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Abstract

*Klockner Pentaplast, Featherstone, Free-moving meat exudate in plastic packaging is perceived as unhygienic and

West Yorkshire, UK unattractive by consumers. It facilitates the deterioration of meat quality and

safety, increasing meat waste and loss. This work discusses an innovative
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approach in scavenging meat exudate within commercial plastic packaging.
This involves improving the liquid absorption capabilities of open-cell polysty-
rene (PS) foam through the application of oxygen plasma treatment rather
than chemical wetting agents. The excited plasma species diffuse into the
porous foam structure introducing polar oxygen groups onto the pore walls
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enhanced wettability towards water-based liquids, are proposed to have a
larger sucking capillary pressure thus increasing the absorption capacity of the
porous PS foam. The specific liquid absorption capacity of PS foam sheets
(thickness: 5 mm) increased from 1.09 g g * (grams of exudate simulant liquid
absorbed per gram of PS foam) to 8.78 g g~' as a result of plasma treatment;
an eightfold increase in liquid capacity (g g ') that persisted even 60 days post
treatment. This study demonstrates the practicality of using plasma treatment
as a non-chemical and efficient technology in scavenging meat and food
exudates in plastic packaging.
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1 | INTRODUCTION in light of growing demand for safer, healthier and longer

shelf-life food.> Furthermore, supply chains will be

Food freshness, safety, and shelf life are crucially depen-
dent on food packaging. The packaging provides a protec-
tion to the contained food from various physical and
chemical contaminants, and it inhibits the proliferation
of spoilage and pathogenic bacteria.' The development
of food packaging functionalities is gaining more interest

required to secure ~70% more food in 2050 as the global
population is estimated to exceed 9 billion.* This can
threaten global food security, particularly since one third
of globally produced food is wasted every year.” There-
fore, the packaging industry has been driven to develop
functionalized packaging solutions to reduce food waste
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by addressing current challenges of packaged food prod-
ucts, such as exuded liquid from food.! Fresh meat, fish,
and poultry are perishable products, which tend to
excrete liquid (exudate) in the packaging during their
shelf life.""® Meat exudate is an aqueous liquid containing
soluble sarcoplasmic proteins with a mixture of amino
acids and enzymes.” It is formed and purged as the muscle
proteins denature during the post-mortem process. This
exudate loss reaches 1-3wt% of a fresh meat piece and it
can increase for meat that has been processed, chopped or
frozen.*® Meat quality and safety are adversely affected by
the exudate leading to limited shelf life of the packaged
meat products. This is attributed to the increased water
activity, and thus greater proliferation of microorganisms
responsible for meat spoilage." Consequently, the efforts to
meet the increased meat demand will be undermined with
more than 20% of meat supply wasted.'” The free-moving
exudate in the meat packaging also provides an unsightly
appearance to consumers and it can leak from the pack-
aged product.!’ Therefore, it is of great importance to
develop a packaging solution to isolate the released exudate
from the packaged meat products.

Fresh meat products are normally packaged in poly-
meric trays and sealed with thin flexible films."" Isolation
of the meat exudate in these trays has thus far been
addressed by different packaging solutions, such as addi-
tion of an absorbent pad,'* and incorporation of meat trays
with liquid-holding microwells."> However, these current
solutions provide limited isolation capacity for meat exu-
date. The employing of absorbent pads also introduces
additional cost and processing complexity.'*'> A meat tray
made of polymeric open-cell foam is an alternative packag-
ing solution acting as both the container and soak-away for
the meat exudate,'®'” as shown in Figure 1. This absorbent

FIGURE 1
Klockner Pentaplast Group) [Color figure can be viewed at

Open-cell polystyrene foam trays ( trays source:
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tray has an interconnected porous structure and draws the
meat exudate into the foam pores through perforations
made in the tray skin.'” The liquid absorbency of polymeric
foams is attributed to their porosity and pore interconnec-
tivity, which ensure a network of interconnected voids
accessible to the wicked liquids.'®'® However, a limitation
of this effect is that the liquid absorption is only initiated as
the liquid wets the pore surfaces. This characteristic of the
porous material is a crucial property for liquid absorption,
and it involves the liquid penetration under the influence
of capillary pressure (P.), as described by Young-Laplace
Equation®>*":

_ 2ycosf

Pe=—"——, (1)

r

where y is the liquid surface tension (N m™), 6 is the
liquid contact angle on pore surface (°), r is the radius of
the foam pore (m). Therefore, any increase in wettability
of the foam pores through reduction of the contact angle
improves the sucking capillary pressure and increases
the absorption capacity of the aqueous liquids.'®** A
limitation of this mechanism is due to the inherently
hydrophobic properties of foam packaging materials,
such as polystyrene (PS) and polypropylene (PP), which
restrict the penetration of hydrophilic liquids into the
foam matrix.?>** Therefore, a wetting agent can be
added to the foam trays to facilitate the liquid absorp-
tion.>>?® This includes the addition of surfactants such
as alkyl sulphonates, which enhance the wettability of
foam pores with respect to the aqueous liquids.*® For
example, water uptake of poly-(lactide) (PLA) foam was
reported to reach 27% (based on the pore volume) after
adding poloxamer surfactant, while the foam did not
absorb water before adding the surfactant.”” However,
there are concerns about these chemicals entering the
food chain, leading to bioaccumulation and their poten-
tial toxic effects on the environment at high
concentrations,*°

As an alternative to the use of surfactants, the inher-
ent surface wettability of polymeric materials can be
altered by various surface modification treatments.*
Plasma treatment is one of the most efficient techniques
in increasing the wettability of polymeric surfaces.?
Plasma is generated by ionizing gas molecules such as
oxygen or air under the influence of an electric field. It is
a glow of highly reactive gas molecules and particles with
UV irradiation.®”** These excited species can fun-
ctionalize the polymer surfaces with oxygen groups such
COOH and C—OH inducing an increase in the surface
polarity and wettability.** Plasma treatment is economi-
cal, eco-friendly, consistent, and capable of modifying the
surface of complex objects.”> > Atmospheric plasma is
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also efficient and practical for the packaging industry as
it is suitable for in-line integration ensuring continuous
processing.*® Plasma treatment has been demonstrated to
enhance liquid absorption by improving wettability for
different textile materials, such as nonwoven polymeric
substrates and silk fabrics.*”*° Plasma technology is already
applied to current food packaging to enhance the adhesion,
printability, and film barrier properties> The authors
recently demonstrated the use of plasma in food packaging
by locally functionalized recesses in solid plastic packaging.*’
However, there is no previous work on application of plasma
treatment for liquid management in foam packaging.

This work therefore explores the use of plasma treat-
ment on the porous structure of open-cell polymeric
foams as a method of improving the wettability of their
pore walls, and hence increasing their capacity for
retaining liquids. It is proposed that this treatment may
increase the sucking capillary pressure acting on the
foam pores leading to improved liquid wicking and
absorption. In this study, open-cell PS foam sheets are
extruded and cut into cubic samples. Oxygen plasma is
used to treat the foam samples and the impact of this
treatment on their liquid absorption capacity is evalu-
ated. Different test liquids are prepared to simulate meat
exudate for the liquid absorption experiments. The lig-
uid absorption capacity of the PS foam samples is com-
pared before and after the plasma treatments. Surface
characterization of the foam is performed in terms of
wettability and chemical composition by water contact
angle (WCA) and X-ray photoelectron spectroscopy
(XPS) techniques respectively. The longevity of the
plasma treatment is investigated by carrying out liquid
absorption tests after different post-treatment times.

2 | EXPERIMENTAL SECTION

2.1 | Materials

Open-cell PS foam was supplied as plain sheets with
thickness of 5mm from large-scale industrial foam
(Klockner Pentaplast Group). The foam sheet had imper-
meable skin on top and bottom sides, and it was cut into
rectangle-shaped samples for surface characterization
and absorption tests. Deionized (DI) water was used to
prepare test liquids with different surface tension values
(72.6, 52.3, 31.5 mN m '), to cover a range of wetting
behaviors of meat exudate, by adding Triton X100 surfac-
tant (Sigma Aldrich). Bovine serum albumin (BSA)
(Sigma Aldrich) was used to prepare aqueous test liquid
reflecting the presence of proteins in meat exudate. Red
azorubine colorant-E122 (FastColours LLP) was added to
stain the test liquids for absorption tests.

Applied Polymer_wiLEY-L 2=

2.2 | Structural characterization
of polystyrene foam materials

2.2.1 | Foam density and expansion ratio
Representative cubic samples were taken from PS foam by
a sharp scalpel. The foam samples had dimensions
(L x Wx T:20 mm x 20 mm x 5 mm) and were weighed
on analytical scale (Model: A200S, Sartorius Analytic) with
resolution of 0.0001 g. The density of PS foam was based on
ratio of the mass of the foam samples to their geometric
volumes as described in another work.*' Expansion ratio
(y) measurement was based on the ratio of solid PS poly-
mer density (ps) to the measured density of PS foam sample
(pp) as shown in Equation (2)*:

Ps
y="=, (2)
Pt

ps, p kg m .

The foam density and expansion ratio were average
values of measurements carried out for six PS foam
samples.

2.2.2 | Porosity and pore size distribution
The porosity (n) of PS foam represents the ratio of gas vol-
ume (Vg,s) occupying pore spaces to the geometric volume
of the foam sample (Vy). The volume of pore space was
calculated by subtracting the volume of solid polymer (V)
from the geometric volume of the foam sample (Vp)
with dimensions (L x W x T: 20 mm X 20 mm X 5 mm).
Therefore, the foam porosity was determined by compen-
sating the volume with the corresponding mass and
density as shown in Equation (3):

mp _ mp
_Vf—VS_Pf Ps_l Pt
l’l——V =" =1-—
f Dt Ps

(3)

where m; (kg) is the mass of the foam sample, p; (kg m )
is the density of the foam sample, ps (kg m ) is the
density of the solid polymer.*’

The porosity measurements were repeated for six PS
foam samples.

The pore structure and pore size distribution of PS
foam was characterized by scanning electron microscope
(SEM, Zeiss Evo-LS25). The cross-sections of intact foam
samples were prepared for imaging by scoring the foam
samples with a scalpel and immersing in liquid nitrogen
(30 min). The scored samples were then fractured and
sputtered with a layer of platinum coating (approximately
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10 nm) using Agar High Resolution Coater (Model:
208HR, Agar Scientific) to reduce the charging effect dur-
ing scanning. The sputter coating was performed with
working pressure of 0.02 mbar and current of 80 mA.
Two adjacent cross-section surfaces of six samples were
then scanned and imaged by SEM operating at (15 kV)
and within width of (2.287 mm). The SEM images were
analyzed by ImageJ] software (Version: 1.47v) to deter-
mine the pore size distribution. The pore size measure-
ment was carried out by fitting a circle on each pore
perimeter and measuring the corresponding diameter.
The measured values of pore diameters were used to gen-
erate a histogram showing the distribution of pore
sizes.**

2.2.3 | Open cell content

Open-cell content of PS foam was measured to evalu-
ate the portion of interconnected cells in the foam
samples. The open cells form the accessible volume of
foam matrix where liquid can flow, while the
remaining portion consists of closed compartments and
pore walls. The content of open cells was based on the
ratio of total open-cell volume to the geometric volume
of the foam sample. This was measured by a gas pyc-
nometer (ULTRAPYC 1200e—Quantachrome Instru-
ments). The open cell content was calculated from the
difference between the pycnometer volume and geo-
metric volume of foam samples as given by the
Equation (4):

Vi-V
0 1l content % = | ——=| x 100. 4
pen cell content % {fon} (4)

The content of cell walls and closed cells was determined
as shown in the Equations (5) and (6) respectively:

mg

Cell wall content % = L ] x 100, (5)

s X V¢

Closed cell content % = 100
— (open cell content %+ cell wall content %),

(6)

where V; (m®) is geometric volume of foam sample,
V, (m’) is pycnometer volume, n is porosity, m; (kg) is
mass of foam sample, ps (kg m ) is density of solid PS
polymer.

The measurements were carried out based on ASTM
Standard D6226-10 as described in another work.*!

2.3 | Oxygen plasma treatment of
polystyrene foam

Samples for plasma treatment were taken from PS
foam sheets of 5 mm thickness, with skin on the top
and bottom faces of the sheet. Cut foam sections
were treated with low-pressure plasma (Diener Elec-
tronic), with samples oriented to focus the plasma on
the skin or edges as required. The plasma discharge
was generated using supplied oxygen gas under an
electric field (40 kHz). The loaded samples were out-
gassed as the unit chamber was pumped to low pres-
sure (0.12 mbar). The O, plasma treatments were
conducted for exposure time of 27s at power of
240 W, with treatment duration based on preliminary
experiments for achieving a target wettability (WCA:
~15°) on foam skin. The treated foam samples were
then put in clean plastic containers to minimize any
accidental contamination.*?

2.4 | Surface characterization of the
polystyrene foam
2.4.1 | Surface chemical composition by

X-ray photoelectron spectroscopy analysis

The surface composition and functional groups of PS
foam surface were analyzed by X-ray photoelectron
spectroscopy provided with Axis supra system (Kratos
Analytical Ltd). Survey scans were carried out to deter-
mine the surface elements on untreated and O,
plasma-treated PS samples. The foam samples were
irradiated at 1486.6 eV from an X-ray source of mono-
chromatic Al Ka. The XPS scans were carried out at
take-off angle of 90° and the resulting photoelectrons
were received and analyzed by an encountering hemi-
spherical analyzer. The surface charging was neutral-
ized via the integral filament and magnetic lens
system. The wide scan spectra were generated at pass
energy of 160 eV and within a range of binding energy
of 0-1400 eV. The high-resolution scans for C 1 s peaks
were performed at pass energy of 20 eV. The peaks of
all scan spectra were fitted on Shirley background and
processed by CasaXPS software (Version 2.3.22PR1.0,
Casa Software Ltd). Carbon peak components were
deconvoluted and normalized with Gauss-Lorentz
peak models to represent the different chemical groups
in the carbon peak and calculate their concentrations.
The surface chemical analysis was carried out for three
PS foam samples.*>**



ALAIZOKI ET AL.

uuuuuuuuu

Applied Polymer_wiLEY-L ==

242 | Contact angle measurement

Static contact angles were measured on PS foam skin of
untreated and plasma-treated samples using the sessile
drop method. A micropipette was used to produce drops
of DI water (3 pl) on the sample skin to evaluate the sur-
face wettability. The measurements of the contact angles
were carried out by goniometer (FTA1000c, First Ten
Angstroms) and the resulting drop profiles were analyzed
by FTA32 shape analyzer software. All contact angle
measurements were conducted at a room temperature of
20 + 1°C.*%

2.4.3 | Water drop absorption test

DI water drops (10 pl) were placed on the cut sides of the
foam samples with exposed porous structure (no skin)
before and after plasma treatment. The time for the water
drops to be fully wicked into the porous PS structure was
measured by high-speed camera (Fastcam Mini, Model:
UX100, Photron). The recorded wicking times were aver-
aged for six water drops in different locations of the foam
samples. A photograph was also taken for the water
drops on the porous structure of the untreated and
plasma-treated foam samples to compare their surface
hydrophilicity.*®*”

2.5 | Liquid absorption capacity

The absorption capacity of PS foam was determined for
foam samples of dimensions (L x W x T: 40 mm X
10 mm x 5 mm). BSA 8wt% (y: 520 mN m '), and DI
water with added surfactant were used as test liquids of dif-
ferent surface tensions (y: 72.6, 52.3, 31.5 mN m ™ %). These
cover a range of surface tensions of meat exudate that might
be expected as well as extremes. The foam samples were
treated with O, plasma for 27 s with samples oriented to
focus the plasma on one cut side (L x T). The absorption
test was performed by freely placing the cross-sections
(L x T) of the untreated and plasma-treated samples on the
test liquid within a plastic plate. The measurements of
absorption capacity were repeated three times at room tem-
perature of 20 + 1°C, and estimated by the liquid weight in
grams absorbed per gram of dry foam sample in equilib-
rium. The dry foam samples were weighed before the
absorption test (Wy) and after their saturation with test lig-
uid for 15 min (W;). The foam samples were removed from
the liquid for 30 s to allow any excess liquid to drain before
weighing. The resulting absorption capacity (R) was given
by Equation (7)*"*:

Ws—Wy
R=——F7—7—. 7
- )

2.6 | Aging effect

The changes in surface characteristics and absorption
capacity due to aging phenomena were studied for
plasma-treated PS foam after various storage times. All
samples were stored in sealed plastic boxes at room tem-
perature of 20 + 1°C as normal storage conditions after
oxygen plasma treatment of 27 s. The surface wettability
and chemical composition of the aged foam samples were
characterized by WCA and XPS techniques respectively.**
The absorption capacity (R) was measured for the foam
samples with BSA 8wt% (y: 52.0 mN m™'). The surface
wettability, chemical composition, and absorption capac-
ity were determined with three repeats per measurement
in different durations over 60 days.*® For practicality of
using PS foam as a soak-away in food packaging, the lig-
uid absorption capacity was also estimated in kilograms
of absorbed liquid per cubic meter of the PS foam.

3 | RESULTS
3.1 | Porous structure properties
of polystyrene foam

Table 1 shows the material characteristics of PS foam
samples. The PS foam had low density (41.61 kg m~)
and large expansion ratio (25.24). The gaseous void con-
tent of the foam structure was represented by a porosity
of 96%. This high porosity included closed and open cells,
which are determined by the ratio of gaseous volume to
the foam matrix volume. The open cells presented the
interconnected foam pores showing high connectivity
and open-cell content (90.91%)."® The closed-cell content
was only (4.24%) and solid PS material was estimated by

TABLE 1 Material properties of open-cell polystyrene foam
Material property Value (+SD)?
Density (kg m™) 41.61 (+0.94)
Expansion ratio 25.24 (£0.58)
Porosity (%) 96% (+0)
Open-cell content (%) 90.91 (£0.21)
Closed-cell content (%) 4.24 (+0.28)
Cell wall content (%) 4.86 (£0.11)

n=~6.
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FIGURE 2
open-cell polystyrene foam with view width of 2.287 mm and
(b) histogram of pore size distribution [Color figure can be viewed

(a) Scanning electron microscope micrograph of

at wileyonlinelibrary.com|

the cell wall content (4.86%). The morphology of the cel-
lular PS structure was characterized by the SEM micro-
graphs as shown in Figure 2a. The foam structure
primarily exhibited open cells (pores) with irregular
shapes. The open cells were interconnected with smaller
pores on their cellular walls (Figure 2a). This can provide
the porous foam matrix with tortuous paths. Each pore
size was determined by diameter of the fitted circle on its
perimeter. The pore diameter measurements were per-
formed on two adjacent cross-sections of the foam sam-
ples providing a good representation of their pore size
distribution. The frequency of the measured pore diame-
ters is presented in a histogram shown in Figure 2b. The
reticulated PS foam showed a wide pore size distribution
with (93.8%) of the pores with diameters in range of
(120-280 pm). However, a substantial portion of the pore
diameters (36.6%) was distributed in the narrower range
of (180-220 pm). Large pores with diameter (>280 pm)
formed (3.9%) with pore diameters reaching (340 pm).

3.2 | Chemical composition
of polystyrene foam

The elemental composition of PS foam before and
after plasma treatment is illustrated in the XPS survey
spectra in Figure 3a,b. The atomic concentrations of
the detected surface elements are presented in
Table 2. The spectrum of untreated PS showed a dis-
tinct C 1 s peak for carbon and small O 1 s peak for
oxygen as the major elements of the PS surface. This
revealed the predominantly carbon-based composition
of pristine PS with C% of 99.49% and O% of 0.47%.
The plasma-treated PS spectrum exhibited a very small
new peak for nitrogen N 1 s with a more distinct O
1 s peak as shown in Figure 3b. The O, plasma treat-
ment introduced more oxygen to the PS surface
resulting in a higher relative oxygen concentration of
18.38%, while the carbon concentration decreased to
81.17%. The corresponding Oxygen/Carbon ratio (O/C)
of untreated and plasma-treated PS was 0.47% and
22.64% respectively. The nitrogen element was incor-
porated to the plasma-treated PS accounting for small
concentration of 0.32%, and traces of silicon element
<0.20% was also found on PS foam surface as pres-
ented in Table 2.

The high-resolution C 1 s peak was deconvoluted to
its components to identify the bonds and functional
groups on the PS surface. Figure 3c,d show the sub-
peaks of the deconvoluted C 1 s peak before and after
plasma treatment. The analyzed C 1 s peak revealed
three peak components for untreated PS defined at bind-
ing energy of 284.6, 286.2, and 291.2 eV. This cor-
responded to bonds of C=C/C—C/C—H, C—O, and z-z*
shake-up respectively. The plasma treatment led to
emerging new functional groups of C=0, O—C=0, and
O—C(=0)—O0 at binding energies of 287.3, 288.4, and
289.5 eV respectively. The C=C, C—C, C—H bonds were
defined at binding energy of 284.6 eV, lower than their
normal binding energy (285.0 eV) due to the presence of
aromatic rings in the PS structure.*’ The untreated PS
showed prevalence of C=C, C—C and C—H bonds with
concentration of 92.74% as presented in Table 3. C—O
and shake-up bonds were detected with small concen-
trations of 2.73% and 4.54% respectively. On the other
hand, the plasma treatment resulted in a substantial
decrease in the C=C, C—C, and C—H bonds to reach
80.56% with increasing concentration of C—O bond to
10.67%. The shake-up (z-z*) bond concentration nota-
bly decreased to 0.89% after the plasma treatment and
the new polar functional groups of C=0, O—C=0 and
O—C(=0)—0 had small concentrations of 4.38%, 1.57%,
and 1.94% respectively.
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FIGURE 3 Wide X-ray photoelectron spectroscopy spectra of (a) untreated and (b) plasma-treated polystyrene (PS) foam, and
functional groups of deconvoluted C 1 s peak for (c) untreated, and (d) plasma-treated PS foam [Color figure can be viewed at
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TABLE 2
polystyrene (PS) foam surface

Analysis of elemental composition and O/C ratio of

PS foam surface C% 0% N% o/c?
Untreated 99.49 0.47 - 0.47
Plasma-treated for 27 s 81.17 18.38 0.32 22.64

*Traces of Si < 0.20%.

3.3 | Surface wettability
of polystyrene foam

The surface wettability of PS foam was determined by
measuring the apparent contact angle of DI water
drops on the foam skin. The measured WCA of PS foam

TABLE 3 Analysis of C 1 s components of polystyrene foam surface
Bond C=C,C-C,C-H Cc-O
Binding energy (eV) 284.6 286.2
Untreated 92.74 2.73
Plasma-treated for 27 s 80.56 10.67

decreased from 86.01° + 0.86° for untreated samples to
15.13° + 0.70° for plasma-treated samples, indicating a
substantial increase in surface hydrophilicity. The
enhanced surface wettability was also observed in the
drop absorption test on the foam cross-section with
exposed porous structure. The red-dyed water drops on
untreated PS foam showed high contact angle value of
100.15° + 4.74°, while the high-speed camera
(500 fs~') showed instantaneous wicking of water
drops into the bulk structure of plasma-treated PS foam
within a time of 0.062 + 0.020 s. This was illustrated in
photograph of the instant absorption of water drop on
the plasma-treated foam sample in comparison with
large water drop on the untreated sample as shown in
Figure 4.

c=0 0—C=0 0—C(=0)—0 n-n*
287.3 288.4 289.5 291.2
_ _ - 4.54

4.38 1.57 1.94 0.89
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Untreated Plasma-treated

FIGURE 4 Photograph of red-dyed water drops on untreated
and plasma-treated cross-sections of PS foam samples (L x W x T:
20 mm x 20 mm x 5 mm) [Color figure can be viewed at
wileyonlinelibrary.com|

3.4 | Liquid absorption capacity

The liquid uptake of PS foam samples was evaluated in
terms of their capacity to absorb and retain the test
liquids. Figure 5 compares the retention capacity of
untreated and plasma-treated PS foam with liquids of dif-
ferent surface tensions. The untreated PS foam exhibited
low retention capacity <1.60 g g~ with test liquids of BSA
8 Wt% (y: 52.0 mN m '), pure water (y: 72.6 mN m™ "), and
water with surfactant (y: 52.3 mN m ') and for these lig-
uids, the plasma treatment of the foam samples consider-
ably improved their surface wettability and liquid uptake
capacity. This resulted in increases in absorption capacity
by 4-8 times depending on the liquid. However, in the
case of the water with surfactant at the lowest surface ten-
sion (31.5 mN m™ "), the liquid highly wetted the foam
pores resulting in substantial retention capacity of 8.93
+0.32gg ' even in the absence of plasma treatment.
Therefore, the plasma treatment had no additional effect as
it is assumed that the sample was fully saturated.

3.5 | Analysis of aging effect of plasma
treatment

The hydrophobic recovery of the aged plasma-treated PS
foam was studied through the changes in the wettability
and surface chemical composition over time. The aging
study was carried out for PS foam samples up to 60 days
post plasma treatment. Figure S1, illustrates the WCA
developed on PS foam skin over different storage periods.
The aging rate was relatively high in the first 3 days post
treatment, leading to an increase in the WCA from
15.13° to 29.70°. The PS foam then exhibited a slower rate
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of aging with a small increase in the WCA showing stable
wettability after 28 days of the storage time. This cor-
responded to WCA of 41.55°, which is still considerably
lower than WCA of 86.01° for untreated PS. The chemical
composition of the aged PS foam samples also changed
with a considerable decrease in the oxygen concentration
and O/C ratio, particularly in the first day as shown in
Table S1. This corresponded to a drop in O% and O/C
ratio from 18.38% and 22.64% respectively at day
0%-15.63% and 18.68% respectively at day 1. However,
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the oxygen concentration after 60 days remained rela-
tively high at 13.12% in comparison with O% of 0.47% for
the untreated PS samples. The nitrogen concentration
was almost unchanged during the storage times. The
effect of aging on liquid absorption capacity of the PS
foam was assessed during these same aging times.
Figure 6 shows the absorption capacity with BSA 8wt%
(y: 52.0 mN m™ ") before and after the plasma treatment
for storage periods of 0, 7, 14, 21, 28, and 60 days. The PS
foam samples had a nearly constant enhanced liquid capac-
ity of about eight times that of the untreated samples, with
no deterioration during the 60 days of aging. For practical-
ity of using PS foam as a liquid absorber, the liquid absorp-
tion capacity was also normalized in terms of kilograms
(liquid) absorbed per cubic meter (foam). This revealed an
estimated increase in the absorption capacity of PS foam
sheet (nominal thickness: 5 mm) from 45.35 + 6.53 kg m >
before plasma treatment to 365.34 +19.80 kgm > after
60 days of the O, plasma treatment.

4 | DISCUSSION

Liquid absorption and retention properties of a porous
media, such as PS foam fundamentally depend on both
its structural and wetting characteristics.*® The high
porosity and open-cell content of the PS foam are among
the crucial structural parameters, which determine the
potential for the foam samples to uptake significant lig-
uid quantities. This was reflected in the large gaseous
space within the foam matrix as the porosity represents
the volume of gaseous cells to the sample volume." The
formation of larger cells and thinner cellular membranes
can be attributed to the low foam density.** A previous
work reported an increase in water absorption capacity of
polyurethane foam from 0.6 to 6.8 vol% due to a decrease
in the foam density from 116 to 42 kg m™>, respectively.>
The high interconnectivity of the gaseous voids (open
cells) also increased the gaseous space available to be
filled by absorbed liquids, while the isolated and closed
cells had no contribution to the liquid absorption capac-
ity.>** Others found a strong relationship between the
improved liquid absorption capacities of polyurethane
foam with an increase in the pore connectivity.*® Regard-
less of these attributes, pore surface wettability is a cru-
cial enabler for liquid penetration into PS foam voids
under a capillary pressure generated on the foam pores
and is key for exploiting the open space in the foam. This
pressure is determined by the liquid surface tension, size
and wettability of pores as described by Young-Laplace
law in the Equation (1). Accordingly, smaller pores with
higher hydrophilic surface absorbed the wetting liquid
before larger pores due to their higher negative capillary
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pressure.”>**>! The corresponding capillary forces are
based on the discrepancy of surface energy on the wet
and dry pore surfaces as the wicking liquid tends to wet
the pore surfaces.”>*!

The hydrophobicity and low surface energy of PS
foam restrict the interactions between the pore surfaces
and water-based fluids.** This prevents the liquid pene-
tration into the foam pores as demonstrated in the low
absorption capacity of untreated PS foam samples. Thus,
the PS foam efficiency as a soak-away is currently lim-
ited for food packaging despite the large pore volume.
However, the pore surfaces of PS foam had higher
hydrophilicity and surface energy after the oxygen
plasma treatment.** The plasma treatment decreased the
WCA on PS foam skin and led to rapid wicking of water
into the foam porous structure. The improved foam
hydrophilicity allowed the liquid to wet the foam pores
and increased their capillary pressure. This resulted in a
substantial increase in the liquid wicking and absorption
capacity,”**** and plasma-treated PS foam with BSA
8wt% had an absorption capacity around eight times that
of the untreated foam. The pore surfaces were modified
through diffusion of the excited gaseous species of
plasma into the foam porous structure. This was
manifested in activation of the interconnected pores and
implanting polar functional groups on their surfaces.*>*
On the other hand, the plasma treatment had no effect
on the absorption capacity of PS foam with water of low
surface tension (y: 31.5 mN m ‘). This is due to the
already high wetting affinity of the liquid to wet the pore
surfaces facilitating the liquid penetration into the foam
porous structure.”> However, liquids with such low sur-
face tensions are not typical of meat exudate.’® This
effect could be analogous to the use of chemical surfac-
tants in the foam as a means of reducing the exudate
surface tension.

The O, plasma treatment improved the hydrophilicity
of the PS foam pores by increasing the oxygen content on
the treated surfaces.** This corresponded to an increase
in O/C from 0.47% to 22.64% for untreated and plasma-
treated PS foam samples respectively. These results are in
line with published research, with different studies
reporting comparable improvements in surface hydrophi-
licity and oxygen contents of plasma-treated PS.**>*%
The exposure to the excited plasma species induces
hydrogen abstraction and chain scission of PS structure
with the primary target being the aromatic rings.’® This
results in formation of reactive radical sites on the treated
PS surface.”” The reaction between these sites and excited
oxygen molecules in the plasma glow led to the introduc-
tion of different polar oxygen groups including C—OH,
C=0, COOH and O—C(=0)—0, which contributed to
the decrease in WCA to 15.13°.**>* These functional
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groups have been reported in previous studies on plasma-
treated PS material.***>® The presence of aromatic rings
in the PS structure accounted for the satellite z—z* peak.
The C 1 s spectrum after the plasma treatment revealed a
decrease in z—z* peak intensity, which can be ascribed to
a targeting of the C=C bonds within the aromatic rings.
This may have resulted in opening the rings and generat-
ing new polar oxygen groups, such as the carbonate
group O—C(=0)—0 and carboxyl group (O=C—OH) as
described by other studies.***® The plasma-treated PS can
remain reactive due to unreacted radical sites, and the
presence of a small nitrogen peak may originate from the
post-treatment reaction between the atmospheric air and
available radical sites. The presence of small amounts of
other elements on the PS structure is assumed to originate
from the PS oxidation in the case of oxygen and contamina-
tion in the case of silicon.***

Polymeric materials functionalized with oxygen
plasma experience hydrophobic recovery because of
aging. This corresponds to a decay of polar oxygen groups
and a tendency of the polymer surface to lose some of the
gained hydrophilicity.** The plasma-treated PS foam
showed reduction in the surface wettability with an
increase in the WCA over time. Previous studies on aged
PS after plasma treatments showed similar tendency of
PS surface to become more hydrophobic with decreases
in surface oxygen content during aging time.*>**%
Although WCA increased to 41.90° after 60 days, it
remained significantly lower than WCA of 86.01° for
untreated PS foam. This was consistent with the decrease
in O% and O/C ratios over the same storage time. The
aging effect can occur due to reorientation of the PS poly-
mer chains leading to burying of the oxygen groups into
the polymer matrix. The formation of hydroperoxides on
the treated PS surface can also facilitate the aging pro-
cess. These hydroperoxide products are instable leading
to decay in the surface polarity and hydrophilicity. How-
ever, the aging process resulted only in a partial loss of
the surface wettability and oxygen concentration.
Therefore, the plasma treatment induced a permanent
increase in the foam wettability.** The maintained
improvement in the foam wettability allowed liquids,
even with high surface tensions, to wet the foam pores.
The corresponding negative capillary pressures acting on
the pores provided the PS foam with liquid sucking func-
tionality. This was evident with a maintained high
absorption capacity of aged PS foam with BSA 8wt% at
more than eight times that of untreated PS foam. Thus, it
is viable to fully treat the PS foam with plasma whether
in the form of a finished absorbent food tray or sheet.
This can be achieved through perforation of the foam
skin to allow the excited plasma species to penetrate the
internal foam pores.

5 | CONCLUSION

In this work, oxygen plasma treatment of open-cell PS
foam revealed improvement in wettability of the foam
porous structure. The exposure of the porous structure of
PS foam to the plasma introduced polar oxygen groups
onto the pore surfaces and improved their wettability.
This increased the capillary pressure acting on the
pores allowing larger liquid uptake and absorption. The
plasma-treated foam samples had a substantial and dura-
ble increase in their liquid absorption capacity (g g™ ') of
eight times higher than the pristine foam samples. There-
fore, one cubic meter of the PS foam sheet gained liquid
absorption capacity of about 365 kg after plasma treat-
ment in comparison with only about 45 kg for untreated
PS foam. The wettability increases experienced partial
loss due to the decrease in the oxygen groups under the
effects of the aging phenomenon. However, the aged
foam pores maintained surface wettability distinctly
higher than the untreated foam pores after 60 days post
plasma treatment. This was sufficient for the liquids to
wet the pore surfaces inducing instant liquid wicking and
absorption, with no drop in performance over time. This
showed the efficiency and practicality of using plasma
technology for improving liquid scavenging within food
packaging. This ensures higher absorption capacity and
rapid wicking of any excessive food liquid, and thus,
helps take the exuded liquid away from the packaged
food. The open-cell polymeric foams can be used as soak-
away for meat exudate or other food juices in form of
whole packaging trays (acting as both package and soak-
away) or absorbent pad without the need for chemical
wetting agents. The surface treatment of foam materials
can be continuous and economical through integration of
an atmospheric plasma unit into current packaging
production lines.
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