meteorological station inside JPA, which belongs to 276 

the Brazilian National Institute of Meteorology (INMET, acronym in Portuguese) (Fig. 1c). Additionally, 277 

the mean 8-day ET data from the original MOD16A2 product was also used to check the daily estimates 278 

using the cloud-cleaning procedure combined with a more fine-tuned dataset. 279 

2.2.3 Soil water storage changes 280 

The soil water storage changes were calculated using root-zone moisture information of the Soil 281 

Moisture Active Passive (SMAP) mission from NASA, estimated each 2 to 3 days since 2015 (Reichle et 282 

al., 2018). The SMAP Level 4 (L4) provides global near-surface (0-5 cm) and root-zone (0-100 cm) soil 283 

moisture with the SMAP L4 Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU) product 284 

(Reichle et al., 2017). The 100-cm root-zone SPL4SMAU soil moisture product (3-h temporal and 9-km 285 

spatial resolution), whose data result from the assimilation of L-band brightness temperature data into the 286 

NASA Catchment land surface model, was used to obtain the soil water storage by the soil moisture 287 

difference from one day to another multiplied by the root zone depth of 1,000 mm (Reichle et al., 2018). 288 

Based on the SMAP orbit revisit time, the soil moisture data were scheduled to be retrieved at 6:00 289 

a.m. and 6:00 p.m. (at the Legal Local Time). However, since the satellite takes 2 to 3 days to map the 290 

whole globe, some images over JPA were missing for a range of days of the year. Thus, similar to the study 291 

carried out by Souza et al. (2018), the soil moisture data were calculated in three ways: 1) if both orbits 292 

were completed on the same day, then both values were averaged; 2) if only one orbit had a valid value, 293 
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then this value was considered for that day; and 3) if no valid value was obtained in any orbit, then the soil 294 

moisture calculated for the previous day was repeated. Finally, the soil water storage changes were 295 

calculated by summing (positive or negative) daily differences in the SPL4SMAU root-zone data at the 296 

monthly and annual scales, which was performed after interpolating their images from a 9-km to a 500-m 297 

resolution through bilinear interpolation (same as that for P). 298 

2.2.4 Surface runoff 299 

The surface runoff was estimated using the Natural Resources Conservation Service–Curve 300 

Number (NRCS–CN) method (Hawkins et al., 1985). The NRCS–CN method combines climatic and 301 

physiographic characteristics in empirical formulas that convert basic descriptive data into numeric values 302 

to estimate the excess P that was not intercepted, stored, or infiltrated (Deshmukh et al., 2013). We 303 

implemented this estimation spatially with daily P. The daily runoff estimates were then summed pixel by 304 

pixel at monthly and annual scales, thus avoiding the overestimation errors that stem from its direct 305 

calculation at monthly and annual scales (Awadallah et al., 2017). We choose the NRCS-CN method 306 

because of its simplicity, ease of use and widespread acceptance (Ponce and Hawkins, 1996; Verma et al., 307 

2017), focusing on scarce data regions in developing countries but taking advantage of freely available 308 

remote sensing data.  309 

The NRCS–CN method is based on a water budget equation that assumes that P must exceed the 310 

initial abstraction (Ia), being a soil-dependent fraction (λ) of the maximum water storage capacity (S), before 311 

any direct runoff (Q) is triggered. A fixed value of λ equals to 0.20 is recommended by the original method 312 

and widely adopted in the United States (Hawkins et al., 1985). However, the initial losses depend on the 313 

local and regional characteristics of the watershed. Many studies, including some carried out in Brazilian 314 

catchments, indicated that the value proposed by the original method is too high for many parts of the world 315 

and recommended λ values of about 0.05 or less (e.g., Ajmal and Kim, 2015; Durán-Barroso et al., 2017; 316 

Shi et al., 2009; Valle Junior et al., 2019; Veeck et al., 2020). Recently, the studies by Lal et al. (2019, 317 

2017) reviewed the values of λ for 63 watersheds worldwide with various LULC, finding 0.03 as a 318 

representative value, which was also used in our study. In this context, the new runoff and water storage 319 

capacity calculations under average wet conditions (SII,λ=0.03) are shown in Eqs. (3) and (4). 320 
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Q = {
(P − 0.03SII,λ=0.03)

2

(P + 0.97SII,λ=0.03)
      , if P ≥ Ia = 0.03S

0                                         ,         if P = 0                

 (3) 

SII,λ=0.03 = 0.654 (
25400

CNII,λ=0.20

− 254)

1.248

      , for 0 ≤ CNII,λ=0.20 ≤ 100 (4) 

CN values were selected from the (NRCS – Natural Resources Conservation Service, 2004) tables 321 

and spatially assigned to different hydrologic soil-cover complexes using a look-up table built in a GIS 322 

platform. The hydrologic soil-cover complexes refer to the different combinations of LULC and 323 

hydrological soil groups (HSGs) contained in a study area. The HSG information was created from the 324 

regional information about soil types provided by Araújo Filho et al. (2000). The HSG was assigned 325 

according to the soil type, following the methodology proposed by Sartori et al. (2005) that consists of 19 326 

criteria based on a survey of 58 soil profiles and hydrodynamic data in Brazil. The LULC information was 327 

obtained from MapBiomas collection 3.1, the same used for estimating ET.  328 

The potential runoff before a surface runoff event generated by the NRCS–CN method depends 329 

on the antecedent moisture condition (AMC) (Hawkins et al., 1985). The proper condition was identified 330 

through the 5-d antecedent cumulative P (P5d, mm), which was calculated for each P grid cell. For this 331 

purpose, three intervals of P5d were used, distinguishing between the growing season (GS, from March to 332 

July) and the dormant season (DS, from August to February) according to the AMC. Similar to those in Lal 333 

et al. (2017), the P5d intervals in this study were defined as AMC-I (dry conditions): if P5d ≤ 35.56 mm (GS) 334 

or P5d ≤ 12.7 mm (DS); AMC-II (average conditions): if 35.56 < P5d ≤ 53.34 mm (GS) or 12.70 < P5d ≤ 335 

27.94 mm (DS); and AMC-III (wet conditions): if P5d > 53.34 mm (GS) or P5d > 27.94 mm (DS). Moreover, 336 

the P5d intervals of DS were considered for the urban and barren areas, whereas the P5d intervals of GS were 337 

considered for the forest areas throughout all months of the year because of their active vegetation growing 338 

conditions. Finally, the CNI and CNIII values were determined under AMC-I and AMC-III, respectively, 339 

based on Lal et al. (2019). 340 

2.3 Evaluation of groundwater recharge estimates 341 

The GWR rates were evaluated by the water table fluctuation (WTF) method (Healy and Cook, 342 

2002; Scanlon et al., 2002). The ground-based GWR rates obtained from WTF (Eq. 5) were used to evaluate 343 

the spatially distributed GWR rates estimated by the water budget equation on a 1-km footprint around the 344 
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wells to comprehensively consider the surrounding characteristics. Their absolute (GWR, mm) and relative 345 

(GWR/P, %) estimates were compared through linear regressions. 346 

RWTF = Sy

∆H

∆t
 (5) 

where RWTF denotes the estimated recharge rate (mm/time step) using WTF, Sy represents the aquifer 347 

specific yield coefficient, ΔH is the cumulated rising piezometric level changes (mm), and Δt is the time 348 

from the beginning of the rise to the peak. ∆H corresponds to the sum of the actual groundwater rise and 349 

the potential groundwater decline for the same period, with the latter being obtained by extrapolating the 350 

antecedent recession curve (Healy and Cook, 2002; Wendland et al., 2007). 351 

The groundwater fluctuation data were manually collected every 45 days from 16 (in 2016) and 352 

23 monitoring wells (in 2017) located in the Barreiras Formation (Fig. 1c). Seven additional wells were 353 

drilled in 2017 in the urban area. These monitoring wells are well-distributed throughout the study area 354 

and, therefore, capable to characterise the local groundwater since they cover several soil types, depths 355 

(from shallow to deep) and LULC, from the coastline to the headwater. This monitoring network was 356 

carefully selected so as to have no groundwater pumping in or nearby the monitoring wells. The temporal 357 

variations of groundwater fluctuations were also used to compare the overall behaviour of the monthly 358 

satellite-based GWR estimates. The values of Sy equal to 0.10 (16 wells) and 0.24 (7 wells) were estimated 359 

by pumping tests in four wells and assigned to the others based on their similar local characteristics, 360 

including the groundwater level patterns. 361 

2.4 Statistical metrics 362 

Three statistical metrics were selected to evaluate the goodness-of-fit of the results. The first metric 363 

was the correlation coefficient (CC, Eq. (6)), which describes the relationship between variations in 364 

simulated and observed values. The other two metrics were the percent bias (PBIAS, Eq. (7)) and the 365 

relative root mean square error (RRMSE, Eq. (8)), both with perfect values equal to 0%, which were used 366 

to describe the bias and error between simulated and observed values, respectively. 367 

CC(−) =
∑ (Gi − G̅)(Si − S̅)n

i=1

√∑ (Gi − G̅)2n
i=1 √∑ (Si − S̅)2n

i=1

 
(6) 
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PBIAS(%) =
∑ (Si − Gi)

n
i=1

∑ Gi
n
i=1

× 100 (7) 

RRMSE(%) =
√(1 n⁄ ) ∑ (Si − Gi)

2n
i=1

G̅
× 100 (8) 

where Si and Gi are the satellite- and ground-based data, respectively, and S̅ and G̅ are the mean values of 368 

the satellite- and ground-based data, respectively. 369 

3. Results and discussion 370 

3.1 Precipitation 371 

The first set of analyses assessed the spatiotemporal distributions of the main input of the water 372 

balance (i.e., P) obtained from IMERG-C data and compared these with the ground-based interpolated data 373 

(henceforth Gauge) (Fig. 3). Annual P based on IMERG-C data gradually decreased from east to west, 374 

varying from 1,120 to 1,600 mm in 2016 and 1,050 to 2,300 mm in 2017. The maximum P based on Gauge 375 

observations was 1,630 mm in 2016 and 2,070 mm in 2017. Similarly, (Lu et al., 2019) showed consistent 376 

spatial patterns and maximum values of IMERG P after performing bias correction using monitoring data. 377 

P obtained in JPA from the IMERG-C data occurred mostly within the regular rainy season (i.e., from 378 

March to July), corresponding to 71% in 2016 and 77% in 2017 of the annual totals. The monthly variations 379 

in P in 2016 from the IMERG-C and Gauge data were similar (Fig. 3e,f), whereas the IMERG-C variation 380 

was larger than the Gauge variation in some months of 2017, particularly in June and July, when the 10-381 

90% percentile ranges were 60% higher and double, respectively. Despite such differences, the average 382 

values obtained by IMERG-C were similar to those from the Gauge in most of the months, showing that 383 

IMERG-C was able to detect the temporal variation of P. 384 

INSERT FIG. 3 HERE 385 

Fig. 3. Spatially distributed precipitation in 2016 and 2017 estimated using (a and d) ground-based 386 

interpolated data and (b and e) IMERG-C data, with (c and f) monthly variations depicted by box plots with 387 

10-90% percentiles. Histograms refer to the proportion of total cells. 388 
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The deviations between the IMERG-C and ground-based interpolated P were also assessed using 389 

Quantile-Quantile plots (Fig. 4). At the monthly scale, a suitable correlation (CC = 0.97) and a reasonable 390 

fit using linear regressions (slope = 1.01; y-intersect = -1.68) were found, with some deviations in March, 391 

June, and July. Good correlations between the IMERG products and the observed dataset have been found 392 

by other studies in tropical regions at the monthly scale (e.g., Satgé et al., 2017; Tan and Duan, 2017). The 393 

monthly mean error was 23%, higher than the annual mean error (i.e., 8%). These values remained within 394 

the acceptable ranges for satellite-based monthly P (Salles et al., 2019). Acceptable metrics were also found 395 

at the annual scale, despite the slight deviation of the linear regression (slope = 1.20; y-intersect = -314 396 

mm). Such a deviation probably occurred due to the larger variation of the ground-based P on the western 397 

side of the study area in 2017, which likely stemmed from the limited number of rain gauges used on the 398 

interpolation (see Fig. 1). According to Tang et al. (2016), the underestimation of this satellite-based P data 399 

can occur over regions with wet climates and low latitudes. The results found in this analysis confirm that 400 

the IMERG-C data enabled the mapping of the decreasing P gradient in the study area. 401 

INSERT FIG. 4 HERE 402 

Fig. 4. (a) Monthly and (b) annual Quantile-Quantile plots between the IMERG-C and ground-based 403 

interpolated data at the 10% percentile. Shaded bounds: 95% confidence interval. 404 

3.2 Actual evapotranspiration 405 

The spatial ET distribution estimated by the modified MOD16 algorithm applying cloud cleaning 406 

is shown in Fig. 5. Overall, the mean annual ET varied from 1,170 (in 2016) to 1,220 mm (in 2017). The 407 

results were consistently distinguishable amongst the LULC types, with values smaller than 850 mm in the 408 

urban areas and above 1,450 mm in the forest areas. At the monthly scale, the ranges of the average 409 

estimates were similar between the studied years, varying from 73 to 119 mm in 2016 and 85 to 114 mm 410 

in 2017. However, comparing the monthly mean estimates of 2017 with those of 2016, they were smaller 411 

at the beginning, closer at the middle, and higher at the end of the year. In the rainy season, smaller 412 

differences between high and low ET data were observed, showing monthly averages in the 10-90% 413 

percentile ranges equal to 63 (in 2016) and 58 mm (in 2017) from April to August. On the other hand, larger 414 

differences between high and low ET data occurred in the dry season, as shown by the monthly averages 415 

in the 10-90% percentile ranges equal to 84 (in 2016) and 87 mm (in 2017) from September to March. Lima 416 
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and Ribeiro (2018) showed that such seasonable patterns can stem from the associations between 417 

meteorological and evapotranspiration estimates by using the MapBiomas LULC and GLDAS 418 

meteorological forcing data to calculate spatially distributed ET. Thus, variations in the ET throughout the 419 

studied years in JPA were likely influenced by the combination of LULC diversity, weather seasonality and 420 

cloudy conditions. 421 

INSERT FIG. 5 HERE 422 

Fig. 5. Spatially distributed actual evapotranspiration in (a) 2016 and (b) 2017, with (c) monthly variations 423 

depicted by box plots with 10-90% percentiles. The MOD16 algorithm disregards the evaporation rates 424 

from water bodies, which are white shown in the maps. Histograms refer to the proportion of total cells. 425 

The mean daily ET obtained by the modified MOD16 algorithm ranged from 1.0 to 4.7 mm d-1 426 

during the whole study period, whereas the mean ET0 varied from 3.0 to 7.0 mm d-1 (Fig. 6). The ET0 was 427 

as much as three times higher than the ET estimated by the proposed approach between August and 428 

February (dry season) due to the lower soil water availability in these months. This difference is plausible 429 

since ET0 refers to the evapotranspiration of well-watered grass vegetation with active growth throughout 430 

the year. Such a difference considerably shrunk during the rainy seasons, with the actual and reference 431 

evapotranspiration following the same temporal behaviour, as expected. 432 

INSERT FIG. 6 HERE 433 

Fig. 6. Comparison between the daily actual evapotranspiration obtained by the modified MOD16 434 

algorithm, the mean 8-day actual evapotranspiration data from the MOD16A2 product, and the daily 435 

reference evapotranspiration. 436 

  437 

The daily ET estimates obtained by the proposed methodology were greater than those acquired 438 

by the mean 8-day MOD16A2 product for the studied period, which ranged from 1.9 to 3.9 mm d-1 (Fig. 439 

6). Consequently, the mean annual ET estimated by the MOD16A2 was lower than those obtained by the 440 

modified MOD16 algorithm for 2016 (895 mm) and 2017 (938 mm). The values of ET estimated by the 441 

MOD16A2 product was also lower than those found by other studies using the Surface Energy Balance 442 

Algorithm for Land (SEBAL) in river basins with similar characteristics in NE Brazil (e.g., Oliveira et al., 443 

2014). Although slightly higher, the ET estimates presented the same temporal patterns observed by the 444 
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original MOD16A2 product. The differences found between the original and the modified approaches can 445 

possibly be attributed to the following factors: 1) the missing data in some pixels of the MOD16A2 product 446 

because of the presence of cloud cover, 2) the use of a more fine-tuned LULC regional product, and 3) the 447 

use of a higher resolution input meteorological data. For instance, Ruhoff et al. (2013) identified that the 448 

misclassification of the LULC data used in the MOD16A2 product, combined with the low spatial 449 

resolution of the GMAO reanalysis meteorological information and the cloud cover contaminated pixels, 450 

were the largest contributors to over- or under-estimate the eddy covariance measurements in a humid 451 

tropical river basin located in south-eastern Brazil. Recently, a study carried by Melo et al. (2021) used 25 452 

flux towers to evaluate four remote sensing-based ET algorithms in many ecoregions over South America, 453 

including the MOD16 model forced by ground-based meteorological data. An average uncertainty of ~10% 454 

was found for the MOD16 algorithm when considering all studied ecoregions, with relatively higher 455 

performance observed for wet climate regions. This overall uncertainty observed by Melo et al. (2021) for 456 

the MOD16 algorithm was similar to those found by Ruhoff et al. (2013) in two sites in Brazil after the 457 

MOD16 algorithm parameter fitting based on land use and land cover (i.e., without the use of the 458 

MOD12Q1 product). 459 

3.3 Soil water storage changes 460 

The annual water storage changes in the root zone throughout JPA varied from -27 to -6 mm during 461 

2016 and from -40 to -12 mm during 2017 (Fig. 7). Annual water storage decreases suggest that the root 462 

zone released water during the studied period, which is in part due to vertical percolation to aquifers. 463 

Despite its original coarse resolution, SPL4SMAU consistently showed a water storage increase in the root 464 

zone mostly during the rainy season, likely because there is more water in the top layer after P. The water 465 

increase in the root zone in December 2016 likely stemmed from substantial P (Fig. 3e) when the South 466 

Atlantic Convergence Zone was positioned further eastward (Palharini and Vila, 2017). Moreover, as 467 

expected, the urban areas featured large water decreases in the root zone in both years, likely because of 468 

the lower infiltration caused by soil imperviousness, whereas the rural areas featured a larger spatial 469 

variation in water decreases. These results show that an above-average rainy condition is required for an 470 

annual water increase in the root zone, implying a susceptibility in JPA to water shortage. 471 
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INSERT FIG. 7 HERE 472 

Fig. 7. Spatially distributed soil water storage changes in (a) 2016 and (b) 2017, with (c) monthly variations 473 

depicted by box plots with 10-90% percentiles. Histograms refer to the proportion of total cells. 474 

3.4 Surface runoff 475 

The mean annual surface runoff estimated from the IMERG-C data varied from 220 (in 2016) to 476 

300 (in 2017) mm (Fig. 8). Due to soil imperviousness, urban areas produced annual runoff estimates 477 

greater than 450 mm. In 2017, higher values of surface runoff from IMERG-C data also occurred outside 478 

the urban area in relation to that from Gauge because of the high P in June and July. In the regular rainy 479 

season (i.e., from March to July), the mean annual surface runoff estimated with IMERG-C data accounted 480 

for 200 mm in 2016 and 265 mm in 2017. The sources of uncertainties surrounding the NRCS-CN method 481 

were analysed by Durán-Barroso et al. (2017), which include: 1) a significant weakness to select 482 

representative events for simulation with the NRCS CN parameters; and 2) the impossibility of determining 483 

an optimum value for λ but lower values are recommended instead of the original value. For instance, the 484 

study carried out by Veeck et al. (2020) in a Brazilian catchment found fitted initial losses lower than the 485 

original value for almost all simulated events, with relative errors below 12%. However, quantifying 486 

uncertainties of rainfall-runoff is a very complex issue in Brazil due to the lack of data. 487 

INSERT FIG. 8 HERE 488 

Fig. 8.  Spatially distributed surface runoff in 2016 and 2017 estimated using (a and d) rain gauge and (b 489 

and e) IMERG-C data, with (c and f) monthly variations depicted by box plots with 10-90% percentiles. 490 

The surface runoff results over the water bodies were neglected in the NRCS–CN calculation, which are 491 

white shown in the maps. Histograms refer to the proportion of total cells. 492 

3.5 Groundwater recharge 493 

On average, the GWR rates ranged from 219 (in 2016) to 302 mm yr-1 (in 2017) (Fig. 9). These 494 

results remained within the range of the GWR rates of several tropical wet regions throughout the world 495 

(e.g., Malakar et al., 2019; Rodríguez-Huerta et al., 2020; Vu and Merkel, 2019). The urban area featured 496 

greater GWR rates than other areas despite its greater surface runoff, likely due to the combination of lower 497 
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ET and sandy soils (Minnig et al., 2018; O’Driscoll et al., 2010), as well as to the higher P estimates for the 498 

coastline than for the headwaters. Consistently, Moeck et al. (2020) also showed that in the eastern part of 499 

Brazil, high GWR rates can occur despite the annual potential evapotranspiration being greater than 1,500 500 

mm because of the large amount and seasonality of P. At the monthly scale, GWR rates using IMERG-C 501 

and Gauge data averaged 34.7 and 36.5 mm month-1 in 2016 and 47.7 and 51.4 mm month-1 in 2017, 502 

respectively. These monthly estimates using IMERG-C data were similar to the Gauge estimates, although 503 

the difference doubled in 2017 due to higher surface runoff estimated in June and July using IMERG-C 504 

data. The differing GWR rates obtained for the Gauge data were likely influenced by the sensitivity of 505 

modelled groundwater recharge estimates to the rain gauge network scale (Wiebe and Rudolph, 2020). 506 

INSERT FIG. 9 HERE 507 

Fig. 9. Spatially distributed GWR rates estimated in 2016 and 2017 by the water budget equation and WTF 508 

method, using (a and d) rain gauge and (b and e) IMERG-C data, with (c and f) monthly variations depicted 509 

by box plots with 10-90% percentiles. The GWR results over the water bodies were neglected in the water 510 

budget equation, which are white shown in the maps. Histograms refer to the proportion of total cells. 511 

The differences caused by disregarding the soil water storage changes were negligible at the annual 512 

scale, reducing the mean relative GWR by less than -1% for the studied years, which likely occurred due 513 

to the compensation of the water increases and decreases in the root zone throughout the rainy and dry 514 

seasons. Conversely, at the monthly scale, neglecting the soil water storage changes would have 515 

considerably impacted the GWR values, increasing their mean relative estimates by as much as +19 (in 516 

2016) and +12% (in 2017) during the rainy season and decreasing their mean relative estimates by -22 (in 517 

2016) and -13% (in 2017) during the dry season. Therefore, although other studies considering long-term 518 

average recharge (e.g., 10 year period) have claimed that satisfactory estimations can be obtained by simply 519 

applying the difference between P and ET satellite products in some semiarid, continental and 520 

Mediterranean regions (e.g., Crosbie et al., 2015; Gokmen et al., 2013; Munch et al., 2013; Szilagyi et al., 521 

2011), this study demonstrated that tropical wet sedimentary regions also require the consideration of 522 

surface runoff and soil water storage changes on a monthly and annual basis because their water cycles are 523 

stressed by weather seasonality and hydrologic soil-cover complexes. 524 

The annual GWR rates estimated by the WTF method varied from 110 to 370 mm yr-1 in 2016, 525 

corresponding to 10 and 24% of the mean annual P obtained by the Gauge data, respectively (Table 1). Half 526 
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of these estimates ranged from 100 to 200 mm yr-1, mostly obtained from the observation wells located 527 

upstream (Fig. 9). In 2017, the GWR rates varied from 90 to 550 mm yr-1, corresponding to 7 and 29% of 528 

the mean annual P obtained by the Gauge data, respectively. More than half of these estimates ranged from 529 

300 to 550 mm yr-1, mostly obtained from observation wells located downstream (urban area).  530 

INSERT TABLE 1 HERE 531 

Table 1. Absolute and relative GWR estimates calculated by the WTF method in 2016 and 2017. 532 

For evaluation purposes, the absolute and relative estimates of the GWR obtained by the water 533 

budget equation were plotted against the WTF results (Fig. 10). The correlations and mean errors of the 534 

absolute and relative GWR estimates based on the IMERG-C data varied from 0.68 to 0.83 and from 30 to 535 

34%, respectively. These correlations and mean errors were fairly similar to the GWR ranges estimated 536 

using the Gauge data, whose correlations varied from 0.73 to 0.89, and the mean errors remained at 31%. 537 

Szilagyi et al. (2011) compared the GWR rates estimated by a satellite-based approach with chloride mass-538 

balance rates, showing a spatial correlation of 0.57 at the annual scale. In our study, the GWR rates 539 

estimated by the water budget equation using the IMERG-C data tended to slightly underestimate the WTF 540 

data between -13 and -9%, whereas the Gauge scenario overestimated the WTF data between 8 and 11%. 541 

However, a good fit was found for the IMERG-C data by using linear regressions, showing decent slope 542 

and y-intersect values for the absolute (1.16 and -69 mm, respectively) and relative (0.82 and 0.79%, 543 

respectively) GWR, which confirmed the low underestimations. These negative biases could have been 544 

caused by neglecting the contribution of the irrigation input component in the water budget equation of this 545 

study, which is practically nil in the wettest period but can be significant in some sugarcane cultivated areas 546 

(i.e., corresponding to ~30% of the study area) during the four driest months. Usman et al. (2015) also 547 

found negative bias by applying a satellite-based approach to estimate GWR rates, showing that the 548 

consideration of irrigation considerably improves GWR estimates in comparison with WTF estimates. In 549 

this study, the GWR estimates based on the IMERG-C data were slightly lower than those calculated based 550 

on the WTF method, whose mean differences were 5 (in 2016) and -30 mm yr-1 (in 2017) at the absolute 551 

scale, as well as -0.8 (in 2016) and -1.8% (in 2017) at the relative scale, respectively. Crosbie et al. (2015) 552 

also found average underestimations of 45 mm yr-1 when comparing the GWR rates calculated by a satellite-553 

based approach with the chloride mass-balance and WTF estimates.  554 
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INSERT FIG. 10 HERE 555 

Fig. 10. Evaluation based on the WTF method of the annual GWR rates, estimated from rain gauge and 556 

IMERG-C data at (a, b, and e) absolute and (c, d, and f) relative scales. 557 

Besides the biases possibly caused by disregarding the irrigation, the uncertainties in each water 558 

balance component (i.e., P with ~8% according to comparisons with on-ground gauge measurements; ET 559 

with ~10% based upon Melo et al. (2021); and Q with ~12% as found by Veeck et al. (2020)) used in the 560 

proposed approach might propagate to the residual term (i.e., the GWR). Uncertainty in time series of GWR 561 

estimated using the WTF method is associated with the difficulty in determining a representative Sy, which 562 

has a dependence on the depth to water table (Crosbie et al., 2019). For instance, the uncertainty in the 563 

GWR rates estimated from a satellite-based approach (P-ET) and the WTF method was analysed by Lucas 564 

et al. (2015), which found uncertainties ranging from 24 to 42% of the annual mean GWR. Actually, 565 

estimating GWR is a big challenge because it cannot be measured directly (Crosbie et al., 2019; Scanlon et 566 

al., 2002). Therefore, it is still difficult to assess the accuracy of any method (Crosbie et al., 2019; Healy 567 

and Cook, 2002), with no widely applicable methodology available that can directly and accurately quantify 568 

the volume of rainwater that reaches the water table (MacDonald et al., 2021). Because of this, it has been 569 

recommended over the last decades to use multiple methods when estimating the GWR (Crosbie et al., 570 

2019; Scanlon et al., 2002). Unfortunately, in most developing countries and remote regions, groundwater 571 

measured data are scarce or unavailable, and rarely one or more than one method has been used to estimate 572 

GWR (Lucas et al., 2015). For such areas, satellite-based approaches, as proposed in this study for tropical 573 

wet regions, can be scientifically much more robust than considering, for instance, the estimations of GWR 574 

as a fixed percentage of rainfall, as often adopted by water managers in some tropical developing areas. 575 

Fig. 11 shows the comparisons between the temporal variations of groundwater level fluctuations 576 

at 9 monitoring wells and the monthly satellite-based GWR estimates. The satellite-based GWR estimates 577 

presented similar peak variation patterns to those observed in the groundwater levels. This agreement 578 

between the peak variation patterns from the GWR and groundwater levels were observed to either 579 

shallower (e.g., W04, W9, and W13) and deeper (e.g., W15 and W16) monitoring wells. Although 580 

presenting similar peak variation patterns, it is possible to notice a monthly delay in the groundwater level 581 

fluctuations compared to the GWR amounts likely due to unsaturated zone transit which is not considered 582 

in the method, as it was already pointed out by Coelho et al. (2017) in a semiarid region. 583 
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INSERT FIG. 11 HERE 584 

Fig. 11. Comparison between the observed groundwater levels and monthly groundwater recharge based 585 

on IMERG-C data and interpolated rain gauge data. 586 

4. Summary and conclusions 587 

This study developed and evaluated an innovative satellite-based approach based on the water 588 

budget equation to estimate the natural GWR over by only using freely available satellite-based data. The 589 

proposed distinctive features include the capacity to address 1) ET estimations (MOD16 algorithm) in 590 

tropical wet regions frequently overlaid by substantial cloud cover and 2) water storage change estimation 591 

in the root zone (SPL4SMAU product) in sedimentary regions seasonably prone to monthly variations. The 592 

proposed method, which also included P (IMERG product) and runoff (NRCS–CN method) information, 593 

was assessed for two hydrologically contrasting years. The spatially distributed GWR rates were compared 594 

with the measurements of groundwater levels and recharge estimates based on the WTF method applied to 595 

the monitoring wells over the study area. Overall, the results of the proposed satellite-based water budget 596 

approach performed consistently with the groundwater ground-based estimates. The monitoring wells used 597 

to evaluate the groundwater recharge rates covered different soil types, LULC, and depths (from shallow 598 

to deep). These features suggest that the proposed methodology may be reliable in characterising the spatial 599 

heterogeneity of the studied area.  600 

Concerning ET, the use of a cloud-cleaning procedure based on monthly map compositions of 601 

biophysical data (i.e., LAI, EVI2, and ALB), combined with a more fine-tuned LULC regional product and 602 

a set of GLDAS meteorological forcing data, suggested the production of a reasonable proxy for ET despite 603 

cloudy conditions. The use of soil water storage changes calculated from the SPL4SMAU root-zone soil 604 

moisture product was shown to provide essential spatially distributed information to be included in the 605 

satellite-based approach, as the GWR estimates would vary considerably over JPA by disregarding this 606 

component at the monthly scale.  607 

Therefore, the satellite-based approach consistently demonstrated that the consideration of soil 608 

water storage changes and the cloud cleaning procedure used to obtain ET are essential for a proper 609 

estimation of the spatially distributed GWR rates in tropical wet sedimentary regions because of their 610 

hydrologic soil-cover complexes, weather seasonality and cloudy conditions. However, some sources of 611 
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uncertainty in the satellite-based approach still require a better assessment, which includes: 1) a more 612 

detailed comparison of each component of the water balance (e.g., runoff, ET, and soil moisture) with 613 

ground-based measurements to identify the errors accumulated in the residual term (i.e., GWR); and 2) the 614 

impact of interception, irrigation, and pumping demands in the GWR estimates. Also, a better 615 

representation of Sy across the region, together with an analysis of errors associated with its estimates, 616 

which contribute to the overall uncertainty of the WTF method, need to be accounted for in further studies. 617 
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2 

ABSTRACT: Groundwater recharge (GWR) is one of the most challenging water fluxes to estimate, as it 21 

relies on observed data that are often limited in many developing countries. This study developed an 22 

innovative water budget method using satellite products for estimating the spatially distributed GWR at 23 

monthly and annual scales in tropical wet sedimentary regions despite cloudy conditions. The distinctive 24 

features proposed in this study include the capacity to address 1) evapotranspiration estimations in tropical 25 

wet regions frequently overlaid by substantial cloud cover; and 2) seasonal root-zone water storage 26 

estimations in sedimentary regions prone to monthly variations. The method also utilises satellite-based 27 

information of the precipitation and surface runoff. The GWR was estimated and validated for the 28 

hydrologically contrasting years 2016 and 2017 over a tropical wet sedimentary region located in North-29 

eastern Brazil, which has substantial potential for groundwater abstraction. This study showed that applying 30 

a cloud-cleaning procedure based on monthly compositions of biophysical data enables the production of 31 

a reasonable proxy for evapotranspiration able to estimate groundwater by the water budget method. The 32 

resulting GWR rates were 219 (2016) and 302 (2017) mm yr-1, showing good correlations (CC = 0.68 to 33 

0.83) and slight underestimations (PBIAS = -13 to -9%) when compared with the referenced estimates 34 

obtained by the water table fluctuation method for 23 monitoring wells. Sensitivity analysis shows that 35 

water storage changes account for +19% to -22% of our monthly evaluation. The satellite-based approach 36 

consistently demonstrated that the consideration of cloud-cleaned evapotranspiration and root-zone soil 37 

water storage changes are essential for a proper estimation of spatially distributed GWR in tropical wet 38 

sedimentary regions because of their weather seasonality and cloudy conditions. 39 

40 

Keywords: Remote sensing, water balance, groundwater recharge, water table fluctuation, tropical climate, 41 

sedimentary aquifer. 42 
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1. Introduction43 

Understanding the factors constraining groundwater recharge (GWR) is important for management 44 

and planning purposes of this water resource that is only slowly renewed (Cuthbert et al., 2019). In some 45 

regions, for instance, the abstracted groundwater over the past decades are taken from non-renewable 46 

groundwater (Döll et al., 2014), which increases, even more, the need for a better understanding of such 47 

factors. These abstractions need to be regionally regulated (Aeschbach-Hertig and Gleeson, 2012), since 48 

groundwater serves as the key strategic reserve for supplying water to societies during long-lasting droughts 49 

(Famiglietti, 2014). Such regulation, in turn, requires accurate information about the spatiotemporal 50 

distribution of natural GWR rates (Jasechko et al., 2014), including their variability and uncertainty in 51 

estimations, which are strongly sensitive to climate forcing factors, land uses and covers, watershed 52 

geomorphology and local hydrogeology (Moeck et al., 2020). 53 

Since GWR is a key component used in many hydrological models to assess groundwater resource 54 

worldwide (Graaf et al., 2017; Wada et al., 2010), its accurate estimation constitutes a priority for 55 

stakeholders and a research challenge for the scientific community (Jasechko et al., 2014; Mohan et al., 56 

2018). Many methods have been developed to estimate natural GWR at various spatiotemporal scales, with 57 

a wide range of complexity (Walker et al., 2019), given that GWR cannot be directly measured (Melo et 58 

al., 2015). Making use of these methods often depends on data availability, desired spatiotemporal 59 

resolution, and result representations (Walker et al., 2019). 60 

The following five methods are commonly used to estimate GWR: 1) tracer techniques, which 61 

estimate aquifer renewal via substances in the water or specific concentrations of chemical elements, such 62 

as the chloride mass-balance method (e.g., Brunner et al., 2004; Hornero et al., 2016); 2) groundwater level 63 

monitoring in unconfined aquifers, which include examples such as water table fluctuation method (e.g., 64 

Cai and Ofterdinger, 2016; Wendland et al., 2007) and cumulative rainfall departure methods (e.g., Ahmadi 65 

et al., 2015; Weber and Stewart, 2004); 3) Darcy’s law application, which allows calculating the velocity 66 

of soil water percolation and requires knowledge of hydraulic gradient and vertical hydraulic conductivity 67 

(e.g., Callahan et al., 2012; Yin et al., 2011); 4) numerical modelling, which consists of a mathematical 68 

representation of the GWR process (e.g., Melo et al., 2015; Melo and Wendland, 2017); and 5) the water 69 

balance method, which considers the main variables of the hydrological cycle as inputs and outputs of the 70 

system (e.g., Hornero et al., 2016; Wendland et al., 2007). 71 
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Most of the aforementioned methods are based on point-scale observations (e.g., meteorological 72 

stations or boreholes), which may cause serious issues when spatial variability in the regions of concern is 73 

great (e.g., Melo and Wendland, 2017). Although such a problem can be simply ignored for regions with 74 

extremely dense observation networks, it remains persistent in most regions worldwide, especially in 75 

developing countries. For instance, in Brazil, the national ground-based monitoring network consists of 76 

about 400 wells distributed over the country, complemented by a small number of observation wells 77 

monitored in only 21 active experimental basins (Melo et al., 2020). Therefore, the chief challenge for many 78 

hydrologists is to find and utilise alternative sources of data to estimate the spatial information of GWR 79 

(Brunner et al., 2007). 80 

The use of cutting-edge satellite-derived remote sensing technology has played a crucial role in 81 

assimilating valuable distributed observation and in modelling water resources, which would otherwise be 82 

impossible with relatively sparse ground-based measurements alone (Famiglietti et al., 2015). However, 83 

the remote sensing contributions are rather inconsistent at quantifying and estimating GWR because all 84 

current data from satellite data can only detect patterns and processes related to water resources on and 85 

above the surface (Brunner et al., 2007; Coelho et al., 2017; Lucas et al., 2015). Satellite-based observations 86 

of time-variable gravity, such as the joint mission of the Gravity Recovery and Climate Experiment 87 

(GRACE), are sensitive to variations of terrestrial water storage, including the groundwater storage changes 88 

(Tapley et al., 2004; Vasco et al., 2019; Wahr et al., 2004). Unfortunately, the low spatial resolution of 89 

GRACE-derived data limits its ability to provide localised groundwater information at an appropriate scale 90 

(Alley and Konikow, 2015; Lakshmi et al., 2018). Thus, an innovative use of satellite data to estimate GWR 91 

at local and regional scales has been recently proposed, where most of data are applied to a simplified water 92 

budget approach that uses precipitation and evapotranspiration products (e.g., Crosbie et al., 2015; Gokmen 93 

et al., 2013; Lucas et al., 2015; Munch et al., 2013; Szilágyi et al., 2012; Szilagyi et al., 2011). This approach 94 

disregards other water balance components, such as surface runoff and soil water storage changes, which 95 

could considerably alter the estimation accuracy of GWR in some regions for short time scales (e.g., 96 

monthly). 97 

In this context, some studies also have considered uniform surface runoff (Khalaf and Donoghue, 98 

2012), as well as spatially distributed information about surface runoff (Coelho et al., 2017) and irrigation 99 

(Usman et al., 2015). The aforementioned studies used different remote sensing products and algorithms, 100 

but all of them were developed in regions with arid, semiarid, continental or Mediterranean climate 101 



  

5 

 

conditions where the cloud cover is limited (Coelho et al., 2017). For some tropical regions such as Brazil, 102 

the estimation of GWR using this approach remains challenging, mainly because of the difficulties in 103 

obtaining continuous information of actual evapotranspiration data by remote sensing without substantial 104 

cloud cover. In parallel, soil moisture information from satellite observations is currently available at the 105 

global scale and can provide valuable data to update the water budget approach with information regarding 106 

water storage changes in unsaturated soil layers (Reichle et al., 2018). Accounting for this component is 107 

particularly important for understanding GWR in sedimentary aquifers, where the unsaturated vadose zone 108 

width may vary from thin to thick soil layers (Rossetti et al., 2012). Unfortunately, some satellite-based 109 

datasets are only recently available, but some applications require earlier data. 110 

Based on this information, this study develops an innovative water budget method using satellite-111 

based data for estimating natural spatially distributed GWR rates at annual and monthly scales in tropical 112 

wet sedimentary regions, taking into account cloudy conditions. Accordingly, this study hypothesizes that 113 

such an approach enables local and regional scale perspectives in ungauged tropical wet regions. The 114 

general and transferable strategy would be relevant to account for 1) the substantial cloud cover and 2) the 115 

water storage changes in sedimentary regions prone to monthly variations. The method also utilises 116 

spatially distributed information on precipitation and surface runoff estimated from satellite products. The 117 

major limitation of this residual approach is that the accuracy of the GWR depends on the accuracy of the 118 

other components considered in the water balance (Scanlon et al., 2002), i.e., its application is appropriated 119 

when the errors of these components are small relative to the water flux. This limitation, when a satellite-120 

based approach is considered, is mainly identified in regions that present ground-truth measurements 121 

discrepant with the estimated products used in the water balance, especially the main input (precipitation) 122 

and output (evapotranspiration) of the system. On the other hand, ground-based evaluations are punctual 123 

and representative of small areas, hardly integrating the spatial heterogeneity of meteorological processes, 124 

especially in urban areas (Maier et al., 2020). This study used ground-truth measurements to assess the two 125 

main estimated components of the water balance (i.e., precipitation and evapotranspiration) and the GWR 126 

rates. 127 
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2. Materials and methods 128 

2.1 Study area 129 

The study was carried out over an area of 1,032 km2 in João Pessoa (JPA) (Paraíba, NE Brazil), 130 

which includes the metropolitan region and surrounding rural areas (Fig. 1). It consists in 1) the Gramame 131 

river basin (589.1 km2; 57.1% of the area), and 2) the right bank of the Baixo Paraíba river basin (442.9 132 

km2; 42.9% of the area). The main source of water of the JPA metropolitan region (~1 million inhabitants) 133 

is the Gramame-Mamuaba reservoir, with maximum volume capacity of 56.9 hm3. The water supply is 134 

complemented by more than 756 wells (CPRM – Geological Service of Brazil, 2020), pumped mostly for 135 

the public, industry, and irrigation, which are essential during periods of surface water shortage. 136 

INSERT FIG. 1 HERE 137 

Fig. 1. Location of (a) Brazil, (b) Paraíba state, and (c) João Pessoa (JPA) study area with the monitoring 138 

network, (d) land use and land cover, and (e) soil types. 139 

The JPA has a tropical wet climate with a dry summer (i.e., As, according to the Köppen climate 140 

classification), with a mean temperature of 26°C and well-distinguished rainy and dry seasons (Alvares et 141 

al., 2013). The average annual precipitation is 1,700 mm, of which ~70% occurs from March to August 142 

during the austral autumn and winter. The potential evapotranspiration is relatively high in JPA, with mean 143 

annual values greater than 1,500 mm. The predominant land use and land cover (LULC) types in JPA are 144 

cropland (30.7%), Atlantic Forest (28.4%), pasture (26.3%), and urban areas (9.5%). The forest areas are 145 

Atlantic remnants, and the cropland areas contain mainly sugarcane and pineapple crops. Moreover, the 146 

main soil types in JPA are acrisols (58.7%), fluvisols (12.0%), podzols (10.8%), lixisols (9.1%) and 147 

histosols (5.5%). The fluvisols and histosols surround the rivers and the JPA urban area. 148 

The hydrogeological framework mainly consists in 1) a coastal multi-layered sedimentary aquifer 149 

system near the littoral (i.e., the Paraíba Basin) and 2) a regional substratum that outcrops upstream in the 150 

more continental area (i.e., the Borborema Province). This latter corresponds to the crystalline regional 151 

basement that was affected by rifting processes due to the Cretaceos Atlantic aperture. This resulted in a 152 

graben that was progressively and sequentially filled by sediments as follows: 1) up to 360 m-thick fluvial 153 

sandstones of the Beberibe Formation from the Coniacian–Santonian age; 2) a 70 m-thick fossiliferous 154 
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calciferous sandstones and muddy siltstones of the Itamaracá Formation formed in marine transitional 155 

settings during the Santonian-Campanian age; 3) a 50-m thick phosphatic rocks and calciferous shales of 156 

the marine Gramame Formation from the Campanian-Maastrichtian age; and 4) a nearly 70 m-thick 157 

succession of fluvial sandstones and mudstones of the Barreiras Formation from the Early/Middle Miocene 158 

ages (Rossetti et al., 2012, 2011). 159 

2.2 Satellite-based water budget approach 160 

The actual GWR rates, defined as the rate at which water arrives at the table of an aquifer (Mathias 161 

et al., 2017), were spatially estimated from the residual terms of the water budget equation using satellite-162 

based information. This estimation was performed for two hydrologically contrasting years 2016 and 2017, 163 

in which ground-based information was measured to evaluate the results. The GWR rates were then 164 

calculated at the monthly and annual scales by Eq. (1). 165 

GWR = {
P − ET − ∆S − Q ,    if P − ET − ∆S − Q > 0
0  ,  if P − ET − ∆S − Q ≤ 0

(1) 

where GWR is the groundwater recharge, P is the precipitation, ET is the actual evapotranspiration, ∆S is 166 

the water storage change at a root-zone scale (100-cm depth), and Q is the surface runoff. Other input and 167 

output water balance components were not investigated in this study because 1) they frequently represent 168 

relatively small contributions to the root zone (e.g., water pumping) or are implicitly considered in the 169 

aforementioned components (e.g., irrigation and interception), and 2) there are no reliable in situ data 170 

available for the JPA. Moreover, horizontal groundwater flow was also neglected because it refers to a 171 

slower GWR mechanism rather than the direct contribution of vertical infiltration (e.g., Coelho et al., 2017; 172 

Crosbie et al., 2015; Munch et al., 2013), since ~70% of the study area has terrain slope ranging from 0 to 173 

92 m km-1, which means that the topography predominantly presents weak slopes. All the used remote 174 

sensing products and other input data are summarised in Fig. 2 and described thoroughly in the next sub-175 

items of this sub-section. 176 

INSERT FIG. 2 HERE 177 

Fig. 2. Satellite-based water budget approach showing the remote sensing products and other input data 178 

used to estimate the water balance components and groundwater recharge. 179 
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2.2.1 Precipitation 180 

P was estimated by the Global Precipitation Measurement (GPM) mission, which is an 181 

international network of satellites undertaken by the National Aeronautics and Space Administration 182 

(NASA) of the USA and the Japanese Aerospace Agency (JAXA) (Huffman et al., 2018). This mission 183 

provides rainfall and snowfall information globally via the Integrated Multi-satellitE Retrievals for GPM 184 

(IMERG) products at 0.1° (~10 km) and 30-min resolutions (Huffman et al., 2018). IMERG is an algorithm 185 

that combines microwave and infrared estimates from the GPM constellation. This study used version 186 

V05B of the IMERG Final Run product. The IMERG Final Run product also incorporates monthly gauge 187 

observations from the Global Precipitation Climatology (GPCC) and other ancillary data to improve the 188 

satellite estimations (Skofronick-Jackson et al., 2017). This product is ready for use after 3.5 months of the 189 

data acquisition (Skofronick-Jackson et al., 2018). The advantage of IMERG is the high spatial resolution 190 

when compared to other satellite-based products. On the other hand, the weakness of this product is its 191 

latency (~3.5 months), which is inappropriate for real-time applications. 192 

IMERG P is a valuable source of information for global and regional applications mainly because 193 

of its high spatiotemporal resolution. However, for medium- and small-scale hydrological studies, the 194 

spatial resolution of 0.1° of the IMERG product is still coarse (Sharifi et al., 2019). Due to the dimension 195 

of the study area, the IMERG data was downscaled to a resolution of 0.0045° (~500 m), similarly to Lu et 196 

al. (2019). The bilinear interpolation method was used to downscale the IMERG product, as it can provide 197 

consistent data disaggregation (Moghim et al., 2016). The 30-min IMERG data were accumulated 198 

aggregated to daily, monthly, and annual P scales. 199 

The accuracy of remote sensing P products can be hampered by various factors, such as calculation 200 

algorithms and satellite sensor characteristics (Semire et al., 2012). The assessment carried out by Gadelha 201 

et al. (2019) found that in comparison with the ground-based rainfall data, the IMERG V05B effectively 202 

captures the P spatial patterns over most of the Brazilian territory, except for the entire coastal zone of NE 203 

Brazil, where underestimates occurs. For this reason, a linear-scaling bias correction procedure was applied 204 

(Lenderink et al., 2007), using a single correction factor per month calculated by the ratio between the 205 

monthly averages of rain gauges and the IMERG data (Le et al., 2018) rather than a grid-box correction 206 

(i.e., pixel-per-pixel) to preserve the original spatial distribution of the IMERG data. 207 
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P data measured from 16 rain gauges that are subjected to quality control were used for the IMERG 208 

bias correction and comparison purposes (Fig. 1c). The gridded observed rainfall data were estimated by 209 

inverse distance weighting interpolation. For comparison purposes, Quantile-Quantile plots between the 210 

bias-corrected IMERG interpolated data (henceforth IMERG-C) and ground-based interpolated data were 211 

built at the monthly and annual scales for every 10% percentiles (i.e., 0, 10, …, 90, 100%). Over these 212 

estimates, the linear regressions were plotted, and their slope and y-intersect values were calculated. 213 

Moreover, the rain gauges interpolated data were used as input to spatially estimate the runoff and the GWR 214 

from the water budget equation. The estimates were then compared with the estimated components obtained 215 

from the satellite-based approach. 216 

2.2.2 Actual evapotranspiration 217 

The ET was estimated using the Penman-Monteith equation (Monteith, 1965), which was also 218 

adopted by Mu et al. (2007) to create the first global ET product (MOD16). The MOD16 is a product from 219 

NASA based on the MODerate Resolution Imaging Spectroradiometer (MODIS) sensors installed on two 220 

satellites (Terra and Aqua), as well as reanalysis-derived meteorological inputs. Currently, the MOD16 221 

dataset provides ET at the global scale with a spatial resolution of 500 m and three different timescales (8-222 

d, monthly, and annual scales). Unlike the algorithm used by Mu et al. (2011) to generate the current 223 

MOD16 product, this study calculated the ET based on the algorithm developed by Mu et al. (2007), using 224 

the biome-property-look-up-table shown by Running et al. (2017). The algorithm proposed by Mu et al. 225 

(2007) was based on Eq. (2) and assumes that night-time ET is small and in turn negligible. 226 

ΛE = ΛEtransp + ΛEsoil  =
ΔA + ρCp(es − ea)/ra

Δ + γ(1 +
rs

ra
)

(2) 

where Λ is the latent heat of evaporation (=2.45 MJ kg-1), ΛE is the latent heat flux density (W m-2) 227 

consisting of the plant transpiration (ΛEtransp) and soil evaporation (ΛEsoil), i.e., the total daily ET (mm) 228 

after multiplying by the conversion factor (=3.53×10-2 mm d-1 W-1 m2); A is the available energy commonly 229 

determined as the daily net radiation of the land surface (Rn) (W m-2); ρ is the air density (=1.2 kg m-3); Cp 230 

is the specific heat capacity of air at constant pressure (=1005 J kg-1 °C-1); ra is the aerodynamic resistance 231 

(s m-1), rs is the surface resistance (s m-1); ea is the actual water vapour pressure (kPa); es is the saturated 232 
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water vapour pressure (kPa); Δ is the slope of the curve relating saturated water vapour pressure to the 233 

temperature (kPa °C-1); and γ is the psychrometric constant (kPa °C-1).  234 

The MOD16 algorithm is only suitable to use under clear sky conditions, as MODIS satellite 235 

sensors cannot measure cloud base parameters (Sur et al., 2015). This occurs because the MOD16 generates 236 

the ET  based on some 8-day MODIS products (i.e., pixels of the best observations from the last eight days) 237 

with 500-m spatial resolutions (e.g., MOD15A2H and MCD43A2/A3). These 8-d products remain 238 

insufficient to attenuate cloudy condition effects on ET estimations in some regions (Running et al., 2017). 239 

The available MOD09Q1 (Terra) and MYD09Q1 (Aqua) reflectance products were used in this 240 

study due to their suitable 250-m and 8-d resolutions to obtain the biophysical data, namely, 1) the leaf area 241 

index (LAI) using the soil adjusted vegetation index (SAVI) (Bastiaanssen et al., 1998; Huete, 1988), 2) 242 

the vegetation cover fraction calculated by the enhanced vegetation index (EVI2) proposed by Jiang et al. 243 

(2008), and 3) the surface albedo (ALB) computed by the equation proposed by Teixeira et al. (2013). To 244 

address the shortcomings related to cloudy conditions, this study carried out monthly map compositions 245 

with 8-d grid biophysical inputs (i.e., EVI2, LAI, and ALB). The monthly compositions were based on the 246 

selection of pixels with higher values of LAI and EVI2 obtained from the eight images available per month 247 

(i.e., four MOD09Q1 and four MYD09Q1), assuming that lower or negative values of these two biophysical 248 

parameters were possibly contaminated by clouds. Conversely, for the monthly compositions of ALB, only 249 

the lower values per pixel from the eight images available per month were considered, assuming that higher 250 

values of albedo were possibly contaminated by clouds. These new data then assumed clear sky conditions 251 

to indicate fixed input parameters throughout a month and were used to generate daily ET data. 252 

The MOD16 product also uses global LULC classification from MODIS land cover type 253 

(MCD12Q1) as an input to obtain information about canopy conductance and plant transpiration. However, 254 

the global representation of the MCD12Q1, which is associated with the limited number of classes (17), 255 

can misidentify some local and regional specificities of the vegetation and introduce considerable errors in 256 

the estimation of ET for medium and small areas (Ruhoff et al., 2013). Therefore, we used a regional LULC 257 

classification (SEEG/OC, 2015), namely, the MapBiomas Project (http://mapbiomas.org). MapBiomas 258 

provides Landsat-based annual LULC maps associated with 27 classes at a 30-m spatial resolution 259 

processed from 1985. In this study, MapBiomas LULC collection 3.1 was reclassified into six general 260 

classes (barren land, forest, cropland, pasture, urban, and water body) before being used to generate ET 261 

data. 262 

http://mapbiomas.org/
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The MOD16 product uses the global meteorological reanalysis data provided by NASA’s Global 263 

Modelling and Assimilation Office (GMAO) at a 0.5° × 0.6° or 1.0° × 1.25° spatial resolution as inputs of 264 

the original algorithm (Mu et al., 2011, 2007; Running et al., 2017). GMAO incorporates ground- and 265 

satellite-based observations to provide information with a 6-h temporal resolution. Unlike the MOD16 266 

product, this study used the GLDAS NOAH L4 V2.1 meteorological product provided by the NASA Global 267 

Land Data Assimilation System (GLDAS) (Rodell et al., 2004). It allowed providing the following 268 

meteorological data with 3-h and 0.25° resolutions: downward shortwave radiation, air pressure, air 269 

temperature, and specific humidity. The meteorological data were retrieved from four pixels covering most 270 

of JPA and were averaged and used as inputs for the ET estimation. 271 

The daily mean estimated ET was tested against the Penman-Monteith equation, which is 272 

considered the universal standard approach for calculating daily reference evapotranspiration (ET0) (Allen 273 

et al., 1998). Such a comparison does not validate the estimates but only assess if both evapotranspiration 274 

time series oscillate and peak with similar amplitudes and magnitudes, respectively. The meteorological 275 

data used to calculate the ET0 were acquired from a meteorological station inside JPA, which belongs to 276 

the Brazilian National Institute of Meteorology (INMET, acronym in Portuguese) (Fig. 1c). Additionally, 277 

the mean 8-day ET data from the original MOD16A2 product was also used to check the daily estimates 278 

using the cloud-cleaning procedure combined with a more fine-tuned dataset. 279 

2.2.3 Soil water storage changes 280 

The soil water storage changes were calculated using root-zone moisture information of the Soil 281 

Moisture Active Passive (SMAP) mission from NASA, estimated each 2 to 3 days since 2015 (Reichle et 282 

al., 2018). The SMAP Level 4 (L4) provides global near-surface (0-5 cm) and root-zone (0-100 cm) soil 283 

moisture with the SMAP L4 Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU) product 284 

(Reichle et al., 2017). The 100-cm root-zone SPL4SMAU soil moisture product (3-h temporal and 9-km 285 

spatial resolution), whose data result from the assimilation of L-band brightness temperature data into the 286 

NASA Catchment land surface model, was used to obtain the soil water storage by the soil moisture 287 

difference from one day to another multiplied by the root zone depth of 1,000 mm (Reichle et al., 2018). 288 

Based on the SMAP orbit revisit time, the soil moisture data were scheduled to be retrieved at 6:00 289 

a.m. and 6:00 p.m. (at the Legal Local Time). However, since the satellite takes 2 to 3 days to map the290 
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whole globe, some images over JPA were missing for a range of days of the year. Thus, similar to the study 291 

carried out by Souza et al. (2018), the soil moisture data were calculated in three ways: 1) if both orbits 292 

were completed on the same day, then both values were averaged; 2) if only one orbit had a valid value, 293 

then this value was considered for that day; and 3) if no valid value was obtained in any orbit, then the soil 294 

moisture calculated for the previous day was repeated. Finally, the soil water storage changes were 295 

calculated by summing (positive or negative) daily differences in the SPL4SMAU root-zone data at the 296 

monthly and annual scales, which was performed after interpolating their images from a 9-km to a 500-m 297 

resolution through bilinear interpolation (same as that for P). 298 

2.2.4 Surface runoff 299 

The surface runoff was estimated using the Natural Resources Conservation Service–Curve 300 

Number (NRCS–CN) method (Hawkins et al., 1985). The NRCS–CN method combines climatic and 301 

physiographic characteristics in empirical formulas that convert basic descriptive data into numeric values 302 

to estimate the excess P that was not intercepted, stored, or infiltrated (Deshmukh et al., 2013). We 303 

implemented this estimation spatially with daily P. The daily runoff estimates were then summed pixel by 304 

pixel at monthly and annual scales, thus avoiding the overestimation errors that stem from its direct 305 

calculation at monthly and annual scales (Awadallah et al., 2017). We choose the NRCS-CN method 306 

because of its simplicity, ease of use and widespread acceptance (Ponce and Hawkins, 1996; Verma et al., 307 

2017), focusing on scarce data regions in developing countries but taking advantage of freely available 308 

remote sensing data.  309 

The NRCS–CN method is based on a water budget equation that assumes that P must exceed the 310 

initial abstraction (Ia), being a soil-dependent fraction (λ) of the maximum water storage capacity (S), before 311 

any direct runoff (Q) is triggered. A fixed value of λ equals to 0.20 is recommended by the original method 312 

and widely adopted in the United States (Hawkins et al., 1985). However, the initial losses depend on the 313 

local and regional characteristics of the watershed. Many studies, including some carried out in Brazilian 314 

catchments, indicated that the value proposed by the original method is too high for many parts of the world 315 

and recommended λ values of about 0.05 or less (e.g., Ajmal and Kim, 2015; Durán-Barroso et al., 2017; 316 

Shi et al., 2009; Valle Junior et al., 2019; Veeck et al., 2020). Recently, the studies by Lal et al. (2019, 317 

2017) reviewed the values of λ for 63 watersheds worldwide with various LULC, finding 0.03 as a 318 
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representative value, which was also used in our study. In this context, the new runoff and water storage 319 

capacity calculations under average wet conditions (SII,λ=0.03) are shown in Eqs. (3) and (4). 320 

Q = {
(P − 0.03SII,λ=0.03)

2

(P + 0.97SII,λ=0.03)
      , if P ≥ Ia = 0.03S

0                                         ,         if P = 0                

 (3) 

SII,λ=0.03 = 0.654 (
25400

CNII,λ=0.20

− 254)

1.248

      , for 0 ≤ CNII,λ=0.20 ≤ 100 (4) 

CN values were selected from the (NRCS – Natural Resources Conservation Service, 2004) tables 321 

and spatially assigned to different hydrologic soil-cover complexes using a look-up table built in a GIS 322 

platform. The hydrologic soil-cover complexes refer to the different combinations of LULC and 323 

hydrological soil groups (HSGs) contained in a study area. The HSG information was created from the 324 

regional information about soil types provided by Araújo Filho et al. (2000). The HSG was assigned 325 

according to the soil type, following the methodology proposed by Sartori et al. (2005) that consists of 19 326 

criteria based on a survey of 58 soil profiles and hydrodynamic data in Brazil. The LULC information was 327 

obtained from MapBiomas collection 3.1, the same used for estimating ET.  328 

The potential runoff before a surface runoff event generated by the NRCS–CN method depends 329 

on the antecedent moisture condition (AMC) (Hawkins et al., 1985). The proper condition was identified 330 

through the 5-d antecedent cumulative P (P5d, mm), which was calculated for each P grid cell. For this 331 

purpose, three intervals of P5d were used, distinguishing between the growing season (GS, from March to 332 

July) and the dormant season (DS, from August to February) according to the AMC. Similar to those in Lal 333 

et al. (2017), the P5d intervals in this study were defined as AMC-I (dry conditions): if P5d ≤ 35.56 mm (GS) 334 

or P5d ≤ 12.7 mm (DS); AMC-II (average conditions): if 35.56 < P5d ≤ 53.34 mm (GS) or 12.70 < P5d ≤ 335 

27.94 mm (DS); and AMC-III (wet conditions): if P5d > 53.34 mm (GS) or P5d > 27.94 mm (DS). Moreover, 336 

the P5d intervals of DS were considered for the urban and barren areas, whereas the P5d intervals of GS were 337 

considered for the forest areas throughout all months of the year because of their active vegetation growing 338 

conditions. Finally, the CNI and CNIII values were determined under AMC-I and AMC-III, respectively, 339 

based on Lal et al. (2019). 340 
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2.3 Evaluation of groundwater recharge estimates 341 

The GWR rates were evaluated by the water table fluctuation (WTF) method (Healy and Cook, 342 

2002; Scanlon et al., 2002). The ground-based GWR rates obtained from WTF (Eq. 5) were used to evaluate 343 

the spatially distributed GWR rates estimated by the water budget equation on a 1-km footprint around the 344 

wells to comprehensively consider the surrounding characteristics. Their absolute (GWR, mm) and relative 345 

(GWR/P, %) estimates were compared through linear regressions. 346 

RWTF = Sy

∆H

∆t
(5) 

where RWTF denotes the estimated recharge rate (mm/time step) using WTF, Sy represents the aquifer 347 

specific yield coefficient, ΔH is the cumulated rising piezometric level changes (mm), and Δt is the time 348 

from the beginning of the rise to the peak. ∆H corresponds to the sum of the actual groundwater rise and 349 

the potential groundwater decline for the same period, with the latter being obtained by extrapolating the 350 

antecedent recession curve (Healy and Cook, 2002; Wendland et al., 2007). 351 

The groundwater fluctuation data were manually collected every 45 days from 16 (in 2016) and 352 

23 monitoring wells (in 2017) located in the Barreiras Formation (Fig. 1c). Seven additional wells were 353 

drilled in 2017 in the urban area. These monitoring wells are well-distributed throughout the study area 354 

and, therefore, capable to characterise the local groundwater since they cover several soil types, depths 355 

(from shallow to deep) and LULC, from the coastline to the headwater. This monitoring network was 356 

carefully selected so as to have no groundwater pumping in or nearby the monitoring wells. The temporal 357 

variations of groundwater fluctuations were also used to compare the overall behaviour of the monthly 358 

satellite-based GWR estimates. The values of Sy equal to 0.10 (16 wells) and 0.24 (7 wells) were estimated 359 

by pumping tests in four wells and assigned to the others based on their similar local characteristics, 360 

including the groundwater level patterns. 361 

2.4 Statistical metrics 362 

Three statistical metrics were selected to evaluate the goodness-of-fit of the results. The first metric 363 

was the correlation coefficient (CC, Eq. (6)), which describes the relationship between variations in 364 

simulated and observed values. The other two metrics were the percent bias (PBIAS, Eq. (7)) and the 365 
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relative root mean square error (RRMSE, Eq. (8)), both with perfect values equal to 0%, which were used 366 

to describe the bias and error between simulated and observed values, respectively. 367 

CC(−) =
∑ (Gi − G̅)(Si − S̅)n

i=1

√∑ (Gi − G̅)2n
i=1 √∑ (Si − S̅)2n

i=1

(6) 

PBIAS(%) =
∑ (Si − Gi)

n
i=1

∑ Gi
n
i=1

× 100 (7) 

RRMSE(%) =
√(1 n⁄ ) ∑ (Si − Gi)

2n
i=1

G̅
× 100 (8) 

where Si and Gi are the satellite- and ground-based data, respectively, and S̅ and G̅ are the mean values of 368 

the satellite- and ground-based data, respectively. 369 

3. Results and discussion370 

3.1 Precipitation 371 

The first set of analyses assessed the spatiotemporal distributions of the main input of the water 372 

balance (i.e., P) obtained from IMERG-C data and compared these with the ground-based interpolated data 373 

(henceforth Gauge) (Fig. 3). Annual P based on IMERG-C data gradually decreased from east to west, 374 

varying from 1,120 to 1,600 mm in 2016 and 1,050 to 2,300 mm in 2017. The maximum P based on Gauge 375 

observations was 1,630 mm in 2016 and 2,070 mm in 2017. Similarly, (Lu et al., 2019) showed consistent 376 

spatial patterns and maximum values of IMERG P after performing bias correction using monitoring data. 377 

P obtained in JPA from the IMERG-C data occurred mostly within the regular rainy season (i.e., from 378 

March to July), corresponding to 71% in 2016 and 77% in 2017 of the annual totals. The monthly variations 379 

in P in 2016 from the IMERG-C and Gauge data were similar (Fig. 3e,f), whereas the IMERG-C variation 380 

was larger than the Gauge variation in some months of 2017, particularly in June and July, when the 10-381 

90% percentile ranges were 60% higher and double, respectively. Despite such differences, the average 382 

values obtained by IMERG-C were similar to those from the Gauge in most of the months, showing that 383 

IMERG-C was able to detect the temporal variation of P. 384 
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INSERT FIG. 3 HERE 385 

Fig. 3. Spatially distributed precipitation in 2016 and 2017 estimated using (a and d) ground-based 386 

interpolated data and (b and e) IMERG-C data, with (c and f) monthly variations depicted by box plots with 387 

10-90% percentiles. Histograms refer to the proportion of total cells.388 

The deviations between the IMERG-C and ground-based interpolated P were also assessed using 389 

Quantile-Quantile plots (Fig. 4). At the monthly scale, a suitable correlation (CC = 0.97) and a reasonable 390 

fit using linear regressions (slope = 1.01; y-intersect = -1.68) were found, with some deviations in March, 391 

June, and July. Good correlations between the IMERG products and the observed dataset have been found 392 

by other studies in tropical regions at the monthly scale (e.g., Satgé et al., 2017; Tan and Duan, 2017). The 393 

monthly mean error was 23%, higher than the annual mean error (i.e., 8%). These values remained within 394 

the acceptable ranges for satellite-based monthly P (Salles et al., 2019). Acceptable metrics were also found 395 

at the annual scale, despite the slight deviation of the linear regression (slope = 1.20; y-intersect = -314 396 

mm). Such a deviation probably occurred due to the larger variation of the ground-based P on the western 397 

side of the study area in 2017, which likely stemmed from the limited number of rain gauges used on the 398 

interpolation (see Fig. 1). According to Tang et al. (2016), the underestimation of this satellite-based P data 399 

can occur over regions with wet climates and low latitudes. The results found in this analysis confirm that 400 

the IMERG-C data enabled the mapping of the decreasing P gradient in the study area. 401 

INSERT FIG. 4 HERE 402 

Fig. 4. (a) Monthly and (b) annual Quantile-Quantile plots between the IMERG-C and ground-based 403 

interpolated data at the 10% percentile. Shaded bounds: 95% confidence interval. 404 

3.2 Actual evapotranspiration 405 

The spatial ET distribution estimated by the modified MOD16 algorithm applying cloud cleaning 406 

is shown in Fig. 5. Overall, the mean annual ET varied from 1,170 (in 2016) to 1,220 mm (in 2017). The 407 

results were consistently distinguishable amongst the LULC types, with values smaller than 850 mm in the 408 

urban areas and above 1,450 mm in the forest areas. At the monthly scale, the ranges of the average 409 

estimates were similar between the studied years, varying from 73 to 119 mm in 2016 and 85 to 114 mm 410 
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in 2017. However, comparing the monthly mean estimates of 2017 with those of 2016, they were smaller 411 

at the beginning, closer at the middle, and higher at the end of the year. In the rainy season, smaller 412 

differences between high and low ET data were observed, showing monthly averages in the 10-90% 413 

percentile ranges equal to 63 (in 2016) and 58 mm (in 2017) from April to August. On the other hand, larger 414 

differences between high and low ET data occurred in the dry season, as shown by the monthly averages 415 

in the 10-90% percentile ranges equal to 84 (in 2016) and 87 mm (in 2017) from September to March. Lima 416 

and Ribeiro (2018) showed that such seasonable patterns can stem from the associations between 417 

meteorological and evapotranspiration estimates by using the MapBiomas LULC and GLDAS 418 

meteorological forcing data to calculate spatially distributed ET. Thus, variations in the ET throughout the 419 

studied years in JPA were likely influenced by the combination of LULC diversity, weather seasonality and 420 

cloudy conditions. 421 

INSERT FIG. 5 HERE 422 

Fig. 5. Spatially distributed actual evapotranspiration in (a) 2016 and (b) 2017, with (c) monthly variations 423 

depicted by box plots with 10-90% percentiles. The MOD16 algorithm disregards the evaporation rates 424 

from water bodies, which are white shown in the maps. Histograms refer to the proportion of total cells. 425 

The mean daily ET obtained by the modified MOD16 algorithm ranged from 1.0 to 4.7 mm d-1 426 

during the whole study period, whereas the mean ET0 varied from 3.0 to 7.0 mm d-1 (Fig. 6). The ET0 was 427 

as much as three times higher than the ET estimated by the proposed approach between August and 428 

February (dry season) due to the lower soil water availability in these months. This difference is plausible 429 

since ET0 refers to the evapotranspiration of well-watered grass vegetation with active growth throughout 430 

the year. Such a difference considerably shrunk during the rainy seasons, with the actual and reference 431 

evapotranspiration following the same temporal behaviour, as expected. 432 

INSERT FIG. 6 HERE 433 

Fig. 6. Comparison between the daily actual evapotranspiration obtained by the modified MOD16 434 

algorithm, the mean 8-day actual evapotranspiration data from the MOD16A2 product, and the daily 435 

reference evapotranspiration. 436 

  437 
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The daily ET estimates obtained by the proposed methodology were greater than those acquired 438 

by the mean 8-day MOD16A2 product for the studied period, which ranged from 1.9 to 3.9 mm d-1 (Fig. 439 

6). Consequently, the mean annual ET estimated by the MOD16A2 was lower than those obtained by the 440 

modified MOD16 algorithm for 2016 (895 mm) and 2017 (938 mm). The values of ET estimated by the 441 

MOD16A2 product was also lower than those found by other studies using the Surface Energy Balance 442 

Algorithm for Land (SEBAL) in river basins with similar characteristics in NE Brazil (e.g., Oliveira et al., 443 

2014). Although slightly higher, the ET estimates presented the same temporal patterns observed by the 444 

original MOD16A2 product. The differences found between the original and the modified approaches can 445 

possibly be attributed to the following factors: 1) the missing data in some pixels of the MOD16A2 product 446 

because of the presence of cloud cover, 2) the use of a more fine-tuned LULC regional product, and 3) the 447 

use of a higher resolution input meteorological data. For instance, Ruhoff et al. (2013) identified that the 448 

misclassification of the LULC data used in the MOD16A2 product, combined with the low spatial 449 

resolution of the GMAO reanalysis meteorological information and the cloud cover contaminated pixels, 450 

were the largest contributors to over- or under-estimate the eddy covariance measurements in a humid 451 

tropical river basin located in south-eastern Brazil. Recently, a study carried by Melo et al. (2021) used 25 452 

flux towers to evaluate four remote sensing-based ET algorithms in many ecoregions over South America, 453 

including the MOD16 model forced by ground-based meteorological data. An average uncertainty of ~10% 454 

was found for the MOD16 algorithm when considering all studied ecoregions, with relatively higher 455 

performance observed for wet climate regions. This overall uncertainty observed by Melo et al. (2021) for 456 

the MOD16 algorithm was similar to those found by Ruhoff et al. (2013) in two sites in Brazil after the 457 

MOD16 algorithm parameter fitting based on land use and land cover (i.e., without the use of the 458 

MOD12Q1 product). 459 

3.3 Soil water storage changes 460 

The annual water storage changes in the root zone throughout JPA varied from -27 to -6 mm during 461 

2016 and from -40 to -12 mm during 2017 (Fig. 7). Annual water storage decreases suggest that the root 462 

zone released water during the studied period, which is in part due to vertical percolation to aquifers. 463 

Despite its original coarse resolution, SPL4SMAU consistently showed a water storage increase in the root 464 

zone mostly during the rainy season, likely because there is more water in the top layer after P. The water 465 
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increase in the root zone in December 2016 likely stemmed from substantial P (Fig. 3e) when the South 466 

Atlantic Convergence Zone was positioned further eastward (Palharini and Vila, 2017). Moreover, as 467 

expected, the urban areas featured large water decreases in the root zone in both years, likely because of 468 

the lower infiltration caused by soil imperviousness, whereas the rural areas featured a larger spatial 469 

variation in water decreases. These results show that an above-average rainy condition is required for an 470 

annual water increase in the root zone, implying a susceptibility in JPA to water shortage. 471 

INSERT FIG. 7 HERE 472 

Fig. 7. Spatially distributed soil water storage changes in (a) 2016 and (b) 2017, with (c) monthly variations 473 

depicted by box plots with 10-90% percentiles. Histograms refer to the proportion of total cells. 474 

3.4 Surface runoff 475 

The mean annual surface runoff estimated from the IMERG-C data varied from 220 (in 2016) to 476 

300 (in 2017) mm (Fig. 8). Due to soil imperviousness, urban areas produced annual runoff estimates 477 

greater than 450 mm. In 2017, higher values of surface runoff from IMERG-C data also occurred outside 478 

the urban area in relation to that from Gauge because of the high P in June and July. In the regular rainy 479 

season (i.e., from March to July), the mean annual surface runoff estimated with IMERG-C data accounted 480 

for 200 mm in 2016 and 265 mm in 2017. The sources of uncertainties surrounding the NRCS-CN method 481 

were analysed by Durán-Barroso et al. (2017), which include: 1) a significant weakness to select 482 

representative events for simulation with the NRCS CN parameters; and 2) the impossibility of determining 483 

an optimum value for λ but lower values are recommended instead of the original value. For instance, the 484 

study carried out by Veeck et al. (2020) in a Brazilian catchment found fitted initial losses lower than the 485 

original value for almost all simulated events, with relative errors below 12%. However, quantifying 486 

uncertainties of rainfall-runoff is a very complex issue in Brazil due to the lack of data. 487 

INSERT FIG. 8 HERE 488 

Fig. 8.  Spatially distributed surface runoff in 2016 and 2017 estimated using (a and d) rain gauge and (b 489 

and e) IMERG-C data, with (c and f) monthly variations depicted by box plots with 10-90% percentiles. 490 
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The surface runoff results over the water bodies were neglected in the NRCS–CN calculation, which are 491 

white shown in the maps. Histograms refer to the proportion of total cells. 492 

3.5 Groundwater recharge 493 

On average, the GWR rates ranged from 219 (in 2016) to 302 mm yr-1 (in 2017) (Fig. 9). These 494 

results remained within the range of the GWR rates of several tropical wet regions throughout the world 495 

(e.g., Malakar et al., 2019; Rodríguez-Huerta et al., 2020; Vu and Merkel, 2019). The urban area featured 496 

greater GWR rates than other areas despite its greater surface runoff, likely due to the combination of lower 497 

ET and sandy soils (Minnig et al., 2018; O’Driscoll et al., 2010), as well as to the higher P estimates for the 498 

coastline than for the headwaters. Consistently, Moeck et al. (2020) also showed that in the eastern part of 499 

Brazil, high GWR rates can occur despite the annual potential evapotranspiration being greater than 1,500 500 

mm because of the large amount and seasonality of P. At the monthly scale, GWR rates using IMERG-C 501 

and Gauge data averaged 34.7 and 36.5 mm month-1 in 2016 and 47.7 and 51.4 mm month-1 in 2017, 502 

respectively. These monthly estimates using IMERG-C data were similar to the Gauge estimates, although 503 

the difference doubled in 2017 due to higher surface runoff estimated in June and July using IMERG-C 504 

data. The differing GWR rates obtained for the Gauge data were likely influenced by the sensitivity of 505 

modelled groundwater recharge estimates to the rain gauge network scale (Wiebe and Rudolph, 2020). 506 

INSERT FIG. 9 HERE 507 

Fig. 9. Spatially distributed GWR rates estimated in 2016 and 2017 by the water budget equation and WTF 508 

method, using (a and d) rain gauge and (b and e) IMERG-C data, with (c and f) monthly variations depicted 509 

by box plots with 10-90% percentiles. The GWR results over the water bodies were neglected in the water 510 

budget equation, which are white shown in the maps. Histograms refer to the proportion of total cells. 511 

The differences caused by disregarding the soil water storage changes were negligible at the annual 512 

scale, reducing the mean relative GWR by less than -1% for the studied years, which likely occurred due 513 

to the compensation of the water increases and decreases in the root zone throughout the rainy and dry 514 

seasons. Conversely, at the monthly scale, neglecting the soil water storage changes would have 515 

considerably impacted the GWR values, increasing their mean relative estimates by as much as +19 (in 516 

2016) and +12% (in 2017) during the rainy season and decreasing their mean relative estimates by -22 (in 517 
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2016) and -13% (in 2017) during the dry season. Therefore, although other studies considering long-term 518 

average recharge (e.g., 10 year period) have claimed that satisfactory estimations can be obtained by simply 519 

applying the difference between P and ET satellite products in some semiarid, continental and 520 

Mediterranean regions (e.g., Crosbie et al., 2015; Gokmen et al., 2013; Munch et al., 2013; Szilagyi et al., 521 

2011), this study demonstrated that tropical wet sedimentary regions also require the consideration of 522 

surface runoff and soil water storage changes on a monthly and annual basis because their water cycles are 523 

stressed by weather seasonality and hydrologic soil-cover complexes. 524 

The annual GWR rates estimated by the WTF method varied from 110 to 370 mm yr-1 in 2016, 525 

corresponding to 10 and 24% of the mean annual P obtained by the Gauge data, respectively (Table 1). Half 526 

of these estimates ranged from 100 to 200 mm yr-1, mostly obtained from the observation wells located 527 

upstream (Fig. 9). In 2017, the GWR rates varied from 90 to 550 mm yr-1, corresponding to 7 and 29% of 528 

the mean annual P obtained by the Gauge data, respectively. More than half of these estimates ranged from 529 

300 to 550 mm yr-1, mostly obtained from observation wells located downstream (urban area).  530 

INSERT TABLE 1 HERE 531 

Table 1. Absolute and relative GWR estimates calculated by the WTF method in 2016 and 2017. 532 

For evaluation purposes, the absolute and relative estimates of the GWR obtained by the water 533 

budget equation were plotted against the WTF results (Fig. 10). The correlations and mean errors of the 534 

absolute and relative GWR estimates based on the IMERG-C data varied from 0.68 to 0.83 and from 30 to 535 

34%, respectively. These correlations and mean errors were fairly similar to the GWR ranges estimated 536 

using the Gauge data, whose correlations varied from 0.73 to 0.89, and the mean errors remained at 31%. 537 

Szilagyi et al. (2011) compared the GWR rates estimated by a satellite-based approach with chloride mass-538 

balance rates, showing a spatial correlation of 0.57 at the annual scale. In our study, the GWR rates 539 

estimated by the water budget equation using the IMERG-C data tended to slightly underestimate the WTF 540 

data between -13 and -9%, whereas the Gauge scenario overestimated the WTF data between 8 and 11%. 541 

However, a good fit was found for the IMERG-C data by using linear regressions, showing decent slope 542 

and y-intersect values for the absolute (1.16 and -69 mm, respectively) and relative (0.82 and 0.79%, 543 

respectively) GWR, which confirmed the low underestimations. These negative biases could have been 544 

caused by neglecting the contribution of the irrigation input component in the water budget equation of this 545 
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study, which is practically nil in the wettest period but can be significant in some sugarcane cultivated areas 546 

(i.e., corresponding to ~30% of the study area) during the four driest months. Usman et al. (2015) also 547 

found negative bias by applying a satellite-based approach to estimate GWR rates, showing that the 548 

consideration of irrigation considerably improves GWR estimates in comparison with WTF estimates. In 549 

this study, the GWR estimates based on the IMERG-C data were slightly lower than those calculated based 550 

on the WTF method, whose mean differences were 5 (in 2016) and -30 mm yr-1 (in 2017) at the absolute 551 

scale, as well as -0.8 (in 2016) and -1.8% (in 2017) at the relative scale, respectively. Crosbie et al. (2015) 552 

also found average underestimations of 45 mm yr-1 when comparing the GWR rates calculated by a satellite-553 

based approach with the chloride mass-balance and WTF estimates.  554 

INSERT FIG. 10 HERE 555 

Fig. 10. Evaluation based on the WTF method of the annual GWR rates, estimated from rain gauge and 556 

IMERG-C data at (a, b, and e) absolute and (c, d, and f) relative scales. 557 

Besides the biases possibly caused by disregarding the irrigation, the uncertainties in each water 558 

balance component (i.e., P with ~8% according to comparisons with on-ground gauge measurements; ET 559 

with ~10% based upon Melo et al. (2021); and Q with ~12% as found by Veeck et al. (2020)) used in the 560 

proposed approach might propagate to the residual term (i.e., the GWR). Uncertainty in time series of GWR 561 

estimated using the WTF method is associated with the difficulty in determining a representative Sy, which 562 

has a dependence on the depth to water table (Crosbie et al., 2019). For instance, the uncertainty in the 563 

GWR rates estimated from a satellite-based approach (P-ET) and the WTF method was analysed by Lucas 564 

et al. (2015), which found uncertainties ranging from 24 to 42% of the annual mean GWR. Actually, 565 

estimating GWR is a big challenge because it cannot be measured directly (Crosbie et al., 2019; Scanlon et 566 

al., 2002). Therefore, it is still difficult to assess the accuracy of any method (Crosbie et al., 2019; Healy 567 

and Cook, 2002), with no widely applicable methodology available that can directly and accurately quantify 568 

the volume of rainwater that reaches the water table (MacDonald et al., 2021). Because of this, it has been 569 

recommended over the last decades to use multiple methods when estimating the GWR (Crosbie et al., 570 

2019; Scanlon et al., 2002). Unfortunately, in most developing countries and remote regions, groundwater 571 

measured data are scarce or unavailable, and rarely one or more than one method has been used to estimate 572 

GWR (Lucas et al., 2015). For such areas, satellite-based approaches, as proposed in this study for tropical 573 
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wet regions, can be scientifically much more robust than considering, for instance, the estimations of GWR 574 

as a fixed percentage of rainfall, as often adopted by water managers in some tropical developing areas. 575 

Fig. 11 shows the comparisons between the temporal variations of groundwater level fluctuations 576 

at 9 monitoring wells and the monthly satellite-based GWR estimates. The satellite-based GWR estimates 577 

presented similar peak variation patterns to those observed in the groundwater levels. This agreement 578 

between the peak variation patterns from the GWR and groundwater levels were observed to either 579 

shallower (e.g., W04, W9, and W13) and deeper (e.g., W15 and W16) monitoring wells. Although 580 

presenting similar peak variation patterns, it is possible to notice a monthly delay in the groundwater level 581 

fluctuations compared to the GWR amounts likely due to unsaturated zone transit which is not considered 582 

in the method, as it was already pointed out by Coelho et al. (2017) in a semiarid region. 583 

INSERT FIG. 11 HERE 584 

Fig. 11. Comparison between the observed groundwater levels and monthly groundwater recharge based 585 

on IMERG-C data and interpolated rain gauge data. 586 

4. Summary and conclusions587 

This study developed and evaluated an innovative satellite-based approach based on the water 588 

budget equation to estimate the natural GWR over by only using freely available satellite-based data. The 589 

proposed distinctive features include the capacity to address 1) ET estimations (MOD16 algorithm) in 590 

tropical wet regions frequently overlaid by substantial cloud cover and 2) water storage change estimation 591 

in the root zone (SPL4SMAU product) in sedimentary regions seasonably prone to monthly variations. The 592 

proposed method, which also included P (IMERG product) and runoff (NRCS–CN method) information, 593 

was assessed for two hydrologically contrasting years. The spatially distributed GWR rates were compared 594 

with the measurements of groundwater levels and recharge estimates based on the WTF method applied to 595 

the monitoring wells over the study area. Overall, the results of the proposed satellite-based water budget 596 

approach performed consistently with the groundwater ground-based estimates. The monitoring wells used 597 

to evaluate the groundwater recharge rates covered different soil types, LULC, and depths (from shallow 598 

to deep). These features suggest that the proposed methodology may be reliable in characterising the spatial 599 

heterogeneity of the studied area.  600 
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Concerning ET, the use of a cloud-cleaning procedure based on monthly map compositions of 601 

biophysical data (i.e., LAI, EVI2, and ALB), combined with a more fine-tuned LULC regional product and 602 

a set of GLDAS meteorological forcing data, suggested the production of a reasonable proxy for ET despite 603 

cloudy conditions. The use of soil water storage changes calculated from the SPL4SMAU root-zone soil 604 

moisture product was shown to provide essential spatially distributed information to be included in the 605 

satellite-based approach, as the GWR estimates would vary considerably over JPA by disregarding this 606 

component at the monthly scale.  607 

Therefore, the satellite-based approach consistently demonstrated that the consideration of soil 608 

water storage changes and the cloud cleaning procedure used to obtain ET are essential for a proper 609 

estimation of the spatially distributed GWR rates in tropical wet sedimentary regions because of their 610 

hydrologic soil-cover complexes, weather seasonality and cloudy conditions. However, some sources of 611 

uncertainty in the satellite-based approach still require a better assessment, which includes: 1) a more 612 

detailed comparison of each component of the water balance (e.g., runoff, ET, and soil moisture) with 613 

ground-based measurements to identify the errors accumulated in the residual term (i.e., GWR); and 2) the 614 

impact of interception, irrigation, and pumping demands in the GWR estimates. Also, a better 615 

representation of Sy across the region, together with an analysis of errors associated with its estimates, 616 

which contribute to the overall uncertainty of the WTF method, need to be accounted for in further studies. 617 
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Table 1 – GWR rates obtained over JPA by the WTF method in 2016 and 2017. 

id Sy P 2016 ΔH 2016 R WTF,2016 P 2017 ΔH 2017 R WTF,2017 

(-) (-) (mm) (m) (mm) (%) (mm) (m) (mm) (%)

W01 0.10 1096 1.1 110 10.0 1388 0.9 90 6.5 

W02 0.10 1196 2.1 210 17.6 1489 2.8 280 18.8 

W03 0.10 1257 2.6 260 20.7 1508 2.5 250 16.6 

W04 0.10 1244 1.6 160 12.9 1491 2.6 260 17.4 

W05 0.10 1203 2.5 250 20.8 1442 1.7 170 11.8 

W06 0.10 1209 1.7 170 14.1 1432 1.5 150 10.5 

W07 0.10 1176 1.3 130 11.1 1349 1.3 130 9.6 

W08 0.10 1463 2.2 220 15.0 1639 3.4 340 20.7 

W09 0.24 1415 1.0 240 17.0 1780 1.1 264 14.8 

W10 0.10 1424 2.2 220 15.4 1804 3.2 320 17.7 

W11 0.24 1447 1.1 264 18.2 1827 1.8 432 23.6 

W12 0.10 1431 3.1 310 21.7 1743 4.1 410 23.5 

W13 0.10 1369 2.1 210 15.3 1639 2.6 260 15.9 

W14 0.10 1484 1.6 160 10.8 1844 2.8 280 15.2 

W15 0.10 1517 3.7 370 24.4 1861 5.3 530 28.5 

W16 0.24 1520 0.8 192 12.6 1950 2.1 504 25.8 

W17 0.24 - - - - 1935 2.1 504 26.0 

W18 0.10 - - - - 1939 4.2 420 21.7 

W19 0.10 - - - - 1929 3.8 380 19.7 

W20 0.24 - - - - 2037 1.4 336 16.5 

W21 0.10 - - - - 2027 3.2 320 15.8 

W22 0.24 - - - - 1992 1.7 408 20.5 

W23 0.24 - - - - 1930 2.3 552 28.6 

Table 1
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