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ABSTRACT: In this paper, a new constitutive model is presented that combines the Wilshire 8 
equations with a modified Kachanov-Rabotnov continuum damage mechanics (CDM) to 9 
enable the prediction of uniaxial creep curves that contain both a primary and tertiary stage. 10 
Another advantage of this approach is that the Wilshire equations have been shown to 11 

accurately extrapolate the operational failure times and minimum creep rates from very short- 12 
term tests. This approach also removes the need to estimate the Wilshire time to strain 13 
equation at numerous different strains. A simple but multi-step procedure is also introduced 14 

for estimating the unknown parameters of this model. When applied to Waspaloy data, the 15 
model was shown to represent the shape of the experimental creep curves reasonably well 16 
9especially at low and high strains) and provides reasonable creep curve predictions – with 17 
percentages errors averaging around 4-5%. 18 
 19 
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1. Introduction 22 

 23 

The introduction of new materials has already supported major improvements in the 24 
efficiency and reliability of aeroengines [1]. Nevertheless, a combination of rising energy 25 
prices and global warming are now requiring further increases in engine efficiency to 26 
minimise fuel consumption and greenhouse gas emissions. One way to achieve this is through 27 
higher operational temperatures, but this requires materials with enhanced temperature 28 

capabilities such as the Nickel based superalloys – of which Waspaloy, is an example. 29 
Unfortunately, the ‘materials development cycle’ currently takes many years [2]. Long 30 
duration test programmes are needed to establish the tensile stresses which can be sustained 31 
over the planned design lives without creep failure occurring at the temperatures encountered 32 
during service. The Wilshire equation for time to failure has great potential for reducing the 33 

length of the development cycle because it has been shown in the literature to produce 34 

reliable failure time predictions for the operating conditions (or close to) of many materials 35 

using only very short term accelerated tests [3-12]. 36 
 37 
In order to prevent aeroengine blades rubbing against the engines outer casing, strain 38 

is also a very important design and material development criteria. Being able to realistically 39 

predict strain at given times is also very important for converting small punch test data into 40 
equivalent uniaxial test results given that the most promising way of doing this is via finite 41 

element models of the punch test. These finite element models require equations yielding 42 
incremental increases in strain with time and so require accurate predictions of all points 43 
along a uniaxial creep curve. The successful correlation of small punch and uniaxial test 44 

results will help release the full potential of the small punch test.  45 
 46 

However, the literature is quite sparse on how to modify the Wilshire equations so as 47 

to be able to predict times to specified strains and therefore complete creep curves [13-14]. 48 

Most recently, Evans and Williams [15] have incorporated Artificial Neural Network 49 
technology (ANN) into the Wilshire methodology as a solution. However, the resulting 50 

model has no closed form expression and is quite cumbersome to implement. It involves 51 
numerous steps including modelling the Wilshire time to strain parameters as a function of 52 
strain using ANN’s, entering a strain into these ANN’s to get the Wilshire parameters and 53 

finally inserting these Wilshire parameters (and that strain) into the Wilshire time to strain 54 
equation to get a prediction for the time to that strain. Repeating for all strains up to the 55 
rupture strain yields the predicted creep curve. Such a process is not ideally suited to finite 56 

element modelling of the small punch creep test. Cano and Stewart [16] by passed this 57 
procedure by integrating the Wilshire equations into a CDM model, but the resulting model 58 

was not capable of modelling the primary stages of the creep process. Therefore, the aim of 59 
this paper is to overcome the limitations of these last two approaches by integrating the 60 

Wilshire equations for time to failure and minimum creep rates into a modified Kachanov-61 
Rabotnov (K-R) creep continuum damage model. These modifications allow for primary 62 
creep and for failure to occur when the damage parameter is less than unity. 63 

 64 
  To achieve this objective the paper is structured as follows. The next section describes 65 

the uniaxial creep tests of the polycrystalline Nickel alloy Waspaloy that have been 66 
conducted at Swansea University. Section 3 reviews some CDM approaches to creep already 67 
in the literature. Section 4 outlines some statistics that can be used for evaluating the 68 
effectiveness of a creep model in predicting various creep properties. Section 5 outlines the 69 
proposed CDM model to be used in this paper, together with a description of how the 70 
unknown parameters of this model can be quantified. This model is then applied to the 71 
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Waspaloy data in section 6. The main findings are then summarised in the conclusions 72 

section.  73 
 74 
2. The data 75 

 76 

Thirty-one cylindrical test pieces were machined from an received Waspaloy bar, with 77 
a gauge length of 28mm and a diameter of 5mm. The chemical composition of this batch of 78 
material is shown in Table 1a. The material was heat treated for 4 h at 1353 K (water 79 
quenched), 4 h at 1123 K (air cooled) and 16 h at 1033 K (air cooled). This resulted in a 80 

uniform equiaxed structure of average grain diameter 45 m. The microstructure contained 81 

uniform / particles of mean diameter 0.3 m.  82 
 83 
Table 1a  Chemical composition (weight %)  84 
Cr Co C Mn Si Fe Mo Ti Al B Zr S P Cu 

19.1 13.5 0.03 0.1 0.1 0.79 4.08 3.15 1.3 0.005 0.07 0.0025 0.01 0.1 

Also 5 ppm of Ag, 10 ppm of Pb and 0.5 ppm of Bi with balance Ni. 

 85 

The tensile strength (TS) values for this batch of material are shown in Table 1b. 86 
Normalisation of the stress using the tensile strength is done using these measured UTS 87 
values – no equation was required for interpolating the UTS as the test matrix contained no 88 

creep curves at any other temperature. 89 
 90 

Table 1b  Variation of Tensile Strength with temperature 91 

Temperature (K) 873 923 973 1023 

Tensile Strength (MPa) 1154 1120 975 827 

 92 

The specimens were tested in tension over a range of stresses at 873K, 923K, 973K 93 
and 1023K using high precision in Andrade-Chalmers constant-stress machines [17]. Loads 94 
and stresses could be applied and maintained to an accuracy of 0.5%. In all cases, 95 

temperatures were controlled along the gauge lengths and with respect to time to better than 96 
±1 K. The extensometer was capable of measuring tensile strain to better than 10-5. Loading 97 
machines, extensometers and thermocouples were all calibrated with respect to NPL traceable 98 

standards. At 873K, eight specimens were placed on test over the stress range 1150 MPa to 99 
700 MPa, at 923K seven specimens were placed on test over the stress range 1000 MPa to 100 

550 MPa, at 973K nine specimens were placed on test over the stress range 950 MPa to 200 101 
MPa and at 1023K seven specimens were tested over the stress range 700 MPa to 250 MPa. 102 
Up to 400 creep strain/time readings were taken during each of these tests. Because 103 

Waspaloy can serve at temperatures up to 920K for critical applications and 1040K for less 104 
demanding situations, the test programme covered stress ranges giving creep lives up to 105 

5,500 h (around 19852000 s) at 873 to 1023 K. This data set has been published by Wilshire 106 
and Scharning [18] and Evans [19]. 107 

 108 

 Analysis of the data obtained on constant load machines would proceed in the same 109 

way as outlined in this paper – all that is required is that the creep curves, minimum creep 110 

rates and failure times are all obtained at constant load. Converting the resulting predicted 111 

constant load creep curves into constant stress creep curves required for small punch 112 

modelling would require further manipulation of the predicted curves. 113 

3. A brief review of some well-known CDM models  114 
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3.1.  The Kachanov-Rabotnov (K-R) model 115 

The Kachanov-Rabotnov (K-R) creep continuum damage model at constant 116 

temperature consists of a creep strain rate, ε̇, and a damage evolution equation ẇ [20,21] 117 

dw

dt
= ẇ =

δσχ

(1−ϕ)(1−w)ϕ
                               (1a) 118 

dε

dt
= ε̇ = A (

σ

1−w
)
n

                                (1b) 119 

where A and n are the Norton power law constants,  is the constant stress associated with a 120 

uniaxial creep test, w is the K-R damage parameter that varies from 0 through to 1 during the 121 

creep test, and , , and  are the tertiary creep damage constants. The constant  must be 122 

greater than or equal to unity (but is typically set at 3). /(1-w) is often referred to as the 123 

effective stress, representing the accelerating effect of damage accumulation on the initial 124 

stress. Assuming that failure occurs when w = 1, the definite integral of Eq. (1a) yields an 125 

expression for both the time to failure tf and K-R damage  126 

tf =
1

δσχ
                                 (1c) 127 

w = 1 − [1 − δσχt]
1

ϕ+1 = 1 − [1 −
t

tf
]

1

ϕ+1
                             (1d) 128 

If Eq. (1d) is inserted into Eq. (1b) and the indefinite integral taken, the form of the K-129 

R uniaxial creep curve at stress  and constant temperature emerges 130 

ε =
A𝜎𝑛

1−
n

ϕ+1

{1 − [1 −
t

tf
]
1−

n

ϕ+1
}                                          (1e) 131 

3.2. Modified Kachanov-Rabotnov (K-R) model 132 

One issue with the K-R model is that it assumes failure occurs when w = 1, which in 133 

turn implies that the effective stress, creep rate and rate of damage accumulation are also all 134 

infinite at failure – a phenomenon that is not seen in uniaxial creep testing of metals for high 135 

temperature applications. This can be tackled within the K-R framework by introducing a 136 

critical damage parameter, wf ≤ 1, such that failure occurs when w reaches this quantity. 137 

Inserting wf for w into Eq. (1d) when t = tf and solving for  gives 138 

δ =
1−[1−wf]

ϕ+1

σχtf
                                (2a) 139 

which when substituted back into Eq. (1d) gives a modified K-R damage as a function of 140 

time 141 

w = 1 − [1 + ([1 − wf]
ϕ+1 − 1)

t

tf
]

1

ϕ+1
                                                                                (2b) 142 

with the failure time equation remaining unchanged. Clearly, Eq. (2b) collapses to Eq. (1d) 143 

when wf =1. Notice also that Eq. (1b) can be written as 144 
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w = 1 − 
σ

(
ε̇

A
)

1 
n

=
(
ε̇

A
)

1 
n
−σ

(
ε̇

A
)

1 
n

                                                                                       (3) 145 

so that the K-R model implies that the minimum creep rate, ε̇m = Aσn, occurs when there is 146 

no damage accumulation, i.e. when w = 0.  This is most clearly seen in Eq. (1d) where when  147 

ε ̇ = ε̇m, (
𝜀̇

𝐴
)

1 

𝑛
= 𝜎 so that w = 0. As soon as the creep strain rate is greater than the minimum 148 

creep strain rate, the term (
𝜀̇

𝐴
)

1 

𝑛
 becomes larger than the equivalent stress, , and irreversible 149 

damage begins. Hence a clear limitation of the K-R model is that it does not account for 150 

primary creep. 151 

3.3. The Hayhurst modification of the K-R model 152 

Hayhurst et.al. [22] presented a solution to this problem by introducing a second 153 

damage variable – w2. In this model the first damage parameter, w, represented dislocation 154 

softening and evolves from 0 through to 1. w2 represented nucleation-controlled creep 155 

constrained to evolve from 0 to 1/3. In one version of this model, the creep rate and rate of 156 

accumulation in the new damage variable were dependent on stress through use of a 157 

hyperbolic sine function. A different approach that does not require the use of this additional 158 

damage variable was also proposed by Hayhurst et. al. [23] which simply involves adding the 159 

power expression tm to Eqs. (1a,b) – where m is a material constant 160 

dw

dt
= ẇ =

δσχtm

(1−ϕ)(1−w)ϕ
                               (4a) 161 

dε

dt
= ε̇ = A (

σ

1−w
)
n

tm                               (4b) 162 

Assuming that failure occurs when w = 1, the definite integral of Eq. (4a) yields an 163 

expression for both the time to failure tf and damage w 164 

tf = [
1+m

δσχ
]

1

m+1
                                            (4c) 165 

w = 1 − [1 − (
t

tf
)
m+1

]

1

ϕ+1

                                                     (4d) 166 

If Eq. (4d) is inserted into Eq. (4b) and the indefinite integral taken, the form of the 167 

uniaxial creep curve at stress  and constant temperature emerges 168 

ε =
Aσn

(1−
n

ϕ+1
)(m+1)

{1 − [1 − (
t

tf
)
m+1

]
1−

n

ϕ+1

}                                                    (4e) 169 

It is clear from Eq. (4e) that the shape of the creep curve is such that it has a primary 170 

and tertiary component due to the fact that t/tf has two power exponents - (m+1) and 1-171 

n/(+1). This modified expression reduces to the original K-R model when m = 0, implying 172 

that primary creep is picked up via a negative value for m. 173 

3.4. Power Law breakdown 174 
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The K-R, modified K-R and Hayhurst models discussed above all suffer from power 175 

law breakdown in that the form of the failure time equation is a power law (see Eqs. (1c,4c) 176 

and it is known that the parameter n is then not a material constant but varies with stress. 177 

Hayhurst et.al. [22] started to address this issue by using a Sinh rather than a power law 178 

relation to describe the role of stress on creep strain. More recently, the coupled Sinh creep 179 

damage constitutive model of Haque et. al. [24] consists of a creep strain rate and damage 180 

evolution equation as follows  181 

dw

dt
= ẇ =

B[1−e−ϕ]sinh(
𝜎

σt
)
χ

ϕ
eϕw                                                                                     (5a) 182 

dε

dt
= ε̇ = Asinh (

𝜎

σs
) eλw

3/2
                                                                                                   (5b) 183 

where t and s are additional material constant and the parameters in Eqs. (5) have different 184 

meanings to the same parameters in the previously discussed models. Whilst the use of the 185 

Sinh function helps overcome power law breakdown, the definition of  as ln(ε̇f/ε̇m) in Eq. 186 

(5b) means that the creep curves starts at time t = 0 with a creep rate equal to ε̇m and from 187 

that point on the creep rate continues to increase, i.e. the model is for tertiary creep only (ε̇f is 188 

the creep rate at failure). 189 

 An alternative approach is to overcome power law break down by making use of the 190 

Wilshire equations [3]. These equations have been shown to predict well both failure times 191 

and minimum creep rates over a wide range of stress and temperatures using just accelerated 192 

test data [4-12]. Cano et. al. [16] have recently developed a CDM version of this Wilshire 193 

approach in which they replace the Sinh function in Eqs. (5) with the Wilshire equations 194 

dw

dt
= ẇ =

[1−e−ϕ]

ϕ

1

tf
eϕw                                                                                                 (6a) 195 

dε

dt
= ε̇ = εṁe

λw                                                                                                                     (6b) 196 

where 197 

tf =
[
−ln (𝜎/σTS)

k1
]

1
u

e
−Qc
RT

                                (6c) 198 

ε̇m =
[
−ln (𝜎/σTS)

k2
]

1
v

e
Qc
RT

                                (6d) 199 

and u, v are materials constants, TS is the tensile strength, R the universal gas constant, Qc 200 

the activation energy for self-diffusion, and T the absolute temperature. Eqs. (6c,d) are the 201 

Wilshire equations for time to failure and minimum creep rates. In Eq. (6b),  is set equal to 202 

ln(ε̇f/ε̇m) and in Eq. (6a)  is set equal to  ln(ẇf/ẇ0) where ẇf/ẇ0 is the ratio of the final to 203 

initial rates of damage accumulation. As such this is once again a model for tertiary creep 204 

only. 205 

Another approach to solving the power law issue was presented by Liu and Murakami 206 

[25] who specified the damage rate and creep rate equations as 207 



7 
 

dw

dt
= ẇ =

B[1−e−ϕ]𝜎𝜒

ϕ
eϕw                                                                                                 (7a) 208 

dε

dt
= ε̇ = A𝜎𝑛eqw

3/2
                                                                                                              (7b) 209 

where A, B, q, n,  and  are again material constants – again with different meanings to 210 

those in the K-R model. 211 

4. A Proposed CDM models based on the Wilshire equations 212 

4.1. Specification 213 

First, rewrite the Wilshire equation for the minimum creep rate as 214 

ε̇m = [
1

k2j
]

1

vj
e− 

Qcj

RT  [−ln (σ/σTS]
1

vj = Ajτ
nj                             (8a) 215 

where Aj = [
1

k2j
]

1

vj e− 
Qcj

RT , nj = 1/vj and [−ln (σ/σTS] =  τ. In Eq. (8a), j = 1 when 216 

σ σTS ≤⁄ 𝜎1
𝑐;   j = 2 when  𝜎1

𝑐  < σ σTS ≤⁄ 𝜎2
𝑐;   …. ; j = p when σ σTS >⁄ σp-1

c  and 217 

σ1
c  < σ2

c  < ..…….. < σp-1
c  .  c

j are critical values for the normalised stress and so fall between 0 218 

and 1. In this approach, there are p creep regimes that occur in distinct ranges for the 219 

normalised stress and the p versions of Eq. (8a) then apply to each regime. Typically, p varies 220 

between 1 and 4 depending on the material being studied.  221 

Next it is proposed that the creep rate (𝜀̇) equation is of the form 222 

dε

dt
= ε̇ = (ε̇m)

ρ(1 − w)nj (
t

tf
)
mj

= (Ajτ
nj)

ρ
(1 − w)nj (

t

tf
)
mj

                                      (8b) 223 

 224 

as nj is negative in value and where mj are the additional primary creep constants that will be 225 
negative in value in the presence of strong primary creep. 226 

Re-arranging Eq. (8b) for damage gives 227 

w = 1 − (
ε̇

(ε̇m)ρ
)

1

nj (
t

tf
)

−mj

nj                                      (9a) 228 

Assuming failure occurs when damage reaches some critical value, wf, where wf ≤ 1 229 
then, 230 

wf = 1 − (
ε̇f

(ε̇m)ρ
)

1

nj                                             (9b) 231 

where εḟ is the strain rate at failure. When the minimum creep rate is reached at time tm, the 232 
amount of accumulated damage is greater than zero 233 

wm = 1 − (
ε̇m

(ε̇m)ρ
)

1

nj (
tm

tf
)

−mj

nj                                            (9c) 234 

Next it is proposed that the CDM damage rate ( 𝑤̇) equation is of the form 235 

dw

dt
= ẇ =

Gjτ
χj

(1−w)
ϕj
tmj                                                                                                           (10a) 236 
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where Gj, j and j are additional tertiary damage constants. The indefinite integral of Eq. 237 

(10a) under the assumption that w = 0, when t = 0 gives 238 

w = 1 − (1 −
(1+ϕj)Gjτ

χj

mj+1
tmj+1)

1

1+ϕj
                                                                                   (10b) 239 

Again, with failure occurring when w = wf,  240 

(1+ϕj)Gjτ
χj

mj+1
=

1−(1−wf)
1+ϕj

t
f

mj+1
                                                                                                     (10c) 241 

Substituting Eq. (10c) into (10b) gives a simplified expression for damage 242 

w = 1 − (1 + [(1 − wf)
1+ϕj − 1] (

t

tf
)
mj+1

)

1

1+ϕj
                                                                (10d) 243 

with the time to failure being given by 244 

tf = [
(mj+1)(1−(1−wf)

1+ϕj)

(1+ϕj)Gjτ
χj

]

1

mj+1

                                                                                             (10e) 245 

The Wilshire failure time equation (Eq. (6c)) can be written as 246 

tf = e
Qcj

RT [
1

k1j
]

1

uj 𝜏
1

uj  247 

The failure time equation given by Eq. (10e) is therefore consistent with this Wilshire 248 
time to failure equation, with 249 

1/uj = -j/(mj+1)        and                   

mj+1

ϕj+1
[(1/k1j)1/uj exp(Qcj/RT)](1+mj) 

1−(1−wf)
1+ϕj

 = 1/Gj                     (10f) 250 

Finally, taking the indefinite integral of Eq. (8b) (after substituting in Eq. (10b) or Eq. (10d) 251 

for w) and assuming  = 0 when t = 0 (to determine the constant of integration) gives the 252 

following expressions for the uniaxial creep curve 253 

ε = Γ {1 − [(
t

tf
)
mj+1

((1 − wf)
1+ϕj − 1) + 1]

Δ𝑗

} 254 

or 255 

 = Γ

{
 
 

 
 

1 −

[
 
 
 
 
 

(

  
 

t

[
(mj+1)(1−(1−wf)

1+ϕj)

(1+ϕj)Gjτ
χj

]

1
mj+1

 

)

  
 

mj+1

((1 − wf)
1+ϕj − 1) + 1

]
 
 
 
 
 
Δ𝑗

}
 
 

 
 

                       (11a)                      256 

 257 

where   258 
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Γ =
(ε̇m)

ρ tf

Δ𝑗[(1+mj)−(1+mj)(1−wf)
1+ϕj]

=

(Ajτ
nj)

ρ
[
(mj+1)(1−(1−wf)

1+ϕj)

(1+ϕj)Gjτ
χj

]

1
mj+1

Δ𝑗[(1+mj)−(1+mj)(1−wf)
1+ϕj]

                                  (11b) 259 

and  260 

εf = Γ {1 − [(1 − wf)
1+ϕj]

Δ𝑗}                                                                                         (11c)   261 

and where j = 1 +
ρnj

1+ϕj
 . 262 

The normalised creep curve is then given by 263 

ε

εf
=

1−[(
t

tf
)
mj+1

((1−wf)
1+ϕj−1)+1]

Δ𝑗 

 

1−[(1−wf)
1+ϕj]

Δ𝑗
=

1−

[
 
 
 
 
 
 
 

(

 
 
 
 
 

t

[
(mj+1)(1−(1−wf)

1+ϕj)

(1+ϕj)Gjτ
χj

]

1
mj+1

)

 
 
 
 
 

mj+1

((1−wf)
1+ϕj−1)+1

]
 
 
 
 
 
 
 
Δ𝑗 

 

1−[(1−wf)
1+ϕj]

Δ𝑗
        (11d)                                                                                 264 

 265 

4.2. Estimation 266 

Estimation requires a mixture of linear and non-linear least squares. The first step 267 
involves estimating the Wilshire equation for the minimum creep rate to obtain values for vj, 268 

Qcj and k2j. A hat symbol will be used to designate these as estimates. Details of such a linear 269 
least squares procedure are now well documented in, for example, Evans [15]. Then values 270 

for the parameters Aj and nj in Eqs. (8b) are estimated as 271 

Âj = [
1

k2ĵ
]

1

vĵ
e− 

Qcĵ

RT           and             n̂j = 
1

vĵ
                           (12a) 272 

The second step involves testing the assumption that mj and j in Eq. (11d) are 273 
temperature dependent. To do this, all the experimental creep curves in the jth creep regime 274 
at temperature 873K are normalised using the measured failure strains. Then wf is set equal to 275 

1 and non-linear least squares used to estimate the values for mj and j in Eq. (11d) at this 276 
temperature and this creep regime. Standard Gauss-Newton algorithms can be used to 277 
minimise the sum of the squared differences between each actual normalised creep strain data 278 

point at 873K in the jth creep regime and that predicted by Eq. (11d). Repeat this process for 279 
all values of wf in the range 0 – 1 using a simple grid search technique and choose the value 280 

for wf to be that which gives the smallest such sum of squared differences. Again, let these 281 

estimates be denoted with the hat symbol -  mjk̂, wfk̂  and Δjk̂. The subscript k represents 282 

estimates for the kth temperature, and so for the data set in this paper k varies from 1 to 4. By 283 

repeating this process at all the other temperatures and creep regimes, plots of mjk̂, wfk̂  and 284 

Δjk̂ against temperature for each creep regime can be made, and these will then reveal any 285 

dependency on stress and temperature.  286 

If there is no dependency on temperature, then mj and j can be estimated by 287 
minimising the sum of the squared differences between each actual normalised creep strain 288 
data point at all temperatures in the jth creep regime and that predicted by Eq. (11d). If there 289 

is dependency, then equations need to be found to model this. 290 
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The third step involves estimating the value for . This parameter is simply the 291 

exponent in the Monkman-Grant relation [26] 292 

(ε̇m)
𝜌 = C

tf

εf
                                (12b) 293 

Estimates for C and  are then easily found by regressing the log minimum creep rate 294 

against the log of the ratio of tf to f (1/ is the slope of this linear regression line). Let 𝜌̂ be 295 

such an estimate. Assuming no temperature dependency, values for j are then found as 1-296 

{(1+nj)/j}. 297 

 The fourth step involves estimating the Wilshire equation for times to failure to 298 
obtain values for 1uj and k1j. Then, and again using the hat symbol to denote parameter 299 

estimates, values for the parameters Gj and j in Eqs. (10a) are given by 300 

 ̂j = -(mĵ +1)/𝑢𝑗̂         and                                 

mĵ+1

1+𝜙𝑗̂
[(1/k1𝑗̂)1/𝑢𝑗̂ exp(Q𝑐𝑗̂/RT)](1+mĵ) 

1−(1−wf̂)
1+𝜙𝑗̂

 = 1/Ĝj                (12c) 301 

5.  Evaluation Statistics 302 

Suppose a uniaxial test program is made up of h test conditions (such as one at  = 303 
700 MPa with T = 973K) and for each test condition some di strain-time readings made. Let 304 

it be the experimental (or actual) value for strain measured at time t and 𝜀𝑖̂𝑡  the prediction 305 
made for these strains using the Wilshire CDM model described above. Then the accuracy of 306 
the predictions made for these experimental creep curves can be quantified using the mean 307 

percentage squared error (MPSE) 308 

MPSE =
1

ℎ∑ 𝑑𝑖
ℎ
𝑖=1

 ∑ ∑ [(𝜀𝑖𝑡 − 𝜀𝑖̂𝑡)/𝜀𝑖𝑡]
2𝑑𝑖

𝑡=1
ℎ
𝑖=1 ≅ 

1

ℎ ∑ 𝑑𝑖
ℎ
𝑖=1

∑ ∑ [𝑒𝑖𝑡]
2𝑑𝑖

𝑡=1
ℎ
𝑖=1                         (13) 309 

where the eit =  ln(𝜀𝑖𝑡) − ln (𝜀𝑖̂𝑡) are what Holdsworth et. al. [27] termed the residual log 310 

times. The approximation of this residual to the MPSE is better the smaller are the percentage 311 
errors (very close for an error of less than 10%). The standard deviation in these residuals 312 
(labelled SA-RLT by Holdsworth et. al.) can be calculated at each test condition as 313 

𝑠𝑒𝑖 =
1

𝑑𝑖−1
∑ [𝑒𝑖𝑡 − 𝑒̅𝑖]

2𝑑𝑖
𝑡=1                             [14a] 314 

where 𝑒̅𝑖 is the mean residual log time at test condition i. Then, assuming these standard 315 
deviations are independent of test conditions, the standard deviation in the residuals over all 316 

conditions can be estimated as a weighted average of all the sei 317 

𝑠𝑒 =
∑ [(𝑑𝑖
ℎ
𝑖=1 −1)𝑠𝑒𝑖]

∑ (𝑑𝑖
ℎ
𝑖=1 −1)

                   (14b) 318 

se and MPSE are different because the mean value for e may not be zero – as would be the 319 
case if the model systematically over or underestimates the strain. 320 

If the residuals are assumed to be normally distributed (implying strains are log 321 

normally distributed), and the standard deviation for the residuals are independent of stress, 322 
the percentile (p) log strain at test condition i can be calculated  323 
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ln(𝜀𝑖)𝑝 = ln(𝜀𝑖̂) + 𝑠𝑒𝑧𝑝                 (15a) 324 

where zp is the pth percentile of the standard normal distribution. Because of the assumed log 325 

normality of the strains, the predicted log strain at test condition i, ln(𝜀𝑖̂), is actually 326 
interpreted as the median (and therefore mean) log strain at that condition. Then, as an 327 
example, 99% of log strain values will be in the range  328 

ln(𝜀𝑖̂) ± 𝑠𝑒2.58                   (15b) 329 

and so 99% of the strain value will be in the range 330 

𝜀𝑖̂ 𝑒
±𝑠𝑒2.58                              (15c) 331 

Holdsworth et. al. [27] have termed 𝑒𝑠𝑒2.58 the Z-parameter and suggested it provides 332 
a means of quantifying model-fitting effectiveness. Ideally, for single-cast analysis, Z should 333 
not exceed 2, whereas Z in excess of 4 is unacceptable [28]. 334 

However, this interpretation of what is acceptable, assumes that the residual variation 335 
picked up by se (and thus Z) is all systematic in nature and so the result of a poorly fitting 336 
creep model. This will not always be the case. Granger and Newbold [29] have shown that  337 

 𝑠𝑒
2 = (𝛽 − 1)2𝑠ln(𝜀̂)

2 +𝑠v
2                 (16a) 338 

where 𝑠ln(𝜀̂)
2  is the variance in the predicted log strains,  is the slope of the best fit line on a 339 

cross plot of ln(εit) v ln(𝜀𝑖̂𝑡) and s2
v the variance in the residuals around this best fit line 340 

which is given by 341 

ln(𝜀𝑖𝑡) = α + βln(𝜀𝑖̂𝑡) + 𝑣𝑖𝑡                 (16b) 342 

So part of 𝑠𝑒
2 is caused by  differing from 1, and so by the best fit line being flatter or 343 

steeper than a 450 line on a scatter plot of ln(εit) v ln(𝜀𝑖̂𝑡) This is clearly systematic bias that 344 

is caused by the used creep model itself, because in such a situation the creep model is then 345 

consistently over (or under) predicting ln(εit) at low log strains followed by consistently 346 

under (or over) predicting at high log strains - depending on whether  is above or below 1. 347 
On the other hand, vit is clearly random variation with sv being the standard deviation and 348 

thus size of this random variation. 349 

This suggests that a high value for Z would not be an indication of a creep model 350 

making large systematic prediction errors, provided  = 1. Rather, it would be due to a large 351 
value for sv. In this extreme situation, all the variation being picked up by Z is purely random 352 
in nature and reflects the stochastic nature of creep in the material under investigation - which 353 
for some materials can result in substantial scatter. The size of this random variation is pre-354 
determined, and no creep model can reduce it. Instead it is the result of things like 355 
microstructural variation in test samples, accuracy of test equipment etc. At the other 356 

extreme, a large value for Z would be an indicator of a poorly performing creep model if 𝑠v
2 = 357 

0 with  ≠ 1.  358 
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Another issue with Z is that it does not pick up a poorly performing creep model that 359 

is the result of the model failing the predict the log strain even on the average. This can be 360 
seen by noting that the MPSE can also be worked out as 361 

MPSE = 𝑒̅2 + 𝑠𝑒
2 = 𝑒̅2 + (𝛽 − 1)2𝑠ln(𝜀̂)

2  + 𝑠v
2                         (17a) 362 

where 𝑒̅ is the mean residual over all tests conditions and times. Thus, a proportion of the 363 

MPSE is due to the creep model predicting the strain incorrectly on the average, which is 364 

clearly a systematic error - UM = 𝑒̅2/MPSE. This is often referred to as the bias proportion. 365 

Another proportion of the MPSE is due to the regression parameter  ≠ 1, which again is due 366 

to a poorly performing creep model – UR = (β − 1)2sln(ε̂)
2 /MPSE. This is often called the 367 

new regression proportion. Finally, a proportion of the MPSE is due to UD = s2
v/ MPSE and 368 

is often called the random disturbance proportion. Granger and Newbold have shown that the 369 

last equation can be rewritten as 370 

MPSE = 𝑒̅2 + (𝑠ln(𝜀̂) − 𝑟𝑠ln(𝜀))
2 + (1 − 𝑟2) 𝑠ln(𝜀)

2               (17b) 371 

where 𝑠ln(𝜀)
2 is the variance in the actual log strains and r the correlation between the actual 372 

and predicted log strains. 373 

6. Results 374 

6.1. The Wilshire equation for the minimum creep rate  375 

The top half of Table 2 shows the least squares estimates made for the parameters of 376 
the Wilshire minimum creep rate equation.  377 

Table 2.  Estimated parameters of the Wilshire equations 378 

 Wilshire minimum creep rate equation – Eq. (8a) 

Parameters /TS > 0.726 (j =1) /TS ≤ 0.726 (j=2) 

k2j 42739791.637 6.6002 

vj -0.8652 -5.3528 

Qcj(Jmol-1) 225,637 224,432 

 Wilshire failure time equation – Eq. (6c) 

Parameters /TS > 0.726 (j =1) /TS ≤ 0.726 (j=2) 
k1j 60448836.39 13.5687 

uj 0.8168 4.1565 

Qcj(Jmol-1) 201,529 213,689 

 379 

This model is capable of explaining 95.14% of the variation in log minimum creep 380 

rates, and the parameters above and below c = 0.726 are all statistically significantly 381 
different from each other at the 1% significance level. So, whilst the activation energies 382 

estimated either side of the break stress are only slightly different in value from each other 383 
(224 kJmol-1 v 226 kJmol-1), this difference is nonetheless statistically significant at the 1% 384 

significance level. Fig. 1(a) provides a visualisation of this model by plotting ln() against 385 

ε̇m + 𝑄𝑐/𝑅𝑇. There is a clear break in the relationship around c = 0.726 and all data 386 
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points seem to fit tightly around the best fit line given by Eqs. (8a) - which is shown as the 387 

dashed line. 388 

 389 

Fig. 1. Dependence of (a) ln[𝜀̇mexp(Q*
c/RT)] on ln[−ln(TS)] and b ln[tfexp(-Q*

c/RT)] 390 

on ln[−ln(TS)] at various temperatures. 391 

It therefore appears that the creep behaviour of Waspaloy is dependent on applied 392 

conditions, with two distinct regions corresponding to stresses above and below 𝜎𝑌 (the yield 393 

stress which approximately corresponds to a normalised stress of 0.726). This change in 394 

creep behaviour is due to differing mechanisms of creep at different applied conditions. 395 

Whittaker et. al. [9] highlighted the dominance of diffusive climb at stresses below 𝜎𝑌 with 396 

dislocation-dislocation interaction in the form of forest hardening limiting creep rates at 397 

higher stresses. They showed that geometrically necessary dislocation (GND) densities are 398 

higher at the grain boundaries in Waspaloy samples crept below 𝜎𝑌, where as GND densities 399 

were more uniformly spread through grains in samples crept above 𝜎𝑌.  400 

6.2. The Wilshire equation for the time to failure  401 

The bottom half of Table 2 shows the least squares estimates made for the parameters 402 
of the Wilshire failure time equation. This model is capable of explaining 93.87% of the 403 

variation in log times to failure, and the parameters (with the exception of Qc) above and 404 

below c = 0.726 are all statistically significantly different from each other at the 1% 405 

significance level. Fig. 1(b) provides a visualisation of this model by plotting ln() against 406 

tf − 𝑄𝑐/𝑅𝑇. There is a clear break in the relationship around c = 0.726 and all data the 407 

points seem to fit tightly around the best fit line given by Eqs. (6c) - which is shown as a 408 
dashed line. 409 

6.3. The Monkman-Grant relation 410 
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Fig. 2 shows the least squares estimates of the Monkman – Grant relation, with this 411 

relation explaining 99.78% of the variation in log minimum creep rates. This relationship 412 

gives a good representation of the experimental data irrespective of the temperature, with  = 413 
1/1.1263 = 0.8879 appearing to be independent of temperature. 414 

 415 

Fig. 2. Dependence of minimum creep rate on time to failure and failure strain. 416 

6.4. Analysis at constant temperatures: checking the temperature dependency of j and mj  417 

The open circles in Fig. 3 show the experimentally measured creep curves obtained at 418 

873K and for stresses of 900 MPa and above (900, 950, 1000,1050 and 1150 MPa – with one 419 

replication at 950 and 1050 MPa). This corresponds to the high stress regime identified in sub 420 

sections 4.1 and 4.2 above (j = 1). With a UTS of 1154 MPa at this temperature, these 421 

stresses all correspond to values for ln() below -1.137. These creep curves have been 422 

normalised using the failure strains and times associated with these measured curves. Now 423 

Eq.(11d) can be thought of as a master normalised creep curve for all tests conditions at or 424 

above 840 MPa and at 873K (i.e. at or above TS = 0.726 at 873K). Table 3 shows the 425 

estimates made for the parameters m and  of this master curve using non-linear least 426 

squares. 427 

 428 
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Table 3  Parameters in the Wilshire CDM creep curve of Eq. (11a,b) and for use at a 432 

temperature of 873K with stresses above 840 MPa (i.e. j = 1). 433 

Parameters Calculation Method Estimate 

m1 

1 

Application of non-linear least squares to Eq. (11d) 

-0.3765 

0.6592 

n1 Calculated from the values for v1 in Table 2 using Eqs. (8a,12a) . -0.8652 

A1 Calculated from v1, k21 and Qc1 in Table 2 using Eqs. (8a,12a) − 

G1 Calculated from u1, k11, Qc1 in Table 2 and m1, 1 using Eqs. (10f,12c) 1.5889E-06 

1 Calculated from m1 and u1 in Table 2 using Eqs. (10f,12c) -0.7893 

 Exponent in the Monkman-Grant relation in Fig. 2 0.8879 

1 Derived from n1, 1 and  - see  Eq (c) 1.2541 

 434 

 Using these values with wf  = 1 yields the master curve in Fig. 3 shown as the solid 435 

black curve. This curve appears to present the shape of the normalised experimental creep 436 

curves well.  437 

 438 

Fig. 3. Normalised experimental creep curves obtained at 873K and for stress at or above 900 439 

MPa, together with the predicted master curve given by Eq. (11d). 440 

This master curve can then be used to predict actual creep curves. This can be done by 441 

rescaling the master curve using the values for  in Eq. (11b), which in turn are calculated 442 

from the remaining parameters shown in Table 3. Fig. 4(a,b) shows some creep curves 443 

calculated in this way. In Fig. 4(a) the two creep curves measured at 873K and 950 MPa are 444 

shown together with the predicted creep curve for this test condition. The predicted curve is 445 

closer to one of the measured curves, but the figure also clearly demonstrates the large 446 
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random or stochastic component of creep that is present for this alloy. In Fig. 4(b) the 447 

predicted creep curves is in between the two measured creep curves at 1050 MPa. Again, the 448 

stochastic nature of creep is clearly visualised.  449 

The full accuracy of the predictions made for the recorded creep curves obtained at 450 

873K and for stresses of 900 MPa or more is shown in Fig. 5. Here the actual strains are 451 

plotted against the predicted strains obtained using Eqs. (11a,b) on a (natural) log scale and 452 

so a perfect model would correspond to all data points falling on the shown 450 line. The Z 453 

parameter of 1.63 is below the minimum acceptable value suggested by Holdsworth et. al. 454 

and implies that 99% of all strains will fall within the range of 1.63 times the predicted strain. 455 

The shape of the creep curves appears to be well predicted at low and high strains, but at 456 

intermediate strains the predictions tend to underestimate the actuals creep strains. The mean 457 

percentage squared error (MPSE) is equal to 4.11% (with a root MPSE of just over 2%). 458 

Further, 4% of this MPSE is attributable to the squared difference between the average strain 459 

and the predicted strain. An additional 10.7% of this MPSE is attributable to the best fit line 460 

shown in Fig. 5 being a little steeper than the ideal 450 line, implying a small tendency of the 461 

Wilshire CDM model to systematically under predict at low strains and then over predict at 462 

higher strains. Both these components of the MPSE represent systematic errors made in 463 

predicting the actual creep curves at 873K and so this source of error amounts to some 15% 464 

of the MPSE. The remaining 85% of the MPSE is by deduction random (and so 465 

unpredictable) in nature and simply reflects the stochastic nature of creep in Waspaloy - as is 466 

evident in Figs (4). 467 

 468 

Fig. 4. Experimental creep curves obtained at 873K together with predicted curves given by 469 

Eqs. (11a,b) when (a) stress =950 MPa and (b)  when stress = 1050 MPa. 470 
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 471 

Fig.5. Plot of actual against predicted creep curves at 873K and at normalised stresses above 472 

0.726. 473 

 Fig. 6 shows the results of repeating the above analysis at the other temperatures – 474 

both above and below the break point stress (as there is only 1 data point below c at 873K 475 

no such an analysis could be done for these test conditions). It is clear from this figure that 476 

the parameter m is always higher in the lower stress regime (although the gap diminishes 477 

with decreasing temperature). In this low stress regime, m is also always positive implying 478 

there is no or very short-lived primary creep. In contrast, in the higher stress regime, m is 479 

always negative so that more pronounced primary creep occurs irrespective of the 480 

temperature. Irrespective of the stress regime, there is a tendency for m to reduce in size as 481 

the temperature decreases. Whilst  is clearly higher in the low stress regime, there is no 482 

strong evidence to suggest that  varies systematically with temperature. For the parameter , 483 

there is again no strong evidence to suggest it varies either with stress or temperature. 484 
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 486 

Fig. 6.  Variations of (a) parameter m, (b) parameter  and (c) parameter  with temperature 487 

and creep regime (low and high stress regimes).   488 

 Based on these results it seems sensible to assume that  and  are independent of 489 

temperature, but m requires some additional modelling. In this paper, the dependence of m on 490 

temperature was modelled as a linear function of 1000/RT – as seen in Fig. 6(a) 491 

6.5. Combining temperatures in the high stress regime . 492 

The results above suggest the model can be used to predict creep curves at any 493 

temperature by treating  as fixed and modelling the parameter m using the linear expression 494 

shown in Fig. 6(a). Thus m+1 varied from 0.62 at 873K through to 0.97 at 1023K for 495 

normalised stresses in excess of 0.726. This implies that there is a well-defined primary creep 496 

stage present within the creep curves at these conditions, with this stage become less defined 497 

with increasing temperature. The open circles in Fig. 7 show the experimentally measured 498 

creep curves obtained at all temperatures and for all stresses in the high stress regime, (i.e. for 499 

c
 > 0.726). These creep curves have been normalised using the failure strains and times 500 

associated with these measured curves. Using all such test conditions, and using wf = 1, the 501 

non-linear least squares estimate for 1 was found to be 0.6567 - and so not to different from 502 

the value obtained at 873K.  503 

This  value and the temperature dependant values for m resulted in the master curves 504 

shown in Fig. 7 – represented as the solid grey curves and they appear to present the shape of 505 

the normalised experimental creep curves reasonably well. There is one master curve for each 506 

temperature as the parameter m changes with temperature. 507 
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 508 

Fig. 7. Normalised experimental creep curves obtained at 873-1023K and for higher stresses 509 

corresponding to c<0.726, together with the predicted master curves given by Eq. (11d). 510 

Table 4  gives the parameters of Eq. (11a,b) that can be used to predict creep curves at 511 

the four shown temperatures and normalised stresses above 0.726. Fig. 8 shows one such 512 

predicted creep curve obtained at 973K and 750 MPa, together with the creep curves 513 

associated with the two specimens placed on test at this condition. Again, the highly 514 

stochastic nature of creep in this material is present and the predicted creep curve is a better 515 

fit at the earlier strains. 516 

Table 4 Parameters in the Wilshire CDM creep curve of Eq. (11a,b) and for use at a 517 
temperatures of 873K, 923K, 973K and 1023K and with normalised stresses above 0.726 (i.e. 518 

j = 1). 519 

 Estimates 

Parameters All temperatures 873K 923K 973K 1023K 

m - -0.393 -0.2663 -0.1526 -0.05 

1 0.6567 - - - - 

n1 -0.8652 - - - - 

A1 - 1.2623E-07 6.8001E-07 3.0812E-06 1.2044E-05 

G1 - 8.0552E-05 5.5586E-05 5.3705E-05 6.6693E-05 

1 - -0.4957 -0.5993 -0.6921 -0.7759 

 0.8879 - - - - 

 1.6065 - - - - 

 520 
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 522 

 523 

Fig. 8. Experimental creep curves obtained at 973K and 750 MPa, together with predicted 524 

curve given by Eqs. (11a,b). 525 

The full accuracy of the predictions made for the recorded creep curves obtained at 526 

873K – 1023K and for normalised stresses of 0.726 is shown in Fig. 9. Here the actual strains 527 

are plotted against the predicted strains obtained using Eqs. (11a,b) on a (natural) log scale 528 

and so a perfect model would correspond to all data points falling on the shown 450 line. The 529 

Z parameter of 1.79 is below the minimum acceptable value suggested by Holdsworth et. al. 530 

and implies that 99% of all strains will fall within the range of 1.79 times the predicted strain. 531 

The shape of the creep curves appears to be well predicted at low and high strains, but at 532 

intermediate strains the predictions tend to underestimate the actuals creep strains The mean 533 

percentage squared error (MPSE) is equal to 6.86% (with a root MPSE of just over 2.62%). 534 

Further, 4.5% of this MPSE is attributable to the squared difference between the average 535 

strain and the predicted strain. An additional 8.5% of this MPSE is attributable to the best fit 536 

line shown in Fig. 9 being a little steeper than the ideal 450 line, implying a small tendency of 537 

the Wilshire CDM model to systematically under predict low strains and then over predict at 538 

higher strains. Both these components of the MPSE represent systematic errors made in 539 

predicting the actual creep curves at these conditions and so this source of error amounts to 540 

some 13% of the MPSE. The remaining 87% of the MPSE is by deduction random (and so 541 

unpredictable) in nature and simply reflects the stochastic nature of creep in Waspaloy as was 542 

evident in Figs (4,8). 543 
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 545 

Fig. 9. Plot of actual against predicted creep curves at 873K – 1023K and at normalised 546 

stresses above 0.726. 547 

7. Conclusions 548 

This paper integrated the Wilshire failure time and minimum creep rate equations into 549 

a modified Kachanov-Rabotnov CDM creep model that was capable of modelling both 550 
primary and tertiary creep. The paper also presented an estimation strategy for the unknown 551 

parameters of this model. This CDM model was then applied to uniaxial creep data on 552 
Waspaloy. It was found that the Wilshire equations provided very good fits to the data on 553 

times to failure and minimum creep rates. Two different creep regimes were identified using 554 
these equations – with a change in creep regime appearing to take place at a normalised stress 555 
of 0.726. The activation energy, whilst statistically significantly different either side of this 556 

stress, was not very different in value. Following other authors, it was hypothesised that this 557 

break was due to a dominance of diffusive climb at stresses below 𝜎𝑌, with dislocation-558 

dislocation interaction in the form of forest hardening limiting creep rates occurring at higher 559 
stresses. 560 

The parameter m of the CDM model was found to be stress and temperature 561 
dependent, such that at the lower temperatures m is clearly negative implying well defined 562 

tertiary creep. This stage of creep then tends to disappear at higher temperatures (as m tends 563 

to zero at these temperatures). The parameter  was found to be broadly independent of the 564 
temperature. Finally, the CDM model was shown to be reasonably accurate at predicting the 565 

experimental creep curves. At 873K the root MPSE was just over 2%, whilst the model 566 
applied to all temperatures had a root MPSE of 2.6%. In both these illustrations the vast 567 
majority of the prediction errors were random in nature. The scatter, as measured by the Z 568 
parameters, were below 2 in both instances 569 
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 Some areas for future research include the application of this model to other high 570 

temperature materials, to assessing the models ability to predict creep curve shape at 571 

conditions not used in estimating the models unknown parameters and the incorporation of 572 

the Wilshire equations into multiple damage parameter CDM models. 573 

Data Statement 574 

The data used in this paper has been in the public domain for a number of years as shown in 575 

the reference section. Data can be made available from the author upon request. 576 
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Appendix 682 

 683 

Nomenclature 

T Temperature (K) 

 Stress (MPa) 

TS Ultimate tensile strength (UTS) 

𝑤, 𝑤̇,wf K-R damage parameter, rate of damage accumulation, damage at failure 

 Transformed and normalised stress, [−ln (σ/σTS] 
c Critical values for the normalised stress in the Wilshire models 
t Time (s) 

tf Time at failure 

 Strain 

f Strain at failure 

𝜀́ Strain rate 

𝜀𝑚́ Minimum creep rate 

   n   Parameters of the K-R and Wilshire CDM models 

m Additional parameter of the Hayhurst extension of the K-R model 

k1, u Parameters of the Wilshire failure time equation 

k2, v Parameters of the Wilshire minimum creep rate equation 

Qc Activation energy for self diffusion 

C, Monkman- Grant parameters 

G Additional Parameter of the Wilshire CDM model 

h Number of separate test conditions in test matrix 

mi Number of strain-time readings made at test condition i 

𝜀𝑖𝑡 Strain recorded at time t under test condition i 

𝜀𝑖̂𝑡 Strain predicted by the Wilshire CDM model at time t under test condition i 

eit Residual log times 

MPSE Mean percentage squared error 

𝑒̅  Mean residual log timeover all test conditions 

𝑒̅𝑖 Mean residual log time at test condition i 

𝑠𝑒𝑖 Standard deviation in these residual log times at test condition i 

𝑠𝑒  Standard deviation in these residual log times at all test conditions 

zp Percentile of the standard normal distribution 

Z Parameter quantifying effectiveness of a creep model to predict strain 

𝑠ln(𝜀̂)
2  Variance in the predicted log strains 

S2
v Variance in the residual log times 

𝑠ln(𝜀)
2  Variance in the log strains 

r Correlation between actual and predicted log strains 

  Parameters of a best fit line for ln(𝜀) v ln(𝜀̂) 

UM,UR,UD Proportions of the MPSE 

, K Variables for un-normalised the master normalised creep curve 

ln(𝜀𝑖)𝑝 Percentile of the log strain . 

t and s Additional material constants in the model by Haque [24] 

𝜀𝑓̇ Creep rate at failure 

ẇf/ẇ0  Ratio of the final to initial rates of damage accumulation 
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