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Abstract In this paper, we aim to derive an averaging principle for stochastic differential

equations driven by time-changed Lévy noise with variable delays. Under certain assump-

tions, we show that the solutions of stochastic differential equations with time-changed Lévy

noise can be approximated by solutions of the associated averaged stochastic differential e-

quations in mean square convergence and in convergence in probability, respectively. The

convergence order is also estimated in terms of noise intensity. Finally, an example with

numerical simulation is given to illustrate the theoretical result.
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1 Introduction

Non-Gaussian type Lévy processes allow not only their trajectories to change continuously

most of the time but also jump discontinuities occurring at random times. Hence, stochastic

differential equations (SDEs) driven by Lévy noise have been utilised to formulate and to

analyse many practical systems arising in many branches of science and engineering (see. e.g.,

Applebaum [1]). On the other hand, time-changed semimartingales have attracted considerable

attention, and their various generalizations have been widely used to model anomalous diffusions
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arising in physics, finance, hydrology, and cell biology (see recent monograph Umarov, Hahn

and Kobayashi [17]). Kobayashi [8] investigated stochastic integrals with respect to a time-

changed semimartingale and derived the time-changed Itô formula for SDEs driven by time-

changed semimartingale. When the original semimartingale is a standard Brownian motion,

then it is well known that the transition probability density of the time-changed Brownian

motion satisfies a time-fractional partial differential equation (Nane and Ni [13]). This is a very

interesting feature and it is very useful in modeling and describing phenomena in applied areas

(Mijena and Nane [12]). SDEs driven by time-changed Lévy noise capture more flexibility in

modeling and thus become a hot and also very important topic in literature (see, e.g., [9], [3],

[14], [15],[8]).

Meanwhile, the averaging principle provides a powerful tool in order to strike a balance

between realistically complex models and comparably simpler models which are more amenable

to analysis and simulation. The fundamental idea of the stochastic averaging principle is to

approximate the original stochastic system by a simpler stochastic system, initiated by Khas-

minskii in the seminal work [7]. To date, the stochastic averaging principle has been developed

for many more general types of stochastic differential equations (see, e.g., [4], [11], [18], [20],

[10], [16], just mention a few).

Although there are many papers in the literature devoted to study stochastic averaging

principle for stochastic differential equations with or without delays and driven by Brownian

motion, fractional Brownian motion, Lévy processes as well as more general stochastic measures

inducing semimartingales and so on (see, e.g., [16] and references therein), as we know, there

is not any consideration of averaging principle for stochastic differential equations driven by

time-changed Lévy noise with variable delays. On the other hand, due to their stochasticity

nature, the stochastic differential equations with delays driven by time-changed Lévy processes

are potentially useful and important for modelling complex systems in diverse areas of appli-

cations. A typical example is stochastic modelling for ecological systems wherein time-changed

Lévy processes as well as delay properties capture certain random but non-Markovian features

and phenomena exploited in the real world (see, e.g., [2]). Comparing to the classical stochastic

differential equations driven by Brownian motion, fractional Brownian motion, and Lévy pro-

cesses, the stochastic differential equations with delays driven by time-changed Lévy processes

are much more complex, therefore, a stochastic averaging principle for such stochastic equa-

tions is naturally interesting and would also be very useful. This motivates us to carry out the

present paper, aiming to establish a stochastic averaging principle for the stochastic differential

equations with delays driven by time-changed Lévy processes. The main difficulty here is that

the scaling properties of the time-changed Lévy processes is intrinsically complicated, it is diffi-

cult to construct the approximating averaging equations for the general equations. One remedy

is to select the involved noises in a proper scaling pattern, and then to establish the averaging

principle by deriving the relevant convergence for the averaging principle. In this paper, based

on our delicate choice of noises, we succeed to show the stochastic differential equations with

delays driven by time-changed Lévy processes can be approximated by the associated averag-

ing stochastic differential equations both in mean square convergence and in convergence in

probability. Let us proceed our mathematical introduction as follows.

Given a filtered probability space (Ω,F ,P; {Ft}t≥0) satisfying usual hypotheses of com-
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pleteness and right continuity. Fix m,n ∈ N. Let B(t) = (B1(t), B2(t), · · · , Bm(t))T be an

m-dimensional {Ft}t≥0-Brownian motion. Let {D(t), t ≥ 0} be a right continuous left limit

increasing {Ft}t≥0-Lévy process with Lévy symbol 1 < α < 2 that is called subordinator s-

tarting from 0 with Laplace transform E(e−λD(t)) = e−tφ(λ), λ > 0, where Laplace exponent

φ(λ) =
∫∞
0

(1−e−λx)µ(dx) with a σ-finite measure µ on (0,∞) such that
∫∞
0

(1∧x)µ(dx) <∞.
Define its generalized inverse as Et := inf{τ > 0 : D(τ) > t}, which known as the first hitting

time process. The time change Et is continuous and nondecreasing, however, it is not Marko-

vian. The composition B ◦E = (BEt)t≥0 called a time-changed Brownian motion, it is a square

integrable martingale with respect to the natural filtration {FEt}t≥0 for the process {Et}.
Next, recall that a Lévy measure ν on Rn\{0} is a σ-finite measure satisfying

∫
Rn\{0}(|y|

2∧
1)ν(dy) <∞. Here in this paper, we specify the Lévy measure on Rn \ {0} by ν(dy) := dy

|y|n+1 ,

and let N be the {Ft}t≥0-Poisson random measure associated with ν (see, e.g., [1]) and let

Ñ(dt, dy) := N(dt, dy) − dtdy
|y|n+1 be the compensated {Ft}t≥0-martingale measure, both N and

Ñ are independent of the Brownian motion B. In fact, Ñ is nothing but the 1-stable Lévy

motion or a Cauchy process. Here we would like to point out that the selection of ν(dy) = dy
|y|n+1

is rather restrictive from the general structure of Lévy processes (see, e.g., [1]), but it turns out

that this is only the proper choice for constructing the right associated averaging stochastic

differential equations in our paper.

Let τ > 0 and C([−τ, 0];Rn) be the family of continuous Rn-valued function ϕ defined on

[−τ, 0] with norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|.
Motivated by the above discussion, in this short paper we want to establish an averaging

principle for the following SDEs driven by time-changed Lévy noise with variable delays

dx(t) = f(t, Et, x(t−), x(t− δ(t)))dEt + g(t, Et, x(t−), x(t− δ(t)))dBEt

+

∫
|z|<c

h(t, Et, x(t−), x(t− δ(t)), z)Ñ(dEt, dz), t ∈ [0, T ]
(1.1)

with the initial value x(0) = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0];Rn) fulfiling ξ(0) ∈ Rn and

E‖ξ‖2 <∞, where the functions f : [0, T ]×R+ ×Rn ×Rn → Rn, g : [0, T ]×R+ ×Rn ×Rn →
Rn×m, h : [0, T ] × R+ × Rn × Rn × (Rn \ {0}) → Rn are measurable continuous functions,

δ : [0, T ]→ [0, τ ] and the constant c > 0 is the maximum allowable jump size.

The rest of the paper is organised as follows. In the next section, we will present appro-

priate conditions to our concerned SDEs (1.1) and briefly formulate a time-changed Gronwall’s

inequality in our setting for later use. Section 3 is devoted to our main results and their proofs.

In Section 4, the last section, an example is given to illustrate our theoretical results in Section

3.

2 Preliminaries

In order to derive the main results of this paper, we require the functions f(t1, t2, x, y),

g(t1, t2, x, y) and h(t1, t2, x, y, z) to satisfy the following assumptions.

Assumption 2.1 For any x1, x2, y1, y2 ∈ Rn, there exist a positive bounded function ϕ(t)

such that

|f(t1, t2, x1, y1)− f(t1, t2, x2, y2)| ∨ |g(t1, t2, x1, y1)− g(t1, t2, x2, y2)|

≤ ϕ(t)(|x1 − x2|+ |y1 − y2|),
(2.1)
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and ∫
|z|<c

|h(t1, t2, x1, y1, z)− h(t1, t2, x2, y2, z)|2ν(dz) ≤ ϕ(t)(|x1 − x2|2 + |y1 − y2|2), (2.2)

where |.| denotes the norm of Rn, x ∨ y = max{x, y}, sup0≤t≤T ϕ(t) = k and t ∈ [0, T ].

Assumption 2.2 For all T1 ∈ [0, T ], x, y ∈ Rn, there exists several positive bounded

functions λi(T1) ≤ Ci such that

1

T1

∫ T1

0

|f(s, Es, x, y)− f(x, y)|dEs ≤ λ1(T1)(|x|+ |y|), (2.3)

1

T1

∫ T1

0

|g(s, Es, x, y)− g(x, y)|2dEs ≤ λ2(T1)(|x|2 + |y|2), (2.4)

and
1

T1

∫ T1

0

∫
|z|<c

|h(s, Es, x, y, z)− h(x, y, z)|2v(dz)dEs ≤ λ3(T1)(|x|2 + |y|2), (2.5)

where limT1→∞ λi(T1) = 0, i = 1, 2, 3. f : Rn × Rn → Rn, g : Rn × Rn → Rn×m, h :

Rn × Rn × Z→ Rn are measurable functions.

Lemma 2.3 (Time-changed Gronwall’s inequality [19]) Suppose D(t) is a β-stable subor-

dinator and Et is the associated inverse stable subordinator. Let T > 0 and x, v : Ω× [0, T ]→
R+ be Ft-measurable functions which are integrable with respect to Et. Assume u0 ≥ 0 is a

constant. Then, the inequality

x(t) ≤ u0 +

∫ t

0

v(s)x(s)dEs, 0 ≤ t ≤ T, (2.6)

implies almost surely x(t) ≤ u0 exp(
∫ t
0
v(s)dEs), 0 ≤ t ≤ T.

3 Main results

In this section, we will study averaging principle for stochastic differential equations driven

by time-changed Lévy noise with variable delays. The standard form of equation (1.1) is defined

as:

xε(t) = ξ(0) +

∫ t

0

f(
s

ε
, E s

ε
, xε(s−), xε(s− δ(s)))dEs +

∫ t

0

g(
s

ε
, E s

ε
, xε(s−), xε(s− δ(s)))dBEs

+

∫ t

0

∫
|z|<c

h(
s

ε
, E s

ε
, xε(s−), xε(s− δ(s)), z)Ñ(dEs, dz),

(3.1)

with initial value xε(0) = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0];Rn), the coefficients have the

same definitions and conditions as in Eq (1.1), ε ∈ (0, ε0] is a positive parameter with ε0 is

being a fixed number.

According to Khasminskii type averaging principle, we consider the following averaged

SDEs which corresponds to the original standard form (3.1)

x̂(t) = ξ(0) +

∫ t

0

f(x̂(s−), x̂(s− δ(s)))dEs +

∫ t

0

g(x̂(s−), x̂(s− δ(s)))dBEs

+

∫ t

0

∫
|z|<c

h(x̂(s−), x̂(s− δ(s)), z)Ñ(dEs, dz),

(3.2)



No.x G.J. Shen et al: AVERAGING PRINCIPLE FOR SDDES 5

where measurable functions f , g, h satisfies Assumption 2.2.

Theorem 3.1 Suppose that Assumptions 2.1 and 2.2 hold. Then for a given arbitrarily

small number δ1 > 0, there exist L > 0, ε1 ∈ (0, ε0] and β ∈ (0, α − 1), such that for any

ε ∈ (0, ε1],

E( sup
t∈[−τ,Lε−β ]

|xε(t)− x̂(t)|2) ≤ δ1.

Proof. For any t′ ∈ [0, T ], we have

xε(t′)− x̂(t′)

=

∫ t′

0

[f(
s′

ε
, E s′

ε
, xε(s′−), xε(s′ − δ(s′)))− f(x̂(s′−), x̂(s′ − δ(s′)))]dEs′

+

∫ t′

0

[g(
s′

ε
, E s′

ε
, xε(s′−), xε(s′ − δ(s′)))− g(x̂(s′−), x̂(s′ − δ(s′)))]dBEs′

+

∫ t′

0

∫
|z|<c

[h(
s′

ε
, E s′

ε
, xε(s′−), xε(s′ − δ(s′)), z)− h(x̂(s′−), x̂(s′ − δ(s′)), z)]Ñ(dEs′ , dz),

(3.3)

Let s = s′

ε , t = t′

ε , we can rewrite (3.3) as

xε(εt)− x̂(εt)

= εα
∫ t

0

[f(s, Es, x
ε(sε−), xε(sε− δ(sε)))− f(x̂(sε−), x̂(sε− δ(sε)))]dEs

+ ε
α
2

∫ t

0

[g(s, Es, x
ε(sε−), xε(sε− δ(sε)))− g(x̂(sε−), x̂(sε− δ(sε)))]dBEs

+ ε
α
2

∫ t

0

∫
|z|<c

[h(s, Es, x
ε(sε−), xε(sε− δ(sε)), z)− h(x̂(sε−), x̂(sε− δ(sε)), z)]Ñ(dEs, dz).

(3.4)

It follows from Jensen’s inequality, for any 0 < u < T , we have

E( sup
0≤tε≤u

|xε(εt)− x̂(εt)|2)

≤ 3ε2αE( sup
0≤tε≤u

|
∫ t

0

[f(s, Es, x
ε(sε−), xε(sε− δ(sε)))− f(x̂(sε−), x̂(sε− δ(sε)))]dEs|2)

+ 3εαE( sup
0≤tε≤u

|
∫ t

0

[g(s, Es, x
ε(sε−), xε(sε− δ(sε)))− g(x̂(sε−), x̂(sε− δ(sε)))]dBEs |2)

+ 3εαE( sup
0≤tε≤u

|
∫ t

0

∫
|z|<c

[h(s, Es, x
ε(sε−), xε(sε− δ(sε)), z)

− h(x̂(sε−), x̂(sε− δ(sε)), z)]Ñ(dEs, dz)|2)

=: I1 + I2 + I3.

(3.5)
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Now we present some useful estimates for Ii, i = 1, 2, 3. Firstly, for the term I1, we have

I1 ≤ 6ε2αE( sup
0≤tε≤u

|
∫ t

0

(f(s, Es, x
ε(sε−), xε(sε− δ(sε)))− f(s, Es, x̂(sε−), x̂(sε− δ(sε))))dEs|2)

+ 6ε2αE( sup
0≤tε≤u

|
∫ t

0

(f(s, Es, x̂(sε−), x̂(sε− δ(sε)))− f(x̂(sε−), x̂(sε− δ(sε))))dEs|2)

=: I11 + I12.

By Assumption 2.1, Jensen’s inequality and Cauchy-Schwarz inequality, we have

I11 = 6ε2αE( sup
0≤tε≤u

|
∫ t

0

(f(s, Es, x
ε(sε−), xε(sε− δ(sε)))− f(s, Es, x̂(sε−), x̂(sε− δ(sε))))dEs|2)

≤ 6ε2αE( sup
0≤tε≤u

|
∫ t

0

ϕ(s)(|xε(sε−)− x̂(sε−)|+ |xε(sε− δ(sε))− x̂(sε− δ(sε))|)dEs|2)

≤ 12ε2αE
(

sup
0≤tε≤u

(
|
∫ t

0

ϕ(s)|xε(sε−)− x̂(sε−)|dEs|2 + |
∫ t

0

ϕ(s)|xε(sε− δ(sε))− x̂(sε− δ(sε))|dEs|2
))

≤ 12ε2αk2ETE
(

sup
0≤tε≤u

( ∫ t

0

|xε(sε−)− x̂(sε−)|2dEs +

∫ t

0

|xε(sε− δ(sε))− x̂(sε− δ(sε))|2dEs
))

≤ 12ε2αk2ET

(∫ u
ε

0

E( sup
0≤r≤s

|xε(rε)− x̂(εr)|2)dEs +

∫ u
ε

0

E( sup
0≤r≤s

|xε(rε− δ(rε))− x̂(rε− δ(rε))|2)dEs

)
.

(3.6)

By Assumption 2.2, we can get

I12 = 6ε2αE( sup
0≤tε≤u

|
∫ t

0

(f(s, Es, x̂(sε−), x̂(sε− δ(sε)))− f(x̂(sε−), x̂(sε− δ(sε))))dEs|2)

≤ 6ε2α sup
0≤tε≤u

{t2λ21(t)E
(

( sup
0≤s≤t

|x̂(sε)|+ sup
0≤s≤t

|x̂(sε− δ(sε))|)2
)
}

≤ 12ε2α sup
0≤tε≤u

{t2λ21(t)E( sup
0≤s≤t

|x̂(sε)|2 + sup
0≤s≤t

|x̂(sε− δ(sε))|2)}

≤ 12ε2α−2u2C2
1E{( sup

0≤s≤uε
|x̂(εs)|2 + sup

0≤s≤uε
|x̂(sε− δ(sε))|2)}.

(3.7)

Secondly, for the term I2, we have

I2 = 3εαE
(

sup
0≤tε≤u

|
∫ t

0

[(g(s, Es, x
ε(sε−), xε(sε− δ(sε)))− g(s, Es, x̂(sε−), x̂(sε− δ(sε))))

+ (g(s, Es, x̂(sε−), x̂(sε− δ(sε)))− g(x̂(sε−), x̂(sε− δ(sε))))]dBEs |2
)

≤ 6εαE( sup
0≤tε≤u

|
∫ t

0

(g(s, Es, x
ε(sε−), xε(sε− δ(sε)))− g(s, Es, x̂(sε−), x̂(sε− δ(sε))))dBEs |2)

+ 6εαE( sup
0≤tε≤u

|
∫ t

0

(g(s, Es, x̂(sε−), x̂(sε− δ(sε)))− g(x̂(sε−), x̂(sε− δ(sε))))dBEs |2)

=: I21 + I22.

By Assumption 2.1 and the Burkholder-Davis-Gundy inequality (Jin and Kobayashi[6]), we
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have

I21 = 6εαE( sup
0≤tε≤u

|
∫ t

0

(g(s, Es, x
ε(sε−), xε(sε− δ(sε)))− g(s, Es, x̂(sε−), x̂(sε− δ(sε))))dBEs |2)

≤ 6εαk2b2E(

∫ u
ε

0

(|xε(εt−)− x̂(tε−)|+ |xε(tε− δ(tε))− x̂(tε− δ(tε))|)2dEt)

≤ 12εαk2b2

(∫ u
ε

0

E( sup
0≤r≤s

|xε(rε)− x̂(rε)|2)dEs +

∫ u
ε

0

E( sup
0≤r≤s

|xε(rε− δ(rε))− x̂(r − δ(r))|2)dEs

)
,

(3.8)

where the positive constant b2 comes from [6]. According to Assumption 2.2 and the Burkholder-

Davis-Gundy inequality, we have

I22 =6εαE( sup
0≤tε≤u

|
∫ t

0

(g(s, Es, x̂(sε−), x̂(s− δ(s)))− g(x̂(sε−), x̂(s− δ(s))))dBEs |2)

≤6εαb2E(

∫ u
ε

0

|g(s, Es, x̂(sε−), x̂(s− δ(s)))− g(x̂(sε−), x̂(s− δ(s)))|2dEs)

≤6εα−1b2C2E( sup
0≤s≤uε

|x̂(sε)|2 + sup
0≤s≤uε

|x̂(sε− δ(sε))|2).

(3.9)

Finally, for the term I3, by Doob’s martingale inequality and Itô isometry, we have

I3 = 3εαE( sup
0≤tε≤u

|
∫ t

0

∫
|z|<c

[h(s, Es, x
ε(sε−), xε(sε− δ(sε)), z)− h(x̂(sε−), x̂(s− δ(s)), z)]Ñ(dEs, dz)|2)

≤ 12εαE|
∫ u

ε

0

∫
|z|<c

[h(s, Es, x
ε(sε−), xε(sε− δ(sε)), z)− h(x̂(sε−), x̂(s− δ(s)), z)]Ñ(dEs, dz)|2

≤ 24εαE
∫ u

ε

0

∫
|z|<c

|h(s, Es, x
ε(sε−), xε(sε− δ(sε)), z)− h(s, Es, x̂(sε−), x̂(s− δ(s)), z)|2v(dz)dEs

+ 24εαE
∫ u

ε

0

∫
|z|<c

|h(s, Es, x̂(sε−), x̂(s− δ(s)), z)− h(x̂(sε−), x̂(s− δ(s)), z)|2v(dz)dEs

=: I31 + I32.

By Assumption 2.1, we have

I31 ≤ 24εαE
∫ u

ε

0

ϕ(s)(|xε(sε−)− x̂(sε−)|2 + |xε(sε− δ(sε))− x̂(s− δ(s))|2)dEs

≤ 24εαk
(∫ u

ε

0

E( sup
0≤r≤s

|xε(rε)− x̂(rε)|2)dEs +

∫ u
ε

0

E( sup
0≤r≤s

|xε(rε− δ(rε))− x̂(r − δ(r))|2)dEs

)
.

(3.10)

By Assumption 2.2, we have

I32 = 24εαE
∫ u

ε

0

∫
|z|<c

|h(s, Es, x̂(sε−), x̂(sε− δ(sε)), z)− h(x̂(sε−), x̂(sε− δ(sε)), z)|2v(dz)dEs

≤ 24εα−1uC3E( sup
0≤s≤uε

|x̂(sε)|2 + sup
0≤s≤uε

|x̂(sε− δ(sε))|2).

(3.11)
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Consequently, combining (3.6)-(3.11), we have

E( sup
0≤tε≤u

|xε(tε)− x̂(tε)|2)

≤
(

12ε2α−2u2C2
1 + 6εα−1b2uC2 + 24εα−1uC3

)
E( sup

0≤tε≤u
|x̂(εt)|2 + sup

0≤tε≤u
|x̂(tε− δ(tε))|2)

+ (12ε2αk2ET + 12ε2αk2b2 + 24εαk)
(∫ u

ε

0

E( sup
0≤r≤s

|xε(εr)− x̂(εr)|2)dEs

+

∫ u
ε

0

E( sup
0≤r≤s

|xε(rε− δ(rε))− x̂(rε− δ(rε))|2)dEs

)
.

(3.12)

Set

Λ(
u

ε
) := E( sup

0≤t≤uε
|xε(tε)− x̂(tε)|2).

Observe that E(sup−τ≤t≤0 |xε(t)− x̂(t)|2) = 0. Then, we have

E( sup
0≤r≤s

|xε(rε− δ(rε))− x̂(rε− δ(rε))|2) = Λ(s− δ(s)). (3.13)

Thus, the inequality (3.12) can be reformulated as follows

Λ(
u

ε
) ≤

(
12ε2α−2u2C2

1 + 6εα−1b2uC2 + 24εα−1uC3

)
E( sup

0≤tε≤u
|x̂(tε)|2 + sup

0≤tε≤u
|x̂(tε− δ(tε))|2)

+ (12ε2αk2ET + 12ε2αk2b2 + 24εαk)(

∫ u
ε

0

Λ(s)dEs +

∫ u
ε

0

Λ(s− δ(s))dEs).

(3.14)

Next, we let Θ(u) := supθ∈[−τ,u] Λ(θ), for every u ∈ [0, T ], then Λ(s) ≤ Θ(s) and Λ(s− δ(s)) ≤
Θ(s). Thus,

Λ(
u

ε
) ≤

(
12ε2α−2u2C2

1 + 6εα−1b2uC2 + 24εα−1uC3

)
E( sup

0≤tε≤u
|x̂(tε)|2 + sup

0≤tε≤u
|x̂(tε− δ(tε))|2)

+ 2(12ε2αk2ET + 12ε2αk2b2 + 24εαk)

∫ u
ε

0

Θ(s)dEs.

(3.15)

Then,

Θ(
u

ε
) = sup

θ∈[−τ,uε ]
Λ(θ) ≤ max{ sup

θ∈[−τ,0]
Λ(θ), sup

θ∈[0,uε ]
Λ(θ)}

≤
(

12ε2α−2u2C2
1 + 6εα−1b2uC2 + 24εα−1uC3

)
E( sup

0≤tε≤u
|x̂(tε)|2 + sup

0≤tε≤u
|x̂(tε− δ(tε))|2)

+ 2(12ε2αk2ET + 12ε2αk2b2 + 24εαk)

∫ u
ε

0

Θ(s)dEs.

(3.16)

By using the time-changed Gronwall’s inequality, we get

Θ(
u

ε
) ≤
(

12ε2α−2u2C2
1 + 6εα−1b2uC2 + 24εα−1uC3

)
E( sup

0≤tε≤u
|x̂(tε)|2 + sup

0≤tε≤u
|x̂(tε− δ(tε))|2)

× e2(12ε
2αk2ET+12ε2αk2b2+24εαk)Eu

ε .

(3.17)
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Furthermore, we have

E( sup
0≤tε≤u

|xε(tε)− x̂(tε)|2) ≤
(

12ε2α−2u2C2
1 + 6εα−1b2uC2 + 24εα−1uC3

)
× E( sup

0≤tε≤u
|x̂(tε)|2 + sup

0≤tε≤u
|x̂(tε− δ(tε))|2)e2(12ε

αk2ET+12εαk2b2+24k)ET .
(3.18)

Select β ∈ (0, α− 1) and L > 0 such that for any t ∈ [0, Lε−β−1] ⊆ [0, Tε ] we have

E( sup
0≤tε≤Lε−β

|xε(tε)− x̂(tε)|2) ≤ ξεα−β−1, (3.19)

where constant

ξ :=
(

12L2εα−β−1C2
1 + 6b2LC2 + 24LC3

)
× E( sup

0≤tε≤Lε−β
|x̂(tε)|2 + sup

0≤tε≤Lε−β
|x̂(tε− δ(tε))|2)e2(12ε

αk2ET+12εαk2b2+24k)ET .

Consequently, for given any δ1 > 0, there exist a ε1 ∈ (0, ε0] such that for each ε ∈ (0, ε1] and

t ∈ [−τ, Lε−β ],

E( sup
−τ≤t≤Lε−β

|xε(t)− x̂(t)|2) ≤ δ1. (3.20)

This completes the proof.

Remark 3.2 We would like to point out that the classical stochastic averaging principle

for SDEs driven by Brownian motion deals with the time interval [0, ε−1] while we discussed

here is with a strictly shorter time horizon [0, ε−β ] ⊂ [0, ε−1] for β ∈ (0, α− 1). In other words,

the order of convergence here is ε−β which is weaker than the classical order of convergence

ε−1. So, our averaging principle is a weaker averaging principle. This weaker type averaging

principle has been examined for various SDEs by many authors in the literature. Essentially

this is due to that the regularity of trajectories of the solutions of SDEs with more general

noises is weaker than that of the solutions of SDEs driven by Brownian motion. It is clear that

the classical averaging principle for our equation can not be derived by the method we used

here. Of cause, to establish a classical averaging principle for our equation is interesting but

challenge, one needs to seek an entirely new approach. We postpone this for a future work.

4 Example

We consider the following stochastic differential equations driven by time-changed Lévy

noise with time-delays:

dxε(t) = εα(xε cos2(Et)− Etxε sin(Et − 1))dEt + ε
α
2 λdBEt + ε

α
2

∫
|z|<c

1Ñ(dEt, dz), (4.1)

for t ∈ [0, T ], and initial value xε(t) = 1 + t, t ∈ [−1, 0], v(z)dz = |z|−2 and λ ∈ R, here

f(t, Et, xε(t), xε(t− τ)) = xε cos2(Et)− Etxε sin(Et − 1),

g(t, Et, xε(t), xε(t− τ)) = λ, h(t, Et, xε(t), xε(t− τ), z) = 1.

Let

f(x̂(s), x̂(s− τ)) =

∫ 1

0

f(t, Et, xε(t), xε(t− τ))dEt

= (
1

2
E1 +

sin 2E1

4
+ E1 cos(E1 − 1)− sin(E1 − 1))xε,
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and

g(x̂(s), x̂(s− τ)) = λ, h(x̂(s), x̂(s− τ), z) = 1.

We have the following corresponding averaged stochastic differential equations driven by time-

changed Lévy noise with variable delays

dx̂(t) = εα(
1

2
E1 +

sin 2E1

4
+ E1 cos(E1 − 1)− sin(E1 − 1))x̂dEt + ε

α
2 λdBEt + ε

α
2

∫
|z|<c

1Ñ(dEt, dz).

(4.2)

Define the error Err = [|xε(t) − xε(t)|2]
1
2 . We carry out the numerical simulation to get the

solutions (4.1) and (4.2) under the condition α = 1.2, ε = 0.001, λ = 1 and α = 1.2, ε =

0.001, λ = −1 respectively (Figure 1 and Figure 2). One can see a good agreement between

solutions of the original equation and the averaged equation.
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Figure 1: Comparison of the original solution

xε(t) with the averaged solution x̂(t)

with ε = 0.001, λ = 1.
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Figure 2: Comparison of the original solution

xε(t) with the averaged solution x̂(t)

with ε = 0.001, λ = −1.


